WorldWideScience

Sample records for hole drilling nevada

  1. Mineralogy of drill hole UE-25pnumber1 at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1988-05-01

    Drill hole UE-25p/number sign/1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p/number sign/1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs

  2. Geologic investigations of drill hole sloughing problems, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Davies, W.J.; Gonzales, J.L.; Hawkins, W.L.

    1983-01-01

    Severe sloughing zones encountered while drilling large diameter emplacement holes in Yucca Flat, Nevada Test Site, have been identified, correlated and predicted through detailed geologic investigations. In central and southeastern Area 7 and in northern Area 3, the unstable zones are a very fine-grained, well-sorted, unconsolidated sand deposit, probably eolian in origin, which will readily flow into large diameter drill holes. Other areas exhibit hole erosion related to poor induration or extensive zeolitization of the Tertiary tuff units which are very friable and porous. By examining drill hole samples, geophysical logs, caliper logs and drilling histories, these problem zones can be characterized, correlated and then projected into nearby sites. Maps have been generated to show the depth, thickness and areal extent of these strata. In some cases, they are local and have a lenticular geometry, while in others they are quite extensive. The ability to predict such features can enhance the quality of the hole construction and completion operations to avoid costly delays and the loss of valuable testing real estate. The control of hole enlargements will also eliminate related containment concerns, such as stemming uncertainties

  3. Drilling and geohydrologic data for test hole USW UZ-1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.; Thordarson, W.; Hammermeister, D.P.; Warner, J.B.

    1990-01-01

    This report presents data collected to determine the hydrologic characteristics of tuffaceous rocks penetrated in test hole USW UZ-1. The borehole is the first of two deep, large-diameter, unsaturated-zone test holes dry drilled using the vacuum/reverse-air-circulation method. This test hole was drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Yucca Mountain Project (formerly the Nevada Nuclear Waste Storage Investigations) to identify a potentially suitable site for the storage of high-level radioactive wastes. Data are presented for bit and casing configurations, coring methods, sample collection, drilling rate, borehole deviation, and out-of-gage borehole. Geologic data for this borehole include geophysical logs, a lithologic log of drill-bit cuttings, and strike and distribution of fractures. Hydrologic data include water-content and water-potential measurements of drill-bit cuttings, water-level measurements, and physical and chemical analyses of water. Laboratory measurements of moisture content and matric properties from the larger drill-bit cutting fragments were considered to be representative of in-situ conditions. 3 refs., 5 figs., 10 tabs

  4. Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen

    1999-07-01

    Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.

  5. Geology of the U12n.07 UG-3 drill hole, area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    Terry, S.S.; Cunningham, M.J.

    1975-11-01

    The U12n.07 UG-3 horizontal drill hole, located near the eastern edge of the center of Rainier Mesa, Nevada Test Site, was drilled to a total depth of 809 m (2,653 ft). This hole was drilled to further evaluate the tunnel-level stratigraph, and structure southwest of the U12n tunnel complex. The drill hole is collared in the middle of Tertiary tunnel bed 3A and penetrates upsection through tunnel beds 3 and 4 and terminates in subunit 4K, all of Tertiary age. Stratigraphy, structure, engineering geology, and physical properties and their relation to tunnel engineering are discussed

  6. Selected stratigraphic data for drill holes located in Frenchman Flat, Nevada Test Site. Rev. 1

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.

    1997-02-01

    Stratigraphic data are presented in tabular form for 72 holes drilled in Frenchman Flat, Nevada Test Site, between 1950 and 1993. Three pairs of data presentations are included for each hole: depth to formation tops, formation thicknesses, and formation elevations are presented in both field (English) and metric units. Also included for each hole, where available, are various construction data (hole depth, hole diameter, surface location coordinates) and certain information of hydrogeologic significance (depth to water level, top of zeolitization). The event name is given for holes associated with a particular nuclear test. An extensive set of footnotes is included, which indicates data sources and provides other information. The body of the report describes the stratigraphic setting of Frenchman Flat, gives drill-hole naming conventions and database terminology, and provides other background and reference material

  7. Geology of the USW SD-9 drill hole, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Engstrom, D.A.; Rautman, C.A.

    1996-10-01

    Drill hole USW SD-9 is one of several holes drilled under Site Characterization Plan Study as part of the characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-9 drill hole is located in the northern part of the potential repository area. Quantitative and semiquantitative data are included in this report for cover recovery, rock-quality designation (RQD), lithophysal cavity abundance, and fracturing. These data are spatially variable, both within and among the major formational-level stratigraphic units. Nonwelded intervals in general exhibit higher recoveries and more intact (higher) RQD values than welded intervals. The most intact, highest-RQD materials encountered within the Topopah Spring belong to the lower 33.3 ft of the middle nonlithophysal zone. This report includes quantitative data for the framework material properties of porosity, bulk and particle density, and saturated hydraulic conductivity. Graphical analysis of variations in these laboratory hydrologic properties indicates first-order control of material properties by the degree of welding and the presence of zeolite minerals. Many major lithostratigraphic contacts are not well expressed in the material-property profiles; contacts of material-property units are related more to changes in the intensity of welding. Approximate in-situ saturation data of samples preserved immediately upon recovery from the hole are included in the data tabulation

  8. Geology of the USW SD-9 drill hole, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, D.A. [Spectra Research Inst., Albuquerque, NM (United States); Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-10-01

    Drill hole USW SD-9 is one of several holes drilled under Site Characterization Plan Study as part of the characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-9 drill hole is located in the northern part of the potential repository area. Quantitative and semiquantitative data are included in this report for cover recovery, rock-quality designation (RQD), lithophysal cavity abundance, and fracturing. These data are spatially variable, both within and among the major formational-level stratigraphic units. Nonwelded intervals in general exhibit higher recoveries and more intact (higher) RQD values than welded intervals. The most intact, highest-RQD materials encountered within the Topopah Spring belong to the lower 33.3 ft of the middle nonlithophysal zone. This report includes quantitative data for the framework material properties of porosity, bulk and particle density, and saturated hydraulic conductivity. Graphical analysis of variations in these laboratory hydrologic properties indicates first-order control of material properties by the degree of welding and the presence of zeolite minerals. Many major lithostratigraphic contacts are not well expressed in the material-property profiles; contacts of material-property units are related more to changes in the intensity of welding. Approximate in-situ saturation data of samples preserved immediately upon recovery from the hole are included in the data tabulation.

  9. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.; Stock, J.M.; Monsen, S.A.; Harris, A.G.; Cork, B.W.; Byers, F.M. Jr.

    1986-01-01

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). These formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression

  10. Archaeological studies at Drill Hole U20az Pahute Mesa, Nye county, Nevada. [Contains bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, A.H.; Hemphill, M.L.; Henton, G.H.; Lockett, C.L.; Nials, F.L.; Pippin, L.C.; Walsh, L.

    1991-07-01

    During the summer of 1987, the Quaternary Sciences Center (formerly Social Science Center) of the Desert Research Institute (DRI), University of Nevada System, conducted data recovery investigations at five archaeological sites located near Drill Hole U20az on the Nevada Test Site in southern Nevada. These sites were among 12 recorded earlier during an archaeological survey of the drill hole conducted as part of the environmental compliance activities of the Department of Energy (DOE). The five sites discussed in this report were considered eligible for the National Register of Historic Places and were in danger of being adversely impacted by construction activities or by effects of the proposed underground nuclear test. Avoidance of these sites was not a feasible alternative; thus DRI undertook a data recovery program to mitigate expected adverse impacts. DRI's research plan included controlled surface collections and excavation of the five sites in question, and had the concurrence of the Nevada Division of Historic Preservation and Archaeology and the Advisory Council of Historic Preservation. Of the five sites investigated, the largest and most complex, 26Ny5207, consists of at least three discrete artifact concentrations. Sites 26Ny5211 and 26Ny5215, both yielded considerable assemblages. Site 26Ny5206 is very small and probably is linked to 26Ny5207. Site 26Ny5205 contained a limited artifact assemblage. All of the sites were open-air occurrences, and, with one exception contained no or limited subsurface cultural deposits. Only two radiocarbon dates were obtained, both from 26Ny5207 and both relatively recent. While the investigations reported in the volume mitigate most of the adverse impacts from DOE activities at Drill Hole U20az, significant archaeological sites may still exist in the general vicinity. Should the DOE conduct further activities in the region, additional cultural resource investigations may be required. 132 refs., 71 figs., 44 tabs.

  11. NNWSI [Nevada Nuclear Waste Storage Investigations] hole histories

    International Nuclear Information System (INIS)

    1986-11-01

    This report is a compilation of data from sixteen boreholes drilled under the guidance of the US Geological Survey to help identify the area's water table. The sixteen boreholes were drilled between April 1983 and November 1983 in Area 25, Nevada Test Site land and in Bureau of Land Management land adjacent to the Nevada Test Site. Data presented in the hole histories include all locations, daily activities, review of hole conditions, geophysical log lists, video tape lists, and microfiche copies of the geophysical logs run by the Fenix and Scisson, Inc. subcontractor

  12. Preliminary analysis of geophysical logs from drill hole UE-25p No. 1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Muller, D.C.; Kibler, J.E.

    1984-01-01

    Geophysical logs from drill hole UE-25p No. 1 correlate well with logs through the same geologic units from other drill holes at Yucca Mountain, Nevada. The in-situ physical properties of the rocks as determined from well logs are consistent with laboratory-measured physical properties of core from other drill holes. The density, neutron and caliper logs are very spiky through most of the Topopah Spring Member. This spikiness occurs on the same logs in cored holes where the Topopah Spring Member is highly fractured and lithophysal. The uranium channel of the spectral gamma-ray log through the Topopah Spring Member correlates with uranium logs from cored holes where most of the fractures have not been healed or filled with materials that concentrate uranium. Therefore, fracture porosity and permeability of the Topopah Spring Member are expected to be high and consistent with fracture analysis from other drill holes on Yucca Mountain, and hydrologic tests from well J-13. The Paleozoic dolomites which underlie the Tertiary tuffs are intensely brecciated, and the uranium count rate is much higher than normal for dolomites because uranium has been concentrated in the recementing material. 19 references, 1 figure, 2 tables

  13. Detailed petrographic descriptions and microprobe data for drill holes USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.; Vaniman, D.; Caporuscio, F.; Arney, B.; Heiken, G.

    1982-10-01

    Drill holes USW-G2 and UE25b-1H at Yucca Mountain, Nevada penetrate a thick sequence of volcanic rocks consisting of voluminous ash-flow tuffs, intercalated with thin bedded tuffs and minor lavas. This report provides detailed petrologic descriptions that were summarized in an earlier report. Microprobe analyses of feldspars and mafic phenocrysts as well as secondary feldspars are tabulated for these drill holes for the first time in this report

  14. Structure in continuously cored, deep drill holes at Yucca Mountain, Nevada, with notes on calcite occurrence

    International Nuclear Information System (INIS)

    Carr, W.J.

    1992-12-01

    A study of more than 22,000 feet of core from five deep drill holes at Yucca Mountain, Nevada, provided data on the attitude and vertical distribution of faults and fractures, the sense of fault displacement, and the occurrence of calcite. The study was done mainly to look for evidence of fault flattening at depth, but no consistent downward decrease in dip of faults was found, and no increase in strata rotation was evident with increasing depth. In the two drill holes located near prominent faults that dip toward the holes (USW G-3 and G-2), an apparent increase in the frequency of faults occurs below the tuffs and lavas of Calico Hills. Some of this increase occurs in brittle lavas and flow breccias in the lower part of the volcanic section. In the two holes presumed to be relatively removed from the influence of important faults at depth, the vertical distribution of faults is relatively uniform. Calcite occurs mainly in two general zones, voids in welded portions of the Paintbrush Tuff, and in a deeper zone, mostly below 3,500 feet. Calcite is least abundant in USW G-4, which may reflect the fewer faults and fractures encountered in that drill hole

  15. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Spengler, R.W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five falt zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members restricted log coverage to the lower half of the drill hole

  16. Big-hole drilling - the state of the art

    International Nuclear Information System (INIS)

    Lackey, M.D.

    1983-01-01

    The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete

  17. Mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bish, D.L.; Chipera, S.J.

    1986-09-01

    The mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 was previously determined using qualitative and semiquantitative techniques, and most of the available data were neither complete nor accurate. New quantitative x-ray diffraction data were obtained for rocks from all three of these drill holes at Yucca Mountain, Nevada. These quantitative analyses employed both external and internal standard x-ray powder diffraction methods and permitted the precise determination of all phases commonly found in the tuffs at Yucca Mountain, including glass and opal-CT. These new data supplant previous analyses and include numerous additional phases. New findings of particular importance include better constraints on the distribution of the more soluble silica polymorphs, cristobalite and opal-CT. Opal-CT was associated solely with clinoptilolite-bearing horizons, and cristobalite disappearance coincided with the appearance of analcime in USW G-1. Unlike previous analyses, we identified significant amounts of smectite in drill hole J-13. We found no evidence to support previous reports of the occurrence of erionite or phillipsite in these drill holes

  18. The archaeology of drill hole U20bc, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    McLane, A.R.; Hemphill, M.L.; Livingston, S.J.; Pippin, L.C.; Walsh, L.A.

    1992-01-01

    Impacts to four sites near drill hole U20bc on Pahute Mesa in the northwestern part of the Nevada Test Site were mitigated through data recovery. The work was done during 1988 by the Desert Research Institute for the Department of Energy, Nevada Field Office (DOE/NV)- The four sites that warranted data recovery were 26NY3171, 26NY3173, 26NY5561 and 26NY5566. These sites had previously been determined eligible to the National Register of Historic Places. They were temporary camps that contained lithic debitage, projectile points, milling stones and pottery, and therefore contributed significant information concerning the prehistory of the area. The study of the archaeological remains shows that the prehistoric people subsisted on plant foods and game animals as determined by the artifacts including manos, metates, pottery, lithic scrapers, and projectile points. The time sensitive arfifacts (pottery and diagnostic points) suggest that the region was used from about 12,000 B.P. to just before the historic period, possibly 150 years ago. DOE/NV has met its obligation to mitigate adverse impacts to the cultural resources at U20bc. Therefore, it is recommended that this project proceed as planned

  19. Results of exploratory drill hole UE7nS East-Central Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Wagoner, J.L.; Ramspott, L.D.

    1981-01-01

    Exploratory hole UE7nS was drilled to a depth of 672.1 m in East-Central Yucca Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA). The purpose of the program is to determine the geologic and geophysical characteristics of selected locations that have demonstrated anomalous seismic signals. The purpose for drilling UE7nS was to provide the aforementioned data for emplacement site U7n. This report presents lithologic and stratigraphic descriptions, geophysical logs, physical properties, and water table measurements. An analysis of these data has been made and a set of recommended values is presented

  20. Results of exploratory drill hole UE7nS East-Central Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.L.; Ramspott, L.D.

    1981-03-02

    Exploratory hole UE7nS was drilled to a depth of 672.1 m in East-Central Yucca Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA). The purpose of the program is to determine the geologic and geophysical characteristics of selected locations that have demonstrated anomalous seismic signals. The purpose for drilling UE7nS was to provide the aforementioned data for emplacement site U7n. This report presents lithologic and stratigraphic descriptions, geophysical logs, physical properties, and water table measurements. An analysis of these data has been made and a set of recommended values is presented.

  1. Permeability of granular beds emplaced in vertical drill holes

    International Nuclear Information System (INIS)

    Griffiths, S.K.; Morrison, F.A. Jr.

    1979-01-01

    To determine the permeabilities of granular materials emplaced in vertical drill holes used for underground nuclear tests, an experiment at the USDOE Nevada Test Site (NTS) was conducted. As the hole is being filled, falling material increases pressure above and within the granular beds beneath. When the filling operation starts or stops, a transient pressure response occurs within the beds; measurements of this response in beds of various compositions were made. The permeabilities after emplacement were found by matching analytical predictions of the response to these data. This information is useful in assuring the containment of nuclear tests conducted in such drill holes

  2. Stratigraphy and structure of volcanic rocks in drill hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Byers, F.M. Jr.; Warner, J.B.

    1981-01-01

    Detailed subsurface studies in connection with the Nevada Nuclear Waste Storage Investigations program are being conducted to investigate the stratigraphic and structural features of volcanic rocks underlying Yucca Mountain, a volcanic highland situated along the western boundary of the Nevada Test Site in southern Nevada. As part of this continuing effort, drill hole USW-G1 was cored from 292 ft to a depth of 6000 ft from March to August 1980. The stratigraphic section is composed of thick sequences of ash-flow tuff and volcanic breccia interbedded with subordinate amounts of fine- to coarse-grained volcaniclastic rocks. All rocks are of Tertiary age and vary in composition from rhyolite to dacite. The 3005-ft level in the drill hole represents a significant demarcation between unaltered and altered volcanic rocks. For the most part, tuff units above 3005 ft appear devitrified and show little secondary alteration except within tuffaceous beds of Calico Hills, where the rock contains 60 to 80% zeolites. Below 3005 ft, most rocks show intermittent to pervasive alteration to clay minerals and zeolites. Examination of core for structural features revealed the presence of 61 shear fractures, 528 joints, and 4 conspicuous fault zones. Shear fractures mainly occurred in the Topopah Spring Member of the Paintbrush Tuff, flow breccia, and near fault zones. Nearly 88% of shear and joint surfaces show evidence of coatings. Approximately 40% of the fractures were categorized as completely healed. Rock quality characteristics as defined by the core index indicate that greater amounts of broken and lost core are commonly associated with (1) the densely welded zone of the Topopah Spring, (2) highly silicified zones, and (3) fault zones

  3. NNWSI [Nevada Nuclear Waste Storage Investigations] 51 seismic hole histories

    International Nuclear Information System (INIS)

    1987-09-01

    This report is a compilation of data from fifty-one shallow boreholes drilled within the Nevada Test Site (NTS) and the adjacent Bureau of Land Management (BLM) lands. The boreholes were drilled to determine the alluvial thickness and subsurface structure. Once drilled the boreholes were used to emplace explosive charges of three seismic refraction surveys conducted in 1981, 1983 and 1984. The information presented in this report includes location maps, daily activities and reviews of hole condition

  4. Detailed petrographic descriptions and microprobe data for tertiary silicic volcanic rocks in drill hole USW G-1, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, F.A.; Warren, R.G.; Broxton, D.E.

    1985-12-01

    This report contains detailed petrographic descriptions of 74 thin sections from drill hole USW G-1 at Yucca Mountain, Nevada. These descriptions are keyed to the distinctions between devitrified, vitrophyre, vitric, and zeolitized intervals below the Topopah Spring Member repository horizon. The petrographic features of the zeolitized intervals down through the Crater Flat tuff, as well as the sorption properties determined from these intervals, suggest that these zeolite occurrences may each have comparable sorptive capability.

  5. Environmental assessment: Uranium Geologic Drilling Project, Winnemucca Dry Lake, Pershing, Nevada

    International Nuclear Information System (INIS)

    This environmental assessment has been prepared to provide the environmental input into the DOE decision to drill and log ten (10) holes of under 7-in. diameters to depths of 100 to 1500 feet in the northern margin of Winnemucca Dry Lake, Pershing County, Nevada, to obtain subsurface information related to uranium favorability

  6. Vacuum drilling of unsaturated tuffs at a potential radioactive-waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.

    1985-01-01

    A vacuum reverse-air circulation drilling method was used to drill two 17-1/2-inch (44.5-centimeter) diameter test holes to depths of 1269 feet (387 meters) and 1887 feet (575 meters) at Yucca Mountain near the Nevada Test Site. The site is being considered by the US Department of Energy for construction of a high-level radioactive-waste repository. One of these two test holes (USW UZ-1) has been equipped with instrumentation to obtain a long-term record of pressure and moisture potential data; the other test hole (USW UZ-6) will be similarly instrumented in the near future. These investigations are being conducted as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. The test holes were drilled using a 5-1/2-inch (14-centimeter) by 8-5/8-inch (22-centimeter) dual-string reverse-vacuum assembly. A vacuum, induced at the land surface, removed the drill cuttings through the inner string. Compressed air was injected into the dual-string annulus to cool the bit and to keep the bit and inner string clean. A tracer gas, sulfur hexafluoride (SF 6 ), was added to the compressed air for a later determination of atmospheric contamination that might have occurred during the drilling. After reaching the surface, the drill cuttings were routed to a dry separator for sample collection. Then return air and dust from the cuttings were routed to a wet separator where the dust was removed by a water spray, and the remaining air was exhausted through the vacuum unit (blower) to the atmosphere. 6 refs., 4 figs

  7. Interpretation of geophysical well-log measurements in drill hole UE25a-1, Nevada Test Site, Radioactive Waste Program

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    An exploratory hole (UE25a-1) was drilled at Nevada Test Site (NTS) to determine the suitability of pyroclastic deposits as storage sites for radioactive waste. Studies have been conducted to investigate the stratigraphy, structure, mineralogy, petrology, and physical properties of the tuff units encountered in the drill hole. This report deals with the interpretation of physical properties for the tuff units from geophysical well-log measurements. The ash-flow and bedded tuff sequences at NTS comprise complex lithologies of variously welded tuffs with superimposed crystallization and altered zones. To characterize these units, resistivity, density, neutron, gamma-ray, induced polarization, and magnetic susceptibility geophysical well-log measurements were made. Although inherently subjective, a consistent interpretation of the well-log measurements was facilitated by a computer program designed to interpret well logs either individually or simultaneously. The broad features of the welded tuff units are readily distinguished by the geophysical well-log measurements. However, many details revealed by the logs indicate that more work is necessary to clarify the casual elements of well-log response in welded tuffs

  8. NNWSI [Nevada Nuclear Waste Storage Investigations] hole histories: UE-29a No. 1, UE-29a No. 2

    International Nuclear Information System (INIS)

    1986-11-01

    This report is a compilation of data from two hydrologic exploratory core holes drilled to help identify the area geology and hydrology. The two bore holes were drilled between September, 1981 and January, 1982 under the guidance of the US Geological Survey in Area 29, Nevada Test Site. Data presented in the hole histories include all locations, daily activities, coring records, review of hole conditions, and geophysical log lists, and microfiche copies of the geophysical logs run by the Fenix and Scisson, Inc. subcontractor

  9. Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Whitfield, M.S.; Thordarson, William; Eshom, E.P.

    1984-01-01

    Data are presented on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1,219 meters. Depth to water below land surface was 519 meters or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. (USGS)

  10. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  11. NNWSI [Nevada Nuclear Waste Storage Investigations] hole history, UE-25p No. 1

    International Nuclear Information System (INIS)

    1986-11-01

    This report is a compilation of data from one borehole drilled in Area 25 of the Nevada Test Site (NTS) under the guidance of the US Geological Survey. The borehole was drilled to obtain geologic, geophysical and hydrologic information. Data presented in this publication include location, daily activities, review of hole conditions, geophysical log listing, video tape listing, and microfiche copies of all geophysical logs run by the Fenix and Scisson subcontractors

  12. Fracture coatings in Topopah Spring Tuff along drill hole wash

    International Nuclear Information System (INIS)

    Carlos, B.A.; Chipera, S.J.; Bish, D.L.

    1994-01-01

    Fracture-lining minerals are being studied as part of site characterization to determine the suitability of Yucca Mountain, Nevada as a potential high level nuclear waste repository. Fracture coatings in the Paintbrush Group provide information on potential flow paths above the water table both toward and away from the potential repository and provide information on the distribution of fracture-lining minerals needed to model thermal effects of waste emplacement. Fracture coatings within the predominantly non-zeolitic Paintbrush Group vary both with depth and laterally across Yucca Mountain, whereas fracture coatings in tuffs below the Paintbrush Group are related to the mineralogy of the tuffs and follow a consistent pattern of distribution with predominantly quartz, calcite, and manganese oxides in the devitrified intervals and mordenite and clinoptilolite in the zeolitic intervals. The zeolites stellerite and heulandite are more abundant in fractures in the Topopah Spring Tuff in drill holes USW G-1 and UE-25 a number-sign l, located along Drill Hole Wash (at the northern end of Yucca Mountain) than in core from other parts of Yucca Mountain. Buesch et al. (2) present evidence for a complex fault system along Drill Hole Wash. To investigate the possibility that the abundant fracture-lining zeolites in USW G-1 and UE-25 a number-sign 1 are related to the Drill Hole Wash fault, the Topopah Spring Tuff was examined in drill cores from USW UZ-14, USW G-1, USW NRG-7/7a, and UE-25 a number-sign l

  13. Geology of the UE12t No. 3 vertical drill hole, area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    Terry, S.S.

    1975-11-01

    The UE12t No. 3 vertical drill hole, located near the north end of Rainier Mesa, was drilled to a total depth of 663 m (2,176 ft). The UE12t No. 3 vertical hole was drilled to further evaluate the subsurface stratigraphy northwest of the t-tunnel complex area in preparation for mining of the U12t.03 (Husky Pup) drift. The drill hole is collared in the Rainier Mesa Member of the Timber Mountain Tuff and penetrates down the stratigraphic section through the Paintbrush Tuff, the welded Grouse Canyon Member of the Belted Range Tuff, tunnel beds 5-3, the Tub Spring Member of the Belted Range Tuff, tunnel bed 2, Crater Flat Tuff, tunnel bed 1, Redrock Valley Tuff, and bottoms in older Tertiary tuffaceous and Paleozoic quartzite rubble having a partially argillized, tuffaceous, soillike matrix. The tuff of Dead Horse Flat and the bedded and ash-flow tuffs of Area 20 were not differentiated in the logging of this drill hole. Stratigraphy, structure, engineering geology, and physical properties and their relation to tunneling are discussed

  14. Borehole and geohydrologic data for test hole USW UZ-6, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S. Jr.; Loskot, C.L.; Cope, C.M.

    1993-01-01

    Test hole USW UZ-6, located 1.8 kilometers west of the Nevada Test Site on a major north-trending ridge at Yucca Mountain, was dry drilled in Tertiary tuff to a depth of 575 meters. The area near this site is being considered by the US Department of Energy for potential construction of a high-level, radioactive-waste repository. Test hole USW UZ-6 is one of seven test holes completed in the unsaturated zone as part of the US Geological Survey's Yucca Mountain Project to characterize the potential repository site. Data pertaining to borehole drilling and construction, lithology of geologic units penetrated, and laboratory analyses for hydrologic characteristics of samples of drill-bit cuttings are included in this report

  15. Preliminary geologic and geophysical data of the UE25a-3 exploratory drill hole, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Muller, D.C.; Morrison, J.N.

    1979-09-01

    The UE25a-3 drill hole, located in the Calico Hills area, was drilled as part of an effort to evaluate the Calico Hills area as a possible nuclear waste repository site. The purpose of the drill hole was to verify the existence of an intrusive crystalline body in the subsurface and to determine the stratigraphy, structure, and nature of fractures of the cored rocks. Cored samples were obtained for mineral, chemical, and material property analyses. Numerous high-angle faults and brecciated zones were intersected by the drill hole. The units cored were intensely fractured with fracture analysis of the core consisting of frequency of fractures, dips of fractures, open and closed (sealed) fractures and types of fracture sealing or coating material. Twenty-four hundred and thirty fractures, representing approximately 30 percent of the fractures present, indicate an average fracture frequency of 13.2 fractures per meter, predominantly high-angle dips with 66 percent of the fractures closed. Fractures in the argillite interval are sealed or coated predominantly with kaolinite, nacrite, and dickite. Calcite, chlorite, and magnetite are present in fractures in the altered argillite interval. Fractures in the marble interval are sealed or coated with calcite, dolomite, and ferruginous clay. The core index indicates that the lower half of the drilled interval is more competent than the upper half. Borehole geophysical logs were run by the Birdwell Division of Seismograph Service Corporation for geologic correlations and lithologic characterizations. The logs include: caliper, density, resistivity, spontaneous potential, Vibroseis, 3-D velocity, neutron, and gamma-ray logs

  16. Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

    1982-07-01

    The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain

  17. Alteration in the IRDP drill hole compared with other drill holes in Iceland

    Science.gov (United States)

    Kristmannsdóttir, Hrefna

    1982-08-01

    The overall alteration pattern in the drill hole at Reydarfjördur is very similar to alteration patterns observed in Icelandic geothermal areas and in low-grade metamorphosed basalts in deep crustal sections elsewhere in Iceland. However more detail is obtained by the study of the IRDP drill core than by study of drill cuttings sampled in previous drill holes in Iceland. A comparatively high fossil thermal gradient is obtained at Reydarfjördur by a combination of mineral stability data and the observed occurence of secondary minerals. This high gradient is consistent with the measured dike dilation at the drill site and the location of the drill site adjacent to a central volcano.

  18. Results from exploratory drill hole UE2ce, Northwest Yucca Flat, Nevada Test Site, near the NASH Event

    International Nuclear Information System (INIS)

    Pawloski, G.A.

    1982-01-01

    Exploratory drill hole UE2ce was drilled in January 1977 to determine geologic and geophysical characteristics of this site. This report presents geophysical logs, lithology, geologic structure, water table measurements, and physical properties for this drill hole. The data are then extrapolated to the NASH site, an event in U2ce, 55.6 m due north of UE2ce

  19. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  20. NNWSI [Nevada Nuclear Waste Storage Investigations] hole histories, USW UZ-1, UE-25 UZ No. 4, UE-25 UZ No. 5, USW UZ-6, USW UZ-6s, USW UZ-7, USW UZ-8, USW UZ-13

    International Nuclear Information System (INIS)

    1987-04-01

    This report is a compilation of data from eight exploratory boreholes drilled to help characterize the geology and hydrology of the unsaturated zone. The eight holes were drilled in Area 25 of the Nevada Test Site and in Bureau of Land Management land adjacent to the Nevada Test Site. Data presented in the hole histories include all locations, daily activities, review of hole conditions, geophysical log lists and microfiche copies of the geophysical logs

  1. NNWSI [Nevada Nuclear Waste Storage Investigations] hole histories: Unsaturated zone-neutron holes: 76 boreholes drilled between May 1984 and February 1986

    International Nuclear Information System (INIS)

    1987-05-01

    This is a compilation of data from seventy-four shallow alluvial exploratory core holes and two shallow calibration core holes. The boreholes were drilled to obtain undisturbed alluvial cores, to determine vertical distribution of moisture content and water potential, and to run neutron moisture logs. Data presented in the hole histories include all locations, daily activities and review of hole conditions

  2. 30 CFR 77.1011 - Drill holes; guarding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...

  3. Lithologic and geophysical logs of drill holes Felderhoff Federal 5-1 and 25-1, Amargosa Desert, Nye County, Nevada

    International Nuclear Information System (INIS)

    Carr, W.J.; Grow, J.A.; Keller, S.M.

    1995-01-01

    Two wildcat oil and gas exploration holes drilled in 1991 on the northern edge of the Amargosa Desert penetrated Tertiary and Quaternary sedimentary rocks, alluvium, and basalt, possible Tertiary volcanic or volcaniclastic rocks, and Tertiary (?) and Paleozoic carbonate rocks. The easternmost of the two holes, Felderhoff-Federal 5-1, encountered about 200 feet of alluvium, underlain by 305 feet of basalt breccia and basalt, about 345 feet of probable Tertiary tuffaceous sedimentary rocks, and 616 feet of dense limestone and dolomite of uncertain age. Drill hole 25-1 penetrated 240 feet of alluvium and marl (?), and 250 feet of basalt breccia (?) and basalt, 270 feet of tuff (?) and/or tuffaceous sedimentary rocks, 360 feet of slide blocks (?) and large boulders of Paleozoic carbonate rocks, and 2,800 feet of Paleozoic limestone and dolomite. The two drill holes are located within a northerly trending fault zone defined largely by geophysical data; this fault zone lies along the east side of a major rift containing many small basalt eruptive centers and, farther north, several caldera complexes. Drill hole 25-1 penetrated an inverted paleozoic rock sequence; drill hole 5-1 encountered two large cavities 24-inches wide or more in dense carbonate rock of uncertain, but probable Paleozoic age. These openings may be tectonic and controlled by a regional system of northeast-striking faults

  4. Drilling history core hole DC-8

    International Nuclear Information System (INIS)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  5. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  6. Drilling history core hole DC-4

    International Nuclear Information System (INIS)

    1978-12-01

    Core hole DC-4 was completed at a depth of 3998 feet in December, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Sicsson, Inc. furnished the engineering, daily supervision of the cable tool and core drilling activities, and geological core logging for DC-4. Core hole DC-4 is located on the Hanford Site about 3 miles east of the Yakima Barricade and approximately 103 feet southwest of rotary hole DC-5, which was completed to 3990 feet in February, 1978. Hanford Site coordinates reported for hole DC-4 are north 49,385.62 feet and west 85,207.63 feet, and Washington State coordinates are north 454,468.73 feet and east 2,209,990.87 feet. No elevation survey is available for hole DC-4, but it is approximately 745 feet above mean sea level based upon the survey of hole DC-5, which has a reported elevation of 745.16 feet on the top of the 3-inch flange. The purpose of core hole DC-4 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing, cross-hole seismic shear, and pressure wave velocity studies with rotary hole DC-5. Hole DC-4 was drilled through the overburden into basalt bedrock by cable tool methods (0-623 feet) and continuously cored through the final interval (623 to 3998 feet).Core recovery was 95.8 percent of the total footage cored

  7. 30 CFR 56.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 56.7013 Section 56.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  8. 30 CFR 57.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 57.7013 Section 57.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  9. Petrology of tuff units from the J-13 drill site, Jackass Flats, Nevada

    International Nuclear Information System (INIS)

    Heiken, G.H.; Bevier, M.L.

    1979-01-01

    The J-13 drill hole, located in Jackass Flats, Nevada Test Site, has penetrated 125 m of alluvium and 932 m of tuff. Most of the tuff deposits consist of welded tuffs; glass phases in the tuffs have been replaced by authigenic minerals, mainly K-feldspar, silica, and zeolites. The zonation of authigenic minerals, with depth, indictes that alteration of glass phases and filling of vugs occurred during welding and compaction of tuff units soon after deposition and by interaction with groundwater. Zonation of authigenic minerals in tuff deposits at Jackass Flats is similar to mineral zonation in tuffs elsewhere at the Nevada Test Site and in tuff deposits of west Texas. All appear to have been developed by leaching of glass phases and deposition of authigenic minerals in open hydrologic systems. 10 figures, 38 tables

  10. Geology of drill hole USW VH-2, and structure of Crater Flat, southwestern Nevada

    International Nuclear Information System (INIS)

    Carr, W.J.; Parrish, L.D.

    1985-01-01

    A 1219 meter (4000 ft) drill hole in Crater Flat shows the absence of buried Pliocene or Quaternary volcanic rocks, and penetrates a section of Timber Mountain, Paintbrush, and the upper part of the Crater Flat Tuffs, similar to that exposed adjacent to Crater Flat. A prominent negative aeromagnetic anomaly between the drill hole and Bare Mountain is attributed to a westward thickening section of a reversely magnetized Miocene basalt. The relatively shallow depth of this basalt in the west-central part of Crater Flat indicates that no large amount of tectonic movement has occurred in approximately the last 10 m.y. Massive brecciated wedges of Paleozoic rocks are penetrated in two stratigraphic intervals in the drill hole; the older one, between the Tiva Canyon Member of the Paintbrush Tuff and the Rainier Mesa Member of the Timber Mountain Tuff, correlates with the time of maximum faulting east of Crater Flat in the Yucca Mountain area. The younger slide masses are correlated with a large slide block of probable late Miocene age exposed along the southwestern rim of Crater Flat. The structural pattern and style buried beneath central and western Crater Flat is deduced to be similar to that exposed at Yucca Mountain, but less developed. The major fault system controlling the steep east face of Bare Mountain, though probably still active, is believed to have developed mainly as a result of caldera collapse between 13 and 14 m.y. ago. Relations between faulting and four episodes of basalt eruption in the Crater Flat area strongly suggest contemporaneity of the two processes. 17 refs., 2 figs., 3 tabs

  11. Borehole gravity meter survey in drill hole USW G-4, Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Healey, D.L.; Clutsom, F.G.; Glover, D.A.

    1986-01-01

    Drill hole USW G-4 was logged with the US Geological Survey borehole gravity meter (BHGM) BH-6 as part of a detailed study of the lithostratigraphic units penetrated by this hole. Because the BHGM measures a larger volume of rock than the conventional gamma-gamma density tool, it provides an independent and more accurate measurement of the in situ average bulk density of thick lithologic units. USW G-4 is an especially important hole because of its proximity to the proposed exploratory shaft at Yucca Mountain. The BHGM data were reduced to interval densities using a free-air gradient (F) of 0.3083 mGal./m (0.09397 mGal/ft) measured at the drill site. The interval densities were further improved by employing an instrument correction factor of 1.00226. This factor was determined from measurements obtained by taking gravity meter BH-6 over the Charleston Peak calibration loop. The interval density data reported herein, should be helpful for planning the construction of the proposed shaft

  12. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  13. Study of the radon released from open drill holes

    International Nuclear Information System (INIS)

    Pacer, J.C.

    1981-06-01

    The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm 2 /sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm 2 /sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft 2 of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water

  14. Study on super-long deep-hole drilling of titanium alloy.

    Science.gov (United States)

    Liu, Zhanfeng; Liu, Yanshu; Han, Xiaolan; Zheng, Wencui

    2018-01-01

    In this study, the super-long deep-hole drilling of a titanium alloy was investigated. According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy's machining were also evaluated. Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.

  15. Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dekin, W D

    2011-04-14

    Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

  16. Fran Ridge horizontal coring summary report hole UE-25h No. 1, Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Norris, A.E.; Byers, F.M. Jr.; Merson, T.J.

    1986-10-01

    Hole UE-25h No. 1 was core drilled during December 1982 and January 1983 within several degrees of due west, 400 ft horizontally into the southeast slope of Fran Ridge at an altitude of 3409 ft. The purpose of the hole was to obtain data pertinent for radionuclide transport studies in the Topopah Spring Member of the Paintbrush Tuff. This unit had been selected previously as the host rock for the potential underground nuclear waste repository at Yucca Mountain, adjacent to the southwestern part of the Nevada Test Site. The hole was core drilled first with air, then with air mist, and finally with air, soap, and water. Many problems were encountered, including sloughing of tuff into the uncased hole, vibration of the drill rods, high rates of bit wear, and lost circulation of drilling fluids. On the basis of experience gained in drilling this hole, ways to improve horizontal coring with air are suggested in this report. All of the recovered core, except those pieces that were wrapped and waxed, were examined for lithophysal content, for fractures, and for fracture-fill mineralization. The results of this examination are given in this report. Core recovery greater than 80% at between 209 and 388 ft permitted a fracture frequency analysis. The results are similar to the fracture frequencies observed in densely welded nonlithophysal tuff from holes USW GU-3 and USW G-4. The fractures in core from UE-25h No. 1 were found to be smooth and nonmineralized or coated with calcite, silica, or manganese oxide. Open fractures with caliche (porous, nonsparry calcite) were not observed beyond 83.5 ft, which corresponds to an overburden depth of 30 ft

  17. 30 CFR 816.15 - Casing and sealing of drilled holes: Permanent.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Casing and sealing of drilled holes: Permanent...-SURFACE MINING ACTIVITIES § 816.15 Casing and sealing of drilled holes: Permanent. When no longer needed... exploration hole, other drilled hole or borehole, well, and other exposed underground opening shall be capped...

  18. Drilling history of core hole DB-15

    International Nuclear Information System (INIS)

    Diediker, L.D.; Ledgerwood, R.K.

    1980-09-01

    This core hole was drilled to obtain hydrologic and chemical data on the permeable zones of the Saddle Mountains and Wanapum Formations. These data were obtained by testing the zones that were penetrated during drilling. This testing-as-drilled method reduced the potential problems of interflow and water contamination. This report summarizes the drilling and coring operations; geologic logging, hydrologic testing, and geophysical logging activities; and cementing operations of DB-15 during drilling. The successful completion of DB-15 demonstrated that hydrologic testing can be conducted during core drilling operations. More reliable head measurements and uncontaminated representative water samples from isolated permeable zones, which have not been exposed to potential open borehole cross-flow and head equilibration problems, were benefits derived from the testing-as-drilled method. Disadvantages of the technique were a longer time to complete the borehole caused by time required for testing and increased drilling costs due to rig standby time during testing. Extension of the testing-as-drilled method to the drilling of future core holes is recommended. An evaluation should be made of the required hydrologic data and expected borehole stratigraphy before and during drilling to allow uninterrupted drilling in zones of low permeability that can be tested after drilling is complete

  19. Accounting for the temperature conditions during deep prospecting hole drilling

    Energy Technology Data Exchange (ETDEWEB)

    Shcherban, A N; Cheniak, V P; Zolotarenko, U P

    1977-01-01

    A methodology is described for calculating and controlling the temperature in inclined holes in order to establish a non-steady-state heat exchange between the medium circulating in the hole, and the construction components and rock. In order to verify the proposed methodology, the temperature of the drilling fluid is measured directly during the drilling process using a specially-designed automatic device which is lowered into the hole with the drilling string and turned on automatically at a given depth. This device makes it possible to record the drilling fluid temperature on magnetic tape, and convert the sensor signals arriving from the drilling string and the annular space. A comparison of calculation and experimental data confirmed the sufficiently high accuracy of the methods for predicting the thermal conditions in drilling deep prospecting holes.

  20. Slim hole drilling and testing strategies

    Science.gov (United States)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  1. Drilling history core hole DC-6 Hanford, Washington

    International Nuclear Information System (INIS)

    1978-06-01

    Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored

  2. Occurrence of fracture-lining manganese minerals in silicic tuffs, Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Carlos, B.A.

    1986-01-01

    Yucca Mountain, in southern Nevada, is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project as a potential site for an underground high-level nuclear waste repository. The site is within Miocene volcanic rocks that are 1.5 to 4 km thick and range in age from 12.5 to 14 MY. Several holes have been drilled in Yucca Mountain for geologic and hydrologic studies. Drill hole USW G-4, the most recently cored hole within the potential repository block, was chosen for detailed study of fracture-filling minerals because it is closest to the planned NNWSI exploratory shaft. Drill hole USW G-4 was drilled to 914.7 m (3001 ft) and continuously cored from 6.7 m (22 ft) to total depth (TD). The drilling history, lithology of the core, and geophysical logs of the well were published earlier. Because manganese oxides in fractures may act as a natural barrier to radionuclide migration, it is important to determine exactly which manganese minerals are present, in what intervals they occur, and how extensive these fracture coatings are

  3. Petrochemical variation of Topopah Spring tuff matrix with depth (stratigraphic level), drill hole USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Byers, F.M. Jr.

    1985-12-01

    This study describes and interprets petrochemical variation of the matrix (excluding fractures and large gas cavities) of the Topopah Spring Member of the Paintbrush Tuff. This tuff includes the candidate host rock for a high-level nuclear waste repository at Yucca Mountain on the Nevada Test Site. Cored hole USW G-4, near the site of a potential exploratory shaft at Yucca Mountain, penetrated 359.4 m (1179 ft) of the member within the unsaturated zone. This study shows that petrographic textures and chemistry of the matrix vary systematically within recognizable lithologic subunits related to crystallization (cooling) zones, welding (compaction) zones, and compositional zones (rhyolite versus quartz latite). The methods used for this study include petrographic modal thin section analysis using an automated counter and electron microprobe analysis of the groundmass. Distinctive textural categories are defined, and they can be ranked from finest to coarsest as vitrophyre (glass), cryptocrystalline groundmass, spherulites, granophyre, lithic fragments, and phenocrysts. The two main groundmass compositions are also defined: rhyolite high silica) and quartz latite. The value of these petrochemical studies lies in providing microscopic criteria for recognizing the zonal subunits where they may have greatly limited exposure, as in mined drifts and in core from horizontal drill holes. For example, the lower nonlithophysal zone can be distinguished microscopically from the middle nonlithophysal zone by (1) degree of compaction, (2) amount of quartz, and (3) amount of lithic fragments. The variability between these textural categories should also be considered in designing physical and chemical tests of the Topopah Spring

  4. Petrochemical variation of Topopah Spring tuff matrix with depth (stratigraphic level), drill hole USW G-4, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Byers, F.M. Jr.

    1985-12-01

    This study describes and interprets petrochemical variation of the matrix (excluding fractures and large gas cavities) of the Topopah Spring Member of the Paintbrush Tuff. This tuff includes the candidate host rock for a high-level nuclear waste repository at Yucca Mountain on the Nevada Test Site. Cored hole USW G-4, near the site of a potential exploratory shaft at Yucca Mountain, penetrated 359.4 m (1179 ft) of the member within the unsaturated zone. This study shows that petrographic textures and chemistry of the matrix vary systematically within recognizable lithologic subunits related to crystallization (cooling) zones, welding (compaction) zones, and compositional zones (rhyolite versus quartz latite). The methods used for this study include petrographic modal thin section analysis using an automated counter and electron microprobe analysis of the groundmass. Distinctive textural categories are defined, and they can be ranked from finest to coarsest as vitrophyre (glass), cryptocrystalline groundmass, spherulites, granophyre, lithic fragments, and phenocrysts. The two main groundmass compositions are also defined: rhyolite high silica) and quartz latite. The value of these petrochemical studies lies in providing microscopic criteria for recognizing the zonal subunits where they may have greatly limited exposure, as in mined drifts and in core from horizontal drill holes. For example, the lower nonlithophysal zone can be distinguished microscopically from the middle nonlithophysal zone by (1) degree of compaction, (2) amount of quartz, and (3) amount of lithic fragments. The variability between these textural categories should also be considered in designing physical and chemical tests of the Topopah Spring.

  5. Micro-hole drilling and cutting using femtosecond fiber laser

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2014-05-01

    Micro-hole drilling and cutting in ambient air are presented by using a femtosecond fiber laser. At first, the micro-hole drilling was investigated in both transparent (glasses) and nontransparent (metals and tissues) materials. The shape and morphology of the holes were characterized and evaluated with optical and scanning electron microscopy. Debris-free micro-holes with good roundness and no thermal damage were demonstrated with the aspect ratio of 8∶1. Micro-hole drilling in hard and soft tissues with no crack or collateral thermal damage is also demonstrated. Then, trench micromachining and cutting were studied for different materials and the effect of the laser parameters on the trench properties was investigated. Straight and clean trench edges were obtained with no thermal damage.

  6. Digitally Available Interval-Specific Rock-Sample Data Compiled from Historical Records, Nevada Test Site and Vicinity, Nye County, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wood

    2007-10-24

    Between 1951 and 1992, 828 underground tests were conducted on the Nevada Test Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada Test Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples cannot be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.

  7. Drilling holes in rock for final storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nord, G.

    1980-09-01

    This report delas with the technical and economic aspects of the drilling of vertical holes with diameters of 1.5 metres and 1 metre in the Swedish bedrock. The holes will be 7.7 metres in depth and located on a level approximately 500 metres below the ground surface. There is no directly applicable technique for the construction of the above-mentioned holes from a small tunnel. The data presented in this report are based to a great extent on information supplied by the manufacturers of drilling equipment, and by underground construction contractors. Three different techniques for drilling the holes have been delat with in the report: shaft boring, stitch drilling (three alternative methods) and core drilling. In order to produce the required 233 holes per year, the following sets of equipment must be purchased, and personnel engaged. A hole with a diameter of 1.5 m and a depth of 7.7 m requires 3 to 7 sets of equipment for shaft boring or stitch drilling and engages 12 to 27 employees. The cost per hole varies between 24.200 and 31.200 SKr. Core drilling requires 7 sets of equipment, engages 29 persons and costs 55.300 SKr per hole. A hole with a diameter of 1.0 m requires less personnel and costs between 19.700 and 25.800 per hole except for core drilling where the cost per hole is estimated to 43.900 SKr. Interest costs account for 10 percent - 15 percent of the above-mentioned costs. Our aim has been to calculate the costs for the different methods on as similar a basis as possible, but a margin of error of +- 15 percent entails and overlapping of the cost span for most of the methods considered. (G.B.)

  8. Effects of specialized drill bits on hole defects of CFRP laminates

    Science.gov (United States)

    Li, Chao; Xu, Jinyang; Chen, Ming

    2018-05-01

    Drilling is a conventional machining process widely applied to carbon fiber reinforced plastics (CFRP) for the riveting and fastening purposes in the aerospace and automotive industries. However, the machining mechanism of CFRP composites differ significantly from that of homogeneous metal alloys owing to their prominent anisotropy and heterogeneity. Serious hole defects such as fiber pullout, matrix debonding and delamination are generally produced during the hole-making process, resulting in the poor machined surface quality, low fatigue durability or even the part rejections. In order to minimize the defects especially the delamination damage in composites drilling, specialized drill bits are often a primary choice being widely adopted in a real production. This paper aims to study the effects of two drills differing in geometrical characteristics during the drilling of CFRP laminates. A number of drilling experiments were carried out with the aim to evaluate the drilling performance of different drill bits. A scanning electron microscope (SEM) was used to observe the drilled surfaces to study the surface roughness. A high frequency scanning acoustic microscope (SAM) was applied to characterize the drilled hole morphologies with a particular focus on the delamination damage occurring in the CFRP laminates. The obtained results indicate that the fiber orientation relative to the cutting direction is a key factor affecting hole morphology and hole wall defects can be reduced by utilizing specialized drill geometries. Moreover, the dagger drill was confirmed outperforming the brad spur drill from the aspect of reducing drilling-induced delamination.

  9. Osseous drill holes to promote granulation tissue: Radiologic appearance

    International Nuclear Information System (INIS)

    Resnik, C.S.; Reiner, B.I.; Diaconis, J.N.; Goldberg, N.H.

    1991-01-01

    Skin grafting following extensive soft-tissue loss is often delayed until adequate granulation tissue can be generated. Surgical drill holes into the marrow cavity promote development of granulation tissue. This article illustrates the radiology appearance of these drill holes in four patients. (orig.)

  10. NNWSI [Nevada Nuclear Waste Storage Investigations] hole histories

    International Nuclear Information System (INIS)

    1986-11-01

    This report is a compilation of data from twelve boreholes drilled in Area 25 under the guidance of the Sandia National Laboratory. They were drilled to provide samples and alluvial thickness determinations for the repository surface facilities, especially with respect to foundation conditions. Data presented in the hole histories include all locations, daily activities and review of hole conditions

  11. Small subchondral drill holes improve marrow stimulation of articular cartilage defects.

    Science.gov (United States)

    Eldracher, Mona; Orth, Patrick; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2014-11-01

    Subchondral drilling is an established marrow stimulation technique. Osteochondral repair is improved when the subchondral bone is perforated with small drill holes, reflecting the physiological subchondral trabecular distance. Controlled laboratory study. A rectangular full-thickness chondral defect was created in the trochlea of adult sheep (n = 13) and treated with 6 subchondral drillings of either 1.0 mm (reflective of the trabecular distance) or 1.8 mm in diameter. Osteochondral repair was assessed after 6 months in vivo by macroscopic, histological, and immunohistochemical analyses and by micro-computed tomography. The application of 1.0-mm subchondral drill holes led to significantly improved histological matrix staining, cellular morphological characteristics, subchondral bone reconstitution, and average total histological score as well as significantly higher immunoreactivity to type II collagen and reduced immunoreactivity to type I collagen in the repair tissue compared with 1.8-mm drill holes. Analysis of osteoarthritic changes in the cartilage adjacent to the defects revealed no significant differences between treatment groups. Restoration of the microstructure of the subchondral bone plate below the chondral defects was significantly improved after 1.0-mm compared to 1.8-mm drilling, as shown by higher bone volume and reduced thickening of the subchondral bone plate. Likewise, the microarchitecture of the drilled subarticular spongiosa was better restored after 1.0-mm drilling, indicated by significantly higher bone volume and more and thinner trabeculae. Moreover, the bone mineral density of the subchondral bone in 1.0-mm drill holes was similar to the adjacent subchondral bone, whereas it was significantly reduced in 1.8-mm drill holes. No significant correlations existed between cartilage and subchondral bone repair. Small subchondral drill holes that reflect the physiological trabecular distance improve osteochondral repair in a translational

  12. 30 CFR 816.13 - Casing and sealing of drilled holes: General requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Casing and sealing of drilled holes: General...-SURFACE MINING ACTIVITIES § 816.13 Casing and sealing of drilled holes: General requirements. Each exploration hole, other drill or borehole, well, or other exposed underground opening shall be cased, sealed...

  13. Digitally Available Interval-Specific Rock-Sample Data Compiled from Historical Records, Nevada Test Site and Vicinity, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wood

    2009-10-08

    Between 1951 and 1992, underground nuclear weapons testing was conducted at 828 sites on the Nevada Test Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada Test Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples cannot be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.

  14. Hole Quality Assessment in Drilling of Glass Microballoon/Epoxy Syntactic Foams

    Science.gov (United States)

    Ashrith, H. S.; Doddamani, Mrityunjay; Gaitonde, Vinayak; Gupta, Nikhil

    2018-05-01

    Syntactic foams reinforced with glass microballoons are used as alternatives for conventional materials in structural application of aircrafts and automobiles due to their unique properties such as light weight, high compressive strength, and low moisture absorption. Drilling is the most commonly used process of making holes for assembling structural components. In the present investigation, grey relation analysis (GRA) is used to optimize cutting speed, feed, drill diameter, and filler content to minimize cylindricity, circularity error, and damage factor. Experiments based on full factorial design are conducted using a vertical computer numerical control machine and tungsten carbide twist drills. GRA reveals that a combination of lower cutting speed, filler content, and drill diameter produces a good quality hole at optimum intermediate feed in drilling syntactic foams composites. GRA also shows that the drill diameter has a significant effect on the hole quality. Furthermore, damage on the hole exit side is analyzed using a scanning electron microscope.

  15. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    Science.gov (United States)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  16. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2011-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  17. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2012-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  18. 30 CFR 816.14 - Casing and sealing of drilled holes: Temporary.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Casing and sealing of drilled holes: Temporary. 816.14 Section 816.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.14 Casing and sealing of drilled holes: Temporary. Each exploration hole...

  19. Geology of the UE17e drill hole, Area 17, Nevada Test Site

    International Nuclear Information System (INIS)

    Hodson, J.N.; Hoover, D.L.

    1979-03-01

    The UE17e drill hole, located at the northwest corner of Syncline Ridge, was cored from 3.05 m (10 ft) to a total depth of 914.4 m (3,000 ft) in unit J (Mississippian) of the Eleana (Devonian and Mississippian) to obtain samples for mineral, chemical, and physical-property analyses. UE17e penetrated 73.5 m (241 ft) of the quartzite subunit and 840.9 m (2,759 ft) of the argillite subunit of unit J. Less than 0.4 percent quartzite is present in the argillite subunit. Dips range from 12 0 to 18 0 . Twenty-three faults were observed in the core or on geophysical logs. Most of these faults affect only a few meters of the core and probably have displacements of a few meters. The majority of fractures are parallel to bedding planes. Fracture frequency ranges from 3.4 to 9.4 fractures per meter in the upper part of the cored interval and 1.4 to 5.9 fractures per meter in the lower part of the cored interval. The core index indicates that the lower part of the hole is more competent than the upper part. Lower competency in the upper part of the hole may be caused by weathering and/or near-surface stress relief. Physical, mechanical, and thermal property measurements indicate that bedding and fracturing are the major factors in variation of properties between samples. 17 figures, 10 tables

  20. Method for Cleaning Laser-Drilled Holes on Printed Wiring Boards by Plasma Treatment

    Science.gov (United States)

    Hirogaki, Toshiki; Aoyama, Eiichi; Minagi, Ryu; Ogawa, Keiji; Katayama, Tsutao; Matsuoka, Takashi; Inoue, Hisahiro

    We propose a new method for cleaning blind via holes after laser drilling of PWBs using oxygen plasma treatment. This report dealt with three kinds of PWB materials: epoxy resin and two kinds of aramid fiber reinforced plastics (AFRP: Technora or Kevlar fiber reinforcement). We observed the drilled holes after plasma treatment using both an optical and a scanning electric microscope (SEM). It was confirmed that adequate etching took place in the drilled holes by plasma treatment. We also compared the hole wall and hole bottom after plasma treatment with ones after chemical etching. It was clear that there was no damage to the aramid fiber tip on the hole wall, and that a smooth roughness of the hole wall was obtained by means of plasma treatment. As a result, we demonstrated that the plasma treatment is effective in cleaning the laser drilled holes of PWBs.

  1. Analysis of Single-Hole and Cross-Hole Tracer Tests Conducted at the Nye County Earl Warning Drilling Program Well Complex, Nye County, Nevada

    International Nuclear Information System (INIS)

    A. Umari; J.D. Earle; M.F. Fahy

    2006-01-01

    As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 x 10 -2 for an individual flow path to 2.0 x 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer

  2. Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah

    Science.gov (United States)

    Daniels, J.J.

    1984-01-01

    Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.

  3. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  4. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    Science.gov (United States)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  5. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Laura Pastor

    2006-01-01

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to

  6. Borehole Plugging Program. Plugging of ERDA No. 10 drill hole

    International Nuclear Information System (INIS)

    Gulick, C.W. Jr.

    1979-06-01

    A requirement exists to plug exploratory drill holes located in the proposed Waste Isolation Pilot Plant area of Southeastern New Mexico. Sandia Laboratories, in cooperation with the US Army Corps of Engineers, Waterways Experiment Station, Concrete Laboratory, developed pumpable and durable cement grouts. These grouts were successfully used to plug an existing drill hole in the area. Results of this project are presented, along with comments and conclusions

  7. Enhancing down-the-hole air hammer capacity in directional drilling

    Science.gov (United States)

    Klishin, V. I.; Timonin, V. V.; Kokoulin, D. I.; Alekseev, S. E.; Kubanychbek, B.

    2017-09-01

    The authors discuss the issue connected with drilling trajectory deviation and present the technique of rotary-percussion drilling with a down-the-hole air hammer. The article describes pilot testing of the air hammer drill PNB76 in Berezovskaya Mine. The ways of improving the air hammer drill are identified, and the basic diagram and R&D test data are given.

  8. Emplacement hole drill evaluation and specification study. Volume I

    International Nuclear Information System (INIS)

    1977-01-01

    Results of a conceptual design program are presented for mine floor drilling in preparation for radioactive waste disposal. Two classes of drills can be used to drill emplacement holes in salt. Both are sufficiently rugged and reliable. Raise borers have a higher capital cost and require more modifications, but are more flexible in other applications and require less labor. The life cycle cost for the raise borers and for the auger rigs are about the same, while the life cycle costs of bucket drills are much higher. As long as the hole is 36 inches in diameter or less and 40 feet deep or less in salt, then the auger rig is recommended because of the lower capital cost and lower operating cost. This recommended system represents what is thought to be the best combination of available drill components assembled into a drill rig which will provide at least adequate performance. Furthermore, this drill system can be procured from at least three manufacturers. If the facility criteria change significantly, however, then the drill rig recommendations will have to be reassessed on the merits of the changes. The drill rig manufacturers can be quite flexible in combining components provided the buyer is willing to accept components with which the manufacturer has had experience. If this condition can be met, then most drill rig manufacturers will include the associated design cost as part of the drill cost. If special components are required, however, then the number of manufacturers willing to participate in a procurement may be severely reduced

  9. Report on televiewer log and stress measurements in core hole USW G-2, Nevada Test Site, October-November, 1982

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.

    1984-01-01

    Hydraulic fracturing stress measurements and a borehole televiewer log were obtained in hole USW G-2 at Yucca Mountain, Nevada, to depths of 1200 m. Results indicate that at the depths tested, the minimum ad maximum horizontal stresses are less than the vertical stress, corresponding to a normal faulting stress regime. Drilling-induced hydrofractures seen in the televiewer log imply a least horizontal principal stress direction of N 60 0 W to N 65 0 W. For reasonable values of the coefficient of friction, the magnitude of the least horizontal stress is close to the value at which slip would occur on preexisting faults of optimal orientation (strike N 25 0 E to N 30 0 E and dipping 60 0 to 67 0 ). The prominent drilling-induced fractures seen in the televiewer log are believed to have been caused by excess downhole pressures applied during drilling the hole. Many throughgoing fractures are also seen in the televiewer log; most of these are high angle, stringing N 10 0 E to N 40 0 E. These fractures show a general decrease in angle of dip with depth. Stress-induced wellbore breakouts are seen at depths below 1050 m. The average N 60 0 W azimuth of these breakouts agrees very closely with the N 60 0 W to N 65 0 W direction of least horizontal principal stress inferred from the drilling-induced hydrofracs. 19 references, 13 figures, 3 tables

  10. Real-time depth measurement for micro-holes drilled by lasers

    Science.gov (United States)

    Lin, Cheng-Hsiang; Powell, Rock A.; Jiang, Lan; Xiao, Hai; Chen, Shean-Jen; Tsai, Hai-Lung

    2010-02-01

    An optical system based on the confocal principle has been developed for real-time precision measurements of the depth of micro-holes during the laser drilling process. The capability of the measuring system is theoretically predicted by the Gaussian lens formula and experimentally validated to achieve a sensitivity of 0.5 µm. A nanosecond laser system was used to drill holes, and the hole depths were measured by the proposed measuring system and by the cut-and-polish method. The differences between these two measurements are found to be 5.0% for hole depths on the order of tens of microns and 11.2% for hundreds of microns. The discrepancies are caused mainly by the roughness of the bottom surface of the hole and by the existence of debris in the hole. This system can be easily implemented in a laser workstation for the fabrication of 3D microstructures.

  11. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Koether, S.L.

    1983-01-01

    A continuously cored drill hole penetrated 1830.6 m of Tertiary volcanic strata comprised of the following in descending order: Paintbrush Tuff, tuffaceous beds of Calico Hills, Crater Flat Tuff, lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of about 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an itrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted in tabulation of 7848 fractures, predominately open and high angle

  12. Residual stress measurement of PMMA by combining drilling-hole with digital speckle correlation method

    Science.gov (United States)

    Yao, X. F.; Xiong, T. C.; Xu, H. M.; Wan, J. P.; Long, G. R.

    2008-11-01

    The residual stresses of the PMMA (polymethyl methacrylate) specimens after being drilled, reamed and polished respectively are investigated using the digital speckle correlation experimental method,. According to the displacement fields around the correlated calculated region, the polynomial curve fitting method is used to obtain the continuous displacement fields, and the strain fields can be obtained from the derivative of the displacement fields. Considering the constitutive equation of the material, the expression of the residual stress can be presented. During the data processing, according to the fitting effect of the data, the calculation region of the correlated speckles and the degree of the polynomial fitting curve is decided. These results show that the maximum stress is at the hole-wall of the drilling hole specimen and with the increasing of the diameter of the drilled hole, the residual stress resulting from the hole drilling increases, whereas the process of reaming and polishing hole can reduce the residual stress. The relative large discrete degree of the residual stress is due to the chip removal ability of the drill bit, the cutting feed of the drill and other various reasons.

  13. Drilling and associated drillhole measurements of the pilot hole ONK-PH11

    International Nuclear Information System (INIS)

    Karttunen, P.; Mancini, P.; Pekkanen, J.; Poellaenen, J.; Tarvainen, A.-M.; Toropainen, V.; Pere, T.

    2011-01-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH11 was drilled from chainage 3922 to chainage 4053 in October 2009. The length of the hole is 131.21 metres. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Hydraulic conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. During flow measurements also electric conductivity and temperature were measured. In flow logging test sections of 0.5 m and increments of 0.1 m were used. The water loss measurements were performed after drilling was completed by the drilling company. Logging of the core samples included the following parameters: lithology, foliation, fracturing, RQD, fractured zones, weathering and possible intersections. The rock mechanical logging was based on Q-classification. The rock strength and deformation were determined with Rock Tester -equipment. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. The groundwater samples were collected from the open hole without any packers. The collected groundwater samples were

  14. The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718

    Science.gov (United States)

    Lipiec, Piotr; Machno, Magdalena; Skoczypiec, Sebastian

    2018-05-01

    In recent years the drilling operations become important area of electrodischarge machining (EDM) application. This especially concerns drilling of, small (D 10) holes in difficult-to-cut materials (i.e. nickel or titanium alloys). Drilling of such a holes is significantly beyond mechanical drilling capabilities. Therefore electrodischarge machining is good and cost efficient alternative for such application. EDM gives possibility to drill accurate, burr free and high aspect ratio holes and is applicable to machine wide range of conductive materials, irrespective of their hardness and toughness. However it is worth to underline its main disadvantages such as: significant tool wear, low material removal rate and poor surface integrity. The last one is especially important in reliable applications in aircraft or medical industry.

  15. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Smith, D.K.

    1997-01-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids

  16. Recent drilling program to investigate radionuclide migration at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.K.

    1997-04-01

    Recent drilling affords new opportunities to investigate the occurrence, distribution and transport of radionuclides in the unsaturated and saturated zone at the Nevada Test Site (NTS), Nye County, Nevada. This program is unique becmise of the elevated activities of radionuclides encountered during drilling (> 3.7E+6 Bq/L 3H), extreme completion depths (> 950 m), the expense of constructing new wells (> $IE+6/borehole), and collaboration of government, academic, and industrial partners in the planning and execution of the program. The recent chilling is significant because it substantively augments earlier field of radionuclide migration at NTS, most notably the 1974 CAMBRIC RNM experiment Sites of five nuclear tests fired below or adjacent to the saturated zone have been drilled. Three of the events were fired in Yucca Flat which is a hydrologically closed basin and two were fired in fractured volcanics of Pahute Mesa. Results from Yucca Flat indicate that volatile and refractory radionuclides, fractionated at zero time, we not highly mobile under sawmted conditions. In contrast, borcholes completed on Pahute Mesa indicate Wgh concentrations of tritium (> 3.7E+6 Bq/L 3H) and other radionuclides may be rted more than 300 m from event cavities as dissolved species or as colloids.

  17. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  18. Drilling and associated drillhole measurements of the pilot hole ONK-PH9

    International Nuclear Information System (INIS)

    Karttunen, P.; Pekkanen, J.; Poellaenen, J.; Tarvainen, A.-M.; Toropainen, V.; Lamminmaeki, T.; Kosunen, P.

    2010-01-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH9 was drilled from chainage 3263 to chainage 3413.27 in November 2008. The length of the hole is 150.3 metres. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Hydraulic conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also electric conductivity, grounding resistance and temperature were measured. In flow logging test sections of 0.5 m and increments of 0.1 m were used. The water loss measurements were performed after drilling was completed by the drilling company. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The rock strength and deformation were determined with Rock Tester equipment. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. One of the objectives of the geochemical study

  19. Standard test method for determining residual stresses by the hole-drilling strain-gage method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 Residual Stress Determination: 1.1.1 This test method specifies a hole-drilling procedure for determining residual stress profiles near the surface of an isotropic linearly elastic material. The test method is applicable to residual stress profile determinations where in-plane stress gradients are small. The stresses may remain approximately constant with depth (“uniform” stresses) or they may vary significantly with depth (“non-uniform” stresses). The measured workpiece may be “thin” with thickness much less than the diameter of the drilled hole or “thick” with thickness much greater than the diameter of the drilled hole. Only uniform stress measurements are specified for thin workpieces, while both uniform and non-uniform stress measurements are specified for thick workpieces. 1.2 Stress Measurement Range: 1.2.1 The hole-drilling method can identify in-plane residual stresses near the measured surface of the workpiece material. The method gives localized measurements that indicate the...

  20. The relationship of cutting force with hole quality in drilling process of AISI H13 steel

    Directory of Open Access Journals (Sweden)

    Tekaüt İsmail

    2017-01-01

    Full Text Available The harmony of the drilling machine-cutting tool-work piece is very important for producing the machine part with the ideal dimensions. For this purpose in this study, the effect of cutting forces on hole quality (surface roughness, diameter deviation and circular deviation was investigated by 14 mm diameter uncoated and (AlCrN monolayer coated carbide drills for drilling AISI H13 hot work tool steel on vertical machining center. Four different cutting speeds (60, 75, 90 and 108 m / min and three different feed rates (0.15, 0.20 and 0.25 mm / rev were used in the experiments. Cutting forces have been found to be effective in improving hole quality. Better hole quality has obtained with coated drills than uncoated drills in experiments. It has been observed that coated drills have the effect of improving the hole quality due to the operation with less cutting force and better chip evacuation.

  1. Drilling and associated drillhole measurements of the pilot hole ONK-PH10

    International Nuclear Information System (INIS)

    Mancini, P.; Karttunen, P.; Lokkila, M.; Pekkanen, J.; Poellaenen, J.; Tarvainen, A.-M.; Toropainen, V.; Kosunen, P.; Pere, T.

    2010-08-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH10 was drilled from chainage 3459 to chainage 3639 in March 2009. The length of the hole is 180.00 metres. The drilling was done as orientated core drilling. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The test to determine rock strength and deformation were made with Rock Tester -equipment. Water conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also grounding resistance electric conductivity and temperature were measured. In flow logging test, sections of 0.5 m with increments of 0.1 m were used. Water loss measurements were conducted in the hole section 3.70-180.00 m dhd. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. One of the objectives of the geochemical study was to get information of the composition of

  2. Drilling and associated Drillhole measurements of the Pilot Hole ONK-PH14

    International Nuclear Information System (INIS)

    Aalto, P.; Toropainen, V.; Tarvainen, A.-M.; Pekkanen, J.; Poellaenen, J.; Lamminmaeki, T.

    2011-09-01

    The construction of ONKALO access tunnel started in September 2004 at Olkiluoto. During the construction, investigations serving both research and construction purposes need to be done. Investigations can be done for example in so called pilot holes. Pilot holes are cored drillholes to be drilled to the tunnel profile. The length of the holes varies from some tens of metres to some hundreds of metres. The purpose of the holes is to confirm the quality of the rock mass for tunnel construction, especially to identify water conductive fractures/fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH14 was drilled in June 2010. Drilling was started in chainage 4313.6. The length of the hole was 150.80 metres. The deviation of the drillhole was measured during and after the drilling. Additionally, oriented core samples were collected from the drill core and the electric conductivity of returning water was measured. Logging of the core samples included following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The strength and deformation properties of the rock were defined by using Rock-Tester equipment. Hydraulic measurements were made by using the PFL DIFF (Posiva Flow log, Difference Flow Method). PFL DIFF measurements were performed with a 0.5 m section length and with 0.1 m length increments. With PFL DIFF tool the locations of transmissive fractures were detected. Simultaneously, the electric conductivity (EC) of the drillhole water and fracture specific water, temperature of the drillhole water, single point resistance (SPR) of the drillhole wall and the prevailing water pressure were measured. Water loss measurements were done after the drilling by the tool developed by Posiva. The tool was in test use during the measurements. The groundwater sample was

  3. Drilling and associated Drillhole measurements of the Pilot Hole ONK-PH14

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, P. (ed.); Lahti, M.; Kosunen, P.; Pere, T. [Posiva Oy, Helsinki (Finland); Toropainen, V.; Tarvainen, A.-M. [Suomen Malmi Oy, Espoo (Finland); Pekkanen, J.; Poellaenen, J. [Poeyry Finland Oy, Espoo (Finland); Lamminmaeki, T. [Teollisuuden Voima Oyj, Helsinki (Finland)

    2011-08-15

    The construction of ONKALO access tunnel started in September 2004 at Olkiluoto. During the construction, investigations serving both research and construction purposes need to be done. Investigations can be done for example in so called pilot holes. Pilot holes are cored drillholes to be drilled to the tunnel profile. The length of the holes varies from some tens of metres to some hundreds of metres. The purpose of the holes is to confirm the quality of the rock mass for tunnel construction, especially to identify water conductive fractures/fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH14 was drilled in June 2010. Drilling was started in chainage 4313.6. The length of the hole was 150.80 metres. The deviation of the drillhole was measured during and after the drilling. Additionally, oriented core samples were collected from the drill core and the electric conductivity of returning water was measured. Logging of the core samples included following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The strength and deformation properties of the rock were defined by using Rock-Tester equipment. Hydraulic measurements were made by using the PFL DIFF (Posiva Flow log, Difference Flow Method). PFL DIFF measurements were performed with a 0.5 m section length and with 0.1 m length increments. With PFL DIFF tool the locations of transmissive fractures were detected. Simultaneously, the electric conductivity (EC) of the drillhole water and fracture specific water, temperature of the drillhole water, single point resistance (SPR) of the drillhole wall and the prevailing water pressure were measured. Water loss measurements were done after the drilling by the tool developed by Posiva. The tool was in test use during the measurements. The groundwater sample was

  4. Geology of hole drill thermal infra basaltic (Guarani Aquifer System) in Salto Uruguay

    International Nuclear Information System (INIS)

    Goso, C.; Muzio, R.; Marmisolle, J.; De Souza, S.

    2004-01-01

    This paper deals with the lithological description of a thermal infrabasaltic (Guarani Aquifer System) hole drill cutting in Dayman (Kanarek Hotel), Salto department (Uruguay). This hole drill shows 152 meters of Buena Vista Formation (Upper Permian- Lower Triassic), 188 meters of Tacuarembo Formation (Upper Jurassic-Lower Cretaceous) and 940meters of Arapey Formation (Lower Cretaceous). Petrographical studies of six basaltic levels were done [es

  5. Editorial Commentary: The Larger Holes or Larger Number of Holes We Drill in the Coracoid, the Weaker the Coracoid Becomes.

    Science.gov (United States)

    Brady, Paul

    2016-06-01

    The larger holes or larger number of holes we drill in the coracoid, the weaker the coracoid becomes. Thus, minimizing bone holes (both size and number) is required to lower risk of coracoid process fracture, in patients in whom transosseous shoulder acromioclavicular joint reconstruction is indicated. A single 2.4-mm-diameter tunnel drilled through both the clavicle and the coracoid lowers the risk of fracture, but the risk cannot be entirely eliminated. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Las Vegas, NV (United States)

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified

  7. Hole Drilling Technique – on site stress measurement

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    2. Hole Drilling Technique for onsite stress measurement has been used to validate the stress level at 2 pillars of the Sint-Jacobschurch (Leuven, B). The technique allows estimating the stress in a stone from measuring deformation when a small hole is made. It is a low intrusive technique. The application of it is limited to local stress measurements and is a complement to stress estimate from calculations of from the use of –for example- flat jacks. In addition to the flat-jack technique...

  8. Drilling and associated drillhole measurements of the pilot hole ONK-PH13

    International Nuclear Information System (INIS)

    Tarvainen, A.-M.; Toropainen, V.; Pekkanen, J.; Poellaenen, J.; Kosunen, P.; Lahti, M.; Pere, T.; Aalto, P.

    2011-04-01

    The construction of ONKALO access tunnel started in September 2004 at Olkiluoto. During the construction, investigations serving both research and construction purposes need to be done. Investigations can be done for example in so called pilot holes. Pilot holes are cored drillholes to be drilled to the tunnel profile. The length of the holes varies from some tens of meters to some hundreds of meters. The purpose of the holes is to confirm the quality of the rock mass for tunnel construction, especially to identify water conductive fractures/fracture zones and provide information that could result in modifications of the existing construction plans. The pilot hole ONK-KR13 was drilled in March 2010. Drilling was started from chainage 4201. The final length of the hole was 140.05 meters. The deviation of the drillhole was measured during and after the drilling. Additionally, oriented core samples were collected and electric conductivity of returning water from the drill hole was measured. Logging of the core samples included following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The strength and deformation properties of the rock were defined by using Rock-Tester equipment. Hydraulic measurements were made by using the PFL DIFF (Posiva Flow Log, Difference Flow method). PFL DIFF measurements were performed with a 0.5 m section length and with 0.1 m length increments. With PFL DIFF tool the locations of flowing fractures and their transmissivities were detected. Simultaneously, the electric conductivity (EC) of the drillhole water and fracture-specific water, temperature of the drillhole water, single point resistance (SPR) of the drillhole wall and the prevailing water pressure profile were measured. Water loss measurements were done after the drilling by the tool developed by Posiva. The equipment was in test use during the measurements

  9. Effect of cooling methods on hole quality in drilling of aluminium 6061-6T

    International Nuclear Information System (INIS)

    Islam, M N; Boswell, B

    2016-01-01

    The influence of cooling method and drilling parameters on hole production has been investigated experimentally and analytically by measuring the hole quality. A three-level, three-parameter experiment was conducted using design-of-experiment methodology. The three levels of independent input parameters were: for cooling method—flood drilling, minimum quantity lubrication (MQL) drilling and cryogenic drilling; for feed rate—0.2, 0.3 and 0.4 mm/rev; and for cutting speed—60, 75 and 100 m/min. The selected work and tool materials were aluminium 6061-6T and high speed steel (HSS), respectively. The measured output parameters were the three most widely used quality characteristics of drilled holes - diameter error, circularity and surface roughness. The results were analysed applying three methods: Pareto ANOVA, Taguchi method and traditional analysis. The findings revealed that the cooling method has a significant effect on diameter error (contribution ratio 88.27%), moderate effect on surface roughness (contribution ratio 41.74%) and relatively small effect on circularity (contribution ratio 23.64%). The best results for the dimensional accuracy and surface roughness were achieved by MQL drilling. Cryogenic drilling produced the best circularity results; however, in terms of dimensional accuracy and surface roughness it was the worst. (paper)

  10. NNWSI [Nevada Nuclear Waste Storage Investigations] hole history, UE-25b No. 1

    International Nuclear Information System (INIS)

    1986-11-01

    This report is a compilation of data from UE-25b No. 1 drilled in Area 25 under the guidance of the US Geological Survey. It was drilled to provide geologic and hydrologic information for the Yucca Mountain area. Data presented in this document include the hole history, geophysical log and video tape listings, and microfiche copies of all geophysical logs run in hole by Fenix and Scisson, Inc. subcontractor

  11. Jet impinging onto a laser drilled tapered hole: Influence of tapper location on heat transfer and skin friction at hole surface

    Science.gov (United States)

    Shuja, S. Z.; Yilbas, B. S.

    2013-02-01

    Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.

  12. Filter construction technology in mining drilling hole for in-situ leaching of multilayer deposit

    International Nuclear Information System (INIS)

    Jiang Yan; Hu Baishi; Tan Yahui; Yang Lizhi; Li Xiaojian; Wang Xiaodong; Chang Jingtao; Qin Hao

    2014-01-01

    Taking a typical multilayer sandstone uranium deposit as example, study was carried out on filter construction technology in mining drilling hole for in-situ leaching of multilayer deposit. According to the character of multilayer sandstone, four injecting holes and one drawning hole were designed between the P13-P15 exploration lines, five different methods were used to construct filter. Construction technology by different methods was introduced and the advantages and disadvantages of the construction filter with five methods were analysed. As far as five experimental drilling holes, layered gravel-filling hole construction technology is a suitable method for construction multilayer filter with continuous construction, simple operation and good effect of well completion. (authors)

  13. Analysis and 3D inspection system of drill holes in aeronautical surfaces

    Science.gov (United States)

    Rubio, R.; Granero, L.; Sanz, M.; García, J.; Micó, V.

    2017-06-01

    In aerospace industry, the structure of the aircraft is assembled using small parts or a combination of them that are made with different materials, such as for instance aluminium, titanium, composites or even 3D printed parts. The union between these small parts is a critical point for the integrity of the aircraft. The quality of this union will decide the fatigue of adjacent components and therefore the useful life of them. For the union process the most extended method is the rivets, mainly because their low cost and easy manufacturing. For this purpose it is necessary to made drill holes in the aeronautical surface to insert the rivets. In this contribution, we present the preliminary results of a 3D inspection system [1] for drill holes analysis in aeronautical surfaces. The system, based in optical triangulation, was developed by the Group of Optoelectronic Image Processing from the University of Valencia in the framework of the Airbus Defence and Space (AD&S), MINERVA project (Manufacturing industrial - means emerging from validated automation). The capabilities of the system permits to generate a point cloud with 3D information and GD&T (geometrical dimensions and tolerances) characteristics of the drill hole. For the inner surface defects detection, the system can generate an inner image of the drill hole with a scaled axis to obtain the defect position. In addition, we present the analysis performed for the drills in the wing station of the A-400 M. In this analysis the system was tested for diameters in the range of [10 - 15.96] mm, and for Carbon Fibre.

  14. Laser drilling of superdeep micron holes in various materials with a programmable control of laser radiation parameters

    International Nuclear Information System (INIS)

    Basiev, Tasoltan T; Osiko, Vyacheslav V; Gavrilov, A V; Smetanin, S N; Fedin, A V

    2007-01-01

    The possibilities of enhancing the efficiency of laser drilling of micron holes, increasing their depth, and eliminating their conic shape are studied by using a single-mode loop Nd:YAG laser with self-phase conjugation on the gain gratings and passive Q-switching by a scanned gradiently coloured F 2 - :LiF crystal. Holes of diameters 15-150 μm and depth up to 20 mm with the aspect ratio (ratio of the hole depth to its diameter) of 50-155 are drilled in various metals and alloys. It is shown that passive Q-switch scanning during drilling provides the increase in the depth and speed of the laser drilling of superdeep holes by a factor of 1.5-2. (laser technologies)

  15. Borehole geophysical measurements for Hole UE25a-3, Nevada Test Site, Nuclear Waste Isolation Program

    International Nuclear Information System (INIS)

    Daniels, J.J.; Scott, J.H.

    1980-01-01

    Borehole geophysical measurements made in drill hole UE25a-3 with a US Geological Survey research well-logging truck are presented in this paper. The purpose of these logging measurements is to provide in-situ physical properties information that is not commercially available on drill hole UE25a-3. Well logs are presented in this paper for dual-detector density, normal resistivity, gamma-ray, neutron-neutron, induced polarization, and magnetic susceptibility measurements. These data are analyzed correlations with the core lithology. Hole-to-surface measurements made from drill hole UE25a-3 indicate the presence of two resistive bodies at depth. The deeper resistive anomaly may be related to a granitic intrusion

  16. INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    John V. Fernandez; David S. Pixton

    2005-12-01

    A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.

  17. Geophysical well-log measurements in three drill holes at Salt Valley, Utah

    International Nuclear Information System (INIS)

    Daniels, J.J.; Hite, R.J.; Scott, J.H.

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material. The following geophysical well-log measurements were made in each of the three drill holes: (1) density, (2) neutron, (3) acoustic velocity, (4) normal resistivity, and (5) gamma ray. Widely spaced resistivity and conductivity well-log measurements were made in the deep drill hole. Each of these well-log measurements shows the division of the evaporite sequence into halite and interbed sections. At the present time the most useful well-logging measurements for determining the individual lithologies in an evaporite sequence are gamma ray, neutron, density, and acoustic velocity. The high resistivity contrast between the drilling fluid (0.5 ohm-m) and salt (10,000 ohm-m) makes it difficult to obtain quantitative measurements of electrical properties in an evaporite sequence. Tests of widely spaced electrode configurations show that the effects of the brine on the resistivity measurements can be reduced, and the depth of investigation increased, by increasing the source-receiver electrode spacing. Tests of a single-coil induction probe show good resolution of the contrasting electrical properties of the various interbed lithologies

  18. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    Energy Technology Data Exchange (ETDEWEB)

    Deymonaz, John [Fish Lake Green Power Co. (United States); Hulen, Jeffrey B. [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geosciences Inst.; Nash, Gregory D. [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geosciences Inst.; Schriener, Alex [Earth Systems Southwest (United States)

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive, temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.

  19. Drilling and associated drillhole measurements of the pilot hole ONK-PH12

    International Nuclear Information System (INIS)

    Toropainen, V.; Tarvainen, A.-M.; Poellaenen, J.; Pekkanen, J.; Pere, T.; Kaepyaho, E.; Lahti, M.

    2011-01-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH12 was drilled from ONKALO chainage 4092 to chainage 4215 in January 2010. The length of the hole is 123.96 metres. The drilling method was orientated core drilling. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The test to determine rock strength and deformation were made with Rock Tester -equipment. Water conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also grounding resistance electric conductivity and temperature were measured. In flow logging test, sections of 0.5 m with increments of 0.1 m were used. Water loss measurements were conducted in the drillhole section 5.0-123.85 m dhd. Geophysical logging as well as optical and acoustic imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. Groundwater sampling was not applicable because no

  20. Drilling and the associated drillhole measurements of the pilot hole ONK-PH7

    International Nuclear Information System (INIS)

    Oehberg, A.; Kemppainen, K.; Lampinen, H.; Niemonen, J.; Poelloenen, J.; Rouhiainen, P.; Rautio, T.; Tarvainen, A.-M.

    2007-12-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH7 was drilled from chainage 1880 to chainage 1980.31 in February 2007. The length of the hole is 100.31 m. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the drillhole. The overlapping i.e. the detailed flow logging mode was used. Besides flow logging Single Point Resistance (SPR), Electric Conductivity (EC) and temperature of the drillhole water were also measured. The flow logging was performed with 0.5 m section length and with 0.1 m depth increment. Water loss measurements were conducted between the hole depth of 1.18 m and the hole bottom. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as

  1. Thermal stress measurement in continuous welded rails using the hole-drilling method

    Science.gov (United States)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2016-04-01

    The absence of expansion joints in Continuous Welded Rail (CWR) has created the need for the railroad industry to determine the in-situ level of thermal stresses so as to prevent train accidents caused by rail buckling in hot weather and by rail breakage in cold weather. The development of non-destructive or semi-destructive methods for determining the level of thermal stresses in rails is today a high research priority. This study explores the known hole-drilling method as a possible solution to this problem. A new set of calibration coefficients to compute the relieved stress field with the finer hole depth increments was determined by a 3D Finite Element Analysis that modeled the entire hole geometry, including the mechanics of the hole bottom and walls. To compensate the residual stress components, a linear relationship was experimentally established between the longitudinal and the vertical residual stresses of two common sizes of rails, the 136RE and the 141RE, with statistical significance. This result was then utilized to isolate the longitudinal thermal stress component in hole-drilling tests conducted on the 136RE and 141RE thermally-loaded rails at the Large-scale CWR Test-bed of UCSD's Powell Research Laboratories. The results from the Test-bed showed that the hole-drilling procedure, with the appropriate residual stress compensation, can indeed estimate the in-situ thermal stresses to achieve a +/-5°F accuracy of Neutral Temperature determination with a 90% statistical confidence, which is the desired industry gold standard.

  2. Design aspects of the Alpha Repository: VI. Selection and cost analysis of large hole drilling equipment

    International Nuclear Information System (INIS)

    Ellis, D.B.; Grams, W.H.

    1975-01-01

    An evaluation of common drilling practices and technology and applicability of currently available drilling machinery in the excavation of the canister emplacement holes for the Alpha Repository is presented. Sections are included on drilling system applications, descriptions of drilling operations, and drill system performance

  3. Statistical guidelines for planning a limited drilling program

    International Nuclear Information System (INIS)

    Campbell, K.

    1988-06-01

    Site characterization for potential nuclear waste repository at Yucca Mountain in south-central Nevada will include the construction of a limited number of new drill holes to depths below the repository horizon from which information about the properties of the surrounding and underlying tuffs can be obtained. Quantitative techniques to estimate the amount of information to be gained from a proposed drilling plan are developed. These estimates are to be compared with economic costs and with risk analysis requirements for the potential repository. In some cases the existing data, although extremely limited, are sufficient for preliminary application of these methods. 33 refs., 19 figs., 3 tabs

  4. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    International Nuclear Information System (INIS)

    Wu, Y.; Wang, A.H.; Zheng, R.R.; Tang, H.Q.; Qi, X.Y.; Ye, B.

    2014-01-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  5. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    Science.gov (United States)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  6. Geochemistry of core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG number-sign 3, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Futa, K.

    1996-01-01

    The Tiva Canyon Tuff of Miocene age is composed of crystal-poor, high-silica rhyolite overlain by a crystal-rich zone that is gradational in composition from high-silica rhyolite to quartz latite. Each of these zones is divided into subzones that have distinctive physical, mineralogical, and geochemical features.Accurate identification of these subzones and their contacts is essential for detailed mapping and correlation both at the surface and in the subsurface in drill holes and in the exploratory studies facility (ESF). This report presents analyses of potassium (K), calcium (Ca), titanium (Ti), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), barium (Ba), lanthanum (La), and cerium (Ce) in core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG number-sign 3. The concentrations of most of these elements are remarkably constant throughout the high-silica rhyolite, but at its upper contact with the crystal-rich zone, Ti, Zr, Ba, Ca, Sr, La, Ce, and K begin to increase progressively through the crystal-rich zone. In contrast, Rb and Nb decrease, and Y remains essentially constant. Initial 87 Sr/ 86 Sr ratios are relatively uniform in the high-silica rhyolite with a mean value of 0.7117, whereas initial 87 Sr/ 86 Sr ratios decrease upward in the quartz latite to values as low as 0.7090

  7. Drilling and the associated drillhole measurements of the pilot hole ONK-PH5

    International Nuclear Information System (INIS)

    Oehberg, A.; Hirvonen, H.; Jurvanen, T.; Kemppainen, K.; Mustonen, A.; Niemonen, J.; Poellaenen, J.; Rouhiainen, P.; Rautio, T.

    2006-09-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH5 was drilled from chainage 991.4 to chainage 1194 in January 2006. The length of the hole is 202.64 m and the vertical depth of the hole from zero level is about 88.2-107.5 m. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. One steering operation by wedging was made at the hole depth of 128.58 metres. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Due to high inflow (c. 200 L/min) mainly from the depth section 56-58 metres no geophysical surveys were carried out in the hole. Flow logging was carried out only from 58 metres to the bottom of the hole. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the drillhole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increment. Flow

  8. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    International Nuclear Information System (INIS)

    John McCord

    2007-01-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: Plate 4: Disregard the repeat of legend text 'Drill Hole Name' and 'Drill Hole Location' in the lower left corner of the map. Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted

  9. Drilling and the associated drillhole measurements of the pilot hole ONK-PH4

    International Nuclear Information System (INIS)

    Oehberg, A.; Heikkinen, E.; Hirvonen, H.; Kemppainen, K.; Majapuro, J.; Niemonen, J.; Poellaenen, J.; Rouhiainen, P.; Rautio, T.

    2006-09-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are mostly aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH4 was drilled in October 2005. The length of the hole is 96.01 metres. During the drilling work core samples were oriented as much as possible. The deviation of the hole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Geological logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the hole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increment. Water loss tests (Lugeon tests) were used to give background information for the grouting design. Geophysical logging and optical imaging of the pilot hole PH4 included the field work of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. One of the objectives of the geochemical study was to get information of composition of ONKALO

  10. Archaeological data recovery at drill pad U19au, Nye County, Nevada

    International Nuclear Information System (INIS)

    Henton, G.H.; Pippin, L.C.

    1991-01-01

    Construction activities accompanying underground nuclear tests result in the disturbance of the surface terrain at the Nevada Test Site. In compliance with Federal legislation (National Historic Preservation Act of 1966 [PL 89-665] and National Environmental Policy Act of 1969 [PL 91-190]), the US Department of Energy (DOE), Field Office, Nevada, has long required that cultural resources studies must precede all land-disturbing activities on the Nevada Test Site. In accordance with 36 CFR Part 800, these studies consist of archaeological surveys conducted prior to the land-disturbing activities. The intent of these surveys is to identify and evaluate all cultural resources that might be adversely affected by the proposed construction activity. This report presents the final analysis of the data recovered from archaeological investigations conducted at the U19au drill site and access road. This report includes descriptions of the archaeological sites as recorded during the original survey, the research design used to guide the investigations, the method and techniques used to collect and analyze the data, and the results and interpretations of the analysis. 200 refs., 112 figs., 53 tabs

  11. Archaeological data recovery at drill pad U19au, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Henton, G.H.; Pippin, L.C.

    1991-01-01

    Construction activities accompanying underground nuclear tests result in the disturbance of the surface terrain at the Nevada Test Site. In compliance with Federal legislation (National Historic Preservation Act of 1966 (PL 89-665) and National Environmental Policy Act of 1969 (PL 91-190)), the US Department of Energy (DOE), Field Office, Nevada, has long required that cultural resources studies must precede all land-disturbing activities on the Nevada Test Site. In accordance with 36 CFR Part 800, these studies consist of archaeological surveys conducted prior to the land-disturbing activities. The intent of these surveys is to identify and evaluate all cultural resources that might be adversely affected by the proposed construction activity. This report presents the final analysis of the data recovered from archaeological investigations conducted at the U19au drill site and access road. This report includes descriptions of the archaeological sites as recorded during the original survey, the research design used to guide the investigations, the method and techniques used to collect and analyze the data, and the results and interpretations of the analysis. 200 refs., 112 figs., 53 tabs.

  12. Geophysical Well-Log Measurements in Three Drill Holes at Salt Valley, Utah

    OpenAIRE

    Daniels, Jeffrey J.; Hite, Robert J.; Scott, James H.; U.S. Geological Survey

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material.

  13. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    Science.gov (United States)

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  14. Corrective Action Investigation Plan for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-09-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.

  15. Drilling and the associated drillhole measurements of the pilot hole ONK-PH8

    International Nuclear Information System (INIS)

    Karttunen, P.; Poellaenen, J.; Rautio, T.; Tarvainen, A.-M.; Lamminmaeki, T.; Kemppainen, K.; Kosunen, P.; Lampinen, H.

    2009-02-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH8 was drilled from chainage 3116 to chainage 3266.29 in June- July 2008. The length of the hole is 150.29 metres. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Water conductivity of the fractures or fractured zones was measured by Posiva Flow Log equipment. The measurements were done in two phases. During flow measurements also grounding resistance, electric conductivity and temperature were measured. In flow logging test sections of 0.5 m and increments of 0.1 m were used. The water loss measurements failed. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss, and weathering. The rock mechanical logging was based on Q-classification. The test to determine rock strength and deformation were made with Rock Tester-equipment. Geophysical logging and optical imaging of the pilot hole included the fieldwork of all surveys, the integration of the data as well as interpretation of the acoustic and drillhole radar data. One of the objectives of the geochemical study was to get information of the composition of ONKALO

  16. Evaluation of Hole Quality in Hardened Steel with High-Speed Drilling Using Different Cooling Systems

    Directory of Open Access Journals (Sweden)

    Lincoln Cardoso Brandão

    2011-01-01

    Full Text Available This work evaluates the hole quality on AISI H13 hardened steel using high-speed drilling. Specimens were machined with new and worn out drills with 8.6 mm diameter and (TiAlN coating. Two levels of cutting speed and three levels of cooling/lubrication systems (flooded, minimum lubrication quantity, and dry were used. The hole quality is evaluated on surface roughness (Ra parameter, diameter error, circularity, and cylindricity error. A statistical analysis of the results shows that the cooling/lubrication system significantly affects the hole quality for all measured variables. This analysis indicates that dry machining produces the worst results. Higher cutting speeds not only prove beneficial to diameter error and circularity errors, but also show no significant difference on surface roughness and cylindricity errors. The effects of the interaction between the cooling/lubrication systems, tool wear, and cutting speed indicate that only cylindricity error is influenced. Thus, the conclusion is that the best hole quality is produced with a higher cutting speed using flooded or minimum lubrication quantity independent of drill wear.

  17. Preliminary petrographic and geophysical interpretations of the exploratory geothermal drill hole and core, Redstone, New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Hoag, R.B. Jr.; Stewart, G.W.

    1977-06-30

    A 3000 foot diamond drill hole was drilled in the Conway Granite in Redstone, New Hampshire. A comprehensive detailed petrographic and physical study of this core was made. The purpose of this study is to supply a sound data base for future geothermal and uranium-thorium studies of the drill core. An estimate of the heat flow potential of the Redstone drill hole gives a heat flow of 1.9 HFU. If only the red phase of the Conway Granite had been intersected the heat flow may have been as much as 2.7 HFU, reaching a temperature of 260/sup 0/C at 6 km. The drill hole intersected four lithologies; the green and red phase of the Conway Granite, the Albany quartz syenite and a medium-grained, hastingsite-biotite granite. The red phase has the highest and most irregular radioactivity. The irregularity is mainly due to minor variations in lithology. The drill core intersected several alteration zones up to a thickness of 150 feet. These alteration zones represent passage of low to medium temperature fluids which might have been mineralized. The Conway Granite has the physical and chemical characteristics necessary for the formation of vein type uranium deposits. The presence of unexplained radiometric anomalies lends support to the existence of such deposits.

  18. Overview of Hole GT2A: Drilling middle gabbro in Wadi Tayin massif, Oman ophiolite

    Science.gov (United States)

    Takazawa, E.; Kelemen, P. B.; Teagle, D. A. H.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.

    2017-12-01

    Hole GT2A (UTM: 40Q 655960.7E / 2529193.5N) was drilled by the Oman Drilling Project (OmDP) into Wadi Gideah of Wadi Tayin massif in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT2A was diamond cored in 25 Dec 2016 to 18 Jan 2017 to a total depth of 406.77 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. 33 shipboard scientists were divided into six teams (Igneous, Alteration, Structural, Geochem, Physical Properties, Paleomag) to describe and analyze the cores. Hole GT2A drilled through the transition between foliated and layered gabbro. The transition zone occurs between 50 and 150 m curation corrected depth (CCD). The top 50 m of Hole GT2A is foliated gabbro whereas the bottom 250 m consists of layered gabbro. Brittle fracture is observed throughout the core. Intensity of alteration vein decreases from the top to the bottom of the hole. On the basis of changes in grain size and/or modal abundance and/or appearance/disappearance of igneous primary mineral(s) five lithological units are defined in Hole GT2A (Unit I to V). The uppermost part of Hole GT2A (Unit I) is dominated by fine-grained granular olivine gabbro intercalated with less dominant medium-grained granular olivine gabbro and rare coarse-grained varitextured gabbro. The lower part of the Hole (Units II, III and V) is dominated by medium-grained olivine gabbro, olivine melagabbro and olivine-bearing gabbro. Modally-graded rhythmic layering with

  19. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075.

    Science.gov (United States)

    Ghasemi, Amir Hossein; Khorasani, Amir Mahyar; Gibson, Ian

    2018-01-16

    Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5-8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  20. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075

    Directory of Open Access Journals (Sweden)

    Amir Hossein Ghasemi

    2018-01-01

    Full Text Available Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed on thrust force, surface roughness, and dimensional accuracy (cylindricity have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  1. Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Page, W.R.

    1990-01-01

    Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs

  2. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project

    Science.gov (United States)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.

    2017-12-01

    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII

  3. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  4. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Jones, Robert C. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Bullard, Thomas F. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Ashbaugh, Laurence J. [Southern Nevada Courier Service, NV (United States); Griffin, Wayne R. [Stoller-Navarro Joint Venture, Las Vegas, NV (United States)

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  5. Remarks on residual stress measurement by hole-drilling and electronic speckle pattern interferometry.

    Science.gov (United States)

    Barile, Claudia; Casavola, Caterina; Pappalettera, Giovanni; Pappalettere, Carmine

    2014-01-01

    Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value.

  6. Excavation and drilling at a spent-fuel test facility in granitic rock

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m{sup 3} were excavated at an average rate of 2 m{sup 3}/h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule.

  7. Excavation and drilling at a spent-fuel test facility in granitic rock

    International Nuclear Information System (INIS)

    Patrick, W.C.; Mayr, M.C.

    1981-10-01

    Funding for a project to test the feasibility of safe and reliable storage and retrieval of spent fuel from a commercial nuclear reactor was approved by the Department of Energy on June 2, 1978. By May 28, 1980, 11 spent-fuel assemblies had been emplaced 420 m below the surface in the Climax granitic stock at the Nevada Test Site. Design and construction of the Spent Fuel Test-Climax, including fuel emplacement, had taken less than two years, at a total cost of $18.4 million. Construction activities were preceded by geologic exploration using four cored holes and existing underground workings. The sinking of a 0.76-m-diam shaft to the 420-m level initiated construction at the site. Effective rates of sinking varied from 0.16 m/h with a rotary tricone drill to 0.5 m/h with a hammer drill. Underground excavation included a central canister-storage drift 4.6 x 6.1 x 64 m long, two parallel 3.4 x 3.4-m heater drifts, and a tail drift. About 6700 m 3 were excavated at an average rate of 2 m 3 /h, and 178 cored holes, with diameters from 38 to 152 mm, were drilled. A total length of nearly 1100 m was drilled at rates ranging from 0.4 m/h to 1 m/h, depending on hole size and drilling equipment. Eighteen 610-mm-diam canister emplacement holes were hammer-drilled at an average rate of 1.4 m/h. The use of the critical path method, integrated contractors, and close cooperation between project participants facilitated completion of the project on schedule

  8. Measurement of residual stress fields in FHPP welding: a comparison between DSPI combined with hole-drilling and neutron diffraction

    Science.gov (United States)

    Viotti, Matias R.; Albertazzi, Armando; Staron, Peter; Pisa, Marcelo

    2013-04-01

    This paper shows a portable device to measure mainly residual stress fields outside the optical bench. This system combines the traditional hole drilling technique with Digital Speckle Pattern Interferometry. The novel feature of this device is the high degree of compaction since only one base supports simultaneously the measurement module and the hole-drilling device. The portable device allows the measurement of non-uniform residual stresses in accordance with the ASTM standard. In oil and gas offshore industries, alternative welding procedures among them, the friction hydro pillar processing (FHPP) is highlighted and nowadays is an important maintenance tool since it has the capability to produce structure repairs without risk of explosions. In this process a hole is drilled and filled with a consumable rod of the same material. The rod, which could be cylindrical or conical, is rotated and pressed against the hole, leading to frictional heating. In order to assess features about the residual stress distribution generated by the weld into the rod as well as into the base material around the rod, welded samples were evaluated by neutron diffraction and by the hole drilling technique having a comparison between them. For the hole drilling technique some layers were removed by using electrical discharge machining (EDM) after diffraction measurements in order to assess the bulk stress distribution. Results have shown a good agreement between techniques.

  9. The effect of optical system design for laser micro-hole drilling process

    Science.gov (United States)

    Ding, Chien-Fang; Lan, Yin-Te; Chien, Yu-Lun; Young, Hong-Tsu

    2017-08-01

    Lasers are a promising high accuracy tool to make small holes in composite or hard material. They offer advantages over the conventional machining process, which is time consuming and has scaling limitations. However, the major downfall in laser material processing is the relatively large heat affect zone or number of molten burrs it generates, even when using nanosecond lasers over high-cost ultrafast lasers. In this paper, we constructed a nanosecond laser processing system with a 532 nm wavelength laser source. In order to enhance precision and minimize the effect of heat generation with the laser drilling process, we investigated the geometric shape of optical elements and analyzed the images using the modulation transfer function (MTF) and encircled energy (EE) by using optical software Zemax. We discuss commercial spherical lenses, including plano-convex lenses, bi-convex lenses, plano-concave lenses, bi-concave lenses, best-form lenses, and meniscus lenses. Furthermore, we determined the best lens configuration by image evaluation, and then verified the results experimentally by carrying out the laser drilling process on multilayer flexible copper clad laminate (FCCL). The paper presents the drilling results obtained with different lens configurations and found the best configuration had a small heat affect zone and a clean edge along laser-drilled holes.

  10. Remarks on Residual Stress Measurement by Hole-Drilling and Electronic Speckle Pattern Interferometry

    Directory of Open Access Journals (Sweden)

    Claudia Barile

    2014-01-01

    Full Text Available Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value.

  11. The tunnel project. Drill hole logging and structural geologic studies in the Grualia, the Lunner county

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Braathen, Alvar; Roenning, Jan S.; Nordgulen, Oeystein

    2001-01-01

    In connection with the project ''Environmental and community useful tunnels'' the Norwegian Geologic Survey (NGU) has made geologic and geophysical investigations along parts of the tunnel at the Grualia in the Lunner county. The purpose of the geologic studies was to map and investigate weakness zones in the rock foundations. The geophysical studies aimed at testing techniques that was in little use in preliminary studies for tunnel operations. The methods used have been optical inspection of drill holes, measurements of temperature and conductivity in the water and the measuring of the natural gamma radiation in the drill holes. The resistivity in the drill holes is also determined and test pumping with flow measurements is carried out in order to calculate the well water influx capacity. These methods may contribute to information about the rock condition (cracking, water influx). Previously the NGU has made 2D resistivity measurements at the ground in the tunnel in order to map the weakness zones. The results from the measurements in 6 wells show large variations in the rock qualities. The wells are drilled towards indicated weakness zones. Open water conducting cracks and sections with largely cracked rocks are detected in or in the proximity of the tunnel route. The weakness zone between the hornfels and the syenite west of the Langvatnet is largely cracked, has a large water conducting capacity and there are some unstable masses. Further east several open, water- conducting cracks are detected in the syenite. Furthest to the east in the route cracked and unstable rocks are found. Several of the holes are blocked by ravines which confirm the poor rock quality. In the particular areas problems are to be expected during the operation with respect to water influx and stability. Methodically the drill hole studies have shown great value for the follow up of the 2D resistivity measurements on the ground. The indicated weakness zones through the 2D have been

  12. Coral ages and island subsidence, Hilo drill hole

    Science.gov (United States)

    Moore, J.G.; Ingram, B.L.; Ludwig, K. R.; Clague, D.A.

    1996-01-01

    A 25.8-m-thick sedimentary section containing coral fragments occurs directly below a surface lava flow (the ???1340 year old Panaewa lava flow) at the Hilo drill hole. Ten coral samples from this section dated by accelerator mass spectrometry (AMS) radiocarbon and five by thermal infrared multispectral scanner (TIMS) 230Th/U methods show good agreement. The calcareous unit is 9790 years old at the bottom and 1690 years old at the top and was deposited in a shallow lagoon behind an actively growing reef. This sedimentary unit is underlain by a 34-m-thick lava flow which in turn overlies a thin volcaniclastic silt with coral fragments that yield a single 14C date of 10,340 years. The age-depth relations of the dated samples can be compared with proposed eustatic sea level curves after allowance for island subsidence is taken. Island subsidence averages 2.2 mm/yr for the last 47 years based on measurements from a tide gage near the drill hole or 2.5-2.6 mm/yr for the last 500,000 years based on the ages and depths of a series of drowned coral reefs offshore from west Hawaii. The age-depth measurements of coral fragments are more consistent with eustatic sea levels as determined by coral dating at Barbados and Albrolhos Islands than those based on oxygen isotopic data from deep sea cores. The Panaewa lava flow entered a lagoon underlain by coral debris and covered the drill site with 30.9 m of lava of which 11 m was above sea level. This surface has now subsided to 4.2 m above sea level, but it demonstrates how a modern lava flow entering Hilo Bay would not only change the coastline but could extensively modify the offshore shelf.

  13. Drilling and the associated drillhole measurements of the pilot hole ONK-PH6

    International Nuclear Information System (INIS)

    Oehberg, A.; Hirvonen, H.; Kemppainen, K.; Niemonen, J.; Nordbaeck, N.; Poellaenen, J.; Rouhiainen, P.; Rautio, T.; Tarvainen, A.-M.

    2007-08-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are drillholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes are aimed to confirm the quality of the rock mass for tunnel construction, and in particular to identify water conductive fractured zones and to provide information that could result in modifications of the existing construction plans. The pilot hole ONK-PH6 was drilled from chainage 1404 to chainage 1559 in September 2006. The length of the hole is 155.04 m. The aim during the drilling work was to orient core samples as much as possible. The deviation of the drillhole was measured during and after the drilling phase. One steering operation by wedging was made at the hole depth of 94.05 metres (top of the wedge). Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the drillhole. The overlapping i.e. the detailed flow logging mode was used. Besides flow logging Single Point Resistance (SPR), Electric Conductivity (EC) and temperature of the drillhole water were also measured. The flow logging was performed with 0.5 m section length and with 0.1 m depth increment. Water loss tests were conducted in the hole excluding the section 89.04 - 101.04 metres due to the wedge. Geophysical logging

  14. Archive of Core and Site/Hole Data and Photographs from the Deep Sea Drilling Project (DSDP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Sea Drilling Project (DSDP) operated the D/V GLOMAR CHALLENGER from 1968-1983, drilling 1,112 holes at 624 sites worldwide. The DSDP was funded by the US...

  15. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  16. On KNBK for the preparation of shafts of drill-holes for the sinking casing strings

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V B; Shchukin, R K

    1981-01-01

    An experimental preparation of drill-holes for reinforcement performed by the Kubanomor neftagazprom firm is given based on the use of traditional KNBK of increasing rigidity after the interval has been completely drilled and KNBK inserted into the superchisel part of the flywheel, UBTS or rotary stabilizer, the outer diameters of which are determined computationally and help in preparation of the shaft for reinforcement in the process of rotary drilling.

  17. Influence of friction on buckling of a drill string in the circular channel of a bore hole

    Directory of Open Access Journals (Sweden)

    Valery Gulyayev

    2016-10-01

    Full Text Available Abstract Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry. Not infrequently, the drilling of these bore holes is attended by occurrence of extraordinary situations associated with technical accidents. Among these is the Eulerian loss of stability of a drill string in the channel of a curvilinear bore hole. Methods of computer simulation should play a dominant role in prediction of these states. In this paper, a new statement of the problem of critical buckling of the drill strings in 3D curvilinear bore holes is proposed. It is based on combined use of the theory of curvilinear elastic rods, Eulerian theory of stability, theory of channel surfaces, and methods of classical mechanics of systems with nonlinear constraints. It is noted that the stated problem is singularly perturbed and its solutions have the shapes of localized harmonic wavelets. The calculation results showed that the friction effects lead to essential redistribution of internal axial forces, as well as changing the eigenmode shapes and sites of their localization. These features make the buckling phenomena less predictable and raise the role of computer simulation of these effects.

  18. Residual stress measurement in veneering ceramic by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Drilling and the associated borehole measurements of the pilot hole ONK-PH2

    International Nuclear Information System (INIS)

    Oehberg, A.; Aaltonen, I.; Kemppainen, K.; Mattila, J.; Heikkinen, E.; Lahti, M.; Pussinen, V.; Niemonen, J.; Paaso, N.; Rouhiainen, P.

    2005-11-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are boreholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes will mostly aim to confirm the quality of the rock mass for tunnel construction, and in particular at identifying water conductive fractured zones and at providing information that could result in modifications of the existing construction plans. The pilot hole ONK-PH2 was drilled in December 2004. The length of the borehole is about 122 metres. The aim during the drilling work was to orientate core samples as much as possible. The deviation of the borehole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity and hydraulic head in fractures and fractured zones in the borehole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increments. Geophysical borehole logging and optical imaging surveys of the pilot hole PH2 included the field work of all the surveys, the integration of the data as well as interpretation of the acoustic and borehole radar data. One of the objectives of the geochemical study was to get information of composition of ONKALO's groundwater before the construction will

  20. Drilling and the associated borehole measurements of the pilot hole ONK-PH3

    International Nuclear Information System (INIS)

    Oehberg, A.; Heikkinen, E.; Hirvonen, H.; Kemppainen, K.; Majapuro, J.; Niemonen, J.; Poellaenen, J.; Rouhiainen, P.

    2006-03-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are boreholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes will mostly aim to confirm the quality of the rock mass for tunnel construction, and in particular at identifying water conductive fractured zones and at providing information that could result in modifications of the existing construction plans. The pilot hole ONK-PH3 was drilled in September 2005. The length of the borehole is 145.04 metres. The aim during the drilling work was to orientate core samples as much as possible. The deviation of the borehole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the borehole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increments. Water loss tests (Lugeon tests) and a pressure build-up test were used to give background information for the grouting design. Geophysical borehole logging and optical imaging surveys of the pilot hole PH3 included the field work of all the surveys, the integration of the data as well as interpretation of the acoustic and borehole radar data. One of the objectives of the

  1. Numerical investigation of a novel connection in tempered glass using holes drilled after tempering

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2013-01-01

    , the hole and the adhesive. In the paper a short discussion of the change in residual stresses due to the drilling and a FE-model for the loading of the pin in the hole is developed. From this model, the stress state occurring in such joints is investigated assuming both elastic and ideal plastic behaviour...

  2. Borehole-calibration methods used in cased and uncased test holes to determine moisture profiles in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hammermeister, D.P.; Kneiblher, C.R.; Klenke, J.

    1985-01-01

    The use of drilling and coring methods that minimize the disturbance of formation rock and core has permitted field calibration of neutron-moisture tools in relatively large diameter cased and uncased boreholes at Yucca Mountain, Nevada. For 5.5-inch diameter cased holes, there was reasonable agreement between a field calibration in alluvium-colluvium and a laboratory calibration in a chamber containing silica sand. There was little difference between moisture-content profiles obtained in a neutron-access hole with a hand-held neutron-moisture meter and an automated borehole-logging tool using laboratory-generated calibration curves. Field calibrations utilizing linear regression analyses and as many as 119 data pairs show a good correlation between neutron-moisture counts and volumetric water content for sections of uncased 6-inch diameter boreholes in nonwelded and bedded tuff. Regression coefficients ranged from 0.80 to 0.94. There were only small differences between calibration curves in 4.25- and 6-inch uncased sections of boreholes. Results of analyzing field calibration data to determine the effects of formation density on calibration curves were inconclusive. Further experimental and theoretical work is outlined

  3. SMART MONITORING AND DECISION MAKING FOR REGULATING ANNULUS BOTTOM HOLE PRESSURE WHILE DRILLING OIL WELLS

    Directory of Open Access Journals (Sweden)

    M. P. Vega

    Full Text Available Abstract Real time measurements and development of sensor technology are research issues associated with robustness and safety during oil well drilling operations, making feasible the diagnosis of problems and the development of a regulatory strategy. The major objective of this paper is to use an experimental plant and also field data, collected from a basin operation, offshore Brazil, for implementing smart monitoring and decision making, in order to assure drilling inside operational window, despite the commonly observed disturbances that produce fluctuations in the well annulus bottom hole pressure. Using real time measurements, the performance of a continuous automated drilling unit is analyzed under a scenario of varying levels of rate of penetration; aiming pressure set point tracking (inside the operational drilling window and also rejecting kick, a phenomenon that occurs when the annulus bottom hole pressure is inferior to the porous pressure, producing the migration of reservoir fluids into the annulus region. Finally, an empirical model was built, using real experimental data from offshore Brazil basins, enabling diagnosing and regulating a real drilling site by employing classic and advanced control strategies.

  4. Ferroacryl mud for drilling deep bore holes

    Energy Technology Data Exchange (ETDEWEB)

    Lisyanskiy, V I; Chepiga, V I; Devydenko, V N

    1982-01-01

    The composition, technology of production and control of the parameters of a ferroacyl (FAR) mud for drilling for prospecting holes in the Donets-Basin are developed. The mud consists of Chasov Yal clay (150-160 kg), hypane (40 1), iron sulfate (1kg) and water (approximately 1 m/sup 3/). The mud exhibits the following parameters: density 1.05 -1.1 g/cm/sup 3/, viscosity 20-21 s; water yield 3-5 cm/sup 3/; crust 0.5 mm. Compared to existing flushing fluids based on hypane the FAR contains fewer components and the cost of the materials is considerably less. It features very high flocculating properties.

  5. Process for opening up carboniferous seams for underground gasification by drilling production holes downwards

    Energy Technology Data Exchange (ETDEWEB)

    Lokschin, J L; Volk, A F; Starinskii, A A

    1977-12-01

    This process will reduce drilling costs and times by 20 to 25% and will improve gasification under the influence of a thin liquid medium connecting adjacent holes. After determining the approximate depth and thickness of the seam to be opened up, e.g. by geological means, production holes of 100 to 400 mm (diameter) are made down to a depth of 400 m or more, by well-known boring bars and chisels. After passing the top of the seam (the roof of the seam), which can be recognised by discoloration of the drilling liquid, one goes 1/2 to 1 metre deeper and one determines the depth of the roof the seam exactly by the reduced natural radioactivity at the boundary layer, by introducing a gamma sensor on to the boring bar. The production holes are taken down in a second borehold to a free space 0.6 to 2 metres above the floor of the seam (bottom of the seam), according to the thickness of the seam. After replacing the boring bar by a feedpipe one continues to drill using a boring bar of smaller cutting diameter inside this tube. This hole reaches from the foot of the pipe of the feedpipe to the floor of the seam. It is preferably flushed with gas but may be flushed with liquid. A thin liquid introduced into this hole penetrates the surrounding mass of the seam horizontally (unhindered by any armouring) and represents the required connection to neighbouring bores for gasification. The process is suitable for mining coal, combustible shale oil, bituminous rock, heavy natural oil where this process is based on gasification, melting or dissolving of those deposits.

  6. Statistical test of reproducibility and operator variance in thin-section modal analysis of textures and phenocrysts in the Topopah Spring member, drill hole USW VH-2, Crater Flat, Nye County, Nevada

    International Nuclear Information System (INIS)

    Moore, L.M.; Byers, F.M. Jr.; Broxton, D.E.

    1989-06-01

    A thin-section operator-variance test was given to the 2 junior authors, petrographers, by the senior author, a statistician, using 16 thin sections cut from core plugs drilled by the US Geological Survey from drill hole USW VH-2 standard (HCQ) drill core. The thin sections are samples of Topopah Spring devitrified rhyolite tuff from four textural zones, in ascending order: (1) lower nonlithophysal, (2) lower lithopysal, (3) middle nonlithophysal, and (4) upper lithophysal. Drill hole USW-VH-2 is near the center of the Crater Flat, about 6 miles WSW of the Yucca Mountain in Exploration Block. The original thin-section labels were opaqued out with removable enamel and renumbered with alpha-numeric labels. The sliders were then given to the petrographer operators for quantitative thin-section modal (point-count) analysis of cryptocrystalline, spherulitic, granophyric, and void textures, as well as phenocryst minerals. Between operator variance was tested by giving the two petrographers the same slide, and within-operator variance was tested by the same operator the same slide to count in a second test set, administered at least three months after the first set. Both operators were unaware that they were receiving the same slide to recount. 14 figs., 6 tabs

  7. An experimental result of surface roughness machining performance in deep hole drilling

    Directory of Open Access Journals (Sweden)

    Mohamad Azizah

    2016-01-01

    Full Text Available This study presents an experimental result of a deep hole drilling process for Steel material at different machining parameters which are feed rate (f, spindle speed (s, the depth of the hole (d and MQL, number of drops (m on surface roughness, Ra. The experiment was designed using two level full factorial design of experiment (DoE with centre points to collect surface roughness, Ra values. The signal to noise (S/N ratio analysis was used to discover the optimum level for each machining parameters in the experiment.

  8. Design of a machine to bore and line a long horizontal hole in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Friant, J.E.; Dowden, P.B.

    1987-09-01

    This report describes an engineering design for equipment capable of simultaneously drilling and lining deep horizontal bore holes. The ultimate use of the equipment is to bore up to 600 ft long, 3 ft diameter emplacement holes for a nuclear waste repository. The specific system designed is referred to as a Development Prototype Boring Machine (DPBM) which will be used to demonstrate the drilling/lining capability in field development tests. The system utilizes as in-hole electric drive and a vacuum chip removal and handling system. The drilling unit is capable of active directional control and uses laser-type alignment equipment. The system combines the features of a small steerable tunnel boring machine, combined with a horizontally-oriented raise drill, thereby utilizing current technology. All elements of the system are compact and mobile as required for a shaft entry, underground mining environment. 3 refs., 35 figs., 1 tab

  9. Report of drilling and radionuclide migration investigations at UE20n number-sign 1, Pahute Mesa, Nevada Test Site, 1987

    International Nuclear Information System (INIS)

    Erikson, S.J.

    1991-04-01

    Exploratory hole UE20n number-sign 1 was drilled 305 m down hydraulic gradient of the Cheshire event (U20n) as part of the Radionuclide Migration Program at the Nevada Test Site. The hole was designed to investigate the possibility of groundwater transport of radionuclides from the U20n cavity region. Drilling reached a total depth of 1005.8 m. Composite static water levels in the borehole were measured at approximately 620 m below ground surface. The borehole penetrated about 386 m of saturated zone, which was comprised primarily of rhyolite lava flows of the Upper Rhyolite Lavas, Tuffs, and Rhyolites of Area 20. Evidence from UE20n number-sign 1 suggests the presence of a relatively more permeable zone in the 730 to 750-m depth interval. The neutron log suggests that greater quantities of water were present at depths between 729 and 747 m. Core collected over three depth intervals showed the highest fracture density in a reddish-grey rhyolite lava flow in the 733.8 to 738.1-m core interval. Groundwater flow away from U20n through this permeable zone is suggested by the UE20n number-sign 1 borehole temperature logs. Elevated 3 H activities were observed with the highest activities found near 732 m. The 3 H activities observed in the 732 to 802-m interval in UE20n number-sign 1 were of similar magnitude to those found in the cavity region in the U20n post-shot hole. The activities of 125 Sb and 85 Kr, which are known to be mobile in groundwater, were of similar magnitude to those found near the cavity region, while 137 Cs, which is thought to be adsorbed during transport, was found in activities two to three orders of magnitude lower than near the cavity. These temperature and radioisotope data suggest that radionuclide migration via groundwater flow may be occurring laterally from the U20n rubble chimney through the permeable zone located at the 730 to 750-m depth. 25 refs., 18 figs., 15 tabs

  10. A drill-hole geodatabase as a tool to investigate geological hazard in Napoli Urban Area

    Science.gov (United States)

    Albericoa, I.; Lirer, L.; Petrosino, P.

    2003-04-01

    Geological investigations in urban areas are complicated by the absence of good outcrops and field exposures, as a result of the density of civil buildings and railway and road network. On the other side, in urban areas geological investigation represents a basic tool to decisional support for the management of present private buildings and public works and for the planning of new ones. This is much more true in urban areas very exposed to geological hazard (volcanic, hydrogeological, seismic) where the high exposed value greatly rises the risk. The methodology to deal with the geological hazard in urban areas here presented is the reconstruction of buried geological formations deduced by drill-holes stratigraphy.The test area is represented by the whole municipality of Napoli city, that proves very apt to the investigation of the hazard in urban areas since it stands over an active volcanic area, comprised between the Campi Flegrei volcanic field and the Somma-Vesuvio district, that both gave explosive and effusive activity through the last centuries. Besides, the extension of the main part of the city constrained between the coastline and the belt of volcanic hills together with the presence of loose material due to pyroclastic activity makes the alluvional events an other hazardous phenomenon for the city. The performed up datable drill-holes geodata-base for the city of Napoli at present contains the record of about 800 holes stratigraphy, collected through the main public and private bodies, reflecting the drill-holes surveys made along the last 50 years before constructing the main railways, roads and aqueduct network. Drill-holes data have been interpreted and can now be read under various viewpoints (geological, lithological, volcanological); the present work presents the first results of the geological hazard investigation. The investigation of buried stratigraphy in the eastern area allows to identify the presence of pyroclastic flow deposits from Somma

  11. An accurate estimation and optimization of bottom hole back pressure in managed pressure drilling

    Directory of Open Access Journals (Sweden)

    Boniface Aleruchi ORIJI

    2017-06-01

    Full Text Available Managed Pressure Drilling (MPD utilizes a method of applying back pressure to compensate for wellbore pressure losses during drilling. Using a single rheological (Annular Frictional Pressure Losses, AFPL model to estimate the backpressure in MPD operations for all sections of the well may not yield the best result. Each section of the hole was therefore treated independently in this study as data from a case study well were used. As the backpressure is a function of hydrostatic pressure, pore pressure and AFPL, three AFPL models (Bingham plastic, Power law and Herschel Bulkley models were utilized in estimating the backpressure. The estimated backpressure values were compared to the actual field backpressure values in order to obtain the optimum backpressure at the various well depths. The backpressure values estimated by utilizing the power law AFPL model gave the best result for the 12 1/4" hole section (average error % of 1.855% while the back pressures estimated by utilizing the Herschel Bulkley AFPL model gave the best result for the 8 1/2" hole section (average error % of 12.3%. The study showed that for hole sections of turbulent annular flow, the power law AFPL model fits best for estimating the required backpressure while for hole sections of laminar annular flow, the Herschel Bulkley AFPL model fits best for estimating the required backpressure.

  12. Influence of Cutting Parameters on the Surface Roughness and Hole Diameter of Drilling Making Parts of Alluminium Alloy

    Directory of Open Access Journals (Sweden)

    Andrius Stasiūnas

    2013-02-01

    Full Text Available The article researches the drilling process of an aluminium alloy. The paper is aimed at analyzing the influence of cutting speed, feed and hole depth considering hole diameter and hole surface roughness of aluminum alloy 6082 in the dry drilling process and at making empirical formulas for cutting parameters. The article also describes experimental techniques and equipment, tools and measuring devices. Experimental studies have been carried out using different cutting parameters. The obtained results have been analyzed using computer software. According to the existing techniques for measuring, surface roughness and hole diameters have been measured, empirical models have been created and the results of the conducted experiments have been inspected. The findings and recommendations are presented at the end of the work.Artcile in Lithuanian

  13. Interpretation of hole-to-surface resistivity measurements at Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Daniels, J.J.; Scott, J.H.

    1981-01-01

    Hole-to-surface resistivity measurements at Yucca Mountain indicate the presence of many near-surface geologic inhomogeneities, with no definite indication of deep structural features. A resistive anomaly near drill hole UE25a-6 is interpreted as a thin, vertical, resistive body that nearly intersects the surface, and may be caused by a silicified, or calcified, fracture zone. A resistive anomaly near hole UE25a-7 is probably caused by a near surface, horizontal, lens-shaped body that may represent a devitrified zone in the Tiva Canyon Member. Many conductive anomalies were detected to the southwest of hole UE25a-4. However, these anomalies are interpreted to be caused by variations in the thickness of the surface alluvium

  14. Advanced Drilling through Diagnostics-White-Drilling

    International Nuclear Information System (INIS)

    FINGER, JOHN T.; GLOWKA, DAVID ANTHONY; LIVESAY, BILLY JOE; MANSURE, ARTHUR J.; PRAIRIE, MICHAEL R.

    1999-01-01

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  15. A comprehensive literature review reflecting fifteen years of debate regarding the representativity of reverse circulation vs blast hole drill sampling

    DEFF Research Database (Denmark)

    Engström, Karin

    2017-01-01

    Blast hole sampling is widely used for grade control by the mining industry all over the world, both in precious and base metal open pit mining. Blast hole (BH) samples are often regarded as inferior in comparison to “proper drill sampling” like reverse circulation (RC) and diamond (core) drilling...... (DD), and are accused of lacking representativity by the sampling community. The present paper aims at collecting all peer reviewed publications from 2000 onwards that concern open pit mine sampling performance of BH, RC and/or DD drill sampling. This will form a comprehensive literature review...

  16. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.

    1992-01-01

    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  17. Density of basalt core from Hilo drill hole, Hawaii

    Science.gov (United States)

    Moore, J.G.

    2001-01-01

    Density measurements of 1600 samples of core from 889 to 3097 m depth below sea level in the Hawaii Scientific Drilling Program hole near Hilo, Hawaii show marked differences between the basaltic rock types and help define stratigraphy in the hole. Water-saturated densities of subaerial lava flows (occurring above 1079 m depth) have the broadest range because of the large density variation within a single lava flow. Water-saturated densities commonly range from 2.0 to 3.0 with an average of 2.55 ?? 0.24 g/cc. Dikes and sills range from 2.8 to 3.1 g/cc). Densities of hyaloclastite commonly range from 2.3 to 2.7, with an overall average of about 2.5 g/cc. The low-density of most hyaloclastite is due primarily to palagonitization of abundant glass and presence of secondary minerals in the interstices between fragments. Four principal zones of pillow lava, separated by hyaloclastite, occur in the drill core. The shallowest (1983-2136 m) is paradoxically the densest, averaging 3.01 ?? 0.10 g/cc. The second (2234-2470 m) is decidedly the lightest, averaging 2.67 ?? 0.13 g/cc. The third (2640-2790 m) and fourth (2918-bottom at 3097 m) are high, averaging 2.89 ?? 0.17 and 2.97 ?? 0.08 g/cc, respectively. The first pillow zone includes degassed pillows i.e. lava erupted on land that flowed into the sea. These pillows are poor in vesicles, because the subaerial, one-atmosphere vesicles were compressed when the flow descended to deeper water and higher pressure. The second (low-density, non-degassed) pillow zone is the most vesicle-rich, apparently because it was erupted subaqueously at a shallow depth. The higher densities of the third and fourth zones result from a low vesicularity of only a few percent and an olivine content averaging more than 5% for the third zone and about 10% for the fourth zone. The uppermost hyaloclastite extending about 400 m below the bottom of the subaerial basalt is poorly cemented and absorbs up to 6 wt% of water when immersed. Progressing

  18. Study of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method

    Science.gov (United States)

    Qin, Le; Xie, HuiMin; Zhu, RongHua; Wu, Dan; Che, ZhiGang; Zou, ShiKun

    2014-04-01

    This paper investigates the effect of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method. The selection of the location of the testing area is analyzed from theory and experiment. In the theoretical study, the factors which affect the surface released radial strain ɛ r were analyzed on the basis of the formulae of the hole-drilling method, and the relations between those factors and ɛ r were established. By combining Moiré interferometry with the hole-drilling method, the residual stress of interference-fit specimen was measured to verify the theoretical analysis. According to the analysis results, the testing area for minimizing the error of strain measurement is determined. Moreover, if the orientation of the maximum principal stress is known, the value of strain will be measured with higher precision by the Moiré interferometry method.

  19. Flood potential of Fortymile Wash and its principal southwestern tributaries, Nevada Test Site, Southern Nevada

    International Nuclear Information System (INIS)

    Squires, R.R.; Young, R.L.

    1984-01-01

    Flood hazards for a 9-mile reach of Fortymile Wash and its principal southwestern tributaries - Busted Butte, Drill Hole, and Yucca Washes - were evaluated to aid in determining possible sites for the storage of high-level radioactive wastes on the Nevada Test Site. Data from 12 peak-flow gaging stations adjacent to the Test Site were used to develop regression relations that would permit an estimation of the magnitude of the 100- and 500-year flood peaks (Q 100 and Q 500 ), in cubic feet per second. The resulting equations are: Q 100 = 482A 0 565 and Q 500 = 2200A 0 571 , where A is the tributary drainage area, in square miles. The estimate of the regional maximum flood was based on data from extreme floods elsewhere in Nevada and in surrounding states. Among seven cross sections on Fortymile Wash, the estimated maximum depths of the 100-year, 500-year, and regional maximum floods are 8, 11, and 29 feet, respectively. At these depths, flood water would remain within the deeply incised channel of the wash. Mean flow velocities would be as great as 9, 14, and 28 feet per second for the three respective flood magnitudes. The study shows that Busted Butte and Drill Hole Washes (9 and 11 cross sections, respectively) would have water depths of up to at least 4 feet and mean flow velocities of up to at least 8 feet per second during a 100-year flood. A 500-year flood would exceed stream-channel capacities at several places, with depths to 10 feet and mean flow velocities to 11 feet per second. The regional maximum flood would inundate sizeable areas in central parts of the two watersheds. At Yucca Wash (5 cross sections), the 100-year, 500-year, and regional maximum floods would remain within the stream channel. Maximum flood depths would be about 5, 9, and 23 feet and mean velocities about 9, 12, and 22 feet per second, respectively, for the three floods

  20. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  1. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Roberrt C. [Desert Research Inst. (DRI), Reno, NV (United States); Drollinger, Harold [Desert Research Inst. (DRI), Reno, NV (United States)

    2013-06-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  2. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert C. [Desert Research Inst. (DRI), Reno, NV (United States); Drollinger, Harold [Desert Research Inst. (DRI), Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst. (DRI), Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst. (DRI), Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst. (DRI), Reno, NV (United States)

    2013-01-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  3. On-line depth measurement for laser-drilled holes based on the intensity of plasma emission

    Science.gov (United States)

    Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung

    2014-09-01

    The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.

  4. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  5. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes

  6. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, O [VBB VIAK AB, Malmoe (Sweden)

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs.

  7. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  8. Topography, stresses, and stability at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Swolfs, H.S.; Savage, W.Z.

    1985-01-01

    Plane-strain solutions are used to analyze the influence of topography on the state of stress at Yucca Mountain, Nye County, Nevada. The results are in good agreement with the measured stress components obtained in drill holes by the hydraulic-fracturing technique, particularly those measured directly beneath the crest of the ridge, and indicate that these stresses are gravitationally induced. A separate analysis takes advantage of the fact that a well-developed set of vertical faults and fractures, subparallel to the ridge trend, imparts a vertical transverse isotropy to the rock and that, as a consequence of gravitational loading, unequal horizontal stresses are induced in directions perpendicular and parallel to the anisotropy

  9. Analysis of the custom design/fabrication/testing requirements for a large-hole drilling machine for use in an underground radioactive waste repository

    International Nuclear Information System (INIS)

    Grams, W.H.; Gnirk, P.F.

    1976-01-01

    This report presents an analysis of the fabrication and field test requirements for a drilling machine that would be applicable to the drilling of large diameter holes for the emplacement of radioactive waste canisters in an underground repository. On the basis of a previous study in 1975 by RE/SPEC Inc. for the Oak Ridge National Laboratory, it was concluded that none of the commercially available machines were ideally suited for the desired drilling application, and that it was doubtful whether a machine with the required capabilities would become available as a standard equipment item. The results of the current study, as presented herein, provide a definitive basis for selecting the desired specifications, estimating the design, fabrication, and testing costs, and analyzing the cost-benefit characteristics of a custom-designed drilling machine for the emplacement hole drilling task

  10. Drilling the near cortex with elongated figure-of-8 holes to reduce the stiffness of a locking compression plate construct.

    Science.gov (United States)

    Chen, Jerry Yongqiang; Zhou, Zhihong; Ang, Benjamin Fu Hong; Yew, Andy Khye Soon; Chou, Siaw Meng; Chia, Shi-Lu; Koh, Joyce Suang Bee; Howe, Tet Sen

    2015-12-01

    To compare the stiffness of locking compression plate (LCP) constructs with or without drilling the near cortex with elongated figure-of-8 holes. 24 synthetic bones were sawn to create a 10-mm gap and were fixed with a 9-hole 4.5-mm narrow LCP. In 12 bones, the near cortex of the adjacent holes to the LCP holes was drilled to create elongated figure-of-8 holes before screw insertion. The stiffness of LCP constructs under axial loading or 4-point bending was assessed by (1) dynamic quasi-physiological testing for fatigue strength, (2) quasi-static testing for stiffness, and (3) testing for absolute strength to failure. None of the 24 constructs had subcatastrophic or catastrophic failure after 10 000 cycles of fatigue loading (p=1.000). The axial stiffness reduced by 16% from 613±62 to 517±44 N/mm (p=0.012) in the case group, whereas the bending stiffness was 16±1 Nm2 in both groups (p=1.000). The maximum axial load to catastrophic failure was 1596±84 N for the control group and 1627±48 N for the case group (p=0.486), whereas the maximum bending moment to catastrophic failure was 79±12 and 80±10 Nm, respectively (p=0.919). Drilling the near cortex with elongated figure-of-8 holes reduces the axial stiffness of the LCP construct, without compromising its bending stiffness or strength.

  11. Heat accumulation during sequential cortical bone drilling.

    Science.gov (United States)

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. The interpretation of geochemical logs from the oceanic basement: mineral modelling in Ocean Drilling Program (ODP) Hole 735B

    International Nuclear Information System (INIS)

    Harvey, P.K.; Lovell, M.A.; Bristow, J.F.

    1991-01-01

    Leg 118 of the Ocean Drilling Program was carried out in the vicinity of the Southwest Indian Ridge. Of the boreholes drilled, by far the most important and scientifically spectacular is Hole 735B which was located on a shallow platform adjacent to the Atlantis II Transform. This hole penetrates some 500 m of gabbroic rocks representing Layer 3 of the oceanic crust. The recovered gabbros show considerable variation both in mineralogy and in the degree of deformation. Core recovery averages 87% and there is excellent control and correlation between the core and the wide range of logs obtained. Mineralogy logs are derived and presented using both core sample data and downhole geochemical logs for Hole 735B. The problems of transforming these data for the particular mineralogy encountered are discussed. (Author)

  13. Listvenite logging on D/V CHIKYU: Hole BT1B, Oman Drilling Project

    Science.gov (United States)

    Kelemen, P. B.; Beinlich, A.; Morishita, T.; Greenberger, R. N.; Johnson, K. T. M.; Lafay, R.; Michibayashi, K.; Harris, M.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Listvenite, quartz-carbonate altered ultramafic rock containing minor fuchsite (Cr-muscovite) forms by complete carbonation of peridotite and is thus an attractive objective for carbon mitigation studies. However, reaction controls and evolution of listvenite are still enigmatic. Here we present the first results of Phase 1 of the ICDP (International Continental Drilling Program) Oman Drilling Project and subsequent core logging using the analytical facilities on board the research vessel D/V CHIKYU. Hole BT1B contains 300 m of continuous drill core intersecting alluvium, listvenite-altered serpentinite, serpentinite, ophicarbonate and the underlying metamorphic sole of the Semail ophiolite, Oman. The drill core has been systematically investigated by visual core description, thin section petrography, X-ray fluorescence core logging, X-ray diffractometry, visible-shortwave infrared imaging spectroscopy and X-ray Computer Tomography. Our observations show that listvenite is highly variable in texture and color on the mm to m scale. Listvenite was visually categorized into 5 principal color groups: the dominant dark red (47 %), light red (19 %), orange (14 %), pale (2 %) and green (16 %). The presence of hematite/goethite results in dark reddish, red and orange hues. Light grey or pale colored listvenite lacks hematite and/or goethite veins and may represent the `true' listvenite. Green listvenite is characterized by the presence of cm-sized quartz-fuchsite intergrowths. Five zones of serpentinite, which vary in thickness between several tens of cm and 4 m, are intercalated within the massive listvenite of Hole BT1B. Gradational listvenite-serpentinite transition zones contain the ophicarbonate assemblage (magnesite + serpentine) and sometimes additional talc, representing intermediate carbonation reaction progress. Preservation of the former mesh texture and bastite after orthopyroxene in the listvenite suggest that the listvenite precursor had already been

  14. A preliminary guidebook for identifying stratigraphic contacts at the Nevada Test Site

    International Nuclear Information System (INIS)

    Pawloski, G.A.; McKague, H.L.; Wagoner, J.L.; McKinnis, W.B.

    1992-01-01

    Lithologic variation, regional depositional trends, and the lack of written guidelines have resulted in inconsistencies in the recognition of stratigraphic contacts in drill holes at the Nevada Test Site (NTS). Stratigraphic identification, based on mineralogy of discrete samples, can be augmented by geophysical logs and downhole movies to more accurately and consistently locate contacts between units. Criteria are established for locating the base of the Pahute Mesa ash-flow tuff, the top of the Ammonia Tanks ash-flow tuff, the top of the Ammonia Tanks bedded tuff, and the top and the base of the Rainier Mesa Tuff

  15. Comparison of three field screening techniques for delineating petroleum hydrocarbon plumes in groundwater at a site in the southern Carson Desert, Nevada

    International Nuclear Information System (INIS)

    Smuin, D.R.

    1993-01-01

    Three types of field screening techniques used in the characterization of potentially contaminated sites at Naval Air Station Fallon, Nevada, are compared. The methods and results for each technique are presented. The three techniques include soil-gas surveys, electromagnetic geophysical surveys, and groundwater test hole screening. Initial screening at the first study site included two soil-gas surveys and electromagnetic geophysical studies. These screening methods identified I areas of contamination; however, results were inconclusive. Therefore groundwater test hole screening was performed. Groundwater screening consisted of auger drilling down to the shallow alluvial aquifer. Groundwater samples were collected from the open drill hole with a bailer. On-site head-space analyses for volatile organic compounds (VOCS) were performed using a portable gas chromatograph (GC). Five areas of floating petroleum hydrocarbon product were identified along with the overall dissolved contaminant plume boundaries. Well placement was re-evaluated, and well sites were relocated based on the screening information. The most effective technique for identification of petroleum hydrocarbon-contaminant plumes was groundwater test hole screening. Groundwater screening was subsequently performed at 19 other sites. A total of 450 test holes were analyzed resulting in the delineation of six plumes

  16. Gradient index metamaterials realized by drilling hole arrays

    International Nuclear Information System (INIS)

    Mei Zhonglei; Cui Tiejun; Bai Jing

    2010-01-01

    Gradient index metamaterials have wide applications in the microwave and optical fields. Based on the quasi-static theory, such materials at the microwave band have been realized by drilling hole arrays on ordinary dielectric materials. As applications of the gradient index metamaterials, novel devices including a 45 0 dielectric wave-bending structure, a 16 0 wave-steering lens and a microwave focusing lens are designed and fabricated. Field mapping measurements validate the proposed gradient index metamaterials and the device designs. The method can be directly and easily extended to the design of cloaks, various lenses, beam shifters and beam-steering devices. It can also be applied in the optical band as long as quasi-static conditions are satisfied. The method and the devices may find applications in integrated circuit systems.

  17. Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.

    1985-01-01

    A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs

  18. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    Science.gov (United States)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  19. Measuring the optical properties of IceCube drill holes

    Directory of Open Access Journals (Sweden)

    Rongen Martin

    2016-01-01

    Full Text Available The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  20. Further description of the petrology of the Topopah Spring member of the paintbrush tuff in drill holes UE25A-1 and USW-G1 and of the lithic-rich tuff in USW-G1, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carroll, P.I.; Caporuscio, F.A.; Bish, D.L.

    1981-11-01

    The Topopah Spring Member of the Paintbrush Tuff and the Lithic-rich tuff and two Tertiary volcanic units that occur in cores from drill holes UE25a-1 and USW-G1 at Yucca Mountain, Nevada. Recently they have been suggested as possibly suitable for the permanent storage of high-level radioactive waste. Earlier petrologic characterization of these units is augmented here. The Topopah Spring Member (approximately 350 m thick) has two compound cooling units. The upper, thinner unit is densely welded to vitrophyric. The lower unit ranges from nonwelded to vitrophyric, and its nonwelded base is extensively zeolitized to clinoptilolite and mordenite. Heulandite occurs as fracture fill in the overlying vitrophyric part, but zeolites are absent above that vitrophyre. Here primary devitrification plus vapor-phase crystallization dominate the mineralogy. Vapor-phase effects are especially prominent between the two vitrophyres in both cores and include numerous large lithophysal cavities throughout most of this moderately to densely welded tuff. The Lithic-rich tuff extends from 1203 to 1506 m in the USW-G1 drill core. It is nonwelded to partly welded but is well indurated due to pervasive intergrowths of authigenic minerals. These phases are analcime, albite, alkali feldspar, sericite, chlorite and quartz. The transition from analcime to secondary albite corresponds to Iijima's zeolite Zone IV boundary, and this boundary appears in USW-G1 at 1326 m. However, analcime remains as a prominent phase through most of the Lithic-rich tuff. Further work is necessary to assess the suitability of either of these horizons for a waste repository. In the Topopah Spring Member, both mechanical and hydrologic properties of thick lithophysal zone must be studied, as well as the complete sequence of fracture fill. For both units, zeolite and clay mineral stabilities need to be investigated

  1. Investigation on hole manufacture in 42CrMo4 steel using 3-flute carbide drills and 6-flute cermet reamers

    DEFF Research Database (Denmark)

    Müller, Pavel; De Chiffre, Leonardo

    2009-01-01

    An investigation on cutting forces and hole quality using carbide 3-flute self-centering drills and 6-flute cermet reamers was performed on 42CrMo4 alloy steel. Different depths of cuts were analyzed with respect to cutting thrust and cutting torque, hole diameter, form and surface integrity. Goo...

  2. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    Energy Technology Data Exchange (ETDEWEB)

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in

  3. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  4. Optimum fluid design for drilling and cementing a well drilled with coil tubing technology

    Energy Technology Data Exchange (ETDEWEB)

    Swendsen, O.; Saasen, A.; Vassoy, B. [Statoil (Norway); Skogen, E.; Mackin, F.; Normann, S. H.

    1998-12-31

    The strategy, design and drilling fluid and cementing operations in the first two wells drilled with coil tubing technology in the Gullfaks field in the Tampen Spur Area of the Norwegian sector of the North Sea are discussed. The drilling fluid use was a solids-free potassium formate/polymer brine-based fluid with a density of 1,50-1.56 g/cc, with flow properties characterized by very low fluid loss due to high extensional viscosity, a low viscosity at all shear rates, and a low degree of shear-thinning. The low viscous drilling fluid is considered to have been the major contributing factor in achieving excellent hole cleaning, no differential sticking, successful setting of cement kick-off plugs, problem-free running of the liner, and excellent zonal isolation when cementing the liner. These experiences led the authors to conclude that it is possible to formulate a brine-based solids-free drilling fluid with low viscosity and fluid loss properties for most formation pressure regimes, and that such a drilling fluid is well suited to drilling highly deviated slim hole wells where hole cleaning and differential sticking present special challenges. 12 refs., 2 tabs., 3 figs.

  5. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.; Schimschal, U.

    1993-01-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone)

  6. Stress analysis of thermal sprayed coatings using a semi-destructive hole-drilling strain gauge method

    International Nuclear Information System (INIS)

    Dolhof, V.; Musil, J.; Cepera, M.; Zeman, J.

    1995-01-01

    Residual stress is an important parameter in coating technology since it often relates to the maximum coating thickness which can be deposited without spallation, and this applies to coatings produced by different thermal spray and thin film technologies. Indeed, the mechanisms by which residual stress is built up or locked into a coating depends markedly on the deposition process and coating structure (growth structure, phase composition) in the same way too. Methods for determining residual stresses in materials include both destructive and non-destructive methods. This contribution describes semi-destructive hole-drilling strain gauge method modified for measurement of residual stresses in thermal sprayed coatings. This method of stress analysis was used for determination of stress levels in thermal sprayed WC-17% Co coatings onto 13% Cr steel substrates. Results show that deposition conditions and final coating structure influence directly the residual stress level in the coatings. It is proved that semi-destructive hole-tube drilling measurement is effective reproducible method of coating stress analysis and good solution for optimization of deposition process

  7. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  8. Completion Report for the Well ER-6-2 Site Corrective Action Unit 97: Yucca Flat - Climax Mine

    International Nuclear Information System (INIS)

    2008-01-01

    Well ER-6-2 and its satellite hole, Well ER-6-2 No.1, were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. Well ER-6-2 was drilled in two stages in 1993 and 1994; the satellite hole, Well ER-6-2 No.1 was drilled nearby in 1993 but was abandoned. The wells were drilled as part of a hydrogeologic investigation program for the Yucca Flat-Climax Mine Corrective Action Unit Number 97, in the northeastern portion of the Nevada Test Site. The wells are located in Yucca Flat, within Area 6 of the Nevada Test Site. The wells provided information regarding the radiological and hydrogeological environment in a potentially down-gradient position from tests conducted in northern and central Yucca Flat. Construction of Well ER-6-2 began with a 1.2-meter-diameter surface conductor hole, which was drilled and cased off to a depth of 30.8 meters below the surface. A 50.8-centimeter diameter surface hole was then rotary drilled to the depth of 578.5 meters and cased off to the depth of 530.4 meters. The hole diameter was then reduced to 27.0 centimeters, and the borehole was advanced to a temporary depth of 611.4 meters. The borehole was conventionally cored to a total depth of 1,045 meters with a diameter of 14.0 centimeters. Borehole sloughing required cementing and re-drilling of several zones. The open-hole completion accesses the lower carbonate aquifer, the CP thrust fault, and the upper clastic confining unit. A fluid level depth of 543.2 meters was most recently measured in the open borehole in September 2007. No radionuclides were encountered during drilling. The satellite hole Well ER-6-2 No.1 was drilled approximately 15.2 meters north of Well ER-6-2 on the same drill pad. This was planned to be used as an observation well during future hydrologic testing at Well ER-6-2; however, the satellite hole was abandoned at

  9. Recompletion Report for Well UE-10j

    International Nuclear Information System (INIS)

    Townsend, M.J.

    2000-01-01

    Existing Well UE-10j was deepened and recompleted for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was originally drilled to a total depth of 725.4 meters in 1965 for use as a hydrologic test hole in the northern portion of Yucca Flat in Area 8 of the Nevada Test Site. The well is located up-gradient of the Yucca Flat underground test area and penetrates deep into the Paleozoic rocks that form the lower carbonate aquifer of the NTS and surrounding areas. The original 24.4-centimeter-diameter borehole was drilled to a depth of 725.4 meters and left uncompleted. Water-level measurements were made periodically by the U.S. Geological Survey, but access to the water table was lost between 1979 and 1981 due to hole sloughing. In 1993, the hole was opened to 44.5 centimeters and cased off to a depth of 670.0 meters. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 796.4 meters. The depth to water in the open borehole was measured at 658.7 meters on March 18, 1993

  10. Chemical analyses of potash-bearing horizons from 21 exploratory holes drilled at a tentative site for the Waste Isolation Pilot Plant, Eddy County, New Mexico

    International Nuclear Information System (INIS)

    Griswold, G.B.

    1977-09-01

    Sandia Laboratories drilled 21 potash drill holes over an 18,960-acre site in east-central Eddy County, New Mexico, to evaluate potash resources as part of their Waste Isolation Pilot Plant (WIPP) project. This report furnishes assay information on samples obtained from the drilling program

  11. Estimation grade of uranium from drill hole gamma logs

    International Nuclear Information System (INIS)

    Juliao, B.

    1986-01-01

    Radiometric grade of uranium deposits can be determined from drill hole gamma logs. The calculation of uranium oxide content can be obtained with good precision when the uranium ore is in radioactive equilibrium, containing only a small amount of thorium and no interference of potassium. This is the case of uranium ore from the Lagoa Real Uranium Province presented in this paper. The radioactive disequilibrium study in this province were made working over nine hundred samples analised with this special purpose in the CDTN-NUCLEBRAS laboratories. The data obtained indicated that the uranium in the ore is in perfect equilibrium with their daughter gamma emitters. Futhermore, the amount of Th and K is of no significance, so that the gamma counting represents exactly the uranium content of the ore. (author) [pt

  12. Drilling the leading edge of the mantle wedge and the underlying metamorphic sole of the Samail Ophiolite: Hole BT1B, Oman Drilling Project

    Science.gov (United States)

    Morishita, T.; Kelemen, P. B.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.; Takazawa, E.; Teagle, D. A. H.

    2017-12-01

    Hole BT1B (23°21.861' N, 58°10.957' E) was drilled by the Oman Drilling Project (OmDP) on the north side of Wadi Mansah in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole BT1B was cored from 6 to 23 March 2017, to a depth of 300.05 m. The outer surfaces of the cores were imaged and described onsite before being curated, boxed and shipped to the IODP drill ship Chikyu. Hole BT1B sampled carbonated peridotite (listvenite), 2 carbonate-veined serpentinite bands at 80-100 and 180-185 m depth, a few cm of ultracataclasite and 70 cm of fault gouge at 197 m depth, followed by 103 m metamorphic sole. Onboard Chikyu, BT1B underwent X-ray computed tomography (CT) and multi-sensor logging, imaging and spectroscopy, macroscopic and thin section observations, physical properties measurements, and XRF, XRD and ICP-MS analyses. 1st authors of abstracts reporting initial results are Beinlich (matrix characteristics), de Obeso (modeling mass transfer), Godard (XRF and ICP-MS whole rock data), Greenberger (infrared spectroscopy), Johnson (XRF core scanner), Kelemen (overall petrology), Manning (veins), and Michibayashi (X-ray CT). Listvenite is composed of carbonate + quartz + Fe-oxyhydroxides, + minor relict spinel ± chromian mica (fuchsite). The mineralogy suggests formation at < 150°C. The bulk rock density is similar to that of gabbro but the P-wave velocity is generally higher. Rock textures suggest viscous deformation, while additional brittle deformation is recorded by older veins and younger breccias and faults. The metamorphic sole consists of fine-grained to microcrystalline

  13. Drilling and blasting parameters in sublevel caving in Sheregesh mine

    Science.gov (United States)

    Eremenko, AA; Filippov, VN; Konurin, AI; Khmelinin, AP; Baryshnikov, DV; Khristolyubov, EA

    2018-03-01

    The factors that influence geomechanical state of rock mass in Sheregesh Mine are determined. The authors discuss a variant of geotechnology with fan drilling. The drill-hole patterns and drilling-and-blasting parameters are presented. The revealed causes of low-quality fragmentation of rocks include the presence of closed and open fractures at different distances from drill-hole mouths, both in case of rings and fans, as well as the blocking of drill-holes with rocks.

  14. Nevada may lose nuclear waste funds

    International Nuclear Information System (INIS)

    Marshall, E.

    1988-01-01

    The people of Nevada are concerned that a cut in DOE funding for a nuclear waste repository at Yucca Mountain, Nevada will result in cuts in the state monitoring program, e.g. dropping a seismic monitoring network and a sophisticated drilling program. Economic and social impact studies will be curtailed. Even though a provision to curtail local research forbids duplication of DOE's work and would limit the ability of Nevada to go out an collect its own data, Nevada State University at Las Vegas would receive a nice plum, a top-of-the-line supercomputer known as the ETA-10 costing almost $30 million financed by DOE

  15. 30 CFR 57.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  16. 30 CFR 56.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  17. Completion Report for Wells ER-20-8 and ER-20-8#2 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2011-02-28

    Wells ER-20-8 and ER-20-8#2 were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The holes were drilled in July and August 2009, as part of the Pahute Mesa Phase II drilling program. The primary purpose of these wells was to provide detailed hydrogeologic information in the Tertiary volcanic section that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. They may also be used as long-term monitoring wells.

  18. Well drilling by rotary percussive drill above ground

    International Nuclear Information System (INIS)

    Sabatier, G.

    1987-01-01

    Originally, the Well Drilling Section of Cogema used only the diamond core drilling technique. The appearance of independent rotation for compressed air rock drills has led to the use and to the development of this drilling system, as a drill core is not indispensable, when the material of the search is radioactive. During the last few years, hydraulic drills have replaced the compressed air drills and have resulted in a very marked improvement: - of the penetration rates; - of the depth achieved. The Well Drilling Section of Cogema has to drill about 400 km per year with rock drills above ground and holds also the record for depth achieved with this technique, i.e. 400 m in granite. In France, the costs of these types of drilling are for the same depth of the order of one-quarter of the core drilling and half of the drilling with a down-the-hole drill. Cogema has greatly developed the types of well logging which now permits the extension of this type of drilling to the search for other materials than uranium [fr

  19. Drillings at Kivetty in Konginkangas

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-05-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Kivetty, Konginkangas the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1019 m) and 4 about 500 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 65 shotholes were drilled for VSP-, tubewave and seismic measurements

  20. Drillings at Syyry in Sievi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-10-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Syyry, Sievi the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1022 m) and 4 about 500-700 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 35 vertical holes were core drilled down to the depth of 10-20 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 85 shotholes were drilled for VSP-, tubewave and seismic measurements

  1. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  2. Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges

    International Nuclear Information System (INIS)

    Jalali, M; Maillard, P; Wüthrich, R

    2009-01-01

    Spark-assisted chemical engraving (SACE) is a flexible, simple and inexpensive method for machining electrically non-conductive materials. SACE is particularly interesting because of the high drilling speed that can be achieved compared to other micromachining technologies. In this paper, the issue of drilling speed decreasing from 100 µm s −1 to 10 µm s −1 for micro-hole depths more than 200–300 µm is analyzed. To understand better the material removal mechanism, with the target to eliminate this limit, a model for the material removal mechanism as a hybrid mechanism combining local heating and chemical etching is presented and compared with experimental data. The comparison between the model and experiment allowed the estimation of the machining temperature to be around 600 °C

  3. Basaltic litho-stratigraphy of Ocean Drilling Program Hole 504B

    International Nuclear Information System (INIS)

    Harvey, P.K.; Lovell, M.A.

    1989-01-01

    Hole 504B is located in 5.9 Ma old crust to the south of the Costa Rica Rift. It has been drilled and cored successively on three occasions to a total depth of 1562.1 m below the sea floor and penetrates both basaltic pillows and dykes. Appraisal of the drilled section is difficult because of the low proportion of recovered material (average 20%). In September 1986 a suite of downhole nuclear logs were run. Part of this sequence, the interval 4200-4600 m below sea level, which covers the pillow-dyke transition zone, has been used in this study. The log derived geochemical estimates may be explained in terms of the basaltic mineralogy with the superimposed effects of alteration. Poor correlation between laboratory-measured and log-derived geochemical estimates are due to this alteration, problems of sampling and the absence of a boron sleeve when the tools were run. Alteration and sampling account for the much greater observed variations in the log data and the bias in SiO 2 and CaO abundances. Statistical analysis allows the logs to be presented in the form of a ''geochemical stratigraphy'' which correlates well with the known sequence within the interval studied. (author)

  4. Ground-water data for the Nevada Test Site 1992, and for selected other areas in South-Central Nevada, 1952--1992

    International Nuclear Information System (INIS)

    1992-01-01

    Ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site have been compiled in a recently released report. These data were collected by the US Geological Survey, Department of the Interior, in support of the US Department of Energy, Environmental Restoration and Hydrologic Resources Management Programs. Depth-to-water measurements were made at 53 sites at the Nevada Test Site from October 1, 1991, to September 30, 1992, and at 60 sites in the vicinity of the Nevada Test Site from 1952 to September 30, 1992. For water year 1992, depth to water ranged from 288 to 2,213 feet below land surface at the Nevada Test Site and from 22 to 1,460 feet below land surface at sites in the vicinity of the Nevada Test Site. Total ground-water withdrawal data compiled for 12 wells at the Nevada Test Site during calendar year 1992 was more than 400 million gallons. Tritium concentrations in water samples collected from five test holes at the Nevada Test Site in water year 1992 did not exceed the US Environmental Protection Agency drinking, water limit

  5. Well Completion Report for Corrective Action Unit 443 Central Nevada Test Area Nye County, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    The drilling program described in this report is part of a new corrective action strategy for Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA). The drilling program included drilling two boreholes, geophysical well logging, construction of two monitoring/validation (MV) wells with piezometers (MV-4 and MV-5), development of monitor wells and piezometers, recompletion of two existing wells (HTH-1 and UC-1-P-1S), removal of pumps from existing wells (MV-1, MV-2, and MV-3), redevelopment of piezometers associated with existing wells (MV-1, MV-2, and MV-3), and installation of submersible pumps. The new corrective action strategy includes initiating a new 5-year proof-of-concept monitoring period to validate the compliance boundary at CNTA (DOE 2007). The new 5-year proof-of-concept monitoring period begins upon completion of the new monitor wells and collection of samples for laboratory analysis. The new strategy is described in the Corrective Action Decision Document/Corrective Action Plan addendum (DOE 2008a) that the Nevada Division of Environmental Protection approved (NDEP 2008)

  6. Well Completion Report for Corrective Action Unit 443 Central Nevada Test Area Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-12-01

    The drilling program described in this report is part of a new corrective action strategy for Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA). The drilling program included drilling two boreholes, geophysical well logging, construction of two monitoring/validation (MV) wells with piezometers (MV-4 and MV-5), development of monitor wells and piezometers, recompletion of two existing wells (HTH-1 and UC-1-P-1S), removal of pumps from existing wells (MV-1, MV-2, and MV-3), redevelopment of piezometers associated with existing wells (MV-1, MV-2, and MV-3), and installation of submersible pumps. The new corrective action strategy includes initiating a new 5-year proof-of-concept monitoring period to validate the compliance boundary at CNTA (DOE 2007). The new 5-year proof-of-concept monitoring period begins upon completion of the new monitor wells and collection of samples for laboratory analysis. The new strategy is described in the Corrective Action Decision Document/Corrective Action Plan addendum (DOE 2008a) that the Nevada Division of Environmental Protection approved (NDEP 2008).

  7. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  8. Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor

    Science.gov (United States)

    Lousberg, Gregory P.; Fagnard, Jean-François; Noudem, Jacques G.; Ausloos, Marcel; Vanderheyden, Benoit; Vanderbemden, Philippe

    2009-04-01

    We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30 to 130 mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.

  9. Drillings at Veitsivaara in Hyrynsalmi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-04-01

    According to Governmen's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Veitsivaara, Hyrynsalmi the investigation program was started in April 1987. During years 1987-1988 a deep borehole (1002 m) and 4 and 500 m deep additional boreholes were core drilled in the area. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisso's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. About 75 m deep hole was percussion drilled near the borehole KR1. The spreading of the flushing water in the upper part of bedrock and the quality off the ground of the groundwater were studied by taking watersamples from the hole. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition

  10. Effect of diameter of the drill hole on torque of screw insertion and pushout strength for headless tapered compression screws in simulated fractures of the lateral condyle of the equine third metacarpal bone.

    Science.gov (United States)

    Carpenter, Ryan S; Galuppo, Larry D; Stover, Susan M

    2006-05-01

    To compare variables for screw insertion, pushout strength, and failure modes for a headless tapered compression screw inserted in standard and oversize holes in a simulated lateral condylar fracture model. 6 pairs of third metacarpal bones from horse cadavers. Simulated lateral condylar fractures were created, reduced, and stabilized with a headless tapered compression screw by use of a standard or oversize hole. Torque, work, and time for drilling, tapping, and screw insertion were measured during site preparation and screw implantation. Axial load and displacement were measured during screw pushout. Effects of drill hole size on variables for screw insertion and screw pushout were assessed by use of Wilcoxon tests. Drill time was 59% greater for oversize holes than for standard holes. Variables for tapping (mean maximum torque, total work, positive work, and time) were 42%, 70%, 73%, and 58% less, respectively, for oversize holes, compared with standard holes. Variables for screw pushout testing (mean yield load, failure load, failure displacement, and failure energy) were 40%, 40%, 47%, and 71% less, respectively, for oversize holes, compared with standard holes. Screws could not be completely inserted in 1 standard and 2 oversize holes. Enlarging the diameter of the drill hole facilitated tapping but decreased overall holding strength of screws. Therefore, holes with a standard diameter are recommended for implantation of variable pitch screws whenever possible. During implantation, care should be taken to ensure that screw threads follow tapped bone threads.

  11. Three-dimensional hydrological and thermal property models of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rautman, C.A.; McKenna, S.A.

    1997-11-01

    This report describes the creation of three-dimensional numerical models of selected rock-matrix properties for the region of the potential high-level nuclear waste repository site at Yucca Mountain, which is located in southern Nevada. The models have been generated for a majority of the unsaturated and shallow saturated zone within an area referred to within the Yucca Mountain Site Characterization project as the site area. They comprise a number of material properties of importance both to detailed process-level modeling activities and to more summary-style performance assessment modeling. The material properties within these models are both spatially variable (heterogeneous) and spatially correlated, as the rocks are understood from data obtained from site-characterization drill holes widely scattered across the site area

  12. Radon/radium detection increases uranium drilling effectiveness

    International Nuclear Information System (INIS)

    Morse, R.H.; Cook, L.M.

    1979-01-01

    The use of portable radon detectors has become routine in reconnaissance uranium surveys where water and sediment samples are analyzed in field labs for radon and radium, and in detailed work where drill hole locations are pinpointed by field determinations of radon in soil gas from shallow holes. During the drilling program itself, however, very few operators are taking advantage of radon and radium analyses to decide whether a barren drill hole was a near miss or whether the immediate area can be written off. The technique, which is outlined here, is effective both above and below the water table

  13. 30 CFR 77.1010 - Collaring holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...

  14. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  15. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    International Nuclear Information System (INIS)

    2005-01-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey

  16. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2005-09-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

  17. Drill-string design for directional wells

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R; Corbett, K T [Exxon Production Research Co., Houston, TX (USA)

    1983-01-01

    This paper is concerned with predicting the tension and torsion loads on drill strings in directional wells and with adjusting the string design or well plan to provide adequate strength. Drill-string drag is the incremental force that is required to move the pipe up or down in the hole; torque is the moment required to rotate the pipe. Drag forces are usually given relative to the string weight measured with the string roating but not reciprocating. Measured from the roating string weight, the pick-up drag is usually slightly greater than the slack-off drag. The magnitudes of torque and drag are related in any particular well; high drag forced and exessive torque loads normally occur together. There are a number of phenomena wich contribute to torque and drag. Included are tight hole conditions, sloughing hole, keyseats, differential sticking, cuttings build up due to poor hole cleaning and sliding wellbore friction. With the exception of sliding friction, these causes are associated with problem conditions in the wellbore. Conversely, in wells with good hole conditions, the primary source of torque and drag is sliding friction. This paper is only concerned with the torque and drag caused by sliding friction. The cabability to predict frictional loads on drill pipe has two main benefits. First, more complete knowledge of drill-string loading allows use of improved drill-string design techniques. Drill-string components can be chosen using a systematic approach considering the force involved. Second, deep, highly-deviated wells can be planned to minimize torque and drag. Use of torque and drag as a criteria to select the most appropriate well path will help ensure successful drilling operations to total depth. 1 fig., 2 tabs. (Author).

  18. Minimization of the hole overcut and cylindricity errors during rotary ultrasonic drilling of Ti-6Al-4V

    Science.gov (United States)

    Nasr, M.; Anwar, S.; El-Tamimi, A.; Pervaiz, S.

    2018-04-01

    Titanium and its alloys e.g. Ti6Al4V have widespread applications in aerospace, automotive and medical industry. At the same time titanium and its alloys are regarded as difficult to machine materials due to their high strength and low thermal conductivity. Significant efforts have been dispensed to improve the accuracy of the machining processes for Ti6Al4V. The current study present the use of the rotary ultrasonic drilling (RUD) process for machining high quality holes in Ti6Al4V. The study takes into account the effects of the main RUD input parameters including spindle speed, ultrasonic power, feed rate and tool diameter on the key output responses related to the accuracy of the drilled holes including cylindricity and overcut errors. Analysis of variance (ANOVA) was employed to study the influence of the input parameters on cylindricity and overcut error. Later, regression models were developed to find the optimal set of input parameters to minimize the cylindricity and overcut errors.

  19. Arthroscopically assisted stabilization of acute high-grade acromioclavicular joint separations in a coracoclavicular Double-TightRope technique: V-shaped versus parallel drill hole orientation.

    Science.gov (United States)

    Kraus, Natascha; Haas, Norbert P; Scheibel, Markus; Gerhardt, Christian

    2013-10-01

    The arthroscopically assisted Double-TightRope technique has recently been reported to yield good to excellent clinical results in the treatment of acute, high-grade acromioclavicular dislocation. However, the orientation of the transclavicular-transcoracoidal drill holes remains a matter of debate. A V-shaped drill hole orientation leads to better clinical and radiologic results and provides a higher vertical and horizontal stability compared to parallel drill hole placement. This was a cohort study; level of evidence, 2b. Two groups of patients with acute high-grade acromioclavicular joint instability (Rockwood type V) were included in this prospective, non-randomized cohort study. 15 patients (1 female/14 male) with a mean age of 37.7 (18-66) years were treated with a Double-TightRope technique using a V-shaped orientation of the drill holes (group 1). 13 patients (1 female/12 male) with a mean age of 40.9 (21-59) years were treated with a Double-TightRope technique with a parallel drill hole placement (group 2). After 2 years, the final evaluation consisted of a complete physical examination of both shoulders, evaluation of the Subjective Shoulder Value (SSV), Constant Score (CS), Taft Score (TF) and Acromioclavicular Joint Instability Score (ACJI) as well as a radiologic examination including bilateral anteroposterior stress views and bilateral Alexander views. After a mean follow-up of 2 years, all patients were free of shoulder pain at rest and during daily activities. Range of motion did not differ significantly between both groups (p > 0.05). Patients in group 1 reached on average 92.4 points in the CS, 96.2 % in the SSV, 10.5 points in the TF and 75.9 points in the ACJI. Patients in group 2 scored 90.5 points in the CS, 93.9 % in the SSV, 10.5 points in the TF and 84.5 points in the ACJI (p > 0.05). Radiographically, the coracoclavicular distance was found to be 13.9 mm (group 1) and 13.4 mm (group 2) on the affected side and 9.3 mm (group 1

  20. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  1. Effect of Osteonecrosis Intervention Rod Versus Core Decompression Using Multiple Small Drill Holes on Early Stages of Necrosis of the Femoral Head: A Prospective Study on a Series of 60 Patients with a Minimum 1-Year-Follow-Up.

    Science.gov (United States)

    Miao, Haixiong; Ye, Dongping; Liang, Weiguo; Yao, Yicun

    2015-01-01

    The conventional CD used 10 mm drill holes associated with a lack of structural support. Thus, alternative methods such as a tantalum implant, small drill holes, and biological treatment were developed to prevent deterioration of the joint. The treatment of CD by multiple 3.2 mm drill holes could reduce the femoral neck fracture and partial weight bearing was allowed. This study was aimed to evaluate the effect of osteonecrosis intervention rod versus core decompression using multiple small drill holes on early stages of necrosis of the femoral head. From January 2011 to January 2012, 60 patients undergoing surgery for osteonecrosis with core decompression were randomly assigned into 2 groups based on the type of core decompression used: (1) a total of 30 osteonecrosis patients (with 16 hips on Steinburg stageⅠ,20 hips on Steinburg stageⅡ) were treated with a porous tantalum rod insertion. The diameter of the drill hole for the intervention rod was 10mm.(2) a total of 30 osteonecrosis patients (with 14 hips on Steinburg stageⅠ,20 hips on Steinburg stageⅡ) were treated with core decompression using five drill holes on the lateral femur, the diameter of the hole was 3.2 mm. The average age of the patient was 32.6 years (20-45 years) and the average time of follow-up was 25.6 months (12- 28 months) in the rod implanted group. The average age of the patient was 35.2 years (22- 43 years) and the average time of follow-up was 26.3 months (12-28 months) in the small drill holes group. The average of surgical time was 40 min, and the mean volume of blood loss was 30 ml in both surgical groups. The average of Harris score was improved from 56.2 ± 7.1 preoperative to 80.2 ± 11.4 at the last follow-up in the rod implanted group (p holes group (pholes group. No significant difference was observed in radiographic stage between the two groups. There was no favourable result on the outcome of a tantalum intervention implant compared to multiple small drill holes. CD via

  2. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    Science.gov (United States)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  3. A comparison of residual stresses in built-up steel beams using hole-drilling method

    International Nuclear Information System (INIS)

    Nawafleh, M. A.; Hunaiti, Y. M.; Younes, R. M.

    2009-01-01

    Residual stresses have a significant effect on the stability resistance of metal building systems. An experimental program was conducted to measure these stresses in built-up steel beams using incremental hole-drilling method. The experimental results reveal that the predicted residual stress type of pattern for built-up I-sections with fillet welds on one side of the web is not the same as the pattern of residual stresses in built-up I-sections with fillet welds on both sides of the web

  4. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori

    2013-01-01

    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  5. Preliminary interpretations of geologic results obtained from boreholes UE25a-4, -5, -6, and -7, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Spengler, R.W.; Rosenbaum, J.G.

    1980-01-01

    Since 1978, the USGS (US Geological Survey) has been providing technical assistance in characterizing suitable rock masses at or contiguous to the NTS (Nevada Test Site) for long-term storage of high-level nuclear waste. Current efforts have been focused on investigating Yucca Mountain, a volcanic highland situated along the western boundary of NTS in southern Nevada. Detailed stratigraphic and structural studies have been in progress along a northeastern segment of the highland in a wedge-shaped area bounded by Basin and Range faults, most of which trend north-northeast. A series of four locally steep-walled, nearly parallel, linear washes transect the northeastern half of the area of interest and display trends similar to major faults to the northeast. Prior to the present study, drill hole UE25a-1, located about 1600 feet southeast of the edge of the area of interest, was cored to a depth of 2500 feet. Subsurface information derived from the upper 500 feet of this drill hole is included in this report to compare with recently acquired data. Surface electrical surveys have been conducted by both the University of Utah and the USGS perpendicular to the trend of the washes in an attempt to better understand factors that have influenced the present drainage pattern. Preliminary data of both pole-dipole and dipole-dipole resistivity/IP electrical methods indicate numerous vertical and horizontal discontinuities between adjacent resistive bodies that strongly suggest a broad zone of faulting, fracturing, and (or) brecciation. To verify the existence of structural discontinuities suggested by the linear washes and electrical anomalies, a drilling program was initiated in June 1979, to obtain geologic information within the southernmost of four northwest-trending washes

  6. Depth measurements of drilled holes in bone by laser triangulation for the field of oral implantology

    Science.gov (United States)

    Quest, D.; Gayer, C.; Hering, P.

    2012-01-01

    Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.

  7. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Waters, A.C.; Carroll, P.R.

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima's zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff

  8. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Waters, A.C.; Carroll, P.R. (eds.)

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima`s zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff.

  9. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.; Zoback, M.D.

    1985-01-01

    Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U. S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress S/sub h/ that are considerably lower than the vertical principal stress S/sub v/. In tests for which the greatest horizontal principal stress S/sub H/ could be determined, it was found to be less than S/sub v/, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60 0 W--N65 0 W is indicated by the orientation of the drilling-induced hydrofractures (N25 0 E--N30 0 E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65 0 W). This direction is in good agreement with indicators of stress direction from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected

  10. Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces

    Science.gov (United States)

    Janicki, Benjamin

    This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.

  11. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  12. Minerals in fractures of the saturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.

    1987-04-01

    The minerals in fractures in drill core USW G-4, from the static water level (SWL) at 1770 ft to the base of the hole at 3000 ft, were studied to determine their identity and depositional sequence and to compare them with those found above the SWL in the same drill hole. There is no change in mineralogy or mineral morphology across the SWL. The significant change in mineralogy and relationship to the host rock occurs at 1381 ft, well above the present water table. Below 1381 ft clinoptilolite appears in the fractures and rock matrix instead of heulandite, and the fracture mineralogy correlates with the host rock mineralogy. Throughout most of the saturated zone (below the SWL) in USW G-4, zeolites occur in fractures only in zeolitic tuff; however, zeolites persist in fracture below the base of the deepest zeolitic tuff interval. Nonzeolitic intervals of tuff have fewer fractures, and many of these have no coatings; a few have quartz and feldspar coatings. One interval in zeolitic tuff (2125-2140 ft) contains abundant crisobalite coatings in the fractures. Calcite occurs in fractures from 2575 to 2660 ft, usually with the manganese mineral hollandite, and from 2750 to 2765 ft, usually alone. Manganese minerals occur in several intervals. The spatial correlation of zeolites in fractures with zeolitic host rock suggests that both may have been zeolitized at the same time, possibly by water moving laterally through more permeable zones in the tuff. The continuation of zeolites in fractures below the lowest zeolitic interval in this hole suggests that vertical fracture flow may have been important in the deposition of these coatings. Core from deeper intervals in another hole will be examined to determine if that relationship continues. 17 refs., 19 figs

  13. Design and development of a quiet, self-thrusting blast hole

    CSIR Research Space (South Africa)

    Ottermann, RW

    2001-08-01

    Full Text Available and demonstrated. The primary output of this project is a quiet, ergonomically, reliable blast hole drilling system, which is used to drill suitable blast holes by workers responsible for drilling these holes. The system has to be safe and reliable with reduced...

  14. High precision, rapid laser hole drilling

    Science.gov (United States)

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  15. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  16. New drilling optimization technologies make drilling more efficient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.-K. [Halliburton Energy Services, Calgary, AB (Canada). Sperry Division

    2004-07-01

    Several new technologies have been adopted by the upstream petroleum industry in the past two decades in order to optimize drilling operations and improve drilling efficiency. Since financial returns from an oil and gas investment strongly depend on drilling costs, it is important to reduce non-productive time due to stuck pipes, lost circulation, hole cleaning and well bore stability problems. The most notable new technologies are the use of computer-based instrumentation and data acquisition systems, integrated rig site systems and networks, and Measurement-While-Drilling and Logging-While-Drilling (MWD/LWD) systems. Drilling optimization should include solutions for drillstring integrity, hydraulics management and wellbore integrity. New drilling optimization methods emphasize information management and real-time decision making. A recent study for drilling in shallow water in the Gulf of Mexico demonstrates that trouble time accounts for 25 per cent of rig time. This translates to about $1.5 MM U.S. per well. A reduction in trouble time could result in significant cost savings for the industry. This paper presents a case study on vibration prevention to demonstrate how the drilling industry has benefited from new technologies. 13 refs., 10 figs.

  17. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Vancouver (Canada); Smith, Nicole [Nevada Geothermal Power Company, Vancouver (Canada)

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  18. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  19. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  20. Completion Report for Well ER-EC-8

    International Nuclear Information System (INIS)

    2004-01-01

    Well ER-EC-8 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 129.8 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 609.6 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 98.4 meters, 24 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on evaluation of composite drill cuttings collected every 3 meters, and 20 sidewall samples taken at various depths below 157.9 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. Drilling began in Tertiary-age tuff of the Thirsty Canyon Group, and penetrated tuffs of the Beatty Wash Formation, tuff of Buttonhook Wash, and the upper portion of the Ammonia Tanks Tuff. The geologic interpretation of data from this well helps define the location of the western margin of the Timber Mountain caldera complex in the southwestern Nevada volcanic field. Geologic and hydrologic data from the well will aid in development of models to predict groundwater flow and contaminant migration within and near the Nevada Test Site

  1. Precision hole punching on composite fiber reinforced polymer panels

    Science.gov (United States)

    Abdullah, A. B.; Zain, M. S. M.; Chan, H. Y.; Samad, Z.

    2017-12-01

    Structural materials, such as composite panels, can only be assembled, and in most cases through the use of fasteners, which are fitted into the drilled holes. However, drilling is costly and time consuming, thus affecting productivity. This research aims to develop an alternative method to drilling. In this paper, the precision of the holes was measured and the effects of the die clearance to the areas around the holes were evaluated. Measurement and evaluation were performed based on the profile of the holes constructed using Alicona IFM, a 3D surface measurement technique. Results showed that punching is a potential alternative to drilling but still requires improvements.

  2. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs

  3. Drillings and associated drillhole measurements of the investigation holes in the EDZ tunnel at Chainage 3620

    International Nuclear Information System (INIS)

    Sacklen, N.; Hurmerinta, E.; Pekkanen, J.; Tarvainen, A.-M.; Toropainen, V.; Kosunen, P.

    2010-05-01

    The R and D programme called EDZ (Excavation Damaged Zone) programme was started in autumn 2007 according to TKS 2006 programme. To continue with EDZ programme development work the EDZ09 project was established in 2009. This report describes the R and D activities performed in the Work Package 2 'TOSI' (Verification) of EDZ09 project. The aim of the EDZ09 project was to develop the method for the verification of EDZ in different parts of the tunnel profile; to characterize the EDZ in the tunnel as well as in the shaft in order to demonstrate the applicability of the method; to complete the tasks in such a timetable that the results are available before ONKALO reaches the depth of - 420 m; to avoid unwanted changes in the bedrock around the access tunnel, which cannot be eliminated by sealing or other methods when applying the verification method or excavation techniques; to demonstrate the function of the method to be developed for verification of EDZ under construction conditions - the applicability of the method has to be demonstrated despite of changes in rock conditions and direction of underground spaces; to obtain information of EDZ in order to assess where the zone would be continuous/discontinuous; to determine the hydrological changes within the damaged zone. The experimental studies were carried out in Posiva's underground research facility, ONKALO, at the depth level c. -340 m at chainage 3620. Two parallel c. 50 m long pilot holes, ONK-PP199 and ONK-PP200, were drilled prior to the excavation of the investigation tunnel ONK-TKU-3620, the EDZ tunnel. ONK-PP199 was drilled inside and ONK-PP200 outside the EDZ tunnel profile. The purpose of the pilot holes was to acquire and adjust geological, geophysical, hydrogeological and rock mechanical knowledge prior to the excavation of the EDZ tunnel, and to define the baseline conditions close to the tunnel profile before excavation. Also, the pilot hole ONK-PP200, drilled outside the EDZ tunnel profile, was used

  4. 21 CFR 872.4130 - Intraoral dental drill.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  5. The origin of elevated water levels in emplacement boreholes, Pahute Mesa, Nevada Test Site: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, G.G.; Brikowski, T.H.

    1993-12-01

    The origin of elevated water levels in emplacement boreholes at Pahute Mesa, Nevada Test Site, is uncertain. If the water is from naturally perched aquifers, then presumed ``above water table`` weapons tests may directly impact the groundwater quality. The purpose of this study is to determine the probable source of the elevated water in boreholes by comparing modeled seepage of infiltrated drilling fluids, and the seepage from a simulated naturally perched aquifer with the observed water level history. In the model, large volumes of water are infiltrated, yet return flow of fluids back into the hole stops within three days after the end of drilling and is insufficient to produce observed standing water. Return flow is limited for two reasons: (1) the volume of the saturated rock next to the borehole is small; (2) pressure head gradient direct unsaturated flow away from the borehole. Simulation of seepage from a naturally perched aquifer readily reproduces the observed water levels.

  6. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    Science.gov (United States)

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    In order to better define the size of the thermal anomaly in the Raft River Valley, Idaho, the U.S. Geological Survey drilled a series of intermediate-depth (nominal 500-ft depth) wells in 1977 and 1978.  This report presents geologic, geophysical, and temperature data for these drill holes, along with data for five wells drilled by the Idaho National Engineering Laboratory with U.S. Department of Energy Funding.  Data previously reported for other drill holes are also included in order to make them available as digital files.

  7. Nevada Nuclear-Waste-Storage Investigations. Quarterly report, April-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) are studying the Nevada Test Site (NTS) area to establish whether it would qualify as a licensable location for a commercial nuclear waste repository; determining whether specific underground rock masses in the NTS area are technically acceptable for permanently disposing of highly radioactive solid wastes; and developing and demonstrating the capability to safely handle and store commercial spent reactor fuel and high-level waste. Progress reports for the following eight tasks are presented: systems; waste package; site; repository; regulatory and institutional; test facilities; land acquisition; and program management. Some of the highlights are: A code library was established to provide a central location for documentation of repository performance assessment codes. A two-dimensional finite element code, SAGUARO, was developed for modeling saturated/unsaturated groundwater flow. The results of an initial experiment to determine canister penetration rates due to corrosion indicate the expected strong effect of toxic environmental conditions on the corrosion rate of carbon steel in tuff-conditioned water. Wells USW-H3 and USW-H4 at Yucca Mountain have been sampled for groundwater analysis. A summary characterizing and relating the mineralogy and petrology of Yucca Mountain tuffs was compiled from the findings of studies of core samples from five drill holes.

  8. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    Science.gov (United States)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  9. Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain

    International Nuclear Information System (INIS)

    2006-01-01

    Well ER-12-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in March and April 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of central Rainier Mesa, especially in the older Tertiary volcanic rocks and Paleozoic sedimentary rocks. The main 47.0-centimeter hole was drilled to a depth of 799.2 meters and cased with 33.97-centimeter casing to 743.1 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to a total depth of 1,496.0 meters. The completion string consisted of 13.97-centimeter stainless steel casing, with two slotted intervals open to the lower carbonate aquifer, suspended from 19.37-centimeter carbon steel casing. A piezometer string was installed outside the 33.97-centimeter casing to a depth of 467.1 meters to monitor a zone of perched water within the Tertiary volcanic section. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 35 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 674.2 meters of Tertiary volcanic rocks and 821.7 meters of Paleozoic dolomite and limestone. Forty-nine days after the well was completed, but prior to well development and testing, the water level inside the main hole was tagged at the depth of 949.1 meters, and the water level inside the piezometer string was tagged at 379.9 meters

  10. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Karasaki, K.; Galloway, D.

    1990-10-01

    Field experimental and analytical methods development is underway to define the hydraulic and transport properties of a thick saturated zone that underlies the planned high-level nuclear waste repository at Yucca Mountain, Nevada. The characterization strategy for the highly heterogeneous hydrology is that of hypothesis testing and confidence building. Three test wells, the UE-25c-holes, have been drilled and preliminary data have been collected. Hydro-mechanical analyses indicate formation fluid at depth is hydraulically connected to the water table. Preliminary hydraulic tests indicate highly localized, fracture-controlled transmissivity. Cross-hole seismic tomography is planned to assess the inter-borehole structure of fractures and faults. Multi-level cross-hole hydraulic interference and tracer tests are planned using up to 5 packed-off zones in each of the c-holes to assess the hydraulic conductivity and transport structure in a crude tomographic fashion. An equivalent discontinuum model conditioned with the observed hydraulic measurements will be applied to interpret the hydraulic test responses. As an approach to the scale problem the tests will be designed and analyzed to examine the hypothesis that the flow system may be represented by fractal geometry. 12 refs., 4 figs

  11. Flux dynamics and magnetovoltage measurements in a macroscopic cylindrical hole drilled in BSCCO

    International Nuclear Information System (INIS)

    Yetis, H.; Altinkok, A.; Olutas, M.; Kilic, A.; Kilic, K.

    2007-01-01

    Slow transport relaxation measurements (V-t curves) and magnetovoltage measurements (V-H curves) were carried out in a polycrystalline sample of Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 3 O x (BSCCO) with a macroscopic cylindrically drilled hole (CH). The time evolution of quenched state in V-t curves was interpreted in terms of enhancement of the superconducting order parameter and the relaxation of moving entity. Upon cycling of the external magnetic field with different sweep rates, unusual counter clockwise hysteresis effects and asymmetry in V-H curves are observed in BSCCO sample with CH, which can also be correlated to the trapping of the macroscopic flux bundles in CH

  12. Flux dynamics and magnetovoltage measurements in a macroscopic cylindrical hole drilled in BSCCO

    Science.gov (United States)

    Yetiş, H.; Altinkok, A.; Olutaş, M.; Kiliç, A.; Kiliç, K.

    2007-10-01

    Slow transport relaxation measurements (V-t curves) and magnetovoltage measurements (V-H curves) were carried out in a polycrystalline sample of Bi1.7Pb0.3Sr2Ca2Cu3Ox (BSCCO) with a macroscopic cylindrically drilled hole (CH). The time evolution of quenched state in V-t curves was interpreted in terms of enhancement of the superconducting order parameter and the relaxation of moving entity. Upon cycling of the external magnetic field with different sweep rates, unusual counter clockwise hysteresis effects and asymmetry in V-H curves are observed in BSCCO sample with CH, which can also be correlated to the trapping of the macroscopic flux bundles in CH.

  13. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    International Nuclear Information System (INIS)

    Prothro, L.B.; Townsend, M.J.; Drellack, S.L. Jr

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1

  14. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B., Townsend, M.J.; Drellack, S.L. Jr. [and others

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1.

  15. Gaspe hole sets depth record

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-09

    The deepest diamond-cored hole in the Western Hemisphere, Gulf Sunnybank No. 1 on the Gaspe Peninsula of Quebec, has been completed at a depth of 11,600 ft. This is the deepest cored hole to be drilled anywhere in search of oil and gas production, and the deepest to be drilled using a wire-line core recovery technique. The well was completed in 183 days, and was cored continuously below the surface casing which was set and cemented at 1,004 ft. After underreaming a portion of the bottom of the hole, intermediate casing was set and cemented at 8,000 ft as a safety precaution against possible high oil or gas-fluid pressure. Actual coring time, after deducting time for underreaming and casing operations, was 152 days. Because of the cost of transporting a conventional oil-drilling rig to the E. location, the 89-ft mining rig was modified for the project. The contractor was Heath and Sherwood Drilling (Western) Ltd.

  16. Measurements of the state of stress in deep drill holes

    International Nuclear Information System (INIS)

    Vaeaetaeinen, A.; Saerkkae, P.

    1985-05-01

    The state of stress in rock is one of the most important parameters in the safe planning of stable underground openings in rock. At the same time, it is very difficult to be determined from a great distance. The common methods for the determination of state of stress in bedrock are usually not able to do this from a distance over 30 m. This work is a survey on rock stress determination methods usable in deep, over 500 m, drill holes. It also contains a recommendation for a method to determine the state of stress in Lavia test hole. The presented recommendation for the measurement of the state of stress contains an estimation on the working time for the measurement as well as the amount and location of the measuring points. The examination of the methods has been concentrated on three methods, hydraulic fracturing, overcoring by Vattenfall and differential strain analysis. Theoretical background of these methods has been analyzed. A special interest has been laid on the fundamental assumptions of different methods and their influence on the reliability of the results and the interpretation of the state of stress. The comparison of the methods has been made by literature and user interviews. Equipment and personnel needed, and way of measurement are described for the methods. The parameters measured and their possible sources of errors are described, too, as well as the fundamental assumptions and potential difficulties in the measurement. The organizations in Scandinavia performing measurements and their abilities to do measurements and interpretation are presented. Readiness to interpretation in Finland is described shortly

  17. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  18. Machining of the nuclear tube sheet with small hole diameter

    International Nuclear Information System (INIS)

    Lin Lifeng

    2010-01-01

    Regarding the tube sheet for the heat exchanger of Qinshan Phase II extension project, its material is 00Cr19Ni10 forgings, the tube sheet thickness is 125 mm, requiring 178-φ10.35 0 +0.05 hole, the tube array shall take the shape of equilateral triangle, the center distance is 15 mm, and the tube hole roughness is Ra 3.2. The guide sleeve shall be adopted for positioning prior to machining of the high precision small hole of the thick tube sheet, and the gun drill and BTA drill shall be adopted for testing, finally BTA drilling with internal chip removal shall be adopted, this method shall overcome the disadvantage factor of BTA drilling and shall be the new approach for drilling. The diameter of BTA drill is φ10.34 mm. The machined hole diameter shall be φ10.375-φ10.355 mm. The ellipticity of the tube hole shall be less than 0.01 mm, the pipe bridge dimension shall be 4.6 mm, conforming to the requirement of the drawing. The paper presents the precautions during machining so as to provide the reference for the similar pipe hole machining in the future. (author)

  19. Completion report for Well ER-EC-6

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Townsend

    2000-05-01

    Well ER-EC-6 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the DOE's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 66-centimeter surface hole was drilled and cased off to the depth of 485.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 434.6 meters prior to installation of the completion string. One completion string with four isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 33 sidewall samples taken at various depths below 504.4 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, and the Volcanics of Quartz Mountain. Intense hydrothermal alteration was observed below the depth of 640 m. The preliminary geologic interpretation indicates that this site may be located on a buried structural ridge that separates the Silent Canyon and Timber Mountain caldera complexes.

  20. Completion Report for Well ER-20-7: Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-04-28

    Well ER-20-7 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June 2009 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to further investigate migration of radionuclides from the nearby, up-gradient TYBO and BENHAM underground nuclear tests, which originally was discovered at Well Cluster ER-20-5. This well also provided detailed hydrogeologic information in the Tertiary volcanic section that will reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model. The main 44.45-centimeter hole was drilled to a depth of 681.8 meters and cased with 33.97-centimeter casing to 671.7 meters. The hole diameter was then decreased to 31.12 centimeters, and the well was drilled to total depth of 894.9 meters. The completion string, set to the depth of 890.0 meters, consists of 14.13-centimeter stainless-steel casing hanging from 19.37-centimeter carbon-steel casing. The 14.13-centimeter stainless-steel casing has one continuous slotted interval open to the Topopah Spring aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 meters, sidewall core samples from 20 depth intervals, various geophysical logs, water quality (primarily tritium) measurements, and water level measurements. The well penetrated 894.9 meters of Tertiary volcanic rock, including two saturated welded-tuff aquifers. A fluid level measurement was obtained during open-hole geophysical well logging for the upper, Tiva Canyon, aquifer at the depth of 615.7 meters on June 19, 2009. The fluid level measured in the open hole on June 27, 2009,after the total depth was reached and the upper aquifer was cased off, was also at the depth of 615.7 meters. Preliminary field measurements indicated 1

  1. Evaluation of machining effect for the residual stress of SA508 by hole drilling method

    International Nuclear Information System (INIS)

    Lee, Jeong Kun; Lee, Kyoung Soo; Song, Ki O; Kim, Young Shin

    2009-01-01

    Residual stresses on a surface of the material are welcome or undesirable since it's direction, compression or tensile. But especially for the fatigue, it is not negligible effect on the material strength. These residual stresses developed during the manufacturing processes involving material deformation, heat treatment, machining. The object of this paper is verifying the effect of machining what is mostly used for SA508. For verifying the effect of machining, three different kind of machining have been achieved, milling, grinding, wire cutting. Also to measure the residual stress, hole drill method and indentation method are used.

  2. Flux dynamics and magnetovoltage measurements in a macroscopic cylindrical hole drilled in BSCCO

    Energy Technology Data Exchange (ETDEWEB)

    Yetis, H.; Altinkok, A.; Olutas, M. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey); Kilic, A. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)], E-mail: kilic_a@ibu.edu.tr; Kilic, K. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)

    2007-10-01

    Slow transport relaxation measurements (V-t curves) and magnetovoltage measurements (V-H curves) were carried out in a polycrystalline sample of Bi{sub 1.7}Pb{sub 0.3}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (BSCCO) with a macroscopic cylindrically drilled hole (CH). The time evolution of quenched state in V-t curves was interpreted in terms of enhancement of the superconducting order parameter and the relaxation of moving entity. Upon cycling of the external magnetic field with different sweep rates, unusual counter clockwise hysteresis effects and asymmetry in V-H curves are observed in BSCCO sample with CH, which can also be correlated to the trapping of the macroscopic flux bundles in CH.

  3. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  4. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2010-01-01

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Septic Systems' and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: (1) CAS 03-04-02, Area 3 Subdock Septic Tank; (2) CAS 03-59-05, Area 3 Subdock Cesspool; (3) CAS 12-59-01, Drilling/Welding Shop Septic Tanks; and (4) CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  5. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-02-28

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  6. ResonantSonic drilling. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes

  7. Simulation of friction stir drilling process

    Science.gov (United States)

    Vijayabaskar, P.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    The project is the study of the thermal drilling process. The process is a hole forming process in the sheet metals using the heat generated by means of friction. The main advantage of the process over the conventional drilling process is that the holes formed using this process does not need any backing arrangements such as weld nuts, rivet nuts etc. Because the extruded bush itself acts as a supporting structure for the fasteners. This eliminates the need for the access to the backside of the work material for fastening operations. The major factors contributing the thermal drilling operation are the spindle speed and the thrust force required for forming a hole. The process of finding out the suitable thrust force and the speed for drilling a particular material with particular thickness is a tedious process. The process can be simplified by forming a mathematical model by combining the empirical formulae from the literature. These formulae were derived in the literature from the experimental trials by following certain assumptions. In this paper a suitable mathematical model is formed by replicating the experiments and tried to be validated by the results from numerical analysis. The numerical analysis of the model is done using the ANSYS software.

  8. A comparative evaluation of drilling techniques for deposits containing free gold using radioactive gold particles as tracers

    International Nuclear Information System (INIS)

    Clarkson, R.

    1998-01-01

    In the summers of 1992 and 1994, the author designed and carried out a statistically valid research program using radioactivated gold particles as tracers (radiotracers). Two types of fully cased normal circulation (N / C) drills, two types of reverse circulation (R/C) drills and three solid auger drills were evaluated under a variety of field conditions. A frozen cylindrical core of compacted gravels containing four sizes ( 1.2, 0.60, 0.30 and 0.15 mm), (+l4,+28,+48and+100 mesh)of radiotracers was placed in 44 drill holes and the holes were re drilled. Scintillometers were used to track free gold losses due to spillage and blow-by around the collar (top) of the hole. Some gold particles were located in temporary traps in the drilling equipment and these particles would have contaminated subsequent samples (as carry-over). Several myths commonly attributed to particular drilling methods were dispelled. There was no significant difference between the recovery of the four sizes of gold particles with any of the drills tested. Observations and down-hole scintillometer records indicated that the free gold particles did not follow the bit down the hole and were either carried out of the hole or forced onto the sides of the hole at or above the depth at which the radioactive gold was positioned. A comparative evaluation of the results of these tests is presented

  9. Listvenite formation from peridotite: Insights from Oman Drilling Project hole BT1B and preliminary reaction path model approach.

    Science.gov (United States)

    de Obeso, J. C.; Kelemen, P. B.; Manning, C. E.; Michibayashi, K.; Harris, M.

    2017-12-01

    Oman Drilling Project hole BT1B drilled 300 meters through the basal thrust of the Samail ophiolite. The first 200 meters of this hole are dominated by listvenites (completely carbonated peridotites) and serpentinites. Below 200 meters the hole is mainly composed of metasediments and metavolcanics. This core provides a unique record of interaction between (a) mantle peridotite in the leading edge of the mantle wedge and (b) hydrous, CO2 rich fluids derived from subducting lithologies similar to those in the metamorphic sole. We used EQ3/6 to simulate a reaction path in which hydrous fluid in equilibrium with qtz + calcite + feldspar + chlorite or smectite reacts with initially fresh peridotite at 100°C (the estimated temperature of alteration, Falk & Kelemen GCA 2015) and 5 kb. Water was first equilibrated with minerals observed during core description in the metamorphic sole at 100°C and 5kb. This fluid is then reacted with olivine enstatite and diopside (Mg#90) approximating the average composition of residual mantle peridotite (harzburgite) in Oman. Secondary minerals resulting from complete reaction are then reacted again with the initial fluid in an iterative process, up to water/rock > 1000. Water/rock close to 1 results in complete serpentinization of the peridotite, with chrysotile, brucite and magnetite as the only minerals. Water/rock >10 produces carbonates, chlorite and talc. Further increasing water/rock to > 100 produces assemblages dominated by carbonates and quartz with minor muscovite, similar to listvenites of hole BT1B that contain qtz + carbonates + Fe-oxyhydroxides + relict spinel ± chromian muscovite and fuchsite. The results of this preliminary model are consistent with the complex veining history of core from BT1B, with carbonate/iron oxide veins in both listvenites and serpentinites interpreted to be the earliest record of peridotite carbonation after initial serpentinization.

  10. A study for high accuracy measurement of residual stress by deep hole drilling technique

    Science.gov (United States)

    Kitano, Houichi; Okano, Shigetaka; Mochizuki, Masahito

    2012-08-01

    The deep hole drilling technique (DHD) received much attention in recent years as a method for measuring through-thickness residual stresses. However, some accuracy problems occur when residual stress evaluation is performed by the DHD technique. One of the reasons is that the traditional DHD evaluation formula applies to the plane stress condition. The second is that the effects of the plastic deformation produced in the drilling process and the deformation produced in the trepanning process are ignored. In this study, a modified evaluation formula, which is applied to the plane strain condition, is proposed. In addition, a new procedure is proposed which can consider the effects of the deformation produced in the DHD process by investigating the effects in detail by finite element (FE) analysis. Then, the evaluation results obtained by the new procedure are compared with that obtained by traditional DHD procedure by FE analysis. As a result, the new procedure evaluates the residual stress fields better than the traditional DHD procedure when the measuring object is thick enough that the stress condition can be assumed as the plane strain condition as in the model used in this study.

  11. Ice drilling for blasting boreholes in deep seismic surveys (JARE-43 by steam type drilling system

    Directory of Open Access Journals (Sweden)

    Atsushi Watanabe

    2003-03-01

    Full Text Available A seismic exploration was accomplished in the austral summer of 2001-2002 by the 43rd Japanese Antarctic Research Expedition (JARE-43 along a profile oblique to that held by JARE-41 on the Mizuho Plateau, East Antarctica. We used a steam type drilling system to obtain seven blasting boreholes. We spent 7 to 8 hours to make an enough depth of the hole for one shot point. The holes were 35 to 40 cm in diameter and 23.5 to 28.7 m in depth. The average drilling speed was 3.25 m/hr.

  12. Diagnostic System of Drill Condition in Laminated Chipboard Drilling Process

    Directory of Open Access Journals (Sweden)

    Swiderski Bartosz

    2017-01-01

    Full Text Available The paper presents an on-line automatic system for recognition of the drill condition in a laminated chipboard drilling process. Two states of the drill are considered: the sharp enough (still able to drill holes acceptable for processing quality and worn out (excessive drill wear, not satisfactory from the quality point of view of the process. The automatic system requires defining the diagnostic features, which are used as the input attributes to the classifier. The features have been generated from 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. The statistical parameters defined on the basis of the auto regression model of these signals have been used as the diagnostic features. The sequential step-wise feature selection is applied for choosing the most discriminative set of features. The final step of recognition is done by support vector machine classifier working in leave one out mode. The results of numerical experiments have confirmed good quality of the proposed diagnostic system.

  13. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada

    International Nuclear Information System (INIS)

    Winograd, I.J.; Coplen, T.B.; Landwehr, J.M.; Revesz, K.M.; Riggs, A.C.; Ludwig, K.R.; Szabo, B.J.; Kolesar, P.T.

    1992-01-01

    Oxygen-18 (δ 18 O) variations in a 36-centimeter-long core (DH-11) of vein calcite from Devils Hole, Nevada, yield an uninterrupted 500,000-year paleotemperature record that closely mimics all major features in the Vostok (Antarctica) paleotemperature and marine δ 18 O ice-volume records. The chronology for this continental record is based on 21 replicated mass-spectrometric uranium-series dates. Between the middle and latest Pleistocene, the duration of the last four glacial cycles recorded in the calcite increased from 80,000 to 130,000 years; this variation suggests that major climate changes were aperiodic. The timing of specific climatic events indicates that orbitally controlled variations in solar insolation were not a major factor in trigering deglaciations. Interglacial climates lasted about 20,000 years. Collectively, these observations are inconsistent with the Milankovitch hypothesis for the origin of the Pleistocene glacial cycles but they are consistent with the thesis that these cycles originated from internal nonlinear feedbacks within the atmosphere-ice sheet-ocean system

  14. Experimental Analysis of the Influence of Drill Point Angle and Wear on the Drilling of Woven CFRPs

    Directory of Open Access Journals (Sweden)

    Norberto Feito

    2014-05-01

    Full Text Available This paper focuses on the effect of the drill geometry on the drilling of woven Carbon Fiber Reinforced Polymer composite (CFRPs. Although different geometrical effects can be considered in drilling CFRPs, the present work focuses on the influence of point angle and wear because they are the important factors influencing hole quality and machining forces. Surface quality was evaluated in terms of delamination and superficial defects. Three different point angles were tested representative of the geometries commonly used in the industry. Two wear modes were considered, being representative of the wear patterns commonly observed when drilling CFRPs: flank wear and honed cutting edge. It was found that the crossed influence of the point angle and wear were significant to the thrust force. Delamination at the hole entry and exit showed opposite trends with the change of geometry. Also, cutting parameters were checked showing the feed’s dominant influence on surface damage.

  15. Mud pressure simulation on large horizontal directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Rafael R.; Avesani Neto, Jose O.; Martins, Pedro R.R.; Rocha, Ronaldo [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil)

    2009-07-01

    Horizontal Directional Drilling (HDD) is being extensively used in Brazil for installation of oil and gas pipelines. This trenchless technology is currently used in crossings of water bodies, environmental sensitive areas, densely populated areas, areas prone to mass movement and anywhere the traditional technology is not suitable because of the risks. One of the unwanted effects of HDD is collapsing of the soil surrounding the bore-hole, leading to loss of fluid. This can result in problems such as reducing the drilling efficiency, ground heave, structures damage, fluid infiltration and other environmental problems. This paper presents four simulations of down-hole fluid pressures which represents two different geometrical characteristics of the drilling and two different soils. The results showed that greater depths are needed in longer drillings to avoid ground rupture. Thus the end section of the drilling often represents the critical stage. (author)

  16. Experimental assessment of borehole wall drilling damage in basaltic rocks

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1986-06-01

    Ring tension tests, permeability tests, and microscopic fracture studies have been performed to investigate the borehole damage induced at low confining pressure by three drilling techniques (diamond, percussion and rotary). Specimens are drilled with three hole sizes (38, 76, and 102 mm diameter) in Pomona basalt and Grande basaltic andesite. The damaged zone is characterized in terms of fractures and fracture patterns around the hole, and in terms of tensile strength reduction of the rock around the holes. Experimental results show that the thickness of the damaged zone around the hole ranges from 0.0 to 1.7 mm. A larger drill bit induces more wall damage than does a smaller one. Different drilling techniques show different damage characteristics (intensity and distribution). Damage characteristics are governed not only by drilling parameters (bit size, weight on bit, rotational speed, diamond radius, and energy), but also by properties of the rock. The weaker rock tends to show more intense damage than does the stronger one. Cracks within grains or cleavage fractures are predominant in slightly coarser grained rock (larger than 0.5 mm grain size) while intergranular cracks are predominant in very fine grained rock (smaller than 0.01 mm grain size). The damaged zones play no significant role in the flow path around a borehole plug

  17. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    Science.gov (United States)

    Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan

    2016-12-01

    Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  18. Development of controlled drilling technology and measurement method in the borehole. Phase 2. Upgrading of drilling and measurement system and its application to the fault

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Ohtsu, Masashi

    2009-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Since 2000, CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Based on the results of phase 1(2000-2004), CRIEPI has been developing the drilling and logging/measurement technologies for fault zone during phase 2 (2005-2007). The drilling technology such as drilling for fault zone, horizontal drilling, long hole drilling, coring and locality detection was developed and these applicability was confirmed while drilling. The permeability/water-sampling/imaging tool was revised to apply wider borehole and longer measuring section. The WL-LWD was improved to be tougher in the hole. The borehole pressure meter and stress measurement tools were unified. Each tools necessary for the monitoring system is manufactured. The applicability of these tools and systems were verified in the borehole. After conducting surveys for the Omagari fault distributing at the Kami-horonobe area, the drilling site and borehole trace was decided in 2005. Considering the planned trace, the bore hole was drilled to the 683.5m long and its core recovery was 99.8%. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  19. Drilling in tempered glass – modelling and experiments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    The present paper reports experimentally and numerically obtained results for the process of drilling in tempered glass. The experimental results are drilling depths on the edge in 19mm tempered glass with a known residual stress state measured by a scattered light polariscope. The experiments have...... been modelled using a state-of-the-art model and compared with satisfying result to the performed experiments. The numerical model has been used for a parametric study, investigating the redistribution of residual stresses during the process of drilling. This is done for investigating the possibility...... of applying forces in such holes and thereby being able to mechanically assemble tempered glass without the need of drilling holes before the tempering process. The paper is the result of currently ongoing research and the results should be treated as so....

  20. Phase I Report, US DOE GRED II Program

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank Engineering Ltd.

    2003-04-23

    Noramex Corporation Inc, a Nevada company, owns a 100% interest in geothermal leases at the Blue Mountain Geothermal Area, Humboldt County, Nevada. The company is exploring the site for a geothermal resource suitable for development for electric power generation or In the spring of 2002, Noramex drilled the first geothermal observation hole at Blue Mountain, under a cost-share program with the U.S Department of Energy (DOE), under the DOE's Geothermal Exploration and Resource Definition (GRED) program, (Cooperative Agreement No. DE-FC04-00AL66972). DEEP BLUE No.1 was drilled to a total depth of 672.1 meters (2205 feet) and recorded a maximum temperature of 144.7 C (292.5 F). Noramex Corporation will now drill a second slim geothermal observation test hole at Blue Mountain, designated DEEP BLUE No.2. The hole will be drilled under a cost-share program with the DOE, under the DOE's Geothermal Exploration and Resource Definition II (GRED II) program, (Cooperative Agreement No. DE-FC04-2002AL68297). This report comprises Phase I of Cooperative Agreement No. DE-FC04-2002AL68297 of the GRED II program. The report provides an update on the status of resource confirmation at the Blue Mountain Geothermal Area, incorporating the results from DEEP BLUE No.1, and provides the technical background for a second test hole. The report also outlines the proposed drilling program for slim geothermal observation test hole DEEP BLUE No.2.

  1. Completion Report for Well ER-16-1 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2006-12-01

    Well ER-16-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June and July 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit, Number 99. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of the Shoshone Mountain area, especially in the older Tertiary and pre-Tertiary strata. The main 46.99-centimeter hole was drilled to a depth of 702.9 meters and cased with 33.97-centimeter casing to 663.7 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to total depth of 1,220.7 meters. A completion string set at the depth of 1,162.4 meters consisted of 13.97-centimeter stainless-steel casing, with one continuous slotted interval open to the lower carbonate aquifer. The fluid level in the borehole soon dropped, so the borehole was deepened in July 2006. To deepen the borehole, the slotted section was cemented and a 12.1-centimeter hole was drilled through the bottom of the completion string to the new total depth of 1,391.7 meters, which is 171.0 meters deeper than the original borehole. A string of 6.03-centimeter carbon-steel tubing with one continuous slotted interval at 1,361.8 to 1,381.4 meters, and open to the lower carbonate aquifer, was installed in the well with no gravel packing or cement, to serve as a monitoring string. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 37 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 646.8 meters of Tertiary volcanic rocks and 744.9 meters

  2. Three-dimensional model of reference thermal/mechanical and hydrological stratigraphy at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Ortiz, T.S.; Williams, R.L.; Nimick, F.B.; Whittet, B.C.; South, D.L.

    1985-10-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is currently examining the feasibility of constructing a nuclear waste repository in the tuffs beneath Yucca Mountain. A three-dimensional model of the thermal/mechanical and hydrological reference stratigraphy at Yucca Mountain has been developed for use in performance assessment and repository design studies involving material properties data. The reference stratigraphy defines units with distinct thermal, physical, mechanical, and hydrological properties. The model is a collection of surface representations, each surface representing the base of a particular unit. The reliability of the model was evaluated by comparing the generated surfaces, existing geologic maps and cross sections, drill hole data, and geologic interpolation. Interpolation of surfaces between drill holes by the model closely matches the existing information. The top of a zone containing prevalent zeolite is defined and superimposed on the reference stratigraphy. Interpretation of the geometric relations between the zeolitic and thermal/mechanical and hydrological surfaces indicates that the zeolitic zone was established before the major portion of local fault displacement took place; however, faulting and zeolitization may have been partly concurrent. The thickness of the proposed repository host rock, the devitrified, relatively lithophysal-poor, moderately to densely welded portion of the Topopah Spring Member of the Paintbrush Tuff, was evaluated and varies from 400 to 800 ft in the repository area. The distance from the repository to groundwater level was estimated to vary from 700 to 1400 ft. 13 figs., 1 tab

  3. Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

    1993-01-01

    Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied

  4. Comparative study of conventional and ultrasonically-assisted bone drilling.

    Science.gov (United States)

    Alam, K; Ahmed, Naseer; Silberschmidt, V V

    2014-01-01

    Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.

  5. Geohydrologic data for test well USW G-4, Yucca Mountain area, Nye County, Nevada

    Science.gov (United States)

    Bentley, C.B.

    1984-01-01

    Data are presented on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, water chemistry, pumping tests, and packer-injection tests for test well USW G-4. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for underground storage of high-level radioactive wastes. Test well USW G-4 was drilled to a total depth of 915 meters through volcanic rocks, consisting mostly of ash-flow tuff. Depth of water in the well during and after drilling and testing ranged from 538 to 544 meters below land surface, at approximate altitude of 728 meters above sea level. Drawdown in the well was about 3 meters after test pumping more than 5,000 minutes at a rate of 16 liters per second. A borehold-flow survey indicated that almost all water withdrawn from the well was contributed by the zone between a depth of about 865 and 915 meters below land surface. Analysis of a composite water sample collected after well completion showed the water to contain 216 milligrams per liter of dissolved solids, with relatively large concentrations of silica, sodium, and bicarbonate. (USGS)

  6. Thermal numerical assessment of jawbone drilling factor during implantology

    Directory of Open Access Journals (Sweden)

    Adel Pirjamali Neisiani

    2016-03-01

    Full Text Available Background and Aims: Optimization drilling parameters in order to temperature decrease during creation of hole in the bone is an interested issue. The aim of this study was to achieve optimum values of drilling parameters based on the creation of minimum temperature during jawbone drilling. Materials and Methods: In this study two models of mandible and maxilla was created and teeth 2, 5 and 8 from maxilla and teeth 25, 28 and 31 from mandible were removed. The drilling operation was performed under different conditions on jawbone models using finite element analysis and the maximum temperatures were measured in adjacent of holes. Results: Drill bit head angle of 70 degrees was created the lowest maximum temperature during drilling operation. The lowest maximum temperatures were observed in the drill bit rotational speed, drill bit feed rate and the force exerted on the drill bit equal to 200 rpm, 120 mm/min and 60 N, respectively. The use of irrigation can decrease the maximum bone temperature about 7ºC. The maximum temperature differences in various regions of mandible and maxilla were approximately about 1ºC. Conclusion: Sharpness of drill bit head angle, reduction of drill bit rotational speed, increasing drill bit feed rate and exerted force on drill bit and also the use of irrigation played effective roles in temperature decrease during jawbone drilling. Drilling site did not have important effect on the temperature changes during jawbone drilling.

  7. Observation of unusual irreversible/reversible effects in a macroscopic cylindrical hole drilled in superconducting Bi-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Yetis, H.; Kilic, A.; Kilic, K.; Altinkok, A.; Olutas, M.

    2008-01-01

    Current-voltage (I-V) measurements were carried out for different current sweep rates (dI/dt) of transport current at zero magnetic field (H = 0) and H ≠ 0 in a polycrystalline sample of Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 3 O x (BSCCO) with a macroscopic cylindrical hole (CH) drilled. Similar measurements were also performed in the same BSCCO sample without CH for a comparison before drilling CH. For the same values of H, T, and dI/dt taken for both samples, it was observed that hysteresis effects appear in I-V curves upon cycling of transport current in upward and downward directions which contain the increasing and decreasing current values, respectively. However these effects which are seen in I-V curves of BSCCO sample with CH is more prominent than that of the BSCCO sample without CH. Further, the irreversibility effects in I-V curves of the BSCCO sample without CH disappears for H ≠ 0 exhibiting nearly a linear behaviour, whereas the hysteretic behaviour in I-V curves of the BSCCO sample with CH is still observed. This interesting behaviour could be evaluated that macroscopic cylindrical hole improves pinning properties of sample acting as a macroscopic flux pinning center for flux lines

  8. A Historical Evaluation of the U12n Tunnel, Nevada National Security Site, Nye County, Nevada Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [DRI; Jones, Robert C [DRI; Bullard, Thomas F [DRI; Ashbaugh, Laurence J [DRI; Griffin, Wayne R [DRI

    2011-06-01

    equipment, air compressors, communications equipment, mining equipment, rail lines, retention ponds to impound tunnel effluent, and storage containers. Features on the mesa above the tunnel generally relate to tunnel ventilation and cooling, borehole drilling, and data recording facilities. Feature types include concrete foundations, instrument cable holes, drill holes, equipment pads, ventilation shafts, and ventilation equipment. The U12n Tunnel complex is eligible to the National Register of Historic Places under criteria a and c, consideration g of 36 CFR Part 60.4 as a historic landscape. Scientific research conducted at the tunnel has made significant contributions to the broad patterns of our history, particularly in regard to the Cold War era that was characterized by competing social, economic, and political ideologies between the former Soviet Union and the United States. The tunnel also possesses distinctive construction and engineering methods for conducting underground nuclear tests. The Desert Research Institute recommends that the U12n Tunnel area be left in place in its current condition and that the U12n Tunnel historic landscape be included in the NNSS monitoring program and monitored for disturbances or alterations on a regular basis.

  9. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    Directory of Open Access Journals (Sweden)

    Naď Milan

    2016-12-01

    Full Text Available Rotary ultrasonic machining (RUM is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  10. Geochemical and Mineralogical Profiles Across the Listvenite- Metamorphic Transition in the Basal Megathrust of the Oman Ophiolite: First Results from Drilling at Oman Drilling Project Hole BT1B

    Science.gov (United States)

    Godard, M.; Bennett, E.; Carter, E.; Kourim, F.; Lafay, R.; Noël, J.; Kelemen, P. B.; Michibayashi, K.; Harris, M.

    2017-12-01

    The transition from the base of the Oman ophiolite to the underlying metamorphic sole was drilled at Hole BT1B (Sumail Massif) during Phase 1 of Oman Drilling Project (Winter 2016-2017). 74 samples were collected from the 300m of recovered cores for whole rock geochemical and XRD analyses. 55 listvenites, ophicarbonates and serpentinites, and 19 schists and greenstones were analyzed for major and minor elements (XRF) and for CO2 and S concentrations (CHNS) aboard DV Chikyu (ChikyuOman, Summer 2017). Analyses for trace elements (ICP-MS) at the University of Montpellier are in progress. The composition of listvenites, ophicalcites and serpentinites recovered at Hole BT1B record extensive interactions between CO2-rich fluids and the serpentinized peridotites. These reactions involved addition of SiO2 and formation of carbonates at the expense of the serpentinized peridotite protolith. All samples recovered from the mantle section are enriched in fluid mobile and incompatible trace elements compared to the mean composition of the Oman mantle. These enrichments are up to 103 times the Oman mantle for Rb and Ba. They mimic the pattern of the samples from the metamorphic sole. This suggests that the composition of the listvenites in these elements is controlled by that of contaminating fluids that may have originated in the same lithologies as those drilled at the base of Hole BT1B. Listvenites, ophicalcites and serpentinites also show notable downhole chemical variations, with listvenites showing marked variations in Al2O3 and TiO2. Occurrence of lherzolites and cpx-harzburgites has been reported at the base of the Oman dominantly harzburgitic mantle section. The observed variations in the listvenites (Al2O3 and TiO2) could be related to the composition of their protolith, the deepest having more fertile compositions. Alternatively, the observed downhole changes in the composition of listvenites may relate to the progressive equilibration of the reacting ultramafic

  11. Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes

    International Nuclear Information System (INIS)

    Lousberg, Gregory P; Vanderbemden, Ph; Vanderheyden, B; Fagnard, J-F; Ausloos, M

    2010-01-01

    The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E - J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.

  12. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  13. A flexible method for residual stress measurement of spray coated layers by laser made hole drilling and SLM based beam steering

    Science.gov (United States)

    Osten, W.; Pedrini, G.; Weidmann, P.; Gadow, R.

    2015-08-01

    A minimum invasive but high resolution method for residual stress analysis of ceramic coatings made by thermal spraycoating using a pulsed laser for flexible hole drilling is described. The residual stresses are retrieved by applying the measured surface data for a model-based reconstruction procedure. While the 3D deformations and the profile of the machined area are measured with digital holography, the residual stresses are calculated by FE analysis. To improve the sensitivity of the method, a SLM is applied to control the distribution and the shape of the holes. The paper presents the complete measurement and reconstruction procedure and discusses the advantages and challenges of the new technology.

  14. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  15. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ''A Through K'' evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site

  16. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    2010-08-01

    Full Text Available In this study, residual stresses in heat treated specimen were measured by using ESPI (Electronic Speckle-Pattern Interferometry combined with the hole-drilling method. The specimen, made of SUS 304 austenitic stainless steel, was quenched and water cooled to room temperature. Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process. As a result, the thermal stress fields were obtained from both the experiment and the numerical simulation. By comparision of stress fields, results from the experimental method and numerical simulation well agreed to each other, therefore, it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  17. Ground-water data for the Nevada Test Site and selected other areas in South-Central Nevada, 1992--1993

    International Nuclear Information System (INIS)

    1995-01-01

    The US Geological Survey, in support of the US Department of Energy Environmental Restoration and Hydrologic Resources Management Programs, collects and compiles hydrogeologic data to aid in characterizing the regional and local ground-water flow systems underlying the Nevada Test Site and vicinity. This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made during water year 1993 at 55 sites at the Nevada Test Site and 43 regional sites in the vicinity of the Nevada Test Site. Depth to water ranged from 87.7 to 674.6 meters below land surface at the Nevada Test Site and from 6.0 to 444.7 meters below land surface at sites in the vicinity of the Nevada Test Site. Depth-to-water measurements were obtained using the wire-line, electric-tape, air-line, and steel-tape devices. Total measured ground-water withdrawal from the Nevada Test Site during the 1993 calendar year was 1,888.04 million liters. Annual ground-water withdrawals from 14 wells ranged from 0.80 million to 417.20 million liters. Tritium concentrations from four samples at the Nevada Test Site and from three samples in the vicinity of the Nevada Test Site collected during water year 1993 ranged from near 0 to 27,676.0 becquerels per liter and from near 0 to 3.9 becquerels per liter, respectively

  18. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  19. Tesco's Bob Tessari: launching a drilling revolution

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-07-01

    The 'Casing Drilling' technology, patented by Tesco, which allows operators to simultaneously drill, case and evaluate oil and gas wells, is described. The system is claimed to substantially reduce the amount of lost circulation, loss of well control and bore hole instability problems that have been documented to account for about 25 per cent of total rig time on a well, and at least $4 billion (or 10 per cent of the $40 billion annual global drilling tab) spent on 'unscheduled events' associated with tripping drill pipe. With the Casing Drilling process, wells are drilled using standard oilfield casing instead of drill pipe. The host of downhole problems associated with tripping in and out of the hole are avoided, as the casing pipe is never removed. Instead, drill bits and other downhole tools are tripped through the casing with wireline at a rate of about 500 ft per minute, drastically reducing tripping time. Tesco also developed the portable top drive, the manufacture and rental of which constitutes a large part of the company's business, besides helping technologically to make Casing Drilling possible. Much of the company's success is attributed to the tenacity and zest for innovative approaches of the company's CEO, Bob Tessari, who is largely responsible for the company finding itself at the centre of a drilling technology revolution.

  20. Tethyan Anhydrite Preserved in the Lower Ocean Crust of the Samail Ophiolite? Evidence from Oman Drilling Project Holes GT1A and 2A

    Science.gov (United States)

    Teagle, D. A. H.; Harris, M.; Crispini, L.; Deans, J. R.; Cooper, M. J.; Kelemen, P. B.; Alt, J.; Banerjee, N.; Shanks, W. C., III

    2017-12-01

    Anhydrite is important in mid-ocean ridge hydrothermal systems because of the high concentrations of calcium and sulfate in modern seawater and anhydrite's retrograde solubility. Because anhydrite hosts many powerful tracers of fluid-rock interactions (87Sr/86Sr, δ18O, δ34S, trace elements, fluid inclusions) it is useful for tracing the chemical evolution of hydrothermal recharge fluids and estimating time-integrated fluid fluxes. Anhydrite can form from heated seawater (>100°C), through water-rock reaction, or by mixing of seawater and hydrothermal fluids. Although abundant in active hydrothermal mounds, and predicted to form from downwelling, warming fluids during convection, anhydrite is rare in drill core from seafloor lavas, sheeted dikes and upper gabbros, with only minor amounts in ODP Holes 504B and 1256D. Because anhydrite can dissolve during weathering, its occurrence in ophiolites is unexpected. Instead, gypsum is present in Macquarie Island lavas and Miocene gypsum fills cavities within the Cretaceous Troodos ore deposits. Thus, the occurrence of numerous anhydrite veins in cores from the gabbroic lower crust of the Samail ophiolite in Oman was unanticipated. To our knowledge, anhydrite in Oman gabbros has not been previously reported. Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Gideah section of the Wadi Tayin massif. Both recovered 400 m of continuous core from sections of layered gabbros (GT1) and the foliated-layered gabbro transition (GT2). Anhydrite is present throughout both holes, some in vein networks but more commonly as isolated 1-110 mm veins (>60 mm ave). Anhydrite is mostly the sole vein filling but can occur with greenschist minerals such as epidote, quartz, chlorite and prehnite. Anhydrite commonly exhibits prismatic and bladed textures but can also be capriciously microcrystalline. Though definitive cross cutting relationships are elusive, anhydrite veins cut across some greenschist veins. Anhydrite is

  1. Field testing the effectiveness of pumping to remove sulfur hexafluoride traced drilling air from a prototype borehole near superior, Arizona

    International Nuclear Information System (INIS)

    Peters, C.A.; Striffler, P.; Yang, I.C.; Ferarese, J.

    1993-01-01

    The US Geological Survey (USGS), Department of the Interior is conducting studies at Yucca Mountain, Nevada, to provide hydrologic, hydrochemical, and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear-waste repository. The USGS unsaturated-zone hydrochemistry study involves the collection of gas and water samples from the unsaturated zone for chemical and isotopic analyses. Results from these analyses will aid in the understanding of the movement of gas and water in the rock units at Yucca Mountain. A prototype borehole designated USW UZP5 was drilled by the US Department of Energy, Yucca Mountain Site Characterization Project Office (DOE, YMSCPO) in June 1990 in the Apache Leap Tuff of southcentral Arizona. The hole was dry drilled with air using sulfur hexafluoride (SF 6 ) as a tracer. This drilling method simulated that which will be used to drill boreholes for the collection of gas and water samples at Yucca Mountain. The purpose of tracing the drilling air is to quantify its removal by pumping, prior to sampling of in situ gases. The objectives of our work in Arizona were to: (1) Determine the amount of time and the pumping rates required to remove the SF 6 -enriched drilling air without inducing additional atmospheric contamination; (2) collect core samples for uniaxial compression to determine the amount of SF 6 gas that penetrated the core during drilling; (3) test the effectiveness of the SF 6 injection and sampling system; (4) test the installation and effectiveness of the prototype packer system; and (5) test the effectiveness of several core sealing methods. 1 fig., 1 tab

  2. A Historical Evaluation of the U12n Tunnel, Nevada national Security Site, Nye County, Nevada Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [DRI; Jones, Robert C [DRI; Bullard, Thomas F [DRI; Ashbaugh, Laurence J [DRI; Griffin, Wayne R

    2011-06-01

    equipment, air compressors, communications equipment, mining equipment, rail lines, retention ponds to impound tunnel effluent, and storage containers. Features on the mesa above the tunnel generally relate to tunnel ventilation and cooling, borehole drilling, and data recording facilities. Feature types include concrete foundations, instrument cable holes, drill holes, equipment pads, ventilation shafts, and ventilation equipment. The U12n Tunnel complex is eligible to the National Register of Historic Places under criteria a and c, consideration g of 36 CFR Part 60.4 as a historic landscape. Scientific research conducted at the tunnel has made significant contributions to the broad patterns of our history, particularly in regard to the Cold War era that was characterized by competing social, economic, and political ideologies between the former Soviet Union and the United States. The tunnel also possesses distinctive construction and engineering methods for conducting underground nuclear tests. The Desert Research Institute recommends that the U12n Tunnel area be left in place in its current condition and that the U12n Tunnel historic landscape be included in the NNSS monitoring program and monitored for disturbances or alterations on a regular basis.

  3. Observation of unusual irreversible/reversible effects in a macroscopic cylindrical hole drilled in superconducting Bi-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Yetis, H. [Department of Physics, Turgut Gulez Research Laboratory, Abant Izzet Baysal University, 14280 Bolu (Turkey)], E-mail: yetis_h@ibu.edu.tr; Kilic, A.; Kilic, K.; Altinkok, A.; Olutas, M. [Department of Physics, Turgut Gulez Research Laboratory, Abant Izzet Baysal University, 14280 Bolu (Turkey)

    2008-09-15

    Current-voltage (I-V) measurements were carried out for different current sweep rates (dI/dt) of transport current at zero magnetic field (H = 0) and H {ne} 0 in a polycrystalline sample of Bi{sub 1.7}Pb{sub 0.3}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (BSCCO) with a macroscopic cylindrical hole (CH) drilled. Similar measurements were also performed in the same BSCCO sample without CH for a comparison before drilling CH. For the same values of H, T, and dI/dt taken for both samples, it was observed that hysteresis effects appear in I-V curves upon cycling of transport current in upward and downward directions which contain the increasing and decreasing current values, respectively. However these effects which are seen in I-V curves of BSCCO sample with CH is more prominent than that of the BSCCO sample without CH. Further, the irreversibility effects in I-V curves of the BSCCO sample without CH disappears for H {ne} 0 exhibiting nearly a linear behaviour, whereas the hysteretic behaviour in I-V curves of the BSCCO sample with CH is still observed. This interesting behaviour could be evaluated that macroscopic cylindrical hole improves pinning properties of sample acting as a macroscopic flux pinning center for flux lines.

  4. Analysis of materials modifications caused by UV laser micro drilling of via holes in AlGaN/GaN transistors on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)]. E-mail: tim.wernicke@fbh-berlin.de; Krueger, Olaf [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Herms, Martin [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Wuerfl, Joachim [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kirmse, Holm [Humboldt-Universitaet zu Berlin, Institut fuer Physik, AG Kristallographie, Newtonstr. 15, 12489 Berlin (Germany); Neumann, Wolfgang [Humboldt-Universitaet zu Berlin, Institut fuer Physik, AG Kristallographie, Newtonstr. 15, 12489 Berlin (Germany); Behm, Thomas [Technische Universitaet Bergakademie Freiberg, Institut fuer Theoretische Physik, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany); Irmer, Gert [Technische Universitaet Bergakademie Freiberg, Institut fuer Theoretische Physik, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany); Traenkle, Guenther [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2007-07-31

    Pulsed UV laser drilling can be applied to fabricate vertical electrical interconnects (vias) for AlGaN/GaN high electron mobility transistor devices on single-crystalline silicon carbide (SiC) substrate. Through-wafer micro holes with a diameter of 50-100 {mu}m were formed in 400 {mu}m thick bulk 4H-SiC by a frequency-tripled solid-state laser (355 nm) with a pulse width of {<=}30 ns and a focal spot size of {approx}15 {mu}m. The impact of laser machining on the material system in the vicinity of micro holes was investigated by means of micro-Raman spectroscopy and transmission electron microscopy. After removing the loosely deposited debris by etching in buffered hydrofluoric acid, a layer of <4 {mu}m resolidified material remains at the side walls of the holes. The thickness of the resolidified layer depends on the vertical distance to the hole entry as observed by scanning electron microscopy. Micro-Raman spectra indicate a change of internal strain due to laser drilling and evidence the formation of nanocrystalline silicon (Si). Microstructure analysis of the vias' side walls using cross sectional TEM reveals altered degree of crystallinity in SiC. Layers of heavily disturbed SiC, and nanocrystalline Si are formed by laser irradiation. The layers are separated by 50-100 nm thick interface regions. No evidence of extended defects, micro cracking or crystal damage was found beneath the resolidified layer. The precision of UV laser micro ablation of SiC using nanosecond pulses is not limited by laser-induced extended crystal defects.

  5. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2017-10-10

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  6. Determination of three-dimensional stress orientations in the Wenchuan earthquake Fault Scientific Drilling (WFSD) hole-1: A preliminary result by anelastic strain recovery measurements of core samples

    Science.gov (United States)

    Cui, J.; Lin, W.; Wang, L.; Tang, Z.; Sun, D.; Gao, L.; Wang, W.

    2010-12-01

    A great and destructive earthquake (Ms 8.0; Mw 7.9), Wunchuan earthquake struck on the Longmen Shan foreland trust zone in Sichuan province, China on 12 May 2008 (Xu et al., 2008; Episodes, Vol.31, pp.291-301). As a rapid response scientific drilling project, Wenchuan earthquake Fault Scientific Drilling (WFSD) started on 6 November 2008 shorter than a half of year from the date of earthquake main shock. The first pilot borehole (hole-1) has been drilled to the target depth (measured depth 1201 m MD, vertical depth 1179 m) at Hongkou, Dujianyan, Sichuan and passed through the main fault of the earthquake around 589 m MD. We are trying to determine three dimensional in-situ stress states in the WFSD boreholes by a core-based method, anelastic strain recovery (ASR) method (Lin et al., 2006; Tectonophysics, Vol4.26, pp.221-238). This method has been applied in several scientific drilling projects (TCDP: Lin et al., 2007; TAO, Vol.18, pp.379-393; NanTtoSEIZE: Byrne et al., 2009; GRL, Vol.36, L23310). These applications confirm the validity of using the ASR technique in determining in situ stresses by using drilled cores. We collected total 15 core samples in a depth range from 340 m MD to 1180 m MD, approximately for ASR measurements. Anelastic normal strains, measured every ten minutes in nine directions, including six independent directions, were used to calculate the anelastic strain tensors. The data of the ASR tests conducted at hole-1 is still undergoing analysis. As a tentative perspective, more than 10 core samples showed coherent strain recovery over one - two weeks. However, 2 or 3 core samples cannot be re-orientated to the global system. It means that we cannot rink the stress orientation determined by the core samples to geological structure. Unfortunately, a few core samples showed irregular strain recovery and were not analyzed further. The preliminary results of ASR tests at hole-1 show the stress orientations and stress regime changes a lot with the

  7. Insights into the radial water jet drilling technology – Application in a quarry

    Directory of Open Access Journals (Sweden)

    Thomas Reinsch

    2018-04-01

    Full Text Available In this context, we applied the radial water jet drilling (RJD technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bentheim, Germany. For testing the state-of-the-art jetting technology, a jetting experiment was performed to investigate the influence of geological heterogeneity on the jetting performance and the hole geometry, the influence of nozzle geometry and jetting pressure on the rate of penetration, and the possibility of localising the jetting nozzle utilizing acoustic activity. It is observed that the jetted holes can intersect fractures under varying angles, and the jetted holes do not follow a straight path when jetting at ambient surface condition. Cuttings from the jetting process retrieved from the holes can be used to estimate the reservoir rock permeability. Within the quarry, we did not observe a change in the rate of penetration due to jetting pressure variations. Acoustic monitoring was partially successful in estimating the nozzle location. Although the experiments were performed at ambient surface conditions, the results can give recommendations for a downhole application in deep wells. Keywords: Acoustic monitoring, Drilling performance, Trajectory, Permeability, Rock properties, Radial water jet drilling (RJD

  8. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  9. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  10. Estimates of spatial correlation in volcanic tuff, Yucca Mountain, Nevada: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1991-02-01

    The spatial correlation structure of volcanic tuffs at and near the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, is estimated using samples obtained from surface outcrops and drill holes. Data are examined for four rock properties: porosity, air permeability, saturated hydraulic conductivity, and dry bulk density. Spatial continuity patterns are identified in both lateral and vertical (stratigraphic) dimensions. The data are examined for the Calico Hills tuff stratigraphic unit and also without regard for stratigraphy. Variogram models fitted to the sample data from the tuffs of Calico Hills indicate that porosity is correlated laterally over distances of up to 3000 feet. If air permeability and saturated conductivity values are viewed as semi-interchangeable for purposes of identifying spatial structure, the data suggest a maximum range of correlation of 300 to 500 feet without any obvious horizontal to vertical anisotropy. Continuity exists over vertical distances of roughly 200 feet. Similar variogram models fitted to sample data taken from vertical drill holes without regard for stratigraphy suggest that correlation exists over distances of 500 to 800 feet for each rock property examined. Spatial correlation of rock properties violates the sample-independence assumptions of classical statistics to a degree not usually acknowledged. In effect, the existence of spatial structure reduces the ''equivalent'' number of samples below the number of physical samples. This reduction in the effective sampling density has important implications for site characterization for the Yucca Mountain Project. 19 refs., 43 figs., 5 tabs

  11. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  12. Buffer mass test - Rock drilling and civil engineering

    International Nuclear Information System (INIS)

    Pusch, R.

    1982-09-01

    The buffer mass test (BMT) is being run in the former 'ventilation drift' in which a number of rock investigations were previously conducted. A number of vertical pilot holes were drilled from the tunnel floor to get information of the water inflow in possible heater hole position. The final decision of the location of the heater holes was then made, the main principle being that much water should be available in each hole with the possible exception of one of the holes. Thereafter, the diameter 0.76 m heater holes were drilled to a depth of 3-3.3 m. Additional holes were then drilled for rock anchoring of the lids of the four outer heater holes, for the rock mechanical investigation, as well as for a number of water pressure gauges. The inner, about 12 m long part of the tunnel, was separated from the outer by bulwark. The purpose of this construction was to confine a backfill, the requirements of the bulwark being to withstand the swelling pressure as well as the water pressure. Outside the bulwark an approximately 1.5-1.7 m thick concrete slab was cast on the tunnel floor, extending about 24.7 m from the bulwark. Boxing-outs with the same height as the slab and with the horizontal dimensions 1.8 x 1.8 m, were made and rock-anchored concrete lids were cast on top of them after backfilling. The slab which thus represents 'rock', also forms a basal support of the bulwark. The lids permits access to the backfill as well as to the underlying, highly compacted bentonite for rapid direct determination of the water distributin at the intended successive test stops. The construction of the slab and lids will be described in this report. (Author)

  13. Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound

    Science.gov (United States)

    Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.

    1996-01-01

    During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.

  14. Casing drilling - first experience in Brazil; Casing drilling - primeira experiencia no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao Carlos Ribeiro; Medeiros, Fernando; Lucena, Humberto; Medeiros, Joao Carlos Martins de; Costa, Vicente Abel Soares Rosa da; Silva, Paulo Roberto Correa da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Alves, Renato J.M. [Tesco, London (United Kingdom)

    2004-07-01

    This paper describes the 'Casing Drilling' technology and its first experience in Brazil. This new process of casing while drilling was first developed to reduce costs. This system integrates the drilling process and casing running in one operation, promoting a more efficient well construction system, reducing trip time and costs of drill pipes and their transportation. Besides, this methodology intends to eliminate hole problems related to trouble zones with abnormal pressure with loss circulation, to overcome zones with wellbore instabilities, and to facilitate well control. Two companies have been identified using this technology: Tesco and Weatherford. However, there are differences between the techniques used by these companies, which are described in this paper. In the first experience in Brazil, it was decided to field test the technology developed by Tesco. This paper describes the preparation, the operation and the results of this first test. (author)

  15. Second half work to boost 1991 drilling in the U.S

    International Nuclear Information System (INIS)

    Petzet, G.A.

    1991-01-01

    This paper reports that U.S. well completions in 1991 will increase about 8% compared with 1990 if operators stick with present spending plans during the second half. Operators are expected to realize $76.4 billion in wellhead revenues this year, 10.7% less than the 1990 estimate. However, they are expected to invest a larger share of those revenues in drilling this year than they did in 1990. With less than half the year remaining, here is Oil and Gas Journal's updated look at 1991 U.S. drilling: The rotary rig count will average 1,050, up from last year's average of 1,010. Operators will drill about 31,654 oil wells, gas wells, and dry holes compared with an estimated 29,170 drilled in 1990. Exploratory drilling will decline to 5,711 wildcats. Total footage drilled will exceed 152 million ft of hole; average well depth is expected to be about 4,805 ft. Major oil companies drilled 2,602 wells in the U.S. during first half 1991 and plan to drill 2,569 the rest of this year. Meanwhile, drilling in western Canada will likely total 5,900 wells this year

  16. Central Nevada Test Area Monitoring Report

    International Nuclear Information System (INIS)

    Brad Lyles; Jenny Chapman; John Healey; David Gillespie

    2006-01-01

    Water level measurements were performed and water samples collected from the Central Nevada Test Area model validation wells in September 2006. Hydraulic head measurements were compared to previous observations; the MV wells showed slight recovery from the drilling and testing operation in 2005. No radioisotopes exceeded limits set in the Corrective Action Decision Document/Corrective Action Plan, and no significant trends were observed when compared to previous analyses

  17. Status Report A Review of Slimhole Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  18. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  19. Numerical Investigation of Influences of Drilling Arrangements on the Mechanical Behavior and Energy Evolution of Coal Models

    Directory of Open Access Journals (Sweden)

    Tong-bin Zhao

    2018-01-01

    Full Text Available Destress drilling method is one of the commonly used methods for mitigating rock bursts, especially in coal mining. To better understand the influences of drilling arrangements on the destress effect is beneficial for rock burst mitigation. This study first introduced the rock burst mitigation mechanism of the destress drilling method and then numerically investigated the influences of drilling arrangements on the mechanical properties of coal models through uniaxial compression tests. Based on the test results, the energy evolution (i.e., the energy dissipation and bursting energy indexes influenced by different drilling arrangements was analyzed. When the drilling diameter, the number of drilling holes in one row, or the number of drilling rows increases, the bearing capacity of specimens nonlinearly decreases, but the energy dissipation index increases. In addition, the drilling diameter or the number of drilling holes in one row affects the failure mode weakly, which is different from that of the number of drilling rows. Consequently, the bursting energy index decreases as increasing the drilling diameter or the number of drilling holes in one row, but as increasing the number of drilling rows, the variation law of bursting energy index is not obvious. At last, the influencing mechanism of drilling arrangement on the rock burst prevention mechanism of the destress drilling method was discussed and revealed.

  20. Engineering report on drilling in the western Prescott and Williams Quadrangles, Arizona

    International Nuclear Information System (INIS)

    McCaslin, J.L.

    1980-04-01

    This report presents engineering details, statistics, and individual borehole histories of the 18 holes drilled for this project. Charts showing daily drilling progress are included in Appendix A, and geophysical logs, on microfiche, are included. This project consisted of 18 drill holes ranging in depth from 1,341 ft (408.7m) to 5,491 ft (1,673.7m). A total of 63,520 feet (19,360.9m) was drilled during the project. The objective of the project was to obtain subsurface data that would permit a more accurate estimate to be made of the uranium potential in the Tertiary basins within the project area. This project began on June 22, 1979. All drilling was completed on October 30, 1979, and final site restoration continued through November and December

  1. Uranium Geologic Drilling Project, Sand Wash Basin, Moffat and Routt Counties, Colorado:

    International Nuclear Information System (INIS)

    1978-01-01

    This environmental assessment of drill holes in Moffat and Routt Counties, Colorado considered the current environment; potential impacts from site preparation, drilling operations, and site restoration; coordination among local, state and federal plans; and consideration of alternative actions for this uranium drilling project

  2. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  3. Rotary Percussive Auto-Gopher for Deep Drilling and Sampling

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    The term "rotary percussive auto-gopher" denotes a proposed addition to a family of apparatuses, based on ultrasonic/ sonic drill corers (USDCs), that have been described in numerous previous NASA Tech Briefs articles. These apparatuses have been designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. In the case of the rotary percussive autogopher, the emphasis would be on developing an apparatus capable of penetrating to, and acquiring samples at, depths that could otherwise be reached only by use of much longer, heavier, conventional drilling-and-sampling apparatuses. To recapitulate from the prior articles about USDCs: A USDC can be characterized as a lightweight, low-power jackhammer in which a piezoelectrically driven actuator generates ultrasonic vibrations and is coupled to a tool bit through a free mass. The bouncing of the free mass between the actuator horn and the drill bit converts the actuator ultrasonic vibrations into sonic hammering of the drill bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary rotary drilling, ordinary hammering, or ordinary steady pushing. The predecessor of the rotary percussive auto-gopher is an apparatus, now denoted an ultrasonic/sonic gopher and previously denoted an ultrasonic gopher, described in "Ultrasonic/ Sonic Mechanism for Drilling and Coring" (NPO-30291), NASA Tech Briefs Vol. 27, No. 9 (September 2003), page 65. The ultrasonic/sonic gopher is intended for use mainly in acquiring cores. The name of the apparatus reflects the fact that, like a

  4. Report on expedited site characterization of the Central Nevada Test Area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Yuhr, L. [Technos Inc., Miami, FL (United States); Wonder, J.D.; Bevolo, A.J. [Ames Lab., IA (United States)

    1997-09-01

    This report documents data collection, results, and interpretation of the expedited site characterization (ESC) pilot project conducted from September 1996 to June 1997 at the Central Nevada Test Area (CNTA), Nye County, Nevada. Characterization activities were limited to surface sites associated with deep well drilling and ancillary operations at or near three emplacement well areas. Environmental issues related to the underground nuclear detonation (Project Faultless) and hydrologic monitoring wells were not addressed as a part of this project. The CNTA was divided into four functional areas for the purpose of this investigation and report. These areas include the vicinity of three emplacement wells (UC-1, UC-3, and UC-4) and one mud waste drilling mud collection location (Central Mud Pit; CMP). Each of these areas contain multiple, potentially contaminated features, identified either from historic information, on-site inspections, or existing data. These individual features are referred to hereafter as ``sites.`` The project scope of work involved site reconnaissance, establishment of local grid systems, site mapping and surveying, geophysical measurements, and collection and chemical analysis of soil and drilling mud samples. Section 2.0 through Section 4.0 of this report provide essential background information about the site, project, and details of how the ESC method was applied at CNTA. Detailed discussion of the scope of work is provided in Section 5.0, including procedures used and locations and quantities of measurements obtained. Results and interpretations for each of the four functional areas are discussed separately in Sections 6.0, 7.0, 8.0, and 9.0. These sections provide a chronological presentation of data collected and results obtained, followed by interpretation on a site-by-site basis. Key data is presented in the individual sections. The comprehensive set of data is contained in appendices.

  5. Diamond-set drill bits: savings achieved at Cominak

    International Nuclear Information System (INIS)

    Artru, P.; Bibert, F.X.; Croisat, G.

    1988-01-01

    Rotary instead of percussion adoption of drilling in the underground Akouta mine (Niger) has been the cause of important savings in blasting and bolting operations. Other savings affect capital expenditures and indirect savings are coming from better working conditions. For blast holes drilling and bolting, spare parts expenditures are 2.4 times lower with rotary drilling. Drilling rods are cheaper and last longer with rotary drilling. A rotary equipped Jumbos fleet is cheaper to maintain and is 18% more available, due to less mechanical and other breakdowns. Total savings for the mine owner and operator Cominak reach more than a billion of CFA francs [fr

  6. Geohydrology of rocks penetrated by test well USW H-6, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Craig, R.W.; Reed, R.L.

    1991-01-01

    Test well USW H-6 is one of several wells drilled in the Yucca Mountain area near the southwestern part of the Nevada Test Site for investigations related to isolation of high-level nuclear waste. This well was drilled to a depth of 1,220 meters. Rocks penetrated are predominantly ash-flow tuffs of Tertiary age, with the principal exception of dacitic(?) lave penetrated at a depth from 877 to 1,126 meters. The composite static water level was about 526 meters below the land surface; the hydraulic head increased slightly with depth. Most permeability in the saturated zone is in two fractured intervals in Crater Flat Tuff. Based on well-test data using the transitional part of a dual-porosity solution, an interval of about 15 meters in the middle part of the Bullfrog Member of the Crater Flat Tuff has a calculated transmissivity of about 140 meters squared per day, and an interval of about 11 meters in the middle part of the Tram Member of the Crater Flat Tuff has a calculated transmissivity of about 75 meters squared per day. The upper part of the Bullfrog Member has a transmissivity of about 20 meters squared per day. The maximum likely transmissivity of any rocks penetrated by the test well is about 480 meters squared per day, based on a recharge-boundary model. The remainder of the open hole had no detectable production. Matrix hydraulic conductivity ranges from less than 5 x 10 -5 to 1 x 10 -3 meter per day. Ground water is a sodium bicarbonate type that is typical of water from tuffaceous rock of southern Nevada. The apparent age of the water is about 14,6000 years. 29 refs., 26 figs., 5 tabs

  7. UV laser drilling of SiC for semiconductor device fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Olaf; Schoene, Gerd; Wernicke, Tim; John, Wilfred; Wuerfl, Joachim; Traenkle, Guenther [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2007-04-15

    Pulsed UV laser processing is used to drill micro holes in silicon carbide (SiC) wafers supporting AlGaN/GaN transistor structures. Direct laser ablation using nanosecond pulses has been proven to provide an efficient way to create through and blind holes in 400 {mu}m thick SiC. When drilling through, openings in the front pads are formed, while blind holes stop {approx}40 {mu}m before the backside and were advanced to the electrical contact pad by subsequent plasma etching without an additional mask. Low induction connections (vias) between the transistor's source pads and the ground on the backside were formed by metallization of the holes. Micro vias having aspect ratios of 5-6 have been processed in 400 {mu}m SiC. The process flow from wafer layout to laser drilling is available including an automated beam alignment that allows a positioning accuracy of {+-}1 {mu}m with respect to existing patterns on the wafer. As proven by electrical dc and rf measurements the laser-assisted via technologies have successfully been implemented into fabrication of AlGaN/GaN high-power transistors.

  8. Model of the final borehole geometry for helical laser drilling

    Science.gov (United States)

    Kroschel, Alexander; Michalowski, Andreas; Graf, Thomas

    2018-05-01

    A model for predicting the borehole geometry for laser drilling is presented based on the calculation of a surface of constant absorbed fluence. It is applicable to helical drilling of through-holes with ultrashort laser pulses. The threshold fluence describing the borehole surface is fitted for best agreement with experimental data in the form of cross-sections of through-holes of different shapes and sizes in stainless steel samples. The fitted value is similar to ablation threshold fluence values reported for laser ablation models.

  9. Selected properties of laser cladding coatings shaped using Flow drill technology

    Directory of Open Access Journals (Sweden)

    Bartkowski Dariusz

    2017-01-01

    Full Text Available The paper presents the investigations of selected chemical and mechanical properties as well as macro- and microstructure of materials formed using thermal drilling process (Flow drill. The aim of this study was to determine the microstructure of the coatings produced using laser cladding with powder technology. The coatings were produced on the low-carbon steel using 1 kW disc laser. After modification of surface, the thermal drilling process was applied. To produce all coatings, the pure copper powder was used. In this study the laser power equal of 500, 700 and 900 W were used. The microstructure, chemical composition (EDS and microhardness were investigation. It was found that the surface modification of low carbon steel and next conducted thermal drilling process caused change the surface properties on the hole flange. It was found that surface modification of steel using laser cladding with cooper powder and next Flow drill process contributes to the change in microhardness and chemical composition on hole flange.

  10. Site selection

    International Nuclear Information System (INIS)

    Olsen, C.W.

    1983-07-01

    The conditions and criteria for selecting a site for a nuclear weapons test at the Nevada Test Site are summarized. Factors considered are: (1) scheduling of drill rigs, (2) scheduling of site preparation (dirt work, auger hole, surface casing, cementing), (3) schedule of event (when are drill hole data needed), (4) depth range of proposed W.P., (5) geologic structure (faults, Pz contact, etc.), (6) stratigraphy (alluvium, location of Grouse Canyon Tuff, etc.), (7) material properties (particularly montmorillonite and CO 2 content), (8) water table depth, (9) potential drilling problems (caving), (10) adjacent collapse craters and chimneys, (11) adjacent expended but uncollapsed sites, (12) adjacent post-shot or other small diameter holes, (13) adjacent stockpile emplacement holes, (14) adjacent planned events (including LANL), (15) projected needs of Test Program for various DOB's and operational separations, and (16) optimal use of NTS real estate

  11. Design and development of solid carbide step drill K34 for machining of CFRP and GFRP composite laminates

    Science.gov (United States)

    Rangaswamy, T.; Nagaraja, R.

    2018-04-01

    The Study focused on design and development of solid carbide step drill K34 to drill holes on composite materials such as Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP). The step drill K34 replaces step wise drilling of diameter 6.5mm and 9 mm holes that reduces the setup time, cutting speed, feed rate cost, delamination and increase the production rate. Several researchers have analyzed the effect of drilling process on various fiber reinforced plastic composites by carrying out using conventional tools and machinery. However, this process operation can lead to different kind of damages such as delamination, fiber pullout, and local cracks. To avoid the problems encountered at the time of drilling, suitable tool material and geometry is essential. This paper deals with the design and development of K34 Carbide step drill used to drill holes on CFRP and GFRP laminates. An Experimental study carried out to investigate the tool geometry, feed rate and cutting speed that avoids delamination and fiber breakage.

  12. Environmental Measurement-While-Drilling system for real-time field screening of contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Bishop, L.B.; Floran, R.J.; Williams, C.V.

    1995-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ''steer'' the drill bit in or out hazardous zones. During measurement-while-drilling, down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented

  13. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of drilling large-diameter holes in 1986. Environmental geology notes

    International Nuclear Information System (INIS)

    Vaiden, R.C.; Hasek, M.J.; Gendron, C.R.; Curry, B.B.; Graese, A.M.

    1988-01-01

    The Illinois State Geological Survey (ISGS) has completed an extensive four-year exploration of the area near Fermi National Accelerator Laboratory (Fermilab) at Batavia, 30 miles west of Chicago. The comprehensive investigation was conducted to locate the most suitable site for construction and operation of the Superconducting Super Collider (SSC) - a 20-trillion electron volt (TeV) subatomic particle accelerator. Underlying the proposed site in northeastern Illinois, between 250 and 600 feet deep, are the Galena and Platteville dolomites - strong, stable, nearly impermeable bedrock. To confirm that these bedrock units are suitable for construction of the SSC, ISGS geologists designed a four-year study including test drilling, rock sampling and analysis, geophysical logging, hydrogeologic studies, and seismic exploration. Initially, the study covered parts of six counties. Subsequent research focused on successively smaller areas until the final stage of test drilling in spring 1986 concentrated on a proposed corridor for the SSC tunnel. From 1984 to 1986, thirty 3-inch-diameter test holes were drilled and more than 2 miles of bedrock core was recovered for stratigraphic description and geotechnical analysis

  14. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  15. An experimental investigation on thermal exposure during bone drilling.

    Science.gov (United States)

    Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed

    2012-12-01

    This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Advantages and limitations of remotely operated sea floor drill rigs

    Science.gov (United States)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.

  17. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    Science.gov (United States)

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  18. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  19. Process based analysis of manually controlled drilling processes for bone

    Science.gov (United States)

    Teicher, Uwe; Achour, Anas Ben; Nestler, Andreas; Brosius, Alexander; Lauer, Günter

    2018-05-01

    The machining operation drilling is part of the standard repertoire for medical applications. This machining cycle, which is usually a multi-stage process, generates the geometric element for the subsequent integration of implants, which are screwed into the bone in subsequent processes. In addition to the form, shape and position of the generated drill hole, it is also necessary to use a technology that ensures an operation with minimal damage. A surface damaged by excessive mechanical and thermal energy input shows a deterioration in the healing capacity of implants and represents a structure with complications for inflammatory reactions. The resulting loads are influenced by the material properties of the bone, the used technology and the tool properties. An important aspect of the process analysis is the fact that machining of bone is in most of the cases a manual process that depends mainly on the skills of the operator. This includes, among other things, the machining time for the production of a drill hole, since manual drilling is a force-controlled process. Experimental work was carried out on the bone of a porcine mandible in order to investigate the interrelation of the applied load during drilling. It can be shown that the load application can be subdivided according to the working feed direction. The entire drilling process thus consists of several time domains, which can be divided into the geometry-generating feed motion and a retraction movement of the tool. It has been shown that the removal of the tool from the drill hole has a significant influence on the mechanical load input. This fact is proven in detail by a new evaluation methodology. The causes of this characteristic can also be identified, as well as possible ways of reducing the load input.

  20. Use of neutron capture gamma radiation for determining grade of iron ore in blast holes and exploration holes

    International Nuclear Information System (INIS)

    Eisler, P.L.; Huppert, P.; Mathew, P.J.; Wylie, A.W.; Youl, S.F.

    1977-01-01

    Neutron radiative capture and neutron-neutron logging have been applied to determining the grade of ore in dry blast holes and a dry exploration hole drilled into a layered iron deposit. Both thermal and epithermal neutron responses were measured as well as the gamma-ray responses due to neutron capture by iron and by hydrogen present in hydrated minerals. The results were fitted by a stepwise multiple linear regression technique to give expressions for mean grade of ore in the drill hole and 95% confidence intervals for estimation of this mean. For an overall range of ore grades of 20-68% Fe and a mean grade of 63% Fe, the confidence interval for prediction of mean grade for the neutron-gamma technique was 0.3% Fe for pooled data from all five blast holes and 0.8% Fe for a single hole. It was also shown that for this type of layered deposit a simpler neutron-neutron log incorporating simultaneous measurement of both thermal and epithermal neutron responses gave almost as good a grade prediction result for pooled results from five drill holes, namely 63+-0.4% Fe, as that obtained by the neutron-gamma technique. The results of both types of log are compared with those obtained by the spectral gamma-ray backscattering [Psub(z)] technique, or by logging of natural gamma radiations from the shale component of the ore. From this comparison conclusions are drawn regarding the most suitable technique to employ for determining grade of iron ore in various practical logging situations. (author)

  1. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    Science.gov (United States)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  2. Geohydrologic data for test well USW H-5, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bentley, C.B.; Robison, J.H.; Spengler, R.W.

    1983-01-01

    This report presents data on drilling operations, lithology, borehold geophysics, water-level monitoring, core analysis, ground-water chemistry, pumping tests, and packer-injection tests for test well USW H-5. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the US Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Test well USW H-5 was drilled to a total depth of 1219 meters through volcanic rocks consisting mostly of ash-flow tuff. Depth to water in the well ranged between 703.8 and 707.2 meters below land surface, at an approximate altitude of 704 meters above sea level. Drawdown in the well exceeded 6 meters after test pumping more than 3000 minutes at a rate of 10 liters per second. Borehole-flow surveys showed that about 90 percent of the water in the well is contributed by the zone between 707 and about 820 meters below land surface. Two composite water samples collected after well completion contained 206 and 220 milligrams per liter of dissolved solids. Sodium and bicarbonate were the predominant dissolved anion and cation. The concentration of dissolved silica was 48 milligrams per liter in both samples, which is a relatively large concentration for most natural waters. 6 references, 19 figures, 6 tables

  3. Geohydrologic data for test well USW H-5, Yucca Mountain area, Nye County, Nevada

    Science.gov (United States)

    Bentley, C.B.; Robison, J.H.; Spengler, R.W.

    1983-01-01

    This report presents data on drilling operations, lithology, borehole geophysics, water-level monitoring, core analysis, ground-water chemistry, pumping tests, and packer-injection tests for test well USW H-5. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Test well USW H-5 was drilled to a total depth of 1,219 meters through volcanic rocks consisting mostly of ash-flow tuff. Depth to water in the well ranged between 703.8 and 707.2 meters below land surface, at an approximate altitude of 704 meters above sea level. Drawdown in the well exceeded 6 meters after test pumping more than 3,000 minutes at a rate of 10 liters per second. Borehole-flow surveys showed that about 90 percent of the water in the well is contributed by the zone between 707 and about 820 meters below land surface. Two composite water samples collected after well completion contained 206 and 220 milligrams per liter of dissolved solids. Sodium and bicarbonate were the predominant dissolved anion and cation. The concentration of dissolved silica was 48 milligrams per liter in both samples, which is a relatively large concentration for most natural waters.

  4. Completion Report for Well ER-EC-1

    International Nuclear Information System (INIS)

    Townsend, M.J.

    2000-01-01

    Well ER-EC-1 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 675.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 566.3 meters prior to installation of the completion string. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 31 sidewall samples taken at various depths below 680 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, the Crater Flat Group, and the Volcanics of Quartz Mountain. The preliminary geologic interpretation of data from Well ER-EC-1 indicates the presence of a structural trough or bench filled with a thick section of post-Rainier Mesa lava. These data also suggest that this site is located on a buried structural ridge that may separate the Silent Canyon and Timber Mountain caldera complexes

  5. Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.E.; Wayland, T.E.

    1981-09-01

    The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorable by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.

  6. Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado

    International Nuclear Information System (INIS)

    Carter, T.E.; Wayland, T.E.

    1981-09-01

    The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U 3 O 8 forward-cost category have been increased by 34,476 tons U 3 O 8 (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorable by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas

  7. Bulk and thermal properties of the functional Tuffaceous Beds in holes USW G-1, UE-25 No. 1, and USW G-2, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Lappin, A.R.; Nimick, F.B.

    1985-04-01

    One emplacement horizon considered for a nuclear-waste repository at Yucca Mountain, Nevada, adjacent to the Nevada Test Site, consists of a zeolitized section. This section is defined here as an informal functional unit called the Tuffaceous Beds. This report describes the logic, data, and uncertainties involved in picking the boundaries of the functional unit in exploratory Holes USW G-1, UE-25a No. 1, and USW G-2. It also includes frequency profiles for grain density and porosity within the unit in the three exploratory holes. Results indicate that the functional Tuffaceous Beds range from 143 to 312 m in total thickness in the three holes studied. Unit-wide average grain densities and porosities of nonwelded ash-flows are 2.39 g/cm 3 and 0.33, respectively. The average matrix thermal conductivity of heavily zeolitized tuffs is constant at 1.95 W/m.K. This value leads to average estimated conductivities of saturated and dehydrated nonwelded ashflows within the functional Tuffaceous Beds of 1.3 and 0.9 W/m.K, respectively. Available confined measurements indicate an average predehydration linear-expansion coefficient of 6.7 x 10 -6 K -1 ; individual values range from 2.8 to 13.2 x 10 -6 K -1 . Transdehydration expansion behavior is variable, with average coefficients ranging from -56 to -29 x 10 -6 K -1 , depending on relative zeolite and (quartz + feldspar) contents. Postdehydration behavior is also sensitive to mineralogy, with average unconfined coefficients ranging from -4.5 to +7.8 x 10 -6 K -1 for the different subunits within the functional Tuffaceous Beds. For the nonwelded ashflows dominant within the unit, pre-, trans-, and postdehydration expansion coefficients of +6.7, -56, and -4.5 x 10 -6 K -1 are most representative. 21 refs, 7 figs., 12 tabs

  8. Optimization of hole generation in Ti/CFRP stacks

    Science.gov (United States)

    Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.

    2018-03-01

    The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.

  9. Brushy Basin drilling project, Cedar Mountain, Emergy County, Utah

    International Nuclear Information System (INIS)

    Kiloh, K.D.; McNeil, M.; Vizcaino, H.

    1980-03-01

    A 12-hole drilling program was conducted on the northwestern flank of the San Rafael swell of eastern Utah to obtain subsurface geologic data to evaluate the uranium resource potential of the Brushy Basin Member of the Morrison Formation (Jurassic). In the Cedar Mountain-Castle Valley area, the Brushy Basin Member consists primarily of tuffaceous and carbonaceous mudstones. Known uranium mineralization is thin, spotty, very low grade, and occurs in small lenticular pods. Four of the 12 drill holes penetrated thin intervals of intermediate-grade uranium mineralization in the Brushy Basin. The study confirmed that the unit does not contain significant deposits of intermediate-grade uranium

  10. Implementation and Development of the Incremental Hole Drilling Method for the Measurement of Residual Stress in Thermal Spray Coatings

    Science.gov (United States)

    Valente, T.; Bartuli, C.; Sebastiani, M.; Loreto, A.

    2005-12-01

    The experimental measurement of residual stresses originating within thick coatings deposited by thermal spray on solid substrates plays a role of fundamental relevance in the preliminary stages of coating design and process parameters optimization. The hole-drilling method is a versatile and widely used technique for the experimental determination of residual stress in the most superficial layers of a solid body. The consolidated procedure, however, can only be implemented for metallic bulk materials or for homogeneous, linear elastic, and isotropic materials. The main objective of the present investigation was to adapt the experimental method to the measurement of stress fields built up in ceramic coatings/metallic bonding layers structures manufactured by plasma spray deposition. A finite element calculation procedure was implemented to identify the calibration coefficients necessary to take into account the elastic modulus discontinuities that characterize the layered structure through its thickness. Experimental adjustments were then proposed to overcome problems related to the low thermal conductivity of the coatings. The number of calculation steps and experimental drilling steps were finally optimized.

  11. Better well control through safe drilling margin identification, influx analysis and direct bottom hole pressure control method for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Veeningen, Daan [National Oilwell Varco IntelliServ (NOV), Houston, TX (United States)

    2012-07-01

    Currently, well control events are almost exclusively detected by using surface measurements. Measuring a volume increase in the 'closed loop' mud circulation system; a standpipe pressure decrease; or changes in a variety of drilling parameters provide indicators of a kick. Especially in deep water, where the riser comprises a substantial section of the well bore, early kick detection is paramount for limiting the severity of a well bore influx and improve the ability to regain well control. While downhole data is presently available from downhole tools nearby the bit, available data rates are sparse as mud pulse telemetry bandwidth is limited and well bore measurements compete with transmission of other subsurface data. Further, data transfer is one-directional, latency is significant and conditions along the string are unknown. High-bandwidth downhole data transmission system, via a wired or networked drill string system, has the unique capability to acquire real-time pressure and temperature measurement at a number of locations along the drill string. This system provides high-resolution downhole data available at very high speed, eliminating latency and restrictions that typically limit the availability of downhole data. The paper describes well control opportunities for deep water operations through the use of downhole data independent from surface measurements. First, the networked drill string provides efficient ways to identify pore pressure, fracture gradient, and true mud weight that comprise the safe drilling margin. Second, the independent measurement capability provides early kick detection and improved ability to analyze an influx even with a heterogeneous mud column through distributed along-string annular pressure measurements. Third, a methodology is proposed for a direct measurement method using downhole real-time pressure for maintaining constant bottom hole pressure during well kills in deep water. (author)

  12. Research on technical and technological parameters of inclined drilling

    Directory of Open Access Journals (Sweden)

    М. В. Двойников

    2017-03-01

    Analysis of investigation results showed that the main source of oscillations is linked to bending and compressing stresses, caused by well deviations as well as rigidity of the drilling tool. In effect, in the bottom-hole assembly occur auto-oscillations, making it impossible to correct azimuth and zenith angles. Alteration of rigidity in the bottom part of the tool and drilling parameters, implying reduced rotation speed of the drill string and regulation of drill bit pressure, can partially solve this problem, though increase in rotation speed is limited by technical characteristics of existing top drive systems.

  13. Core drilling of drillholes OL-PP66-69 at Olkiluoto 2008

    International Nuclear Information System (INIS)

    Kuusirati, J.; Tarvainen, A.-M.

    2009-04-01

    Suomen Malmi Oy (Smoy) core drilled four 24.88 - 25.39 m long investigation drillholes at Olkiluoto in June 2008. The identification numbers of the holes are OL-PP66, OL-PP67, OL-PP68 and OL-PP69. The drillholes are 75.7 mm by diameter. Drillholes were core drilled with the diamond drill rig Diamec 1000. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The labelled drilling water was driven to the drilling places in a tank. In addition to drilling the drill cores were logged and reported by geologist. During geological investigation the following parameters were logged: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic and veined gneisses and pegmatitic granite. The average fracture frequency in holes varied from 3.9 pcs/m to 5.8 pcs/m. The average RQD values varied from 84 % to 93 %. In the drillhole OL-PP66 two fractured zones were penetrated and in OL-PP69 one fractured zone. The drill cores OL-PP67 and OL-PP68 showed no fractured zones. Smoy also carried out optical imaging of the drillholes. The assignment included the field work and the data processing. This report describes the field operation, the equipment as well as the processing procedures and shows the obtained results and their quality. The raw and processed data are delivered digitally in WellCAD and PDF format. (orig.)

  14. The final frontier: Tesco takes evolution of casing drilling system offshore

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.

    2000-04-01

    Tesco Corporation is complementing its smaller 4 1/2-inch casing-while-drilling (CWD) tools by designing a series of 13 3/8-inch and a 9 5/8-inch underreamers and cutters to accommodate the larger diameter holes typical of offshore drilling. Tesco is building its own rig; it is a single rated to 3,000 metres that can be moved in seven loads with an overall 100 ton load rating. The unit features dimensional drilling capability in addition to features such as logging-while-drilling, and measurement-while-drilling. A conventional coring unit is employed via wireline. To date, Tesco has successfully overcome two of the main challenges in developing the new drilling process, i. e. to guarantee that casing can be run in high compression loads without damage to connections, and to develop an underreamer cutting structure to destroy rock at a rate comparable to conventional rotary drilling. The wireline retrieval system, which is 100 per cent reliable in running mode, but only 70 per cent successful in the retrieval mode, is the next challenge to be overcome. Tesco claims a 40 per cent reduction in overall 'spud to release' time, however, the main advantage claimed for the system is that the casing system protects the integrity of the hole as it is being drilled.

  15. Geology in the Vicinity of the TYBO and BENHAM Underground Nuclear Tests, Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    L. B. Prothro

    2001-12-01

    Recent radiochemical evidence from groundwater characterization and monitoring wells in the vicinity of the TYBO and BENHAM underground nuclear tests in Area 20 of the Nevada Test Site, suggests that migration of radionuclides within groundwater beneath this portion of Area 20 may be more rapid than previously thought. In order to gain a better understanding of the hydrogeologic conditions in the TYBO-BENHAM area for more accurate flow and transport modeling, a reevaluation of the subsurface geologic environment in the vicinity of the two underground tests was conducted. Eight existing drill holes provided subsurface control for the area. These holes included groundwater characterization and monitoring wells, exploratory holes, and large-diameter emplacement holes used for underground nuclear weapons tests. Detailed and consistent geologic descriptions of these holes were produced by updating existing geologic descriptions with data from petrographic, chemical, and mineralogic analyses, and current stratigraphic concepts of the region. The updated descriptions, along with surface geologic data, were used to develop a detailed geologic model of the TYBO-BENHAM area. This model is represented by diagrams that correlate stratigraphic, lithologic, and alteration intervals between holes, and by isopach and structure maps and geologic cross sections. Regional data outside the TYBO-BENHAM area were included in the isopach and structure maps to better evaluate the geology of the TYBO-BENHAM area in a regional context. The geologic model was then evaluated with regard to groundwater flow and radionuclide migration to assess the model's implications for flow and transport modeling. Implications include: (1) confirmation of the general hydrogeology of the area described in previous studies; (2) the presence of two previously unrecognized buried faults that could act as zones of enhanced permeability within aquifers; and (3) secondary alteration within tuff confining

  16. Experience with drilling and blasting work during construction of Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Mraz, M.; Vojta, A.; Podel, R.

    1986-01-01

    The results are discussed of four years of investigating the technical and economic parameters of drilling and blasting equipment employed on the building site of the Mochovce nuclear power plant. The technical and operating characteristics are given of tested breaking and drilling sets manufactured by various foreign companies. The final choice was based on output, hard currency prices, power demand, operating reliability and number of personnel required for operation. The optimal set consists of two Hausherr HBM 70 drilling systems (holes with a diameter of 130 to 150 mm) and two ROC 601-02 Atlas Copco machines (auxiliary work, breaking foundation holes for nuclear reactors). (J.C.)

  17. NEW APPROACHES TO THE IMPLEMENTATION OF THE MINING TECHNOLOGY OF DIMENSION STONE USING A CLOSE-SET DRILLING

    Directory of Open Access Journals (Sweden)

    S. V. Kalchuk

    2017-04-01

    Full Text Available The analysis of the current state the non-blasting monolith extraction technology was conducted. The further research direction was substantiated. Has been considered and justified the rational parameters of close-set drilling technology of dimension stones. Solution is offered that consist the combined drilling (a close-set and a holes line drilling, that provides to increase of stone splitting efficiency under its own weight. The calculation of the parameters of the scheme of partial underdrilling at a monolith of stone with the purpose of reducing the volume of drilling works is given. Diagrams of tensile stress changes depending on the specific area of splitting were built. A rational correlation between the drilling parameters of the holes has been established by solving the problems of loading the cantilever beam and stress concentration by the Kirsch solution. The most important parameter for the implementation of this technology is the ratio of monoloth hight to its length. Engineering formulas are proposed for calculating the technological parameters of the realization of the “gravitational-hole” stone splitting. The configuration of a rough block of stones is determined under which this technology can be realized. Creating of close-set holes provides the increase of maximal tensile stress with equal values of specific splitting area ratio. It is established that the effective drilling depth of close-set holes is 43,2 % of monolith height. It is estimated that combined drilling method application of savings from drilling operation will be 11,36 %.

  18. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  19. Characterization of infiltration into fractured, welded tuff using small borehole data collection technique: State of Nevada, agency for nuclear projects/nuclear waste project office

    International Nuclear Information System (INIS)

    Linderfelt, W.

    1986-10-01

    Knowledge of all aspects of the hydrologic cycle is required for consideration of Yucca mountain as a high level radioactive waste site. Surface processes are especially important in controlling the quantity and quality of water infiltrating into the unsaturated zone, available for recharging the aquifer. The investigation reported herein uses small bore drill holes to access the near surface fractured rock environment. The study was conducted in northern Nevada at the north end of the Pah Rah range, east of Pyramid Lake as an analog to Yucca Mountain. The results of this study will be used to better understand the chemistry and flow of the near surface flow regime of Yucca Mountain and to evaluate proposed techniques for use in future investigations. 7 refs., 6 figs., 3 tabs

  20. Results from Testing of Two Rotary Percussive Drilling Systems

    Science.gov (United States)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  1. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    microspine toes that independently find holes and ledges on a rock to create an anchor. Once the system is anchored, a linear translation mechanism moves the drill axially into the surface while maintaining the proper WOB. The linear translation mechanism is composed of a ball screw and stepper motor that can translate a carriage with high precision and applied load. The carriage slides along rails using self-aligning linear bearings that correct any axial misalignment caused by bending and torsion. The carriage then compresses a series of springs that simultaneously transmit the load to the drill along the bit axis and act as a suspension that compensates for the vibration caused by percussive drilling. The drill is a compacted, modified version of an off-the-shelf rotary percussive drill, which uses a custom carbide-tipped coring bit. By using rotary percussive drilling, the drill time is greatly reduced. The percussive action fractures the rock debris, which is removed during rotation. The final result is a 0.75-in. (.1.9- cm) diameter hole and a preserved 0.5- in. (.1.3-cm) diameter rock core. This work extends microspine technology, making it applicable to astronaut missions to asteroids and a host of robotic sampling concepts. At the time of this reporting, it is the first instrument to be demonstrated using microspine anchors, and is the first self-contained drill/anchor system to be demonstrated that is capable of drilling in inverted configurations and would be capable of drilling in microgravity.

  2. Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser

    Science.gov (United States)

    Zhao, Wanqin; Yu, Zhishui

    2018-06-01

    Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.

  3. The effect of drilling parameters for surface roughness in drilling of AA7075 alloy

    Directory of Open Access Journals (Sweden)

    Yaşar Nafiz

    2017-01-01

    Full Text Available AA7075 aluminum alloy has been very popular significantly interest in the production of structural components in automotive and aviation applications due to its high strength, low density, good plasticity and better machinability comparable to many metals. Particularly, final products must have uniformly high quality to ensure essential safety standards in the aircraft industry. The optimization of hole quality which can variable according to tool geometry and drilling parameters is important in spite of high machinability rate of AA7075 alloy. In this study, the effects of drilling parameters on average surface roughness (Ra has been investigated in drilling of AA7075 with tungsten carbide drills. Machining experiments were performed with three different drill point angles and three different levels of cutting parameters (feed rate, cutting speed. The effects of drilling parameters on thrust force has been determined with ANOVA in %95 confidence level. Feed rate was determined as the most important factor on Ra according to ANOVA results. Moreover, it was shown that increasing feed rate leads to increase of Ra while increasing drill point angle leads to decrease of Ra. The optimum surface roughness was obtained with point angle of 130°, cutting speed of 40 m/min and feed rate of 0.1 mm/rev, thereby the validity of optimization was confirmed with Taguchi method.

  4. Requirements for drilling and disposal in deep boreholes; Foerutsaettningar foer borrning av och deponering i djupa borrhaal

    Energy Technology Data Exchange (ETDEWEB)

    Oden, Anders [QTOB, Haesselby (Sweden)

    2013-09-15

    In this report experience from drilling at great depth in crystalline rock is compiled based on project descriptions, articles and personal contacts. Rock mechanical effects have been analyzed. The report also describes proposals made by SKB and other agencies regarding the disposal of and closure of deep boreholes. The combination of drilling deep with large diameter in crystalline rocks have mainly occurred in various research projects, such as in the German KTB project. Through these projects and the increased interest in recent years for geothermal energy , today's equipment is expected to be used to drill 5000 m deep holes , with a hole diameter of 445 mm , in crystalline rock. Such holes could be used for the disposal of spent nuclear fuel. With the deposition technique recently described by Sandia National Laboratories in USA, SKB estimates that it might be possible to implement the disposal to 5000 m depth. Considering the actual implementation, drilling and disposal, and the far-reaching requirements on nuclear safety and radiation protection, it is considered an important risk getting stuck with the capsule-string, or part of it, above deposition zone without being able to get it loose. In conclusion, even if the drilling and the deposit would succeed there remains to verify that the drill holes with the deposited canisters meet the initial requirements and is long-term safe.

  5. Steel, hard metal and diamonds. The history of drilling blast holes in mining and tunneling; Stahl, Hartmetall und Diamanten. Zur Geschichte des Sprenglochbohrens im Berg- und Tunnelbau

    Energy Technology Data Exchange (ETDEWEB)

    Feistkorn, E. [Inst. fuer Vortrieb und Gewinnung, DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1997-12-31

    Beginning of the blasting technique in mining and tunneling during the 17th century required drilling holes to take the explosive. Following the use of hammer and wedge, drilling was done over a long period of time by hand with mallet and drillsteel. Continuously, during the 19th century the handwork was replaced by drilling machines. Technically, the evolution of drilling equipment is marked by electrohydraulic control and automatization with the assistance of microelectronics. Regarding the material, the introduction of hard metal and - in addition for rotary drilling - the development of synthetic diamond material are the main features. (orig.) [Deutsch] Mit der Einfuehrung der Sprengtechnik im Bergbau und Tunnelbau im 17. Jahrhundert mussten verfahrensbedingt Bohrloecher zur Aufnahme des Sprengstoffes hergestellt werden. In Anlehnung an die Arbeit mit Schlaegel und Eisen erfolgte dies lange Zeit manuell mit dem Bohrfaeustel und Stahlbohrern. Die Handarbeit wurde waehrend der 2. Haelfte des 19. Jahrhunderts kontinuierlich durch Bohrmaschinen verdraengt. Maschinentechnisch ist die weitere Entwicklung durch elektrohydraulische Steuerungen und die Automatisierung der Bohrgeraete mit Hilfe der Mikroelektronik gekennzeichnet. Materialtechnisch stellen die Einfuehrung des Hartmetalls und beim drehenden Bohren zusaetzlich die Entwicklung synthetischer Diamantwerkstoffe die herausragenden Marksteine dar. (orig.)

  6. Corrective Action Decision Document for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0, with ROTC No. 1 and Addendum

    Energy Technology Data Exchange (ETDEWEB)

    David Strand

    2006-04-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 145, Wells and Storage Holes in Area 3 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 145 is comprised of the following corrective action sites (CASs): (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for the six CASs within CAU 145. Corrective action investigation activities were performed from August 1, 2005, through November 8, 2005, as set forth in the CAU 145 Corrective Action Investigation Plan and Record of Technical Change No. 1. Analytes detected during the Corrective Action Investigation (CAI) were evaluated against appropriate final action levels to identify the contaminants of concern for each CAS. The results of the CAI identified contaminants of concern at one of the six CASs in CAU 145 and required the evaluation of corrective action alternatives. Assessment of the data generated from investigation activities conducted at CAU 145 revealed the following: CASs 03-20-01, 03-20-02, 03-20-04, 03-20-08, and 03-99-13 do not contain contamination; and CAS 03-25-01 has pentachlorophenol and arsenic contamination in the subsurface soils. Based on the evaluation of analytical data from the CAI, review of future and current operations at the six CASs, and the detailed and comparative analysis of the potential corrective action alternatives, the following corrective actions are recommended for CAU 145. No further action is the preferred corrective action for CASs 03-20-01, 03-20-02, 03-20-04, 03-20-08, and 03-99-13. Close in place is the preferred corrective action

  7. A Universal Rig for Supporting Large Hammer Drills: Reduced Injury Risk and Improved Productivity.

    Science.gov (United States)

    Rempel, David; Barr, Alan

    2015-10-01

    Drilling holes into concrete with heavy hammer and rock drills is one of the most physically demanding tasks performed in commercial construction and poses risks for musculoskeletal disorders, noise induced hearing loss, hand arm vibration syndrome and silicosis. The aim of this study was to (1) use a participatory process to develop a rig to support pneumatic rock drills or large electric hammer drills in order to reduce the health risks and (2) evaluate the usability of the rig. Seven prototype rigs for supporting large hammer drills were developed and modified with feedback from commercial contractors and construction workers. The final design was evaluated by laborers and electricians (N=29) who performed their usual concrete drilling with the usual method and the new rig. Subjective regional fatigue was significantly less in the neck, shoulders, hands and arms, and lower back) when using the universal rig compared to the usual manual method. Usability ratings for the rig were significantly better than the usual method on stability, control, drilling, accuracy, and vibration. Drilling time was reduced by approximately 50% with the rig. Commercial construction contractors, laborers and electricians who use large hammer drills for drilling many holes should consider using such a rig to prevent musculoskeletal disorders, fatigue, and silicosis.

  8. Tragacanth gum: an effective oil well drilling fluid additive

    Energy Technology Data Exchange (ETDEWEB)

    Mahto, V.; Sharma, V. [Indian School of Mines, Dhanbad (India). Department of Petroleum Engineering

    2005-02-15

    The low penetration rate, excessive torque and drag, poor hole cleaning and formation damage are major impediments in drilling oil and gas well. These have a major impact on drilling efficiency and well economics. Keeping these in mind, an attempt was made to design a water based drilling fluid system using Indian bentonite clays and tragacanth gum. The effect of tragacanth gum on rheological behavior of three different Indian bentonite water suspensions was studied and a drilling fluid system was developed. The filtrates of these drilling fluids were subjected to formation damage study on the field core using Ruska Liquid Permeameter. The laboratory investigation furnishes that tragacanth gum acts as a good viscosifier and fluid loss control agent. The drilling fluid filtrate also has less effect on formation damage. (author)

  9. Application of air hammer drilling technology in igneous rocks of Junggar basin

    Science.gov (United States)

    Zhao, Hongshan; Feng, Guangtong; Yu, Haiye

    2018-03-01

    There were many technical problems such as serious well deviation, low penetration rate and long drilling cycle in igneous rocks because of its hardness, strong abrasive and poor drillability, which severely influenced the exploration and development process of Junggar basin. Through analyzing the difficulties of gas drilling with roller bits in Well HS 2, conducting the mechanics experiments about igneous rock, and deeply describing the rock-breaking mechanism of air hammer drilling and its adaptability in igneous rocks, air hammer drilling can realize deviation control and fast drilling in igneous rocks of piedmont zone and avoid the wear and fatigue fracture of drilling strings due to its characteristics of low WOB, low RPM and high frequency impact. Through firstly used in igneous rocks of Well HS 201, compared with gas drilling with cone bit, the average penetration rate and one-trip footage of air hammer drilling respectively increased by more than 2.45 times and 6.42 times while the well deviation was always controlled less than 2 degrees. Two records for Block HS were set up such as the fastest penetration rate of 14.29m/h in Φ444.5mm well hole and the highest one-trip footage of 470.62m in Φ311.2mm well hole. So air hammer drilling was an effective way to realize optimal and fast drilling in the igneous rock formation of Junggar basin.

  10. Inspection of drilled well at the Borgen school in Asker community, Akershus

    International Nuclear Information System (INIS)

    Elvebakk, Harald

    2001-01-01

    A drill hole inspection is carried out with an optical telemetric reviewer at logged temperatures, electric conductivity and natural gamma radiation in a 165 m deep drilled well at the Borgen school. The aim of the logging was to obtain data for evaluating the geothermal potential of the well. The optical logging shows that the rock (shale, siltstone and noduled lime) generally is only slightly cracked.. The temperature log shows only slight temperature increment, 0.56 o C/100 m, down to about a depth of 100 m. From 100 m the temperature gradient increases to 0.98 o C/100 m and the temperature is about 6.8 o C at a depth of 160 m. A marked increase from 160 m may indicate a water flux at this depth. An observed crack in the optical log at the same depth confirm that this may be the case. The conductivity is constant and low, about 225 microsec/cm, along the entire drill hole except for the top 6 m of the hole where it is lower. The natural gamma radiation is at a low level, about 75 cps, along the entire hole. A marked decrease between 60 and 70 m indicates another rock type, chalk enriched sandstone, which probably has somewhat lower potassium content than the rest of the hole. The deviation measurement shows that the hole turns towards north west with a horizontal deviation of 21 m at the bottom

  11. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling

    Science.gov (United States)

    2011-12-08

    ... National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling AGENCY... proposed action is to approve two Plans of Operations for exploratory uranium drilling on the Cibola... San Mateo. In total, there are up to 279 drill holes that would be drilled over a period not to exceed...

  12. The application of borehole logging to characterize the hydrogeology of the Faultless site, Central Nevada Test Area

    International Nuclear Information System (INIS)

    Chapman, J.B.; Mihevc, T.M.; Lyles, B.F.

    1994-08-01

    The Central Nevada Test Area was the site of the Faultless underground nuclear test that could be a source of radionuclide contamination to aquifers in Hot Creek Valley, Nevada. Field studies in 1992 and 1993 have used hydrologic logging and water sampling to determine the adequacy of the current groundwater monitoring network and the status of water-level recovery to pre-shot levels in the nuclear chimney. The field studies have determined that there is a possibility for contaminant migration away from the Faultless event though the pre-event water level has not been attained, while new data raise questions about the ability of the current monitoring network to detect migration. Hydrologic logs from the postshot hole (drilled into the chimney created by the nuclear detonation) reveal inflow around 485 m below land surface. The physical and chemical characteristics of the inflow water indicate that its source is much deeper in the chimney, perhaps driven upward in a convection cell generated by heat near the nuclear cavity. Logging and sampling at monitoring wells HTH-1 and HTH-2 revealed that the completion of HTH-1 may be responsible for its elevated water level (as compared to pre-nuclear test levels) and may have also created a local mound in the water table in the alluvium that accounts for higher post-test water levels at HTH-2. This mound would serve to divert flow around the monitoring wells, so that only migration of contaminants through the underlying, higher pressure, volcanic units is currently monitored. A hydraulic high found in an abandoned hole located between the nuclear chimney and the monitoring wells further reduces the likelihood of HTH-1 or HTH-2 intercepting contaminant migration

  13. Hydrodynamics of the Fluid Filtrate on Drilling-In

    Science.gov (United States)

    Abbasov, É. M.; Agaeva, N. A.

    2014-01-01

    The volume of the liquid penetrating into the formation after drilling-in has been determined on the basis of theoretical investigations. The dynamics of change in the bottom-hole pressure has been determined in this process. It has been shown that because of the water hammer, the bottom-hole pressure can be doubled in the presence of large fractures and pores closer to the well-bottom zone.

  14. Geohydrologic data collected from shallow neutron-access boreholes and resultant-preliminary geohydrologic evaluations, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Blout, D.O.; Hammermeister, D.P.; Loskot, C.L.; Chornack, M.P.

    1994-01-01

    In cooperation with the US Department of Energy, 74 neutron-access boreholes were drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada. Drilling, coring, sample collection and handling, and lithologic and preliminary geohydrologic data are presented in this report. The boreholes were drilled in a combination of alluvium/colluvium, ash-flow tuff, ash-fall tuff, or bedded tuff to depths of 4.6 to 36.6 meters. Air was used as a drilling medium to minimize disturbance of the water content and water potential of drill cuttings, core, and formation rock. Drill cuttings were collected at approximately 0.6-meter intervals. Core was taken at selected intervals from the alluvium/colluvium using drive-coring methods and from tuff using rotary-coring methods. Nonwelded and bedded tuffs were continuously cored using rotary-coring methods. Gravimetric water-content and water-potential values of core generally were greater than those of corresponding drill cuttings. Gravimetric water-content, porosity, and water-potential values of samples generally decreased, and bulk density values increased, as the degree of welding increased. Grain-density values remained fairly constant with changes in the degree of welding. A high degree of spatial variability in water-content and water-potential profiles was noted in closely spaced boreholes that penetrate similar lithologic subunits and was also noted in adjacent boreholes located in different topographic positions. Variability within a thick lithologic unit usually was small. 18 refs., 21 figs., 17 tabs

  15. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    International Nuclear Information System (INIS)

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-01-01

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for α, β and γ emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for γ and α/β monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in α/β liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure 241 Am produced from 241 Pu by β decay. Because 241 Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., 137 Cs)

  16. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California

    Science.gov (United States)

    Thompson, J.M.; Fournier, R.O.

    1988-01-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  17. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.

  18. Development of computational tool to interpret real time Pd (Pressure While Drilling) data; Desenvolvimento de ferramenta computacional interpretadora de dados de PWD (Pressure While Drilling) em tempo real

    Energy Technology Data Exchange (ETDEWEB)

    Gandelman, Roni Abensur; Waldmann, Alex Tadeu de Almeida; Martins, Andre Leibsohn [Centro de Pesquisas da Petrobras (CENPES). Gerencia de Tecnologia de Engenharia de Poco (Brazil)], e-mails: roniag@petrobras.com.br, awaldmann@petrobras.com.br, aleibsohn@petrobras.com.br; Teixeira, Gleber Tacio; Aragao, Atila Fernando Lima [E and P Servicos. Gerencia de Servicos de Poco (Brazil)], e-mail: gleber@petrobras.com.br, atila_aragao@petrobras.com.br; Rezende, Mauricio Seiji; Kern, Eduardo; Maliska Junior, Clovis [Engineering Simulation and Scientific Software (ESSS), (Brazil)], e-mails: mauricio@esss.com.br, kern@esss.com.br, coi@esss.com.br

    2008-12-15

    Drilling offshore oil wells is a very expensive and complex process, in which all the efforts must be taken to keep the annular pressure between a minimum pressure (pore pressure) and a maximum pressure (fracture pressure) which define the operational window limits. Several phenomena impact the bottom hole annular pressures, such as: ineffective hole cleaning, gel breaking when circulation is resumed, drill string movement (surge and swab), trips, pills displacement, kicks, etc. The correct interpretation of pressure while drilling (PWD) data is a very powerful toll to identify and prevent these phenomena. Nowadays, an expert monitors bottom hole pressures data and identifies undesirable events. The main goal of this project is the development of a computational tool to monitor pressure (and mud logging) data in real time to identify the causes of abnormal pressure variations, helping the operators to take decisions rapidly. Besides that, the tool allows the user to handle PWD data in a flexible architecture. This flexibility allows the incorporation of new methods of events identification as they are developed. The ultimate goals is to obtain a tool which serves both for the key study of the problems and physical, specific phenomena found during drilling, both for real-time monitoring to assist professionals involved in the process. (author)

  19. Drilling Predation on Serpulid Polychaetes (Ditrupa arietina) from the Pliocene of the Cope Basin, Murcia Region, Southeastern Spain

    Science.gov (United States)

    Martinell, Jordi; Kowalewski, Michał; Domènech, Rosa

    2012-01-01

    We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid

  20. Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: (1) Removing and disposing of a shack and its contents; (2) Disposing of debris from within the shack and in the vicinity of the tunnel entrance; (3) Verifying that the tunnel is empty; (4) Welding screened covers over tunnel vent holes to limit access and allow ventilation; and (5) Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

  1. Drilling of bone: A comprehensive review

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  2. Changing the fundamentals[Drill technology

    Energy Technology Data Exchange (ETDEWEB)

    Flatern, R. von

    2003-02-01

    Evolution of the science of drilling oil and gas wells has evolved in fits and starts. From drilling with cables to rotary tables to top drives, from straight holes to horizontal, it has been a process interrupted occasionally by flashes of revolutionary brilliance. In this article the author looks at the state of just a few of the technologies that define or threaten to change how drillers go about their business. In the early days of deepwater exploration drillers responded more to technical challenges than financial ones, primarily with immense semisubmersibles and drillships, together with all he necessary ancillary items. The goal of getting deeper faster is not a new one, better performance bits, muds, LWD and MWD, together with numerous other developments all emerged as a result of the desire to shorten the time between spud and TD. But whereas saving a day or two drilling onshore or nearshore is desirable, it has never before been possible to realize the kind of substantial financial benefits from relatively small time savings. Research and development into these type of savings with the design and improvement of different types drill bits and casing drilling is described.

  3. Experimental Study on the Axis Line Deflection of Ti6A14V Titanium Alloy in Gun-Drilling Process

    Science.gov (United States)

    Li, Liang; Xue, Hu; Wu, Peng

    2018-01-01

    Titanium alloy is widely used in aerospace industry, but it is also a typical difficult-to-cut material. During Deep hole drilling of the shaft parts of a certain large aircraft, there are problems of bad surface roughness, chip control and axis deviation, so experiments on gun-drilling of Ti6A14V titanium alloy were carried out to measure the axis line deflection, diameter error and surface integrity, and the reasons of these errors were analyzed. Then, the optimized process parameter was obtained during gun-drilling of Ti6A14V titanium alloy with deep hole diameter of 17mm. Finally, we finished the deep hole drilling of 860mm while the comprehensive error is smaller than 0.2mm and the surface roughness is less than 1.6μm.

  4. AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)

    Science.gov (United States)

    Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...

  5. Data for four geologic test holes in the Sacramento Valley, California

    Science.gov (United States)

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  6. Cleanup Summary Report for the Defense Threat Reduction Agency Fiscal Year 2007, Task 6.7, U12u-Tunnel (Legacy Site), Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This letter serves as notice of completion for cleanup of the U12u-Tunnel (Legacy Site) as specified in the Defense Threat Reduction Agency (DTRA) Fiscal Year 2007 Statement of Work, Task 6.7. The U12u-Tunnel Legacy Site is located near the intersection of the U12u-Tunnel access road and the U12n-Tunnel access road in Area 12 of the Nevada Test Site (see Figure 1). The site encompasses 1.2 acres and was used to store miscellaneous mining equipment and materials that were used to support DTRA testing in Area 12. Field activities commenced February 11, 2008, and were completed February 20, 2008. Radiological surveys were performed on a drill jumbo and all material stored at the site. The drill jumbo was relocated to U12p-Tunnel portal and consolidated with other critical mining equipment for future use or storage. Ten truck loads of solid waste (53 tons) were shipped to the Nevada Test Site, Area 9 U10c Sanitary Landfill for disposal. No hazardous or radiological waste was generated at this site

  7. Nondestructive continuous physical property measurements of core samples recovered from hole B, Taiwan Chelungpu-Fault Drilling Project

    Science.gov (United States)

    Hirono, Tetsuro; Yeh, En-Chao; Lin, Weiren; Sone, Hiroki; Mishima, Toshiaki; Soh, Wonn; Hashimoto, Yoshitaka; Matsubayashi, Osamu; Aoike, Kan; Ito, Hisao; Kinoshita, Masataka; Murayama, Masafumi; Song, Sheng-Rong; Ma, Kuo-Fong; Hung, Jih-Hao; Wang, Chien-Ying; Tsai, Yi-Ben; Kondo, Tomomi; Nishimura, Masahiro; Moriya, Soichi; Tanaka, Tomoyuki; Fujiki, Toru; Maeda, Lena; Muraki, Hiroaki; Kuramoto, Toshikatsu; Sugiyama, Kazuhiro; Sugawara, Toshikatsu

    2007-07-01

    The Taiwan Chelungpu-Fault Drilling Project was undertaken in 2002 to investigate the faulting mechanism of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. Hole B penetrated the Chelungpu fault, and core samples were recovered from between 948.42- and 1352.60-m depth. Three major zones, designated FZB1136 (fault zone at 1136-m depth in hole B), FZB1194, and FZB1243, were recognized in the core samples as active fault zones within the Chelungpu fault. Nondestructive continuous physical property measurements, conducted on all core samples, revealed that the three major fault zones were characterized by low gamma ray attenuation (GRA) densities and high magnetic susceptibilities. Extensive fracturing and cracks within the fault zones and/or loss of atoms with high atomic number, but not a measurement artifact, might have caused the low GRA densities, whereas the high magnetic susceptibility values might have resulted from the formation of magnetic minerals from paramagnetic minerals by frictional heating. Minor fault zones were characterized by low GRA densities and no change in magnetic susceptibility, and the latter may indicate that these minor zones experienced relatively low frictional heating. Magnetic susceptibility in a fault zone may be key to the determination that frictional heating occurred during an earthquake on the fault.

  8. U.S. Geological Survey investigations in connection with the dining car event, U12e.18 tunnel, rainier mesa, Nevada test site

    International Nuclear Information System (INIS)

    1978-06-01

    The Dining Car event was a Defense Nuclear Agency nuclear weapons test located in the U12e.18 drift of the E-tunnel complex, central Rainier Mesa, Area 12, Nevada Test Site. The main drift and bypass drift were mined in zeolitized tuff to a total length of 544 m (1,785 ft). The overburden thickness above the experiment is approximately 396 m (1,300 ft) in the U12e.18 area. The pre-Tertiary surface, which is most probably quartzite in this area, is located approximately 243.8 to 274.3 m (800 to 900 ft) below tunnel level. Site geology and geophysical investigations were made in one vertical and two horizontal drill holes prior to mining of the U12e.18 drift. Electric logs in the two horizontal holes indicate no extensive zones of argillization which might create problems in tunnelling. Geophysical logs in the vertical exploratory hole suggest that the tuff is saturated at a depth of about 244 m (800 ft). Electric logs in all three holes show a pronounced signature in tunnel bed 4J. Seismic velocities obtained in the tunnel after mining compare favorably with sonic velocities obtained in one hole by means of a sonic probe, indicating that the bulk geologic structure is not significant in affecting seismic-wave propagation. This condition is not always observed in such comparisons. A repeat seismic survey in the tunnel showed no change in seismic velocity 4 months after mining. In situ stresses determined by the overcore technique are within experience for the Rainier Mesa tunnel complex

  9. New high-performance, water-based fluid benefits Santos basin operations with excellent inhibition and drilling efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Tom; West, Gary [Halliburton Baroid, Santos, SP (Brazil)

    2004-07-01

    For decades drilling fluids companies have been striving to create a water-based fluid (WBF) that yields performance similar to that of an invert emulsion in the areas of hole stability, rate of penetration (ROP) and lubricity. The HYDRO-GUARD system is a new highly inhibitive WBF that can yield drilling performance approaching that of an invert emulsion system. The new system uses a new combination of polymeric additives designed to inhibit reactive clays, minimize colloidal solids buildup, and produce a lubricious, gauge wellbore. This paper compares the field performance of the HYDRO-GUARD system on two recent Santos Basin wells drilled to over 5,000 m with the performance of synthetic-based fluids (SBF) used historically in the same area. Bottom hole temperatures (BHT) on these wells exceeded 315 deg F (157 deg C). Performance measures such as hole cleaning, penetration rates, hole stability, and torque and drag will be reviewed as well as general system benefits. (author)

  10. Unrecoverable bi-products of drilling titanium alloy and tantalum metal implants: a pilot study.

    Science.gov (United States)

    Skowronek, Paweł; Olszewski, Paweł; Święszkowski, Wojciech; Synder, Marek; Sibiński, Marcin; Mazek, Jacek

    2018-05-01

    Trabecular metal implants with a porous architecture that allows for the incorporation of bone into the implant during healing are gaining popularity in alloplastic revision procedures. The bi-products of drilling titanium alloy (Ti) and tantalum (Ta) implants have not been previously assessed. Four holes were drilled in each of two spatially porous trabecular implants, one Ta and the other Ti alloy (Ti-6Al-7Nb), for this pilot in vitro study. The particles were flushed out with a continuous flow of saline. The particles' weight and the volume were then measured using a Radwag XA 110/2X (USA) laboratory balance. The total volume of the obtained metal fines was measured by titration using a 10 mm 3 measurement system. A cobalt carbide bit was used since the holes could not be made with a standard bone drill. Each Ti and Ta implant lost 1.26 g and 2.48 g of mass, respectively. The volume of free particles recovered after each stage was 280 mm 3 and 149 mm 3 , respectively. Approximately 0.6% of the total implant mass was not recovered after drilling (roughly 2% of the mass of the particles created by drilling), despite the use of 5 µm filters. It is technically difficult to drill holes in Ti and Ta implants using standard surgical tools. The drilling process creates a considerable amount of metal particles, which cannot be recovered despite intensive flushing. This may have an adverse influence on the bio-functionality (survival) of the endoprosthesis and present deleterious systemic consequences.

  11. An evaluation of calculation procedures affecting the constituent factors of equivalent circulating density for drilling hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, William J.

    1996-12-31

    This Dr. ing. thesis covers a study of drilling hydraulics offshore. The purpose of drilling hydraulics is to provide information about downhole pressure, suitable surface pump rates, the quality of hole cleaning and optimum tripping speeds during drilling operations. Main fields covered are drilling hydraulics, fluid characterisation, pressure losses, and equivalent circulating density. 197 refs., 23 figs., 22 tabs.

  12. An evaluation of calculation procedures affecting the constituent factors of equivalent circulating density for drilling hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, William J

    1997-12-31

    This Dr. ing. thesis covers a study of drilling hydraulics offshore. The purpose of drilling hydraulics is to provide information about downhole pressure, suitable surface pump rates, the quality of hole cleaning and optimum tripping speeds during drilling operations. Main fields covered are drilling hydraulics, fluid characterisation, pressure losses, and equivalent circulating density. 197 refs., 23 figs., 22 tabs.

  13. Weld residual stresses near the bimetallic interface in clad RPV steel: A comparison between deep-hole drilling and neutron diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    James, M.N., E-mail: mjames@plymouth.ac.uk [School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth (United Kingdom); Department of Mechanical Engineering, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Newby, M.; Doubell, P. [Eskom Holdings SOC Ltd, Lower Germiston Road, Rosherville, Johannesburg (South Africa); Hattingh, D.G. [Department of Mechanical Engineering, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Serasli, K.; Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol (United Kingdom)

    2014-07-01

    Highlights: • Identification of residual stress trends across bimetallic interface in stainless clad RPV. • Comparison between deep hole drilling (DHD – stress components in two directions) and neutron diffraction (ND – stress components in three directions). • Results indicate that both techniques can assess the trends in residual stress across the interface. • Neutron diffraction gives more detailed information on transient residual stress peaks. - Abstract: The inner surface of ferritic steel reactor pressure vessels (RPV) is clad with strip welded austenitic stainless steel primarily to increase the long-term corrosion resistance of the ferritic vessel. The strip welding process used in the cladding operation induces significant residual stresses in the clad layer and in the RPV steel substrate, arising both from the thermal cycle and from the very different thermal and mechanical properties of the austenitic clad layer and the ferritic RPV steel. This work measures residual stresses using the deep hole drilling (DHD) and neutron diffraction (ND) techniques and compares residual stress data obtained by the two methods in a stainless clad coupon of A533B Class 2 steel. The results give confidence that both techniques are capable of assessing the trends in residual stresses, and their magnitudes. Significant differences are that the ND data shows greater values of the tensile stress peaks (∼100 MPa) than the DHD data but has a higher systematic error associated with it. The stress peaks are sharper with the ND technique and also differ in spatial position by around 1 mm compared with the DHD technique.

  14. Weld residual stresses near the bimetallic interface in clad RPV steel: A comparison between deep-hole drilling and neutron diffraction data

    International Nuclear Information System (INIS)

    James, M.N.; Newby, M.; Doubell, P.; Hattingh, D.G.; Serasli, K.; Smith, D.J.

    2014-01-01

    Highlights: • Identification of residual stress trends across bimetallic interface in stainless clad RPV. • Comparison between deep hole drilling (DHD – stress components in two directions) and neutron diffraction (ND – stress components in three directions). • Results indicate that both techniques can assess the trends in residual stress across the interface. • Neutron diffraction gives more detailed information on transient residual stress peaks. - Abstract: The inner surface of ferritic steel reactor pressure vessels (RPV) is clad with strip welded austenitic stainless steel primarily to increase the long-term corrosion resistance of the ferritic vessel. The strip welding process used in the cladding operation induces significant residual stresses in the clad layer and in the RPV steel substrate, arising both from the thermal cycle and from the very different thermal and mechanical properties of the austenitic clad layer and the ferritic RPV steel. This work measures residual stresses using the deep hole drilling (DHD) and neutron diffraction (ND) techniques and compares residual stress data obtained by the two methods in a stainless clad coupon of A533B Class 2 steel. The results give confidence that both techniques are capable of assessing the trends in residual stresses, and their magnitudes. Significant differences are that the ND data shows greater values of the tensile stress peaks (∼100 MPa) than the DHD data but has a higher systematic error associated with it. The stress peaks are sharper with the ND technique and also differ in spatial position by around 1 mm compared with the DHD technique

  15. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  16. Dewatering cuts drilling mud and disposal costs

    International Nuclear Information System (INIS)

    West, G.; Pharis, B.

    1991-01-01

    This paper reports on rig site dewatering of drilling fluids with recycling of processed water that can help an operator to comply with environmental rules by reducing volumes of waste and reducing long term liabilities. It can also reduce disposal costs and provide a cleaner drill site overall. Rig site dewatering is the process of injecting coagulants or flocculating chemicals into the mud entering a large clarifying centrifuge. This coagulates the fine, drilled particles allowing them to be separated from the fluid which can then be handled separately. Most of the environmental concerns during the 1980s involved hazardous materials and toxic wastes. Drilling fluids, many of which are chemically benign, have escaped many of the difficult-to-comply-with rules and regulations. During the 1990s, however, operators may be required to submit a written plan for liquid waste reduction for even nonhazardous materials. Many states and local agencies may institute total bans on oil field wastes. Drilling rigs typically produce about 1 bbl of liquid waste for every 1 ft of hole drilled. Thus, a typical drilling operation can produce a large quantity of waste

  17. X-ray Fluorescence Core Scanning of Oman Drilling Project Holes BT1B and GT3A Cores on D/V CHIKYU

    Science.gov (United States)

    Johnson, K. T. M.; Kelemen, P. B.; Michibayashi, K.; Greenberger, R. N.; Koepke, J.; Beinlich, A.; Morishita, T.; Jesus, A. P. M.; Lefay, R.

    2017-12-01

    The JEOL JSX-3600CA1 energy dispersive X-ray fluorescence core logger (XRF-CL) on the D/V Chikyu provides quantitative element concentrations of scanned cores. Scans of selected intervals are made on an x-y grid with point spacing of 5 mm. Element concentrations for Si, Al, Ti, Ca, Mg, Mn, Fe, Na, K, Cr, Ni, S and Zn are collected for each point on the grid. Accuracy of element concentrations provided by the instrument software is improved by applying empirical correction algorithms. Element concentrations were collected for 9,289 points from twenty-seven core intervals in Hole BT1B (basal thrust) and for 6,389 points from forty core intervals in Hole GT3A (sheeted dike-gabbro transition) of the Oman Drilling Project on the D/V Chikyu XRF-CL during Leg 2 of the Oman Drilling Project in August-September, 2017. The geochemical data are used for evaluating downhole compositional details associated with lithological changes, unit contacts and mineralogical variations and are particularly informative when plotted as concentration contour maps or downhole concentration diagrams. On Leg 2 additional core scans were made with X-ray Computed Tomography (X-ray CT) and infrared images from the visible-shortwave infrared imaging spectroscopy (IR) systems on board. XRF-CL, X-ray CT and IR imaging plots used together provide detailed information on rock compositions, textures and mineralogy that assist naked eye visual observations. Examples of some uses of XRF-CL geochemical maps and downhole data are shown. XRF-CL and IR scans of listvenite clearly show zones of magnesite, dolomite and the Cr-rich mica, fuchsite that are subdued in visual observation, and these scans can be used to calculate variations in proportions of these minerals in Hole BT1B cores. In Hole GT3A XRF-CL data can be used to distinguish compositional changes in different generations of sheeted dikes and gabbros and when combined with visual observations of intrusive relationships the detailed geochemical

  18. Problem analysis of geotechnical well drilling in complex environment

    International Nuclear Information System (INIS)

    Kasenov, A K; Biletskiy, M T; Ratov, B T; Korotchenko, T V

    2015-01-01

    The article examines primary causes of problems occurring during the drilling of geotechnical wells (injection, production and monitoring wells) for in-situ leaching to extract uranium in South Kazakhstan. Such a drilling problem as hole caving which is basically caused by various chemical and physical factors (hydraulic, mechanical, etc.) has been thoroughly investigated. The analysis of packing causes has revealed that this problem usually occurs because of insufficient amount of drilling mud being associated with small cross section downward flow and relatively large cross section upward flow. This is explained by the fact that when spear bores are used to drill clay rocks, cutting size is usually rather big and there is a risk for clay particles to coagulate

  19. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.

    1999-01-01

    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  20. Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant

    Science.gov (United States)

    Schopf, C.; Rascher, R.

    2016-11-01

    The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.

  1. Development of controlled drilling technology and measurement method in the borehole (Phase 1)

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Suzuki, Koichi; Miyakawa, Kimio; Okada, Tetsuji; Masuhara, Yasunobu; Igeta, Noriyuki; Kobayakawa, Hiroaki; Yamamoto, Shinya

    2006-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. The key technologies of the project were defined as follows; (1) Drilling technology to bent the hole as intend. (2) Locality detection technology of the drill bit (MWD). (3) Core sampling technology to obtain the undisturbed rock core. (4) Logging and measurement technology during drilling. The drilling system and measuring system were integrated and systemized after each apparatus was manufactured and its performance was checked. The performance of the drilling system was checked to drill the artificial rock mass to the depth of 80 m before conducting in-situ drilling. The performance of the drilling and measurement systems were investigated to drill the mudstone of the Neogene Tertiary to the length of 547 m and to conduct the downhole measurement and logging in its borehole at the Horonobe site. Considering these performance testing, the flow diagram of the controlled drilling and measurement system was established. (author)

  2. Analysis of residual stresses on the transverse beam of a casting stand by means of drilling method

    Directory of Open Access Journals (Sweden)

    P. Frankovský

    2014-10-01

    Full Text Available The presented paper demonstrates the application of drilling method in the analysis of residual stresses on the transverse beam of a casting stand. In the initial stage of the analysis the determination of strains was done for individual steps of drilling in the area which was determined by means of numerical analysis. The drilling was carried out gradually by 0,5 mm up to the depth of 5 mm, while the diameter of the drilled hole was 3,2 mm. During the analysis we used the drilling device RS-200, strain indicator P3 and SGD 1-RY21-3/120. The paper presents the development of residual stresses throughout the depth of the drilled hole which were determined according to standard ASTM E837-01, by means of integral method, power series method and by means of Power Series method.

  3. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI

  4. Potential environmental benefits from regulatory consideration of synthetic drilling muds

    International Nuclear Information System (INIS)

    Burke, C.J.; Veil, J.A.

    1995-02-01

    When drilling exploration and production wells for oil and gas, drillers use specialized drilling fluids, referred to as muds, to help maintain well control and to remove drill cuttings from the hole. Historically, either water-based muds (WBMs) or oil-based muds (OBMs) have been used for offshore wells. Recently, in response to US Environmental Protection Agency (EPA) regulations and drilling-waste discharge requirements imposed by North Sea nations, the drilling industry has developed several types of synthetic-based muds (SBMs) that combine the desirable operating qualities of OBMs with the lower toxicity and environmental impact qualities of WBMs. This report describes the operational, environmental, and economic features of all three types of muds and discusses potential EPA regulatory barriers to wider use of SBMs

  5. Vadose zone drilling at the NTS

    International Nuclear Information System (INIS)

    Efurd, D.W.

    1994-01-01

    The Yucca Mountain Project has an opportunity to evaluate possible mobilization and transport of radioactive materials away from the storage horizon in the proposed repository. One scenario by which such transport could occur involves water leaving the storage area and carrying radioactive particulates of colloidal size. The colloids could move along the gas-liquid interface in partially filled fractures within the vadose zone. It should be possible to check the reality of this proposed scenario by examining ''anthropogenic analogs'' of the repository. These are sites of nuclear tests conducted in unsaturated tuff at the Nevada Test Site (NTS). We propose to drill under one or more such sites to determine if radionuclides have moved from their original confinement in the puddle- glass at the bottom of the cavity. This document examines the characteristics of an ideal test site for such a study, suggests several possible locations that have some of the desired characteristics, and recommends one of these sites for the proposed drilling

  6. LABORATORY EVALUATION OF CALCIUM CARBONATE PARTICLE SIZE SELECTION FOR DRILL-IN FLUIDS

    OpenAIRE

    Nediljka Gaurina-Međimurec

    2002-01-01

    The technological development in horizontal, re-entry and multilateral wells require drilling and completion the reservoir sections of a well including as little damage as possible. The trends towards open hole completion places additional emphasis on formation damage avoidance. One of critical factors in avoiding formation damage during drilling is obtaining surface bridging on the formation face with minimum indepth solids penetration. In case of overbalanced drilling, this can be donme by ...

  7. Delamination measurement of a laminates composite panel due to hole punching based on the focus variation technique

    Science.gov (United States)

    Abdullah, A. B.; Zain, M. S. M.; Abdullah, M. S.; Samad, Z.

    2017-07-01

    Structural materials, such as composite panels, must be assembled, and such panels are typically constructed via the insertion of a fastener through a drilled hole. The main problem encountered in drilling is delamination, which affects assembly strength. The cost of drilling is also high because of the severe wear on drill bits. The main goal of this research is to develop a new punching method as an alternative to drilling during hole preparation. In this study, the main objective is to investigate the effect of different puncher profiles on the quality of holes punched into carbon fiber reinforcement polymer (CFRP) composite panels. Six types of puncher profiles were fabricated with minimum die clearance (1%), and two quality aspects, namely, incomplete shearing and delamination factor, were measured. The conical puncher incurred the least defects in terms of delamination and yielded an acceptable amount of incomplete shearing in comparison with the other punchers.

  8. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical ampersand Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities

  9. Analysis of residual transverse stresses in a thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image correlation

    Science.gov (United States)

    Yuksel, Onur; Baran, Ismet; Ersoy, Nuri; Akkerman, Remko

    2018-05-01

    Process induced stresses inherently exist in fiber reinforced polymer composites particularly in thick parts due to the presence of non-uniform cure, shrinkage and thermal expansion/contraction during manufacturing. In order to increase the reliability and the performance of the composite materials, process models are developed to predict the residual stress formation. The accuracy of the process models is dependent on the geometrical (micro to macro), material and process parameters as well as the numerical implementation. Therefore, in order to have reliable process modelling framework, there is a need for validation and if necessary calibration of the developed models. This study focuses on measurement of the transverse residual stresses in a relatively thick pultruded profile (20×20 mm) made of glass/polyester. Process-induced residual stresses in the middle of the profile are examined with different techniques which have never been applied for transverse residual stresses in thick unidirectional composites. Hole drilling method with strain gage and digital image correlation are employed. Strain values measured from measurements are used in a finite element model (FEM) to simulate the hole drilling process and predict the residual stress level. The measured released strain is found to be approximately 180 μm/m from the strain gage. The tensile residual stress at the core of the profile is estimated approximately as 7-10 MPa. Proposed methods and measured values in this study will enable validation and calibration of the process models based on the residual stresses.

  10. Color View of a 'Rat' Hole Trail Inside 'Endurance'

    Science.gov (United States)

    2004-01-01

    This view from the Mars Exploration Rover Opportunity's panoramic camera is an approximately true color rendering of the first seven holes that the rover's rock abrasion tool dug on the inner slope of 'Endurance Crater.' The rover was about 12 meters (about 39 feet) down into the crater when it acquired the images combined into this mosaic. The view is looking back toward the rim of the crater, with the rover's tracks visible. The tailings around the holes drilled by the rock abrasion tool, or 'Rat,' show evidence for fine-grained red hematite similar to what was observed months earlier in 'Eagle Crater' outcrop holes. Starting from the uppermost pictured (closest to the crater rim) to the lowest, the rock abrasion tool hole targets are called 'Tennessee,' 'Cobblehill,' 'Virginia,' 'London,' 'Grindstone,' 'Kettlestone,' and 'Drammensfjorden.' Opportunity drilled these holes on sols 138 (June 13, 2004), 143 (June 18), 145 (June 20), 148 (June 23), 151 (June 26), 153 (June 28) and 161 (July 7), respectively. Each hole is 4.5 centimeters (1.8 inches) in diameter. This image was generated using the panoramic camera's 750-, 530-, and 430-nanometer filters. It was taken on sol 173 (July 19).

  11. Analysis of geophysical well logs from the Mariano Lake-Lake Valley drilling project, San Juan Basin, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Scott, J.H.

    1986-01-01

    Geophysical well logs were obtained in eight deep holes drilled and cored by the U.S. Geological Survey to examine the geology of the Mariano Lake-Lake Valley area in the southern part of the San Juan basin, New Mexico. The logs were made to determine the petrophysical properties of the rocks penetrated by the holes, to aid in making stratigraphic correlations between the holes, and to estimate the grade of uranium enrichment in mineralized zones. The logs can be divided into six categories-nuclear, electric, sonic, magnetic, dipmeter, and borehole conditions. Examples of these logs are presented and related to lithological and petrophysical properties of the cores recovered. Gamma-ray and prompt fission neutron logs were used to estimate uranium grade in mineralized zones. Resistivity and spontaneous potential logs were used to make stratigraphic correlations between drill holes and to determine the variability of the sandstone:mudstone ratios of the major sedimentary units. In one drill hole a dipmeter log was used to estimate the direction of sediment transport of the fluvial host rock. Magnetic susceptibility logs provided supportive information for a laboratory study of magnetic mineral alteration in drill cores. This study was used to infer the geochemical and hydrologic environment associated with uranium deposition in the project area

  12. Conceptual design of modular fixture for frame welding and drilling process integration case study: Student chair in UNS industrial engineering integrated practicum

    Science.gov (United States)

    Darmawan, Tofiq Dwiki; Priadythama, Ilham; Herdiman, Lobes

    2018-02-01

    Welding and drilling are main processes of making chair frame from metal material. Commonly, chair frame construction includes many arcs which bring difficulties for its welding and drilling process. In UNS industrial engineering integrated practicum there are welding fixtures which use to fixing frame component position for welding purpose. In order to achieve exact holes position for assembling purpose, manual drilling processes were conducted after the frame was joined. Unfortunately, after it was welded the frame material become hard and increase drilling tools wear rate as well as reduce holes position accuracy. The previous welding fixture was not equipped with clamping system and cannot accommodate drilling process. To solve this problem, our idea is to reorder the drilling process so that it can be execute before welding. Thus, this research aims to propose conceptual design of modular fixture which can integrate welding and drilling process. We used Generic Product Development Process to address the design concept. We collected design requirements from 3 source, jig and fixture theoretical concepts, user requirements, and clamping part standards. From 2 alternatives fixture tables, we propose the first which equipped with mounting slots instead of holes. We test the concept by building a full sized prototype and test its works by conducting welding and drilling of a student chair frame. Result from the welding and drilling trials showed that the holes are on precise position after welding. Based on this result, we conclude that the concept can be a consideration for application in UNS Industrial Engineering Integrated Practicum.

  13. Physical properties of uranium host rocks and experimental drilling at Long Park, Montrose County, Colorado. Final report

    International Nuclear Information System (INIS)

    Manger, G.E.; Gates, G.L.; Cadigan, R.A.

    1975-01-01

    A core-drilling study in uranium host rocks of the Jurassic Morrison Formation in southwestern Colorado attempted to obtain samples of host rock in its natural state. Three holes were drilled, holes and core were logged for radioactivity and electrical properties. Samples were analyzed for physical and chemical properties. Drilling results suggest that drilling with dried air yields core with least contamination at least cost. Drilling with oil results in maximum core recovery but also maximum cost and significant core contamination. Drilling with water results in contamination and loss of original pore water. A factor group of variables present are: Those positively related to uranium mineralization are poor sorting, percent by weight clay, percent of pore space containing water; negatively related variables are median grain size (mm), electrical resistivity, permeability. Optimum depth to locate ore seems to be at the top of the pore water capillary circulation zone, below the dehydrated no-capillary-circulation zone

  14. Development and Manufacture of Cost-Effective Composite Drill Pipe

    Energy Technology Data Exchange (ETDEWEB)

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force

  15. Fifty Years of Soviet and Russian Drilling Activity in Polar and Non-Polar Ice: A Chronological History

    Science.gov (United States)

    2007-10-01

    cable being separated from the drill, and further drilling ceased. The drilling operation consisted of three men working one shift. They achieved a...thickness is 160–180 m according to radio-echo sounding data. A 93-m-deep hole was drilled by two men over 127 hours (the total penetration time of...TR-07-20 89 Figure 31. KEMS-112 electro-mechanical core drill: (1) drill head, (2) core barrel, (3) nipple , (4) barrel, (5) chip filter, (6

  16. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    Science.gov (United States)

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    Contaminants introduced into the subsurface of Pahute Mesa, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas at Pahute Mesa and into the accessible environment is greatest by groundwater transport through fractured volcanic rocks. The 12.9 Ma (mega-annums, million years) Calico Hills Formation, which consists of a mixture of rhyolite lava flows and intercalated nonwelded and bedded tuff and pyroclastic flow deposits, occurs in two areas of the Nevada National Security Site. One area is north of the Rainier Mesa caldera, buried beneath Pahute Mesa, and serves as a heterogeneous volcanic-rock aquifer but is only available to study through drilling and is not described in this report. A second accumulation of the formation is south of the Rainier Mesa caldera and is exposed in outcrop along the western boundary of the Nevada National Security Site at the Calico Hills near Yucca Mountain. These outcrops expose in three dimensions an interlayered sequence of tuff and lava flows similar to those intercepted in the subsurface beneath Pahute Mesa. Field description and geologic mapping of these exposures described lithostratigraphic variations within lava flows and assisted in, or at least corroborated, conceptualization of the rhyolite lava-bearing parts of the formation.

  17. Temperature measurements in small holes drilled in superconducting bulk during pulsed field magnetization

    Science.gov (United States)

    Fujishiro, H.; Naito, T.; Furuta, D.; Kakehata, K.

    2010-11-01

    The time dependence of the temperatures T(z, t) has been measured along the thickness direction z in several drilled holes in a superconducting bulk during pulsed field magnetization (PFM) and the heat generation and heat transfer in the bulk have been discussed. In the previous paper [H. Fujishiro, S. Kawaguchi, K. Kakehata, A. Fujiwara, T. Tateiwa, T. Oka, Supercond. Sci. Technol. 19 (2006) S540], we calculated the T(z, t) profiles in the bulk by solving a three-dimensional heat-diffusion equation to reproduce the measured T(t) on the bulk surface; the heat generation took place adiabatically and the calculated T(z, t) was isothermal along the z direction. In this study, the measured T(z, t) at the top surface was higher than that at the bottom surface just after the pulse field application at t < 0.5 s, and then became isothermal with increasing time. These results suggest that the magnetic flux intrudes inhomogeneously into the bulk from the edge of the top surface and the periphery at the early stage. The inhomogeneous magnetic flux intrusion and the flux trap during PFM change depending on the strength of the pulsed field and the pulse number in the successive pulse field application.

  18. Recovery and Lithologic Analysis of Sediment from Hole UT-GOM2-1-H002, Green Canyon 955, Northern Gulf of Mexico

    Science.gov (United States)

    Kinash, N.; Cook, A.; Sawyer, D.; Heber, R.

    2017-12-01

    In May 2017 the University of Texas led a drilling and pressure coring expedition in the northern Gulf of Mexico, UT-GOM2-01. The holes were located in Green Canyon Block 955, where the Gulf of Mexico Joint Industry Project Leg II identified an approximately 100m thick hydrate-filled course-grained levee unit in 2009. Two separate wells were drilled into this unit: Holes H002 and H005. In Hole H002, a cutting shoe drill bit was used to collect the pressure cores, and only 1 of the 8 cores collected was pressurized during recovery. The core recovery in Hole H002 was generally poor, about 34%, while the only pressurized core had 45% recovery. In Hole H005, a face bit was used during pressure coring where 13 cores were collected and 9 cores remained pressurized. Core recovery in Hole H005 was much higher, at about 75%. The type of bit was not the only difference between the holes, however. Drilling mud was used throughout the drilling and pressure coring of Hole H002, while only seawater was used during the first 80m of pressure cores collected in Hole H005. Herein we focus on lithologic analysis of Hole H002 with the goal of documenting and understanding core recovery in Hole H002 to compare with Hole H005. X-ray Computed Tomography (XCT) images were collected by Geotek on pressurized cores, mostly from Hole H005, and at Ohio State on unpressurized cores, mostly from Hole H002. The XCT images of unpressurized cores show minimal sedimentary structures and layering, unlike the XCT images acquired on the pressurized, hydrate-bearing cores. Only small sections of the unpressurized cores remained intact. The unpressurized cores appear to have two prominent facies: 1) silt that did not retain original sedimentary fabric and often was loose within the core barrel, and 2) dense mud sections with some sedimentary structures and layering present. On the XCT images, drilling mud appears to be concentrated on the sides of cores, but also appears in layers and fractures within

  19. Completion Report for Well ER-EC-14, Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-05

    Well ER-EC-14 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (NNSS; formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2012, as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information for the Fortymile Canyon composite hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. The main 55.9-centimeter (cm) hole was drilled to a total depth of 325.5 meters (m) and cased with 40.6-cm casing to 308.1 m. The hole diameter was then decreased to 37.5 cm, and drilling continued to a total depth of 724.8 m. The completion casing string, set to the depth of 690.9 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Rainier Mesa Tuff. Two piezometer strings were installed in Well ER-EC-14. Both piezometer strings, each with one slotted interval, consist of 6.0-cm carbon-steel tubing at the surface, then cross over to 7.3-cm stainless-steel tubing just above the water table. The shallow piezometer string was landed at 507.8 m, and the deep piezometer string was landed at 688.6 m. Both piezometer strings are set to monitor groundwater within moderately to densely welded Rainier Mesa Tuff. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other radionuclides) measurements, and water level measurements. The well penetrated 15.2 m of alluvium and

  20. Air distribution system with the discharge action in the working cavity of downhole air hammer drills

    Science.gov (United States)

    Timonin, VV; Alekseev, SE; Kokoulin, DI; Kubanychbek, B.

    2018-03-01

    It is proposed to carry out pre-mine methane drainage using underground degassing holes made by downhole air hammer drills. The features of downhole air drills are described. The downhole air drill layout with the simple-shape striking part is presented with its pluses and minuses. The researchers point at available options to eliminate the shortcomings. The improved layout of the downhole air hammer drill is suggested. The paper ends with the test data on the prototype air hammer drill, its characteristics and trial drilling results.

  1. Employment of Some Parameters to Enhance Laser-Drilling of Aluminum

    Directory of Open Access Journals (Sweden)

    Oday A. Hamadi

    2005-06-01

    Full Text Available In this work, some parameters affecting drilling of aluminum samples by a pulsed Nd:YAG laser were studied. These parameters are multi-pulses irradiation, controlling sample temperature, low-pressure ambient and application of electric field on the sample. Results presented in this work explained that these parameters can enhance drilling process throughout increasing hole depth in aluminum samples at the same laser energy used for irradiation.

  2. Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep.

    Science.gov (United States)

    von Rechenberg, Brigitte; Génot, Oliver R; Nuss, Katja; Galuppo, Larry; Fulmer, Mark; Jacobson, Evan; Kronen, Peter; Zlinszky, Kati; Auer, Jörg A

    2013-09-01

    Four cement applications were tested in this investigation. Two dicalcium phosphate dihydrate (DCPD-brushite) hydraulic cements, an apatite hydraulic fiber loaded cement, and a calcium sulfate cement (Plaster of Paris) were implanted in epiphyseal and metaphyseal cylindrical bone defects in sheep. The in vivo study was performed to assess the biocompatibility and bone remodeling of four cement formulations. After time periods of 2, 4, and 6 months, the cement samples were clinically and histologically evaluated. Histomorphometrically, the amount of new bone formation, fibrous tissue, and bone marrow and the area of remaining cement were measured. In all specimens, no signs of inflammation were detectable either macroscopically or microscopically. Cements differed mainly in their resorption time. Calcium sulfate was already completely resorbed at 2 months and showed a variable amount of new bone formation and/or fibrous tissue in the original drill hole over all time periods. The two DCPD cements in contrast were degraded to a large amount at 6 months, whereas the apatite was almost unchanged over all time periods. Copyright © 2013. Published by Elsevier B.V.

  3. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    Science.gov (United States)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in

  4. Thermal conductivity, bulk properties, and thermal stratigraphy of silicic tuffs from the upper portion of hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.; Buters, S.W.; Prater, F.M.; Muller, C.B.; Bergosh, J.L.

    1982-03-01

    Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280 0 C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1. Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible

  5. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site: The Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    To adequately manage the low level nuclear waste (LLW) repository in Area 5 of the Nevada Test Site (NTS), a knowledge of the water table under the site is paramount. The estimated thickness of the arid intermountain basin alluvium is roughly 900 feet. Very little reliable water table data for Area 5 currently exists. The Special Projects Section of the Reynolds Electrical ampersand Engineering Co., Inc. Waste Management Department is currently formulating a long-range drilling and sampling plan in support of a Resource Conservation Recovery Act (RCRA) Part B permit waiver for groundwater monitoring and liner systems. An estimate of the water table under the LLW repository, called the Radioactive Waste Management Site (RWMS) in Area 5, is needed for the drilling and sampling plan. Very old water table elevation estimates at about a dozen widely scattered test drill holes, as well as water wells, are available from declassified US Geological Survey, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory drilling logs. A three-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed using the Dupuit assumption. A prescribed positive vertical downward infiltration/evaporation condition is assumed at the atmosphere/soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximate is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary point.'' Several realistic scenarios approximating the water table under the RWMS in Area 5 of the NTS are discussed

  6. Development of controlled drilling system

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Miyakawa, Kimio; Suzuki, Koichi; Sunaga, Takayuki

    2008-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for the High Level Radioactive Waste (HLW) disposal. Especially, the soft sedimentary rock at the offshore, region is thought to be one of the best candidates, since there is no driving force of the underground water. The measurement and logging in the bore hole in order to check the hydro-geological and geomechanical conditions of the host rock is a very important way to examine the potentially of the disposal candidates. The CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project about the controlled drilling technology and the measurement and logging technologies in its borehole. In 2000, as the beginning year of the project, we made the conceptual design of the drilling and measuring systems, and made key tools concerning each technology on an experimental basis. We have been developing sub tools constructing drilling and measuring systems since 2000, and applying these systems to the Horonobe site recent 5 years. We will briefly report the outline of the system and the results of drilling and measurement that were carried out at the Horonobe site. (author)

  7. Experimental study of surface quality and damage when drilling unidirectional CFRP composites

    Directory of Open Access Journals (Sweden)

    Eshetu D. Eneyew

    2014-10-01

    Full Text Available In this study, an experimental investigation on the drilling of unidirectional carbon fiber reinforced plastic (UD-CFRP composite was conducted using polycrystalline diamond (PCD tipped eight facet drill. The quality of the drilled hole surface was examined through surface roughness measurements and surface damage by scanning electron microscopy (SEM. It was found that fiber pullout occurred in two specific sectors relative to the angle between the cutting direction and the fiber orientation. The thrust force was highly influenced by the feed rate than the cutting speed and it shows a significant variation throughout the rotation of the drill.

  8. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  9. Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf

    Science.gov (United States)

    Handler, Sabine M.; Albano, Paolo G.; Bentlage, Rudolf; Drummond, Hannah; García-Ramos, Diego A.; Zuschin, Martin

    2016-04-01

    Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf Sabine Maria Handler1, Paolo G. Albano1, Rudolf Bentlage2, Hannah Drummond2, D.A. García-Ramos1, Martin Zuschin1 1 Department of Paleontology, University of Vienna, Austria 2 St. Lawrence University, Canton, New York 13617, USA Trace fossils left by predators in the skeleton of their prey are arguably one of the most powerful sources of direct data on predator-prey interactions available in the fossil record. Drill holes, especially those attributed to naticid and muricid gastropods, are unambiguous marks of predation and allow discriminating between successful and unsuccessful predation attempts (complete and incomplete holes, respectively). Latitude and water depth influence drilling frequency. We inspected death assemblages of an intertidal flat and of two subtidal (water depth between 6 and 20 m) sandy sites in the Persian (Arabian) Gulf, off the coast of the United Arab Emirates, to determine the patterns of predation on shelled molluscs along the depth gradient. The study is based on ~7,000 and ~60,000 shells from the intertidal and subtidal, respectively. Drilling Frequency (DF, the number of drilled individuals), Incomplete Drilling Frequency (IDF, number of incomplete drill holes), and Prey Effectiveness (ratio between the number of incomplete drill holes and the total number of drilling attempts) were used as metrics of drilling intensity. We observed major differences between the intertidal and subtidal study areas. Drilling frequencies were generally remarkably low and intertidal flats showed a much lower drilling frequency than the subtidal (1.4% and 6.7%, respectively). In the subtidal, we observed significant differences of drilling intensity among bivalve species and between the two sites. However, predation metrics did not correlate with environmental factors such as substrate type and depth, nor with species life

  10. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    Science.gov (United States)

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-1, G-2, and G-3

    International Nuclear Information System (INIS)

    Bish, D.L.

    1989-03-01

    The tuffs at Yucca Mountain in south-central Nevada are being studied by the Yucca Mountain Project (YMP) to determine their suitability for a high-level radioactive waste repository. For predictive purposes, it is important to understand the alteration history of Yucca Mountain and to know how the minerals in Yucca Mountain tuffs respond to changing conditions such as elevated temperatures. The clay mineralogy of these tuffs has been examined using x-ray powder diffraction, and approximation temperatures of alteration have been determined using available clay mineral data and fluid inclusion analyses. Also, several illites from drill holes USW G-1 and G-2 have been dated using K/Ar techniques, yielding ages of about 11 Myr. The clay mineral in Yucca Mountain tuffs are predominantly interstratified illite/smectites, with minor amounts of chloride, kaolinite, and interstratified chlorite/smectite at depth in USW G-1 and G-2. The reactions observed for these illite/smectites are similar to those observed in pelitic rocks. With depths, the illite/smectites transform from random interstratifications (R = 0) through ordered intermediates (R = 1) to illite in USW G-2 and to Kalkberg (R ≥ 3) interstratifications in USW G-1. The illite/smectites in USW G-3 have not significantly transformed. It appears that the illites in deeper rock results from hydrothermal and diagenetic reactions of earlier-formed smectites. These data demonstrate that the rocks at depth in the northern end of Yucca Mountain were significantly altered about 11 Myr ago. Both clay mineralogy and fluid inclusions suggest that the rocks at depth in USW G-2 have been subjected to postdepositional temperatures of at least 275/degree/C, those in USW G-1 have reached 200/degree/C, and USW G-3 rocks probably have not exceeded 100/degree/C. 64 refs., 9 figs., 3 tabs

  12. Influence of Steel Reinforcement on In-Situ Stress Evaluation in Concrete Structures by the Core-Drilling Method

    International Nuclear Information System (INIS)

    McGinnis, M. J.; Pessiki, S.

    2006-01-01

    The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation and industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement

  13. Influence of Steel Reinforcement on In-Situ Stress Evaluation in Concrete Structures by the Core-Drilling Method

    Science.gov (United States)

    McGinnis, M. J.; Pessiki, S.

    2006-03-01

    The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation and industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.

  14. Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Berthe, L; Fabbro, R; Muller, M [Laboratoire pour l' Application des Lasers de Puissance, UPR CNRS no1578, 16 Bis, Avenue Prieur de la Cote D' Or, 94114 Arcueil Cedex (France)], E-mail: matthieu.schneider@gmail.com

    2008-08-07

    Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm{sup -2} are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser-matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm{sup -2}. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour-liquid interface that undergoes possible Rayleigh-Taylor instability or volume absorption.

  15. Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime

    Science.gov (United States)

    Schneider, M.; Berthe, L.; Fabbro, R.; Muller, M.

    2008-08-01

    Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm-2 are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser-matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm-2. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour-liquid interface that undergoes possible Rayleigh-Taylor instability or volume absorption.

  16. Analysis of the magnetic susceptibility well log in drill hole UE25a-5, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    Magnetic susceptibility measurements have been shown to be dependent upon the magnetite content of rocks with variations in rock susceptibility arising from changes in the shape, size, composition, and quantity of the contained magnetite grains. The present study was undertaken to determine the factor(s) responsible for the variation in magnetic susceptibility measurements from borehole UE25a-5 on the Nevada Test Site (NTS). The well logs and sample analyses presented in this paper form part of a larger geophysical well-logging project studying the physical properties of welded tuffs at NTS. The ash-flow sheets at NTS appear to be the products of single compositionally zoned magmas that tend, within a cooling unit, to erupt hotter, more mafic, and more crystal-rich with time. These factors, however, have little effect on the degree to which the tuffs become welded. Furthermore, zones of crystallization and alteration are superimposed upon the welded units. X-ray data show poor correspondence between the relative abundance of magnetite in a sample and the borehole magnetic susceptibility measurement associated with it. Curie balance experiments demonstrate no change in the magnetic mineralogy that could account for the susceptibility variation. Thin-section observations corroborate the x-ray data, but indicate a proportional relationship between the borehole susceptibility measurements and the grain-size distribution of magnetite. The association of magnetic susceptibility anomalies with the crystal-rich zones of the welded tuffs will aid in the identification and correlation of the eruptive sequences at NTS

  17. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  18. 瓦斯抽放煤层增透深孔聚能爆破钻孔参数%Drilling parameters of deep-hole cumulative blasting to improve coal seam permeability in gas drainage

    Institute of Scientific and Technical Information of China (English)

    郭德勇; 吕鹏飞; 单智勇; 谢安

    2013-01-01

    以焦作煤业集团九里山矿煤层深孔聚能爆破试验为基础,利用数值模拟分析了爆破煤体应力变化规律,发现聚能爆破效应导致应力峰值增大,扩大了煤体裂隙区范围.同时对聚能爆破钻孔参数进行优化,确定了合理的炮孔直径、爆破孔间距、爆破孔与邻近抽放孔及煤层顶底板间距.现场试验结果表明:优化的钻孔参数不仅使聚能爆破增透效果显著而且保证了爆破过程的安全.%Based on coal seam deep-hole cumulative blasting experiments in Jiulishan Coal Mine of Jiaozuo Coal Group, the law of stress change in a blasting coal body was analyzed by numerical simulation. It is found that cumulative blasting effect leads to the increase of peak stress and enlarges the crack zone range of the coal body. Drilling parameters for cumulative blasting, such as blast hole diameter, blast hole spacing, distance between the blast hole and the adjacent gas drainage hole, and distance from the blast hole to the coal seam roof and floor, were determined by optimization. Field experimental results show that after using these optimized drilling parameters the cumulative blasting not only gets remarkable permeability increasing effect but also ensures blasting safety.

  19. Dome-shaped PDC cutters drill harder rock effectively

    International Nuclear Information System (INIS)

    Moran, D.P.

    1992-01-01

    This paper reports that rock mechanics and sonic travel time log data indicate that bits with convex-shaped polycrystalline diamond compact (PDC) cutters can drill harder rock formations than comparable bits with flat PDC cutters. The Dome-shaped cutters have drilled carbonate formations with sonic travel times as small as 50 μsec/ft, compared to the standard cutoff of 75 μsec/ft for flat PCD cutters. Recent field data from slim hole wells drilled in the Permian basin have shown successful applications of the 3/8-in. Dome cutter in the Grayburg dolomite with its sonic travel times as low as 50-55 μsec/ft and compressive strengths significantly greater than the standard operating range for PDC bit applications. These field data indicate that the Dome cutters can successfully drill hard rock. The convex cutter shape as good impact resistance, cuttings removal, heat dissipation, and wear resistance

  20. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Celik, Yahya Hisman; Yildiz, Hakan

    2016-01-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  1. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Yahya Hisman; Yildiz, Hakan [Batman Univ. (Turkey). Dept. of Mechanical Engineering; Oezek, Cebeli [Firat Univ., Elazig (Turkey)

    2016-08-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  2. Modeling the time and cost to drill an offshore well

    International Nuclear Information System (INIS)

    Kaiser, Mark J.

    2009-01-01

    The objective in drilling a hydrocarbon well is to make hole as quickly as possible subject to the technological, operational, quality, and safety constraints associated with the process. These objectives are frequently conflicting and depend on factors that are subject to significant private and market uncertainty. There is no way to identify all of the relevant characteristics of drilling operations, but through use of statistical analysis and empirical modeling, it is possible to develop relations that characterize and benchmark drilling performance under a suitable set of assumptions. The purpose of this paper is to develop the conceptual framework to model the time and cost to drill an offshore well and to illustrate the methodology on a test set of wells in the Gulf of Mexico. The physical characteristics of the wellbore and operational aspects of drilling, including variables such as the drilled interval, horizontal displacement, aspect ratio, number of casing strings, and mud weight, serve as the primary descriptive factors in the functional relations constructed.

  3. Assessment of industrial minerals and rocks in the controlled area

    International Nuclear Information System (INIS)

    Castor, S.B.; Lock, D.E.

    1996-01-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km 2 that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain

  4. Assessment of industrial minerals and rocks in the controlled area

    Energy Technology Data Exchange (ETDEWEB)

    Castor, S.B. [Nevada Bureau of Mines and Geology, Reno, NV (United States); Lock, D.E. [Mackay School of Mines, Reno, NV (United States)

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  5. Confined compressive strength model of rock for drilling optimization

    Directory of Open Access Journals (Sweden)

    Xiangchao Shi

    2015-03-01

    Full Text Available The confined compressive strength (CCS plays a vital role in drilling optimization. On the basis of Jizba's experimental results, a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed. Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics, which is not suitable for calculating the confining pressure in rock mechanics, the double effective stress theory, which treats the porosity as a weighting factor of the formation pore pressure, is adopted in this study. The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin, China, and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling (UBD and overbalanced drilling (OBD.

  6. You say you want a revolution: casing drilling targets 30 per cent well-cost saving

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.; Marsters, S.

    1999-10-01

    Casing drilling is a new method of drilling that eliminates drill strings by using standard casing to simultaneously drill and case wells. Tesco Corporation of Calgary acquired patent rights to casing drilling technology in 1995. The company now offers a conversion kit for existing drill rigs as well a new compact casing drilling rig for shallow markets. The single derrick will be rated at 1,500 meters, but initially it will be used to drill 700-800 meter gas wells in southeast Alberta. Some cost savings will be realized at these shallow depths, but the real cost saving advantages will be realized on deep holes. In the meantime, improvements are planned to the cutting structures of the under-rimming bit to increase safety and withstand higher torque loads. It will be also necessary to adapt techniques such as directional drilling and logging to the casing drilling conveyance mechanism which has been only partially successful thus far, especially in the retrieving mode. Another challenge already met, involved ensuring that casing could be run in high-compression loads without damage to connections. Despite these problems, the system attracted considerable attention with several international companies placing orders for immediate delivery. Another system, this one developed by Sperry-Sun Drilling Services and known as a 'casing while drilling' (CWD) system, is strictly a downhole assembly and is targeted for offshore use and deeper vertical holes. This system is currently being tested in two commercial operations in offshore Indonesia for Unocal Corporation. Despite numerous problems to fill casing with fluid during connections, penetration rates of 300-400 feet per hour were achieved.

  7. Salt dissolution in oil and gas test holes in central Kansas. Part I. Salt beds in the subsurface in Russell, Lincoln, Ellsworth, Barton, and Rice Counties, central Kansas

    International Nuclear Information System (INIS)

    Walters, R.F.

    1975-06-01

    The Hutchinson Salt Member of the Permian Wellington Formation is described in a five-county study area of 4,000 square miles. Most of the 22,200 oil and gas test holes in the study area were drilled with fresh water, causing dissolution of the salt during drilling, commonly resulting in borehole enlargement to three times the diameter of the drill bit (some older rotary drilled holes have borehole enlargement up to 10 ft). After drilling ceases, no salt dissolution occurs in oil and gas test holes which have properly cemented surface casing protecting all aquifers above the salt. The conclusion is reached that extensive dissolution of the Hutchinson Salt in oil and gas test holes in central Kansas is a rare and unusual event in the 50-year history since the discovery of oil in Russell County in 1923. In only seven known instances (six of which are within the study area) did such dissolution lead to collapse and surface subsidence. With an estimated 72,000 holes drilled through the Hutchinson Salt Member within the State of Kansas, this is a ratio of approximately one occurrence for every 10,000 oil and gas test holes

  8. Smoothwall blasting planned for the underground research facility at Yucca Mountain

    International Nuclear Information System (INIS)

    Bullock, R.L.; McKenzie, J.

    1990-01-01

    This paper discusses whether or not the Exploratory Shaft Facility (ESF) at yucca Mountain, Nevada will be completely mechanically excavated, completely developed by drilling and blasting or whether both methods will be utilized on different parts of the ESF. Where drilling and blasting may be used, smoothwall blasting techniques will be used and strict controls will be placed on drill hole placement and alignment, and the correct use of limiting damage explosive, so that minimum amount of fracturing will occur beyond the perimeter of the openings. The authors discuss why this is necessary and how it is achievable

  9. Microstructure modification of 2024 aluminum alloy produced by friction drilling

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.A., E-mail: alan@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055 (Russian Federation); Fortuna, S.V. [Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055 (Russian Federation); Kolubaev, E.A. [Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Kalashnikova, T.A. [Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055 (Russian Federation)

    2017-04-13

    In this study modification of AA2024 microstructure produced by friction drilling was investigated. To reveal the role of deformation, high temperature and friction on microstructure modification methods of optical and scanning electron microscopy and microhardness test were used. Different zones of material around friction drilling hole has a special characterization through grain size, volume fraction and size of incoherent second phase particles and microhardness. It has been found that deformation, high temperature and friction in friction drilling process lead to recrystallization of grain structure and dissolution of incoherent second phase particles due to strain-induced dissolution effect. Microhardness of recrystallized material has increased.

  10. Direct use of geothermal energy, Elko, Nevada district heating. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lattin, M.W.; Hoppe, R.D.

    1983-06-01

    In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

  11. Truckee Meadows (Reno-Sparks Metropolitan Area) Nevada. Documentation Report

    Science.gov (United States)

    1983-10-01

    borehole. (10) Borehole No. 7 and borehole Nos. 9 through 14 were not drilled to a depth of 20 feet because gravel was encountered, rendering both...through the Washo and on to the Maidu ( Heizer and Whipple 1917:58). 4. H.[ST0RIC.. B..KGR.UND a. The first non-Ind:i.ans known to visit what is now the...Reno, University of Nevada. 32 pp. Heizer , Robert F. & M. A. Whipply 1971 The California Indians. Berkeley, University of California Press. 619 pp

  12. Exploration Drilling and Technology Demonstration At Fort Bliss

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ben; Moore, Joe [EGI; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before

  13. Enhancing cuttings removal with gas blasts while drilling on Mars

    Science.gov (United States)

    Zacny, K. A.; Quayle, M. C.; Cooper, G. A.

    2005-04-01

    Future missions to Mars envision use of drills for subsurface exploration. Since the Martian atmosphere precludes the use of liquids for cuttings removal, proposed drilling machines utilize mechanical cuttings removal systems such as augers. However, an auger can substantially contribute to the total power requirements, and in the worst scenario it can choke. A number of experiments conducted under Martian pressures showed that intermittent blasts of gas at low differential pressures can effectively lift the cuttings out of the hole. A gas flushing system could be incorporated into the drill assembly for assistance in clearing the holes of rock cuttings or for redundancy in case of auger jamming. A number of variables such as the particle size distribution of the rock powder, the type of gas used, the bit and auger side clearances, the initial mass of cuttings, and the ambient pressure were investigated and found to affect the efficiency. In all tests the initial volume of gas was close to 1 L and the differential pressure was varied to achieve desired clearing efficiencies. Particles were being lifted out of the hole at a maximum speed of 6 m/s at a differential pressure of 25 torr and ambient pressure of 5 torr. Flushing tests lasted on average for 2 s. The power required to compress the thin Martian atmosphere to achieve a sufficient gas blast every minute or so at 10% efficiency was calculated to be of the order of a few watts.

  14. A Proposal for Research and Development of an Explosive Drilling Technique for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    None

    1975-10-01

    In order to make large scale use of the geothermal energy available it will be necessary to drill many thousands of holes deep into the earth. The objective of the proposed research is to greatly decrease drilling time and cost. Studies made of a new explosive drilling technique indicate that savings in time of from 70 to 80 percent. The research plan is to utilize explosive in the form of multiple-faced shaped charge capsules. [DJE-2005

  15. Determination of transient temperature distribution inside a wellbore considering drill string assembly and casing program

    International Nuclear Information System (INIS)

    Yang, Mou; Zhao, Xiangyang; Meng, Yingfeng; Li, Gao; Zhang, Lin; Xu, Haiming; Tang, Daqian

    2017-01-01

    Highlights: • The different wellbore conditions of heat transfer models were developed. • Drill string assembly and casing programs impact on down-hole temperatures. • The thermal performance in circulation and shut-in stages were deeply investigated. • Full-scale model coincided with the measured field data preferably. - Abstract: Heat exchange efficiency between each region of the wellbore and formation systems is influenced by the high thermal conductivity of the drill string and casing, which further affects temperature distribution of the wellbore. Based on the energy conservation principle, the Modified Raymond, Simplified and Full-scale models were developed, which were solved by the fully implicit finite difference method. The results indicated that wellbore and formation temperatures were significantly influenced at the connection points between the drill collar and drill pipe, as well as the casing shoe. Apart from the near surface, little change was observed in temperature distribution in the cement section. In the open-hole section, the temperature rapidly decreased in the circulation stage and gradually increased in the shut-in stage. Most important, the simulated result from the full-scale model coincided with the measured field data better than the other numerical models. These findings not only confirm the effect of the drill string assembly and casing programs on the wellbore and formation temperature distribution, but also contribute to resource exploration, drilling safety and reduced drilling costs.

  16. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    Science.gov (United States)

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Formation evaluation using measurements recorded while drilling

    International Nuclear Information System (INIS)

    Coope, D.F.; Hendricks, W.E.

    1984-01-01

    Two of the measurements recorded while drilling (MWD), gamma ray and resistivity, are traditionally formation evaluation measurements. However, their primary user thus far has been the drilling engineer. The authors believe that MWD will have increasing importance in formation evaluation, and that a good understanding of MWD resistivity and gamma ray logs will be needed by the log analyst. MWD gamma ray and resistivity logs are similar to their wireline counterparts, but there are significant differences. The differences stem from different invasion (or lack of invasion) development for MWD as opposed to open hole wireline; drill collar influence on both the resistivity and gamma ray (GR) measurements - this influence is both positive and negative; and logging speed (drilling rate for MWD) is much slower for MWD and can vary erratically. The MWD logs presented in this paper demonstrate the value of using MWD logs. Emphasis is placed on both the qualitative and quantitative techniques available to the log analyst to help him get maximum benefit from the MWD logs

  18. Understanding how the placement of an asymmetric vibration damping tool within drilling while underreaming can influence performance and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Kabbara, Alan; McCarthy, John; Burnett, Timm; Forster, Ian [National Oilwell Varco Downhole Ltd. (NOV), Houston, TX (United States)

    2012-07-01

    This paper describes the work, on test rigs and full-scale drilling rigs, carried out with respect to placement of an Asymmetric Vibration Damping Tool (AVDT) within drilling while under reaming operations. An AVDT, by virtue of the forward synchronous motion imposed on the drill string, offers benefits in minimizing down hole vibration-related tool failures and therefore maximizing rate of penetration (ROP). Of interest in using the AVDT is the tendency to minimize stick slip by means of the parasitic torque it generates. This is of particular importance during under reaming operations. While under reaming, stick slip can result in low (ROP) and potentially an increased incidence of down hole tool failures. The use of an AVDT in these operations has been shown to significantly reduce stick slip. However, due to the forward synchronous motion caused by the AVDT, there is the potential to cause eccentric wear to the Bottom Hole Assembly (BHA) components in the vicinity of the AVDT. If allowed to progress, this eccentric wear can cause a reduction in down hole tool life and drilling performance. Eliminating eccentric wear would be beneficial in reducing repair costs, extending component life and further improving drilling performance. To minimize eccentric wear and maximize drilling performance, the placement of the AVDT within the BHA is critical. This paper describes how the placement of intermediate stabilizers between the AVDT and the under reamer can minimize eccentric wear to the under reamer and the adjacent drill string due to the forward synchronous whirl induced by the AVDT. This approach allows the full benefits of the AVDT to be recognized while reducing the potentially damaging effects of eccentric wear to other BHA components. The work has drawn upon small-scale rig testing, full-scale testing at the Ullrigg test facility in Norway and from real-world drilling and under reaming operations in the USA. (author)

  19. On the performances and wear of WC-diamond like carbon coated tools in drilling of CFRP/Titanium stacks

    Science.gov (United States)

    Boccarusso, L.; Durante, M.; Impero, F.; Minutolo, F. Memola Capece; Scherillo, F.; Squillace, A.

    2016-10-01

    The use of hybrid structures made of CFRP and titanium alloys is growing more and more in the last years in the aerospace industry due to the high strength to weight ratio. Because of their very different characteristics, the mechanical fastening represent the most effective joining technique for these materials. As a consequence, drilling process plays a key role in the assembly. The one shot drilling, i.e. the contemporary drilling of the stack of the two materials, seems to be the best option both in terms of time saving and assembly accuracy. Nevertheless, due to the considerable different machinability of fiber reinforced plastics and metallic materials, the one shot drilling is a critical process both for the holes quality and for the tools wear. This research was carried out to study the effectiveness of new generation tools in the drilling of CFRP/Titanium stacks. The tools are made of sintered grains of tungsten carbide (WC) in a binder of cobalt and coated with Diamond like carbon (DLC), and are characterized by a patented geometry; they mainly differ in parent WC grain size and binder percentage. Both the cutting forces and the wear phenomena were accurately investigated and the results were analyzed as a function of number of holes and their quality. The results show a clear increase of the cutting forces with the number of holes for all the used drilling tools. Moreover, abrasive wear phenomena that affect initially the tools coating layer were observed.

  20. Test plan for sonic drilling at the Hanford Site in FY 1993

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1993-01-01

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation's drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool)

  1. Completion Report for Model Evaluation Well ER-11-2: Corrective Action Unit 98: Frenchman Flat

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Underground Test Area and Boreholes Programs and Operations

    2013-01-22

    Model Evaluation Well ER-11-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in August 2012 as part of a model evaluation program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radionuclide data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to provide data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test PIN STRIPE, conducted in borehole U-11b in 1966. Well ER-11-2 will provide information that can be used to refine the Phase II Frenchman Flat hydrostratigraphic framework model if necessary, as well as to support future groundwater flow and transport modeling. The main 31.1-centimeter (cm) hole was drilled to a total depth of 399.6 meters (m). A completion casing string was not set in Well ER-11-2. However, a piezometer string was installed in the 31.1-cm open hole. The piezometer is composed of 7.3-cm stainless-steel tubing hung on 6.0-cm carbon-steel tubing via a crossover sub. The piezometer string was landed at 394.5 m, for monitoring the lower tuff confining unit. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other test-related radionuclides) measurements, and water level measurements. The well penetrated 42.7 m of Quaternary and Tertiary alluvium and 356.9 m of Tertiary volcanic rock. The water-level measured in the piezometer string on September 25, 2012, was 353.8 m below ground surface. No

  2. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    Science.gov (United States)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching

  3. Improving Coolant Effectiveness through Drill Design Optimization in Gundrilling

    Science.gov (United States)

    Woon, K. S.; Tnay, G. L.; Rahman, M.

    2018-05-01

    Effective coolant application is essential to prevent thermo-mechanical failures of gun drills. This paper presents a novel study that enhances coolant effectiveness in evacuating chips from the cutting zone using a computational fluid dynamic (CFD) method. Drag coefficients and transport behaviour over a wide range of Reynold numbers were first established through a series of vertical drop tests. With these, a CFD model was then developed and calibrated with a set of horizontal drilling tests. Using this CFD model, critical drill geometries that lead to poor chip evacuation including the nose grind contour, coolant hole configuration and shoulder dub-off angle in commercial gun drills are identified. From this study, a new design that consists a 20° inner edge, 15° outer edge, 0° shoulder dub-off and kidney-shaped coolant channel is proposed and experimentally proven to be more superior than all other commercial designs.

  4. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windowstrademark-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide

  5. STATE OF THE ART OF DRILLING LARGE DIAMETER BOREHOLES FOR DEPOSITION OF HIGH LEVEL WASTE AND SPENT NUCLEAR FUEL

    Directory of Open Access Journals (Sweden)

    Trpimir Kujundžić

    2012-07-01

    Full Text Available Deep geological disposal is internationally recognized as the safest and most sustainable option for the long-term management of high-level radioactive waste. Mainly, clay rock, salt rock and crystalline rock are being considered as possible host rocks. Different geological environment in different countries led to the various repository concepts. Main feature of the most matured repository concept is that canisters with spent nuclear fuel are emplaced in vertical or horizontal large diameter deposition holes. Drilling technology of the deposition holes depends on repository concept and geological and geomechanical characteristics of the rock. The deposition holes are mechanically excavated since drill & blast is not a possible method due to requirements on final geometry like surface roughness etc. Different methods of drilling large diameter boreholes for deposition of high-level waste and spent nuclear fuel are described. Comparison of methods is made considering performance and particularities in technology.

  6. Evaluation of circularity error in drilling of syntactic foam composites

    Science.gov (United States)

    Ashrith H., S.; Doddamani, Mrityunjay; Gaitonde, Vinayak

    2018-04-01

    Syntactic foams are widely used in structural applications of automobiles, aircrafts and underwater vehicles due to their lightweight properties combined with high compression strength and low moisture absorption. Structural application requires drilling of holes for assembly purpose. In this investigation response surface methodology based mathematical models are used to analyze the effects of cutting speed, feed, drill diameter and filler content on circularity error both at entry and exit level in drilling of glass microballoon reinforced epoxy syntactic foam. Experiments are conducted based on full factorial design using solid coated tungsten carbide twist drills. The parametric analysis reveals that circularity error is highly influenced by drill diameter followed by spindle speed at the entry and exit level. Parametric analysis also reveals that increasing filler content decreases circularity error by 13.65 and 11.96% respectively at entry and exit levels. Average circularity error at the entry level is found to be 23.73% higher than at the exit level.

  7. Corrective Action Decision Document for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-02-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended January 2007). The corrective action sites (CASs) for CAU 563 are located in Areas 3 and 12 of the Nevada Test Site, Nevada, and are comprised of the following four sites: •03-04-02, Area 3 Subdock Septic Tank •03-59-05, Area 3 Subdock Cesspool •12-59-01, Drilling/Welding Shop Septic Tanks •12-60-01, Drilling/Welding Shop Outfalls The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative (CAA) for the four CASs within CAU 563. Corrective action investigation (CAI) activities were performed from July 17 through November 19, 2007, as set forth in the CAU 563 Corrective Action Investigation Plan (NNSA/NSO, 2007). Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern (COCs) for each CAS. The results of the CAI identified COCs at one of the four CASs in CAU 563 and required the evaluation of CAAs. Assessment of the data generated from investigation activities conducted at CAU 563 revealed the following: •CASs 03-04-02, 03-59-05, and 12-60-01 do not contain contamination at concentrations exceeding the FALs. •CAS 12-59-01 contains arsenic and chromium contamination above FALs in surface and near-surface soils surrounding a stained location within the site. Based on the evaluation of analytical data from the CAI, review of future and current operations at CAS 12-59-01, and the detailed and comparative analysis of the potential CAAs, the following corrective actions are recommended for CAU 563.

  8. Growth in the measurement-while-drilling sector continues

    International Nuclear Information System (INIS)

    Hall, G.T.

    1991-01-01

    This book reports that the measurement while drilling (MWD) market is showing some of the most impressive growth in the oil field. Tremendous improvements in the reliability and capability of MWD tools have spurred the expansion of this market. During 1990, the worldwide MWD market expanded by 48%, rising from $250 million in 1989 to $370 million in 1990. The MWD market should expand 15-20% to exceed $430 million in 1991. Although an expansion of 15-20% is considered good, further growth will be impeded by the slowdown of drilling in the Gulf of Mexico. Total market growth should return to greater than 20% per year in 1992 and 1993. MWD technology is in the midst of a rapid adaptation phase, led by expansion of formation evaluation and other logs and by international expansion in long-reach directional and horizontal drilling. The formation evaluation-while- drilling market will have minimal impact on the size and growth of the wire line market. Customers will increasingly employ teams which include drilling and petrophysics personnel to make MWD purchase decisions. Integration of performance drilling systems including all bottom hole components will accelerate because of increases in automation and the need for cost reduction

  9. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  10. Investigation on the Effects of Process Parameters on Laser Percussion Drilling Using Finite Element Methodology; Statistical Modelling and Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Moradi

    Full Text Available Abstract In the present research, the simulation of the Nickel-base superalloy Inconel 718 fiber-laser drilling process with the thickness of 1mm is investigated through the Finite Element Method. In order to specify the appropriate Gaussian distribution of laser beam, the results of an experimental research on glass laser drilling were simulated using three types of Gaussian distribution. The DFLUX subroutine was used to implement the laser heat sources of the models using the Fortran language. After the appropriate Gaussian distribution was chosen, the model was validated with the experimental results of the Nickel-base superalloy Inconel 718 laser drilling process. The negligible error percentage among the experimental and simulation results demonstrates the high accuracy of this model. The experiments were performed based on the Response Surface Methodology (RSM as a statistical design of experiment (DOE approach to investigate the influence of process parameters on the responses, obtaining the mathematical regressions and predicting the new results. Four parameters i.e. laser pulse frequency (150 to 550 Hz, laser power (200 to 500 watts, laser focal plane position (-0.5 to +0.5 mm and the duty cycle (30 to 70% were considered to be the input variables in 5 levels and four external parameters i.e. the hole's entrance and exit diameters, hole taper angle and the weight of mass removed from the hole, were observed to be the process output responses of this central composite design. By performing the statistical analysis, the input and output parameters were found to have a direct relation with each other. By an increase in each of the input variables, the entrance and exit hole diameters, the hole taper angel, and the weight of mass removed from the hole increase. Finally, the results of the conducted simulations and statistical analyses having been used, the laser drilling process was optimized by means of the desire ability approach. Good

  11. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.

    1991-01-01

    About 4,000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1,220±150 m, an estimate that was subsequently confirmed by drilling to be 1,244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3,000 m. Gravity interpretations also identified the Silent Canyon caldera before geologic mapping of Pahute Mesa and provided an estimate of the thickness of the volcanic section there of nearly 5 km. Considerable aeromagnetic coverage of southwestern Nevada was obtained in 1978-79 to help characterize Yucca Mountain and vicinity. One significant result is the discovery of a series of circular magnetic anomalies in Crater Flat and the northern Amargosa Desert that suggest the presence of buried volcanic centers there. If this interpretation is confirmed by drilling, the magnetic data can be used to help estimate the total volume of buried volcanic rocks, which, along with radiometric dating, could help provide a better prediction of future volcanism. Elongate magnetic highs and associated lows over Yucca Mountain correlate with mapped faults, some of which are only partially exposed. Thus, the data provide information on the extent and continuity of these faults

  12. Heave disturbance attenuation in managed pressure drilling from a floating platform using model predictive control

    OpenAIRE

    Hatlevik, Edvin

    2014-01-01

    Since a large part of the Norwegian oil shelf has been active for over a generation, many fields begin to be depleted and the drilling operations requires tight down hole pressure margins. And by improving the pressure control for the drilling operations former undrillable wells becomes drillable. Which will make the the oilfields more profitable, and extend their life expectancy. It will also make drilling operations safer by preventing kicks and preventing environmental damages caused by mu...

  13. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    International Nuclear Information System (INIS)

    Hanson, J.M.

    1984-12-01

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs

  14. Core drilling of drillhole ONK-PVA8 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in July 2010. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The identification number of the hole is ONK-PVA8, and the length of the drillhole is 17.74 m. The drillhole is 75.7 mm by diameter. The drillhole was drilled in a niche of the access tunnel at chainage 2935. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core ONK-PVA8 is 1.7 pcs / m and the average RQD value 96.0 %. (orig.)

  15. A feasibility study of the disposal of radioactive waste in deep ocean sediments by drilled emplacement

    International Nuclear Information System (INIS)

    Bury, M.R.C.

    1983-08-01

    This report describes the second phase of a study of the feasibility of disposal and isolation of high level radioactive waste in holes drilled deep into the sediments of the ocean. In this phase, work has concentrated on establishing the state of the art of the various operations and developing the design, in particular the drilling operation, the loading of flasks containing waste canisters from supply vessels onto the platform, the handling of radioactive waste on board, and its emplacement into predrilled holes. In addition, an outline design of the offshore platform has been prepared. (author)

  16. Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China

    International Nuclear Information System (INIS)

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Yue, Xuyuan; Zhou, Xinpeng; Li, Jianguo; Zhao, Bin

    2014-01-01

    The hole NLSD-2, one of the deepest scientific drilling projects in the metallic ore districts of China, is the second scientific drilling deep hole in the Nanling district. Its ultimate depth is 2012.12 m. This hole was created through the implementation of continuous coring, and the measuring of a variety of geophysical well logging methods was performed over the course of the drilling process. This paper analyzes the characteristic responses of the fracture and fractured zone by ultrasonic imaging log data, and characterizes various rules of fracture parameters which change according to drilling depth. It then discusses the denotative meaning of the log results of polymetallic mineralization layers. The formation fractures develop most readily in a depth of 100∼200 m, 600∼850 m and 1450∼1550 m of the hole NLSD-2, and high angle fractures develop most prominently. The strike direction of the fractures is mainly NW-SE, reflecting the orientation of maximum horizontal principal stress. For the polymetallic mineralization layer that occurred in the fractured zone, the characteristic response of ultrasonic imaging log is a wide dark zone, and the characteristic responses of conventional logs displayed high polarizability, high density, high acoustic velocity and low resistivity. All the main polymetallic mineralization layers are developed in fractures or fractured zones, and the fractures and fractured zones can be identified by an ultrasonic imaging log, thus the log results indirectly indicate the occurrence of polymetallic mineralization layers. Additionally, the relationship between the dip direction of fractures and the well deviation provides guidance for straightening of the drilling hole. (paper)

  17. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  18. Taking aim : particle impact drilling targets ROP gains

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2005-11-01

    Details of a new drilling technique developed by Particle Drilling Technologies Inc. were presented. Particle impact drilling uses buckshot-like steel particles entrained with ordinary drilling mud that are accelerated through a specially-designed drill bit to bombard hard-rock formations at rapid-fire velocities of up to 4 million times a minute. Conventional drill bits rely on mechanical energy from some 50,000 pounds of weight on bit and torque to break or fracture the formation, whereas particle impact drilling relies on hydraulic energy to blast the steel particles from the bit's jetting nozzles in order to repeatedly fracture the formation. It was suggested that the new technology will accelerate the drilling process. Tests have shown that the new device out-performs conventional bits in hard formations by utilizing the hydraulics of the rig to drill with particles. In field tests, drilling was 4 times faster than conventional methods. It was anticipated that the bit will be up to 150 per cent faster in softer rock formations. In order to avoid clogging, the system uses a shot trap to remove the steel balls, which are roughly one-tenth of an inch in diameter, from the drilling fluid before it enters the shale shaker. The shot is recycled after each well. During drilling, mud circulation must be continuous for the system to work. If the system can't circulate cleanly out of a hole, there is a disruption in the process and drilling fluid may move up the annulus at 350 feet per minute when it leaves bottomhole. It was suggested that circulation issues can be resolved by increasing mud viscosity. A less than optimal performance during a recent test at Catoosa was attributed to a lack of control over drilling fluid parameters and to the use of an overly-large well casing. It was concluded that the new system will likely greatly reduce the number of days it takes to drill a well. 2 figs.

  19. Geochemical homogeneity of tuffs at the potential repository level, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Zell E.; Cloke, Paul

    2001-01-01

    In a potential high-level radioactive waste repository at Yucca Mountain, Nevada, radioactive waste and canisters, drip shields protecting the waste from seepage and from rock falls, the backfill and invert material of crushed rock, the host rock, and water and gases contained within pores and fractures in the host rock together would form a complex system commonly referred to as the near-field geochemical environment. Materials introduced into the rock mass with the waste that are designed to prolong containment collectively are referred to as the Engineered Barrier System, and the host rock and its contained water and gases compose the natural system. The interaction of these component parts under highly perturbed conditions including temperatures well above natural ambient temperatures will need to be understood to assess the performance of the potential repository for long-term containment of nuclear waste. The geochemistry and mineralogy of the rock mass hosting the emplacement drifts must be known in order to assess the role of the natural system in the near-field environment. Emplacement drifts in a potential repository at Yucca Mountain would be constructed in the phenocryst-poor member of the Topopah Spring Tuff which is composed of both lithophysal and nonlithophysal zones. The chemical composition of the phenocryst-poor member has been characterized by numerous chemical analyses of outcrop samples and of core samples obtained by surface-based drilling. Those analyses have shown that the phenocryst-poor member of the Topopah Spring Tuff is remarkably uniform in composition both vertically and laterally. To verify this geochemical uniformity and to provide rock analyses of samples obtained directly from the potential repository block, major and trace elements were analyzed in core samples obtained from drill holes in the cross drift, which was driven to provide direct access to the rock mass where emplacement drifts would be constructed

  20. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer