WorldWideScience

Sample records for hole burning spectroscopy

  1. Ninth international conference on hole burning, single molecule and related spectroscopies: science and applications (HBSM 2006)

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was organized around 9 sessions: -) single molecule, -) quantum optics, -) hole-burning materials and mechanisms, -) single nano-particle spectroscopy, -) dephasing and spectral diffusion, -) microwave photonics, -) biological systems, -) rare earth doped materials, -) novel laser sources. This document gathers only the slides of the presentations

  2. Ninth international conference on hole burning, single molecule and related spectroscopies: science and applications (HBSM 2006)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 9 sessions: -) single molecule, -) quantum optics, -) hole-burning materials and mechanisms, -) single nano-particle spectroscopy, -) dephasing and spectral diffusion, -) microwave photonics, -) biological systems, -) rare earth doped materials, -) novel laser sources. This document gathers only the slides of the presentations.

  3. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and Fourier-transform sum-frequency vibrational spectroscopy

    International Nuclear Information System (INIS)

    McGuire, John Andrew

    2004-01-01

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of ∼ 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm -1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach

  4. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, John Andrew [Univ. of California, Berkeley, CA (United States)

    2004-11-24

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm-1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

  5. Photodissociation Spectroscopy of Cold Protonated Synephrine: Surprising Differences between IR-UV Hole-Burning and IR Photodissociation Spectroscopy of the O-H and N-H Modes.

    Science.gov (United States)

    Nieuwjaer, N; Desfrançois, C; Lecomte, F; Manil, B; Soorkia, S; Broquier, M; Grégoire, G

    2018-04-19

    We report the UV and IR photofragmentation spectroscopies of protonated synephrine in a cryogenically cooled Paul trap. Single (UV or IR) and double (UV-UV and IR-UV) resonance spectroscopies have been performed and compared to quantum chemistry calculations, allowing the assignment of the lowest-energy conformer with two rotamers depending on the orientation of the phenol hydroxyl (OH) group. The IR-UV hole burning spectrum exhibits the four expected vibrational modes in the 3 μm region, i.e., the phenol OH, C β -OH, and two NH 2 + stretches. The striking difference is that, among these modes, only the free phenol OH mode is active through IRPD. The protonated amino group acts as a proton donor in the internal hydrogen bond and displays large frequency shifts upon isomerization expected during the multiphoton absorption process, leading to the so-called IRMPD transparency. More interestingly, while the C β -OH is a proton acceptor group with moderate frequency shift for the different conformations, this mode is still inactive through IRPD.

  6. Erratum: Quantum corrections and black hole spectroscopy

    Science.gov (United States)

    Jiang, Qing-Quan; Han, Yan; Cai, Xu

    2012-06-01

    In my paper [Qing-Quan Jiang, Yan Han, Xu Cai, Quantum corrections and black hole spectroscopy, JHEP 08 (2010) 049], there was an error in deriving the black hole spectroscopy. In this erratum, we attempt to rectify them.

  7. Engineering dissipation with phononic spectral hole burning

    Science.gov (United States)

    Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.

    2017-03-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  8. Evaluation of burned aspen communities in Jackson Hole, Wyoming

    Science.gov (United States)

    Charles E. Kay

    2001-01-01

    Aspen has been declining in Jackson Hole for many years, a condition generally attributed to the fact that lightning fires have been aggressively suppressed since the early 1900s. It is also believed that burning will successfully regenerate aspen stands despite high elk numbers. To test this hypothesis, I evaluated 467 burned and 495 adjacent, unburned aspen stands at...

  9. Low-temperature protein dynamics of the B800 molecules in the LH2 light-harvesting complex: spectral hole burning study and comparison with single photosynthetic complex spectroscopy.

    Science.gov (United States)

    Grozdanov, Daniel; Herascu, Nicoleta; Reinot, Tõnu; Jankowiak, Ryszard; Zazubovich, Valter

    2010-03-18

    Previously published and new spectral hole burning (SHB) data on the B800 band of LH2 light-harvesting antenna complex of Rps. acidophila are analyzed in light of recent single photosynthetic complex spectroscopy (SPCS) results (for a review, see Berlin et al. Phys. Life Rev. 2007, 4, 64.). It is demonstrated that, in general, SHB-related phenomena observed for the B800 band are in qualitative agreement with the SPCS data and the protein models involving multiwell multitier protein energy landscapes. Regarding the quantitative agreement, we argue that the single-molecule behavior associated with the fastest spectral diffusion (smallest barrier) tier of the protein energy landscape is inconsistent with the SHB data. The latter discrepancy can be attributed to SPCS probing not only the dynamics of of the protein complex per se, but also that of the surrounding amorphous host and/or of the host-protein interface. It is argued that SHB (once improved models are developed) should also be able to provide the average magnitudes and probability distributions of light-induced spectral shifts and could be used to determine whether SPCS probes a set of protein complexes that are both intact and statistically relevant. SHB results are consistent with the B800 --> B850 energy-transfer models including consideration of the whole B850 density of states.

  10. Application of spectral hole burning to the study of in vitro cellular systems

    Energy Technology Data Exchange (ETDEWEB)

    Milanovich, Nebojsa [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Chapter 1 of this thesis describes the various stages of tumor development and a multitude of diagnostic techniques used to detect cancer. Chapter 2 gives an overview of the aspects of hole burning spectroscopy important for its application to the study of cellular systems. Chapter 3 gives general descriptions of cellular organelles, structures, and physical properties that can serve as possible markers for the differentiation of normal and cancerous cells. Also described in Chapter 3 are the principles of cryobiology important for low temperature spectroscopy of cells, characterization of MCF-10F (normal) and MCF-7 (cancer) cells lines which will serve as model systems, and cellular characteristics of aluminum phthalocyanine tetrasulfonate (APT), which was used as the test probe. Chapters 4 and 5 are previously published papers by the author pertaining to the results obtained from the application of hole burning to the study of cellular systems. Chapter 4 presents the first results obtained by spectral hole burning of cellular systems and Chapter 5 gives results for the differentiation of MCF-10F and MCF-7 cells stained with APT by an external applied electric (Stark) field. A general conclusion is presented in Chapter 6. Appendices A and B provide additional characterization of the cell/probe model systems. Appendix A describes the uptake and subcellular distribution of APT in MCF-10F and MCF-7 cells and Appendix B compares the hole burning characteristics of APT in cells when the cells are in suspension and when they are examined while adhering to a glass coverslip. Appendix C presents preliminary results for a novel probe molecule, referred to as a molecular thumbtack, designed by the authors for use in future hole burning applications to cellular systems.

  11. Optical Hole Burning of Materials for Frequency Domain Optical Storage and Processing

    National Research Council Canada - National Science Library

    Gorokhovsky, Anshel

    2002-01-01

    .... Hole burning parameters were determined for eight materials; in particular, the hole burning kinetics was analyzed and the quantum efficiencies were determined to be between 0.1% and 1%. Holograms (data pages...

  12. Persistent hole-burning of perylene microcrystallites dispersed in PVA

    International Nuclear Information System (INIS)

    Mizuno, K.; Matsubara, T.; Sugahara, K.; Aoki-Matsumoto, T.; Ichida, M.; Ando, H.; Itoh, T.

    2011-01-01

    A persistent hole-burning is observed in β-perylene microcrystallites, which were embedded in poly-vinyl alcohol. By laser light excitation at 22,535 cm -1 and at 10 K, the hole is found at the excitation photon energy. The mechanism of the persistent hole-burning is interpreted in terms of the resolution of microcrystallites into smaller microcrystallites. This is a novel observation of the persistent hole-burning in aromatic microcrystallites. When the specimen, which includes a hole, is annealed at high temperatures, the resolved microcrystallites restore back to the old position as had been. The β-perylene microcrystallite specimen that we have grown was as small as 1.5 nm in average diameter. They are one order smaller in number of molecules included, compared to those that have been reported on aromatic microcrystallites, anthracene for example. Due to this, we were able to observe the 0-0 transition energy, which varied according as the number of molecules involved in the microcrystallites. We also observed the 0-0 absorption (excitation) spectrum, which depends on the molecular arrays in the microcrystallites. The 0-0 transition of a single molecule in poly-vinyl alcohol matrix is anticipated to be located at 22,885 cm -1 .

  13. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning

    International Nuclear Information System (INIS)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-01-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  14. Post-Kerr black hole spectroscopy

    Science.gov (United States)

    Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele

    2017-09-01

    One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.

  15. Laser linewidth narrowing using transient spectral hole burning

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics and Astronomy, 2130 Fulton Street, University of San Francisco, San Francisco, CA 94117 (United States)

    2014-08-01

    We demonstrate significant narrowing of laser linewidths by high optical density materials with inhomogeneously broadened absorption. As a laser propagates through the material, the nonlinear spectral hole burning process causes a progressive self-filtering of the laser spectrum, potentially reaching values less than the homogeneous linewidth. The transient spectral hole dynamically adjusts itself to the instantaneous frequency of the laser, passively suppressing laser phase noise and side modes over the entire material absorption bandwidth without the need for electronic or optical feedback to the laser. Wide bandwidth laser phase noise suppression was demonstrated using Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3} at 1.5 μm by employing time-delayed self-heterodyne detection of an external cavity diode laser to study the spectral narrowing effect. Our method is not restricted to any particular wavelength or laser system and is attractive for a range of applications where ultra-low phase noise sources are required. - Highlights: • We demonstrate significant laser linewidths narrowing by high optical density materials. • Nonlinear spectral hole burning causes progressive self-filtering of laser spectrum. • Filter dynamically adjusts itself to the instantaneous frequency of the laser. • Demonstrated at 1.5 μm in Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3}. • Linewidth filtering is not restricted to any particular wavelength or laser system.

  16. Transient spectral hole burning observed on the single-molecule level in terrylene-doped biphenyl

    International Nuclear Information System (INIS)

    Pärs, M.; Palm, V.; Kikas, J.

    2014-01-01

    We use the method of fluorescence correlation spectroscopy to analyze the single-molecule (SM) spectroscopy data earlier recorded for a special type of terrylene SM impurity center (referred as “spectrally confined unstable molecule”, SCM) in an incommensurate single crystal of biphenyl. The SCM's SM line seems to be chaotically jumping around within a broad “spectral envelope” and was first considered being subject to a peculiar spectral diffusion behavior. However, our correlation analysis reveals that all the features observed for SCM at 1.8 K are consistent with an assumption that this SM center participates in a process of reversible (transient) spectral hole burning (THB) earlier observed for terrylene-doped polycrystalline biphenyl. No observations of THB processes on SM level have been so far reported for this impurity system, partially due to a low concentration of relevant impurity centers. Another reason making searching for such centers experimentally challenging is an unusual SM line behavior: the photoinduced transition to a metastable “dark state” leads to the SM line saturational broadening, which is much stronger than the triplet broadening. Hence required prolonged observation is often prevented by an SM act of persistent spectral hole burning. - Highlights: • SCM—special type of terrylene single-molecule center in incommensurate biphenyl. • An unusually stable SCM was investigated during several hours at T=1.8 K. • SCM undergoes photoinduced transitions to an unknown metastable “dark state” (DS). • The long DS lifetime causes strong saturational broadening of SCM spectral line. • SCM participates in an earlier observed process of transient hole burning

  17. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophylla (BChla) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  18. Verifying black hole orbits with gravitational spectroscopy

    International Nuclear Information System (INIS)

    Drasco, Steve

    2009-01-01

    Gravitational waves from test masses bound to geodesic orbits of rotating black holes are simulated, using Teukolsky's black hole perturbation formalism, for about ten thousand generic orbital configurations. Each binary radiates power exclusively in modes with frequencies that are integer-linear combinations of the orbit's three fundamental frequencies. General spectral properties are found with a survey of orbits about a black hole taken to be rotating at 80% of the maximal spin. The orbital eccentricity is varied from 0.1 to 0.9. Inclination ranges from 20 deg. to 160 deg. and comes to within 20 deg. of polar. Semilatus rectum is varied from 1.2 to 3 times the value at the innermost stable circular orbits. The following general spectral properties are found: (i) 99% of the radiated power is typically carried by a few hundred modes, and at most by about a thousand modes, (ii) the dominant frequencies can be grouped into a small number of families defined by fixing two of the three integer frequency multipliers, and (iii) the specifics of these trends can be qualitatively inferred from the geometry of the orbit under consideration. Detections using triperiodic analytic templates modeled on these general properties would constitute a verification of radiation from an adiabatic sequence of black hole orbits and would recover the evolution of the fundamental orbital frequencies. In an analogy with ordinary spectroscopy, this would compare to observing the Bohr model's atomic hydrogen spectrum without being able to rule out alternative atomic theories or nuclei. The suitability of such a detection technique is demonstrated using snapshots computed at 12-hour intervals throughout the last three years before merger of a kludged inspiral. The system chosen is typical of those thought to occur in galactic nuclei and to be observable with space-based gravitational wave detectors like LISA. Because of circularization, the number of excited modes decreases as the binary

  19. Burned bones forensic investigations employing near infrared spectroscopy

    OpenAIRE

    Cascant, Mari Merce; Rubio, Sonia; Gallello, Gianni; Pastor, Agustin; Garrigues, Salvador; De la Guardia, Miguel

    2017-01-01

    The use of near infrared (NIR) spectroscopy was evaluated, by using chemometric tools, for the study of the environmental impact on burned bones. Spectra of internal and external parts of burned bones, together with sediment samples, were treated by Principal Component Analysis and cluster classification as exploratory techniques to select burned bone samples, less affected by environmental processes, to properly carry out forensic studies. Partial Least Square Discriminant Analysis was used ...

  20. Optical decoherence and persistent spectral hole burning in Er3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Macfarlane, R.M.; Boettger, T.; Sun, Y.; Cone, R.L.; Babbitt, W.R.

    2010-01-01

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er 3+ :LiNbO 3 . Effects of spectral diffusion due to interactions between Er 3+ ions and between the Er 3+ ion and 7 Li and 93 Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  1. Excitation energy transfer in natural photosynthetic complexes and chlorophyll trefoils: hole-burning and single complex/trefoil spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785

    2012-09-12

    In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers

  2. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  3. Nonphotochemical Hole-Burning Imaging Studies of in vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ) were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  4. Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ)were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  5. Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Sun, Y.; Boettger, T.; Babbitt, W.R.; Cone, R.L.

    2010-01-01

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the 3 H 4 and 3 F 4 excited states of Tm 3+ , persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the 169 Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm 3+ and the 7 Li and 93 Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for 7 Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  6. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)

    2017-05-15

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)

  7. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Science.gov (United States)

    Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao

    2017-05-01

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.

  8. Spatial hole burning and spectral stability of a quantum-dot laser

    International Nuclear Information System (INIS)

    Savelyev, A. V.; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E.

    2015-01-01

    The inhomogeneous intensity distribution of the optical model along the axis of a semiconductor quantum-dot laser results in spatial hole burning. The influence of this phenomenon on the stability of the multifrequency emission spectrum is studied when the optical transition of the quantum dots is characterized by considerable homogeneous broadening. The results of two models—in which inhomogeneous broadening is disregarded and taken into account—regarding the stability of the radiation spectrum under the influence of slight variation of the spectral loss dependence in the resonator are compared. Inhomogeneous distribution of the charge carriers (spatial hole burning) is found to be a critical factor in determining the form and stability of the spectrum

  9. Spatial hole burning and spectral stability of a quantum-dot laser

    Energy Technology Data Exchange (ETDEWEB)

    Savelyev, A. V., E-mail: savelev@mail.ioffe.ru; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E. [Russian Academy of Sciences, Nanotechnology Center, St. Petersburg Academic University (Russian Federation)

    2015-11-15

    The inhomogeneous intensity distribution of the optical model along the axis of a semiconductor quantum-dot laser results in spatial hole burning. The influence of this phenomenon on the stability of the multifrequency emission spectrum is studied when the optical transition of the quantum dots is characterized by considerable homogeneous broadening. The results of two models—in which inhomogeneous broadening is disregarded and taken into account—regarding the stability of the radiation spectrum under the influence of slight variation of the spectral loss dependence in the resonator are compared. Inhomogeneous distribution of the charge carriers (spatial hole burning) is found to be a critical factor in determining the form and stability of the spectrum.

  10. Aspects of hole-burning and spectro-temporal holography in molecular doped solids

    International Nuclear Information System (INIS)

    Galap, J.-P.

    2006-01-01

    The persistent spectral hole-burning (PSHB) phenomenon has been known since 1974. It is still an important research area for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectra, photophysics, photochemistry, and dynamics of molecular doped amorphous media, organic as well as inorganic. From another point of view, PSHB allows the engraving of any spectral structures in the inhomogeneous absorption band profile of molecular doped amorphous hosts or ion doped crystals cooled down to liquid helium temperatures. Therefore, a PSHB material is programmable in the spectral domain and consequently it can be transformed in an optical processor capable of achieving user-defined optical functions. Some aspects of both fields are illustrated in the present paper. Concerning the search for efficient PSHB materials, the hole-burning performances and the photophysics of polymer and xerogel based systems are compared. The problem of high-temperature persistent spectral hole-burning materials and the search for new frequency selective photosensitive systems for fast optical pulse processing at 800 nm are considered. Regarding the points treated, inorganic hosts based on silicate xerogels or porous glasses have shown the best results. Moreover, by combining inorganic and organic capabilities or by grafting organic species to the host, hybrid xerogels have not yet revealed all possibilities. Also, the interest of two-photon materials for engraving spectral features with near-infrared or infrared light is developed. As an introduction to possible applications of PSHB material, the basics of spectro-temporal holography are remembered and a demonstrative experiment using a naphthalocyanine-doped polymer film is described, proving that the temporal aberration free recompression of ultrashort light pulses is feasible, therefore opening a way for applications in ultrashort light pulse shaping. Aspects for a comparison between cw hole-burning

  11. Excitation of photonic atoms (dielectric microspheres) on optical fibers: application to room-temperature persistent spectral hole burning

    Science.gov (United States)

    Serpenguzel, Ali; Arnold, Stephen; Griffel, Giora

    1995-05-01

    Recently, photonic atoms (dielectric microspheres) have enjoyed the attention of the optical spectroscopy community. A variety of linear and nonlinear optical processes have been observed in liquid microdroplets. But solid state photonic devices using these properties are scarce. A first of these applications is the room temperature microparticle hole-burning memory. New applications can be envisioned if microparticle resonances can be coupled to traveling waves in optical fibers. In this paper we demonstrate the excitation of narrow morphology dependent resonances of microparticles placed on an optical fiber. Furthermore we reveal a model for this process which describes the coupling efficiency in terms of the geometrical and material properties of the microparticle-fiber system.

  12. Optical decoherence and persistent spectral hole burning in Er{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Macfarlane, R.M. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); IBM Almaden Research Center, San Jose, CA 95120 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Cone, R.L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er{sup 3+}:LiNbO{sub 3}. Effects of spectral diffusion due to interactions between Er{sup 3+} ions and between the Er{sup 3+} ion and {sup 7}Li and {sup 93}Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  13. Photoinduced electron transfer and persistent spectral hole-burning in natural emerald.

    Science.gov (United States)

    Riesen, Hans

    2011-06-02

    Wavelength-selective excited-state lifetime measurements and absorption, luminescence, and hole-burning spectra of a natural African emerald crystal are reported. The (2)E excited-state lifetime displays an extreme wavelength dependence, varying from 190 to 37 μs within 1.8 nm of the R(1)-line. Overall, the excited state is strongly quenched, in comparison to laboratory-created emerald (τ=1.3 ms), with an average quenching rate of ∼6 × 10(3) s(-1) at 2.5 K. This quenching is attributed to photoinduced electron transfer caused by a relatively high concentration of Fe(2+) ions. The forward electron-transfer rate, k(f), from the nearest possible Fe(2+) sites at around 5 Å is estimated to be ∼20 × 10(3) s(-1) at 2.5 K. The photoreductive quenching of the excited Cr(3+) ions by Fe(2+) is followed by rapid electron back-transfer in the ground state upon deactivation. The exchange interaction based quenching can be modeled by assuming a random quencher distribution within the possible Fe(2+) sites with the forward electron-transfer rate, k(f), given as a function of acceptor-donor separation R by exp[(R(f)-R)/a(f)]; R(f) and a(f) values of 13.5 and 2.7 Å are obtained at 2.5 K. The electron transfer/back-transfer reorganizes the local crystal lattice, occasionally leading to a minor variation of the short-range structure around the Cr(3+) ions. This provides a mechanism for spectral hole-burning for which a moderately high quantum efficiency of about ∼0.005% is observed. Spectral holes are subject to spontaneous hole-filling and spectral diffusion, and both effects can be quantified within the standard two-level systems for non-photochemical hole-burning. Importantly, the absorbance increases on both sides of broad spectral holes, and isosbestic points are observed, in accord with the expected distribution of the "photoproduct" in a non-photochemical hole-burning process. © 2011 American Chemical Society

  14. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    International Nuclear Information System (INIS)

    Satoshi Matsuzaki

    2002-01-01

    Burn wavelength (λ B )-dependent nonphotochemical hole spectra are reported for the lowest energy Q y -absorption band of the Fenna-Matthews-Olson (FMO) trimer complex from Prosthecochloris aestuarii. This band at 825 nm is contributed to by three states that stem from the lowest energy state of the subunit of the trimer. The spectra reveal unusually rich and quite sharp low energy satellite structure that consists of holes at 18, 24, 36, 48, 72, 120 and 165 cm -1 as measured relative to the resonant hole at λ B . The possibility that some of these holes are due to correlated downward energy transfer from the two higher energy states that contribute to the 825 nm band could be rejected. Thus, the FMO complex is yet another example of a photosynthetic complex for which structural heterogeneity results in distributions for the values of the energy gaps between Q y -states. The results of theoretical simulations of the hole spectra are consistent with the above holes being due to intermolecular phonons and low energy intramolecular vibrations of the bacteriochlorophyll a (BChl a) molecule. The 36 cm -1 and higher energy modes are most likely due to the intramolecular BChl a modes. The simulations lead to the determination of the Huang-Rhys (S) factor for all modes

  15. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning; Perfiles axiales de quemado y fraccion de huecos para calculos de criticidad con credito al quemado para combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-07-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  16. Power budget analysis of image-plane storage in spectral hole-burning materials

    International Nuclear Information System (INIS)

    Neifeld, M.A.; Randall Babbitt, W.; Krishna Mohan, R.; Craig, A.E.

    2004-01-01

    We analyze the power requirements of a volumetric storage system based on hole-burning materials. We consider an image-plane architecture that uses ultra-fine wavelength addressing. We perform an optimization study in which hole-depth, material thickness, and spot size are selected to minimize the system power budget. We find that a data rate of 10 Gbps and a latency of 10 μs can be achieved in a read-once system based on Eu-YSO with a total power budget of only 23 mW. The same material system designed to tolerate 1000 read cycles would require only a factor of 15 increase in power

  17. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    Science.gov (United States)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  18. Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX

    Directory of Open Access Journals (Sweden)

    Lennert Schepers

    2014-02-01

    Full Text Available Uncontrolled, large fires are a major threat to the biodiversity of protected heath landscapes. The severity of the fire is an important factor influencing vegetation recovery. We used airborne imaging spectroscopy data from the Airborne Prism Experiment (APEX sensor to: (1 investigate which spectral regions and spectral indices perform best in discriminating burned from unburned areas; and (2 assess the burn severity of a recent fire in the Kalmthoutse Heide, a heathland area in Belgium. A separability index was used to estimate the effectiveness of individual bands and spectral indices to discriminate between burned and unburned land. For the burn severity analysis, a modified version of the Geometrically structured Composite Burn Index (GeoCBI was developed for the field data collection. The field data were collected in four different vegetation types: Calluna vulgaris-dominated heath (dry heath, Erica tetralix-dominated heath (wet heath, Molinia caerulea (grass-encroached heath, and coniferous woodland. Discrimination between burned and unburned areas differed among vegetation types. For the pooled dataset, bands in the near infrared (NIR spectral region demonstrated the highest discriminatory power, followed by short wave infrared (SWIR bands. Visible wavelengths performed considerably poorer. The Normalized Burn Ratio (NBR outperformed the other spectral indices and the individual spectral bands in discriminating between burned and unburned areas. For the burn severity assessment, all spectral bands and indices showed low correlations with the field data GeoCBI, when data of all pre-fire vegetation types were pooled (R2 maximum 0.41. Analysis per vegetation type, however, revealed considerably higher correlations (R2 up to 0.78. The Mid Infrared Burn Index (MIRBI had the highest correlations for Molinia and Erica (R2 = 0.78 and 0.42, respectively. In Calluna stands, the Char Soil Index (CSI achieved the highest correlations, with R2 = 0

  19. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and σΛ, as well as the standard hole burning parameters (namely, γ and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (fΔμ) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between fΔμs in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of

  20. Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: Comparison with bulk amplifiers

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    The ultrafast gain dynamics in an electrically pumped InAs/InGaAs/GaAs quantum-dot amplifier are measured at room temperature with femtosecond resolution, and compared with results on an InGaAsP bulk amplifier. The role of spectral hole burning and carrier heating in the recovery of the gain...

  1. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    Science.gov (United States)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  2. Xclaim: A graphical interface for the calculation of core-hole spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Rodríguez, Javier [Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States); Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Toby, Brian, E-mail: toby@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Veenendaal, Michel van, E-mail: veenendaal@niu.edu [Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States); Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • The program Xclaim (X-ray core level atomic multiplets) calculates core-hole spectra. • Crystal field under an arbitrary point symmetry and hybridization with ligands. • X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). - Abstract: Xclaim (X-ray core level atomic multiplets) is a graphical interface for the calculation of core-hole spectroscopy and ground state properties within a charge-transfer multiplet model taking into account a many-body Hamiltonian with Coulomb, spin–orbit, crystal-field, and hybridization interactions. Using Coulomb and spin–orbit parameters calculated in the Hartree–Fock limit and ligand field parameters (crystal-field, hybridization and charge-transfer energy) the program calculates X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). The program runs on Linux, Windows and MacOS platforms.

  3. Xclaim: A graphical interface for the calculation of core-hole spectroscopies

    International Nuclear Information System (INIS)

    Fernández-Rodríguez, Javier; Toby, Brian; Veenendaal, Michel van

    2015-01-01

    Highlights: • The program Xclaim (X-ray core level atomic multiplets) calculates core-hole spectra. • Crystal field under an arbitrary point symmetry and hybridization with ligands. • X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). - Abstract: Xclaim (X-ray core level atomic multiplets) is a graphical interface for the calculation of core-hole spectroscopy and ground state properties within a charge-transfer multiplet model taking into account a many-body Hamiltonian with Coulomb, spin–orbit, crystal-field, and hybridization interactions. Using Coulomb and spin–orbit parameters calculated in the Hartree–Fock limit and ligand field parameters (crystal-field, hybridization and charge-transfer energy) the program calculates X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). The program runs on Linux, Windows and MacOS platforms

  4. Optical decoherence and persistent spectral hole burning in Tm{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Babbitt, W.R. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Cone, R.L. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States)

    2010-09-15

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the {sup 3}H{sub 4} and {sup 3}F{sub 4} excited states of Tm{sup 3+}, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the {sup 169}Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 {mu}s at zero field to 23 {mu}s in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm{sup 3+} and the {sup 7}Li and {sup 93}Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for {sup 7}Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  5. Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.

    Science.gov (United States)

    Casals, Marc; Ottewill, Adrian

    2012-09-14

    Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.

  6. Black hole spectroscopy: Systematic errors and ringdown energy estimates

    Science.gov (United States)

    Baibhav, Vishal; Berti, Emanuele; Cardoso, Vitor; Khanna, Gaurav

    2018-02-01

    The relaxation of a distorted black hole to its final state provides important tests of general relativity within the reach of current and upcoming gravitational wave facilities. In black hole perturbation theory, this phase consists of a simple linear superposition of exponentially damped sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are necessary to describe waveforms with a prescribed precision? What error do we incur by only including quasinormal modes, and not tails? What other systematic effects are present in current state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics with distorted black holes, have hardly been addressed in the literature. We use numerical relativity waveforms and accurate evolutions within black hole perturbation theory to provide some answers. We show that (i) a determination of the fundamental l =m =2 quasinormal frequencies and damping times to within 1% or better requires the inclusion of at least the first overtone, and preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin with precision better than 1% requires the inclusion of at least two quasinormal modes for any given angular harmonic mode (ℓ , m ). We also improve on previous estimates and fits for the ringdown energy radiated in the various multipoles. These results are important to quantify theoretical (as opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.

  7. Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2000-01-01

    recovery of the spectral hole within ~100 fs is measured, comparable to bulk and quantum-well amplifiers, which is contradicting a carrier relaxation bottleneck in electrically pumped QD devices. The CH dynamics in the QD is quantitatively compared with results on an InGaAsP bulk amplifier. Reduced CH......The ultrafast gain and index dynamics in a set of InAs-InGaAs-GaAs quantum-dot (QD) amplifiers are measured at room temperature with femtosecond resolution. The role of spectral hole-burning (SHB) and carrier heating (CH) in the recovery of gain compression is investigated in detail. An ultrafast...

  8. Burns

    Science.gov (United States)

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  9. Saturated multikilovolt x-ray amplification with Xe clusters: single-pulse observation of Xe(L) spectral hole burning

    International Nuclear Information System (INIS)

    Borisov, Alex B; Davis, Jack; Song, Xiangyang; Koshman, Yevgeniya; Dai Yang; Boyer, Keith; Rhodes, Charles K

    2003-01-01

    Single-pulse measurements of spectral hole burning of Xe(L) 3d → 2p hollow atom transition arrays observed from a self-trapped plasma channel provide new information on the dynamics of saturated amplification in the λ ∼ 2.8-2.9 A region. The spectral hole burning on transitions in the Xe 34+ and Xe 35+ arrays reaches full suppression of the spontaneous emission and presents a corresponding width Δ h-bar ω x ∼ = 60 eV, a value adequate for efficient amplification of multikilovolt x-ray pulses down to a limiting length τ x ∼ 30 as. The depth of the suppression at 2.86 A indicates that the gain-to-loss ratio is ≥10. An independent determination of the x-ray pulse energy from damage produced on the surface of a Ti foil in the far field of the source gives a pulse energy of 20-30 μJ, a range that correlates well with the observation of the spectral hole burning and indicates an overall extraction efficiency of ∼10%. (letter to the editor)

  10. Hole burning with pressure and electric field: A window on the electronic structure and energy transfer dynamics of bacterial antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.M.

    1999-02-12

    Light-harvesting (LH) complexes of cyclic (C{sub n}) symmetry from photosynthetic bacteria are studied using absorption and high pressure- and Stark-hole burning spectroscopies. The B800 absorption band of LH2 is inhomogeneously broadened while the B850 band of LH2 and the B875 band of the LH1 complex exhibit significant homogeneous broadening due to ultra-fast inter-exciton level relaxation. The B800{r_arrow}B850 energy transfer rate of ({approximately}2 ps){sup {minus}1} as determined by hole burning and femtosecond pump-probe spectroscopies, is weakly dependent on pressure and temperature, both of which significantly affect the B800-B850 energy gap. The resilience is theoretically explained in terms of a modified Foerster theory with the spectral overlap provided by the B800 fluorescence origin band and weak vibronic absorption bands of B850. Possible explanations for the additional sub-picosecond relaxation channel of B800 observed with excitation on the blue side of B800 are given. Data from pressure and temperature dependent studies show that the B800 and B850 bacteriochlorophyll a (BChl a) molecules are weakly and strongly excitonically coupled, respectively, which is consistent with the X-ray structure of LH2. The B875 BChl a molecules are also strongly coupled. It is concluded that electron-exchange, in addition to electrostatic interactions, is important for understanding the strong coupling of the B850 and B875 rings. The large linear pressure shifts of {approximately}{minus}0.6 cm{sup {minus}1}/MPa associated with B850 and B875 can serve as important benchmarks for electronic structure calculations.

  11. Bogoliubov Angle, Particle-Hole Mixture and Angular Resolved Photoemission Spectroscopy in Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, A.

    2010-05-04

    Superconducting excitations - Bogoliubov quasiparticles - are the quantum mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). We propose a new observable for Angular Resolved Photoemission Spectroscopy (ARPES) studies that is the manifestation of the particle-hole entanglement of the superconducting quasiparticles. We call this observable a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We show how this quantity can be measured by comparing the ratio of spectral intensities at positive and negative energies.

  12. Use of interfacial layers to prolong hole lifetimes in hematite probed by ultrafast transient absorption spectroscopy

    Science.gov (United States)

    Paradzah, Alexander T.; Diale, Mmantsae; Maabong, Kelebogile; Krüger, Tjaart P. J.

    2018-04-01

    Hematite is a widely investigated material for applications in solar water oxidation due primarily to its small bandgap. However, full realization of the material continues to be hampered by fast electron-hole recombination rates among other weaknesses such as low hole mobility, short hole diffusion length and low conductivity. To address the problem of fast electron-hole recombination, researchers have resorted to growth of nano-structured hematite, doping and use of under-layers. Under-layer materials enhance the photo-current by minimising electron-hole recombination through suppressing of back electron flow from the substrate, such as fluorine-doped tin oxide (FTO), to hematite. We have carried out ultrafast transient absorption spectroscopy on hematite in which Nb2O5 and SnO2 materials were used as interfacial layers to enhance hole lifetimes. The transient absorption data was fit with four different lifetimes ranging from a few hundred femtoseconds to a few nanoseconds. We show that the electron-hole recombination is slower in samples where interfacial layers are used than in pristine hematite. We also develop a model through target analysis to illustrate the effect of under-layers on electron-hole recombination rates in hematite thin films.

  13. Resonance Spectra of Caged Stringy Black Hole and Its Spectroscopy

    Directory of Open Access Journals (Sweden)

    I. Sakalli

    2015-01-01

    quasinormal mode (QNM frequencies, is used to investigate the entropy/area spectra of the Garfinkle–Horowitz–Strominger black hole (GHSBH. Instead of the ordinary QNMs, we compute the boxed QNMs (BQNMs that are the characteristic resonance spectra of the confined scalar fields in the GHSBH geometry. For this purpose, we assume that the GHSBH has a confining cavity (mirror placed in the vicinity of the event horizon. We then show how the complex resonant frequencies of the caged GHSBH are computed using the Bessel differential equation that arises when the scalar perturbations around the event horizon are considered. Although the entropy/area is characterized by the GHSBH parameters, their quantization is shown to be independent of those parameters. However, both spectra are equally spaced.

  14. Surface-enhanced Raman spectroscopy based on conical holed enhancing substrates

    International Nuclear Information System (INIS)

    Chen, Yao; Chen, Zeng-Ping; Zuo, Qi; Shi, Cai-Xia; Yu, Ru-Qin

    2015-01-01

    In this contribution, surface-enhanced Raman spectroscopy (SERS) based on conical holed glass substrates deposited with silver colloids was reported for the first time. It combines the advantages of both dry SERS assays based on plane films deposited with silver colloids and wet SERS assays utilizing cuvettes or capillary tubes. Compared with plane glass substrates deposited with silver colloids, the conical holed glass substrates deposited with silver colloids exhibited five-to ten-folds of increase in the rate of signal enhancement, due to the internal multiple reflections of both the excitation laser beam and the Raman scattering photons within conical holes. The application of conical holed glass substrates could also yield significantly stronger and more reproducible SERS signals than SERS assays utilizing capillary tubes to sample the mixture of silver colloids and the solution of the analyte of interest. The conical holed glass substrates in combination with the multiplicative effects model for surface-enhanced Raman spectroscopy (MEM SERS ) achieved quite sensitive and precise quantification of 6-mercaptopurine in complex plasma samples with an average relative prediction error of about 4% and a limit of detection of about 0.02 μM using a portable i-Raman 785H spectrometer. It is reasonable to expect that SERS technique based on conical holed enhancing substrates in combination with MEM SERS model can be developed and extended to other application areas such as drug detection, environmental monitoring, and clinic analysis, etc. - Highlights: • A novel conical holed SERS enhancing substrate was designed and manufactured. • The optimal conical holed glass substrates can produce stronger SERS signal. • The novel substrates can overcome the shortcomings of both dry and wet methods. • The novel substrates coupled with MEM SERS can realize quantitative SERS assays

  15. Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers.

    Science.gov (United States)

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2016-09-02

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.

  16. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  17. Hole traps in n-GaN detected by minority carrier transient spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Yutaka; Yamada, Yujiro; Shibata, Tatsunari; Yamaguchi, Shintaro [Department of Electrical and Electronics Engineering, Aichi Institute of Technology, Yakusa, 470-0392 Toyota (Japan); Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu [Toyota Central R and D Laboratories, Inc., Nagakute, 480-1192 Aichi (Japan)

    2011-07-15

    Minority carrier transient spectroscopy (MCTS) has been applied for the detection of hole traps in n-GaN using Schottky diodes. MCTS using 355 nm light emitting diodes is performed under isothermal conditions in the temperature range 280 to 330 K for n-GaN grown by metalorganic chemical vapor deposition on sapphire. Isothermal MCTS spectra reveal the E{sub v} + 0.86 eV hole trap with the trap concentration of 1.1x10{sup 16} cm{sup -3}. The E{sub v} + 0.86 eV hole trap has the higher concentration as compared to electron traps observed by deep level transient spectroscopy. Thus, the isothermal MCTS around room temperature provides a convenient way to evaluate the dominant trap in n-GaN. It is suggested that the E{sub v} + 0.86 eV hole trap is associated with the V{sub Ga}-related defect or carbon-related defect. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Observation of relaxation on time scale of core hole decay by coincidence photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that when the relaxation time of a metastable core hole state(s) to the most stable one is comparable to or shorter than core hole decay time of the former state(s), a comparison between the singles (noncoincidence) photoelectron spectroscopy (PES) spectrum and the coincidence one provides a direct evidence of the relaxation. In principle the variation with photoelectron kinetic energy of relaxation (or charge transfer (CT)) time can be determined. By singles measurement the correlation of a photoelectron generated by creation of the metastable states not only with an Auger electron generated by annihilation of the same core hole state but also with an Auger electron generated by annihilation of the stable state via relaxation of the metastable state, is completely lost, unless only the metastable state is observed by PES, whereas the correlation often manifests directly in the coincidence spectra. Thus, compared to the coincidence spectroscopy the singles one is often much less capable of elucidating the competition between relaxation and core hole decay of a metastable state. Such examples are discussed

  19. Evidence for a Very Early Intermediate in Bacterial Photosynthesis. A Photon-Echo and Hole-Burning Study of the Primary Donor Band in Rhodopseudomonas Sphaeroides

    NARCIS (Netherlands)

    Meech, S.R.; Hoff, A.J.

    1985-01-01

    Two coherent spectroscopic methods, accumulated photon echo and population bottleneck hole-burning, have been employed in a study of the decay rate of the primary donor (P) of Rhodopseudomonas sphaeroides at 1.5 K. The decay rate is instrument-limited in the photon-echo experiment, implying a

  20. Terahertz magneto-optical spectroscopy of a two-dimensional hole gas

    Energy Technology Data Exchange (ETDEWEB)

    Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pan, W.; Reno, J. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Ekenberg, U. [Semiconsultants, Brunnsgrnd 12, SE-18773 Täby (Sweden); Gvozdić, D. M. [School of Electrical Engineering, University of Belgrade, Belgrade 11120 (Serbia); Boubanga-Tombet, S. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai (Japan); Upadhya, P. C. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Electro-Optics Systems, Indian Space Research Organization, Bangalore 560058 (India)

    2015-01-19

    Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, in contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.

  1. Iron line spectroscopy with Einstein-dilaton-Gauss-Bonnet black holes

    Science.gov (United States)

    Nampalliwar, Sourabh; Bambi, Cosimo; Kokkotas, Kostas D.; Konoplya, Roman A.

    2018-06-01

    Einstein-dilaton-Gauss-Bonnet gravity is a well-motivated alternative theory of gravity that emerges naturally from string theory. While black hole solutions have been known in this theory in numerical form for a while, an approximate analytical metric was obtained recently by some of us, which allows for faster and more detailed analysis. Here we test the accuracy of the analytical metric in the context of X-ray reflection spectroscopy. We analyze innermost stable circular orbits (ISCO) and relativistically broadened iron lines and find that both the ISCO and iron lines are determined sufficiently accurately up to the limit of the approximation. We also find that, though the ISCO increases by about 7% as dilaton coupling increases from zero to extremal values, the redshift at ISCO changes by less than 1%. Consequently, the shape of the iron line is much less sensitive to the dilaton charge than expected.

  2. Effects of the Distributions of Energy or Charge Transfer Rates on Spectral Hole Burning in Pigment-Protein Complexes at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Herascu, N.; Ahmouda, S.; Picorel, R.; Seibert, M.; Jankowiak, R.; Zazubovich, V.

    2011-12-22

    Effects of the distributions of excitation energy transfer (EET) rates (homogeneous line widths) on the nonphotochemical (resonant) spectral hole burning (SHB) processes in photosynthetic chlorophyll-protein complexes (reaction center [RC] and CP43 antenna of Photosystem II from spinach) are considered. It is demonstrated that inclusion of such a distribution results in somewhat more dispersive hole burning kinetics. More importantly, however, inclusion of the EET rate distributions strongly affects the dependence of the hole width on the fractional hole depth. Different types of line width distributions have been explored, including those resulting from Foerster type EET between weakly interacting pigments as well as Gaussian ones, which may be a reasonable approximation for those resulting, for instance, from so-called extended Foerster models. For Gaussian line width distributions, it is possible to determine the parameters of both line width and tunneling parameter distributions from SHB data without a priori knowledge of any of them. Concerning more realistic asymmetric distributions, we demonstrate, using the simple example of CP43 antenna, that one can use SHB modeling to estimate electrostatic couplings between pigments and support or exclude assignment of certain pigment(s) to a particular state.

  3. A 5 × 10{sup 9}M{sub ⊙} BLACK HOLE IN NGC 1277 FROM ADAPTIVE OPTICS SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Jonelle L. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Van den Bosch, Remco C. E.; Yıldırım, Akın [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Gebhardt, Karl [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Richstone, Douglas O.; Gültekin, Kayhan [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Husemann, Bernd, E-mail: walsh@physics.tamu.edu [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2016-01-20

    The nearby lenticular galaxy NGC 1277 is thought to host one of the largest black holes known, however the black hole mass measurement is based on low spatial resolution spectroscopy. In this paper, we present Gemini Near-infrared Integral Field Spectrometer observations assisted by adaptive optics. We map out the galaxy's stellar kinematics within ∼440 pc of the nucleus with an angular resolution that allows us to probe well within the region where the potential from the black hole dominates. We find that the stellar velocity dispersion rises dramatically, reaching ∼550 km s{sup −1} at the center. Through orbit-based, stellar-dynamical models we obtain a black hole mass of (4.9 ± 1.6) × 10{sup 9} M{sub ⊙} (1σ uncertainties). Although the black hole mass measurement is smaller by a factor of ∼3 compared to previous claims based on large-scale kinematics, NGC 1277 does indeed contain one of the most massive black holes detected to date, and the black hole mass is an order of magnitude larger than expectations from the empirical relation between black hole mass and galaxy luminosity. Given the galaxy's similarities to the higher redshift (z ∼ 2) massive quiescent galaxies, NGC 1277 could be a relic, passively evolving since that period. A population of local analogs to the higher redshift quiescent galaxies that also contain over-massive black holes may suggest that black hole growth precedes that of the host galaxy.

  4. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    International Nuclear Information System (INIS)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas; Jankowiak, Ryszard

    2015-01-01

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω sp , for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers

  5. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Jankowiak, Ryszard, E-mail: ryszard@ksu.edu [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-03-07

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.

  6. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    Science.gov (United States)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust

  7. Free water content and monitoring of healing processes of skin burns studied by microwave dielectric spectroscopy in vivo

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Miura, Nobuhiro; Shinyashiki, Naoki; Yagihara, Shin

    2005-01-01

    We have investigated the dielectric properties of human skin in vivo at frequencies up to 10 GHz using a time-domain reflectometry method with open-ended coaxial probes. Since γ-dispersion results from the reorientation of free water molecules, the free water content of skin is quantitatively determined by dielectric measurements. The free water content of finger skin increased by about 10% after soaking in 37 0 C water for 30 min, and it systematically decreased again through the drying process, as expected. Thus this analytical method has been applied to the study of skin burns. The free water content of burned human cheek skin due to hydrofluoric acid was significantly lower than that of normal skin, and the burned skin recovered through the healing process. In the case of a human hand skin burn due to heat, although the free water content was almost the same as that of normal skin at the beginning, it decreased during the healing process for the first 10 days, then began to increase. Although the number of test subjects was one for each experiment, it was shown that free water content is a good indicator for evaluating skin health and can be well monitored by dielectric spectroscopy

  8. Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning

    International Nuclear Information System (INIS)

    Macfarlane, R.M.; Sun, Y.; Sellin, P.B.; Cone, R.L.

    2007-01-01

    Two-pulse and stimulated photon echoes and spectral hole burning were measured on the transition from the lowest component of the 4 I 15/2 manifold to the lowest component of 4 I 13/2 of Er 3+ in a silicate optical fiber at 1.6 K. The two-pulse echo decays gave decoherence times as long as 230 ns for magnetic fields above 2 T. A large field dependent contribution to the homogeneous line width of >2 MHz was found and interpreted in terms of coupling to magnetic tunneling modes (TLS) in the glass. The stimulated echoes measured at 2 T showed spectral diffusion of 0.8 MHz/decade of time between 0.4 and 500 μs. Spectral diffusion in this high field region is attributed to coupling to elastic TLS modes which have a distribution of flip rates in glasses. Time-resolved spectral hole burning at very low field showed stronger spectral diffusion of 5.7 MHz/decade of time, attributed to coupling to magnetic spin-elastic TLS modes

  9. Black-hole spectroscopy: testing general relativity through gravitational-wave observations

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Olaf [Perimeter Institute of Theoretical Physics, 35 King Street North, Waterloo, Ontario, N2J 2G9 (Canada); Kelly, Bernard [Center for Gravitational Wave Physics, Center for Gravitational Physics and Geometry and Department of Physics, 104 Davey Laboratory, University Park, PA 16802 (United States); Krishnan, Badri [Max Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Finn, Lee Samuel [Center for Gravitational Wave Physics, Center for Gravitational Physics and Geometry, Department of Physics and Department of Astronomy and Astrophysics, 104 Davey Laboratory, University Park, PA 16802 (United States); Garrison, David [University of Houston, Clear Lake, 2700 Bay Area Bvd, Room 3531-2, Houston, TX 77058 (United States); Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico 00931 (Puerto Rico)

    2004-02-21

    Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources.

  10. Black-hole spectroscopy: testing general relativity through gravitational-wave observations

    International Nuclear Information System (INIS)

    Dreyer, Olaf; Kelly, Bernard; Krishnan, Badri; Finn, Lee Samuel; Garrison, David; Lopez-Aleman, Ramon

    2004-01-01

    Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources

  11. Direct Observation of Ultrafast Hole Injection from Lead Halide Perovskite by Differential Transient Transmission Spectroscopy.

    Science.gov (United States)

    Ishioka, Kunie; Barker, Bobby G; Yanagida, Masatoshi; Shirai, Yasuhiro; Miyano, Kenjiro

    2017-08-17

    Efficient charge separation at the interfaces of the perovskite with the carrier transport layers is crucial for perovskite solar cells to achieve high power conversion efficiency. We present a systematic experimental study on the hole injection dynamics from MAPbI 3 perovskite to three typical hole transport materials (HTMs). We extract the carrier dynamics directly related to the hole injection by employing a pump light with short absorption depth and comparing the transient transmission signals excited on the two sides of the sample. The differential transmission signals reveal the hole injections to PTAA and PEDOT:PSS to be complete within 1 and 2 ps, respectively, and that to NiO x to exhibit an additional slow process on a 40 ps time scale. The obtained injection dynamics are discussed in comparison with the device performance of the solar cells containing the same MAPbI 3 /HTM interfaces.

  12. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

    DEFF Research Database (Denmark)

    Gobron, Olivier; Jung, K.; Galland, N.

    2017-01-01

    Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011......)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from...

  13. Hole distribution in (Sr, Ca, Y, La)14Cu24O41 compounds studies by x-ray absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Kabasawa, Eiki; Nakamura, Jin; Yamada, Nobuyoshi; Kuroki, Kazuhiko; Yamazaki, Hisashi; Watanabe, Masamitsu; Denlinger, Jonathan D.; Shin, Shik; Perera, Rupert C.C.

    2008-01-01

    The polarization dependence of soft x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) near the O 1s absorption edge was measured on two-leg ladder single-crystalline samples of (Sr, Ca, Y, La) 14 Cu 24 O 41 (14-24-41). The hole distributions in 14-24-41 compounds are determined by polarization analysis. For samples with less than or equal to 5 holes/chemical formula (c.f.), all holes reside on the edge-shared chain layer. In the case of Sr 14-x Ca x Cu 24 O 41 (6 holes/c.f.), there is approximately one hole on the two-leg ladder layer, with about five holes remaining on the edge-shared chain layer. By Ca substitution for Sr in the Sr 14-x Ca x Cu 24 O 41 samples, 0.3 holes transfer from the edge-shared chain to the two-leg ladder layer. It is possible that some of the holes on the two-leg ladder layer move from the rung sites to the leg sites upon Ca substitution. (author)

  14. Coherent hole burning and Mollow absorption effects in the cycling transition Fe=0↔Fg=1 subject to a magnetic field

    International Nuclear Information System (INIS)

    Gu Ying; Sun Qingqing; Gong Qihuang

    2004-01-01

    With saturation and probing by circularly polarized fields, quantum coherence effects are investigated for the cycling transition F e =0↔F g =1, which is subject to a linearly polarized field and a magnetic field. The saturation field is applied to the case of maximum coherence between the drive Rabi frequency and magnetic field, corresponding to the electromagnetically induced absorption (EIA) with negative dispersion found by Gu et al. For a small saturation Rabi frequency, holes are burned in two Autler-Towns peaks outside two symmetric electromagnetically induced transparency windows due to the two-photon resonance. However, when the saturation Rabi frequency is comparable with the drive Rabi frequency, holes caused by the coherent population oscillation appear in the EIA spectrum. Finally, when the saturation Rabi frequency is large enough, several emission peaks are observed due to the Mollow absorption effects. Furthermore, the dispersion at the pump-probe detuning center is kept negative with an increase in saturation field, which is a precursor of superluminal light propagation

  15. On the prospect of constraining black hole spin through X-ray spectroscopy of hotspots

    Czech Academy of Sciences Publication Activity Database

    Murphy, K.; Yaqoob, T.; Karas, Vladimír; Dovčiak, Michal

    2009-01-01

    Roč. 701, č. 1 (2009), s. 635-641 ISSN 0004-637X R&D Projects: GA MŠk ME09036 Institutional research plan: CEZ:AV0Z10030501 Keywords : black holes * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 7.364, year: 2009

  16. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  17. Experimental study of the burned of nuclear fuel by the gamma spectroscopy method

    International Nuclear Information System (INIS)

    Amador V, P.

    2009-01-01

    Accurate information on nuclear fuel burnup is of vital importance in reactor operation, fuel management and fuel-characteristics studies. Conventionally fuel management of the TRIGA III Reactor from the National Institute of Nuclear Research (ININ) is done through the thermal balance method (management) of the power generated during reactor operation, since it is known that with 1.24 grams of 235 U is possible to generate a power or 1 MW per day during the reactor operation. On the other hand, it is possible to calculate the operation time in days during a power of 1 MW with the help of the data registered in logs. With the information just mentioned one can calculate the quantity of 235 U consumed in the fuel during a complete period of irradiation. In order to compare and prove that the burnup values, calculated through the thermal balance method, are correct, the ININ implemented, for the first time, the gamma-ray spectroscopy method as an experimental technique to calculate the burnup of several fuel elements. Gamma-ray spectroscopy is a nondestructive method, so that the integrity of the fuel element is not affected which is of great importance. Since there is a direct relation between the activity of 137 Cs contained in the fuel elements and a series of constants which are unique for the radioisotope and for the high resolution system, the problem just simplifies in measuring the 137 Cs activities. Furthermore the 137 Cs concentration equation was developed theoretically and I wrote a computer program (AMAVAL) in Fortran. The task of this program is to calculate the concentrations and the activity through the use of the equation just mentioned and the history of each fuel element. The purpose of this is to compare and validate the experimental activities with the theoretical ones for each fuel element. (Author)

  18. Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiachen; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Steiner, James F., E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn, E-mail: jsteiner@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-05-01

    The iron Kα line commonly observed in the X-ray spectrum of both stellar-mass and supermassive black hole candidates is produced by the illumination of a cold accretion disk by a hot corona. In this framework, the activation of a new flaring region in the hot corona imprints a time variation on the iron line spectrum. Future X-ray facilities with high time resolution and large effective areas may be able to measure the so-called 2-dimensional transfer function; that is, the iron line profile detected by a distant observer as a function of time in response to an instantaneous flare from the X-ray primary source. This work is a preliminary study to determine if and how such a technique can provide more information about the spacetime geometry around the compact object than the already possible measurements of the time-integrated iron line profile. Within our simplified model, we find that a measurement of iron line reverberation can improve constraints appreciably given a sufficiently strong signal, though that most of the information is present in the time-integrated spectrum. Our aim is to test the Kerr metric. We find that current X-ray facilities and data are unable to provide strong tests of the Kerr nature of supermassive black hole candidates. We consider an optimistic case of 10{sup 5} iron line photons from a next-generation data set. With such data, the reverberation model improves upon the spectral constraint by an order of magnitude.

  19. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    Science.gov (United States)

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  20. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Nakasato, Naohito, E-mail: tanikawa@ea.c.u-tokyo.ac.jp [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan)

    2017-04-20

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

  1. Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Nampalliwar, Sourabh [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, 110231 Bogotá (Colombia); Dauser, Thomas [Remeis Observatory and ECAP, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany); García, Javier A., E-mail: bambi@fudan.edu.cn [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-06-20

    We present the first X-ray reflection model for testing the assumption that the metric of astrophysical black holes is described by the Kerr solution. We employ the formalism of the transfer function proposed by Cunningham. The calculations of the reflection spectrum of a thin accretion disk are split into two parts: the calculation of the transfer function and the calculation of the local spectrum at any emission point in the disk. The transfer function only depends on the background metric and takes into account all the relativistic effects (gravitational redshift, Doppler boosting, and light bending). Our code computes the transfer function for a spacetime described by the Johannsen metric and can easily be extended to any stationary, axisymmetric, and asymptotically flat spacetime. Transfer functions and single line shapes in the Kerr metric are compared to those calculated from existing codes to check that we reach the necessary accuracy. We also simulate some observations with NuSTAR and LAD/eXTP and fit the data with our new model to show the potential capabilities of current and future observations to constrain possible deviations from the Kerr metric.

  2. Far infrared spectroscopy of solids. I. Impurity states in Al2O3. II. Electron-hole droplets in Ge

    International Nuclear Information System (INIS)

    Aurbauch, R.L.

    1975-01-01

    Far infrared Fourier transform spectroscopy was used to study the low lying vibronic states of Mn 3+ in Al 2 O 3 and the plasma absorption of electron-hole droplets in Ge. The transmission of Mn-doped samples of Al 2 O 3 was measured in the frequency range from 3 to 30 cm -1 in applied magnetic fields up to 50 kG. Absorption lines were observed due to both ground and excited state transitions. Polarization measurements established that these absorption lines were due to electric dipole transitions. Temperature dependence measurements were used to derive a level diagram for the low lying states of Mn 3+ . A phenomenological model based on an electronic Hamiltonian was developed which successfully describes the data. The empirically determined trigonal field and spin-orbit quenching parameters of this model are 0.7 and 0.1 respectively. This quenching is attributed to the dynamic Jahn--Teller interaction. The plasma absorption of small (α) electron-hole drops in Ge was measured in the frequency range from 30 to 300 cm -1 . The observed absorption is in good agreement with measurements by Vavilov and other workers. A theoretical model which includes both intraband and interband contributions to the dielectric constant in the Rayleigh limit of Mie theory is used to describe the observed lineshape. Measurements of plasma absorption of large (γ) drops in inhomogeneously stressed Ge were made in magnetic fields up to 50 kG. The lineshape at zero applied field was calculated in the large sphere limit of Mie theory including intraband terms and a zero-strain interband term. Qualitative agreement with experiment was obtained. The peak absorption shifted quadratically with applied magnetic field and the total plasma absorption increased. No oscillatory structure was observed in the field-dependence of the total absorption

  3. Conformational Complexity in the LH2 Antenna of the Purple Sulfur Bacterium Allochromatium vinosum Revealed by Hole-Burning Spectroscopy.

    Science.gov (United States)

    Kell, Adam; Jassas, Mahboobe; Acharya, Khem; Hacking, Kirsty; Cogdell, Richard J; Jankowiak, Ryszard

    2017-06-15

    This work discusses the protein conformational complexity of the B800-850 LH2 complexes from the purple sulfur bacterium Allochromatium vinosum, focusing on the spectral characteristics of the B850 chromophores. Low-temperature B850 absorption and the split B800 band shift blue and red, respectively, at elevated temperatures, revealing isosbestic points. The latter indicates the presence of two (unresolved) conformations of B850 bacteriochlorophylls (BChls), referred to as conformations 1 and 2, and two conformations of B800 BChls, denoted as B800 R and B800 B . The energy differences between average site energies of conformations 1 and 2, and B800 R and B800 B are similar (∼200 cm -1 ), suggesting weak and strong hydrogen bonds linking two major subpopulations of BChls and the protein scaffolding. Although conformations 1 and 2 of the B850 chromophores, and B800 R and B800 B , exist in the ground state, selective excitation leads to 1 → 2 and B800 R → B800 B phototransformations. Different static inhomogeneous broadening is revealed for the lowest energy exciton states of B850 (fwhm ∼195 cm -1 ) and B800 R (fwhm ∼140 cm -1 ). To describe the 5 K absorption spectrum and the above-mentioned conformations, we employ an exciton model with dichotomous protein conformation disorder. We show that both experimental data and the modeling study support a two-site model with strongly and weakly hydrogen-bonded B850 and B800 BChls, which under illumination undergo conformational changes, most likely caused by proton dynamics.

  4. Probing the Energy Transfer Dynamics of Photosynthetic Reaction Center Complexes Through Hole-Burning and Single-Complex Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Kerry Joseph [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Photosynthesis is the process by which light energy is used to drive reactions that generate sugars to supply energy for cellular processes. It is one of the most important fundamental biological reactions and occurs in both prokaryotic (e.g. bacteria) and eukaryotic (e.g. plants and algae) organisms. Photosynthesis is also remarkably intricate, requiring the coordination of many different steps and reactions in order to successfully transform absorbed solar energy into a biochemical usable form of energy. However, the net reaction for all photosynthetic organisms can be reduced to the following, deceptively general, equation developed by Van Niel[1] H2 - D + Aimplieshv A - H2 + D where H2-D is the electron donor, e.g. H2O, H2S. A is the electron acceptor, e.g. CO2, and A-H2 is the synthesized sugar. Amazingly, this simple net equation is responsible for creating the oxidizing atmosphere of Earth and the recycling of CO2, both of which are necessary for the sustainment of the global ecosystem.

  5. Prospects for detection of intermediate-mass black holes in globular clusters using integrated-light spectroscopy

    Science.gov (United States)

    de Vita, R.; Trenti, M.; Bianchini, P.; Askar, A.; Giersz, M.; van de Ven, G.

    2017-06-01

    The detection of intermediate-mass black holes (IMBHs) in Galactic globular clusters (GCs) has so far been controversial. In order to characterize the effectiveness of integrated-light spectroscopy through integral field units, we analyse realistic mock data generated from state-of-the-art Monte Carlo simulations of GCs with a central IMBH, considering different setups and conditions varying IMBH mass, cluster distance and accuracy in determination of the centre. The mock observations are modelled with isotropic Jeans models to assess the success rate in identifying the IMBH presence, which we find to be primarily dependent on IMBH mass. However, even for an IMBH of considerable mass (3 per cent of the total GC mass), the analysis does not yield conclusive results in one out of five cases, because of shot noise due to bright stars close to the IMBH line of sight. This stochastic variability in the modelling outcome grows with decreasing BH mass, with approximately three failures out of four for IMBHs with 0.1 per cent of total GC mass. Finally, we find that our analysis is generally unable to exclude at 68 per cent confidence an IMBH with mass of 103 M⊙ in snapshots without a central BH. Interestingly, our results are not sensitive to GC distance within 5-20 kpc, nor to misidentification of the GC centre by less than 2 arcsec (<20 per cent of the core radius). These findings highlight the value of ground-based integral field spectroscopy for large GC surveys, where systematic failures can be accounted for, but stress the importance of discrete kinematic measurements that are less affected by stochasticity induced by bright stars.

  6. Soil nitrogen mineralisation and organic matter composition revealed by 13C NMR spectroscopy under repeated prescribed burning in eucalypt forests of south-east Queensland

    International Nuclear Information System (INIS)

    Guinto, D. F.; Saffigna, P. G.; Xu, Z. H.; House, A. P. N.; Perera, M. C. S.

    1999-01-01

    The effects of burning on in situ extractable nitrogen (NH + 4 -N+NO - 3 -N) and net N mineralisation following scheduled fuel reduction burns in repeatedly burnt dry and wet sclerophyll forest sites in south-east Queensland were assessed. In addition, soil organic matter composition in the wet sclerophyll site was assessed by 13 C NMR spectroscopy. The results showed that at the dry sclerophyll site, extractable N and net N mineralisation for 1 year were largely unaffected by burning, while at the wet sclerophyll site, these parameters decreased. 13 C NMR analysis of soil samples from the wet sclerophyll site revealed that there was a significant reduction in the proportion of O-alkyl (alkoxy/carbohydrate) C with increasing burning frequency. Statistically significant effects on the other chemical shift regions were not detected. The ratio of alkyl C to O-alkyl C, a proposed index of organic matter decomposition, increased with increasing burning frequency. A high ratio of alkyl C to O-alkyl C suggests low amounts of carbohydrates relative to waxes and cutins, which could in turn lead to slower mineralisation. The findings are in accord with this hypothesis. There were significant linear relationships between cumulative N mineralisation for 1 year and the proportions of alkyl C and O-alkyl C, and the ratio of alkyl C/O-alkyl C. Thus, in addition to reductions in substrate quantity (low organic C and total N for burnt soils), there was also an alteration of substrate quality as revealed by 13 C NMR spectroscopy which is reflected in low N mineralisation. Copyright (1999) CSIRO Publishing

  7. Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Fabio G. Santomauro

    2017-07-01

    Full Text Available We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L2-edge. The results at the Br and Pb edges suggest the existence of a weakly localized exciton, while the absence of signatures at the Cs edge indicates that the Cs+ cation plays no role in the charge transport, at least beyond 80 ps. This first, time-resolved element-specific study of perovskites helps understand the rather modest charge carrier mobilities in these materials.

  8. Detection of electron and hole traps in CdZnTe radiation detectors by thermoelectric emission spectroscopy and thermally stimulated conductivity

    International Nuclear Information System (INIS)

    Lee, E.Y.; Brunett, B.A.; Olsen, R.W.; Van Scyoc, J.M. III; Hermon, H.; James, R.B.

    1998-01-01

    The electrical properties of CdZnTe radiation detectors are largely determined by electron and hole traps in this material. The traps, in addition to degrading the detector performance, can function as dopants and determine the resistivity of the material. Thermoelectric emission spectroscopy and thermally stimulated conductivity are used to detect these traps in a commercially available spectrometer-grade CdZnTe detector, and the electrical resistivity is measured as a function of temperature. A deep electron trap having an energy of 695 meV and cross section of 8 x 10 -16 cm 2 is detected and three hole traps having energies of 70 ± 20 meV, 105 ± 30 meV and 694 ± 162 meV are detected. A simple model based on these traps explains quantitatively all the data, including the electrical properties at room temperature and also their temperature dependence

  9. Graphene assisted effective hole-extraction on In2O3:H/CH3NH3PbI3 interface: Studied by modulated surface spectroscopy

    Science.gov (United States)

    Vinoth Kumar, Sri Hari Bharath; Muydinov, Ruslan; Kol'tsova, Tat‘yana; Erfurt, Darja; Steigert, Alexander; Tolochko, Oleg; Szyszka, Bernd

    2018-01-01

    Charge separation in CH3NH3PbI3 (MAPbI3) films deposited on a hydrogen doped indium oxide (In2O3:H) photoelectrode was investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. It was found that In2O3:H reproducibly extracts photogenerated-holes from MAPbI3 films. The oxygen-plasma treatment of the In2O3:H surface is suggested to be a reason for this phenomenon. Introducing graphene interlayer increased charge separation nearly 6 times as compared to that on the In2O3:H/MAPbI3 interface. Furthermore, it is confirmed by SPV spectroscopy that the defects of the MAPbI3 interface are passivated by graphene.

  10. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  11. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  12. High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective

    International Nuclear Information System (INIS)

    Macfarlane, Roger M.

    2002-01-01

    I offer some reflections on the past three decades of high-resolution spectroscopy of rare-earth ions in solids which was ushered in by the development of tunable lasers in the mid 1970s. A brief review is given of some of the accomplishments in the area of spectral hole-burning and coherent transient spectroscopy, emphasizing work with which the author has been associated. Spectral hole-burning has been characterized by a richness of mechanisms. These include population storage in nuclear-spin and electron-spin Zeeman sub-levels, hyperfine and superhyperfine levels and metastable optical levels with corresponding hole lifetimes from many hours to microseconds. In addition, persistent hole-burning has been seen in disordered materials and in those showing photo-ionization or photo-chemistry following excitation into zero-phonon lines. This has made hole-burning a generally useful technique for the measurement of magnetic and electric dipole moments, hyperfine interactions, spin relaxation and thermally induced line-broadening. Photon-echoes have proven to be the prime source of coherence-time information and coherence times as long as several milliseconds corresponding to optical resonance widths of less than 100 Hz have been reported. Tables summarizing these results and providing references to original work are included

  13. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    International Nuclear Information System (INIS)

    Onken, Christopher A.; Ferrarese, Laura; Valluri, Monica; Brown, Jonathan S.; McGregor, Peter J.; Peterson, Bradley M.; Pogge, Richard W.; Bentz, Misty C.; Vestergaard, Marianne; Storchi-Bergmann, Thaisa; Riffel, Rogemar A.

    2014-01-01

    We present a revised measurement of the mass of the central black hole (M BH ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ 2 is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M BH ∼ 3.76 ± 1.15 × 10 7 M ☉ (1σ error) and Y H ∼ 0.34 ± 0.03 M ☉ /L ☉ (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57 −0.37 +0.45 ×10 7 M ⊙ ) and gas kinematics (3.0 −2.2 +0.75 ×10 7 M ⊙ ; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y H = 0.4 ± 0.2 M ☉ /L ☉ . The NIFS kinematics give a central bulge velocity dispersion σ c = 116 ± 3 km s –1 , bringing this object slightly closer to the M BH -σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  14. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Onken, Christopher A.; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Valluri, Monica; Brown, Jonathan S. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); McGregor, Peter J. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Peterson, Bradley M.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Office 610, Atlanta, GA 30303 (United States); Vestergaard, Marianne [Dark Cosmology Centre, The Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Storchi-Bergmann, Thaisa [Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, Porto Alegre 91501-970, RS (Brazil); Riffel, Rogemar A., E-mail: christopher.onken@anu.edu.au, E-mail: mvalluri@umich.edu [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)

    2014-08-10

    We present a revised measurement of the mass of the central black hole (M{sub BH} ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ{sup 2} is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M{sub BH} ∼ 3.76 ± 1.15 × 10{sup 7} M{sub ☉} (1σ error) and Y{sub H} ∼ 0.34 ± 0.03 M{sub ☉}/L{sub ☉} (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57{sub −0.37}{sup +0.45}×10{sup 7} M{sub ⊙}) and gas kinematics (3.0{sub −2.2}{sup +0.75}×10{sup 7} M{sub ⊙}; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y{sub H} = 0.4 ± 0.2 M{sub ☉}/L{sub ☉}. The NIFS kinematics give a central bulge velocity dispersion σ{sub c} = 116 ± 3 km s{sup –1}, bringing this object slightly closer to the M{sub BH}-σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  15. Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes

    International Nuclear Information System (INIS)

    Chen, G-L; Kuo, David M T; Lai, W-T; Li, P-W

    2007-01-01

    We have fabricated a Ge quantum dot (QD) (∼10 nm) single-hole transistor with self-aligned electrodes using thermal oxidation of a SiGe-on-insulator nanowire based on FinFET technology. This fabricated device exhibits clear Coulomb blockade oscillations with large peak-to-valley ratio (PVCR) of 250-750 and negative differential conductance with PVCR of ∼12 at room temperature. This reveals that the gate-induced tunneling barrier lowering is effectively suppressed due to the self-aligned electrode structure. The magnitude of tunneling current spectra also reveals the coupling strengths between the energy levels of the Ge QD and electrodes

  16. $\\gamma$ and fast-timing spectroscopy of the doubly magic $^{132}$Sn and its one- and two-neutron particle/hole neighbours

    CERN Multimedia

    We propose to use fast-timing and spectroscopy to study five nuclei including the doubly magic $^{132}$Sn and its four neighbours: two-neutron hole $^{130}$Sn, one-neutron hole $^{131}$Sn, one-neutron particle $^{133}$Sn and two-neutron particle $^{134}$Sn. There is an increasing interest in these nuclei since they serve to test nuclear models using state-of-the-art interactions and many body approaches, and they provide information relevant to deduce single particle states. In addition properties of these nuclei are very important to model the astrophysical $\\textit{r-process}$. The present ISOLDE facility provides unique capabilities to study these Sn nuclei populated in the $\\beta$-decay of In isomers, produced from a UCx target unit equipped with neutron converter and ionized with RILIS, capable of selective isomer ionization. The increased production yields for $^{132}$In are estimated to be 200 larger than in the previous work done at OSIRIS. We will use the recently commissioned Isolde Decay Station (I...

  17. Tuning the hybridization and magnetic ground state of electron and hole doped CeOs2Al10 : An x-ray spectroscopy study

    Science.gov (United States)

    Chen, Kai; Sundermann, Martin; Strigari, Fabio; Kawabata, Jo; Takabatake, Toshiro; Tanaka, Arata; Bencok, Peter; Choueikani, Fadi; Severing, Andrea

    2018-04-01

    Here we present linear and circular polarized soft x-ray absorption spectroscopy (XAS) data at the Ce M4 ,5 edges of the electron (Ir) and hole-doped (Re) Kondo semiconductor CeOs2Al10 . Both substitutions have a strong impact on the unusual high Néel temperature TN=28.5 K, and also the direction of the ordered moment in case of Ir. The substitution dependence of the linear dichroism is weak thus validating the crystal-field description of CeOs2Al10 being representative for the Re and Ir substituted compounds. The impact of electron and hole doping on the hybridization between conduction and 4 f electrons is related to the amount of f0 in the ground state and reduction of x-ray magnetic circular dichroism. A relationship of c f -hybridization strength and enhanced TN is discussed. The direction and doping dependence of the circular dichroism strongly supports the idea of strong Kondo screening along the crystallographic a direction.

  18. Hot electron and hole dynamics in thiol-capped CdSe quantum dots revealed by 2D electronic spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Lenngren, N.; Abdellah, M.A.; Zheng, K.; Al-Marri, M.J.; Zigmantas, D.; Žídek, Karel; Pullerits, T.

    2016-01-01

    Roč. 18, č. 37 (2016), s. 26199-26204 ISSN 1463-9076 Institutional support: RVO:61389021 Keywords : quantum dots (QDs) * two-dimesional coherent spectroscopy * carrier relaxation * carrier trapping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.123, year: 2016

  19. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  20. ON ESTIMATING THE HIGH-ENERGY CUTOFF IN THE X-RAY SPECTRA OF BLACK HOLES VIA REFLECTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    García, Javier A.; Steiner, James F.; McClintock, Jeffrey E.; Keck, Mason L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Dauser, Thomas; Wilms, Jörn, E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@head.cfa.harvard.edu, E-mail: keckm@bu.edu, E-mail: thomas.dauser@sternwarte.uni-erlangen.de [Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2015-08-01

    The fundamental parameters describing the coronal spectrum of an accreting black hole are the slope Γ of the power-law continuum and the energy E{sub cut} at which it rolls over. Remarkably, this latter parameter can be accurately measured for values as high as 1 MeV by modeling the spectrum of X-rays reflected from a black hole accretion disk at energies below 100 keV. This is possible because the details in the reflection spectrum, rich in fluorescent lines and other atomic features, are very sensitive to the spectral shape of the hardest coronal radiation illuminating the disk. We show that by fitting simultaneous NuSTAR (3–79 keV) and low-energy (e.g., Suzaku) data with the most recent version of our reflection model relxill one can obtain reasonable constraints on E{sub cut} at energies from tens of keV up to 1 MeV, for a source as faint as 1 mCrab in a 100 ks observation.

  1. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  2. Effect of Injector Nozzle Holes on Diesel Engine Performance

    OpenAIRE

    Semin,; Yusof, Mohd Yuzri Mohd; Arof, Aminuddin Md; Shaharudin, Daneil Tomo; Ismail, Abdul Rahim

    2010-01-01

    All of the injector nozzle holes have examined and the results are shown that the seven holes nozzle have provided the best burning result for the fuel in-cylinder burned in any different engine speeds and the best burning is in low speed engine. In engine performance effect, all of the nozzles have examined and the five holes nozzle provided the best result in indicted power, indicated torque and ISFC in any different engine speeds.

  3. Characterization of alteration textures in Cretaceous oceanic crust (pillow lava) from the N-Atlantic (DSDP Hole 418A) by spatially-resolved spectroscopy

    Science.gov (United States)

    Fliegel, Daniel; Knowles, Emily; Wirth, Richard; Templeton, Alexis; Staudigel, Hubert; Muehlenbachs, Karlis; Furnes, Harald

    2012-11-01

    The habit, mineralogy, crystallography, and Fe speciation of tubular and granular alteration textures in basaltic glass recovered from DSDP Hole 418A, which have previously been associated with biologically mediated alteration, were investigated using an integrated suite of microscopic and spectroscopic approaches in order to shine light on their formation and mineralization history. Two different analytical approaches were used: (1) micro scale investigations with conventional petrographic optical microcopy and microscale X-ray fluorescence mapping and X-ray absorption spectroscopy, and (2) nano scale analyses with FIB (focused ion beam milling) to prepare cross-sections for TEM (transmission electron microscopy), EELS (electron energy loss spectroscopy), and STXM (scanning transmission electron microscopy) analyses. The integrated data show that tubular and granular textures are similar in chemical, mineralogical and structural habit. Both granular and tubular alteration textures show a marked transition from ferrous iron in the glass matrix to ferric iron in the textures. Granular and tubular textures are filled with sheet silicates of similar chemistry, and both exhibit thin amorphous alteration rims ∼10-20 nm wide. The alteration rims are typically depleted in Ca and Fe. Ca is enriched at the contact between the secondary mineralization and the alteration rims, whereas Fe is enriched throughout the alteration features and is mainly present as FeIII in contrast to FeII in the host glass. Carbon is enriched only in a few areas, and could possibly be of organic origin but is not bound in carbonate. The mineralization of the features follows the sequence: dissolution of the glass; formation of a leached amorphous rim; mineralizing the cavities by smectide type clays and subsequently congruent growing of the texture diameter by diffusing of the elements through the alteration layer. None of the features could be linked solely to a biogenic origin and hence the

  4. Burn Wise

    Science.gov (United States)

    Burn Wise is a partnership program of the U.S. Environmental Protection Agency that emphasizes the importance of burning the right wood, the right way, in the right appliance to protect your home, health, and the air we breathe.

  5. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  6. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  7. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  8. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  9. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  10. Analysis of immediate changes of water-soluble metabolites in alkali-burned rabbit cornea, aqueous humor and lens by high-resolution 1H-NMR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Risa, O.; Saether, O.; Midelfart, A.; Krane, J.; Čejková, Jitka

    2002-01-01

    Roč. 240, - (2002), s. 49-55 ISSN 0721-832X R&D Projects: GA ČR GA304/00/1635 Institutional research plan: CEZ:AV0Z5039906 Keywords : aqueous humor * alkali-burned eyes Subject RIV: FF - HEENT, Dentistry Impact factor: 1.191, year: 2002

  11. Burning Feet

    Science.gov (United States)

    ... be accompanied by a pins and needles sensation (paresthesia) or numbness, or both. Burning feet may also be referred to as tingling feet or paresthesia. While fatigue or a skin infection can cause ...

  12. Burning issues

    International Nuclear Information System (INIS)

    Raloff, J.

    1993-01-01

    The idea of burning oil slicks at sea has intrigued oil-cleanup managers for more than a decade, but it wasn't until the advent of fireproof booms in the mid-1980's and a major spill opportunity (the March 1989 Exxon Valdez) that in-situ burning got a real sea trial. The results of this and other burning experiments indicate that, when conditions allow it, nothing can compete with fire's ability to remove oil from water. Burns have the potential to remove as much oil in one day as mechanical devices can in one month, along with minimal equipment, labor and cost. Reluctance to burn in appropriate situations comes primarily from the formation of oily, black smoke. Analysis of the potentially toxic gases have been done, indicating that burning will not increase the levels of polluting aldehydes, ketones, dioxins, furans, and PAHs above those that normally evaporate from spilled oil. This article contains descriptions of planned oil fires and the discussion on the advantages and concerns of such a policy

  13. Determination of the burn-up in fuels of the MTR type by means of gamma spectroscopy with crystal of INa(Tl)

    International Nuclear Information System (INIS)

    Kestelman, A.J.

    1988-01-01

    One of the responsibilities of the Laboratory of Analysis by Neutronic Activation of the RA-6 reactor is to determine the burn-up in fuels of the MTR type. In order to gain experience, up to the arrival of the hyperpure Germanium detector (HPGe) to be used in normal operation, preliminary measurements with a crystal of INa(Tl) were made. The fuel elements used are originated in the RA-3 reactor, with a decay superior to the thirteen years. For this reason, the unique visible photoelectric peak is the one of Cs-137, owing to the low resolution of the INa(Tl). After preliminary measurements, the profiles of burn-up, rectified by attenuation, were measured. Once the efficiency of the detector was determined, the calculation of the burn-up was made; for the element No. 144, a value of 21.6 ± 2.9 g was obtained to be compared with the value 21.9 g which was the evaluation made by the operators. (Author) [es

  14. Wood burning

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, H

    1955-01-01

    Discussed are the use of wood as a fuel, the technique of wood combustion and the operation of wood-burning stoves for cooking and heating. In addition, there is a section which reviews the use of wood stoves in various countries and lists manufacturers of stoves, central heating furnaces and in some cases sawdust burners.

  15. Educational Materials - Burn Wise

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  16. Brown dwarfs and black holes

    International Nuclear Information System (INIS)

    Tarter, J.C.

    1978-01-01

    The astronomical missing-mass problem (the discrepancy between the dynamical mass estimate and the sum of individual masses in large groupings) is considered, and possible explanations are advanced. The existence of brown dwarfs (stars not massive enough to shine by nuclear burning) and black holes (extremely high density matter contraction such that gravitation allows no light emission) thus far provides the most plausible solutions

  17. Brane holes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Mukohyama, Shinji

    2011-01-01

    The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.

  18. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2011-11-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP, South Africa using ground-based open path Fourier transform infrared (FTIR spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O, flaming (CO2 and smoldering (CO, CH4, NH3 processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE, allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority

  19. Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry

    Directory of Open Access Journals (Sweden)

    S. Singh

    2016-11-01

    Full Text Available Biomass burning (BB aerosols have a significant effect on regional climate, and represent a significant uncertainty in our understanding of climate change. Using a combination of cavity ring-down spectroscopy and integrating nephelometry, the single scattering albedo (SSA and Ångstrom absorption exponent (AAE were measured for several North American biomass fuels. This was done for several particle diameters for the smoldering and flaming stage of white pine, red oak, and cedar combustion. Measurements were done over a wider wavelength range than any previous direct measurement of BB particles. While the offline sampling system used in this work shows promise, some changes in particle size distribution were observed, and a thorough evaluation of this method is required. The uncertainty of SSA was 6 %, with the truncation angle correction of the nephelometer being the largest contributor to error. While scattering and extinction did show wavelength dependence, SSA did not. SSA values ranged from 0.46 to 0.74, and were not uniformly greater for the smoldering stage than the flaming stage. SSA values changed with particle size, and not systematically so, suggesting the proportion of tar balls to fractal black carbon change with fuel type/state and particle size. SSA differences of 0.15–0.4 or greater can be attributed to fuel type or fuel state for fresh soot. AAE values were quite high (1.59–5.57, despite SSA being lower than is typically observed in wildfires. The SSA and AAE values in this work do not fit well with current schemes that relate these factors to the modified combustion efficiency of a burn. Combustion stage, particle size, fuel type, and fuel condition were found to have the most significant effects on the intrinsic optical properties of fresh soot, though additional factors influence aged soot.

  20. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  1. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  2. Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, ElectronHole Reduced Effective Mass, and Band Gap in the Perovskite CHsub3NHsub3PbIsub3

    Science.gov (United States)

    2016-07-28

    optoelectronic devices such as lasers,1,2 LEDs ,3 and solar cells,4−6 despite requiring only inexpensive and relatively crude processing conditions...Spectroscopy. White light from a 75 W xenon arc lamp (Newport Co., Oriel PhotoMax) was filtered by a grating monochromator (Acton Research Co...incidence transmittance spectra (SI section S3.1) were measured on a Cary 5000i UV −vis−NIR spectrometer using the internal diffuse reflectance accessory

  3. Burning plasmas

    International Nuclear Information System (INIS)

    Furth, H.P.; Goldston, R.J.; Zweben, S.J.

    1990-10-01

    The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R ampersand D areas that need to be addressed on the way to a fusion power demonstration

  4. Study of free volume hole distributions in xTiO2(1-x)SiO2 by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Misheva, M.A.; Djourelov, N.; Margaca, M.A.; Salvado, F.I.; Passage, G.

    1999-01-01

    Positron annihilation spectroscopy has been used to get information about the small pore structure of the system xTiO 2 .(1-x)SiO 2 (x=10,30 mol.%). The pore radius and volume probability distribution functions have been received from the ortho-Positronium lifetime probability distribution function, obtained by the lifetime spectra processing with CONTIN (PALS-2) program. The linearity of the S versus W-parameters has been used to check the similarity (or not) of the defect structure of the samples prepared under different experimental conditions. (author)

  5. Studies of electron-hole recombination processes at deep levels in GaAs and GaP by means of transient optical absorption spectroscopy

    International Nuclear Information System (INIS)

    Sugiyama, T.; Ishikawa, Y.; Tanimura, K.; Hayashi, Y.; Itoh, N.

    1989-01-01

    Studies of recombination processes by means of transient optical absorption (TOA) spectroscopy in GaAs and GaP are reviewed. It is pointed out that the technique can reveal production of excited states having long lifetimes and of non-luminescent metastable states. Two distinct recombination processes in GaAs containing EL2 defects are discussed: one is at the metastable EL2 defects, accompanied with transformation to the EL2 defects and the other is at deep acceptors through pair recombination. (author) 11 refs., 2 figs

  6. Burning Mouth Syndrome

    Science.gov (United States)

    ... Care Home Health Info Health Topics Burning Mouth Burning Mouth Syndrome (BMS) is a painful, complex condition often described ... or other symptoms. Read More Publications Cover image Burning Mouth Syndrome Publication files Download Language English PDF — Number of ...

  7. Burning issues

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, C.

    1998-10-01

    Coal is world`s most abundant source of energy. Turning this potential pollutant into a clean, cost-effective fuel for power production has become a matter for global concern. Some problems and their solutions are highlighted in this article. Environmental problems caused by the giant Mae Moh plant in Thailand were overcome with an extensive retrofit programme that included flue gas desulfurisation systems. For new and smaller coal-fuelled plant, boilers using circulating fluidised bed (CFB) technology provide a cost effective and efficient system which meets environmental standards. A large independent power plant at Colver, Pennsylvania, USA uses CFB technology to burn bituminous gob. AMM and Alstom can provide turnkey packages for coal-fired power plant using a modular concept based on CFB technology. 2 photos.

  8. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies...... of the hole in this manner. In a second example, a hole is created in an inner shell by the first pulse, and the second probe pulse couples an even more tightly bound state to that hole. The hole decays in this example by Auger electron emission, and the absorption spectroscopy follows the decay of the hole...

  9. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  10. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    Science.gov (United States)

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome.

  11. Massive Black Holes and Galaxies

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  12. Selective laser spectroscopy of molecules and ions in solids: a history, fundamentals and applications

    Science.gov (United States)

    Sapozhnikov, Michael

    2018-03-01

    A history of the development of selective laser spectroscopy is presented, beginning with a pioneering work by Yu. V. Denisov and V. A. Kizel in 1967, who were the first to demonstrate the possibility of removing the inhomogeneous broadening of luminescence spectra of impurity ions in glasses upon monochromatic resonance excitation. Selective excitation of optical centers can be achieved due to existence of zero-phonon transitions corresponding to narrow homogeneous zero-phonon lines in the spectra of impurity centers in solids, which are hidden in broad inhomogeneous optical bands upon usual nonselective excitation. The fundamentals of zero-phonon transition spectroscopy are considered and the mechanism of removing the inhomogeneous broadening of optical spectra of ions and molecules in crystals and amorphous solids under selective laser excitation of luminescence and persistent hole burning in absorption spectra is presented in detail. Various applications of selective laser spectroscopy for fundamental and applied studies are discussed.

  13. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...

  14. Epidemiology of burns

    NARCIS (Netherlands)

    Dokter, Jan

    2016-01-01

    The aim of this thesis is to understand the epidemiology, treatment and outcomes of specialized burn care in The Netherlands. This thesis is mainly based on historical data of the burn centre in Rotterdam from 1986, combined with historical data from the burn centres in Groningen and Beverwijk from

  15. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  16. To burn or not to burn

    International Nuclear Information System (INIS)

    Busch, L.

    1993-01-01

    While taking a match to an oil slick may sound like the making of a chaotic inferno, emergency response specialists say burning may be the most efficient way to remove large oil spills from the ocean's surface. But tests of this technique are being resisted by environmentalists as well as the Environmental Protection Agency (EPA), which has final authority over the matter. The debate over test burning arose most recently in Alaska when a proposal to spill and then ignite 1,000 barrels of crude on the Arctic Ocean this past summer was rejected by the EPA. The EPA didn't object to the technique or to the notion of burning spilled oil. However, it contends that it's not necessary to spill thousands of gallons of oil to conduct tests, and unnecessarily pollute the environment, when plenty of oil is already available from accidental spills. Researchers disagree, claiming they won't be able to use the burning technique on an actual spill until it has been tested in a controlled experiment. Despite such concerns, the Canadian government is going ahead with a test burn off the coast of Newfoundland next year. Faced with a choice of test burning or the kind of shoreline contamination left in the wake of the Exxon Valdez disaster, Environment Canada opts for testing. Learning valuable lessons about rapid oil-spill cleanup is worth the relatively minor risks to the environment that test burning would pose

  17. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  18. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  19. A Dancing Black Hole

    Science.gov (United States)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  20. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  1. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    . Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context......, The Burning Saints presents a highly original analysis of how mental processes can shape social and religious behaviour....

  2. Burning mouth syndrome

    OpenAIRE

    K A Kamala; S Sankethguddad; S G Sujith; Praveena Tantradi

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to different...

  3. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    large values of Ф, black holes do form and for small values the scalar field ... on the near side of the ridge ultimately evolve to form black holes while those configu- ... The inset shows a bird's eye view looking down on the saddle point.

  4. Choosing Wood Burning Appliances

    Science.gov (United States)

    Information to assist consumers in choosing a wood burning appliance, including types of appliances, the differences between certified and non-certified appliances, and alternative wood heating options.

  5. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    CSIR Research Space (South Africa)

    Wooster, MJ

    2011-01-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gases releases from vegetation fires. Here the authors evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP), South Africa using ground-based open...

  6. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  7. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  8. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  9. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  10. Burns and military clothing.

    Science.gov (United States)

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  11. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, Ian G; Shiiki, N; Winstanley, E

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  12. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  13. Conformation of L-Tyrosine Studied by Fluorescence-Detected UV-UV and IR-UV Double-Resonance Spectroscopy

    OpenAIRE

    Inokuchi, Yoshiya; Kobayashi, Yusuke; Ito, Takafumi; Ebata, Takayuki

    2007-01-01

    The laser-induced fluorescence spectrum of jet-cooled L-tyrosine exhibits more than 20 vibronic bands in the 35450-35750 cm-1 region. We attribute these bands to eight conformers by using results of UV-UV hole-burning spectroscopy. These isomers are classified into four groups; each group consists of two rotational isomers that have a similar side-chain conformation but different orientations of the phenolic OH. The splitting of band origins of rotational isomers is 31, 21, 5, and 0 cm-1 for ...

  14. The effect of particle-hole interaction on the XPS core-hole spectrum

    International Nuclear Information System (INIS)

    Ohno, Masahide; Sjoegren, Lennart

    2004-01-01

    How the effective particle-hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster-Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy)

  15. Tourniquet associated chemical burn

    Directory of Open Access Journals (Sweden)

    Jae-Hyuk Yang

    2012-01-01

    Full Text Available Chemical burn under pneumatic tourniquet is an iatrogenic preventable injury and is rarely reported in the literature. The two important mechanisms are maceration (friction and wetness underneath the tourniquent. In this report, our experience with two illustrative patients who presented with iatrogenic tourniquet associated burn is described.

  16. Burns (For Parents)

    Science.gov (United States)

    ... small, and have sensitive skin that needs extra protection. Although some minor burns aren't cause for concern and can ... burns, the mildest of the three, are limited to the top layer of skin: Signs ... pain, and minor swelling. The skin is dry without blisters. Healing ...

  17. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  18. Phoenix Society for Burn Survivors

    Science.gov (United States)

    ... in 2018! Learn More For Loved Ones A burn injury doesn't just impact the survivor. Families ... to support longterm recovery, improve the quality of burn care, and prevent burn injury. Explore articles on ...

  19. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  20. From X-ray binaries to quasars black holes on all mass scales black holes on all mass scales

    CERN Document Server

    Ho, L C; Maccarone, T J

    2005-01-01

    This volume brings together contributions from many of the world's leading authorities on black hole accretion. The papers within represent part of a new movement to make use of the relative advantages of studying stellar mass and supermassive black holes and to bring together the knowledge gained from the two approaches. The topics discussed here run the gamut of the state of the art in black hole observational and theoretical work-variability, spectroscopy, disk-jet connections, and multi-wavelength campaigns on black holes are all covered. Reprinted from ASTROPHYSICS AND SPACE SCIENCE, 300:1-3 (2005)

  1. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  2. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  3. Black and white holes

    International Nuclear Information System (INIS)

    Zeldovich, Ya.; Novikov, I.; Starobinskij, A.

    1978-01-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius Rsub(r). At t>>Rsub(r)/c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius. (J.B.)

  4. Black and white holes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya; Novikov, I; Starobinskii, A

    1978-07-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius R/sub r/. At t>>R/sub r//c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius.

  5. Primary black holes

    International Nuclear Information System (INIS)

    Novikov, I.; Polnarev, A.

    1981-01-01

    Proves are searched for of the formation of the so-called primary black holes at the very origin of the universe. The black holes would weigh less than 10 13 kg. The formation of a primary black hole is conditional on strong fluctuations of the gravitational field corresponding roughly to a half of the fluctuation maximally permissible by the general relativity theory. Only big fluctuations of the gravitational field can overcome the forces of the hot gas pressure and compress the originally expanding matter into a black hole. Low-mass black holes have a temperature exceeding that of the black holes formed from stars. A quantum process of particle formation, the so-called evaporation takes place in the strong gravitational field of a black hole. The lower the mass of the black hole, the shorter the evaporation time. The analyses of processes taking place during the evaporation of low-mass primary black holes show that only a very small proportion of the total mass of the matter in the universe could turn into primary black holes. (M.D.)

  6. Improving burn care and preventing burns by establishing a burn database in Ukraine.

    Science.gov (United States)

    Fuzaylov, Gennadiy; Murthy, Sushila; Dunaev, Alexander; Savchyn, Vasyl; Knittel, Justin; Zabolotina, Olga; Dylewski, Maggie L; Driscoll, Daniel N

    2014-08-01

    Burns are a challenge for trauma care and a contribution to the surgical burden. The former Soviet republic of Ukraine has a foundation for burn care; however data concerning burns in Ukraine has historically been scant. The objective of this paper was to compare a new burn database to identify problems and implement improvements in burn care and prevention in this country. Retrospective analyses of demographic and clinical data of burn patients including Tukey's post hoc test, analysis of variance, and chi square analyses, and Fisher's exact test were used. Data were compared to the American Burn Association (ABA) burn repository. This study included 1752 thermally injured patients treated in 20 hospitals including Specialized Burn Unit in Municipal Hospital #8 Lviv, Lviv province in Ukraine. Scald burns were the primary etiology of burns injuries (70%) and burns were more common among children less than five years of age (34%). Length of stay, mechanical ventilation use, infection rates, and morbidity increased with greater burn size. Mortality was significantly related to burn size, inhalation injury, age, and length of stay. Wound infections were associated with burn size and older age. Compared to ABA data, Ukrainian patients had double the length of stay and a higher rate of wound infections (16% vs. 2.4%). We created one of the first burn databases from a region of the former Soviet Union in an effort to bring attention to burn injury and improve burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  7. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  8. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  9. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....

  10. American Burn Association

    Science.gov (United States)

    ... burn-related care, prevention, education, and research. Our multidisciplinary membership enhances our ability to work toward common goals with other organizations and educational programs. Membership Being a member of ...

  11. New Fashioned Book Burning.

    Science.gov (United States)

    Gardner, Robert

    1997-01-01

    Reports on results of a teacher's experiment in book burning as a lesson accompanying the teaching of Ray Bradbury's "Fahrenheit 451." Discusses student reactions and the purpose of or justification for the experimental lesson. (TB)

  12. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  13. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  14. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  15. Burn-out

    OpenAIRE

    Patricia van Echtelt

    2014-01-01

    Deze publicatie is alleen elektronisch verkrijgbaar (downloaden van deze site) Burn-out (ofwel: emotionele uitputting) komt relatief vaak voor: ongeveer één op de acht werknemers in Nederland heeft er last van. Het wordt dan ook gezien als een serieus maatschappelijk probleem dat beleidsmatig aandacht vergt. Dit rapport presenteert de resultaten van twee specifieke analyses over burn-out. Ten eerste gaan we na wat het effect is van emotionele uitputting op de loopbaan van werknemers. Ten twee...

  16. Smartphone applications in burns.

    Science.gov (United States)

    Wurzer, Paul; Parvizi, Daryousch; Lumenta, David B; Giretzlehner, Michael; Branski, Ludwik K; Finnerty, Celeste C; Herndon, David N; Tuca, Alexandru; Rappl, Thomas; Smolle, Christian; Kamolz, Lars P

    2015-08-01

    Since the introduction of applications (apps) for smartphones, the popularity of medical apps has been rising. The aim of this review was to demonstrate the current availability of apps related to burns on Google's Android and Apple's iOS store as well as to include a review of their developers, features, and costs. A systematic online review of Google Play Store and Apple's App Store was performed by using the following search terms: "burn," "burns," "thermal," and the German word "Verbrennung." All apps that were programmed for use as medical apps for burns were included. The review was performed from 25 February until 1 March 2014. A closer look at the free and paid calculation apps including a standardized patient was performed. Four types of apps were identified: calculators, information apps, book/journal apps, and games. In Google Play Store, 31 apps were related to burns, of which 20 were calculation apps (eight for estimating the total body surface area (TBSA) and nine for total fluid requirement (TFR)). In Apple's App Store, under the category of medicine, 39 apps were related to burns, of which 21 were calculation apps (19 for estimating the TBSA and 17 for calculating the TFR). In 19 out of 32 available calculation apps, our study showed a correlation of the calculated TFR compared to our standardized patient. The review demonstrated that many apps for medical burns are available in both common app stores. Even free available calculation apps may provide a more objective and reproducible procedure compared to manual/subjective estimations, although there is still a lack of data security especially in personal data entered in calculation apps. Further clinical studies including smartphone apps for burns should be performed. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  17. Burning mouth syndrome

    OpenAIRE

    Zakrzewska, Joanna; Buchanan, John A. G.

    2016-01-01

    Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and met...

  18. Burning mouth syndrome: update

    OpenAIRE

    Cassol Spanemberg, Juliana; Rodríguez de Rivera Campillo, Ma Eugenia; Jané Salas, Enric; López López, José, 1958-

    2014-01-01

    Burning Mouth Syndrome (BMS) is a chronic disorder that predominately affects middle-aged women in the postmenopausal period. The condition is distinguished by burning symptoms of the oral mucosa and the absence of any clinical signs. The etiology of BMS is complex and it includes a variety of factors. Local, systemic and psychological factors such as stress, anxiety and depression are listed among the possible causes of BMS. BMS may sometimes be classified as BMS Type I, II or III. Although ...

  19. Burning mouth syndrome

    OpenAIRE

    Jimson, Sudha; Rajesh, E.; Krupaa, R. Jayasri; Kasthuri, M.

    2015-01-01

    Burning mouth syndrome (BMS) is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a...

  20. Hole drift mobility in poly(hexylphenylsilane)

    International Nuclear Information System (INIS)

    Kunimi, Y.; Seki, S.; Tagawa, S.

    2000-01-01

    Poly(n-alkylphenylsilane)s in which n-alkyl were changed from methyl to octyl were polymerized. Hole transport properties of poly(alkyllphenylsilane)s were systematically studied by the DC time-of-flight (TOF) technique. While the hole drift mobility of poly(methylphenylsilane) increased monotonously in entire field, those of poly(hexylphenylsilane) and poly(octylphenylsilane) decreased with increase in the field strength. Temperature dependence of hole drift mobility in those polymers was small. On the basis of Baessler's disorder formalism the mobility was analyzed quantitatively to disserve complex contributions of charge transport. The analyzed results indicated that with increase in the length of n-alkyl side-groups, the energetic disorder of hopping sites became smaller and the disorder of distance between hopping sites became larger. These results were supported by the results obtained by UV absorption measurement and positron annihilation life-time spectroscopy measurement. (author)

  1. The black hole information paradox and highly squeezed interior quantum fluctuations

    Science.gov (United States)

    Oshita, Naritaka

    2017-10-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox.

  2. The black hole information paradox and highly squeezed interior quantum fluctuations

    International Nuclear Information System (INIS)

    Oshita, Naritaka

    2017-01-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox. (paper)

  3. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    Science.gov (United States)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  4. Black hole Berry phase

    NARCIS (Netherlands)

    de Boer, J.; Papadodimas, K.; Verlinde, E.

    2009-01-01

    Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the

  5. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  6. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  7. Quantum black holes

    OpenAIRE

    Hooft, G. 't

    1987-01-01

    This article is divided into three parts. First, a systematic derivation of the Hawking radiation is given in three different ways. The information loss problem is then discussed in great detail. The last part contains a concise discussion of black hole thermodynamics. This article was published as chapter $6$ of the IOP book "Lectures on General Relativity, Cosmology and Quantum Black Holes" (July $2017$).

  8. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  9. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  10. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  11. Burning mouth disorder

    Directory of Open Access Journals (Sweden)

    Anand Bala

    2012-01-01

    Full Text Available Burning mouth disorder (BMD is a burning or stinging sensation affecting the oral mucosa, lips and/or tongue, in the absence of clinically visible mucosal lesions. There is a strong female predilection, with the age of onset being approximately 50 years. Affected patients often present with multiple oral complaints, including burning, dryness and taste alterations. The causes of BMD are multifactorial and remain poorly understood. Recently, there has been a resurgence of interest in this disorder with the discovery that the pain of burning mouth syndrome (BMS may be neuropathic in origin and originate both centrally and peripherally. The most common sites of burning are the anterior tongue, anterior hard palate and lower lip, but the distribution of oral sites affected does not appear to affect the natural history of the disorder or the response to treatment BMS may persist for many years. This article provides updated information on BMS and presents a new model, based on taste dysfunction, for its pathogenesis.

  12. Psychiatric aspects of burn

    Directory of Open Access Journals (Sweden)

    Dalal P

    2010-10-01

    Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.

  13. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  14. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Sudha Jimson

    2015-01-01

    Full Text Available Burning mouth syndrome (BMS is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a result, a multidisciplinary approach is required for better control of the symptoms. In addition, psychotherapy and behavioral feedback may also help eliminate the BMS symptoms.

  15. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  16. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  17. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  18. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  19. [Surgical treatment of burns : Special aspects of pediatric burns].

    Science.gov (United States)

    Bührer, G; Beier, J P; Horch, R E; Arkudas, A

    2017-05-01

    Treatment of pediatric burn patients is very important because of the sheer frequency of burn wounds and the possible long-term ramifications. Extensive burns need special care and are treated in specialized burn centers. The goal of this work is to present current standards in burn therapy and important innovations in the treatment of burns in children so that the common and small area burn wounds and scalds in pediatric patients in day-to-day dermatological practice can be adequately treated. Analysis of current literature, discussion of reviews, incorporation of current guidelines. Burns in pediatric patients are common. Improvement of survival can be achieved by treatment in burn centers. The assessment of burn depth and area is an important factor for proper treatment. We give an overview for outpatient treatment of partial thickness burns. New methods may result in better long-term outcome. Adequate treatment of burn injuries considering current literature and guidelines improves patient outcome. Rational implementation of new methods is recommended.

  20. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  1. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  2. Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy.

    Science.gov (United States)

    Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2011-05-07

    The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011

  3. Spectrally selective molecular doped solids: spectroscopy, photophysics and their application to ultrafast optical pulse processing

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre

    2005-01-01

    The persistent spectral hole-burning (PSHB) phenomenon observed in molecular doped polymers cooled down to liquid helium temperatures allows the engraving of spectral structures in the inhomogeneous absorption profile of the material. This phenomenon known since 1974 has became a fruitful field for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectroscopy, photophysics, photochemistry and dynamics of molecular doped amorphous media, organic as well as inorganic. A PSHB molecular doped solid can be programmed in spectral domain and therefore, it can be converted in an optical processor capable to achieve user-defined optical functions. Some aspects of this field are illustrated in the present paper. An application is presented where a naphthalocyanine doped polymer film is used in a demonstrative experiment to prove that temporal aberration free re-compression of ultra-short light pulses is feasible. Perspectives for the coherent control of light fields or photochemical processes are also evoked

  4. Minor burn - first aid - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100213.htm Minor burn - first aid - series—Procedure, part 1 To use ... out of 2 Overview To treat a minor burn, run cool water over the area of the ...

  5. [Burns in adolescents].

    Science.gov (United States)

    Ortiz Rodríguez, R; Domínguez Amillo, E; Soto Beauregard, C; Díaz González, M; López Gutiérrez, J C; Ros Mar, Z; Tovar Larrucea, J A

    2012-04-01

    The aim of this study was to know the epidemiology of burns in teenagers. Burn patients over 11 years old admitted in our Institution in the last 10 years were included. Etiology, burn size, hospital stay, quirurgical interventions and long term sequelae were registered. One thousand and eight patients were admitted, 89 were over 11 years (8.8%), 70.7% were boys and 29.3% girls. Fire was the principal agent in 58 cases (65.1%), due to fireworks in 13 (22.4%), alcohol in 7 (12%), explosion of flammable containers (spray) in 4 (6.8%) and gasoline in 3 (5.2%). Fireworks injuries and spray explosions affected face and hand in 88% cases. The median hospital stay was 8 days after admission (1 to 90). 83.1% required surgical treatment with mean of 1.8 +/- 1.4 interventions and 21.3% had long-term sequelaes that required at least one surgical intervention. Fire is the main cause of burns in adolescents. Fireworks injuries represented a quarter of that lesions, and highlights paint spray explosions as new causative agents. Considering the high morbidity in this age group, with permanent functional and aesthetic sequelae, prevention campaigns are needed to reduce such accidents.

  6. Electrical Burns: First Aid

    Science.gov (United States)

    ... local emergency number if the source of the burn is a high-voltage wire or lightning. Don't get near high-voltage ... 20 feet (about 6 meters) away — farther if wires are jumping and sparking. Don't move a person with ... breathing Heart rhythm problems (arrhythmias) Cardiac ...

  7. Burns - Multiple Languages

    Science.gov (United States)

    ... Translations Russian (Русский) Expand Section Burn Care - Русский (Russian) Bilingual ... Health Information Translations Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  8. One Burn, One Standard

    Science.gov (United States)

    2014-09-01

    PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Giretzlehner M., Haller H. L., Faucher L. D., Pressman M. A., Salinas J., Jeng J. C., 5d. PROJECT NUMBER 5e...AUVA Linz, Austria Lee D. Faucher, MD University of Wisconsin Madison, Wisconsin Melissa A. Pressman , PhD Arizona Burn Center Phoenix

  9. Massive Black Hole Implicated in Stellar Destruction

    Science.gov (United States)

    2010-01-01

    of Alabama who led the study. Irwin and his colleagues obtained optical spectra of the object using the Magellan I and II telescopes in Las Campanas, Chile. These data reveal emission from gas rich in oxygen and nitrogen but no hydrogen, a rare set of signals from globular clusters. The physical conditions deduced from the spectra suggest that the gas is orbiting a black hole of at least 1,000 solar masses. The abundant amount of oxygen and absence of hydrogen indicate that the destroyed star was a white dwarf, the end phase of a solar-type star that has burned its hydrogen leaving a high concentration of oxygen. The nitrogen seen in the optical spectrum remains an enigma. "We think these unusual signatures can be explained by a white dwarf that strayed too close to a black hole and was torn apart by the extreme tidal forces," said coauthor Joel Bregman of the University of Michigan. Theoretical work suggests that the tidal disruption-induced X-ray emission could stay bright for more than a century, but it should fade with time. So far, the team has observed there has been a 35% decline in X-ray emission from 2000 to 2008. The ULX in this study is located in NGC 1399, an elliptical galaxy about 65 million light years from Earth. Irwin presented these results at the 215th meeting of the American Astronomical Society in Washington, DC. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  10. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  11. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  12. Do Hypervolumes Have Holes?

    Science.gov (United States)

    Blonder, Benjamin

    2016-04-01

    Hypervolumes are used widely to conceptualize niches and trait distributions for both species and communities. Some hypervolumes are expected to be convex, with boundaries defined by only upper and lower limits (e.g., fundamental niches), while others are expected to be maximal, with boundaries defined by the limits of available space (e.g., potential niches). However, observed hypervolumes (e.g., realized niches) could also have holes, defined as unoccupied hyperspace representing deviations from these expectations that may indicate unconsidered ecological or evolutionary processes. Detecting holes in more than two dimensions has to date not been possible. I develop a mathematical approach, implemented in the hypervolume R package, to infer holes in large and high-dimensional data sets. As a demonstration analysis, I assess evidence for vacant niches in a Galapagos finch community on Isabela Island. These mathematical concepts and software tools for detecting holes provide approaches for addressing contemporary research questions across ecology and evolutionary biology.

  13. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  14. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  15. White dwarfs - black holes

    International Nuclear Information System (INIS)

    Sexl, R.; Sexl, H.

    1975-01-01

    The physical arguments and problems of relativistic astrophysics are presented in a correct way, but without any higher mathematics. The book is addressed to teachers, experimental physicists, and others with a basic knowledge covering an introductory lecture in physics. The issues dealt with are: fundamentals of general relativity, classical tests of general relativity, curved space-time, stars and planets, pulsars, gravitational collapse and black holes, the search for black holes, gravitational waves, cosmology, cosmogony, and the early universe. (BJ/AK) [de

  16. Magnonic black holes

    OpenAIRE

    Roldán-Molina, A.; Nunez, A.S.; Duine, R. A.

    2017-01-01

    We show that the interaction between spin-polarized current and magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons - the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the imp...

  17. Supersymmetric black holes

    OpenAIRE

    de Wit, Bernard

    2005-01-01

    The effective action of $N=2$, $d=4$ supergravity is shown to acquire no quantum corrections in background metrics admitting super-covariantly constant spinors. In particular, these metrics include the Robinson-Bertotti metric (product of two 2-dimensional spaces of constant curvature) with all 8 supersymmetries unbroken. Another example is a set of arbitrary number of extreme Reissner-Nordstr\\"om black holes. These black holes break 4 of 8 supersymmetries, leaving the other 4 unbroken. We ha...

  18. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  19. Histopathological detection of entry and exit holes in human skin wounds caused by firearms.

    Science.gov (United States)

    Baptista, Marcus Vinícius; d'Ávila, Solange C G P; d'Ávila, Antônio Miguel M P

    2014-07-01

    The judiciary needs forensic medicine to determine the difference between an entry hole and an exit hole in human skin caused by firearms for civilian use. This important information would be most useful if a practical and accurate method could be done with low-cost and minimal technological resources. Both macroscopic and microscopic analyses were performed on skin lesions caused by firearm projectiles, to establish histological features of 14 entry holes and 14 exit holes. Microscopically, in the abrasion area macroscopically observed, there were signs of burns (sub-epidermal cracks and keratinocyte necrosis) in the entrance holes in all cases. These signs were not found in three exit holes which showed an abrasion collar, nor in other exit holes. Some other microscopic features not found in every case were limited either to entry holes, such as cotton fibres, grease deposits, or tattooing in the dermis, or to exit holes, such as adipose tissue, bone or muscle tissue in the dermis. Coagulative necrosis of keratinocytes and sub-epidermal cracks are characteristic of entry holes. Despite the small sample size, it can be safely inferred that this is an important microscopic finding, among others less consistently found, to define an entry hole in questionable cases. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  20. Burn Wise Educational Materials for Businesses

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  1. Repeated Prescribed Burning in Aspen

    Science.gov (United States)

    Donald A. Perala

    1974-01-01

    Infrequent burning weather, low flammability of the aspen-hardwood association, and prolific sprouting and seeding of shrubs and hardwoods made repeated dormant season burning a poor tool to convert good site aspen to conifers. Repeat fall burns for wildlife habitat maintenance is workable if species composition changes are not important.

  2. Air-Freshener Burns: A New Paradigm in Burns Etiology?

    OpenAIRE

    Sarwar, Umran; Nicolaou, M.; Khan, M. S.; Tiernan, E.

    2011-01-01

    Objectives: We report a rare case of burns following the use of automated air-fresheners. Methods: We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. Results: A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms re...

  3. REDSHIFT EVOLUTION IN BLACK HOLE-BULGE RELATIONS: TESTING C IV-BASED BLACK HOLE MASSES

    International Nuclear Information System (INIS)

    Greene, Jenny E.; Peng, Chien Y.; Ludwig, Randi R.

    2010-01-01

    We re-examine claims for redshift evolution in black hole-bulge scaling relations based on lensed quasars. In particular, we refine the black hole (BH) mass estimates using measurements of Balmer lines from near-infrared spectroscopy obtained with Triplespec at Apache Point Observatory. In support of previous work, we find a large scatter between Balmer and UV line widths, both Mg IIλλ2796, 2803 and C IVλλ1548, 1550. There is tentative evidence that C III]λ1909, despite being a blend of multiple transitions, may correlate well with Mg II, although a larger sample is needed for a real calibration. Most importantly, we find no systematic changes in the estimated BH masses for the lensed sample based on Balmer lines, providing additional support to the interpretation that black holes were overly massive compared to their host galaxies at high redshift.

  4. Is proportion burned severely related to daily area burned?

    International Nuclear Information System (INIS)

    Birch, Donovan S; Morgan, Penelope; Smith, Alistair M S; Kolden, Crystal A; Hudak, Andrew T

    2014-01-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day. (letters)

  5. Air-freshener burns: a new paradigm in burns etiology?

    Science.gov (United States)

    Sarwar, Umran; Nicolaou, M; Khan, M S; Tiernan, E

    2011-10-01

    We report a rare case of burns following the use of automated air-fresheners. We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms resulting in a seven-day hospital admission. The burns were treated conservatively. To our knowledge this is one of the few documented cases of burns as a result of air-fresheners. As they become more ubiquitous, we anticipate the incidence of such cases to increase. As such, they pose a potential public health concern on a massive scale.

  6. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  7. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  8. ANFO truck burn trials

    Energy Technology Data Exchange (ETDEWEB)

    Rosen von, B.; Contestabile, E. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2003-10-01

    This report describes the investigation of a tractor-trailer explosion. A truck loaded with 18,000 kg of commercial explosives, of which 13,000 kg was ammonium nitrate with fuel oil (ANFO), caught fire when it struck a rockcut near Walden, Ontario on August 5, 1998. The fire resulted in the detonation of the load. The Canadian Explosives Research Laboratory (CERL) conducted a test program to examine the suitability of existing explosive transportation regulations. Unconfined burns of ANFO were performed. The accident was recreated in two burn trials in an attempt to identify the mechanism that led from fire to detonation. Two full-scale tests were conducted using complete tractor-trailers, each in a jack-knifed position with most of the explosives placed on the ground in front of the trailer. ANFO was used in the first test to determine its response to thermal stimulus and the likelihood of detonation or explosion. The second test involved ANFO, a slurry and an emulsion. Thermocouples and video cameras were used to observe the burning characteristics of the explosives, the truck and its components. The explosives burned steadily for 80 minutes in each test. Many truck components, such as tires, spring brake chambers and the fuel tank ruptured violently due to the heat. Although no detonation occurred in the test trials, it was concluded that under favourable conditions, many truck components, might produce fragments with enough energy to initiate heat-sensitized explosives. It was suggested that a fragment impact caused the detonation at Walden. 4 refs., 7 tabs., 8 figs.

  9. Fungal Burn Wound Infection

    Science.gov (United States)

    1991-01-01

    Aspergillus), Blasto- T he use of effective topical chemotherapeutic agents to myces (Candida), and Zygomycetes ( Mucor , Rhizopus).6 reduce...species, 18%; Mucor species and Rhizopus species, acetate in the morning and silver sulfadiazine in the evening. Prophy- 9.1%; and Microspora species and...sensitivity reports, and the patient’s sue, including one patient who required a hip disarticulation response. to control an invasive Mucor burn wound

  10. Assessing burn depth in tattooed burn lesions with LASCA Imaging

    Science.gov (United States)

    Krezdorn, N.; Limbourg, A.; Paprottka, F.J.; Könneker; Ipaktchi, R.; Vogt, P.M

    2016-01-01

    Summary Tattoos are on the rise, and so are patients with tattooed burn lesions. A proper assessment with regard to burn depth is often impeded by the tattoo dye. Laser speckle contrast analysis (LASCA) is a technique that evaluates burn lesions via relative perfusion analysis. We assessed the effect of tattoo skin pigmentation on LASCA perfusion imaging in a multicolour tattooed patient. Depth of burn lesions in multi-coloured tattooed and untattooed skin was assessed using LASCA. Relative perfusion was measured in perfusion units (PU) and compared to various pigment colours, then correlated with the clinical evaluation of the lesion. Superficial partial thickness burn (SPTB) lesions showed significantly elevated perfusion units (PU) compared to normal skin; deep partial thickness burns showed decreased PU levels. PU of various tattoo pigments to normal skin showed either significantly lower values (blue, red, pink) or significantly increased values (black) whereas orange and yellow pigment showed values comparable to normal skin. In SPTB, black and blue pigment showed reduced perfusion; yellow pigment was similar to normal SPTB burn. Deep partial thickness burn (DPTB) lesions in tattoos did not show significant differences to normal DPTB lesions for black, green and red. Tattoo pigments alter the results of perfusion patterns assessed with LASCA both in normal and burned skin. Yellow pigments do not seem to interfere with LASCA assessment. However proper determination of burn depth both in SPTB and DPTB by LASCA is limited by the heterogenic alterations of the various pigment colours. PMID:28149254

  11. Burning mouth syndrome: etiology.

    Science.gov (United States)

    Cerchiari, Dafne Patrícia; de Moricz, Renata Dutra; Sanjar, Fernanda Alves; Rapoport, Priscila Bogar; Moretti, Giovana; Guerra, Marja Michelin

    2006-01-01

    The Burning Mouth Syndrome (BMS) is an oral mucosa pain--with or without inflammatory signs--without any specific lesion. It is mostly observed in women aged 40-60 years. This pain feels like a moderate/severe burning, and it occurs more frequently on the tongue, but it may also be felt at the gingiva, lips and jugal mucosa. It may worsen during the day, during stress and fatigue, when the patient speaks too much, or through eating of spicy/hot foods. The burning can be diminished with cold food, work and leisure. The goal of this review article is to consider possible BMS etiologies and join them in 4 groups to be better studied: local, systemic, emotional and idiopathic causes of pain. Knowing the different diagnoses of this syndrome, we can establish a protocol to manage these patients. Within the local pain group, we must investigate dental, allergic and infectious causes. Concerning systemic causes we need to look for connective tissue diseases, endocrine disorders, neurological diseases, nutritional deficits and salivary glands alterations that result in xerostomia. BMS etiology may be of difficult diagnosis, many times showing more than one cause for oral pain. A detailed interview, general physical examination, oral cavity and oropharynx inspection, and lab exams are essential to avoid a try and error treatment for these patients.

  12. Direct Observation of Electron-to-Hole Energy Transfer in CdSe Quantum Dots

    NARCIS (Netherlands)

    Hendry, E.; Koeberg, M.; Wang, F.; Zhang, H.; de Mello Donega, C.; Vanmaekelbergh, D.; Bonn, M.

    2006-01-01

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This

  13. σ-holes and π-holes: Similarities and differences.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2018-04-05

    σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  15. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  16. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  17. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  18. Anyon black holes

    Science.gov (United States)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  19. Black holes go supersonic

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Ulf [School of Physics and Astronomy, University of St. Andrews (United Kingdom)

    2001-02-01

    In modern physics, the unification of gravity and quantum mechanics remains a mystery. Gravity rules the macroscopic world of planets, stars and galaxies, while quantum mechanics governs the micro-cosmos of atoms, light quanta and elementary particles. However, cosmologists believe that these two disparate worlds may meet at the edges of black holes. Now Luis Garay, James Anglin, Ignacio Cirac and Peter Zoller at the University of Innsbruck in Austria have proposed a realistic way to make an artificial 'sonic' black hole in a tabletop experiment (L J Garay et al. 2000 Phys. Rev. Lett. 85 4643). In the February issue of Physics World, Ulf Leonhardt of the School of Physics and Astronomy, University of St. Andrews, UK, explains how the simulated black holes work. (U.K.)

  20. Black Hole Paradoxes

    International Nuclear Information System (INIS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-01-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals. (paper)

  1. Bringing Black Holes Home

    Science.gov (United States)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  2. Effect of the final-state interaction on the initial core-hole lifetime: the case of the 4s-hole lifetime of Sn metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2003-01-01

    The first theoretical study of the effect of the final-state interaction on the initial core-hole lifetime is presented. The 4s-hole lifetime width of Sn metal is calculated by an ab-initio atomic many-body theory (Green's function method). When the final-state interaction in the 4p4d two-hole state, created by the 4s -1 -4p -1 4d -1 εf super Coster-Kronig (CK) transition of the initial 4s hole, is explicitly taken into account, the ab-initio atomic many-body calculation of the 4s-hole X-ray photoelectron spectroscopy (XPS) spectrum of Sn atom can provide excellent agreement with experiment in both the 4s-hole energy and the 4s-hole lifetime width. Otherwise, the many-body calculation underestimates considerably the 4s-hole lifetime width. The 4p4d two-hole state interacts strongly with the 4d triple-hole state by the 4p -1 4d -1 -4d -3 εf super CK transition. The interaction affects greatly the initial 4s-hole lifetime width

  3. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  4. Foot burns: epidemiology and management.

    Science.gov (United States)

    Hemington-Gorse, S; Pellard, S; Wilson-Jones, N; Potokar, T

    2007-12-01

    This is a retrospective study of the epidemiology and management of isolated foot burns presenting to the Welsh Centre for Burns from January 1998 to December 2002. A total of 289 were treated of which 233 were included in this study. Approximately 40% were in the paediatric age group and the gender distribution varied dramatically for adults and children. In the adult group the male:female ratio was 3.5:1, however in the paediatric group the male:female ratio was more equal (1.6:1). Scald burns (65%) formed the largest group in children and scald (35%) and chemical burns (32%) in adults. Foot burns have a complication rate of 18% and prolonged hospital stay. Complications include hypertrophic scarring, graft loss/delayed healing and wound infection. Although isolated foot burns represent a small body surface area, over half require treatment as in patients to allow for initial aggressive conservative management of elevation and regular wound cleansing to avoid complications. This study suggests a protocol for the initial acute management of foot burns. This protocol states immediate referral of all foot burns to a burn centre, admission of these burns for 24-48 h for elevation, regular wound cleansing with change of dressings and prophylactic antibiotics.

  5. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  6. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  7. Moulting Black Holes

    OpenAIRE

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2011-01-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that ...

  8. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  9. Dancing with Black Holes

    Science.gov (United States)

    Aarseth, S. J.

    2008-05-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  10. Scattering from black holes

    International Nuclear Information System (INIS)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  11. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  12. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  13. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  14. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  15. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  16. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  17. Community integration after burn injuries.

    Science.gov (United States)

    Esselman, P C; Ptacek, J T; Kowalske, K; Cromes, G F; deLateur, B J; Engrav, L H

    2001-01-01

    Evaluation of community integration is a meaningful outcome criterion after major burn injury. The Community Integration Questionnaire (CIQ) was administered to 463 individuals with major burn injuries. The CIQ results in Total, Home Integration, Social Integration, and Productivity scores. The purposes of this study were to determine change in CIQ scores over time and what burn injury and demographic factors predict CIQ scores. The CIQ scores did not change significantly from 6 to 12 to 24 months postburn injury. Home integration scores were best predicted by sex and living situation; Social Integration scores by marital status; and Productivity scores by functional outcome, burn severity, age, and preburn work factors. The data demonstrate that individuals with burn injuries have significant difficulties with community integration due to burn and nonburn related factors. CIQ scores did not improve over time but improvement may have occurred before the initial 6-month postburn injury follow-up in this study.

  18. New all-optical method for measuring molecular permanent dipole moment difference using two-photon absorption spectroscopy

    International Nuclear Information System (INIS)

    Rebane, A.; Drobizhev, M.; Makarov, N.S.; Beuerman, E.; Tillo, S.; Hughes, T.

    2010-01-01

    Stark effect, in combination with spectral hole burning and single-molecule spectroscopy, has been a fruitful technique to study permanent electric dipole moment of molecules in condensed phase. However, because measuring Stark shifts relies on external fields and narrow line- or hole-widths, the applicability of this method at ambient conditions required by most biological systems has remained limited. Here we demonstrate a new all-optical method for measuring the molecular dipole moment difference between ground and excited states using two-photon absorption (2PA) spectroscopy. We show that the value and orientation of the static dipole moment difference can be determined from the corresponding absolute 2PA cross-section. We use this new method to determine for the first time the strength of local electric field E loc =0.1-1.0x10 8 V/cm inside beta-barrel of Fruit series of red fluorescent proteins. Because our method does not rely on external field and is applicable in liquid solutions, it is well suited for the study of biological systems.

  19. Nonsingular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut (Lebanon); I.H.E.S., Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Niels Bohr Institute, Niels Bohr International Academy, Copenhagen (Denmark); Ludwig-Maximilians University, Theoretical Physics, Munich (Germany); MPI for Physics, Munich (Germany)

    2017-03-15

    We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity ''inside it'' is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius r{sub g}, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to r{sub g}{sup 1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to r{sub g}{sup 1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature. (orig.)

  20. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  1. Burning Mouth Syndrome

    OpenAIRE

    Renton, Tara

    2011-01-01

    Bruning mouth syndrome is a burning sensation of one or several oral soft tissues with the tongue being affected the most, and may be associated with some other symptoms outside the oral structures. The oral symptoms may appear suddenly or gradually within a time course, may be persistent throughout the day or get more intense as the day progresses in a complaint-free patient in the morning. The syndrome affects mostly women and those over 50 years old, and usually caused by multiple factors....

  2. Burning mouth syndrome: An update

    OpenAIRE

    Vijay Kumar Ambaldhage; Jaishankar Homberhalli Puttabuddi; Purnachandrarao Naik Nunsavath

    2015-01-01

    Burning mouth syndrome (BMS) is characterized by an oral burning sensation in the absence of any organic disorders of the oral cavity. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. It is observed principally in middle-aged patients and postmenopausal women and is characterized by an intense burning type of pain, preferably on the tongue and in other areas of the ...

  3. Burning mouth syndrome: Present perspective

    OpenAIRE

    Ramesh Parajuli

    2015-01-01

    Introduction: Burning mouth syndrome is characterized by chronic oral pain or burning sensation affecting the oral mucosa in the absence of obvious visible mucosal lesions. Patient presenting with the burning mouth sensation or pain is frequently encountered in clinical practice which poses a challenge to the treating clinician. Its exact etiology remains unknown which probably has multifactorial origin. It often affects middle or old age women and it may be accompanied by xerostomia and alte...

  4. Black holes and quantum mechanics

    CERN Document Server

    Wilczek, Frank

    1995-01-01

    1. Qualitative introduction to black holes : classical, quantum2. Model black holes and model collapse process: The Schwarzschild and Reissner-Nordstrom metrics, The Oppenheimer-Volkov collapse scenario3. Mode mixing4. From mode mixing to radiance.

  5. Quantum Mechanics of Black Holes

    OpenAIRE

    Giddings, Steven B.

    1994-01-01

    These lectures give a pedagogical review of dilaton gravity, Hawking radiation, the black hole information problem, and black hole pair creation. (Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology)

  6. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  7. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  8. Ice & Fire: the Burning Question

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Jomaas, Grunde

    2017-01-01

    With the Arctic opening up to new shipping routes and increased oil exploration and production due to climate change, the risk of an Arctic oil spill is increasing. Of the classic oil spill response methods (mechanical recovery, dispersants and in-situ burning), in-situ burning is considered...... to be particularly a suitable response method in the Arctic. In-situ burning aims to remove the oil from the marine environment by burning it from the water surface. A recent Ph.D. thesis from the Technical University of Denmark has provided some new insights with respect to the fire science behind this response...

  9. Novel burn device for rapid, reproducible burn wound generation.

    Science.gov (United States)

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal

  10. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  11. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  12. Magnetohydrodynamics near a black hole

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    A numerical computer study of hydromagnetic flow near a black hole is presented. First, the equations of motion are developed to a form suitable for numerical computations. Second, the results of calculations describing the magnetic torques exerted by a rotating black hole on a surrounding magnetic plasma and the electric charge that is induced on the surface of the black hole are presented. (auth)

  13. Oral Rehydration Therapy in Burn Patients

    Science.gov (United States)

    2014-04-24

    Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface

  14. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  15. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    prominences, have a significantly higher rate of occurrence in the vicinity of coronal .... coronal holes due to the birth of new holes or the growth of existing holes. .... Statistics of newly formed coronal hole areas (NFOCHA) associated with ...

  16. Measurements and characterization of a hole trap in neutron-irradiated silicon

    International Nuclear Information System (INIS)

    Avset, B.S.

    1996-04-01

    The report describes measurements on a hole trap in neutron irradiated silicon diodes made one high resistivity phosphorus doped floatzone silicon. The hole trap was detected by Deep Level Transient Spectroscopy. This measurement gave a trap activation energy of 0.475 MeV. Other measurements showed that the trap has very small capture cross sections for both holes and electrons (10 -18 to 10 -20 cm 2 ) and that the hole capture cross section is temperature dependent. The energy level position of the trap has been estimated to be between 0.25 and 0.29 eV from the valence band. 25 refs., 21 figs., 4 tabs

  17. From binary black hole simulation to triple black hole simulation

    International Nuclear Information System (INIS)

    Bai Shan; Cao Zhoujian; Han, Wen-Biao; Lin, Chun-Yu; Yo, Hwei-Jang; Yu, Jui-Ping

    2011-01-01

    Black hole systems are among the most promising sources for a gravitational wave detection project. Now, China is planning to construct a space-based laser interferometric detector as a follow-on mission of LISA in the near future. Aiming to provide some theoretical support to this detection project on the numerical relativity side, we focus on black hole systems simulation in this work. Considering the globular galaxy, multiple black hole systems also likely to exist in our universe and play a role as a source for the gravitational wave detector we are considering. We will give a progress report in this paper on our black hole system simulation. More specifically, we will present triple black hole simulation together with binary black hole simulation. On triple black hole simulations, one novel perturbational method is proposed.

  18. In-situ burning of Orimulsion : small scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.

    2002-01-01

    This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs

  19. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  20. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  1. Animal Models in Burn Research

    Science.gov (United States)

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  2. Stem Cells in Burn Eschar

    NARCIS (Netherlands)

    van der Veen, V. C.; Vlig, M.; van Milligen-Kummer, F.J.; de Vries, S.I.; Middelkoop, E.; Ulrich, M.

    2012-01-01

    This study compares mesenchymal cells isolated from excised burn wound eschar with adipose-derived stem cells (ASCs) and dermal fibroblasts in their ability to conform to the requirements for multipotent mesenchymal stem cells (MSCs). A population of multipotent stem cells in burn eschar could be an

  3. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  4. Beyond the black hole

    International Nuclear Information System (INIS)

    Boslough, J.

    1985-01-01

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  5. Bumpy black holes

    OpenAIRE

    Emparan, Roberto; Figueras, Pau; Martinez, Marina

    2014-01-01

    We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary non-monotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black ring...

  6. Burning mouth syndrome: An update

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ambaldhage

    2015-01-01

    Full Text Available Burning mouth syndrome (BMS is characterized by an oral burning sensation in the absence of any organic disorders of the oral cavity. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. It is observed principally in middle-aged patients and postmenopausal women and is characterized by an intense burning type of pain, preferably on the tongue and in other areas of the oral mucosa. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. This article provides an overview of the literature on this syndrome with special reference to the etiological factors, clinical aspects, diagnostic criteria that should be followed and the therapeutic management with reference to the most recent studies.

  7. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  8. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  9. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  10. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  11. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  12. Fuel burning and climate

    International Nuclear Information System (INIS)

    Aunan, Kristin

    2004-01-01

    Emission of soot particles and other air pollution indoors constitutes a considerable health hazard for a major part of the population in many developing countries, one of them being China. In these countries problems relating to poverty are the most important risk factors, undernourishment being the dominating reason. Number four on the list of the most serious health hazards is indoor air pollution caused by burning of coal and biomass in the households. Very high levels of soot particles occur indoors because of incomplete combustion in old-fashioned stoves and by use of low quality fuel such as sticks and twigs and straw and other waste from agriculture. This leads to an increase in a series of acute and chronic respiratory diseases, including lung cancer. It has been pointed out in recent years that emissions due to incomplete combustion of coal and biomass can contribute considerably to climate changes

  13. Pediatric burns: Kids' Inpatient Database vs the National Burn Repository.

    Science.gov (United States)

    Soleimani, Tahereh; Evans, Tyler A; Sood, Rajiv; Hartman, Brett C; Hadad, Ivan; Tholpady, Sunil S

    2016-04-01

    Burn injuries are one of the leading causes of morbidity and mortality in young children. The Kids' Inpatient Database (KID) and National Burn Repository (NBR) are two large national databases that can be used to evaluate outcomes and help quality improvement in burn care. Differences in the design of the KID and NBR could lead to differing results affecting resultant conclusions and quality improvement programs. This study was designed to validate the use of KID for burn epidemiologic studies, as an adjunct to the NBR. Using the KID (2003, 2006, and 2009), a total of 17,300 nonelective burn patients younger than 20 y old were identified. Data from 13,828 similar patients were collected from the NBR. Outcome variables were compared between the two databases. Comparisons revealed similar patient distribution by gender, race, and burn size. Inhalation injury was more common among the NBR patients and was associated with increased mortality. The rates of respiratory failure, wound infection, cellulitis, sepsis, and urinary tract infection were higher in the KID. Multiple regression analysis adjusting for potential confounders demonstrated similar mortality rate but significantly longer length of stay for patients in the NBR. Despite differences in the design and sampling of the KID and NBR, the overall demographic and mortality results are similar. The differences in complication rate and length of stay should be explored by further studies to clarify underlying causes. Investigations into these differences should also better inform strategies to improve burn prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils.

    Science.gov (United States)

    Artz, Rebekka R E; Reid, Eileen; Anderson, Ian C; Campbell, Colin D; Cairney, John W G

    2009-03-01

    Repeated prescribed burning alters the biologically labile fraction of nutrients and carbon of soil organic matter (SOM). Using a long-term (30 years) repeated burning experiment where burning has been carried out at a 2- or 4-year frequency, we analysed the effect of prescribed burning on gross potential C turnover rates and phenol oxidase activity in relation to shifts in SOM composition as observed using Fourier-transform infrared spectroscopy. In tandem, we assessed the genetic diversity of basidiomycete laccases. While the overall effect of burning was a decline in phenol oxidase activity, Shannon diversity and evenness of laccases was significantly higher in burned sites. Co-correspondence analysis of SOM composition and laccase operational taxonomic unit frequency data also suggested a strong correlation. While this correlation could indicate that the observed increase in laccase genetic diversity due to burning is due to increased resource diversity, a temporal replacement of the most abundant members of the assembly by an otherwise dormant pool of fungi cannot be excluded. As such, our results fit the intermediate disturbance hypothesis. Effects were stronger in plots burned in 2-year rotations, suggesting that the 4-year burn frequency may be a more sustainable practice to ensure the long-term stability of C cycling in such ecosystems.

  15. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  16. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  17. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Chen, Longqing; Syed, Ahad A.; Wang, Xianbin

    2014-01-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  18. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng

    2014-04-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  19. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  20. Sedation and Analgesia in Burn

    Directory of Open Access Journals (Sweden)

    Özkan Akıncı

    2011-07-01

    Full Text Available Burn injury is one of the most serious injuries that mankind may face. In addition to serious inflammation, excessive fluid loss, presence of hemodynamic instability due to intercurrent factors such as debridements, infections and organ failure, very different levels and intensities of pain, psychological problems such as traumatic stress disorder, depression, delirium at different levels that occur in patient with severe burn are the factors which make it difficult to provide the patient comfort. In addition to a mild to moderate level of baseline permanent pain in burn patients, which is due to tissue damage, there is procedural pain as well, which occurs by treatments such as grafting and dressings, that are severe, short-term burst style 'breakthrough' pain. Movement and tactile stimuli are also seen in burn injury as an effect to sensitize the peripheral and central nervous system. Even though many burn centers have established protocols to struggle with the pain, studies show that pain relief still inadequate in burn patients. Therefore, the treatment of burn pain and the prevention of possible emergence of future psychiatric problems suc as post-traumatic stress disorder, the sedative and anxiolytic agents should be used as a recommendation according to the needs and hemodynamic status of individual patient. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 26-30

  1. Assault by burning in Jordan

    Science.gov (United States)

    Haddadin, W.

    2012-01-01

    Summary Criminal attacks by burns on women in Jordan are highlighted in this retrospective study carried out of all proved cases of criminal burns in female patients treated at the burn unit of the Royal Rehabilitation Center in Jordan between January 2005 and June 2012. Thirteen patients were included in our study, out of a total of 550 patients admitted, all in the age range of 16-45 yr. Of these 13 women, six were burned by acid throwing, five by hot water, and two by direct flames from fuel thrown over them. Burn percentage ranged from 15 to 75% of the total body surface area, with involvement in most cases of the face and upper trunk. The mean hospital stay was 33 days and the mortality rate was 3/13, i.e. 23%. Violence against women exists in Jordanian society, yet burning assaults are rare. Of these, burning by throwing acid is the most common and most disfiguring act, with a higher mortality rate in domestic environments. PMID:23766757

  2. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  3. Hair bleaching and skin burning

    OpenAIRE

    Forster, K.; Lingitz, R.; Prattes, G.; Schneider, G.; Sutter, S.; Schintler, M.; Trop, M.

    2012-01-01

    Hairdressing-related burns are preventable and therefore each case is one too many. We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond and placed under a dryer to accelerate the highlighting procedure. The wound on the nape of the neck required surgical debridement and skin grafting. The grafted area resulted in subsequent scar formation.

  4. Artificial black holes

    CERN Document Server

    Visser, Matt; Volovik, Grigory E

    2009-01-01

    Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.

  5. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  6. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  7. Quantum effects in black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1979-01-01

    A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered

  8. Particle creation by black holes

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1975-01-01

    In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de

  9. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  10. Tracing Supermassive Black Hole Growth with Offset and Dual AGN

    Science.gov (United States)

    Comerford, Julia

    known. Here we propose a new observational approach to identifying offset and dual AGN, which will increase the known number from 13 to 100. This technique depends on multiwavelength archival data from HST, Spitzer, XMM-Newton, and Chandra, and it selects offset/dual AGN candidates as active galaxies (identified by Spitzer, XMMNewton, and Chandra detections) that exhibit two stellar bulges in their HST images. Our follow-up longslit spectroscopy will then confirm whether the two nuclei in fact correspond to offset AGN or dual AGN. The catalog of 100 offset and dual AGN that we build with this approach will enable offset and dual AGN to be used, for the first time, for statistical studies of black hole mass growth. We will use the catalog to test theoretical predictions about (1) whether major mergers preferentially fuel higher-luminosity AGN, (2) whether offset AGN are preferentially triggered by minor mergers and dual AGN preferentially triggered by major mergers, and (3) at what black hole separations the mass growth of black holes peaks. The primary emphasis of this project is the analysis of multiwavelength archival data from several NASA space missions, which is aligned with the goals of the Astrophysics Data Analysis Program. This project will advance offset and dual AGN as a new tool for statistical studies of galaxy evolution, and the results of our study will promote the NASA Cosmic Origins program in one of its objectives, which is to understand how galaxies evolve.

  11. A burning question

    International Nuclear Information System (INIS)

    Lamb, Garth

    2010-01-01

    Converting unwanted biomass to fuel pellets four times denser than wood has local companies in Queensland, Australia excited. The well-tested 'old technology' of burning wood is going through a renaissance. There is a growing focus on producing high- density biomass pellets from feedstock that would otherwise be considered waste. Their uniform size reduces transport costs, the energy content varies, about 4-5MWh/tonne, compared to 2.8MWh/t for brown coal or 8.3MWh/t for black coal. The biomass estimates from sugarcane, other agricultural wastes and wood wastes suggest Australia has huge biomass resources, but whether or not Australia's political settings see the potential fulfilled is yet to be seen. Altus Renewables recently disclosed plans to build a biofuel pelletisation plant at Queensland's largest sawmill. Altus are very interested in the European market, the world's leading pellet consuming region, where according to the IEA, biomass represents 65% of the renewables. Cheap power provided by waste biomass could potentially power biomass converters, desalination plants, or even pump water inland to arid regions.

  12. Burning mouth syndrome.

    Science.gov (United States)

    Jääskeläinen, Satu K; Woda, Alain

    2017-06-01

    Objective To review the clinical entity of primary burning mouth syndrome (BMS), its pathophysiological mechanisms, accurate new diagnostic methods and evidence-based treatment options, and to describe novel lines for future research regarding aetiology, pathophysiology, and new therapeutic strategies. Description Primary BMS is a chronic neuropathic intraoral pain condition that despite typical symptoms lacks clear clinical signs of neuropathic involvement. With advanced diagnostic methods, such as quantitative sensory testing of small somatosensory and taste afferents, neurophysiological recordings of the trigeminal system, and peripheral nerve blocks, most BMS patients can be classified into the peripheral or central type of neuropathic pain. These two types differ regarding pathophysiological mechanisms, efficacy of available treatments, and psychiatric comorbidity. The two types may overlap in individual patients. BMS is most frequent in postmenopausal women, with general population prevalence of around 1%. Treatment of BMS is difficult; best evidence exists for efficacy of topical and systemic clonazepam. Hormonal substitution, dopaminergic medications, and therapeutic non-invasive neuromodulation may provide efficient mechanism-based treatments for BMS in the future. Conclusion We present a novel comprehensive hypothesis of primary BMS, gathering the hormonal, neuropathic, and genetic factors presumably required in the genesis of the condition. This will aid in future research on pathophysiology and risk factors of BMS, and boost treatment trials taking into account individual mechanism profiles and subgroup-clusters.

  13. What is a black hole

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1979-01-01

    A definition of a black hole is proposed that should work in any stably causal space-time. This is that a black hole is the closure of the smaller future set that contains all noncosmological trapped surfaces and which has its boundary generated by null geodesic segments that are boundary generators of TIPs. This allows precise definitions of cosmic censorship and white holes. (UK)

  14. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  15. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  16. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  17. Black holes and the multiverse

    International Nuclear Information System (INIS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse

  18. Black holes and the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  19. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  20. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  1. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  2. Lawn mower-related burns.

    Science.gov (United States)

    Still, J; Orlet, H; Law, E; Gertler, C

    2000-01-01

    Lawn mower-related injuries are fairly common and are usually caused by the mower blades. Burns may also be associated with the use of power lawn mowers. We describe 27 lawn mower-related burn injuries of 24 male patients and 3 female patients. Three of the patients with burn injuries were children. Burn sizes ranged from 1% to 99% of the total body surface area (mean, 18.1%). Two of the patients died. The hospital stay ranged from 1 day to 45 days. Twenty-six injuries involved gasoline, which is frequently associated with refueling accidents. Safety measures should involve keeping children away from lawn mowers that are being used. The proper use and storage of gasoline is stressed.

  3. Modern management of paediatric burns

    African Journals Online (AJOL)

    2010-03-01

    Mar 1, 2010 ... an area of stasis where sluggish circulation and release of inflammatory mediators will .... way to estimate medium to large burns in patients older than 10 .... on day 1 decreases stress hormone release, improves nitrogen ...

  4. Preventing Burns in Your Home

    Science.gov (United States)

    ... clothing when you handle chemicals. Store chemicals, including gasoline, out of the reach of children. To prevent ... mild burn? What is the treatment for smoke inhalation? Resources American Red Cross, Home Fire Safety Centers ...

  5. Prescribed burning: a topical issue

    Directory of Open Access Journals (Sweden)

    Bovio G

    2013-11-01

    Full Text Available Prescribed burning is a promising technique for the prevention of forest fires in Italy. The research deepened several ecological and operative aspects. However, legal issues need to be thoroughly investigated.

  6. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  7. Burning mouth syndrome: Clinical dilemma?

    OpenAIRE

    Kanchan R Patil; R S Sathawane

    2008-01-01

    Burning Mouth Syndrome (BMS) is a chronic orofacial burning pain condition usually in the absence of clinical and laboratory findings that affects many adults worldwide, yet its etiology and treatment remain poorly understood. Though it has been associated with numerous oral and systemic conditions, there has been no clear consensus on its etiology, pathogenesis and treatment. As a result, patients with inexplicable oral complaints are often referred from one health care professional to anoth...

  8. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  9. Hole energy and momentum distributions in valence bands

    International Nuclear Information System (INIS)

    Laan, G. van der.

    1982-01-01

    In order to understand the electrical and magnetic properties of solids, the knowledge of the density of states and the dispersion relation of the valence bands is indispensable. This thesis offers some alternative methods to obtain information about the nature of the valence band. Part A deals with the energy distribution of the photoelectrons. A simple model, which explains the core hole satellite structure in compounds with large correlation effects between the valence band holes and the created photo-hole, is outlined. CuCl, CuX 2 (X = F Cl and Br) are studied, by photoemission and Auger electron spectroscopies in determining the valence band properties. Part B deals with the simultaneous measurement of the energy and the wave vector of the emitted electrons. A practical example is given for the determination of the dispersion relation in copper. The measurements of a surface resonance band and the distribution of the secondary electrons are also reported. (Auth.)

  10. 21 CFR 880.5180 - Burn sheet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  11. Optical Spectroscopy Of Charged Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  12. DIFFERENTIATING PERIMORTEM AND POSTMORTEM BURNING

    Directory of Open Access Journals (Sweden)

    Brahmaji Master

    2015-01-01

    Full Text Available One of the most challenging cases in forensic medicine is ascertaining the cause of death of burnt bodies under suspicious circumstances. The key questions that arise at the time of investigation include: 1  Was the person alive or dead prior to fire accident?  Did the victim die because of burn?  If death was not related to burns, could burns play a role in causing death?  Were the burns sustained accidentally, did the person commit suicide or was the person murdered?  Are the circumstances suggesting an attempt to conceal crime?  How was the fire started?  How was the victim identified?  In case of mass fatalities, who died first? Postmortem burning of corpses is supposed to be one of the ways to hide a crime. Differentiating the actual cause of death in burn patients is therefore important. Medical examiners usually focus on the defining the changes that occur in tissues while forensic anthropologists deal with the changes related to the bone with or without any the influence of other tissues. Under the circumstances of fire, differentiating the perimortem trauma from that of postmortem cause of bone fractures is vital in determining the cause and motive of death

  13. Treatment of Palm Burns in Children

    OpenAIRE

    Argirova, M.; Hadzhiyski, O.

    2005-01-01

    The timing and methods of treatment of palm burns in children vary widely. From January 2002 to November 2004, 492 children with burns - 125 of them with hand burns or other body burns - were hospitalized and treated at the N.I. Pirogov Clinic for Burns and Plastic Surgery in Bulgaria. Fifty-four children (for a total of 73 burned hands) presented isolated palm burns.Twenty-two hands were operated on. In this review we present the incidence, causes, treatment methods, functional results, and ...

  14. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  15. 30 CFR 57.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  16. 30 CFR 56.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  17. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Nhan Chuong [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (Ic); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (Tg). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure

  18. Consequences of Spin-Orbit Coupling at the Single Hole Level: Spin-Flip Tunneling and the Anisotropic g Factor.

    Science.gov (United States)

    Bogan, A; Studenikin, S A; Korkusinski, M; Aers, G C; Gaudreau, L; Zawadzki, P; Sachrajda, A S; Tracy, L A; Reno, J L; Hargett, T W

    2017-04-21

    Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.

  19. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  20. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  1. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  2. Optical appearance of white holes

    International Nuclear Information System (INIS)

    Lake, K.; Roeder, R.C.

    1978-01-01

    The detailed optical properties of white holes are examined within the framework of geometrical optics. It is shown that the appearance of the objects most likely to be observed at late times is in fact determined by their early histories. These ccalculations indicate that one cannot invoke the simple concept of a stable white hole as a ''natural'' explanation of highly energetic astrophysical phenomena

  3. Black holes and everyday physics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    Black holes have piqued much curiosity. But thus far they have been important only in ''remote'' subjects like astrophysics and quantum gravity. It is shown that the situation can be improved. By a judicious application of black hole physics, one can obtain new results in ''everyday physics''. For example, black holes yield a quantum universal upper bound on the entropy-to-energy ratio for ordinary thermodynamical systems which was unknown earlier. It can be checked, albeit with much labor, by ordinary statistical methods. Black holes set a limitation on the number of species of elementary particles-quarks, leptons, neutrinos - which may exist. And black holes lead to a fundamental limitation on the rate at which information can be transferred for given message energy by any communication system. (author)

  4. The search for black holes

    International Nuclear Information System (INIS)

    Torn, K.

    1976-01-01

    Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications

  5. Black hole final state conspiracies

    International Nuclear Information System (INIS)

    McInnes, Brett

    2009-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of 'conspiracies' between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required 'conspiracies' if real black holes are described by some kind of sum over all AdS black holes having the same entropy

  6. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  7. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  8. Impact of a Newly Implemented Burn Protocol on Surgically Managed Partial Thickness Burns at a Specialized Burns Center in Singapore.

    Science.gov (United States)

    Tay, Khwee-Soon Vincent; Chong, Si-Jack; Tan, Bien-Keem

    2016-03-01

    This study evaluated the impact of a newly implemented protocol for superficial to mid-dermal partial thickness burns which involves early surgery and rapid coverage with biosynthetic dressing in a specialized national burns center in Singapore. Consecutive patients with 5% or greater total body surface area (TBSA) superficial to mid-dermal partial thickness burns injury admitted to the Burns Centre at the Singapore General Hospital between August and December 2014 for surgery within 48 hours of injury were prospectively recruited into the study to form the protocol group. Comparable historical cases from the year 2013 retrieved from the burns center audit database were used to form the historical control group. Demographics (age, sex), type and depth of burns, %TBSA burnt, number of operative sessions, and length of stay were recorded for each patient of both cohorts. Thirty-nine burns patients managed under the new protocol were compared with historical control (n = 39) comparable in age and extensiveness of burns. A significantly shorter length of stay (P burns was observed in the new protocol group (0.74 day/%TBSA) versus historical control (1.55 day/%TBSA). Fewer operative sessions were needed under the new protocol for burns 10% or greater TBSA burns (P protocol for surgically managed burns patients which involves early surgery and appropriate use of biosynthetic dressing on superficial to mid-dermal partial thickness burns. Clinically, shorter lengths of stay, fewer operative sessions, and decreased need for skin grafting of burns patient were observed.

  9. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review.

    Science.gov (United States)

    Andrews, Christine J; Cuttle, Leila

    2017-12-01

    There are many porcine burn models that create burns using different materials (e.g. metal, water) and different burn conditions (e.g. temperature and duration of exposure). This review aims to determine whether a pooled analysis of these studies can provide insight into the burn materials and conditions required to create burns of a specific severity. A systematic review of 42 porcine burn studies describing the depth of burn injury with histological evaluation is presented. Inclusion criteria included thermal burns, burns created with a novel method or material, histological evaluation within 7 days post-burn and method for depth of injury assessment specified. Conditions causing deep dermal scald burns compared to contact burns of equivalent severity were disparate, with lower temperatures and shorter durations reported for scald burns (83°C for 14 seconds) compared to contact burns (111°C for 23 seconds). A valuable archive of the different mechanisms and materials used for porcine burn models is presented to aid design and optimisation of future models. Significantly, this review demonstrates the effect of the mechanism of injury on burn severity and that caution is recommended when burn conditions established by porcine contact burn models are used by regulators to guide scald burn prevention strategies. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  10. VHTR-fuel irradiation capsules for VT-1 hole of JRR-2

    International Nuclear Information System (INIS)

    Kikuchi, Teruo; Kikuchi, Akira; Tobita, Tsutomu; Kashimura, Satoru; Miyasaka, Yasuhiko

    1977-02-01

    Irradiations of VHTR fuels were made in the VT-1 irradiation hole of JRR-2. Three capsules, VP-1, VP-2 and VP-4, which contained fuel compacts, were irradiated for 300 hr at temperatures of 950 0 , 1370 0 and 1500 0 C up to the estimated burn-ups of 0.74, 0.87 and 0.80%FIMA, respectively. And, to study the amoeba effect of fuel particles, two capsules, VP-3 and VP-5, were irradiated for 300 hr at temperatures of 1650 0 and 1670 0 C up to the estimated burn-ups of 0.38 and 0.33%FIMA, respectively. (auth.)

  11. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  12. Hydrogen incorporation in high hole density GaN:Mg

    Science.gov (United States)

    Zvanut, M. E.; Uprety, Y.; Dashdorj, J.; Moseley, M.; Doolittle, W. Alan

    2011-03-01

    We investigate hydrogen passivation in heavily doped p-type GaN using electron paramagnetic resonance (EPR) spectroscopy. Samples include both conventionally grown GaN (1019 cm-3 Mg, 1017 cm-3 holes) and films grown by metal modulation epitaxy (MME), which yielded higher Mg (1- 4 x 1020 cm-3) and hole (1- 40 x 1018 cm-3) densities than found in conventionally grown GaN. The Mg acceptor signal is monitored throughout 30 minute annealing steps in N2 :H2 (92%:7%)) and subsequently pure N2 . N2 :H2 heat treatments of the lower hole density films begin to reduce the Mg EPR intensity at 750 o C, but quench the signal in high hole density films at 600 o C. Revival of the signal by subsequent N2 annealing occurs at 800 o C for the low hole density material and 600 o C in MME GaN. The present work highlights chemical differences between heavily Mg doped and lower doped films; however, it is unclear whether the difference is due to changes in hydrogen-Mg complex formation or hydrogen diffusion. The work at UAB is supported by the NSF.

  13. When Supermassive Black Holes Wander

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are

  14. Burning mouth syndrome: Current concepts

    Directory of Open Access Journals (Sweden)

    Cibele Nasri-Heir

    2015-01-01

    Full Text Available Burning mouth syndrome (BMS is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also report taste alterations and oral dryness along with the burning. The etiopathogenesis is complex and is not well-comprehended. The more accepted theories point toward a neuropathic etiology, but the gustatory system has also been implicated in this condition. BMS is frequently mismanaged, partly because it is not well-known among healthcare providers. Diagnosis of BMS is made after other local and systemic causes of burning have been ruled out as then; the oral burning is the disease itself. The management of BMS still remains a challenge. Benzodiazepines have been used in clinical practice as the first-line medication in the pharmacological management of BMS. Nonpharmacological management includes cognitive behavioral therapy and complementary and alternative medicine (CAM. The aim of this review is to familiarize healthcare providers with the diagnosis, pathogenesis, and general characteristics of primary BMS while updating them with the current treatment options to better manage this group of patients.

  15. Burning mouth syndrome: Current concepts.

    Science.gov (United States)

    Nasri-Heir, Cibele; Zagury, Julyana Gomes; Thomas, Davis; Ananthan, Sowmya

    2015-01-01

    Burning mouth syndrome (BMS) is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also report taste alterations and oral dryness along with the burning. The etiopathogenesis is complex and is not well-comprehended. The more accepted theories point toward a neuropathic etiology, but the gustatory system has also been implicated in this condition. BMS is frequently mismanaged, partly because it is not well-known among healthcare providers. Diagnosis of BMS is made after other local and systemic causes of burning have been ruled out as then; the oral burning is the disease itself. The management of BMS still remains a challenge. Benzodiazepines have been used in clinical practice as the first-line medication in the pharmacological management of BMS. Nonpharmacological management includes cognitive behavioral therapy and complementary and alternative medicine (CAM). The aim of this review is to familiarize healthcare providers with the diagnosis, pathogenesis, and general characteristics of primary BMS while updating them with the current treatment options to better manage this group of patients.

  16. Telemedicine and burns: an overview.

    Science.gov (United States)

    Atiyeh, B; Dibo, S A; Janom, H H

    2014-06-30

    Access to specialized burn care is becoming more difficult and is being restricted by the decreasing number of specialized burn centers. It is also limited by distance and resources for many patients, particularly those living in poverty or in rural medically underserved communities. Telemedicine is a rapidly evolving technology related to the practice of medicine at a distance through rapid access to remote medical expertise by telecommunication and information technologies. Feasibility of telemedicine in burn care has been demonstrated by various centers. Its use facilitates the delivery of care to patients with burn injuries of all sizes. It allows delivery of acute care and can be appropriately used for a substantial portion of the long-term management of patients after a burn by guiding less-experienced surgeons to treat and follow-up patients more appropriately. Most importantly, it allows better effective triage which reduces unnecessary time and resource demanding referrals that might overwhelm system capacities. However, there are still numerous barriers to the implementation of telemedicine, including technical difficulties, legal uncertainties, limited financial support, reimbursement issues, and an inadequate evidence base of its value and efficiency.

  17. Introduction to burning plasma physics

    International Nuclear Information System (INIS)

    Momota, Hiromu

    1982-01-01

    The free energy of fusion-produced charged particles, the critical plasma Q-value for the thermal instability, and the Cherenkov's emission are discussed. The free energy of fusion-produced charged particles is large even in DT burning plasma. The primary role of fusion-produced energetic charged particles is the heating of fuel plasma. If the charged particle heating is large, burning may be thermally unstable. A zero dimensional analysis shows that the critical plasma Q-values for this thermal instability are nearly 5 for DT burning plasma of 14 keV and 1.6 for D-He 3 burning plasma of 60 keV. These critical plasma Q-values are small as compared to that required for commercial reactors. Then, some methods of burning-control should be introduced to fusion plasma. Another feature of energetic charged particles may be Cherenkov's emission of various waves in fusion plasma. The relationship between this micro-instability and transport phenomena may be the important problem to be clarified. The fusion-produced energetic charged particles have large Larmor radii, and they may have effects on balooning mode instability. (Kato, T.)

  18. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  19. Black hole decay as geodesic motion

    International Nuclear Information System (INIS)

    Gupta, Kumar S.; Sen, Siddhartha

    2003-01-01

    We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The equation governing black hole decay can be identified as the geodesic equation in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. Moreover, this approach predicts a precise correction term to the usual expression for the decay rate of black holes

  20. Effects of burn location and investigator on burn depth in a porcine model.

    Science.gov (United States)

    Singer, Adam J; Toussaint, Jimmy; Chung, Won Taek; Thode, Henry C; McClain, Steve; Raut, Vivek

    2016-02-01

    In order to be useful, animal models should be reproducible and consistent regardless of sampling bias, investigator creating burn, and burn location. We determined the variability in burn depth based on biopsy location, burn location and investigator in a porcine model of partial thickness burns. 24 partial thickness burns (2.5 cm by 2.5 cm each) were created on the backs of 2 anesthetized pigs by 2 investigators (one experienced, one inexperienced) using a previously validated model. In one of the pigs, the necrotic epidermis covering each burn was removed. Five full thickness 4mm punch biopsies were obtained 1h after injury from the four corners and center of the burns and stained with Hematoxylin and Eosin and Masson's trichrome for determination of burn depth by a board certified dermatopathologist blinded to burn location and investigator. Comparisons of burn depth by biopsy location, burn location and investigator were performed with t-tests and ANOVA as appropriate. The mean (SD) depth of injury to blood vessels (the main determinant of burn progression) in debrided and non-debrided pigs pooled together was 1.8 (0.3)mm, which included 75% of the dermal depth. Non-debrided burns were 0.24 mm deeper than debrided burns (Plocations, in debrided burns. Additionally, there were also no statistical differences in burn depths from midline to lateral in either of these burn types. Burn depth was similar for both investigators and among biopsy locations. Burn depth was greater for caudal locations in non-debrided burns and overall non-debrided burns were deeper than debrided burns. However, burn depth did not differ based on investigator, biopsy site, and medial-lateral location. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  1. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  2. Investigation of Spiral and Sweeping Holes

    Science.gov (United States)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  3. Advanced tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Porkolab, M.; Bonoli, P.T.; Ramos, J.; Schultz, J.; Nevins, W.N.

    2001-01-01

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  4. Wood-burning stoves worldwide

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo

    global environmental health risk, since these sources are important contributors to fine particulate matter (PM2.5) in the ambient air that increase climate and health risks. This thesis explores the social-technical dimensions of both the use of wood-burning stoves (WBSs) and transition to the use......More than any time in our history, the wood-burning stove continues to be the most popular technology used for cooking and heating worldwide. According to the World Health Organization and recent scientific studies, the inefficient use of solid-fuels in traditional stoves constitutes the major...... systems, improved efficient retrofits and advanced stove innovations. In chapter 3, four popular wood-burning practices found in five countries were singled-out to be examined closely in four case studies: “cooking in Brazil”, “cooking and heating in Peru”, “heating in Portugal” and “recreational heat...

  5. Burn Control Mechanisms in Tokamaks

    Science.gov (United States)

    Hill, M. A.; Stacey, W. M.

    2015-11-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  6. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  7. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    Thorne, K.S.; Price, R.H.; Macdonald, D.A.

    1986-01-01

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  8. Black Hole Grabs Starry Snack

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  9. Black holes at neutrino telescopes

    International Nuclear Information System (INIS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-01-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the large hadron collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC. (orig.)

  10. Thermodynamic theory of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The thermodynamic theory underlying black hole processes is developed in detail and applied to model systems. It is found that Kerr-Newman black holes undergo a phase transition at a = 0.68M or Q = 0.86M, where the heat capacity has an infinite discontinuity. Above the transition values the specific heat is positive, permitting isothermal equilibrium with a surrounding heat bath. Simple processes and stability criteria for various black hole situations are investigated. The limits for entropically favoured black hole formation are found. The Nernst conditions for the third law of thermodynamics are not satisfied fully for black holes. There is no obvious thermodynamic reason why a black hole may not be cooled down below absolute zero and converted into a naked singularity. Quantum energy-momentum tensor calculations for uncharged black holes are extended to the Reissner-Nordstrom case, and found to be fully consistent with the thermodynamic picture for Q < M. For Q < M the model predicts that 'naked' collapse also produces radiation, with such intensity that the collapsing matter is entirely evaporated away before a naked singularity can form.

  11. Laser spectroscopy

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1981-01-01

    This article describes recent progress in the application of laser atomic spectroscopy to study parameters of nuclei available in very small quantities; radioactive nuclei, rare isotopes, nuclear isomers, etc, for which study by conventional spectroscopic methods is difficult. (author)

  12. Unveiling the edge of time black holes, white holes, wormholes

    CERN Document Server

    Gribbin, John

    1992-01-01

    Acclaimed science writer John Gribbin recounts dramatic stories that have led scientists to believe black holes and their more mysterious kin are not only real, but might actually provide a passage to other universes and travel through time.

  13. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  14. Burning mouth syndrome: Current concepts

    OpenAIRE

    Nasri-Heir, Cibele; Zagury, Julyana Gomes; Thomas, Davis; Ananthan, Sowmya

    2015-01-01

    Burning mouth syndrome (BMS) is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also rep...

  15. [Enteral nutrition in burn patients].

    Science.gov (United States)

    Pereira, J L; Garrido, M; Gómez-Cía, T; Serrera, J L; Franco, A; Pumar, A; Relimpio, F; Astorga, R; García-Luna, P P

    1992-01-01

    Nutritional support plays an important role in the treatment of patients with burns. Due to the severe hypercatabolism that develops in these patients, oral support is insufficient in most cases, and this makes it essential to initiate artificial nutritional support (either enteral or parenteral). Enteral nutrition is more physiological than parenteral, and data exist which show that in patients with burns, enteral nutrition exercises a protective effect on the intestine and may even reduce the hypermetabolic response in these patients. The purpose of the study was to evaluate the effectiveness and tolerance of enteral nutritional support with a hypercaloric, hyperproteic diet with a high content of branched amino acids in the nutritional support of patients suffering from burns. The study included 12 patients (8 males and 4 females), admitted to the Burns Unit. Average age was 35 +/- 17 years (range: 21-85 years). The percentage of body surface affected by the burns was 10% in two cases, between 10-30% in three cases, between 30-50% in five cases and over 50% in two cases. Initiation of the enteral nutrition was between twenty-four hours and seven days after the burn. The patients were kept in the unit until they were discharged, and the average time spent in the unit was 31.5 days (range: 17-63 days). Total energetic requirements were calculated based on Harris-Benedict, with a variable aggression factor depending on the body surface burned, which varied from 2,000 and 4,000 cal day. Nitrogenous balance was determined on a daily basis, and plasmatic levels of total proteins, albumin and prealbumin on a weekly basis. There was a significant difference between the prealbumin values at the initiation and finalization of the enteral nutrition (9.6 +/- 2.24 mg/dl compared with 19.75 +/- 5.48 mg/dl; p diet was very good, and only mild complications such as diarrhoea developed in two patients. Enteral nutrition is a suitable nutritional support method for patients with

  16. Principles of Burn Pain Management.

    Science.gov (United States)

    James, Dominika Lipowska; Jowza, Maryam

    2017-10-01

    This article describes pathophysiology of burn injury-related pain and the basic principles of burn pain management. The focus is on concepts of perioperative and periprocedural pain management with extensive discussion of opioid-based analgesia, including patient-controlled analgesia, challenges of effective opioid therapy in opioid-tolerant patients, and opioid-induced hyperalgesia. The principles of multimodal pain management are discussed, including the importance of psychological counseling, perioperative interventional pain procedures, and alternative pain management options. A brief synopsis of the principles of outpatient pain management is provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  18. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  19. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  20. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  1. Tunnelling from Goedel black holes

    International Nuclear Information System (INIS)

    Kerner, Ryan; Mann, R. B.

    2007-01-01

    We consider the spacetime structure of Kerr-Goedel black holes, analyzing their parameter space in detail. We apply the tunnelling method to compute their temperature and compare the results to previous calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve (CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when the radius of the CTC horizon is smaller than the radius of both black hole horizons

  2. Quantum mechanics of black holes.

    Science.gov (United States)

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  3. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  4. Air-freshener burns: A new paradigm in burns etiology?

    Directory of Open Access Journals (Sweden)

    Umran Sarwar

    2011-01-01

    Conclusions: To our knowledge this is one of the few documented cases of burns as a result of air-fresheners. As they become more ubiquitous, we anticipate the incidence of such cases to increase. As such, they pose a potential public health concern on a massive scale.

  5. Epidemiology of Burn Injury and Demography of Burn Care Facilities

    Science.gov (United States)

    1990-06-01

    epidemiologic surveillance, vide the nursing care required by an exten- microbiology support is required for diagno-v sively burned patient is one of the...MA. Pittsburgh bur study. 28. Purdue GF, Hunt JL, Prescott PR. Child abuse bynig an iandnci o, suspiciro JA Traumarg 1988 t Pittsburgh and Allegheny

  6. Global burned area and biomass burning emissions from small fires

    NARCIS (Netherlands)

    Randerson, J.T; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often

  7. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  8. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  9. Wood would burn

    International Nuclear Information System (INIS)

    Swithenbank, Jim; Chen, Qun; Zhang, Xiaohui; Sharifi, Vida; Pourkashanian, Mohamed

    2011-01-01

    Absract: In view of the world-wide problem of energy sustainability and greenhouse gas production (carbon dioxide), it is timely to review the issues involved in generating heat and power from all fuels and especially new (to the UK) solid fuels, including high moisture fuels such as wood, SRF, oil shale, tar sands and brown coal, which will become major international fuels as oil and gas become depleted. The combustion properties of some of these materials are significantly different from traditional coal, oil and gas fuels, however the technology proposed herein is also applicable to these conventional fuels. This paper presents some innovative combustion system options and the associated technical factors that must be considered for their implementation. For clarity of understanding, the novel concepts will be largely presented in terms of a currently developing solid fuel market; biomass wood chips. One of the most important characteristics of many solid fuels to be used in the future (including oil shale and brown coal) is their high moisture content of up to 60%. This could be removed by utilising low grade waste heat that is widely available in industry to dry the fuel and thus reduce transport costs. Burning such dried wood for power generation also increases the energy available from combustion and thus acts as a thermal transformer by upgrading the low grade heat to heat available at combustion temperatures. The alternative approach presented here is to recover the latent heat by condensing the extrinsic moisture and the water formed during combustion. For atmospheric combustion, the temperature of the condensed combustion products is below the dew point at about 55-65 o C and is only suitable for recovery in an efficient district heating system. However, in order to generate power from the latent heat, the condensation temperature must be increased to the level where the heat can be used in the thermodynamic power cycle. This can be achieved by

  10. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  11. Axion-dilation black holes

    International Nuclear Information System (INIS)

    Kallosh, R.

    1993-01-01

    In this talk some essential features of stringy black holes are described. The author considers charged U(1) and U(1) x U(1) four-dimensional axion-dilaton black holes. The Hawking temperature and the entropy of all solutions are shown to be simple functions of the squares of supercharges, defining the positivity bounds. Spherically symmetric and multi black hole solutions are presented. The extreme solutions with zero entropy (holons) represent a ground state of the theory and are characterized by elementary dilaton, axion, electric, and magnetic charges. The attractive gravitational and axion-dilaton force is balanced by the repulsive electromagnetic force. The author discusses the possibility of splitting of nearly extreme black holes. 11 refs

  12. Holes in magneto electrostatic traps

    International Nuclear Information System (INIS)

    Jones, R.

    1996-01-01

    We observe that in magneto electrostatic confinement (MEC) devices the magnetic surfaces are not always equipotentials. The lack of symmetry in the equipotential surfaces can result in holes in MEC plasma traps. (author)

  13. Black holes by analytic continuation

    CERN Document Server

    Amati, Daniele

    1997-01-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation --accessible in the 1+1 gravity theory considered-- is implicit in an S matrix approach and provides in this way a possible solution to the problem of information loss.

  14. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    Science.gov (United States)

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  15. New regular black hole solutions

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-01-01

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  16. Black holes from extended inflation

    International Nuclear Information System (INIS)

    Hsu, S.D.H.; Lawrence Berkeley Lab., CA

    1990-01-01

    It is argued that models of extended inflation, in which modified Einstein gravity allows a graceful exit from the false vacuum, lead to copious production of black holes. The critical temperature of the inflationary phase transition must be >10 8 GeV in order to avoid severe cosmological problems in a universe dominated by black holes. We speculate on the possibility that the interiors of false vacuum regions evolve into baby universes. (orig.)

  17. Black holes and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1979-01-01

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M 2 greater than or equal to Q 2 + P 2 , where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M 2 = a 2 + Q 2 + P 2 ) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  18. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  19. Astronaut observations of global biomass burning

    International Nuclear Information System (INIS)

    Wood, C.A.; Nelson, R.

    1991-01-01

    One of the most fundamental inputs for understanding and modeling possible effects of biomass burning is knowledge of the size of the area burned. Because the burns are often very large and occur on all continents (except Antarctica), observations from space are essential. Information is presented in this chapter on another method for monitoring biomass burning, including immediate and long-term effects. Examples of astronaut photography of burning during one year give a perspective of the widespread occurrence of burning and the variety of biological materials that are consumed. The growth of burning in the Amazon region is presented over 15 years using smoke as a proxy for actual burning. Possible climate effects of smoke palls are also discussed

  20. Reliability enhancement through optimal burn-in

    Science.gov (United States)

    Kuo, W.

    1984-06-01

    A numerical reliability and cost model is defined for production line burn-in tests of electronic components. The necessity of burn-in is governed by upper and lower bounds: burn-in is mandatory for operation-critical or nonreparable component; no burn-in is needed when failure effects are insignificant or easily repairable. The model considers electronic systems in terms of a series of components connected by a single black box. The infant mortality rate is described with a Weibull distribution. Performance reaches a steady state after burn-in, and the cost of burn-in is a linear function for each component. A minimum cost is calculated among the costs and total time of burn-in, shop repair, and field repair, with attention given to possible losses in future sales from inadequate burn-in testing.

  1. Protect the Ones You Love: Burns Safety

    Science.gov (United States)

    ... Submit Search The CDC Protect the Ones You Love: Child Injuries are Preventable Note: Javascript is disabled ... ways you can help protect the children you love from burns. Key Prevention Tips To prevent burns ...

  2. EPIDEMOLOGY OF BURNS IN ENUGU, NIGERIA

    African Journals Online (AJOL)

    JIBURUM

    community is encouraged to study the epidemiology of burns since this important ... CONCLUSION The incidence and mortality of burn injury has remained high in this .... they are a group at risk. ... epidemiology and the compliance factors in.

  3. The Burning Truth(s)

    African Journals Online (AJOL)

    Surgical procedures in acute burns can be broadly divided into four groups: ablative (tangential or fascial ... tissue oedema due to extravasation of plasma into the interstitium. Fluid replacement will worsen the oedema, ... include airway distortion, pulmonary dysfunction, difficult vascular access, rapid blood loss, problematic ...

  4. Burning mouth syndrome and menopause

    Directory of Open Access Journals (Sweden)

    Parveen Dahiya

    2013-01-01

    Full Text Available Menopause is a physiological process typically occurring in the fifth decade of life. One of the most annoying oral symptoms in this age group is the burning mouth syndrome (BMS, which may be defined as an intraoral burning sensation occurring in the absence of identifiable oral lesion or laboratory findings. Pain in burning mouth syndrome may be described as burning, tender, tingling, hot, scalding, and numb sensation in the oral mucosa. Multiple oral sites may be involved, but the anterior two-third part and the tip of tongue are most commonly affected site. There is no definite etiology for BMS other than the precipitating causative factors, and it is still considered idiopathic. Various treatment options like use of benzodiazepine, anti-depressants, analgesics, capsaicin, alpha lipoic acids, and cognitive behavioral therapy are found to be effective, but definite treatment is still unknown. The present article discusses some of the recent concepts of etiopathogenesis of BMS as well as the role of pharmacotherapeutic management in this disorder.

  5. Burning Mouth Syndrome and Menopause

    Science.gov (United States)

    Dahiya, Parveen; Kamal, Reet; Kumar, Mukesh; Niti; Gupta, Rajan; Chaudhary, Karun

    2013-01-01

    Menopause is a physiological process typically occurring in the fifth decade of life. One of the most annoying oral symptoms in this age group is the burning mouth syndrome (BMS), which may be defined as an intraoral burning sensation occurring in the absence of identifiable oral lesion or laboratory findings. Pain in burning mouth syndrome may be described as burning, tender, tingling, hot, scalding, and numb sensation in the oral mucosa. Multiple oral sites may be involved, but the anterior two-third part and the tip of tongue are most commonly affected site. There is no definite etiology for BMS other than the precipitating causative factors, and it is still considered idiopathic. Various treatment options like use of benzodiazepine, anti-depressants, analgesics, capsaicin, alpha lipoic acids, and cognitive behavioral therapy are found to be effective, but definite treatment is still unknown. The present article discusses some of the recent concepts of etiopathogenesis of BMS as well as the role of pharmacotherapeutic management in this disorder. PMID:23411996

  6. Burning effigies with Bakhtinian laughter

    NARCIS (Netherlands)

    Göttke, F.

    2015-01-01

    The hanging or burning of effigies as an expression of dissent is a well-established genre of playful political protest. It is enacted in a variety of ways, accessing the conventions of various traditional rituals and social practices, and can function either as a progressive force demanding change,

  7. Prescribed burning for understory restoration

    Science.gov (United States)

    Kenneth W. Outcalt

    2006-01-01

    Because the longleaf ecosystem evolved with and is adapted to frequent fire, every 2 to 8 years, prescribed burning is often useful for restoring understory communities to a diverse ground layer of grasses, herbs, and small shrubs. This restoration provides habitat for a number of plant and animal species that are restricted to or found mostly in longleaf pine...

  8. Black holes in the universe

    International Nuclear Information System (INIS)

    Camenzind, M.

    2005-01-01

    While physicists have been grappling with the theory of black holes (BH), as shown by the many contributions to the Einstein year, astronomers have been successfully searching for real black holes in the Universe. Black hole astrophysics began in the 1960s with the discovery of quasars and other active galactic nuclei (AGN) in distant galaxies. Already in the 1960s it became clear that the most natural explanation for the quasar activity is the release of gravitational energy through accretion of gas onto supermassive black holes. The remnants of this activity have now been found in the centers of about 50 nearby galaxies. BH astrophysics received a new twist in the 1970s with the discovery of the X-ray binary (XRB) Cygnus X-1. The X-ray emitting compact object was too massive to be explained by a neutron star. Today, about 20 excellent BH candidates are known in XRBs. On the extragalactic scale, more than 100.000 quasars have been found in large galaxy surveys. At the redshift of the most distant ones, the Universe was younger than one billion year. The most enigmatic black hole candidates identified in the last years are the compact objects behind the Gamma-Ray Bursters. The formation of all these types of black holes is accompanied by extensive emission of gravitational waves. The detection of these strong gravity events is one of the biggest challenges for physicists in the near future. (author)

  9. Stationary black holes as holographs

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Istvan [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01 (Japan); MTA KFKI, Reszecske- es Magfizikai Kutatointezet, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2007-11-21

    Smooth spacetimes possessing a (global) one-parameter group of isometries and an associated Killing horizon in Einstein's theory of gravity are investigated. No assumption concerning the asymptotic structure is made; thereby, the selected spacetimes may be considered as generic distorted stationary black holes. First, spacetimes of arbitrary dimension, n {>=} 3, with matter satisfying the dominant energy condition and allowing a non-zero cosmological constant are investigated. In this part, complete characterization of the topology of the event horizon of 'distorted' black holes is given. It is shown that the topology of the event horizon of 'distorted' black holes is allowed to possess a much larger variety than that of the isolated black hole configurations. In the second part, four-dimensional (non-degenerate) electrovac distorted black hole spacetimes are considered. It is shown that the spacetime geometry and the electromagnetic field are uniquely determined in the black hole region once the geometry of the bifurcation surface and one of the electromagnetic potentials are specified there. Conditions guaranteeing the same type of determinacy, in a neighbourhood of the event horizon, on the domain of outer communication side are also investigated. In particular, they are shown to be satisfied in the analytic case.

  10. Atomic structure in black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2006-01-01

    We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)

  11. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  12. Intermediate-Mass Black Holes

    Science.gov (United States)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  13. Black hole quantum spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Corda, Christian [Institute for Theoretical Physics and Advanced Mathematics (IFM) Einstein-Galilei, Prato (Italy); Istituto Universitario di Ricerca ' ' Santa Rita' ' , Prato (Italy); International Institute for Applicable Mathematics and Information Sciences (IIAMIS), Hyderabad (India)

    2013-12-15

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  14. Black hole quantum spectrum

    Science.gov (United States)

    Corda, Christian

    2013-12-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.

  15. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    Wei Ren

    2006-01-01

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  16. 30 CFR 57.9360 - Shelter holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...

  17. Formation and Coalescence of Electron Solitary Holes

    DEFF Research Database (Denmark)

    Saeki, K.; Michelsen, Poul; Pécseli, H. L.

    1979-01-01

    Electron solitary holes were observed in a magnetized collisionless plasma. These holes were identified as Bernstein-Green-Kruskal equilibria, thus being purely kinetic phenomena. The electron hole does not damp even though its velocity is close to the electron thermal velocity. Two holes attract...

  18. 30 CFR 77.1010 - Collaring holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...

  19. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  20. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Gonser, U.

    1975-01-01

    This book is addressed to persons interested in learning about what has been done and what can be done with Moessbauer spectroscopy. In an introductory chapter the basic principle is explained and the general parameters governing Moessbauer spectroscopy are tabulated. For the following chapters various disciplines are chosen and the wide applicability of this measuring technique is demonstrated. The second chapter discusses a few representative examples of chemical interesting information being reflected by isomer shifts and quadrupole splittings, particularly with respect to bonding and structural properties. The third chapter deals with some applications of Moessbauer spectroscopy for characterizing magnetic compounds and its use for magnetic structure investigations, particularly by making use of polarized radiation. The fourth chapter describes the use of the Moessbauer spectroscopy for studying iron in biological molecules. As an example of recent applications to mineralogy and geology the results of the studies of lunar samples are reviewed in the fifth chapter. Finally, in the last chapter, work is described on the use of Moessbauer spectroscopy in physical metallurgy, particularly quantitative analyses which have enabled metallurgists to solve many old problems. (orig./FW) [de

  1. The treatment of extensively burned patents and β irradiational injury skin burn patients with irradiated pigskin

    International Nuclear Information System (INIS)

    Tang Zhongyi; Lu Xingan; Jing Ling; Qi Qiang

    1994-01-01

    Obvious therapeutic effects achieved by the covering of irradiation sterilized pigskin on burn wounds, escarectomized 3rd degree burn wounds β injured burns are discussed. The article also describes the manufacture processes of irradiated pigskins and the selection of surgical treatments of various burns. 5 refs., 1 tab., 4 figs

  2. Photoconversion and dynamic hole recycling process in anion vacancies in neutron-irradiated MgO crystals

    International Nuclear Information System (INIS)

    Monge, M.A.; Gonzalez, R.; Munoz Santiuste, J.E.; Pareja, R.; Chen, Y.; Kotomin, E.A.; Popov, A.I.

    1999-01-01

    Optical spectroscopy and theory demonstrate that photon excitation of the positively charged anion vacancies (F + centers) at 5.0 eV in neutron-irradiated MgO crystals releases holes that are subsequently trapped at V-type centers, which are cation vacancies charge compensated by impurities, such as Al 3+ , F - , and OH - ions. The concentration of trapped-hole centers was found to exceed that of available anion vacancies. The disproportionately large amount of holes produced is attributed to a dynamic recycling process, by which the F + center serves to release a hole to the V-type centers and subsequently trap a hole from an Fe 3+ ion. The net effect was the increase of V-type centers mostly at the expense of Fe 3+ ions. It was also shown that concurrently there was a component which distributed holes directly from Fe 3+ to the V-type centers. copyright 1999 The American Physical Society

  3. Burn Prevention for Families with Children with Special Needs

    Medline Plus

    Full Text Available ... Burns and Scalds Burn Prevention for Families With Children With Special Needs Watch this video to learn ... know about burn prevention if you have a child with special needs. Read our burn prevention tips | ...

  4. Car radiator burns: a prevention issue.

    Science.gov (United States)

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures.

  5. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  6. Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

    OpenAIRE

    Graber, James S.

    1999-01-01

    A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

  7. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  8. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Price, W.C.

    1974-01-01

    A survey is given of the development of x-ray and ultraviolet photoelectron spectroscopy. Applications of photoelectron spectroscopy to studies of atomic electronic configurations are discussed, including photoelectron spectra of hydrides isoelectronic with the inert gases; photoelectron spectra of the halogen derivatives of methane; photoelectron spectra of multiple bonded diatomic molecules; spectra and structure of some multiple bonded polyatomic molecules; spectra and structure of triatomic molecules; and methods of orbital assignment of bands in photoelectron spectra. Physical aspects are considered, including intensities; selection rules; dependence of cross section on photoelectron energy; autoionization; angular distribution of photoelectrons; electron-molecule interactions; and transient species. (26 figures, 54 references) (U.S.)

  9. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  10. EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6

    International Nuclear Information System (INIS)

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Albert, Loic; Arzoumanian, Doris; Bergeron, Jacqueline; Omont, Alain; Delorme, Philippe; Reyle, Celine

    2010-01-01

    We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44. We also use near-infrared spectroscopy of nine CFHQS quasars at z ∼ 6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between Mg II FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus, these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z = 6. Our black hole mass function is ∼10 4 times lower than at z = 0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high redshift than is observed at low redshift and/or a low quasar duty cycle at z = 6. In comparison, the global stellar mass function is only ∼10 2 times lower at z = 6 than at z = 0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass-stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4 < z < 6 from the local relation if one just studies the most massive black holes.

  11. Incidence and characteristics of chemical burns.

    Science.gov (United States)

    Koh, Dong-Hee; Lee, Sang-Gil; Kim, Hwan-Cheol

    2017-05-01

    Chemical burns can lead to serious health outcomes. Previous studies about chemical burns have been performed based on burn center data so these studies have provided limited information about the incidence of chemical burns at the national level. The aim of this study was to evaluate the incidence and characteristics of chemical burns using nationwide databases. A cohort representing the Korean population, which was established using a national health insurance database, and a nationwide workers' compensation database were used to evaluate the incidence and characteristics of chemical burns. Characteristics of the affected body region, depth of burns, industry, task, and causative agents were analyzed from two databases. The incidence of chemical burns was calculated according to employment status. The most common regions involving chemical burns with hospital visits were the skin followed by the eyes. For skin lesions, the hands and wrists were the most commonly affected regions. Second degree burns were the most common in terms of depth of skin lesions. The hospital visit incidence was 1.96 per 10,000 person-year in the general population. The compensated chemical burns incidence was 0.17 per 10,000 person-year. Employees and the self-employed showed a significantly increased risk of chemical burns undergoing hospital visits compared to their dependents. Chemical burns on the skin and eyes are almost equally prevalent. The working environment was associated with increased risk of chemical burns. Our results may aid in estimating the size of the problem and prioritizing prevention of chemical burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  12. BLACK HOLE MASS ESTIMATES AND RAPID GROWTH OF SUPERMASSIVE BLACK HOLES IN LUMINOUS z ∼ 3.5 QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Wenwen; Wu, Xue-Bing [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui; Green, Richard [Steward Observatory, The University of Arizona, Tucson, AZ 85721 (United States); Wang, Ran [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Bian, Fuyan [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611 (Australia)

    2015-02-01

    We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ and Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ∼ 3.5 quasars in our sample have black hole masses 1.90 × 10{sup 9} M {sub ☉} ≲ M {sub BH} ≲ 1.37 × 10{sup 10} M {sub ☉}, with a median of ∼5.14 × 10{sup 9} M {sub ☉} and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ∼1.12. Assuming a duty cycle of 1 and a seed black hole mass of 10{sup 4} M {sub ☉}, we show that the z ∼ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.

  13. Silicon Burning. II. Quasi-Equilibrium and Explosive Burning

    International Nuclear Information System (INIS)

    Hix, W.R.; Thielemann, F.

    1999-01-01

    Having examined the application of quasi-equilibrium to hydrostatic silicon burning in Paper I of this series, we now turn our attention to explosive silicon burning. Previous authors have shown that for material that is heated to high temperature by a passing shock and then cooled by adiabatic expansion, the results can be divided into three broad categories, incomplete burning, normal freezeout, and α-rich freezeout, with the outcome depending on the temperature, density, and cooling timescale. In all three cases, we find that the important abundances obey quasi-equilibrium for temperatures greater than approximately 3x10 9 K, with relatively little nucleosynthesis occurring following the breakdown of quasi-equilibrium. We will show that quasi-equilibrium provides better abundance estimates than global nuclear statistical equilibrium, even for normal freezeout, and particularly for α-rich freezeout. We will also examine the accuracy with which the final nuclear abundances can be estimated from quasi-equilibrium. copyright copyright 1999. The American Astronomical Society

  14. Global biomass burning: Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  15. Hole spectral functions in lightly doped quantum antiferromagnets

    Science.gov (United States)

    Kar, Satyaki; Manousakis, Efstratios

    2011-11-01

    We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.

  16. Management of post burn hand deformities

    Directory of Open Access Journals (Sweden)

    Sabapathy S

    2010-10-01

    Full Text Available The hand is ranked among the three most frequent sites of burns scar contracture deformity. One of the major determinants of the quality of life in burns survivors is the functionality of the hands. Burns deformities, although largely preventable, nevertheless do occur when appropriate treatment is not provided in the acute situation or when they are part of a major burns. Reconstructive procedures can greatly improve the function of the hands. Appropriate choice of procedures and timing of surgery followed by supervised physiotherapy can be a boon for a burns survivor.

  17. Pediatric burn rehabilitation: Philosophy and strategies

    Directory of Open Access Journals (Sweden)

    Shohei Ohgi

    2013-09-01

    Full Text Available Burn injuries are a huge public health issue for children throughout the world, with the majority occurring in developing countries. Burn injuries can leave a pediatric patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Rehabilitation is an essential and integral part of pediatric burn treatment. The aim of this article was to review the literature on pediatric burn rehabilitation from the Medline, CINAHL, and Web of Science databases. An attempt has been made to present the basic aspects of burn rehabilitation, provide practical information, and discuss the goals and conceptualization of rehabilitation as well as the development of rehabilitation philosophy and strategies.

  18. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  19. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  20. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  1. Methylated spirit burns: an ongoing problem.

    Science.gov (United States)

    Jansbeken, J R H; Vloemans, A F P M; Tempelman, F R H; Breederveld, R S

    2012-09-01

    Despite many educational campaigns we still see burns caused by methylated spirit every year. We undertook a retrospective study to analyse the impact of this problem. We retrospectively collected data of all patients with burns caused by methylated spirit over twelve years from 1996 to 2008. Our main endpoints were: incidence, age, mechanism of injury, total body surface area (TBSA) burned, burn depth, need for surgery and length of hospital stay. Ninety-seven patients with methylated spirit burns were included. During the study period there was no decrease in the number of patients annually admitted to the burn unit with methylated spirit burns. 28% of the patients (n=27) were younger than eighteen years old, 15% (n=15) were ten years old or younger. The most common cause of burns was carelessness in activities involving barbecues, campfires and fondues. Mean TBSA burned was 16% (SD 12.4). 70% (n=68) had full thickness burns. 66% (n=64) needed grafting. Mean length of hospital stay was 23 days (SD 24.7). The use of methylated spirit is an ongoing problem, which continues to cause severe burns in adults and children. Therefore methylated spirit should be banned in households. We suggest sale only in specialised shops, clear labelling and mandatory warnings. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  2. Okanagan indoor wood burning appliance inventory survey

    International Nuclear Information System (INIS)

    2001-01-01

    A survey was conducted to determine the usage and nature of wood burning appliances used by residents in British Columbia's Okanagan region. The objective was to better understand this source of air quality concern and to facilitate strategic planning, guidelines and legislation. The survey also provides a baseline to track the effectiveness of any reduction strategies. It identifies the different types of wood burning appliances used in the community and presents residential options about potential bylaws to protect air quality. The receptivity of households to switch to more efficient wood burning appliances was also examined. The survey completes a portion of an overall emissions inventory for the Okanagan Valley. Environment Canada uses the particulate loading results to model the air quality in the airshed. Results showed that approximately 21 per cent of the households in the Okanagan use indoor wood burning appliances, and burn an average of 2.3 cords of wood each year. Only 11 per cent of the appliances are considered to have advanced burning technology. It is projected that the use of wood burning appliances in the Okanagan will increase by 5 to 7 per cent in the next 2 years. Most residents have good burning habits, but some improvements can still be made. Many residents are considering exchanging old wood burning appliances for clean burning technology appliances for environmental and health reasons. Most households would support a bylaw to control nuisance amounts of smoke from wood burning appliances. 20 tabs., 5 figs

  3. Cosmology with primordial black holes

    International Nuclear Information System (INIS)

    Lindley, D.

    1981-09-01

    Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)

  4. Black holes: a slanted overview

    International Nuclear Information System (INIS)

    Vishveshwara, C.V.

    1988-01-01

    The black hole saga spanning some seventy years may be broadly divided into four phases, namely, (a) the dark ages when little was known about black holes even though they had come into existence quite early through the Schwarzschild solution, (b) the age of enlightenment bringing in deep and prolific discoveries, (c) the age of fantasy that cast black holes in all sorts of extraordinary roles, and (d) the golden age of relativistic astrophysics - to some extent similar to Dirac's characterisation of the development of quantum theory - in which black holes have been extensively used to elucidate a number of astrophysical phenomena. It is impossible to give here even the briefest outline of the major developments in this vast area. We shall only attempt to present a few aspects of black hole physics which have been actively pursued in the recent past. Some details are given in the case of those topics that have not found their way into text books or review articles. (author)

  5. [Burns care following a nuclear incident].

    Science.gov (United States)

    Bargues, L; Donat, N; Jault, P; Leclerc, T

    2010-09-30

    Radiation injuries are usually caused by radioactive isotopes in industry. Detonations of nuclear reactors, the use of military nuclear weapons, and terrorist attacks represent a risk of mass burn casualties. Ionizing radiation creates thermal burns, acute radiation syndrome with pancytopenia, and a delayed cutaneous syndrome. After a latency period, skin symptoms appear and the depth of tissue damages increase with dose exposure. The usual burn resuscitation protocols have to be applied. Care of these victims also requires assessment of the level of radiation, plus decontamination by an experienced team. In nuclear disasters, the priority is to optimize the available resources and reserve treatment to patients with the highest probability of survival. After localized nuclear injury, assessment of burn depth and surgical techniques of skin coverage are the main difficulties in a burn centre. Training in medical facilities and burn centres is necessary in the preparation for management of the different types of burn injuries.

  6. Method for burning radioactive wastes

    International Nuclear Information System (INIS)

    Hattori, Akinori; Tejima, Takaya.

    1987-01-01

    Purpose: To completely process less combustible radioactive wastes with no excess loads on discharge gas processing systems and without causing corrosions to furnace walls. Method: Among combustible radioactive wastes, chlorine-containing less combustible wastes such as chlorine-containing rubbers and vinyl chlorides, and highly heat generating wastes not containing chloride such as polyethylene are selectively packed into packages. While on the other hand, packages of less combustible wastes are charged into a water-cooled jacket type incinerator intermittently while controlling the amount and the interval of charging so that the temperature in the furnace will be kept to lower than 850 deg C for burning treatment. Directly after the completion of the burning, the packed highly heat calorie producing wastes are charged and subjected to combustion treatment. (Yoshihara, H.)

  7. Burning mouth syndrome: A review

    Directory of Open Access Journals (Sweden)

    Rajendra G Patil

    2017-01-01

    Full Text Available Burning mouth syndrome is a condition characterized by chronic orofacial pain without any mucosal abnormalities or other organic disease. There are numerous synonyms for this ailment such as stomatodynia, stomatopyrosis, glossodynia, glossopyrosis, sore mouth, sore tongue, oral dysesthesia, and scalding mouth syndrome. Patients usually present with burning, stinging, or numbness on the tongue or other areas of oral mucosa. The complex etiology and lack of characteristic signs and symptoms makes the diagnosis difficult. As a result of which managing such patients become a herculean task. Moreover, lack of understanding of the disease leads to misdiagnosis and unnecessary referral of patients. In this article, the authors have described the etiopathogenesis, diagnostic algorithm and management of this confusing ailment.

  8. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    Science.gov (United States)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

    2014-11-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  9. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    International Nuclear Information System (INIS)

    Gill, W; Cruz-Cabrera, A A; Bystrom, E; Donaldson, A B; Haug, A; Sharp, L; Lim, J; Sivathanu, Y; Surmick, D M

    2014-01-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified

  10. Burning Phosphorus under Water Safely

    Science.gov (United States)

    Taylor, Larry C.

    1997-09-01

    A safer method for demonstrating the burning of white phosphorous under water is described. This demonstration uses 3% hydrogen peroxide solution and manganese dioxide as the oxygen source, eliminating the use of potentially explosive potassium chlorate. The oxygen generation is manually controlled by means of a stopcock on the dropping funnel. The apparatus has been designed to provide a most spectacular display, especially in the dark, lasting an hour or longer if desired, and eliminates the noxious phosphorous odor.

  11. Method of burning petrochemical products

    Energy Technology Data Exchange (ETDEWEB)

    Sado, I

    1973-01-12

    This invention concerns a method of burning wastes such as polyvinyl chloride or other synthetic resin products and rubbers, in which wastes are burned in a nearly smokeless and odorless state. The method is characterized by a process by which petrochemical waste products are subjected to a spontaneous combustion in a casserole state in a closed combustion room in such a way that no air is supplied whatever, and subsequently the gas so generated is sent successively in an adequate amount into a separately installed second combustion room where it is reburnt at a high temperature of more than 1000 C by a jet flame from the oil burners mounted inside the combustion room. Usually, petrochemical products emanate black smoke of Ringelmann concentration of more than five and a strong odor, but in this method, particularly in the case of polyvinyl chloride the exhaust smoke has a Ringelmann smoke concentration of less than one and is almost odorless because the plastic is completely gasified by the spontaneous combustion and completely burned at 1300 to 1400/sup 0/C with oil and air in the second combustion room. When the exhaust smoke is passed through a neutralization tank to remove the chloride compounds in the smoke, the damaging contribution of the exhaust gas or smoke to the secondary pollution can be completely eliminated.

  12. Radioactive implications from coal burning

    International Nuclear Information System (INIS)

    Papastefanou, C.; Manolopoulou, M.; Charalambous, S.

    1989-01-01

    Lignites burning in the Greek Coal Power Plants (CPP) contain naturally occurring radionuclides mainly arising from the uranium series. Radium-226 concentrations in lignites burning in the three Coal Power Plants of the 3.02 GW energy centre, the greatest in Greece (Valley of Ptolemais, North Greece), varied from about 30 to 132 Bq kg -1 (average 65.5 Bq kg -1 . About 1.3 % of 226 Ra is discharged to the environment in particulate form - fly ash - by the stacks of thermal power stations, burning coal at a rate 14.3 Mt (GH y) -1 . The collective effective dose equivalent (EDE) commitment to the population 44400 living in the region of these plants, due to inhalation was estimated to be 0.13 man Sv y -1 , that is an order of magnitude higher than that recommended for such a population. Doses from inhaled radon and radon progeny might cause an excess of 3-7 cancer deaths this year. (author)

  13. Lee–Wick black holes

    Directory of Open Access Journals (Sweden)

    Cosimo Bambi

    2017-01-01

    Full Text Available We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee–Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M>Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M=Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.

  14. The black hole quantum atmosphere

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  15. The black hole quantum atmosphere

    Directory of Open Access Journals (Sweden)

    Ramit Dey

    2017-11-01

    Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  16. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  17. Nonrotating and slowly rotating holes

    International Nuclear Information System (INIS)

    Macdonald, D.A.; Price, R.H.; Thorne, K.S.; Suen, W.M.

    1986-01-01

    The 3+1 formalism is applied to model Schwarzschild spacetime around a black hole. Particular note is taken of the 3+1 split of the laws of electrodynamics, and of the tendency of the approach to freeze motion at the event horizon. The null horizon is replaced with a timelike physical membrane which exhibits mechanical, thermodynamic and electrical properties, and which stretches the horizon. The usefulness of the stretching approach is illustrated by considering a black hole penetrated by vibrating magnetic field lines anchored in a perfectly conducting surrounding sphere. The necessity of modeling the field structure near the actual horizon is avoided by having the field end at the membrane. The surface charge, current, resistivity and ohmic heating of the stretched horizon are also considered, and the Lorentz force imparted to the stretched horizon surface by the field lines is investigated by examining a nearly Schwarzschild hole behaving as the rotor of an electric motor

  18. Neutron Stars and Black Holes New clues from Chandra and XMM-Newton

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Neutron stars and black holes, the most compact astrophysical objects, have become observable in many different ways during the last few decades. We will first review the phenomenology and properties of neutron stars and black holes (stellar and supermassive) as derived from multiwavelength observatories. Recently much progress has been made by means of the new powerful X-ray observatories Chandra and XMM-Newton which provide a substantial increase in sensitivity as well as spectral and angular resolution compared with previous satellites like ROSAT and ASCA. We shall discuss in more detail two recent topics: (1) The attempts to use X-ray spectroscopy for measuring the radii of neutron stars which depend on the equation of state at supranuclear densities. Have quark stars been detected? (2) The diagnostics of the strong gravity regions around supermassive black holes using X-ray spectroscopy.

  19. Geometric inequalities for black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2013-01-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  20. Falling into a black hole

    OpenAIRE

    Mathur, Samir D.

    2007-01-01

    String theory tells us that quantum gravity has a dual description as a field theory (without gravity). We use the field theory dual to ask what happens to an object as it falls into the simplest black hole: the 2-charge extremal hole. In the field theory description the wavefunction of a particle is spread over a large number of `loops', and the particle has a well-defined position in space only if it has the same `position' on each loop. For the infalling particle we find one definition of ...

  1. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Ahn, Doyeol

    2007-01-01

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  2. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  3. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    Science.gov (United States)

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  4. Time dependent black holes and scalar hair

    International Nuclear Information System (INIS)

    Chadburn, Sarah; Gregory, Ruth

    2014-01-01

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  5. Black holes a very short introduction

    CERN Document Server

    Blundell, Katherine

    2015-01-01

    Black holes are a constant source of fascination to many due to their mysterious nature. Black Holes: A Very Short Introduction addresses a variety of questions, including what a black hole actually is, how they are characterized and discovered, and what would happen if you came too close to one. It explains how black holes form and grow—by stealing material that belongs to stars—as well as how many there may be in the Universe. It also explores the large black holes found in the centres of galaxies, and how black holes power quasars and lie behind other spectacular phenomena in the cosmos.

  6. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  7. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  8. Interior structure of rotating black holes. III. Charged black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.

    2011-01-01

    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.

  9. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  10. Exploring Solvent Shape and Function Using - and Isomer-Selective Vibrational Spectroscopy

    Science.gov (United States)

    Johnson, Mark

    2010-06-01

    We illustrate the new types of information than can be obtained through isomer-selective ``hole-burning'' spectroscopy carried out in the vibrational manifolds of Ar-tagged cluster ions. Three examples of increasing complexity will be presented where the changes in a solute ion are correlated with different morphologies of a surrounding solvent cage. In the first, we discuss the weak coupling limit where different hydration morphologies lead to small distortions of a covalent ion. We then introduce the more interesting case of the hydrated electron, where different shapes of the water network lead to dramatic changes in the extent of delocalization in the diffuse excess electron cloud. We then turn to the most complex case involving hydration of the nitrosonium ion, where different arrangements of the same number of water molecules span the range in behavior from simple solvation to actively causing a chemical reaction. The latter results are particularly interesting as they provide a microscopic, molecular-level picture of the ``solvent coordinate'' commonly used to describe solvent mediated processes.

  11. Chemical information from Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Madden, H.H.

    1981-01-01

    The nature of chemical information in Auger electron spectroscopy (AES) data is reviewed with special emphasis on data from solid surface systems. Two strategies are most frequently used to extract this information: (i) measuring and analyzing energy (chemical) shifts in Auger peaks; and (ii) making use of the shapes of Auger signals to determine the chemical environment at the site of the initial core hole. Chemical shift data are primarily illustrated by highlighting the interaction of oxygen with solids; and analyses of these data based on core-level binding-energy shifts, relaxation, and hole--hole interactions are outlined and discussed. Auger transitions that involve valence electrons are usually those for which lineshapes are taken as indications of the local chemistry at the initial core-hole site. Attempts at extracting valence band density-of-states information from lineshapes are proving successful and this approach to the surface chemical information in AES is illustrated with the aid of examples dealing with the interaction of silicon with hydrogen and with oxygen. The use of the AES lineshapes simply as ''fingerprints'' of the core-hole-site chemistry is examined and illustrated by examples which include studies of silicon nitride properties, of solid surface properties related to catalytic reactions, and of passive films on iron. Auger decay activated desorption processes are briefly examined and found to promise new and unique chemical information when combined with conventional AES. Some gas phase AES studies are also briefly reviewed

  12. Terahertz-dependent identification of simulated hole shapes in oil-gas reservoirs

    Science.gov (United States)

    Bao, Ri-Ma; Zhan, Hong-Lei; Miao, Xin-Yang; Zhao, Kun; Feng, Cheng-Jing; Dong, Chen; Li, Yi-Zhang; Xiao, Li-Zhi

    2016-10-01

    Detecting holes in oil-gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil-gas reservoirs by adopting terahertz time-domain spectroscopy (THz-TDS). We evaluate the THz absorption responses of punched silicon (Si) wafers having micro-holes with sizes of 20 μm-500 μm. Principal component analysis (PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil-gas reservoirs. Project supported by the National Natural Science Foundation of China (Grant No. 61405259), the National Basic Research Program of China (Grant No. 2014CB744302), and the Specially Founded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005).

  13. Black Holes: A Selected Bibliography.

    Science.gov (United States)

    Fraknoi, Andrew

    1991-01-01

    Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…

  14. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    are humanity's high-technology windows onto the universe. For reasons that will ... instrument ever built; and it was the first direct ... gravity will drive it to collapse into a black hole. Indeed, in 2007, ... Given their large X-ray power, it has been ...

  15. Dynamics of Coronal Hole Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F. [Universities Space Research Association, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-03-10

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  16. Black holes in brane worlds

    Indian Academy of Sciences (India)

    Abstract. A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.

  17. From Pinholes to Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  18. Paths toward understanding black holes

    NARCIS (Netherlands)

    Mayerson, D.R.

    2015-01-01

    This work can be summarized as trying to understand aspects of black holes, gravity, and geometry, in the context of supergravity and string theory in high-energy theoretical physics. The two parts of this thesis have been written with entirely different audiences in mind. The first part consists of

  19. Black holes and trapped points

    International Nuclear Information System (INIS)

    Krolak, A.

    1981-01-01

    Black holes are defined and their properties investigated without use of any global causality restriction. Also the boundary at infinity of space-time is not needed. When the causal conditions are brought in, the equivalence with the usual approach is established. (author)

  20. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  1. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  2. Burns

    Science.gov (United States)

    ... regularly. Teach children about fire safety and the danger of matches and fireworks. Keep children from climbing ... injuries of the lungs. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: ...

  3. Burns

    Science.gov (United States)

    ... putting a child in the bathtub. Cover unused electric outlets with safety caps, and replace damaged, frayed or brittle electrical cords. Keep fire extinguishers on every floor of your house, especially in the kitchen, and know how to use them. Do not ...

  4. Training and burn care in rural India

    Directory of Open Access Journals (Sweden)

    Chamania Shobha

    2010-10-01

    Full Text Available Burn care is a huge challenge in India, having the highest female mortality globally due to flame burns. Burns can happen anywhere, but are more common in the rural region, affecting the poor. Most common cause is flame burns, the culprit being kerosene and flammable flowing garments worn by the women. The infrastructure of healthcare network is good but there is a severe resource crunch. In order to bring a positive change, there will have to be more trained personnel willing to work in the rural areas. Strategies for prevention and training of burn team are discussed along with suggestions on making the career package attractive and satisfying. This will positively translate into improved outcomes in the burns managed in the rural region and quick transfer to appropriate facility for those requiring specialised attention.

  5. Childhood burns in south eastern Nigeria.

    Science.gov (United States)

    Archibong, A E; Antia, U E; Udosen, J

    1997-06-01

    In a ten year retrospective study of burns in children in University of Calabar Teaching Hospital (UCTH), Calabar, the main causes were hot water, hot soup or oil (56.6%) involving children mostly in the one to three year age group. The relative safety of the home environment seen in other forms of paediatric trauma is not observed in burns in children. A changing pattern of burns in children has emerged within the region with naked flames/bush fire coming second and affecting 22.7% of the children. Chemical burns hitherto a rare occurrence is now frequent because of the storage of caustic soda and acids in living rooms by soap making parents. Burns affecting the perineum, axilla and buttocks are difficult to keep clean and frequently lead to infections, with associated increased morbidity. Causes of childhood burns are largely preventable requiring active social/medical education and public enlightenment campaigns on the various methods of prevention.

  6. Maternal burn-out: an exploratory study.

    Science.gov (United States)

    Séjourné, N; Sanchez-Rodriguez, R; Leboullenger, A; Callahan, S

    2018-02-21

    Maternal burn-out is a psychological, emotional and physiological condition resulting from the accumulation of various stressors characterised by a moderate but also a chronic and repetitive dimension. Little research has focused on this syndrome. The current study aims to assess maternal burn-out rate and to identify factors associated with this state of exhaustion. 263 French mothers aged between 20 and 49 years answered five scales quantifying maternal burn-out, perceived social support, parental stress, depression and anxiety symptoms and history of postnatal depression. About 20% of mothers were affected by maternal burn-out. The main factors related to maternal burn-out were having a child perceived as difficult, history of postnatal depression, anxiety, satisfaction of a balance between professional and personal life and parental stress. This research shows the need for further work on maternal burn-out to better understand and prevent this syndrome.

  7. Entropy of black holes with multiple horizons

    Directory of Open Access Journals (Sweden)

    Yun He

    2018-05-01

    Full Text Available We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and “quintessence horizon” for the black holes surrounded by quintessence. Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  8. Black hole entropy, curved space and monsters

    International Nuclear Information System (INIS)

    Hsu, Stephen D.H.; Reeb, David

    2008-01-01

    We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than the area A of a black hole of equal mass. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S 3/4 . This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states

  9. Entropy of black holes with multiple horizons

    Science.gov (United States)

    He, Yun; Ma, Meng-Sen; Zhao, Ren

    2018-05-01

    We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  10. Many-electron effect in the resonant Auger electron spectroscopy spectra of adsorbates

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that a resonantly excited core hole state in a chemisorbed molecule such as CO/Ni, CO/Pd, and CO/Pt relaxes to a fully relaxed one, i.e., the ionized core hole state of the smallest binding energy observed by photoelectron spectroscopy, before the core hole decays so that the resonant Auger electron spectroscopy (RAES) spectrum shows the normal Auger decay spectrum. It is shown by a many-body theory that the Auger peaks on the higher kinetic energy (K.E.) side in the RAES or AES spectrum, i.e., so called back-bonding peaks, are the two-hole states consisting of a valence hole and a hole in the adsorbate-substrate hybrid states below the substrate Fermi level. The latter hole is the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the back-bonding peak energy and the single valence-hole energy provides an important information about the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the RAES spectrum measured at the resonance energy and the AES spectrum measured at far above the ionization limit shows the competition between relaxation and decay of shakeup satellites such as the charge transfer (CT) shakeup. The relaxation rate of the CT shakeup state can be determined by Auger-photoelectron coincidence spectroscopy (APECS)

  11. Explosive hydrogen burning in novae

    International Nuclear Information System (INIS)

    Wiescher, M.; Goerres, J.; Thielemann, F.K.; Ritter, H.

    1986-01-01

    Recent observations (nova CrA 81 and Aql 82) reported large enhancements of element abundances beyond CNO nuclei in nova ejecta, which still wait for a clear theoretical explanation. Attempts to interprete these findings include scenarios like nova events on a O-Ne-Mg white dwarf or nuclear processing which enables the transfer of CNO material to heavier nuclei. In the present study we included all available nuclear information on proton-rich unstable nuclei, to update thermo-nuclear reaction rates in explosive hydrogen burning. They are applied in a systematic analysis of explosive hydrogen burning for a variety of temperature conditions, appropriate to nova explosions. We find that (a) for temperatures T>2 10 8 K, pre-existing material in Ne, Al, or Mg can be transferred to heavier nuclei following the flow pattern of a r(apid) p(roton-capture) process (b) for T> or approx.3.5 10 8 K CNO matter can be processed to heavier nuclei (in accordance with previous findings). On the basis of these results it seems unlikely that nova Aql 82 (which shows strong carbon and oxygen enrichment together with heavier elements) can be explained by a nova event on a bare O-Ne-Mg white dwarf but is rather a result of burning with T> or approx.3.5 10 8 K. An application to existing nova models shows a reduced 26 Al production, when compared to earlier predictions. Both conclusions, however, have to be verified by complete nova calculations which include the improved nuclear physics input, presented here. (orig.)

  12. Vitamin E Supplementation in Burn Patients

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-12-1-0429 TITLE: Vitamin E Supplementation in Burn Patients PRINCIPAL INVESTIGATOR: Perenlei Enkhbaatar, MD., PhD...NOTES 14. ABSTRACT Our recent findings demonstrate that burn injury significantly depleted stores of vitamin E in adipose tissue of children by nearly...oxidative stress. The objectives of our proposal were to a) attenuate alpha-tocopherol depletion in burn patients by vitamin E supplementation, b) to

  13. In-Situ Burn Gaps Analysis

    Science.gov (United States)

    2015-02-01

    This Report) UNCLAS//Public 20. Security Class (This Page) UNCLAS//Public 21. No of Pages 76 22. Price UNCLAS//Public | CG-926 RDC | Merrick...surveillance and spotting techniques/equipment to keep responders in the heaviest oil concentrations where their operation to skim , burn, or disperse...Offshore Oil Skim And Burn System For Use With Vessels Of Opportunity. UNCLAS//Public | CG-926 RDC | Merrick, et al. Public | June 2015 In-Situ Burn Gaps

  14. Fire-fighting burning oil wells

    International Nuclear Information System (INIS)

    Newbury, Herbert; Risk, Stewart.

    1993-01-01

    A method of extinguishing burning oil wells is presented which involves dispensing liquid nitrogen to the burning site to prevent or inhibit oxygen from fuelling the flames. To carry out the method a remotely operated vehicle is described which is provided with a source of liquid nitrogen and an articulated deployment boom capable of supplying the liquid nitrogen to the site of a burning oil well. (Author)

  15. Comparison of tokamak burn cycle options

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1985-01-01

    Experimental confirmation of noninductive current drive has spawned a number of suggestions as to how this technique can be used to extend the fusion burn period and improve the reactor prospects of tokamaks. Several distinct burn cycles, which employ various combinations of Ohmic and noninductive current generation, are possible, and we will study their relative costs and benefits for both a commerical reactor as well as an INTOR-class device. We begin with a review of the burn cycle options

  16. Charge Fluctuations of an Uncharged Black Hole

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...

  17. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  18. Will black holes eventually engulf the Universe?

    International Nuclear Information System (INIS)

    Martin-Moruno, Prado; Jimenez Madrid, Jose A.; Gonzalez-Diaz, Pedro F.

    2006-01-01

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models

  19. Event horizon image within black hole shadow

    OpenAIRE

    Dokuchaev, V. I.; Nazarova, N. O.

    2018-01-01

    The external border of the black hole shadow is washed out by radiation from matter plunging into black hole and approaching the event horizon. This effect will crucially influence the results of future observations by the Event Horizon Telescope. We show that gravitational lensing of the luminous matter plunging into black hole provides the event horizon visualization within black hole shadow. The lensed image of the event horizon is formed by the last highly red-shifted photons emitted by t...

  20. Electromagnetic ``black holes'' in hyperbolic metamaterials

    Science.gov (United States)

    Smolyaninov, Igor

    2013-03-01

    We demonstrate that spatial variations of the dielectric tensor components in a hyperbolic metamaterial may lead to formation of electromagnetic ``black holes'' inside this metamaterial. Similar to real black holes, horizon area of the electromagnetic ``black holes'' is quantized in units of the effective ``Planck scale'' squared. Potential experimental realizations of such electromagnetic ``black holes'' will be considered. For example, this situation may be realized in a hyperbolic metamaterial in which the dielectric component exhibits critical opalescence.