WorldWideScience

Sample records for holden model dielectric

  1. Yes, Holden Should Read These Books.

    Science.gov (United States)

    Lisman, C. David

    1989-01-01

    Counters Donald Barr's assertion that works such as J. D. Salinger's "Catcher in the Rye" and William Golding's "Lord of the Flies" are unfit reading material for adolescents ("Should Holden Caufield Read These Books?""New York Times Book Review," May 4, 1986). Shows how these works address adolescents'…

  2. Robert L. Oprisko’s Honor: A Phenomenology and Holden Caulfield

    Directory of Open Access Journals (Sweden)

    Eliza Quincey

    2015-07-01

    Full Text Available Robert L. Oprisko’s book, “Honor: A Phenomenology” challenges ones of the most obvious social norms in contemporary society. The concept of honor is one that the “generic” as Sergei Prozorov would say, simply cannot comprehend, nor even make efforts to define. Though fluently used in infamous works such as “The Iliad”, honor has yet to be so explicitly dissected until now. Dr. Oprisko’s book takes a promiscuous and brutally honest approach to “Honor” en generale as well as the many facets associated with such. Similar to fine cuisine and wine, there are many literary accompaniments that serve as wonderful pairings to broaden the kaleidoscope perspectives presented in the book. The contested novel by J.D. Salinger, “The Catcher in the Rye”, although by no means consists of any political or metaphysical theory, contains a stark personification of what is actively presented in every chapter of Dr. Oprisko’s book. Holden Caufield serves as a terrific litmus test for the concepts defined in Oprisko’s work. Holden is by no means a likeable character in the literary world, but however he is raw enough to be able to internalize and beholden things like, “honorableness”, “dignity”, and most importantly for Holden, “face”. Though to the naked eye and untrained mind these “things” which Holden can in fact internalize may seem fairly simple; it challenges the reader to humble oneself and accept that which is the raw. There is no space for semantics and lies in Oprisko’s work. In fact it is so shockingly explicit, one may find themselves utterly offended. Holden Caufield offended readers for years after Sallinger brought him to life over the span of 200 or more so pages, so much that the book was condemned in certain places. Robert L. Oprisko’s, “Honor: A Phenomenology”, in my utmost opinion, contains this same potential. By critically engaging in Oprisko’s spar with “honor”, one may find themselves

  3. The color dielectric model of QCD

    International Nuclear Information System (INIS)

    Pirner, H.-J.; Massachusetts Inst. of Tech., Cambridge, MA; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    This paper demonstrates the emergence of valence gluons and their bound states, the glueballs from perturbative quantum chromodynamics (QCD). We discuss the phenomenological constraints and theoretical method needed to generate effective glueballs actions. We show how color dielectric confinement works naively and in the lattice model of color dielectrics. This lattice model is derived for SU(2) color by a blockspinning Monte Carlo renormalization group procedure. We interpret the resulting long-distance as a strongly interacting lattice string theory where the valence link gluon fields randomize in the color dielectric background which mimics the integrated out high-frequency gluon modes in the vacuum. The fluctuations of the color dielectric fields are related to color neutral glueballs modes. We give the extension of this color dielectric SU(2) theory for general SU(N) with quarks and address the problems associated with combining confinement and chiral symmetry breaking. Finally we prove the efficiency of the effective theory in applications to the heavy quark system, the the baryon, to the nucleon-nucleon interaction, to baryon models and the gluon plasma transition. In all those cases the behavior of the higher energy gluons can be monitored via the color dielectric fields. An increase in the energy density from ''deconfining'' the higher frequency modes inside the flux tube or in thermally excited matter shows up as an increase in the value of the color dielectric field and its associated energy density. (Author)

  4. Confinement in the color dielectric model

    International Nuclear Information System (INIS)

    Pirner, H.J.

    1990-01-01

    The paper consists of several parts. In Section 2, I give an introduction to the main physics of lattice gauge theory. Section 3 gives an outline of the colour dielectric model and first numerical results on the effective action after one block-spinning step. Section 4 reviews some new work on the generalization of the colour dielectric model to SU3 colour . (orig./HSI)

  5. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  6. Tests of dielectric model descriptions of chemical charge displacements in water

    International Nuclear Information System (INIS)

    Tawa, G.J.; Pratt, L.R.

    1994-01-01

    A dielectric model of electrostatic solvation is applied to describe potentials of mean force in water along reaction paths for (a) pairing of sodium and/or chloride ions; (b) the symmetric S N 2 exchange of chloride in methylchloride; (c) nucleophilic attack of formaldehyde by hydroxide anion. For these cases simulation and XRISM results are available for comparison. The accuracy of model predictions varies from spectacular to poor. It is argued that: (a) dielectric models are physical models, even though simplistic and empirical; (b) their successes suggest that second-order perturbation theory is a physically sound description of free energies of electrostatic solvation; and (c) the most serious deficiency of the dielectric models lies in the definition of cavity volumes. Second-order perturbation theory should therefore be used to refine the dielectric models. These dielectric models make no attempt to assess the role of packing effects but for salvation of classical electrostatic interactions the dielectric models appear to perform as well as the more detailed XRISM theory

  7. Microwave measurement and modeling of the dielectric properties of vegetation

    Science.gov (United States)

    Shrestha, Bijay Lal

    Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves

  8. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues

    International Nuclear Information System (INIS)

    Gabriel, S.; Lau, R.W.; Gabriel, C.

    1996-01-01

    A parametric model was developed to describe the variation of dielectric properties of tissues as a function of frequency. The experimental spectrum from 10 Hz to 100 GHz was modelled with four dispersion regions. The development of the model was based on recently acquired data, complemented by data surveyed from the literature. The purpose is to enable the prediction of dielectric data that are in line with those contained in the vast body of literature on the subject. The analysis was carried out on a Microsoft Excel spreadsheet. Parameters are given for 17 tissue types. (author)

  9. Analytical Modeling of Triple-Metal Hetero-Dielectric DG SON TFET

    Science.gov (United States)

    Mahajan, Aman; Dash, Dinesh Kumar; Banerjee, Pritha; Sarkar, Subir Kumar

    2018-02-01

    In this paper, a 2-D analytical model of triple-metal hetero-dielectric DG TFET is presented by combining the concepts of triple material gate engineering and hetero-dielectric engineering. Three metals with different work functions are used as both front- and back gate electrodes to modulate the barrier at source/channel and channel/drain interface. In addition to this, front gate dielectric consists of high-K HfO2 at source end and low-K SiO2 at drain side, whereas back gate dielectric is replaced by air to further improve the ON current of the device. Surface potential and electric field of the proposed device are formulated solving 2-D Poisson's equation and Young's approximation. Based on this electric field expression, tunneling current is obtained by using Kane's model. Several device parameters are varied to examine the behavior of the proposed device. The analytical model is validated with TCAD simulation results for proving the accuracy of our proposed model.

  10. Simple liquid models with corrected dielectric constants

    Science.gov (United States)

    Fennell, Christopher J.; Li, Libo; Dill, Ken A.

    2012-01-01

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577

  11. Effective dielectric mixture model for characterization of diesel contaminated soil

    International Nuclear Information System (INIS)

    Al-Mattarneh, H.M.A.

    2007-01-01

    Human exposure to contaminated soil by diesel isomers can have serious health consequences like neurological diseases or cancer. The potential of dielectric measuring techniques for electromagnetic characterization of contaminated soils was investigated in this paper. The purpose of the research was to develop an empirical dielectric mixture model for soil hydrocarbon contamination application. The paper described the basic theory and elaborated in dielectric mixture theory. The analytical and empirical models were explained in simple algebraic formulas. The experimental study was then described with reference to materials, properties and experimental results. The results of the analytical models were also mathematically explained. The proposed semi-empirical model was also presented. According to the result of the electromagnetic properties of dry soil contaminated with diesel, the diesel presence had no significant effect on the electromagnetic properties of dry soil. It was concluded that diesel had no contribution to the soil electrical conductivity, which confirmed the nonconductive character of diesel. The results of diesel-contaminated soil at saturation condition indicated that both dielectric constant and loss factors of soil were decreased with increasing diesel content. 15 refs., 2 tabs., 9 figs

  12. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.

  13. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  14. Modeling short-pulse laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Sandkamm, Ditte Både; Haahr-Lillevang, Lasse

    2014-01-01

    A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rateequation model for the electronic excitation including collisional processes is presented. The model includes light attenuation...

  15. Color-dielectric model as an explanation of the Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Williams, A.G.; Thomas, A.W.

    1986-01-01

    We discuss the quantum chromodynamically motivated color-dielectric model originally proposed by Nielsen and Patkos and show, using some straightforward approximations, that it can lead to charge-symmetry breaking effects in nuclei. We then show, using a local density approximation and standard nuclear structure properties, that for suitable choices of parameters this color-dielectric model can explain the Nolen-Schiffer anomaly

  16. Mathematical Modeling of Electrical Conductivity of Dielectric with Dispersed Metallic Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are increasingly used for application in engineering as structural, thermal protection and functional materials, including dielectrics, because of a wide variety of properties. The relative dielectric constant and the dielectric loss tangent are basic functional characteristics of a composite used as a dielectric. The quantitative level of these characteristics is mainly affected by the properties of the composite matrix and inclusions as well as their shape and volume concentration. Metallic inclusions in a dielectric, which serves as a function of the composite matrix, expand electrical properties of the composite in particular increase its dielectric constant and dielectric loss tangent and thereby greatly expand its application field. Dielectric losses are defined by the imaginary component of the complex value of the relative dielectric constant of the dielectric. At a relatively low vibration frequency of electromagnetic field affecting the dielectric, this value is proportional to the electrical conductivity of the dielectric and inversely proportional to the frequency. In order to predict the expected value of the electric conductivity of the dielectric with metallic inclusions, a mathematical model that properly describes the structure of the composite and the electrical interaction of the matrix and inclusions is required.In the paper, a mathematical model of the electrical interaction of the representative element of the composite structure and a homogeneous isotropic medium with electrical conductivity, which is desired characteristics of the composite, is constructed. Globular shape of the metallic inclusions as an average statistical form of dispersed inclusions with a comparable size in all directions is adopted. The inclusion is covered with a globular layer of electrical insulation to avoid percolation with increasing volume concentration of inclusions. Outer globular layer of representative structure of composite

  17. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  18. Gluonic effects in color dielectric model. Pt. 2

    International Nuclear Information System (INIS)

    Aoki, N.; Hyuga, H.

    1990-01-01

    We study generalized versions of the Nielsen and Patkos color dielectric model with an effective quark mass m q (χ=m q /χ τ and a dielectric function Κ(χ)=χ β . Gluonic effects are studied in this model with both perturbative and self-consistent calculations. In the case of τ=0.5 and β=2, it is shown that the perturbative gluonic effects are too strong to obtain a reasonable description of N and Δ. The choice of τ=2 and β=4 is shown to give a reasonable agreement of the masses of N and Δ with their observed ones. Taking into account the results in our previous paper, it is therefore suggested that the choice of τ:β=1:2 is superior to that of 1:4, the latter of which corresponds of the Nielsen and Patkos model. (orig.)

  19. Numerical studies on soliton propagation in the dielectric media by the nonlinear Lorentz computational model

    International Nuclear Information System (INIS)

    Abe, H.; Okuda, H.

    1994-06-01

    Soliton propagation in the dielectric media has been simulated by using the nonlinear Lorentz computational model, which was recently developed to study the propagation of electromagnetic waves in a linear and a nonlinear dielectric. The model is constructed by combining a microscopic model used in the semi-classical approximation for dielectric media and the particle model developed for the plasma simulations. The carrier wave frequency is retained in the simulation so that not only the envelope of the soliton but also its phase can be followed in time. It is shown that the model may be useful for studying pulse propagation in the dielectric media

  20. Modeling the dielectric logging tool at high frequency

    International Nuclear Information System (INIS)

    Chew, W.C.

    1987-01-01

    The high frequency dielectric logging tool has been used widely in electromagnetic well logging, because by measuring the dielectric constant at high frequencies (1 GHz), the water saturation of rocks could be known without measuring the water salinity in the rocks. As such, it could be used to delineate fresh water bearing zones, as the dielectric constant of fresh water is much higher than that of oil while they may have the same resistivity. The authors present a computer model, though electromagnetic field analysis, the response of such a measurement tool in a well logging environment. As the measurement is performed at high frequency, usually with small separation between the transmitter and receivers, some small geological features could be measured by such a tool. They use the computer model to study the behavior of such a tool across geological bed boundaries, and also across thin geological beds. Such a study could be very useful in understanding the limitation on the resolution of the tool. Furthermore, they could study the standoff effect and the depth of investigation of such a tool. This could delineate the range of usefulness of the measurement

  1. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  2. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  3. Numerical studies on the electromagnetic properties of the nonlinear Lorentz Computational model for the dielectric media

    International Nuclear Information System (INIS)

    Abe, H.; Okuda, H.

    1994-06-01

    We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media

  4. Colour dielectric model of the proton

    International Nuclear Information System (INIS)

    Jen, P.K.; Pradhan, T.

    1984-01-01

    A model of the proton with its constituent quarks bound in a colour polarizable medium with dielectric constant varying as (a/r - b 2 ) from a fixed centre, is presented. The Dirac equation modified by the colour polarization is solved and the analytic expression for the wavefunction of the quarks obtained shows that quarks with higher energy lie closer to the fixed centre. The energy spectrum is equispaced without any continuum. A semiclassical approximation scheme yields closed orbits for quarks which have smaller size for higher energies and no orbits with size bigger than a certain maximum, thereby rendering the quarks permanently confined. The wavefunctions of the three quarks constituting the proton are used to calculate physical parameters of the proton such as its mass, charge radius and weak coupling constant which with suitable choice of the constants a and b appearing in the dielectric constant agree fairly well with experimental results. (author)

  5. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  6. Color Dielectric Models from the Lattice SU(N)c Gauge Theory

    International Nuclear Information System (INIS)

    Arodz, H.; Pirner, H.J.

    1999-01-01

    The idea of coarse-grained gluon field is discussed. We recall motivation for introducing such a field. Next, we outline the approach to small momenta limit of lattice coarse-grained gluon field presented in our paper hep-ph/9803392. This limit points to color dielectric type models with a number of scalar and tensor fields instead of single scalar dielectric field. (author)

  7. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    Science.gov (United States)

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  8. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  9. Statistical Modelling of the Soil Dielectric Constant

    Science.gov (United States)

    Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy

    2010-05-01

    The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of

  10. Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics.

    Science.gov (United States)

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2016-09-20

    The dielectric response of a material is central to numerous processes spanning the fields of chemistry, materials science, biology, and physics. Despite this broad importance across these disciplines, describing the dielectric environment of a molecular system at the level of first-principles theory and computation remains a great challenge and is of importance to understand the behavior of existing systems as well as to guide the design and synthetic realization of new ones. Furthermore, with recent advances in molecular electronics, nanotechnology, and molecular biology, it has become necessary to predict the dielectric properties of molecular systems that are often difficult or impossible to measure experimentally. In these scenarios, it is would be highly desirable to be able to determine dielectric response through efficient, accurate, and chemically informative calculations. A good example of where theoretical modeling of dielectric response would be valuable is in the development of high-capacitance organic gate dielectrics for unconventional electronics such as those that could be fabricated by high-throughput printing techniques. Gate dielectrics are fundamental components of all transistor-based logic circuitry, and the combination high dielectric constant and nanoscopic thickness (i.e., high capacitance) is essential to achieving high switching speeds and low power consumption. Molecule-based dielectrics offer the promise of cheap, flexible, and mass producible electronics when used in conjunction with unconventional organic or inorganic semiconducting materials to fabricate organic field effect transistors (OFETs). The molecular dielectrics developed to date typically have limited dielectric response, which results in low capacitances, translating into poor performance of the resulting OFETs. Furthermore, the development of better performing dielectric materials has been hindered by the current highly empirical and labor-intensive pace of synthetic

  11. Mathematical Modeling of Dielectric Characteristics of the Metallic Band Inclusion Composite

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Among the desirable properties of functional materials used in various electrical and radio physical equipment and devices, dielectric characteristics, including relative permittivity (hereinafter, permittivity are of importance. The permittivity requirements can be met when a composite with a particular combination of its matrix characteristics and inclusions [1, 2, 3] is used as a functional material. The use of metallic inclusions extends a variation range of dielectric characteristics of the composite, and thereby enhances its application. The composite structure, form of inclusions, and their volume concentration has a significant impact on the permittivity.One of the composite structure embodiments is a dispersion system when in the dispersion medium (in this case | in the composite matrix a dispersed phase (inclusions with highly extended interface between them [4] is distributed. There can be various forms of dispersed inclusions. Band is one of the possible forms of inclusion when its dimensions in three orthogonal directions are significantly different among themselves. For such inclusion, a tri-axial ellipsoid can be taken as an acceptable geometric model to describe its form. This model can be used, in particular, to describe the form of nanostructured elements, which recently are considered as inclusions for advanced composites for various purposes [5].With raising volume concentration of metal inclusions in the dielectric matrix composite there is an increasing probability of direct contact between the inclusions resulting in continuous conductive cluster [3, 6]. In this paper, it is assumed that metal band inclusions are covered with a sufficiently thin layer of the electrically insulating material, eliminating the possibility of direct contact and precluding consideration of the so-called percolation effect [2, 7] in the entire interval of the expectedly changing volume concentration of electrically ellipsoidal inclusions. The

  12. Inverse grey-box model-based control of a dielectric elastomer actuator

    DEFF Research Database (Denmark)

    Jones, Richard William; Sarban, Rahimullah

    2012-01-01

    control performance across the operating range of the DE actuator, a gain scheduling term, which linearizes the operating characteristics of the tubular dielectric elastomer actuator, is developed and implemented in series with the IMC controller. The IMC-based approach is investigated for servo control......An accurate physical-based electromechanical model of a commercially available tubular dielectric elastomer (DE) actuator has been developed and validated. In this contribution, the use of the physical-based electromechanical model to formulate a model-based controller is examined. The choice...... of control scheme was dictated by the desire for transparency in both controller design and operation. The internal model control (IMC) approach was chosen. In this particular application, the inverse of the linearized form of the grey-box model is used to formulate the IMC controller. To ensure consistent...

  13. Modelling effective dielectric properties of materials containing diverse types of biological cells

    International Nuclear Information System (INIS)

    Huclova, Sonja; Froehlich, Juerg; Erni, Daniel

    2010-01-01

    An efficient and versatile numerical method for the generation of different realistically shaped biological cells is developed. This framework is used to calculate the dielectric spectra of materials containing specific types of biological cells. For the generation of the numerical models of the cells a flexible parametrization method based on the so-called superformula is applied including the option of obtaining non-axisymmetric shapes such as box-shaped cells and even shapes corresponding to echinocytes. The dielectric spectra of effective media containing various cell morphologies are calculated focusing on the dependence of the spectral features on the cell shape. The numerical method is validated by comparing a model of spherical inclusions at a low volume fraction with the analytical solution obtained by the Maxwell-Garnett mixing formula, resulting in good agreement. Our simulation data for different cell shapes suggest that around 1MHz the effective dielectric properties of different cell shapes at different volume fractions significantly deviate from the spherical case. The most pronounced change exhibits ε eff between 0.1 and 1 MHz with a deviation of up to 35% for a box-shaped cell and 15% for an echinocyte compared with the sphere at a volume fraction of 0.4. This hampers the unique interpretation of changes in cellular features measured by dielectric spectroscopy when simplified material models are used.

  14. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  15. Experimental and modelling investigations of a dielectric barrier discharge in low-pressure argon

    International Nuclear Information System (INIS)

    Wagenaars, E; Brandenburg, R; Brok, W J M; Bowden, M D; Wagner, H-E

    2006-01-01

    The discharge behaviour of a dielectric barrier discharge (DBD) in low-pressure argon gas was investigated by experiments and modelling. The electrical characteristics and light emission dynamics of the discharge were measured and compared with the results of a two-dimensional fluid model. Our investigations showed that the discharge consisted of a single, diffuse discharge per voltage half-cycle. The breakdown phase of the low-pressure DBD (LPDBD) was investigated to be similar to the ignition phase of a low-pressure glow discharge without dielectrics, described by Townsend breakdown theory. The stable discharge phase of the LPDBD also showed a plasma structure with features similar to those of a classical glow discharge. The presence of the dielectric in the discharge gap led to the discharge quenching and thus the decay of the plasma. Additionally, the argon metastable density was monitored by measuring light emission from nitrogen impurities. A metastable density of about 5 x 10 17 m -3 was present during the entire voltage cycle, with only a small (∼10%) increase during the discharge. Finally, a reduction of the applied voltage to the minimum required to sustain the discharge led to a further reduction of the role of the dielectric. The discharge was no longer quenched by the dielectrics only but also by a reduction of the applied voltage

  16. Modelling of space-charge accumulation process in dielectrics of MDS structures under irradiation

    International Nuclear Information System (INIS)

    Gurtov, V.A.; Nazarov, A.I.; Travkov, I.V.

    1990-01-01

    Results of numerical modelling of radiation-induced space charge (RISC) accumulation in MOS structure silicon dioxide are given. Diffusion-drift model which takes account of trap heterogeneous distribution within dielectric volume and channeling of carriers captured at traps represents basis for calculations. Main physical processes affecting RISC accumulation are picked out and character of capture filling in dielectric volume under stress in MOS structure shutter during irradiation on the basis of comparison of experimental results for different thickness oxides with calculation data are predicted

  17. Polish Adaptation of the Psychache Scale by Ronald Holden and Co-workers.

    Science.gov (United States)

    Chodkiewicz, Jan; Miniszewska, Joanna; Strzelczyk, Dorota; Gąsior, Krzysztof

    2017-04-30

    The conducted study was aimed at making a Polish adaptation of the Scale of Psychache by Ronald Holden and co-workers. The scale is a self-assessment method which comprises 13 statements and is designed to assess subjectively experienced psychological pain. 300 persons were examined - undergraduates and postgraduates of the University of Lodz and the Technical University of Lodz. The group of the study participants consisted of 185 women and 115 men. Moreover, there were examined 150 alcohol addicted men, 50 co-addicted women and 50 major depressive episode (MDE) patients. The Polish version of the Scale is a reliable and valid tool. The exploratory and confirmatory factor analysis has proved the existence of one factor. The internal consistency, assessed on the basis of Cronbach's alpha, equalled 0.93. The method displays positive and statistically significant relationships to levels of depression, hopelessness, anxiety, anhedonia and negative relations to levels of optimism, life satisfaction, and positive orientation. Alcohol addicted men with presently diagnosed suicidal thoughts were characterised by a significantly higher level of psychological pain as compared to alcoholics without such thoughts. A higher level of psychache was also reported in people with depression who have a history of attempted suicide compared with those who have not attempted suicide. The effect of the conducted adaptation works on the Psychache Scale speaks for recommending the method for scientific research and use in therapeutic practice.

  18. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  19. Simple model of electron beam initiated dielectric breakdown

    International Nuclear Information System (INIS)

    Beers, B.L.; Daniell, R.E.; Delmer, T.N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical

  20. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  1. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  2. Static dielectric constant of water within a bilayer using recent water models: a molecular dynamics study

    Science.gov (United States)

    Meneses-Juárez, Efrain; Rivas-Silva, Juan Francisco; González-Melchor, Minerva

    2018-05-01

    The water confined within a surfactant bilayer is studied using different water models via molecular dynamics simulations. We considered four representative rigid models of water: the SPC/E and the TIP4P/2005, which are commonly used in numerical calculations and the more recent TIP4Q and SPC/ε models, developed to reproduce the dielectric behaviour of pure water. The static dielectric constant of the confined water was analyzed as a function of the temperature for the four models. In all cases it decreases as the temperature increases. Additionally, the static dielectric constant of the bilayer-water system was estimated through its expression in terms of the fluctuations in the total dipole moment, usually applied for isotropic systems. The estimated dielectric was compared with the available experimental data. We found that the TIP4Q and the SPC/ε produce closer values to the experimental data than the other models, particularly at room temperature. It was found that the probability of finding the sodium ion close to the head of the surfactant decreases as the temperature increases, thus the head of the surfactant is more exposed to the interaction with water when the temperature is higher.

  3. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  4. Analysis of terahertz dielectric properties of pork tissue

    Science.gov (United States)

    Huang, Yuqing; Xie, Qiaoling; Sun, Ping

    2017-10-01

    Seeing that about 70% component of fresh biological tissues is water, many scientists try to use water models to describe the dielectric properties of biological tissues. The classical water dielectric models are Debye model, Double Debye model and Cole-Cole model. This work aims to determine a suitable model by comparing three models above with experimental data. These models are applied to fresh pork tissue. By means of least square method, the parameters of different models are fitted with the experimental data. Comparing different models on both dielectric function, the Cole-Cole model is verified the best to describe the experiments of pork tissue. The correction factor α of the Cole-Cole model is an important modification for biological tissues. So Cole-Cole model is supposed to be a priority selection to describe the dielectric properties for biological tissues in the terahertz range.

  5. A reliability model for interlayer dielectric cracking during fast thermal cycling

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.; Ray, Gary W.; Smy, Tom; Ohta, Tomohiro; Tsujimura, Manabu

    2003-01-01

    Interlayer dielectric (ILD) cracking can result in short circuits of multilevel interconnects. This paper presents a reliability model for ILD cracking induced by fast thermal cycling (FTC) stress. FTC tests have been performed under different temperature ranges (∆T) and minimum temperatures (Tmin).

  6. One-equation modeling and validation of dielectric barrier discharge plasma actuator thrust

    International Nuclear Information System (INIS)

    Yoon, Jae-San; Han, Jae-Hung

    2014-01-01

    Dielectric barrier discharge (DBD) plasma actuators with an asymmetric electrode configuration can generate a wall-bounded jet without mechanical moving parts, which require considerable modifications of existing aeronautical objects and which incur high maintenance costs. Despite this potential, one factor preventing the wider application of such actuators is the lack of a reliable actuator model. It is difficult to develop such a model because calculating the ion-electric field and fluid interaction consume a high amount calculation effort during the numerical analysis. Thus, the authors proposed a semi-empirical model which predicted the thrust of plasma actuators with a simple equation. It gave a numeric thrust value, and we implemented the value on a computational fluid dynamics (CFD) solver to describe the two-dimensional flow field induced by the actuator. However, the model had a narrow validation range, depending on the empirical formula, and it did not fully consider environment variables. This study presents an improved model by replacing the empirical formulae in the previous model with physical equations that take into account physical phenomena and environmental variables. During this process, additional operation parameters, such as pressure, temperature and ac waveforms, are newly taken to predict the thrust performance of the actuators with a wider range of existing parameters, the thickness of the dielectric barrier, the exposed electrode, the dielectric constant, the ac frequency and the voltage amplitude. Thrust prediction curves from the model are compared to those of earlier experimental results, showing that the average error is less than 5% for more than one hundred instances of data. As in the earlier work, the predicted thrust value is implemented on a CFD solver, and two-dimensional wall-jet velocity profiles induced by the actuator are compared to the previous experimental results. (paper)

  7. The photo-dielectric effect in bio-systems and models

    International Nuclear Information System (INIS)

    Anitoff, Oleg Eric

    1983-01-01

    The first part of this thesis describes the photo-dielectric spectrometer, an original measurement set-up designed in order to enable the kinetic study of dielectric (or magnetic) relaxation in laser excited systems. In the second part, this new technique is applied to three systems: 1) thylakoid (the photo-electrochemically active part of the chloroplasts of green plants) and protochlorophyllide-protein complex: synchronous photo-dielectric effect, measure of the mean polarizability of laser excited states and of their degree of photonicity. 2) phases with electron traps: vitrified thylakoid (77K); chloro-aluminium chlorophthalocyanine: delayed photo-dielectric effect (RITDC) with memory effect in the former case. This effect results from the L-Fault stabilization of inverted hydrogenoid states e - L n H + , this hypothesis being further confirmed by the observation of the chemical activity of γ irradiated phosphate glasses (phosphorylative activity). These later systems can also be phonon activated at pH 8, thus opening the way to the quantitative analysis of the electro-vibronic interaction in chromophore-protein complexes. 3) Inverted micelles of Aerosol O.T.: thermodynamical and kinetic analysis of the structure of bounded water aggregates through photo-thermo-dielectric effect. (author) [fr

  8. Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells

    Science.gov (United States)

    Pedesseau, L.; Kepenekian, M.; Sapori, D.; Huang, Y.; Rolland, A.; Beck, A.; Cornet, C.; Durand, O.; Wang, S.; Katan, C.; Even, J.

    2016-03-01

    A method based on DFT is used to obtained dielectric profiles. The high frequency Ɛ∞(z) and the static Ɛs(z) dielectric profiles are compared for 3D, 2D-3D and 2D Hybrid Organic Perovskites (HOP). A dielectric confinement is observed for the 2D materials between the high dielectric constant of the inorganic part and the low dielectric constant of the organic part. The effect of the ionic contribution on the dielectric constant is also shown. The quantum and dielectric confinements of 3D HOP nanoplatelets are then reported. Finally, a numerical simulation based on the SILVACO code of a HOP based solar cell is proposed for various permittivity of MAPbI3.

  9. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric

    International Nuclear Information System (INIS)

    Liu Chaowen; Xu Jingping; Liu Lu; Lu Hanhan; Huang Yuan

    2016-01-01

    A threshold-voltage model for a stacked high-k gate dielectric GaAs MOSFET is established by solving a two-dimensional Poisson's equation in channel and considering the short-channel, DIBL and quantum effects. The simulated results are in good agreement with the Silvaco TCAD data, confirming the correctness and validity of the model. Using the model, impacts of structural and physical parameters of the stack high-k gate dielectric on the threshold-voltage shift and the temperature characteristics of the threshold voltage are investigated. The results show that the stacked gate dielectric structure can effectively suppress the fringing-field and DIBL effects and improve the threshold and temperature characteristics, and on the other hand, the influence of temperature on the threshold voltage is overestimated if the quantum effect is ignored. (paper)

  10. Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism.

    Science.gov (United States)

    Bryan, Sean A; Montroy, Thomas E; Ruhl, John E

    2010-11-10

    We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.

  11. A model for the scattering of high-frequency electromagnetic fields from dielectrics exhibiting thermally-activated electrical losses

    Science.gov (United States)

    Hann, Raiford E.

    1991-01-01

    An equivalent circuit model (ECM) approach is used to predict the scattering behavior of temperature-activated, electrically lossy dielectric layers. The total electrical response of the dielectric (relaxation + conductive) is given by the ECM and used in combination with transmission line theory to compute reflectance spectra for a Dallenbach layer configuration. The effects of thermally-activated relaxation processes on the scattering properties is discussed. Also, the effect of relaxation and conduction activation energy on the electrical properties of the dielectric is described.

  12. Application of Jonscher model for the characterization of the dielectric permittivity of concrete

    International Nuclear Information System (INIS)

    Bourdi, Taoufik; Rhazi, Jamal Eddine; Ballivy, Gerard; Boone, Francois

    2008-01-01

    The study of electromagnetic waves propagating in concrete is a complex problem. Understanding the phenomenon of interaction between the wave and the matter is related to the knowledge of the variation process of concrete's electromagnetic properties in terms of its physical characteristics. In particular, dielectric permittivity of concrete is affected by moisture content and change in the frequency of the electromagnetic field applied. In this study, we apply the three-parameter Jonscher model (n, χ r , ε ∞ ) to show the dispersive aspect of the concrete. The validation of this model is carried out through tests on mortar and concrete at the laboratory, on the one hand, and by comparison of the results with data obtained previously by other researchers, on the other hand. The Jonscher model matches very well the experimental measurements of the concrete. At different moisture levels, heterogeneities and porosities, the results obtained are very good. This shows that this model is very effective and very suitable to represent the dielectric properties of concrete.

  13. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric

    Science.gov (United States)

    Chaowen, Liu; Jingping, Xu; Lu, Liu; Hanhan, Lu; Yuan, Huang

    2016-02-01

    A threshold-voltage model for a stacked high-k gate dielectric GaAs MOSFET is established by solving a two-dimensional Poisson's equation in channel and considering the short-channel, DIBL and quantum effects. The simulated results are in good agreement with the Silvaco TCAD data, confirming the correctness and validity of the model. Using the model, impacts of structural and physical parameters of the stack high-k gate dielectric on the threshold-voltage shift and the temperature characteristics of the threshold voltage are investigated. The results show that the stacked gate dielectric structure can effectively suppress the fringing-field and DIBL effects and improve the threshold and temperature characteristics, and on the other hand, the influence of temperature on the threshold voltage is overestimated if the quantum effect is ignored. Project supported by the National Natural Science Foundation of China (No. 61176100).

  14. Dielectric spectroscopy platform to measure MCF10A epithelial cell aggregation as a model for spheroidal cell cluster analysis.

    Science.gov (United States)

    Heileman, K L; Tabrizian, M

    2017-05-02

    3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.

  15. Electrowetting on dielectric: experimental and model study of oil conductivity on rupture voltage

    Science.gov (United States)

    Zhao, Qing; Tang, Biao; Dong, Baoqin; Li, Hui; Zhou, Rui; Guo, Yuanyuan; Dou, Yingying; Deng, Yong; Groenewold, Jan; Henzen, Alexander Victor; Zhou, Guofu

    2018-05-01

    Electrowetting on dielectric devices uses a conducting (water) and insulating (oil) liquid phase in conjunction on a dielectric layer. In these devices, the wetting properties of the liquid phases can be manipulated by applying an electric field. The electric field can rupture the initially flat oil film and promotes further dewetting of the oil. Here, we investigate a problem in the operation of electrowetting on dielectric caused by a finite conductivity of the oil. In particular, we find that the voltage at which the oil film ruptures is sensitive to the application of relatively low DC voltages prior to switching. Here, we systematically investigate this dependence using controlled driving schemes. The mechanism behind these history effects point to charge transport processes in the dielectric and the oil, which can be modeled and characterized by a decay time. To quantify the effects the typical response timescales have been measured with a high-speed video camera. The results have been reproduced in simulations. In addition, a simplified yet accurate equivalent circuit model is developed to analyze larger data sets more conveniently. The experimental data support the hypothesis that each pixel can be characterized by a single decay time. We studied an ensemble of pixels and found that they showed a rather broad distribution of decay times with an average value of about 440 ms. This decay time can be interpreted as a discharge timescale of the oil, not to be confused with discharge of the entire system which is generally much faster (<1 ms). Through the equivalent circuit model, we also found that variations in the fluoropolymer (FP) conductivity cannot explain the distribution of decay times, while variations in oil conductivity can.

  16. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  17. Stretched exponential relaxation and ac universality in disordered dielectrics

    DEFF Research Database (Denmark)

    Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens

    2007-01-01

    This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues are stretc......This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues...

  18. Modelling and characterization of dielectric elastomer stack actuators

    International Nuclear Information System (INIS)

    Haus, Henry; Matysek, Marc; Mößinger, Holger; Schlaak, Helmut F

    2013-01-01

    This paper aims to establish and evaluate an electrical and mechanical model for dielectric elastomer stack actuators. Based on the structure of an electrically interconnected actuator a simplified electrical and mechanical network is deduced. The electrical model results in a low-pass filter. The model is evaluated by measurements of the electrical impedance and contact, electrode and parallel resistances. Measurement results show good agreement of the model with the electrical behaviour of the real actuator over a wide frequency range, from below 0.1 Hz to above 10 kHz. The mechanical modelling is split into dynamic and static behaviour. The dynamic mechanical behaviour is modelled as a mechanical equivalent network using fractional elements. The static mechanical model uses the uniaxial compressive modulus of the actuator material to describe the static characteristic. The combination of static and dynamic models allows a realistic prediction of the static and dynamic deflection of the actuators under an applied electrical voltage. This electro-mechanical model has been validated in a frequency range of 4 Hz to 4 kHz. (paper)

  19. Electron-beam-induced conduction in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Acris, F C; Davies, P M; Lewis, T J [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-03-14

    A model for the enhanced conduction induced in dielectric films under electron bombardment while electrically stressed is discussed. It is assumed that the beam produces a virtual electrode at the end of its range in the dielectric and, as a consequence, the induced conduction is shown to depend on the properties of that part of the dielectric beyond the range of the beam. This model has also been discussed recently by Nunes de Oliviera and Gross. In the present treatment, it is shown how the model permits investigation of beam scattering and carrier generation and recombination processes. Experiments on electron-bombardment-induced conduction of thin (72 to 360 nm) films of anodic tantalum oxide are reported and it is shown that the theoretical model provides a very satisfactory explanation of all features of the results including the apparent threshold energy for enhanced conduction.

  20. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  1. Method of making dielectric capacitors with increased dielectric breakdown strength

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  2. Electromagnetic Properties of Multiphase Dielectrics A Primer on Modeling, Theory and Computation

    CERN Document Server

    Zohdi, Tarek I

    2012-01-01

    Recently, several applications, primarily driven by microtechnology, have emerged where the use of materials with  tailored  electromagnetic  (dielectric) properties are necessary for a successful  overall design.  The ``tailored'' aggregate properties are achieved by combining an easily moldable  base matrix with particles  having dielectric properties that are chosen to deliver (desired) effective properties. In many cases, the analysis of such materials requires the simulation of the macroscopic and microscopic electromagnetic response, as well as its resulting coupled thermal response,  which can be important to determine possible failures in ``hot spots.'' This necessitates   a stress analysis. Furthermore, because, oftentimes, such processes initiate degratory chemical processes, it can be necessary to also include models for these processes as well.   A central  objective of this work is to provide basic models and numerical solution strategies to analyze the coupled response of such mat...

  3. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties

    International Nuclear Information System (INIS)

    Clegg, J; Robinson, M P

    2012-01-01

    Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole–Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz–10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit. (paper)

  4. Application of Jonscher model for the characterization of the dielectric permittivity of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bourdi, Taoufik; Rhazi, Jamal Eddine; Ballivy, Gerard [Groupe de recherche en auscultation et instrumentation, Department of Civil Engineering, University of Sherbrooke, Sherbrooke (QC), J1K2R1 (Canada); Boone, Francois [Laboratoire d' Electronique Micro-Ondes, Department of Electrical Engineering and Engineering computer, University of Sherbrooke, Sherbrooke (QC), J1K2R1 (Canada)], E-mail: Taoufik.Bourdi@Usherbrooke.ca

    2008-10-21

    The study of electromagnetic waves propagating in concrete is a complex problem. Understanding the phenomenon of interaction between the wave and the matter is related to the knowledge of the variation process of concrete's electromagnetic properties in terms of its physical characteristics. In particular, dielectric permittivity of concrete is affected by moisture content and change in the frequency of the electromagnetic field applied. In this study, we apply the three-parameter Jonscher model (n, {chi}{sub r}, {epsilon}{sub {infinity}}) to show the dispersive aspect of the concrete. The validation of this model is carried out through tests on mortar and concrete at the laboratory, on the one hand, and by comparison of the results with data obtained previously by other researchers, on the other hand. The Jonscher model matches very well the experimental measurements of the concrete. At different moisture levels, heterogeneities and porosities, the results obtained are very good. This shows that this model is very effective and very suitable to represent the dielectric properties of concrete.

  5. Hopping model for the non-Debye dielectric response in ionic crystals

    International Nuclear Information System (INIS)

    Wang, J.C.; Bates, J.B.

    1988-10-01

    A model based on ion hopping in potential double-wells is proposed to explain the non-Debye dielectric response in solids. Relying on some assumptions, an attempt is made to remove the ''average'' nature of previous diffusion theories. This results in a distribution of activation energies, G(E), which decays exponentially on both sides of some given value E/sub o/. It is shown that the existence of a dielectric loss peak is a result of the decay of G(E) for E > E 0 the constant-phase-angle behavior above the loss peak is associated with the decay of G(E) for E 0 , and G(E) can produce all the main features of the empirical Havriliak-Negami function. An interesting property of this G(E) is that it broadens with increasing temperature, consistent with many experimental observations. 18 refs., 3 figs

  6. Dielectric properties of calicum and barium-doped strontium titanate

    Science.gov (United States)

    Tung, Li-Chun

    Dielectric properties of high quality polycrystalline Ca- and Ba-doped SrTiO3 perovskites are studied by means of dielectric constant, dielectric loss and ferroelectric hysteresis measurements. Low frequency dispersion of the dielectric constant is found to be very small and a simple relaxor model may not be able to explain its dielectric behavior. Relaxation modes are found in these samples, and they are all interpreted as thermally activated Bipolar re-orientation across energy barriers. In Sr1- xCaxTiO3 (x = 0--0.3), two modes are found associated with different relaxation processes, and the concentration dependence implies a competition between these processes. In Sr1-xBa xTiO3 (x = 0--0.25), relaxation modes are found to be related to the structural transitions, and the relaxation modes persist at low doping levels (x Barret formula is discussed and two of the well-accepted models, anharmonic oscillator model and transverse Ising model, are found to be equivalent. Both of the Ca and Ba systems can be understood qualitatively within the concept of transverse Ising model.

  7. Note: On the dielectric constant of nanoconfined water

    OpenAIRE

    Zhang, Chao

    2018-01-01

    Investigations of dielectric properties of water in nanoconfinement are highly relevant for various applications. Here, using a simple capacitor model, we show that the low dielectric constant of nanoconfined water found in molecular dynamics simulations can be largely explained by the so-called dielectric dead-layer effect known for ferroelectric nanocapacitors.

  8. Thermodynamics and instability of dielectric elastomer (Conference Presentation)

    Science.gov (United States)

    Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong

    2017-04-01

    Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.

  9. Model and design of dielectric elastomer minimum energy structures

    International Nuclear Information System (INIS)

    Rosset, Samuel; Araromi, Oluwaseun A; Shintake, Jun; Shea, Herbert R

    2014-01-01

    Fixing a prestretched dielectric elastomer actuator (DEA) on a flexible frame allows transformation of the intrinsic in-plane area expansion of DEAs into complex three-dimensional (3D) structures whose shape is determined by a configuration that minimizes the elastic energy of the actuator and the bending energy of the frame. These stuctures can then unfold upon the application of a voltage. This article presents an analytical modelling of the dielectric elastomer minimal energy structure in the case of a simple rectangular geometry and studies the influence of the main design parameters on the actuator's behaviour. The initial shape of DEMES, as well as the actuation range, depends on the elastic strain energy stored in the elastomeric membrane. This energy depends on two independent parameters: the volume of the membrane and its initial deformation. There exist therefore different combinations of membrane volume and prestretch, which lead to the same initial shape, such as a highly prestretched thin membrane, or a slightly prestretched thick membrane. Although they have the same initial shape, these different membrane states lead to different behaviour once the actuation voltage is applied. Our model allows one to predict which choice of parameters leads to the largest actuation range, while specifying the impact of the different membrane conditions on the spring constant of the device. We also explore the effects of non-ideal material behaviour, such as stress relaxation, on device performance. (paper)

  10. Theoretical Modeling and Analysis of L- and P-band Radar Backscatter Sensitivity to Soil Active Layer Dielectric Variations

    Directory of Open Access Journals (Sweden)

    Jinyang Du

    2015-07-01

    Full Text Available Freeze-thaw (FT and moisture dynamics within the soil active layer are critical elements of boreal, arctic and alpine ecosystems, and environmental change assessments. We evaluated the potential for detecting dielectric changes within different soil layers using combined L- and P-band radar remote sensing as a prerequisite for detecting FT and moisture profile changes within the soil active layer. A two-layer scattering model was developed and validated for simulating radar responses from vertically inhomogeneous soil. The model simulations indicated that inhomogeneity in the soil dielectric profile contributes to both L- and P-band backscatter, but with greater P-band sensitivity at depth. The difference in L- and P-band responses to soil dielectric profile inhomogeneity appears suitable for detecting associated changes in soil active layer conditions. Additional evaluation using collocated airborne radar (AIRSAR observations and in situ soil moisture measurements over alpine tundra indicates that combined L- and P-band SAR observations are sensitive to soil dielectric profile heterogeneity associated with variations in soil moisture and FT conditions.

  11. Light scattering in plane dielectric layers: Modeling in the 2d reciprocal space

    International Nuclear Information System (INIS)

    Shcherbakov, Alexey A.; Tishchenko, Alexandre V.

    2012-01-01

    The generalized source method previously developed for the light diffraction calculation on periodic dielectric structures is applied for the light scattering calculation in non-periodic planar media. This significantly enlarges the domain of applicability of Fourier-methods in light scattering modeling since the generalized source method is of much less numerical complexity than other rigorous methods used. -- Highlights: ► Method for light scattering simulation in planar layers. ► The approach is fairly independent of scattering particles’ shape. ► The method is based on the rigorous solution of Maxwell's equations. ► Each calculation stage allows the accuracy control by the convergence monitoring. ► Possibility to consider any practically possible dielectric materials.

  12. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Liu, Haoliang; Yu, Yingchun; Zhang, Liqun

    2012-01-01

    This paper presents a comprehensive study of the effects of acrylonitrile content, crosslink density and plasticization on the dielectric and electromechanical performances of hydrogenated nitrile–butadiene dielectric elastomer. It was found that by increasing the acrylonitrile content of hydrogenated nitrile–butadiene dielectric elastomer, the dielectric constant will be improved accompanied with a sharp decrease of electrical breakdown strength leading to a small actuated strain. At a fixed electric field, a high crosslink density increased the elastic modulus of dielectric elastomer, but it also enhanced the electrical breakdown strength leading to a high actuated strain. Adding a plasticizer into the dielectric elastomer decreased the dielectric constant and electrical breakdown strength slightly, but reduced the elastic modulus sharply, which was beneficial for obtaining a large strain at low electric field from the dielectric elastomer. The largest actuated strain of 22% at an electric field of 30 kV mm −1 without any prestrain was obtained. Moreover, the hydrogenated nitrile–butadiene dielectric actuator showed good history dependence. This proposed material has great potential to be an excellent dielectric elastomer. (paper)

  13. Modeling the process of interaction of 10 keV electrons with a plane dielectric surface

    Science.gov (United States)

    Vokhmyanina, Kristina; Sotnikova, Valentina; Sotnikov, Alexey; Kaplii, Anna; Nikulicheva, Tatyana; Kubankin, Alexandr; Kishin, Ivan

    2018-05-01

    The effect of guiding of charged particles by dielectric channels is of noticeable interest at the present time. The phenomenon is widely studied experimentally and theoretically but some points still need to be clarified. A previously developed model of interaction of fast electrons with dielectric surface at grazing incidence is used to study the independence of electron deflection on the value of electron beam current. The calculations were performed assuming a smooth dependence of the surface conductivity on the beam current in the 40-3000 nA range.

  14. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  15. Quantum optics of dispersive dielectric media

    International Nuclear Information System (INIS)

    Lenac, Z.

    2003-01-01

    We quantize the electromagnetic field in a polar medium starting with the fundamental equations of motion. In our model the medium is described by a Lorenz-type dielectric function ε(r,ω) appropriate, e.g., for ionic crystals, metals, and inert dielectrics. There are no restrictions on the spatial behavior of the dielectric function, i.e., there can be many different polar media with arbitrary shapes. We assume no losses in our system so the dielectric function for the whole space is assumed as real. The quantization procedure is based on an expansion of the total field (transverse and longitudinal) in terms of the coupled (polariton) eigenmodes, and this approach incorporates all previous results derived for similar but restricted systems (e.g., without spatial or frequency dependence of coupled modes). Within the same model, we also quantize the Hamiltonian of a nonretarded electromagnetic field in polar media. Particular attention is paid to the derivation of the orthogonality and closure relations, which are used in a discussion of the fundamental (equal-time) commutation relations between the conjugate field operators

  16. Samuel Holden Parsons Lee (1772-1863): American physician, entrepreneur and selfless fighter of the 1798 Yellow Fever epidemic of New London, Connecticut.

    Science.gov (United States)

    Mattie, James K; Desai, Sukumar P

    2015-02-01

    Samuel Holden Parsons Lee practised medicine at a time when the germ theory of disease had not yet been proposed and antibiotics remained undiscovered. In 1798 he served selflessly as the only physician in town who was willing to battle the Yellow Fever outbreak of New London, Connecticut. Because he practised at the dawn of the age of patent medicine, unfortunately his name also came to be associated with medical quackery. We argue that his contributions have been grossly underestimated. He compounded and vended medications - including bilious pills and bitters - that were gold standards of the day. Moreover, one preparation for treatment of kidney stones led to his sub-specialization in this field and was met with such success that its sale continued for nearly 100 years after his death. While a talented medical man, Lee also had a knack for business, finding success in trading, whaling and real estate. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Low frequency modelling of hysteresis behaviour and dielectric permittivity in ferroelectric ceramics under electric field

    International Nuclear Information System (INIS)

    Ducharne, B; Guyomar, D; Sebald, G

    2007-01-01

    The properties of ferroelectric ceramics strongly depend on the electromechanical loading and their measurement conditions. In this paper, a nonlinear phenomenological one-dimensional model based on the dry friction concept is presented to describe the hysteretic polarization behaviour. Dielectric permittivities versus dc electric field (or capacitance C versus voltage V) loops are determined for the characterization of ferroelectric material. The ε 33 coefficient is used for the ceramic characterization because it is strongly correlated with the ceramic quality. The purpose of this paper is to develop a model of reversal polarization behaviour close to physical realities, able to provide good performances on the simulation of dielectric permittivity loop ε 33 (E dc ). Simulated behaviours are finally compared with experimental results on a typically soft PZT ferroelectric ceramic

  18. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Wong, C. S., E-mail: cswong@um.edu.my; Yap, S. L.; Muniandy, S. V. [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50 Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  19. Microwave dielectric characterization of binary mixture of formamide ...

    Indian Academy of Sciences (India)

    are fitted to the three different relaxation models [24–27] by the non-linear least squares fit method. It is observed that the Davidson–Cole model is adequate to describe major dispersion of the various solute and solvent mixtures over this fre- quency range. Static dielectric constant and dielectric relaxation time could be.

  20. Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (lambda approx 172 nm)

    CERN Document Server

    Carman, R J

    2003-01-01

    A detailed rate-equation analysis has been used to simulate the plasma kinetics in a pulsed-excited dielectric barrier discharge in xenon, under operating conditions where the discharge structure is spatially homogeneous. The one-dimensional model, incorporating 14 species and 70 reaction processes, predicts results that are in good agreement with experimental measurements of the electrical characteristics, and optical (vacuum-ultraviolet (VUV) and visible) pulse shapes. The model reveals that electrical breakdown of the discharge gap occurs via a fast-moving ionization/excitation wavefront that starts close to the anode dielectric and propagates towards the cathode at approx 3x10 sup 5 m s sup - sup 1. The wavefront appears as a result of successive avalanches of electrons that propagate across the discharge gap after release from the cathode dielectric. During breakdown, the mean electron energy in the bulk plasma is close to optimum for preferential excitation of the Xe* 1s sub 4 sub , sub 5 states that fe...

  1. Microwave dielectric tangent losses in KDP and DKDP crystals

    Indian Academy of Sciences (India)

    By adding cubic and quartic phonon anharmonic interactions in the pseudospin lattice coupled mode (PLCM) model for KDP-type crystals and using double-time temperature dependent Green's function method, expressions for soft mode frequency, dielectric constant and dielectric tangent loss are obtained. Using model ...

  2. Improved dielectric functions in metallic films obtained via template stripping

    Science.gov (United States)

    Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.

    2012-02-01

    We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.

  3. Multidisciplinary Intervention of Early, Lethal Metastatic Prostate Cancer: Report From the 2015 Coffey-Holden Prostate Cancer Academy Meeting

    Science.gov (United States)

    Miyahira, Andrea K.; Lang, Joshua M.; Den, Robert B.; Garraway, Isla P.; Lotan, Tamara L.; Ross, Ashley E.; Stoyanova, Tanya; Cho, Steve Y.; Simons, Jonathan W.; Pienta, Kenneth J.; Soule, Howard R.

    2018-01-01

    BACKGROUND The 2015 Coffey-Holden Prostate Cancer Academy Meeting, themed: “Multidisciplinary Intervention of Early, Lethal Metastatic Prostate Cancer,” was held in La Jolla, California from June 25 to 28, 2015. METHODS The Prostate Cancer Foundation (PCF) sponsors an annual, invitation-only, action-tank-structured meeting on a critical topic concerning lethal prostate cancer. The 2015 meeting was attended by 71 basic, translational, and clinical investigators who discussed the current state of the field, major unmet needs, and ideas for addressing earlier diagnosis and treatment of men with lethal prostate cancer for the purpose of extending lives and making progress toward a cure. RESULTS The questions addressed at the meeting included: cellular and molecular mechanisms of tumorigenesis, evaluating, and targeting the microenvironment in the primary tumor, advancing biomarkers for clinical integration, new molecular imaging technologies, clinical trials, and clinical trial design in localized high-risk and oligometastatic settings, targeting the primary tumor in advanced disease, and instituting multi-modal care of high risk and oligometastatic patients. DISCUSSION This article highlights the current status, greatest unmet needs, and anticipated field changes that were discussed at the meeting toward the goal of optimizing earlier interventions to potentiate cures in high-risk and oligometastatic prostate cancer patients. PMID:26477609

  4. Defects in codoped NiO with gigantic dielectric response

    Science.gov (United States)

    Wu, Ping; Ligatchev, Valeri; Yu, Zhi Gen; Zheng, Jianwei; Sullivan, Michael B.; Zeng, Yingzhi

    2009-06-01

    We combine first-principles, statistical, and phenomenological methods to investigate the electronic and dielectric properties of NiO and clarify the nature of the gigantic dielectric response in codoped NiO. Unlike previous models which are dependent on grain-boundary effects, our model based on small polaron hopping in homogeneous material predicts the dielectric permittivity (104-5) for heavily Li- and MD -codoped NiO (MD=Ti,Al,Si) . Furthermore, we reproduce the experimental trends in dielectric properties as a function of the dopants nature and their concentrations, as well as the reported activation energies for the relaxation in Li- and Ti-codoped NiO (0.308 eV or 0.153 eV depending on the Fermi-level position). In this study, we demonstrate that small polaron hopping on dopant levels is the dominant mechanism for the gigantic dielectric response in these codoped NiO.

  5. Infrared and THz spectroscopy of nanostructured dielectrics

    Directory of Open Access Journals (Sweden)

    Jan Petzelt

    2009-09-01

    Full Text Available Results achieved using the infrared/THz spectroscopy of various inhomogeneous dielectrics in the Department of Dielectrics, Institute of Physics, Prague, during the last decade are briefly reviewed. The discussion concerns high-permittivity ceramics with inevitable low-permittivity dead layers along the grain boundaries, relaxor ferroelectrics with highly anisotropic polar nano-regions, classical matrix-type composites, core-shell composites, filled nanoporous glasses, polycrystalline and epitaxial thin films, heterostructures and superlattices on dielectric substrates. The analysis using models based on the effective medium approach is discussed. The importance of depolarizing field and of the percolation of components on the effective ac dielectric response and the excitations contributing to it are emphasized.

  6. Equivalent circuit modeling of the dielectric properties of rubber wood at low frequency

    Science.gov (United States)

    Wan M. Daud; Kaida B. Khalid; Aziz H.A. Sidek

    2000-01-01

    Dielectric properties of rubber wood were studied at various moisture contents and grain directions at low frequencies from 10-2 to 105 Hz. Results showed that the moisture content of wood affected the dielectric properties considerably. Dielectric data at different anisotropic directions, i.e., longitudinal, radial, and...

  7. Method to characterize dielectric properties of powdery substances

    Science.gov (United States)

    Tuhkala, M.; Juuti, J.; Jantunen, H.

    2013-07-01

    An open ended coaxial cavity method for dielectric characterization of powdery substance operating at 4.5 GHz in TEM mode is presented. Classical mixing rules and electromagnetic modeling were utilized with measured effective permittivities and Q factors to determine the relative permittivity and dielectric loss tangent of different powders with ɛr up to 30. The modeling enabled determination of the correction factor for the simplified equation for the relative permittivity of an open ended coaxial resonator and mixing rules having the best correlation with experiments. SiO2, Al2O3, LTCC CT 2000, ZrO2, and La2O3 powders were used in the experiments. Based on the measured properties and Bruggeman symmetric and Looyenga mixing rules, the determined dielectric characteristics of the powders exhibited good correlation with values in the literature. The presented characterization method enabled the determination of dielectric properties of powdery substances within the presented range, and therefore could be applied to various research fields and applications where dielectric properties of powders need to be known and controlled.

  8. Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Directory of Open Access Journals (Sweden)

    M. T. Jilani

    2014-12-01

    Full Text Available This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR, that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit.

  9. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    Science.gov (United States)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  10. On dielectric breakdown statistics

    International Nuclear Information System (INIS)

    Tuncer, Enis; James, D Randy; Sauers, Isidor; Ellis, Alvin R; Pace, Marshall O

    2006-01-01

    In this paper, we investigate the dielectric breakdown data of some insulating materials and focus on the applicability of the two- and three-parameter Weibull distributions. A new distribution function is also proposed. In order to assess the model distribution's trustworthiness, we employ the Monte Carlo technique and, randomly selecting data-subsets from the whole dielectric breakdown data, determine whether the selected probability functions accurately describe the breakdown data. The utility and strength of the proposed expression are illustrated distinctly by the numerical procedure. The proposed expression is shown to be a valuable alternative to the Weibull ones

  11. Modeling shape selection of buckled dielectric elastomers

    Science.gov (United States)

    Langham, Jacob; Bense, Hadrien; Barkley, Dwight

    2018-02-01

    A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.

  12. Electromechanical model to predict the movability of liquids in an electrowetting-on-dielectric microfluidic device

    Science.gov (United States)

    Torabinia, Matin; Farzbod, Ali; Moon, Hyejin

    2018-04-01

    In electrowetting-on-dielectric (EWOD) microfluidics, a motion of a fluid is created by a voltage applied to the fluid/surface interface. Water and aqueous solutions are the most frequently used fluids in EWOD devices. In order for EWOD microfluidics to be a versatile platform for various applications, however, movability of different types of fluids other than aqueous solutions should be understood. An electromechanical model using a simple RC circuit has been used to predict the mechanical force exerted on a liquid droplet upon voltage application. In this present study, two important features missed in previous works are addressed. Energy dissipation by contact line friction is considered in the new model as the form of resistor. The phase angle is taken into account in the analysis of the AC circuit. The new electromechanical model and computation results are validated with experimental measurements of forces on two different liquids. The model is then used to explain influences of contact angle hysteresis, surface tension, conductivity, and dielectric constant of fluids to the mechanical force on a liquid droplet.

  13. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, such as admittance or dielectric constant - as a function of frequency and comparing the results with expectations based on physical, chemical, and microstructural models. This article reviews the principles and practical aspects of the technique, the representations of the results, the analysis of data......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  14. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  15. Dielectric modelling of cell division for budding and fission yeast

    International Nuclear Information System (INIS)

    Asami, Koji; Sekine, Katsuhisa

    2007-01-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast

  16. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    Science.gov (United States)

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  17. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  18. Analyzing the effect of gate dielectric on the leakage currents

    Directory of Open Access Journals (Sweden)

    Sakshi

    2016-01-01

    Full Text Available An analytical threshold voltage model for MOSFETs has been developed using different gate dielectric oxides by using MATLAB software. This paper explains the dependency of threshold voltage on the dielectric material. The variation in the subthreshold currents with the change in the threshold voltage sue to the change of dielectric material has also been studied.

  19. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  20. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    International Nuclear Information System (INIS)

    Ngai, K. L.

    2015-01-01

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ 1 (f), the frequency dispersion of the third-order dielectric susceptibility, χ 3 (f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ 1 (f) and χ 3 (f) is the characteristic of the many-body relaxation

  1. A dielectric tensor for magnetoplasmas comprising components with generalized Lorentzian distributions

    International Nuclear Information System (INIS)

    Mace, R.L.

    1996-01-01

    We report on a new form for the dielectric tensor for a plasma containing superthermal particles. The individual particle components are modelled by 3-dimensional isotropic kappa, or generalized Lorentzian, distributions with arbitrary real-valued index κ. The new dielectric tensor is valid for arbitrary wavevectors. The dielectric tensor, which resembles Trubnikov's dielectric tensor for a relativistic plasma, is compared with the familiar Maxwellian form. When the dielectric tensor is used in the plasma dispersion relation for waves propagating parallel to the magnetic field it reproduces previously derived dispersion relations for various electromagnetic and electrostatic waves in plasmas modelled by Lorentzian particle distributions. Within the constraints of propagation parallel to the ambient magnetic field, we extend the above results to incorporate loss-cone Lorentzian particle distributions, which have important applications in laboratory mirror devices, as well as in space and astrophysical environments. (orig.)

  2. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  3. The Leaky Dielectric Model as a Weak Electrolyte Limit of an Electrodiffusion Model

    Science.gov (United States)

    Mori, Yoichiro; Young, Yuan-Nan

    2017-11-01

    The Taylor-Melcher (TM) model is the standard model for the electrohydrodynamics of poorly conducting leaky dielectric fluids under an electric field. The TM model treats the fluid as an ohmic conductor, without modeling ion dynamics. On the other hand, electrodiffusion models, which have been successful in describing electokinetic phenomena, incorporates ionic concentration dynamics. Mathematical reconciliation between electrodiffusion and the TM models has been a major issue for electrohydrodynamic theory. Here, we derive the TM model from an electrodiffusion model where we explicitly model the electrochemistry of ion dissociation. We introduce salt dissociation reaction in the bulk and take the limit of weak salt dissociation (corresponding to poor conductors in the TM model.) Assuming small Debye length we derive the TM model with or without the surface charge advection term depending upon the scaling of relevant dimensionless parameters. Our analysis also gives a description of the ionic concentration distribution within the Debye layer, which hints at possible scenarios for electrohydrodynamic singularity formation. In our analysis we also allow for a jump in voltage across the liquid interface which causes a drifting velocity for a liquid drop under an electric field. YM is partially supported by NSF-DMS-1516978 and NSF-DMS-1620316. YNY is partially supported by NSF-DMS-1412789 and NSF-DMS-1614863.

  4. Slots in dielectric image line as mode launchers and circuit elements

    Science.gov (United States)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  5. Multi-Chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics

    Science.gov (United States)

    2016-05-05

    AFRL-AFOSR-VA-TR-2016-0194 Multi- Chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics Jeremy Gulley KENNESAW STATE...Jan 2016 4. TITLE AND SUBTITLE Multi- chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics 5a. CONTRACT NUMBER 5b. GRANT...in, and modification of, dielectric solids by multi- chromatic ultrashort laser pulses. It was a theoretical effort to develop models of multi

  6. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  7. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1983-06-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  8. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  9. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    Science.gov (United States)

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  10. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  11. Investigation of radiative charging of dielectrics irradiated by ions

    International Nuclear Information System (INIS)

    Dergobuzov, K.A.; Yalovets, A.P.

    1994-01-01

    Within the framework of the Gusel'nikov mathematical model are fulflled numerical investigations of charging dielectrics irradiated with ions and atoms. The model accounts for dynamics of quasi-free charge carriers of each sign with account of processes of dielectrics ionization with a beam, charge recombination and charge drift in an electric fields. The effective mobility of charge carriers is determined with account for its dependence on the dose rate

  12. Theoretical research of multi-pulses laser induced damage in dielectrics

    International Nuclear Information System (INIS)

    Luo Jin; Liu Zhichao; Chen Songlin; Ma Ping

    2013-01-01

    The pulse width is different, the mechanism of the laser-matter interaction is different. Damage results from plasma formation and ablation forτ≤10 ps and from heat depositing and conventional melting for τ>100 ps. Two theoretical models of transparent dielectrics irradiated by multi-pulses laser are respectively developed based on the above-mentioned different mechanism. One is the dielectric breakdown model based on electron density evolution equation for femtosecond multi-pluses laser, the other is the dielectric heat-damage model based on Fourier's heat exchange equation for nanosecond multi-pluses laser. Using these models, the effects of laser parameters and material parameters on the laser-induced damage threshold of dielectrics are analyzed. The analysis results show that different parameters have different influence on the damage threshold. The effect of parameters on the multi -pulses damage threshold is not entirely the same to the single-pulse damage threshold. The multi-pulses damage mechanism of dielectrics is discussed in detail, considering the effect of different parameters. The discussion provides more information for understanding its damage process and more knowledge to improve its damage thresholds. And the relationship between damage threshold and pulse number is illustrated, it is in good agreement with experimental results. The illustration can help us to predict the multi-pulses damage threshold and the lifetime of optical components. (authors)

  13. Dielectric and shear mechanical relaxations in glass-forming liquids: A test of the Gemant-DiMarzio-Bishop model

    DEFF Research Database (Denmark)

    Niss, K.; Jakobsen, B.; Olsen, N.B.

    2005-01-01

    that the Gemant-DiMarzio-Bishop model is correct on a qualitative level. The quantitative agreement between the model and the data is on the other hand moderate to poor. It is discussed if a model-free comparison between the dielectric and shear mechanical relaxations is relevant, and it is concluded...

  14. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...

  15. A Combined Model of Charging of the Surface and Bulk of a Dielectric Target by Electrons with the Energies 10-30 keV

    Science.gov (United States)

    Zykov, V. M.; Neiman, D. A.

    2018-04-01

    A physico-mathematical model of the processes of radiation-induced charging of dielectric materials with open surfaces, irradiated with monoenergetic electrons in the energy range 10-30 keV, is described. The model takes into account the relationship between the processes of surface and bulk charging for the given conditions of the experimental design, which accounts for the effect of anomalously long charging of dielectrics after the incident energy of primary electrons during charging is reduced to below the second critical energy for the secondary electronic emission coefficient. The initial fast phase of charging a high-resistivity dielectric material (Al2O3) is investigated. It is shown that as the incident electron energy is approaching the second critical energy during charging, the secondary electronic emission is partially suppressed due to negative charging of the open surface of the dielectric and formation of a near-surface inversion electrical field retarding the electronic emission yield.

  16. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  17. Femtosecond laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas

    2012-01-01

    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...

  18. Structural, optical and dielectric properties of graphene oxide

    Science.gov (United States)

    Bhargava, Richa; Khan, Shakeel

    2018-05-01

    The Modified Hummers method has been used to synthesize Graphene oxide nanoparticles. Microstructural analyses were carried out by X-ray diffraction and Fourier transform infrared spectroscopy. Optical properties were studied by UV-visible spectroscopy in the range of 200-700 nm. The energy band gap was calculated with the help of Tauc relation. The frequency dependence of dielectric constant and dielectric loss were studied over a range of the frequency 75Hz to 5MHz at room temperature. The dispersion in dielectric constant can be explained with the help of Maxwell-Wagner model in studied nanoparticles.

  19. Φ -Ψ model for electrodynamics in dielectric media: exact quantisation in the Heisenberg representation

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, Francesco [Politecnico di Milano, Dipartimento di Matematica, Milano (Italy); INdAM-GNFM, Milano (Italy); Cacciatori, Sergio L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN sezione di Milano, Milano (Italy); Dalla Piazza, Francesco [Universita ' ' La Sapienza' ' , Dipartimento di Matematica, Roma (Italy); Doronzo, Michele [Universita dell' Insubria, Department of Science and High Technology, Como (Italy)

    2016-06-15

    We investigate the quantisation in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field φ and the role of the polarisation field is played by a further scalar field ψ. The model, which is quadratic in the fields, is still characterised by a non-trivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered. (orig.)

  20. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  1. Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge

    Science.gov (United States)

    Haixin, HU; Feng, HE; Ping, ZHU; Jiting, OUYANG

    2018-05-01

    A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length, ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.

  2. Dielectric loss against piezoelectric power harvesting

    Science.gov (United States)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  3. Dielectric loss against piezoelectric power harvesting

    International Nuclear Information System (INIS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-01-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems. (fast track communications)

  4. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Ngai, K. L. [CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2015-03-21

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ{sub 1}(f), the frequency dispersion of the third-order dielectric susceptibility, χ{sub 3}(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ{sub 1}(f) and χ{sub 3}(f) is the characteristic of the many

  5. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  6. Study of the pressure dependence of dielectric properties of ionic crystals with the exchange-charge model

    Energy Technology Data Exchange (ETDEWEB)

    Batana, A; Faour, J

    1987-03-01

    The formalism of the exchange-charge model (ECM) is extended for studying the pressure dependence of the static dielectric constant and the volume dependence of the effective ionic charge for b.c.c. lattices. Calculated values for CsCl, CsBr, CsI, and TlBr together with the simple shell model values and experimental values are listed and discussed.

  7. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    Directory of Open Access Journals (Sweden)

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  8. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  9. Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Frislev, Martin Thomas; Balling, Peter

    2013-01-01

    Modeling of the interaction between a dielec- tric material and ultrashort laser pulses provides the tem- poral evolution of the electronic excitation and the optical properties of the dielectric. Experimentally determined re- flectances and ablation depths for sapphire are compared...... to the calculations. A decrease in reflectance at high fluences is observed experimentally, which demonstrates the neces- sity of a temperature-dependent electron scattering rate in the model. The comparison thus provides new constraints on the optical parameters of the model....

  10. A simple model for fibre optics: planar dielectric waveguides in rotation

    International Nuclear Information System (INIS)

    Perez-Ocon, F; Pena, A; Jimenez, J R; Diaz, J A

    2006-01-01

    In planar dielectric waveguides, there is only one type of propagated ray: the one that crosses the waveguide axis after each total internal reflection. According to the model of geometrical optics, there are two types of guided ray in fibre optics: meridional and skew. Each one is formulated by a suitable mathematical treatment. In this work, we demonstrate that the complex mathematical treatment for the skew rays can be avoided by considering a planar waveguide (with the same refractive index profile as the fibre and thickness equal to its diameter) that rotates around the direction of the axis with angular velocity ω. A section of this fibre is inscribed in the hypothetical slab. This model has been successfully introduced to students of engineering and physics

  11. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  12. Features of dielectric response in PMN-PT ferroelectric ceramics

    International Nuclear Information System (INIS)

    Guerra, J D S; Araujo, E B; Guarany, C A; Reis, R N; Lima, E C

    2008-01-01

    In this paper, electrical and structural properties were reported for pyrochlore free (1 - x)[Pb(Mg 1/3 Nb 2/3 )O 3 ] - xPbTiO 3 (PMN-PT) (with 35 mol% PbTiO 3 ) ceramics obtained from fine powders. Dielectric studies were focused on the investigation of the complex dielectric permittivity (ε' - iε'') as a function of frequency and temperature. The effects of the dc applied electric field on dielectric response were also investigated. Results revealed a field dependence dielectric anomaly in the dielectric permittivity curves (ε(T)) in the low dc electric field region, which in turn prevails in the whole analysed frequency interval. To the best of our knowledge, these properties for the PMN-PT ceramic system have not been reported before as in this work. The results were analysed within the framework of the current models found in the literature.

  13. Improved Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  14. Mechanistic study of plasma damage to porous low-k: Process development and dielectric recovery

    Science.gov (United States)

    Shi, Hualiang

    Low-k dielectrics with porosity are being introduced to reduce the RC delay of Cu/low-k interconnect. However, during the O2 plasma ashing process, the porous low-k dielectrics tend to degrade due to methyl depletion, moisture uptake, and densification, increasing the dielectric constant and leakage current. This dissertation presents a study of the mechanisms of plasma damage and dielectric recovery. The kinetics of plasma interaction with low-k dielectrics was investigated both experimentally and theoretically. By using a gap structure, the roles of ion, photon, and radical in producing damage on low-k dielectrics were differentiated. Oxidative plasma induced damage was proportional to the oxygen radical density, enhanced by VUV photon, and increased with substrate temperature. Ion bombardment induced surface densification, blocking radical diffusion. Two analytical models were derived to quantify the plasma damage. Based on the radical diffusion, reaction, and recombination inside porous low-k dielectrics, a plasma altered layer model was derived to interpret the chemical effect in the low ion energy region. It predicted that oxidative plasma induced damage can be reduced by decreasing pore radius, substrate temperature, and oxygen radical density and increasing carbon concentration and surface recombination rate inside low-k dielectrics. The model validity was verified by experiments and Monte-Carlo simulations. This model was also extended to the patterned low-k structure. Based on the ion collision cascade process, a sputtering yield model was introduced to interpret the physical effect in the high ion energy region. The model validity was verified by checking the ion angular and energy dependences of sputtering yield using O2/He/Ar plasma, low-k dielectrics with different k values, and a Faraday cage. Low-k dielectrics and plasma process were optimized to reduce plasma damage, including increasing carbon concentration in low-k dielectrics, switching plasma

  15. Scattering of light from small nematic spheres with radial dielectric anisotropy

    International Nuclear Information System (INIS)

    Karacali, H.; Risser, S.M.; Ferris, K.F.

    1997-01-01

    We have calculated the scattering cross sections of small anisotropic nematic droplets embedded in a polymer matrix as a function of the dielectric constants of the nematic and the polymer. We have derived the general form for the Helmholtz wave equation for a droplet which has spatially varying radial anisotropy, and have explicitly solved this equation for three distinct models of the dielectric anisotropy, including one model where the anisotropy increases linearly with droplet radius. Numerical calculations of the scattering amplitudes for droplets much smaller than the wavelength of the incident radiation show that droplets with continual variation in the dielectric anisotropy have much larger scattering amplitude than droplets with fixed anisotropy. The scattering from droplets with linearly varying anisotropy exhibits a scattering minimum for much smaller polymer dielectric constants than the other models. These results show that the scattering from small anisotropic droplets is sensitive to details of the internal structure and anisotropy of the droplet. copyright 1997 The American Physical Society

  16. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Science.gov (United States)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  17. Modelling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    International Nuclear Information System (INIS)

    Morozovska, Anna N; Eliseev, Eugene A

    2004-01-01

    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. We have modified the Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic values and the various hysteresis-loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films

  18. Ceramic-polymer nanocomposites with increased dielectric permittivity and low dielectric loss

    International Nuclear Information System (INIS)

    Bhardwaj, Sumit; Paul, Joginder; Raina, K. K.; Thakur, N. S.; Kumar, Ravi

    2014-01-01

    The use of lead free materials in device fabrication is very essential from environmental point of view. We have synthesized the lead free ferroelectric polymer nanocomposite films with increased dielectric properties. Lead free bismuth titanate has been used as active ceramic nanofillers having crystallite size 24nm and PVDF as the polymer matrix. Ferroelectric β-phase of the polymer composite films was confirmed by X-ray diffraction pattern. Mapping data confirms the homogeneous dispersion of ceramic particles into the polymer matrix. Frequency dependent dielectric constant increases up to 43.4 at 100Hz, whereas dielectric loss decreases with 7 wt% bismuth titanate loading. This high dielectric constant lead free ferroelectric polymer films can be used for energy density applications

  19. Frequency dispersion analysis of thin dielectric MOS capacitor in a five-element model

    Science.gov (United States)

    Zhang, Xizhen; Zhang, Sujuan; Zhu, Huichao; Pan, Xiuyu; Cheng, Chuanhui; Yu, Tao; Li, Xiangping; Cheng, Yi; Xing, Guichao; Zhang, Daming; Luo, Xixian; Chen, Baojiu

    2018-02-01

    An Al/ZrO2/IL/n-Si (IL: interface layer) MOS capacitor has been fabricated by metal organic decomposition of ZrO2 and thermal deposition Al. We have measured parallel capacitance (C m) and parallel resistance (R m) versus bias voltage curves (C m, R m-V) at different AC signal frequency (f), and C m, R m-f curves at different bias voltage. The curves of C m, R m-f measurements show obvious frequency dispersion in the range of 100 kHz-2 MHz. The energy band profile shows that a large voltage is applied on the ZrO2 layer and IL at accumulation, which suggests possible dielectric polarization processes by some traps in ZrO2 and IL. C m, R m-f data are used for frequency dispersion analysis. To exclude external frequency dispersion, we have extracted the parameters of C (real MOS capacitance), R p (parallel resistance), C IL (IL capacitance), R IL (IL resistance) and R s (Si resistance) in a five-element model by using a three-frequency method. We have analyzed intrinsic frequency dispersion of C, R p, C IL, R IL and R s by studying the dielectric characteristics and Si surface layer characteristics. At accumulation, the dispersion of C and R p is attributed to dielectric polarization such as dipolar orientation and oxide traps. The serious dispersion of C IL and R IL are relative to other dielectric polarization, such as border traps and fixed oxide traps. The dispersion of R s is mainly attributed to contact capacitance (C c) and contact resistance (R c). At depletion and inversion, the frequency dispersion of C, R p, C IL, R IL, and R s are mainly attributed to the depletion layer capacitance (C D). The interface trap capacitance (C it) and interface trap resistance (R it) are not dominant for the dispersion of C, R p, C IL, R IL, and R s.

  20. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  1. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  2. Independence of the effective dielectric constant of an electrolytic solution on the ionic distribution in the linear Poisson-Nernst-Planck model.

    Science.gov (United States)

    Alexe-Ionescu, A L; Barbero, G; Lelidis, I

    2014-08-28

    We consider the influence of the spatial dependence of the ions distribution on the effective dielectric constant of an electrolytic solution. We show that in the linear version of the Poisson-Nernst-Planck model, the effective dielectric constant of the solution has to be considered independent of any ionic distribution induced by the external field. This result follows from the fact that, in the linear approximation of the Poisson-Nernst-Planck model, the redistribution of the ions in the solvent due to the external field gives rise to a variation of the dielectric constant that is of the first order in the effective potential, and therefore it has to be neglected in the Poisson's equation that relates the actual electric potential across the electrolytic cell to the bulk density of ions. The analysis is performed in the case where the electrodes are perfectly blocking and the adsorption at the electrodes is negligible, and in the absence of any ion dissociation-recombination effect.

  3. Mass of polaritons in different dielectric media

    International Nuclear Information System (INIS)

    Dzedolik, I V; Lapayeva, S N

    2011-01-01

    Some models of electromagnetic field interactions with linear and nonlinear dielectric media based on the approach of polarization and electromagnetic wave propagation in media are considered. It is shown that quasi-particles generated in the dielectric medium, called polaritons, have mass whose quantity depends on the efficiency of the electromagnetic field and interaction with the medium. The mass and velocity of polaritons can be controlled by the external electric field. The value of the mass of polaritons was measured in a transparent crystal

  4. Modeling of dielectric elastomer oscillators for soft biomimetic applications.

    Science.gov (United States)

    Henke, E-F M; Wilson, Katherine E; Anderson, I A

    2018-06-26

    Biomimetic, entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. However, until now, most presented studies on soft robots were limited to only partly soft designs, since all solutions at least needed conventional, stiff electronics to sense, process signals and activate actuators. We present a novel approach for a set up and the experimental validation of an artificial pace maker that is able to drive basic robotic structures and act as artificial central pattern generator. The structure is based on multi-functional dielectric elastomers (DEs). DE actuators, DE switches and DE resistors are combined to create complex DE oscillators (DEOs). Supplied with only one external DC voltage, the DEO autonomously generates oscillating signals that can be used to clock a robotic structure, control the cyclic motion of artificial muscles in bionic robots or make a whole robotic structure move. We present the basic functionality, derive a mathematical model for predicting the generated signal waveform and verify the model experimentally.

  5. Beyond Seed and Soil: Understanding and Targeting Metastatic Prostate Cancer; Report From the 2016 Coffey-Holden Prostate Cancer Academy Meeting.

    Science.gov (United States)

    Miyahira, Andrea K; Roychowdhury, Sameek; Goswami, Sangeeta; Ippolito, Joseph E; Priceman, Saul J; Pritchard, Colin C; Sfanos, Karen S; Subudhi, Sumit K; Simons, Jonathan W; Pienta, Kenneth J; Soule, Howard R

    2017-02-01

    The 2016 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Beyond Seed and Soil: Understanding and Targeting Metastatic Prostate Cancer," was held from June 23 to June 26, 2016, in Coronado, California. For the 4th year in a row, the Prostate Cancer Foundation (PCF) hosted the CHPCA Meeting, a think tank-structured scientific conference, which focuses on a specific topic of critical unmet need on the biology and treatment of advanced prostate cancer. The 2016 CHPCA Meeting was attended by 71 investigators from prostate cancer and other fields, who discussed the biology, study methodologies, treatment strategies, and critical unmet needs concerning metastatic prostate cancer, with the ultimate goal of advancing strategies to treat and eliminate this disease. The major topics of discussion included: the molecular landscape and molecular heterogeneity of metastatic prostate cancer, the role of the metastatic microenvironment, optimizing immunotherapy in metastatic prostate cancer, learning from exceptional responders and non-responders, targeting DNA repair deficiency in advanced prostate cancer, developing and applying novel biomarkers and imaging techniques, and potential roles for the microbiome in prostate cancer. This article reviews the topics presented and discussions held at the CHPCA Meeting, with a focus on the unknowns and next steps needed to advance our understanding of the biology and most effective treatment strategies for metastatic prostate cancer. Prostate 77:123-144, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    International Nuclear Information System (INIS)

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source

  7. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Science.gov (United States)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  8. Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts

    Directory of Open Access Journals (Sweden)

    Christian Holm

    2013-10-01

    Full Text Available Coarse-grained models of soft matter are usually combined with implicit solvent models that take the electrostatic polarizability into account via a dielectric background. In biophysical or nanoscale simulations that include water, this constant can vary greatly within the system. Performing molecular dynamics or other simulations that need to compute exact electrostatic interactions between charges in those systems is computationally demanding. We review here several algorithms developed by us that perform exactly this task. For planar dielectric surfaces in partial periodic boundary conditions, the arising image charges can be either treated with the MMM2D algorithm in a very efficient and accurate way or with the electrostatic layer correction term, which enables the user to use his favorite 3D periodic Coulomb solver. Arbitrarily-shaped interfaces can be dealt with using induced surface charges with the induced charge calculation (ICC* algorithm. Finally, the local electrostatics algorithm, MEMD(Maxwell Equations Molecular Dynamics, even allows one to employ a smoothly varying dielectric constant in the systems. We introduce the concepts of these three algorithms and an extension for the inclusion of boundaries that are to be held fixed at a constant potential (metal conditions. For each method, we present a showcase application to highlight the importance of dielectric interfaces.

  9. Mechanical property changes in porous low-k dielectric thin films during processing

    Energy Technology Data Exchange (ETDEWEB)

    Stan, G., E-mail: gheorghe.stan@nist.gov; Gates, R. S. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Kavuri, P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Torres, J.; Michalak, D.; Ege, C.; Bielefeld, J.; King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2014-10-13

    The design of future generations of Cu-low-k dielectric interconnects with reduced electronic crosstalk often requires engineering materials with an optimal trade off between their dielectric constant and elastic modulus. This is because the benefits associated with the reduction of the dielectric constant by increasing the porosity of materials, for example, can adversely affect their mechanical integrity during processing. By using load-dependent contact-resonance atomic force microscopy, the changes in the elastic modulus of low-k dielectric materials due to processing were accurately measured. These changes were linked to alterations sustained by the structure of low-k dielectric films during processing. A two-phase model was used for quantitative assessments of the elastic modulus changes undergone by the organosilicate skeleton of the structure of porous and pore-filled dielectrics.

  10. Simple dielectric mixing model in the monitoring of CO2 leakage from geological storage aquifer

    Science.gov (United States)

    Abidoye, L. K.; Bello, A. A.

    2017-03-01

    The principle of the dielectric mixing for multiphase systems in porous media has been employed to investigate CO2-water-porous media system and monitor the leakage of CO2, in analogy to scenarios that can be encountered in geological carbon sequestration. A dielectric mixing model was used to relate the relative permittivity for different subsurface materials connected with the geological carbon sequestration. The model was used to assess CO2 leakage and its upward migration, under the influences of the depth-dependent characteristics of the subsurface media as well as the fault-connected aquifers. The results showed that for the upward migration of CO2 in the subsurface, the change in the bulk relative permittivity (εb) of the CO2-water-porous media system clearly depicts the leakage and movement of CO2, especially at depth shallower than 800 m. At higher depth, with higher pressure and temperature, the relative permittivity of CO2 increases with pressure, while that of water decreases with temperature. These characteristics of water and supercritical CO2, combine to limit the change in the εb, at higher depth. Furthermore, it was noted that if the pore water was not displaced by the migrating CO2, the presence of CO2 in the system increases the εb. But, with the displacement of pore water by the migrating CO2, it was shown how the εb profile decreases with time. Owing to its relative simplicity, composite dielectric behaviour of multiphase materials can be effectively deployed for monitoring and enhancement of control of CO2 movement in the geological carbon sequestration.

  11. An improved model for the dielectric constant of sea water at microwave frequencies

    Science.gov (United States)

    Klein, L. A.; Swift, C. T.

    1977-01-01

    The advent of precision microwave radiometry has placed a stringent requirement on the accuracy with which the dielectric constant of sea water must be known. To this end, measurements of the dielectric constant have been conducted at S-band and L-band with a quoted uncertainty of tenths of a percent. These and earlier results are critically examined, and expressions are developed which will yield computations of brightness temperature having an error of no more than 0.3 K for an undisturbed sea at frequencies lower than X-band. At the higher microwave and millimeter wave frequencies, the accuracy is in question because of uncertainties in the relaxation time and the dielectric constant at infinite frequency.

  12. Dielectric Spectroscopy of Biomolecules up to 110 GHz

    Science.gov (United States)

    Laux, Eva-Maria; Ermilova, Elena; Pannwitz, Daniel; Gibbons, Jessica; Hölzel, Ralph; Bier, Frank F.

    2018-03-01

    Radio-frequency fields in the GHz range are increasingly applied in biotechnology and medicine. In order to fully exploit both their potential and their risks detailed information about the dielectric properties of biological material is needed. For this purpose a measuring system is presented that allows the acquisition of complex dielectric spectra over 4 frequency decade up to 110 GHz. Routines for calibration and for data evaluation according to physicochemical interaction models have been developed. The frequency dependent permittivity and dielectric loss of some proteins and nucleic acids, the main classes of biomolecules, and of their sub-units have been determined. Dielectric spectra are presented for the amino acid alanine, the proteins lysozyme and haemoglobin, the nucleotides AMP and ATP, and for the plasmid pET-21, which has been produced by bacterial culture. Characterisation of a variety of biomolecules is envisaged, as is the application to studies on protein structure and function.

  13. Development of a dielectric ceramic based on diatomite-titania part two: dielectric properties characterization

    Directory of Open Access Journals (Sweden)

    Medeiros Jamilson Pinto

    1998-01-01

    Full Text Available Dielectric properties of sintered diatomite-titania ceramics are presented. Specific capacitance, dissipation factor, quality factor and dielectric constant were determined as a function of sintering temperature, titania content and frequency; the temperature coefficient of capacitance was measured as a function of frequency. Besides leakage current, the dependence of the insulation resistance and the dielectric strength on the applied dc voltage were studied. The results show that diatomite-titania compositions can be used as an alternative dielectric.

  14. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    Science.gov (United States)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  15. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    International Nuclear Information System (INIS)

    López-Fernandez, J A; Peña-Eguiluz, R; López-Callejas, R; Mercado-Cabrera, A; Valencia-Alvarado, R; Muñoz-Castro, A; Rodríguez-Méndez, B G

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results. (paper)

  16. Heat and mass transfer in a contaminated porous concrete slab with variable dielectric properties

    International Nuclear Information System (INIS)

    Li, W.; Ebadian, M.A.

    1994-01-01

    The effect of temperature dependent dielectric properties on concrete decontamination and decommissioning using microwave technology is investigated theoretically in this paper. The concrete is treated as a porous material, which has residual water and air within the pores. A one-dimensional model of unsteady heat and mass transport in the porous concrete with temperature dependent dielectric properties is developed. Based on this model, temperature and pressure with different microwave frequencies are predicted, the effects of the temperature dependent dielectric properties on microwave power dissipation, the temperature and pressure distributions for different microwave frequencies, and the different microwave power intensities are analyzed in detail. Four available industrial microwave frequencies of 0.896, 2.45, 10.6 and 18.0 GHz are used in the analysis. As a result of the dielectric properties varying with temperature, the power dissipation also varies with the heating times. Comparing the results for both temperature dependent and constant dielectric properties reveals that the variation of dielectric permittivity with temperature must be considered in a theoretical model of the concrete decontamination and decommissioning process for a low microwave frequency (f <2.45 GHz). (Author)

  17. Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems

    Science.gov (United States)

    Shadangi, Keshab Chandra; Rout, G. C.

    2017-05-01

    The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.

  18. Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR

    Directory of Open Access Journals (Sweden)

    P. Leidenberger

    2006-01-01

    Full Text Available We present a numerical model for time domain reflectometry (TDR signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We derive analytical approximations for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.

  19. Photoluminescence intermittency of semiconductor quantum dots in dielectric environments

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, A.

    2006-08-11

    The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. (orig.)

  20. Modeling Transmission and Reflection Mueller Matrices of Dielectric Half-Wave Plates

    Science.gov (United States)

    Salatino, Maria; de Bernardis, Paolo; Masi, Silvia

    2017-02-01

    We present a simple analytical model describing multiple reflections in dielectric and optically active waveplates, for both normal and slant incidence, including absorption. We compute from first principles the transmission and reflection Mueller matrices of the waveplate. The model is used to simulate the performance of a Stokes polarimeter for mm-waves, in the framework of current attempts to precisely measure the linear polarization of the Cosmic Microwave Background (CMB). We study the spectral response of these optical devices, taking into account band and angle averaging effects and confirm the presence of a much richer spectral dependence than in an ideal phase retarder. We also present the matrix elements for the reflection matrix, which is useful to estimate systematic effects in some polarimeter configurations. The formulas we have derived can be used to quickly simulate the performance of future CMB polarimeters.

  1. Modeling of a Ne/Xe dielectric barrier discharge excilamp for improvement of VUV radiation production

    Science.gov (United States)

    Khodja, K.; Belasri, A.; Loukil, H.

    2017-08-01

    This work is devoted to excimer lamp efficiency optimization by using a homogenous discharge model of a dielectric barrier discharge in a Ne-Xe mixture. The model includes the plasma chemistry, electrical circuit, and Boltzmann equation. In this paper, we are particularly interested in the electrical and kinetic properties and light output generated by the DBD. Xenon is chosen for its high luminescence in the range of vacuum UV radiation around 173 nm. Our study is motivated by interest in this type of discharge in many industrial applications, including the achievement of high light output lamps. In this work, we used an applied sinusoidal voltage, frequency, gas pressure, and concentration in the ranges of 2-8 kV, 10-200 kHz, 100-800 Torr, and 10-50%, respectively. The analyzed results concern the voltage V p across the gap, the dielectric voltage V d, the discharge current I, and the particles densities. We also investigated the effect of the electric parameters and xenon concentration on the lamp efficiency. This investigation will allow one to find out the appropriate parameters for Ne/Xe DBD excilamps to improve their efficiency.

  2. Spectroscopic ellipsometry analysis of InGaN/GaN and AlGaN/GaN heterostructures using a parametric dielectric function model

    International Nuclear Information System (INIS)

    Wagner, J.; Ramakrishnan, A.; Obloh, H.; Kunzer, M.; Koehler, K.; Johs, B.

    2000-01-01

    Spectroscopic ellipsometry (SE) has been used for the characterization of AlGaN/GaN and InGaN/GaN heterostructures. The resulting pseudodielectric function spectra were analyzed using a multilayer approach, describing the dielectric functions of the individual layers by a parametric oscillator model. From this analysis, the dielectric function spectra of GaN, Al x Ga 1-x N (x le 0.16), and In 0.13 Ga 0.87 N were deduced. Further, the dependence of the Al x Ga 1-x N band gap energy on the Al mole fraction was derived and compared with photoluminescence data recorded on the same material. The SE band gap data are compatible with a bowing parameter close to 1 eV for the composition dependence of the Al x Ga 1-x N gap energy. Finally, the parametric dielectric functions have been used to model the pseudodielectric function spectrum of a complete GaN/AlGaN/InGaN LED structure

  3. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  4. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....

  5. Testing quantised inertia on emdrives with dielectrics

    Science.gov (United States)

    McCulloch, M. E.

    2017-05-01

    Truncated-cone-shaped cavities with microwaves resonating within them (emdrives) move slightly towards their narrow ends, in contradiction to standard physics. This effect has been predicted by a model called quantised inertia (MiHsC) which assumes that the inertia of the microwaves is caused by Unruh radiation, more of which is allowed at the wide end. Therefore, photons going towards the wide end gain inertia, and to conserve momentum the cavity must move towards its narrow end, as observed. A previous analysis with quantised inertia predicted a controversial photon acceleration, which is shown here to be unnecessary. The previous analysis also mispredicted the thrust in those emdrives with dielectrics. It is shown here that having a dielectric at one end of the cavity is equivalent to widening the cavity at that end, and when dielectrics are considered, then quantised inertia predicts these results as well as the others, except for Shawyer's first test where the thrust is predicted to be the right size but in the wrong direction. As a further test, quantised inertia predicts that an emdrive's thrust can be enhanced by using a dielectric at the wide end.

  6. Third order dielectric susceptibility in a model quantum paraelectric

    International Nuclear Information System (INIS)

    Martonak, R.; Tosatti, E.

    1996-02-01

    In the context of perovskite quantum paraelectrics, we study the effects of a quadrupolar interaction J q , in addition to the standard dipolar one J d . We concentrate here on the nonlinear dielectric response χ (3) P , as the main response function sensitive to quadrupolar (in our case antiquadrupolar) interactions. We employ a 3D quantum four-state lattice model and mean-field theory. The results show that inclusion of quadrupolar coupling of moderate strength (J q ∼ 1/4J d ) is clearly accompanied by a double change of sign of χ (3) P from negative to positive, near the quantum temperature T Q where the quantum paraelectric behaviour sets in. We fit our χ (3) to recent experimental data for SrTiO 3 , where the sign change is identified close to T Q ∼ 37 K. (author). 40 refs, 2 figs

  7. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric...

  8. Modelling dielectric-constant values of concrete: an aid to shielding effectiveness prediction and ground-penetrating radar wave technique interpretation

    International Nuclear Information System (INIS)

    Bourdi, Taoufik; Rhazi, Jamal Eddine; Ballivy, Gérard; Boone, François

    2012-01-01

    A number of efficient and diverse mathematical methods have been used to model electromagnetic wave propagation. Each of these methods possesses a set of key elements which eases its understanding. However, the modelling of the propagation in concrete becomes impossible without modelling its electrical properties. In addition to experimental measurements; material theoretical and empirical models can be useful to investigate the behaviour of concrete's electrical properties with respect to frequency, moisture content (MC) or other factors. These models can be used in different fields of civil engineering such as (1) electromagnetic compatibility which predicts the shielding effectiveness (SE) of a concrete structure against external electromagnetic waves and (2) in non-destructive testing to predict the radar wave reflected on a concrete slab. This paper presents a comparison between the Jonscher model and the Debye models which is suitable to represent the dielectric properties of concrete, although dielectric and conduction losses are taken into consideration in these models. The Jonscher model gives values of permittivity, SE and radar wave reflected in a very good agreement with those given by experimental measurements and this for different MCs. Compared with other models, the Jonscher model is very effective and is the most appropriate to represent the electric properties of concrete.

  9. Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances

    International Nuclear Information System (INIS)

    Zhu, Lei; Dong, Liang

    2014-01-01

    We numerically demonstrate that a broadband electromagnetically induced transparency–like (EIT-like) effect can be achieved in an all-dielectric microstructure consisting of a dielectric bar and six dielectric bricks. With proper excitations, the dielectric bar and bricks serve as bright and dark elements via the Mie electric and magnetic resonances, respectively. In particular, the mutual couplings between the Mie electric and magnetic resonances induce a broad transparency window. The nature of resonances of the broadband EIT-like effect in an all-dielectric microstructure is investigated by numerical simulation and a coupled oscillator model. Results reveal that significant enhancement of coupling interactions between dielectric resonators leads to a broadband EIT-like effect. Such a dielectric EIT-like structure is promising for future applications in nonlinear optics, slow light devices, and filters. (paper)

  10. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  11. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  12. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Mazzolo, A.

    1992-01-01

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  13. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  14. Study of water mass transfer dynamics in frescoes by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Olmi, R.; Riminesi, C.

    2008-01-01

    The knowledge of moisture content (M C) is essential for determining the state of preservation of various types of hand-work: from building materials such as bricks and concrete, to objects of artistic value, in particular frescoes and mural paintings. In all above, moisture is the primary source of damages, as it affects the durability of porous materials. Dielectric properties of porous materials are strongly affected by the presence of water, suggesting dielectric spectroscopy as a suitable non-invasive diagnostic technique. The development of a quantitative relationship between M C and permittivity requires to investigate the dynamics of water mass transfer in porous media, and to determine its effect on the dielectric properties. In this paper a coupled mass transfer/dielectric problem is introduced and solved numerically, based on a finite element model. Results are compared to experimental dielectric measurements performed on plaster samples by the open coaxial method. The application of the dielectric technique to frescoes monitoring is proposed, showing the results obtained is an on-site study.

  15. Characterization of Dielectric Electroactive Polymer transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide...

  16. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  17. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin-682022, Kerala (India); Sajeev, U. S. [Department of Physics, Government College, Kottayam-686613, Kerala (India); Nair, Swapna S. [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode-671123, Kerala (India); Narayanan, T. N. [CSIR-Central Electrochemical Research Institute, Karaikkudi-630006, Tamil Nadu (India); Ajayan, P. M. [Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 7700 (United States)

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  18. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions....

  19. Stochastic and deterministic causes of streamer branching in liquid dielectrics

    International Nuclear Information System (INIS)

    Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl

    2013-01-01

    Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching

  20. Insight into the dielectric response of transformer oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2017-02-01

    Full Text Available The oil-based nanofluids with greater dielectric strength have attracted much attention as a crucial insulating materials in high-voltage oil-immersed power equipment. In fact, the different microstructures of the transformer oil-based nanofluids (TNFs would result in different dielectric properties. In this work, the broadband dielectric spectroscopy measurement was used to establish the linkage between the electric double layer (EDL and dielectric response properties of TNFs which was performed at 298K temperature and with frequency range from 10-2Hz∼106Hz. The modified Havriliak-Negami (HN model function was used to analyze the measured results. The results demonstrate that both the real and imaginary parts of dielectric spectra of two kinds of oil are composed of the conductivity and polarization process. Compared with pure oil, two polarization process could be observed for the TNFs, explained by the EDL structure reasonably. The introduction of the EDL structure provides an idea to account for the insulating strength improvement of TNFs for the first time.

  1. Dielectric barrier discharges used for the conversion of greenhouse gases : modeling the plasma chemistry by fluid simulations

    NARCIS (Netherlands)

    De Bie, C.; Martens, T.; Dijk, van J.; Paulussen, S.; Verheyde, B.; Corthals, S.; Bogaerts, A.

    2011-01-01

    The conversion of methane to value-added chemicals and fuels is considered to be one of the challenges of the 21st century. In this paper we study, by means of fluid modeling, the conversion of methane to higher hydrocarbons or oxygenates by partial oxidation with CO 2 or O 2 in a dielectric barrier

  2. On the Evaluation of Gate Dielectrics for 4H-SiC Based Power MOSFETs

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz

    2015-01-01

    Full Text Available This work deals with the assessment of gate dielectric for 4H-SiC MOSFETs using technology based two-dimensional numerical computer simulations. Results are studied for variety of gate dielectric candidates with varying thicknesses using well-known Fowler-Nordheim tunneling model. Compared to conventional SiO2 as a gate dielectric for 4H-SiC MOSFETs, high-k gate dielectric such as HfO2 reduces significantly the amount of electric field in the gate dielectric with equal gate dielectric thickness and hence the overall gate current density. High-k gate dielectric further reduces the shift in the threshold voltage with varying dielectric thicknesses, thus leading to better process margin and stable device operating behavior. For fixed dielectric thickness, a total shift in the threshold voltage of about 2.5 V has been observed with increasing dielectric constant from SiO2 (k=3.9 to HfO2 (k=25. This further results in higher transconductance of the device with the increase of the dielectric constant from SiO2 to HfO2. Furthermore, 4H-SiC MOSFETs are found to be more sensitive to the shift in the threshold voltage with conventional SiO2 as gate dielectric than high-k dielectric with the presence of interface state charge density that is typically observed at the interface of dielectric and 4H-SiC MOS surface.

  3. Silicone-based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    Efficient conversion of energy from one form to another (transduction) is an important topic in our daily day, and it is a necessity in moving away from the fossil based society. Dielectric elastomers hold great promise as soft transducers, since they are compliant and light-weight amongst many...... energy efficient solutions are highly sought. These properties allow for interesting products ranging very broadly, e.g. from eye implants over artificial skins over soft robotics to huge wave energy harvesting plants. All these products utilize the inherent softness and compliance of the dielectric...... elastomer transducers. The subject of this thesis is improvement of properties of silicone-based dielectric elastomers with special focus on design guides towards electrically, mechanically, and electromechanically reliable elastomers. Strategies for improving dielectric elastomer performance are widely...

  4. Calculation of the Dielectric Constant as a Function of Temperature Close to the Smectic A-Smectic B Transition in B5 Using the Mean Field Model

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2012-01-01

    Full Text Available The temperature dependence of the static dielectric constant ( is calculated close to the smectic A-smectic B ( transition ( = 71.3°C for the liquid crystal compound B5. By expanding the free energy in terms of the order parameter in the mean field theory, the expression for the dielectric susceptibility (dielectric constant is derived and is fitted to the experimental data for which was obtained at the field strengths of 0 and 67 kV/cm from literature. Coefficients in the free energy expansion are determined from our fit for the transition of B5. Our results show that the observed behaviour of the dielectric constant close to the transition in B5 can be described satisfactorily by our mean field model.

  5. An Electromechanical Model for a Dielectric ElectroActive Polymer Generator

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    Smart electroactive materials have attracted much of the scientific interest over the past few years, as they reflect a quite promising alternative to conservative approaches used nowadays in various transducer applications. Especially Dielectric ElectroActive Polymers (DEAPs), which are constantly...

  6. Rectifying the Optical-Field-Induced Current in Dielectrics: Petahertz Diode.

    Science.gov (United States)

    Lee, J D; Yun, Won Seok; Park, Noejung

    2016-02-05

    Investigating a theoretical model of the optical-field-induced current in dielectrics driven by strong few-cycle laser pulses, we propose an asymmetric conducting of the current by forming a heterojunction made of two distinct dielectrics with a low hole mass (m_{h}^{*}≪m_{e}^{*}) and low electron mass (m_{e}^{*}≪m_{h}^{*}), respectively. This proposition introduces the novel concept of a petahertz (10^{15}  Hz) diode to rectify the current in the petahertz domain, which should be a key ingredient for the electric signal manipulation of future light-wave electronics. Further, we suggest the candidate dielectrics for the heterojunction.

  7. Dielectric response of biconcave erythrocyte membranes to D- and L-Glucose

    International Nuclear Information System (INIS)

    Livshits, L; Caduff, A; Talary, M S; Feldman, Y

    2007-01-01

    In this paper, we report on the influence of D- and L-glucose on the dielectric properties of native shaped (biconcave) human erythrocytes using time domain dielectric spectroscopy. The dielectric spectra of biconcave cells were analysed using a modified form of the model originally reported for spheroid particle suspensions (Asami and Yonezawa 1995 Biochim. Biophys. Acta. 1245 317-24) The observed increase in the specific membrane capacitance of the biconcave erythrocytes was correlated with an increase in the concentration of D-glucose. In contrast, no associated correlation was found to changes in the membrane capacitance with increasing concentrations of L-glucose. A similar analysis of the dielectric response of osmotically swollen erythrocytes to changes in D-glucose concentration revealed a significantly different calculated specific cell membrane capacitance at elevated (>12 mM) D-glucose concentrations. The paper outlines and discusses the possible biochemical mechanisms that could be responsible for the measured dielectric properties of the erythrocyte membrane capacitances

  8. Dielectric and conductivity properties of composite polyaniline/polyurethane network

    Science.gov (United States)

    Liang, C.; Gest, J.; Leroy, G.; Carru, J.-C.

    2013-09-01

    In this work, we present the dielectric characterization of polyaniline/polyurethane composite. The samples consisting of 0.5%, 1%, and 5% of polyaniline were deposited on glass fiber, and the measurements were performed in a frequency range of 20 Hz to 20 GHz. The results showed a dielectric relaxation strongly dependent on the concentration of polyaniline. This phenomenon is explained by a theoretical model. In this model, we assume that the alternative conductivity of the polymer network systems is due to conducting clusters whose lengths followed a Gaussian distribution. Depending on their size and the frequency of the excitation signal, the clusters showed a resistive or capacitive effect.

  9. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  10. Thermal dielectric function

    International Nuclear Information System (INIS)

    Moneta, M.

    1999-01-01

    Thermal dielectric functions ε(k,ω) for homogeneous electron gas were determined and discussed. The ground state of the gas is described by the Fermi-Dirac momentum distribution. The low and high temperature limits of ε(k,ω) were related to the Lindhard dielectric function and to ε(k, omega) derived for Boltzmann and for classical momentum distributions, respectively. (author)

  11. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with

  12. Investigation of the development of dielectric-barrier discharge instabilities in excimer lamp

    Science.gov (United States)

    Bouchachia, A.; Belasri, A.; Harrache, Z.; Amir Aid, D.

    2017-11-01

    This work represents a study of the formation and propagation of the streamer during a pulse in a plasma cell with dielectric barriers containing a Ne/Xe gas mixture. It is based on a longitudinal mono-dimensional model of the dielectric barrier discharge. In this model, we show the possibility of streamers development in the cathode sheath and its propagation during the plasma formation stage. The model gives the spatiotemporal variations of the propagation speed, the electric field, and the charged particle density of the streamer's head.

  13. Temperature and directional dependences of the infrared dielectric function of free standing silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kazan, M.; Bruyant, A.; Sedaghat, Z.; Arnaud, L.; Blaize, S.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, Universite de Technologie de Troyes, CNRS FRE 2848, 12 Rue Marie Curie, 10010 Troyes, Cedex (France)

    2011-03-15

    An approach to calculate the infrared dielectric function of semiconductor nanostructures is presented and applied to silicon (Si) nanowires (NW's). The phonon modes symmetries and frequencies are calculated by means of the elastic continuum medium theory. The modes strengths and damping are calculated from a model for lattice dynamics and perturbation theory. The data are used in anisotropic Lorentz oscillator model to generate the temperature and directional dependences of the infrared dielectric function of free standing Si NW's. Our results showed that in the direction perpendicular to the NW axis, the complex dielectric function is identical to that of bulk Si. However, along the NW axis, the infrared dielectric function is a strong function of the wavelength. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Spectral boundary conditions and solitonic solutions in a classical Sellmeier dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F. [Politecnico di Milano, Dipartimento di Matematica, Milan (Italy); INdAM-GNFM, Rome (Italy); INFN, Milan (Italy); Cacciatori, S.L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN, Milan (Italy); Vigano, A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy)

    2017-06-15

    Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric medium, with the aim to set up a simplified situation where technicalities related to gauge invariance and, as a consequence, physics of constrained systems are avoided, and still interesting features appear. In particular, we simulate the electromagnetic field and the polarization field by means of two coupled scalar fields φ, ψ, respectively, in a Hopfield-like model. We find that, in order to obtain a physically meaningful behavior for the model, one has to introduce spectral boundary conditions depending on the particle spectrum one is dealing with. This is the first interesting achievement of our analysis. The second relevant achievement is that, by introducing a nonlinear contribution in the polarization field ψ, with the aim of mimicking a third order nonlinearity in a nonlinear dielectric, we obtain solitonic solutions in the Hopfield model framework, whose classical behavior is analyzed too. (orig.)

  15. Optical dielectric function of intrinsic amorphous silicon

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1978-01-01

    The imaginary part of the optical dielectric function epsilon 2 (ω) has been calculated using a continuous-random-tetrahedral network as the structural model for the atomic positions. Here the electronic energies and wave functions are determined by first-principles calculations with the method of linear combinations of atomic orbitals (LCAO), and the momentum matrix elements are evaluated directly from the LCAO wave functions. The calculated dielectric function is in good overall agreement with experiment. At energies within 1 eV above the threshold, the epsilon 2 curve shows some structures that are due to interband transitions between the localized states near the band gap

  16. Numerical simulation of the leaky dielectric microdroplet generation in electric fields

    Science.gov (United States)

    Kamali, Reza; Manshadi, Mohammad Karim Dehghan

    2016-07-01

    Microdroplet generation has a vast range of applications in the chemical, biomedical, and biological sciences. Several devices are applied to produce microdroplets, such as Co-flow, T-junction and Flow-focusing. The important point in the producing process is controlling the separated fluid volume in these devices. On the other hand, a large number of liquids, especially aqueous one, are influenced by electric or magnetic fields. As a consequence, an electric field could be used in order to affect the separated fluid volume. In this study, effects of an electric field on the microdroplet generation in a Co-flow device are investigated numerically. Furthermore, effects of some electrical properties such as permittivity on the separating process of microdroplets are studied. Leaky dielectric and perfect dielectric models are used in this investigation. According to the results, in the microdroplet generating process, leaky dielectric fluids show different behaviors, when an electric field is applied to the device. In other words, in a constant electric field strength, the volume of generated microdroplets can increase or decrease, in comparison with the condition without the electric field. However, for perfect dielectric fluids, droplet volume always decreases with increasing the electric field strength. In order to validate the numerical method of this study, deformation of a leaky dielectric droplet in an electric field is investigated. Results are compared with Taylor theoretical model.

  17. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    International Nuclear Information System (INIS)

    Asami, Koji

    2007-01-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities P j , the low-frequency (LF) relaxation curve became broader, especially at P j of 0.2-0.5, and its intensity was proportional to P j up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues

  18. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    Science.gov (United States)

    Asami, Koji

    2007-06-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.

  19. Zipping dielectric elastomer actuators: characterization, design and modeling

    International Nuclear Information System (INIS)

    Maffli, L; Rosset, S; Shea, H R

    2013-01-01

    We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays. (paper)

  20. Research Update: Polyimide/CaCu3Ti4O12 nanofiber functional hybrid films with improved dielectric properties

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2013-11-01

    Full Text Available This work reports the excellent dielectric properties of polyimide (PI embedded with CaCu3Ti4O12 (CCTO nanofibers. The dielectric behaviors were investigated over a frequency of 100 Hz–1 MHz. It is shown that embedding CCTO nanofibers with high aspect ratio (67 is an effective means to enhance the dielectric permittivity and reduce the percolation threshold. The dielectric permittivity of PI/CCTO nanofiber composites is 85 with 1.5 vol.% loading of filler, also the dielectric loss is only 0.015 at 100 Hz. Monte Carlo simulation was used to investigate the percolation threshold of CCTO nanofibers reinforced polyimide matrix by using excluded volume theory and soft, hard-core models. The results are in good agreement with the percolation theory and the hard-core model can well explain the percolation phenomena in PI/CCTO nanofiber composites. The dielectric properties of the composites will meet the practical requirements for the application in high dielectric constant capacitors and high energy density materials.

  1. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    Science.gov (United States)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  2. Ultralow frequency bridge for dielectric measurements: applications to electrects

    International Nuclear Information System (INIS)

    Slaets, J.

    1976-01-01

    The problem of U.L.F. (Ultra Low Frequency) dielectric relaxation is investigated. An experimental model is proposed for a bridge covering the range of 10 -3 Hz-10Hz, pased on phase shift measurements originally proposed by Van Turhout and collaborators. The main experimental problems are also analyzed with such U.L.F. measurements and describe its construction and performance. The theoretical correlation between U.L.F. dielectric relaxation and electret thermal stimulated currents is also investigated. A correction for the integral expression given by Turnhout and collaborators, is calculated in particular that takes into account the value of the activation energy in the relation between the two techniques.The correction is important for values of the activation energy below 0,5eV, which occur frequently in dielectric relaxation processes. (Author) [pt

  3. Study of the dielectric properties of barium titanate-polymer composites

    International Nuclear Information System (INIS)

    Pant, H.C.; Patra, M.K.; Verma, Aditya; Vadera, S.R.; Kumar, N.

    2006-01-01

    A comparative study of complex dielectric properties has been carried out at the X-band of microwave frequencies of composites of barium titanate (BaTiO 3 ) with two different polymer matrices: insulating polyaniline (PANI) powder (emeraldine base) and maleic resin. From these studies, it is observed that the composites of BaTiO 3 with maleic resin show normal composite behavior and the dielectric constant follows the asymmetric Bruggeman model. In contrast, the composites of BaTiO 3 with PANI show an unusual behavior wherein even at a low concentration of PANI (5 wt.%) there is a drastic reduction in the dielectric constant of BaTiO 3 . This behavior of the dielectric constant is explained on the basis of coating of BaTiO 3 particles by PANI which in turn is attributed to the highly surface adsorbing character. The materials have also been characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and optical microscopy studies

  4. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  5. Beyond the androgen receptor II: New approaches to understanding and treating metastatic prostate cancer; Report from the 2017 Coffey-Holden Prostate Cancer Academy Meeting.

    Science.gov (United States)

    Miyahira, Andrea K; Cheng, Heather H; Abida, Wassim; Ellis, Leigh; Harshman, Lauren C; Spratt, Daniel E; Simons, Jonathan W; Pienta, Kenneth J; Soule, Howard R

    2017-11-01

    The 2017 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Beyond the Androgen Receptor II: New Approaches to Understanding and Treating Metastatic Prostate Cancer," was held in Carlsbad, California from June 14-17, 2017. The CHPCA is an annual scientific conference hosted by the Prostate Cancer Foundation (PCF) that is uniquely designed to produce extensive and constructive discussions on the most urgent and impactful topics concerning research into the biology and treatment of metastatic prostate cancer. The 2017 CHPCA Meeting was the 5th meeting in this annual series and was attended by 71 investigators focused on prostate cancer and a variety of other fields including breast and ovarian cancer. The discussions at the meeting were concentrated on topics areas including: mechanisms and therapeutic approaches for molecular subclasses of castrate resistant prostate cancer (CRPC), the epigenetic landscape of prostate cancer, the role of DNA repair gene mutations, advancing the use of germline genetics in clinical practice, radionuclides for imaging and therapy, advances in molecular imaging, and therapeutic strategies for successful use of immunotherapy in advanced prostate cancer. This article reviews the presentations and discussions from the 2017 CHPCA Meeting in order to disseminate this knowledge and accelerate new biological understandings and advances in the treatment of patients with metastatic prostate cancer. © 2017 Wiley Periodicals, Inc.

  6. Numerical Modelling of Mutual Effect among Nearby Needles in a Multi-Needle Configuration of an Atmospheric Air Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2012-05-01

    Full Text Available A numerical study has been conducted to understand the mutual effect among nearby needles in a multi-needle electrode dielectric barrier discharge. In the present paper, a fluid-hydrodynamic model is adopted. In this model, the mutual effect among nearby needles in a multi-needle configuration of an atmospheric air dielectric barrier discharge are investigated using a fluid-hydrodynamic model including the continuity equations for electrons and positive and negative ions coupled with Poisson’s equation. The electric fields at the streamer head of the middle needle (MN and the side needles (SNs in a three-needle model decreased under the influence of the mutual effects of nearby needles compared with that in the single-needle model. In addition, from the same comparison, the average propagation velocities of the streamers from MN and SNs, the electron average energy profile of MN and SNs (including those in the streamer channel, at the streamer head, and in the unbridged gap, and the electron densities at the streamer head of the MN and SNs also decreased. The results obtained in the current paper agreed well with the experimental and simulation results in the literature.

  7. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  8. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable

  9. Dielectric Modulated FET (DMFET)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the nanogap cavity leads to change in effective gate capacitance and thus gate bias for FET. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the ...

  10. Dielectric properties of binary solutions a data handbook

    CERN Document Server

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  11. Dielectric matrix, dynamical matrix and phonon dispersion in hcp transition metal scandium

    International Nuclear Information System (INIS)

    Singh, Joginder; Singh, Natthi; Prakash, S.

    1976-01-01

    Complete dielectric matrix is evaluated for hcp transition metal scandium using the non-interacting s- and d-band model. The local field corrections which are consequence of the non-diagonal part of the dielectric matrix are calculated explicitly. The free electron approximation is used for the s-electrons and the simple tight-binding approximation is used for the d-electrons. The theory developed by Singh and others is used to invert the dielectric matrix and the explicit expressions for the dynamical matrix are obtained. The phonon dispersion relations are investigated by using the renormalized Animalu transition metal model potential (TMMP) for bare ion potential. The contribution due to non-central forces which arise due to local fields is found to be 20%. The results are found in resonably good agreement with the experimental values. (author)

  12. Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss.

    Science.gov (United States)

    Zeraati, Ali Shayesteh; Arjmand, Mohammad; Sundararaj, Uttandaraman

    2017-04-26

    This study reports the fabrication of hybrid nanocomposites based on silver nanowire/manganese dioxide nanowire/poly(methyl methacrylate) (AgNW/MnO 2 NW/PMMA), using a solution casting technique, with outstanding dielectric permittivity and low dielectric loss. AgNW was synthesized using the hard-template technique, and MnO 2 NW was synthesized employing a hydrothermal method. The prepared AgNW:MnO 2 NW (2.0:1.0 vol %) hybrid nanocomposite showed a high dielectric permittivity (64 at 8.2 GHz) and low dielectric loss (0.31 at 8.2 GHz), which are among the best reported values in the literature in the X-band frequency range (8.2-12.4 GHz). The superior dielectric properties of the hybrid nanocomposites were attributed to (i) dimensionality match between the nanofillers, which increased their synergy, (ii) better dispersion state of AgNW in the presence of MnO 2 NW, (iii) positioning of ferroelectric MnO 2 NW in between AgNWs, which increased the dielectric permittivity of nanodielectrics, thereby increasing dielectric permittivity of the hybrid nanocomposites, (iv) barrier role of MnO 2 NW, i.e., cutting off the contact spots of AgNWs and leading to lower dielectric loss, and (v) AgNW aligned structure, which increased the effective surface area of AgNWs, as nanoelectrodes. Comparison of the dielectric properties of the developed hybrid nanocomposites with the literature highlights their great potential for flexible capacitors.

  13. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  14. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  15. Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the

  16. Comparison of Positive Streamers in Liquid Dielectrics with and without Nanoparticles Simulated with Finite-Element Software

    Directory of Open Access Journals (Sweden)

    Juan Velasco

    2018-02-01

    Full Text Available In this paper, a comparison of positive streamer diffusion propagation is carried out in three configurations of oil transformers: mineral transformer oil, mineral oil with solid dielectric barriers, and a nanofluid. The results have been solved using a finite-element method with a two-dimensional (2D axi-symmetric space dimension selected. Additionally, previous results from other research has been reviewed to compare the results obtained. As expected, it is confirmed that the nanoparticles improve the dielectric properties of the mineral oil. In addition, it is observed that the dielectric solid blocks the propagation of the streamer when it is submerged with a horizontal orientation, thus perpendicular to the applied electric field. The computer used, with four cores (each 3.4 GHz and 16 GB of RAM, was not sufficient for performing the simulations of the models with great precision. However, with these first models, the tendency of the dielectric behavior of the oil was obtained for the three cases in which the streamer was acting through the transformer oil. The simulation of these models, in the future, in a supercomputer with a high performance in terms of RAM memory may allow us to predict, as an example, the best concentration of nanoparticles to retard the streamer inception. Finally, other dielectric issues will be predicted using these models, such as to analyze the advantages and drawbacks of the presence of dielectrics inside the oil transformer.

  17. Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hvidsten, Sverre

    1999-07-01

    Condition assessment of XLPE power cables is becoming increasingly important for the utilities, due to a large number of old cables in service with high probability of failure caused by water tree degradation. The commercial available techniques are generally based upon measurements of the dielectric response, either by time (polarisation/depolarisation current or return voltage) or frequency domain measurements. Recently it has been found that a high number of water trees in XLPE insulated cables causes the dielectric response to increase more than linearly with increasing test voltage. This nonlinear feature of water tree degraded XLPE insulation has been suggested to be of a great importance, both for diagnostic purposes, and for fundamental understanding of the water tree phenomenon itself. The main purpose of this thesis have been to study the nonlinear feature of the dielectric response measured on watertreed XLPE insulation. This has been performed by dielectric response measurements in both time and frequency domain, numerical calculations of losses of simplified water tree models, and fmally water content and water permeation measurements on single water trees. The dielectric response measurements were performed on service aged cable samples and laboratory aged Rogowski type objects. The main reason for performing laboratory ageing was to facilitate diagnostic testing as a function of ageing time of samples containing mainly vented water trees. A new method, based upon inserting NaC1 particles at the interface between the upper semiconductive screen and the insulation, was found to successfully enhance initiation and growth of vented water trees. AC breakdown strength testing show that it is the vented water trees that reduce the breakdown level of both the laboratory aged test objects and service aged cable samples. Vented water treeing was found to cause the dielectric response to become nonlinear at a relatively low voltage level. However, the measured

  18. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    Science.gov (United States)

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  19. General theory of the transverse dielectric constant of III-V semiconducting compounds

    Science.gov (United States)

    Kahen, K. B.; Leburton, J. P.

    1985-01-01

    A general model of the transverse dielectric constant of III-V compounds is developed using a hybrid method which combines the kp method with a nonlocal pseudopotential calculation. In this method the Brillouin zone is partitioned into three regions by expanding the energy bands and matrix elements about the F, X, and L symmetry points. The real and imaginary parts of the dielectric constant are calculated as a sum of the individual contributions of each region. By using this partition method, it is possible to get good insight into the dependence of the dielectric constant on the shape of the band structure.

  20. Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates

    KAUST Repository

    Zhang, Yuan

    2013-08-06

    Cubic bismuth pyrochlores in the Bi2O3 Bi 2O3-MgO-Nb2O5 Nb2O 5 system have been investigated as promising dielectric materials due to their high dielectric constant and low dielectric loss. Here, we report on the dielectric properties and microstructures of cubic pyrochlored Bi 1.5 MgNb 1.5 O 7 Bi1.5MgNb1.5O7 (BMN) ceramic samples synthesized via solid-state reactions. The dielectric constant (measured at 1 MHz) was measured to be ∼ 120 ∼120 at room temperature, and the dielectric loss was as low as 0.001. X-ray diffraction patterns demonstrated that the BMN samples had a cubic pyrochlored structure, which was also confirmed by selected area electron diffraction (SAED) patterns. Raman spectrum revealed more than six vibrational models predicted for the ideal pyrochlore structure, indicating additional atomic displacements of the A and O′ O\\' sites from the ideal atomic positions in the BMN samples. Structural modulations of the pyrochlore structure along the [110] and [121] directions were observed in SAED patterns and high-resolution transmission electron microscopy (HR-TEM) images. In addition, HR-TEM images also revealed that the grain boundaries (GBs) in the BMN samples were much clean, and no segregation or impure phase was observed forming at GBs. The high dielectric constants in the BMN samples were ascribed to the long-range ordered pyrochlore structures since the electric dipoles formed at the superstructural direction could be enhanced. The low dielectric loss was attributed to the existence of noncontaminated GBs in the BMN ceramics. © 2013 Springer-Verlag Berlin Heidelberg.

  1. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    International Nuclear Information System (INIS)

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

  2. Cellulose Triacetate Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  3. Giant, Voltage-Actuated Deformation of a Dielectric Elastomer under Dead Load

    OpenAIRE

    Huang, Jiangshui; Li, Tiefeng; Foo, Choon Chiang; Clarke, David R.; Zhu, Jian; Suo, Zhigang

    2012-01-01

    Far greater voltage-actuated deformation is achievable for a dielectric elastomer under equal-biaxial dead load than under rigid constraint usually employed. Areal strains of 488% are demonstrated. The dead load suppresses electric breakdown, enabling the elastomer to survive the snap-through electromechanical instability. The breakdown voltage is found to increase with the voltage ramp rate. A nonlinear model for viscoelastic dielectric elastomers is developed and shown to be consistent with...

  4. An Engineering Tool for the Prediction of Internal Dielectric Charging

    Science.gov (United States)

    Rodgers, D. J.; Ryden, K. A.; Wrenn, G. L.; Latham, P. M.; Sorensen, J.; Levy, L.

    1998-11-01

    A practical internal charging tool has been developed. It provides an easy-to-use means for satellite engineers to predict whether on-board dielectrics are vulnerable to electrostatic discharge in the outer radiation belt. The tool is designed to simulate irradiation of single-dielectric planar or cylindrical structures with or without shielding. Analytical equations are used to describe current deposition in the dielectric. This is fast and gives charging currents to sufficient accuracy given the uncertainties in other aspects of the problem - particularly material characteristics. Time-dependent internal electric fields are calculated, taking into account the effect on conductivity of electric field, dose rate and temperature. A worst-case model of electron fluxes in the outer belt has been created specifically for the internal charging problem and is built into the code. For output, the tool gives a YES or NO decision on the susceptibility of the structure to internal electrostatic breakdown and if necessary, calculates the required changes to bring the system below the breakdown threshold. A complementary programme of laboratory irradiations has been carried out to validate the tool. The results for Epoxy-fibreglass samples show that the code models electric field realistically for a wide variety of shields, dielectric thicknesses and electron spectra. Results for Teflon samples indicate that some further experimentation is required and the radiation-induced conductivity aspects of the code have not been validated.

  5. Impact of volume and surface processes on the pre-ionization of dielectric barrier discharges: advanced diagnostics and fluid modeling

    Science.gov (United States)

    Nemschokmichal, Sebastian; Tschiersch, Robert; Höft, Hans; Wild, Robert; Bogaczyk, Marc; Becker, Markus M.; Loffhagen, Detlef; Stollenwerk, Lars; Kettlitz, Manfred; Brandenburg, Ronny; Meichsner, Jürgen

    2018-05-01

    The phenomenology and breakdown mechanism of dielectric barrier discharges are strongly determined by volume and surface memory effects. In particular, the pre-ionization provided by residual species in the volume or surface charges on the dielectrics influences the breakdown behavior of filamentary and diffuse discharges. This was investigated by advanced diagnostics such as streak camera imaging, laser photodetachment of negative ions and laser photodesorption of electrons from dielectric surfaces in correlation with 1D fluid modeling. The streak camera images show that an increasing number of residual charges in the volume changes the microdischarge breakdown in air-like gas mixtures from a cathode-directed streamer to a simultaneous propagation of cathode- and anode-directed streamers. In contrast, seed electrons are important for the pre-ionization if the density of residual charges in the volume is low. One source of seed electrons are negative ions, whose density exceeds the electron density during the pre-phase of diffuse helium-oxygen barrier discharges as indicated by the laser photodetachment experiments. Electrons desorbed from the cathodic dielectric have an even larger influence. They induce a transition from the glow-like to the Townsend-like discharge mode in nominally pure helium. Apart from analyzing the importance of the pre-ionization for the breakdown mechanism, the opportunities for manipulating the lateral structure and discharge modes are discussed. For this purpose, the intensity and diameter of a diffuse discharge in helium are controlled by an illuminated semiconducting barrier. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  6. New modeling method for the dielectric relaxation of a DRAM cell capacitor

    Science.gov (United States)

    Choi, Sujin; Sun, Wookyung; Shin, Hyungsoon

    2018-02-01

    This study proposes a new method for automatically synthesizing the equivalent circuit of the dielectric relaxation (DR) characteristic in dynamic random access memory (DRAM) without frequency dependent capacitance measurement. Charge loss due to DR can be observed by a voltage drop at the storage node and this phenomenon can be analyzed by an equivalent circuit. The Havariliak-Negami model is used to accurately determine the electrical characteristic parameters of an equivalent circuit. The DRAM sensing operation is performed in HSPICE simulations to verify this new method. The simulation demonstrates that the storage node voltage drop resulting from DR and the reduction in the sensing voltage margin, which has a critical impact on DRAM read operation, can be accurately estimated using this new method.

  7. GPR Laboratory Tests For Railways Materials Dielectric Properties Assessment

    Directory of Open Access Journals (Sweden)

    Francesca De Chiara

    2014-10-01

    Full Text Available In railways Ground Penetrating Radar (GPR studies, the evaluation of materials dielectric properties is critical as they are sensitive to water content, to petrographic type of aggregates and to fouling condition of the ballast. Under the load traffic, maintenance actions and climatic effects, ballast condition change due to aggregate breakdown and to subgrade soils pumping, mainly on existing lines with no sub ballast layer. The main purpose of this study was to validate, under controlled conditions, the dielectric values of materials used in Portuguese railways, in order to improve the GPR interpretation using commercial software and consequently the management maintenance planning. Different materials were tested and a broad range of in situ conditions were simulated in laboratory, in physical models. GPR tests were performed with five antennas with frequencies between 400 and 1800 MHz. The variation of the dielectric properties was measured, and the range of values that can be obtained for different material condition was defined. Additionally, in situ GPR measurements and test pits were performed for validation of the dielectric constant of clean ballast. The results obtained are analyzed and the main conclusions are presented herein.

  8. Evolutionary search for new high-k dielectric materials: methodology and applications to hafnia-based oxides.

    Science.gov (United States)

    Zeng, Qingfeng; Oganov, Artem R; Lyakhov, Andriy O; Xie, Congwei; Zhang, Xiaodong; Zhang, Jin; Zhu, Qiang; Wei, Bingqing; Grigorenko, Ilya; Zhang, Litong; Cheng, Laifei

    2014-02-01

    High-k dielectric materials are important as gate oxides in microelectronics and as potential dielectrics for capacitors. In order to enable computational discovery of novel high-k dielectric materials, we propose a fitness model (energy storage density) that includes the dielectric constant, bandgap, and intrinsic breakdown field. This model, used as a fitness function in conjunction with first-principles calculations and the global optimization evolutionary algorithm USPEX, efficiently leads to practically important results. We found a number of high-fitness structures of SiO2 and HfO2, some of which correspond to known phases and some of which are new. The results allow us to propose characteristics (genes) common to high-fitness structures--these are the coordination polyhedra and their degree of distortion. Our variable-composition searches in the HfO2-SiO2 system uncovered several high-fitness states. This hybrid algorithm opens up a new avenue for discovering novel high-k dielectrics with both fixed and variable compositions, and will speed up the process of materials discovery.

  9. Dielectric Properties of Binary Solvent Mixtures of Dimethyl Sulfoxide with Water

    Science.gov (United States)

    Yang, Li-Jun; Yang, Xiao-Qing; Huang, Ka-Ma; Jia, Guo-Zhu; Shang, Hui

    2009-01-01

    In this paper, the dielectric properties of water-dimethylsulfoxide (DMSO) mixtures with different mole ratios have been investigated in the range of 1 GHz to 40 GHz at 298 K by using a molecular dynamics (MD) simulation. Only one dielectric loss peak was observed in the frequency range and the relaxation in these mixtures can be described by a single relaxation time of the Davidson-Cole. It was observed that within experimental error the dielectric relaxation can be described by the Debye-like model (β ≈ 1, S.M. Puranik, et al. J. Chem. Soc. Faraday Trans. 1992, 88, 433 – 435). In general, the results are very consistent with the experimental measurements. PMID:19399247

  10. Dielectric Properties of Binary Solvent Mixtures of Dimethyl Sulfoxide with Water

    Directory of Open Access Journals (Sweden)

    Li-Jun Yang

    2009-03-01

    Full Text Available In this paper, the dielectric properties of water-dimethylsulfoxide (DMSO mixtures with different mole ratios have been investigated in the range of 1 GHz to 40 GHz at 298 K by using a molecular dynamics (MD simulation. Only one dielectric loss peak was observed in the frequency range and the relaxation in these mixtures can be described by a single relaxation time of the Davidson-Cole. It was observed that within experimental error the dielectric relaxation can be described by the Debye-like model (β ≈ 1, S.M. Puranik, et al. J. Chem. Soc. Faraday Trans.1992, 88, 433 - 435. In general, the results are very consistent with the experimental measurements.

  11. Investigation of the dielectric properties of shale

    International Nuclear Information System (INIS)

    Martemyanov, Sergey M.

    2011-01-01

    The article is dedicated to investigation of the dielectric properties of oil shale. Investigations for samples prepared from shale mined at the deposit in Jilin Province in China were done. The temperature and frequency dependences of rock characteristics needed to calculate the processes of their thermal processing are investigated. Frequency dependences for the relative dielectric constant and dissipation factor of rock in the frequency range from 0,1 Hz to 1 MHz are investigated. The temperature dependences for rock resistance, dielectric capacitance and dissipation factor in the temperature range from 20 to 600°C are studied. Key words: shale, dielectric properties, relative dielectric constant, dissipation factor, temperature dependence, frequency dependence

  12. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...

  13. Modeling of leakage currents in high-k dielectrics

    International Nuclear Information System (INIS)

    Jegert, Gunther Christian

    2012-01-01

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO 2 material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO 2 /TiN capacitor structures were suggested and problem areas that may

  14. Modeling of leakage currents in high-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jegert, Gunther Christian

    2012-03-15

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO{sub 2} material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO{sub 2}/TiN capacitor structures were suggested and problem areas

  15. A finite element model of rigid body structures actuated by dielectric elastomer actuators

    Science.gov (United States)

    Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.

    2018-06-01

    This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.

  16. Structural, electrical and dielectric properties of nanocrystalline Mg-Zn ferrites

    International Nuclear Information System (INIS)

    Anis-ur-Rehman, M.; Malik, M.A.; Nasir, S.; Mubeen, M.; Khan, K.; Maqsood, A.

    2011-01-01

    The nanocrystalline Mg-Zn ferrites having general formula Mg/sub 1-x/Zn/sub x/Fe/sub 2/O/sub 4/ (x=0, 0.1, 0.2, 0.3, 0.4, 0. 5) were prepared by WOWS sol-gel route. All prepared samples were sintered at 700 deg. C for 2 h. X-ray powder diffraction (XRD) technique was used to investigate structural properties of the samples. The crystal structure was found to be spinel. The crystallite size, lattice parameters and porosity of samples were calculated by XRD data analysis as function of zinc concentration. The crystallite size for each sample was calculated using the Scherrer formula considering the most intense (3 1 1) peak and the range obtained was 34-68 nm. The dielectric constant, dielectric loss tangent and AC electrical conductivity of nanocrystalline Mg-Zn ferrites are investigated as a function of frequency. The dielectric constant, dielectric loss tangent increased with increase of Zn concentration. All the electrical properties are explained in accordance with Maxwell Wagner model and K/sub oops/ phenomenological theory. (author)

  17. Study of the dielectric properties of barium titanate-polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Pant, H.C. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Patra, M.K. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Verma, Aditya [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Vadera, S.R. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Kumar, N. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India)]. E-mail: nkjainjd@yahoo.com

    2006-07-15

    A comparative study of complex dielectric properties has been carried out at the X-band of microwave frequencies of composites of barium titanate (BaTiO{sub 3}) with two different polymer matrices: insulating polyaniline (PANI) powder (emeraldine base) and maleic resin. From these studies, it is observed that the composites of BaTiO{sub 3} with maleic resin show normal composite behavior and the dielectric constant follows the asymmetric Bruggeman model. In contrast, the composites of BaTiO{sub 3} with PANI show an unusual behavior wherein even at a low concentration of PANI (5 wt.%) there is a drastic reduction in the dielectric constant of BaTiO{sub 3}. This behavior of the dielectric constant is explained on the basis of coating of BaTiO{sub 3} particles by PANI which in turn is attributed to the highly surface adsorbing character. The materials have also been characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and optical microscopy studies.

  18. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    Science.gov (United States)

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  19. Dielectric inspection of erythrocyte morphology

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes

  20. Dielectric inspection of erythrocyte morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)], E-mail: Yoshihito.Hayashi@jp.sony.com

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  1. Effect of species structure and dielectric constant on C-band forest backscatter

    Science.gov (United States)

    Lang, R. H.; Landry, R.; Kilic, O.; Chauhan, N.; Khadr, N.; Leckie, D.

    1993-01-01

    A joint experiment between Canadian and USA research teams was conducted early in Oct. 1992 to determine the effect of species structure and dielectric variations on forest backscatter. Two stands, one red pine and one jack pine, in the Petawawa National Forestry Institute (PNFI) were utilized for the experiment. Extensive tree architecture measurements had been taken by the Canada Centre for Remote Sensing (CCRS) several months earlier by employing a Total Station surveying instrument which provides detailed information on branch structure. A second part of the experiment consisted of cutting down several trees and using dielectric probes to measure branch and needle permittivity values at both sites. The dielectric and the tree geometry data were used in the George Washington University (GWU) Vegetation Model to determine the C band backscattering coefficients of the individual stands for VV polarization. The model results show that backscatter at C band comes mainly from the needles and small branches and the upper portion of the trunks acts only as an attenuator. A discussion of variation of backscatter with specie structure and how dielectric variations in needles for both species may affect the total backscatter returns is provided.

  2. Laser amplification in excited dielectrics

    DEFF Research Database (Denmark)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using...... these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400nm femtosecond laser pulse is coherently...

  3. Dual-cycle dielectrophoretic collection rates for probing the dielectric properties of nanoparticles.

    Science.gov (United States)

    Bakewell, David J; Holmes, David

    2013-04-01

    A new DEP spectroscopy method and supporting theoretical model is developed to systematically quantify the dielectric properties of nanoparticles using continuously pulsed DEP collection rates. Initial DEP collection rates, that are dependent on the nanoparticle dielectric properties, are an attractive alternative to the crossover frequency method for determining dielectric properties. The new method introduces dual-cycle amplitude modulated and frequency-switched DEP (dual-cycle DEP) where the first collection rate with a fixed frequency acts as a control, and the second collection rate frequency is switched to a chosen value, such that, it can effectively probe the dielectric properties of the nanoparticles. The application of the control means that measurement variation between DEP collection experiments is reduced so that the frequency-switched probe collection is more effective. A mathematical model of the dual-cycle method is developed that simulates the temporal dynamics of the dual-cycle DEP nanoparticle collection system. A new statistical method is also developed that enables systematic bivariate fitting of the multifrequency DEP collection rates to the Clausius-Mossotti function, and is instrumental for determining dielectric properties. A Monte-Carlo simulation validates that collection rates improve estimation of the dielectric properties, compared with the crossover method, by exploiting a larger number of independent samples. Experiments using 200 nm diameter latex nanospheres suspended in 0.2 mS/m KCl buffer yield a nanoparticle conductivity of 26 mS/m that lies within 8% of the expected value. The results show that the dual-frequency method has considerable promise particularly for automated DEP investigations and associated technologies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  5. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  6. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.

    2010-11-19

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  7. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.; Caraveo-Frescas, J. A.; Cha, D. K.

    2010-01-01

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  8. Applicability of point-dipoles approximation to all-dielectric metamaterials

    DEFF Research Database (Denmark)

    Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei

    2015-01-01

    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....

  9. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  10. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...

  11. Examination of Effective Dielectric Constants Derived from Non-Spherical Melting Hydrometeor

    Science.gov (United States)

    Liao, L.; Meneghini, R.

    2009-04-01

    The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is often observed in stratiform rain. Understanding the microphysical properties of melting hydrometeors and their scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers. However, one of the impediments in the study of the radar signature of the melting layer is the determination of effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants, their results vary to a great extent when water is a component of the mixture, such as in the case of melting snow. It is also physically unclear as to how to select among these various formulas. Furthermore, the question remains as to whether these mixing formulas can be applied to computations of radar polarimetric parameters from non-spherical melting particles. Recently, several approaches using numerical methods have been developed to derive the effective dielectric constants of melting hydrometeors, i.e., mixtures consisting of air, ice and water, based on more realistic melting models of particles, in which the composition of the melting hydrometeor is divided into a number of identical cells. Each of these cells is then assigned in a probabilistic way to be water, ice or air according to the distribution of fractional water contents for a particular particle. While the derived effective dielectric constants have been extensively tested at various wavelengths over a range of particle sizes, these numerical experiments have been restricted to the co-polarized scattering parameters from spherical particles. As polarimetric radar has been increasingly used in the study of microphysical properties of hydrometeors, an extension of the theory to polarimetric variables should provide additional information on melting processes. To account for polarimetric

  12. Evaluation of Apple Maturity with Two Types of Dielectric Probes

    Directory of Open Access Journals (Sweden)

    Marcin Kafarski

    2018-01-01

    Full Text Available The observed dielectric spectrum of ripe apples in the last period of shelf-life was analyzed using a multipole dielectric relaxation model, which assumes three active relaxation processes: primary α-process (water relaxation and two secondary processes caused by solid-water-ion interactions α’ (bound water relaxations, as well as β’ (Maxwell-Wagner effect. The performance of two designs of the dielectric probe was compared: a classical coaxial open-ended probe (OE probe and an open-ended probe with a prolonged central conductor in a form of an antenna (OE-A-probe. The OE-A probe increases the measurement volume and consequently extends the range of applications to other materials, like granulated agricultural products, soils, or liquid suspensions. However, its measurement frequency range is limited as compared to the OE probe because, above 1.5 GHz, the probe with the antenna generates higher propagation modes and the applied calibrations and calculations are not sufficient. It was shown that data from measurements using the OE-A probe gave slightly stronger correlations with apples’ quality parameters than using the typical OE probe. Additionally, we have compared twelve multipole fitting models with different combinations of poles (eight three-pole and four two-pole models. It was shown that the best fit is obtained using a two-pole model for data collected for the OE-A probe and a three-pole model for the OE probe, using only Cole-Cole poles in both cases.

  13. Role of dielectric effects in the red-green switching of porous silicon luminescence

    International Nuclear Information System (INIS)

    Chazalviel, J.N.; Ozanam, F.; Dubin, V.M.

    1994-01-01

    Trapping of a carrier at an ionized impurity in porous silicon may be significantly hindered when the material is embedded in a high-dielectric-constant medium such as an aqueous electrolyte. This effect is estimated for a geometry of cylindrical silicon wires, and by modeling the two media with wavevector-independent dielectric constants. The self-image potential of the electron is taken into account, and the frequency dependence of the outer dielectric constant is treated in a simple manner. The results demonstrate that the impurity states are not accessible in the presence of the electrolyte, just due to the dielectric relaxation of the embedding medium. This result may apply to different kinds of localized electronic states, including those responsible for the red luminescence in dry porous silicon. This provides a plausible explanation for the red to green switching of the luminescence when the porous silicon is wet and suggests that using embedding media of intermediate dielectric constants should allow one to observe a progressive transition between red and green luminescence. Observation of porous silicon luminescence in solvents of various dielectric constants provides a preliminary test of this prediction. (orig.)

  14. High thermal conductivity lossy dielectric using a multi layer configuration

    Science.gov (United States)

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  15. Trends of microwave dielectric materials for antenna application

    International Nuclear Information System (INIS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε_r), high quality factor (Q _f ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ_f). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  16. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Krogh, M.; Williams, C.; Trimble, D.; Sampayan, S.; Caporaso, G.

    2003-01-01

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed

  17. Dielectric spectroscopy of watermelons for quality sensing

    Science.gov (United States)

    Nelson, Stuart O.; Guo, Wen-chuan; Trabelsi, Samir; Kays, Stanley J.

    2007-07-01

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and an impedance analyser over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons and also on tissue samples from the edible internal tissue. Moisture content and soluble solids content (SSC) were measured for internal tissue samples, and SSC (sweetness) was used as the quality factor for correlation with the dielectric properties. Individual dielectric constant and loss factor correlations with SSC were low, but a high correlation was obtained between the SSC and permittivity from a complex-plane plot of dielectric constant and loss factor, each divided by SSC. However, SSC prediction from the dielectric properties by this relationship was not as high as expected (coefficient of determination about 0.4). Permittivity data (dielectric constant and loss factor) for the melons are presented graphically to show their relationships with frequency for the four melon cultivars and for external surface and internal tissue measurements. A dielectric relaxation for the external surface measurements, which may be attributable to a combination of bound water, Maxwell-Wagner, molecular cluster or ion-related effects, is also illustrated. Coefficients of determination for complex-plane plots, moisture content and SSC relationship, and penetration depth are also shown graphically. Further studies are needed for determining the practicality of sensing melon quality from their dielectric properties.

  18. Properties of dielectric barrier discharges in different arrangements

    International Nuclear Information System (INIS)

    Pietsch, G.J.

    2001-01-01

    Dielectric barrier discharges (DBDs) occur in arrangements where at least one dielectric is positioned in a gas space in between conducting electrodes. When breakdown field strength is reached in such a device, charge carriers are created in the gas region, accelerated, multiplied and finally collected on the surface(s) of the dielectric(s). The charge accumulation on the dielectric creates a counter field to that resulting from the power supply and as all of these processes are rather fast, the discharge quenches rapidly. The dielectric has two tasks, it limits the transferred charge and by this the energy conversion and distributes the discharge over the electrode area. That is why DBDs are non-thermal discharges which exist even at atmospheric pressure

  19. Frequency and temperature dependent dielectric properties of TiO2-V2O5 nanocomposites

    Science.gov (United States)

    Ray, Apurba; Roy, Atanu; De, Sayan; Chatterjee, Souvik; Das, Sachindranath

    2018-03-01

    In this manuscript, we have reported the crystal structure, dielectric response, and transport phenomenon of TiO2-V2O5 nanocomposites. The nanocomposites were synthesized using a sol-gel technique having different molar ratios of Ti:V (10:10, 10:15, and 10:20). The phase composition and the morphology have been studied using X-ray diffraction and field emission scanning electron microscope, respectively. The impedance spectroscopy studies of the three samples over a wide range of temperature (50 K-300 K) have been extensively described using the internal barrier layer capacitor model. It is based on the contribution of domain and domain boundary, relaxations of the materials, which are the main crucial factors for the enhancement of the dielectric response. The frequency dependent ac conductivity of the ceramics strongly obeys the well-known Jonscher's power law, and it has been clearly explained using the theory of jump relaxation model. The temperature dependent bulk conductivity is fairly recognized to the variable-range hopping of localized polarons. The co-existence of mixed valence state of Ti ions (Ti3+ and Ti4+) in the sample significantly contributes to the change of dielectric property. The overall study of dielectric response explains that the dielectric constant and the dielectric loss are strongly dependent on temperature and frequency and decrease with an increase of frequency as well as temperature.

  20. The Dielectric Constant of Lubrication Oils

    National Research Council Canada - National Science Library

    Carey, A

    1998-01-01

    The values of the dielectric constant of simple molecules is discussed first, along with the relationship between the dielectric constant and other physical properties such as boiling point, melting...

  1. Method for fabrication of crack-free ceramic dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan

    2017-12-05

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  2. Method for fabrication of crack-free ceramic dielectric films

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

    2014-02-11

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  3. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  4. Bistable scattering in graphene-coated dielectric nanowires.

    Science.gov (United States)

    Li, Rujiang; Wang, Huaping; Zheng, Bin; Dehdashti, Shahram; Li, Erping; Chen, Hongsheng

    2017-06-22

    In nonlinear plasmonics, the switching threshold of optical bistability is limited by the weak nonlinear responses from the conventional Kerr dielectric media. Considering the giant nonlinear susceptibility of graphene, here we develop a nonlinear scattering model under the mean field approximation and study the bistable scattering in graphene-coated dielectric nanowires based on the semi-analytical solutions. We find that the switching intensities of bistable scattering can be smaller than 1 MW cm -2 at the working frequency. To further decrease the switching intensities, we show that the most important factor that restricts the bistable scattering is the relaxation time of graphene. Our work not only reveals some general characteristics of graphene-based bistable scattering, but also provides a guidance to further applications of optical bistability in the high speed all-optical signal processing.

  5. Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Hitesh; Barvat, Arun; Pal, Prabir; Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Shukla, A. K. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pulikkotil, J. J. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Computation and Networking Facility, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-06-07

    The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction. X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.

  6. Large energy storage efficiency of the dielectric layer of graphene nanocapacitors

    Science.gov (United States)

    Bezryadin, A.; Belkin, A.; Ilin, E.; Pak, M.; Colla, Eugene V.; Hubler, A.

    2017-12-01

    Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al2O3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm-1 (i.e., 1 GV m-1), which is much larger than the table value of the Al2O3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.

  7. Large energy storage efficiency of the dielectric layer of graphene nanocapacitors.

    Science.gov (United States)

    Bezryadin, A; Belkin, A; Ilin, E; Pak, M; Colla, Eugene V; Hubler, A

    2017-12-08

    Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al 2 O 3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm -1 (i.e., 1 GV m -1 ), which is much larger than the table value of the Al 2 O 3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.

  8. A survey on dielectric elastomer actuators for soft robots.

    Science.gov (United States)

    Gu, Guo-Ying; Zhu, Jian; Zhu, Li-Min; Zhu, Xiangyang

    2017-01-23

    Conventional industrial robots with the rigid actuation technology have made great progress for humans in the fields of automation assembly and manufacturing. With an increasing number of robots needing to interact with humans and unstructured environments, there is a need for soft robots capable of sustaining large deformation while inducing little pressure or damage when maneuvering through confined spaces. The emergence of soft robotics offers the prospect of applying soft actuators as artificial muscles in robots, replacing traditional rigid actuators. Dielectric elastomer actuators (DEAs) are recognized as one of the most promising soft actuation technologies due to the facts that: i) dielectric elastomers are kind of soft, motion-generating materials that resemble natural muscle of humans in terms of force, strain (displacement per unit length or area) and actuation pressure/density; ii) dielectric elastomers can produce large voltage-induced deformation. In this survey, we first introduce the so-called DEAs emphasizing the key points of working principle, key components and electromechanical modeling approaches. Then, different DEA-driven soft robots, including wearable/humanoid robots, walking/serpentine robots, flying robots and swimming robots, are reviewed. Lastly, we summarize the challenges and opportunities for the further studies in terms of mechanism design, dynamics modeling and autonomous control.

  9. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    Science.gov (United States)

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  10. Theoretical investigation of dielectric corona pre-ionization TEA nitrogen laser based on transmission line method

    Science.gov (United States)

    Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl

    2007-07-01

    This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.

  11. The low-frequency dielectric properties of octopus arm muscle measured in vivo

    International Nuclear Information System (INIS)

    Hart, F.X.; Toll, R.B.; Berner, N.J.; Bennett, N.H.

    1996-01-01

    The conductance and capacitance of octopus arm are measured in vivo over the frequency range 5 Hz to 1 MHz. Measurement of these parameters for a number of electrode separations permits the determination of the variations in tissue conductivity and dielectric constant with frequency. In the range 1-100 kHz the conductivity is independent of the frequency f and the dielectric constant varies as f -1 . These results, in conjunction with those reported previously for frog skeletal muscle, are consistent with the fractal model for the dielectric properties of animal tissue proposed by Dissado. Transformation of the results to complex impedance spectra indicates the presence of a dispersion above 100 kHz. (author)

  12. Trends of microwave dielectric materials for antenna application

    Energy Technology Data Exchange (ETDEWEB)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  13. Dielectric properties of agricultural materials and their applications

    CERN Document Server

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  14. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  15. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    Science.gov (United States)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  16. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  17. Light Scattering by a Dielectric Sphere: Perspectives on the Mie Resonances

    Directory of Open Access Journals (Sweden)

    Dimitrios Tzarouchis

    2018-01-01

    Full Text Available Light scattering by a small spherical particle, a central topic for electromagnetic scattering theory, is here considered. In this short review, some of the basic features of its resonant scattering behavior are covered. First, a general physical picture is described by a full electrodynamic perspective, the Lorenz–Mie theory. The resonant spectrum of a dielectric sphere reveals the existence of two distinctive types of polarization enhancement: the plasmonic and the dielectric resonances. The corresponding electrostatic (Rayleigh picture is analyzed and the polarizability of a homogeneous spherical inclusion is extracted. This description facilitates the identification of the first type of resonance, i.e., the localized surface plasmon (plasmonic resonance, as a function of the permittivity. Moreover, the electrostatic picture is linked with the plasmon hybridization model through the case of a step-inhomogeneous structure, i.e., a core–shell sphere. The connections between the electrostatic and electrodynamic models are reviewed in the small size limit and details on size-induced aspects, such as the dynamic depolarization and the radiation reaction on a small sphere are exposed through the newly introduced Mie–Padé approximative perspective. The applicability of this approximation is further expanded including the second type of resonances, i.e., the dielectric resonances. For this type of resonances, the Mie–Padé approximation reveals the main character of the two different cases of resonances of either magnetic or electric origin. A unified picture is therefore described encompassing both plasmonic and dielectric resonances, and the resonant conditions of all three different types are extracted as functions of the permittivity and the size of the sphere. Lastly, the directional scattering behavior of the first two dielectric resonances is exposed in a simple manner, namely the Kerker conditions for maximum forward and

  18. Discharge ignition near a dielectric

    NARCIS (Netherlands)

    Sobota, A.; Veldhuizen, van E.M.; Stoffels, W.W.

    2008-01-01

    Electrical breakdown in noble gas near a dielectric is an important issue in lighting industry. In order to investigate the influence of the dielectric on the ignition process, we perform measurements in argon, with pressure varying from 0.1 to 1 bar, using a pin–pin electrode geometry. Here, we

  19. Dielectric properties of PMMA/Soot nanocomposites.

    Science.gov (United States)

    Clayton, Lanetra M; Cinke, Martin; Meyyappan, M; Harmon, Julie P

    2007-07-01

    Dielectric analysis (DEA) of relaxation behavior in poly(methyl methacrylate) (PMMA) soot nanocomposites is described herein. The soot, an inexpensive material, consists of carbon nanotubes, amorphous and graphitic carbon and metal particles. Results are compared to earlier studies on PMMA/multi-walled nanotube (MWNT) composites and PMMA/single-walled nanotube (SWNT) composites. The beta relaxation process appeared to be unaffected by the presence of the soot, as was noted earlier in nanotube composites. The gamma relaxation region in PMMA, normally dielectrically inactive, was "awakened" in the PMMA/soot composite. This occurrence is consistent with previously published data on nanotube composites. The dielectric permittivity, s', increased with soot content. The sample with 1% soot exhibited a permittivity (at 100 Hz and 25 degrees C) of 7.3 as compared to 5.1 for neat PMMA. Soot increased the dielectric strength, deltaE, of the composites. The 1% soot sample exhibited a dielectric strength of 6.38, while the neat PMMA had a value of 2.95 at 40 degrees C. The symmetric broadening term (alpha) was slightly higher for the 1% composite at temperatures near the secondary relaxation and near the primary relaxation, but all samples deviated from symmetrical semi-circular behavior (alpha = 1). The impact of the soot filler is seen more clearly in dielectric properties than in mechanical properties studies conducted earlier.

  20. Dielectric and impedance spectral characteristics of bulk ZnIn2Se4

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2014-02-01

    The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.

  1. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Duan, Xiaoxi [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  2. Thermally switchable dielectrics

    Science.gov (United States)

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  3. Study of dielectric liquids at room temperature for high energy x ray Tomography

    International Nuclear Information System (INIS)

    Lepert, S.

    1989-09-01

    The detection of X rays by means of a dielectric liquid detector system, at room temperature, is discussed. The physico-chemical properties of a dielectric liquid, the construction of a cleaning device and of two electrode configurations, and the utilization of different amplifier models are studied. The results allowed the analysis and characterization of the behavior of the dielectric liquid under X ray irradiation. Data obtained is confirmed by computerized simulation. The choice of Tetramethyl-germanium for the X ray tomography, applied in nondestructive analysis, is explained. The investigation of the system parameters allowed the setting of the basis of a prototype project for a multi-detector [fr

  4. Breakdown of coupling dielectrics for Si microstrip detectors

    International Nuclear Information System (INIS)

    Candelori, A.; Paccagnella, A.; Padova Univ.; Saglimbeni, G.

    1999-01-01

    Double-layer coupling dielectrics for AC-coupled Si microstrip detectors have been electrically characterized in order to determine their performance in a radiation-harsh environment, with a focus on the dielectric breakdown. Two different dielectric technologies have been investigated: SiO 2 /TEOS and SiO 2 /Si 3 N 4 . Dielectrics have been tested by using a negative gate voltage ramp of 0.2 MV/(cm·s). The metal/insulator/Si I-V characteristics show different behaviours depending on the technology. The extrapolated values of the breakdown field for unirradiated devices are significantly higher for SiO 2 /Si 3 N 4 dielectrics, but the data dispersion is lower for SiO 2 /TEOS devices. No significant variation of the breakdown field has been measured after a 10 Mrad (Si) γ irradiation for SiO 2 /Si 3 N 4 dielectrics. Finally, the SiO 2 /Si 3 N 4 DC conduction is enhanced if a positive gate voltage ramp is applied with respect to the negative one, due to the asymmetric conduction of the double-layer dielectric

  5. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  6. Changes in the dielectric properties of medaka fish embryos during development, studied by electrorotation

    International Nuclear Information System (INIS)

    Shirakashi, Ryo; Mischke, Miriam; Fischer, Peter; Memmel, Simon; Krohne, Georg; Fuhr, Günter R.; Zimmermann, Heiko; Sukhorukov, Vladimir L.

    2012-01-01

    Highlights: ► Electrorotation offers a non-invasive tool for dielectric analysis of fish embryos. ► The three-shell dielectric model matches the rotation spectra of medaka eggs. ► The capacitance value suggests a double-membrane structure of yolk envelope. -- Abstract: The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz–MHz frequency range. During development from blastula to early somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos’ viability/conditions in basic research and industrial aquaculture.

  7. Changes in the dielectric properties of medaka fish embryos during development, studied by electrorotation

    Energy Technology Data Exchange (ETDEWEB)

    Shirakashi, Ryo, E-mail: aa21150@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); Mischke, Miriam [Lehrstuhl fuer Biotechnologie und Biophysik, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany); Fischer, Peter [Physiologische Chemie, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany); Memmel, Simon [Lehrstuhl fuer Biotechnologie und Biophysik, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany); Krohne, Georg [Abteilung fuer Elektronenmikroskopie, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany); Fuhr, Guenter R. [Lehrstuhl fuer Biotechnologie und Medizintechnik, Universitaet des Saarlandes, Saarbruecken (Germany); Zimmermann, Heiko [Lehrstuhl fuer Molekulare und Zellulaere Biotechnologie, Universitaet des Saarlandes, Saarbruecken (Germany); Sukhorukov, Vladimir L., E-mail: sukhorukov@biozentrum.uni-wuerzburg.de [Lehrstuhl fuer Biotechnologie und Biophysik, Biozentrum, Universitaet Wuerzburg, Wuerzburg (Germany)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Electrorotation offers a non-invasive tool for dielectric analysis of fish embryos. Black-Right-Pointing-Pointer The three-shell dielectric model matches the rotation spectra of medaka eggs. Black-Right-Pointing-Pointer The capacitance value suggests a double-membrane structure of yolk envelope. -- Abstract: The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz-MHz frequency range. During development from blastula to early somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos' viability/conditions in basic research and industrial aquaculture.

  8. Anisotropy and phonon modes from analysis of the dielectric function tensor and the inverse dielectric function tensor of monoclinic yttrium orthosilicate

    Science.gov (United States)

    Mock, A.; Korlacki, R.; Knight, S.; Schubert, M.

    2018-04-01

    We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2SiO5 using generalized spectroscopic ellipsometry from 40-1200 cm-1. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017), 10.1103/PhysRevB.95.165202], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain an excellent match between all measured and model-calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au and 22 Bu symmetry long-wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au symmetry and 22 Bu transverse and longitudinal optical mode parameters and their orientation within the monoclinic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys Rev. Lett. 117, 215502 (2016), 10.1103/PhysRevLett.117.215502].

  9. Norbornylene-based polymer systems for dielectric applications

    Science.gov (United States)

    Dirk, Shawn M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2012-07-17

    A capacitor having at least one electrode pair being separated by a dielectric component, with the dielectric component being made of a polymer such as a norbornylene-containing polymer with a dielectric constant greater than 3 and a dissipation factor less than 0.1 where the capacitor has an operating temperature greater than 100.degree. C. and less than 170.degree. C.

  10. Finite element analysis and validation of dielectric elastomer actuators used for active origami

    International Nuclear Information System (INIS)

    McGough, Kevin; Ahmed, Saad; Frecker, Mary; Ounaies, Zoubeida

    2014-01-01

    The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed. (paper)

  11. Dielectric relaxation of ethanol and N-methyl acetamide polar ...

    Indian Academy of Sciences (India)

    is used in agriculture and food industry [5]. Dielectric ... state of molecular environment [11] within the framework of Debye model for binary ... Onsager equation [7] may be a better choice due to the strong intermolecular interac- tions as a result ...

  12. Modelling and characterization of inflated dielectric elastomer actuators with tubular configuration

    International Nuclear Information System (INIS)

    Zhang, Chi; Chen, Hualing; Liu, Lei; Li, Dichen

    2015-01-01

    A dielectric elastomer undergoes large and fast deformation subject to external electric stimuli, making it a promising artificial muscle for various kinds of actuators, sensors and energy generators. This paper presents an actuator fabricated by (1) rolling a dielectric elastomer membrane, (2) pre-stretching the membrane along the radial direction and fixing the edges with rigid cylindrical plastic ends, and (3) applying a force to the end along the longitudinal direction and pumping air into the tube for inflation. Subject to a voltage, the structure works as an actuator with a large linear stroke. Governing equations of this actuator are established and simulation results are found to agree well with experimental results. We examine four modes of failure, namely loss of tension, electrical breakdown, snap-through instability and tensile rupture, with a variation in applied pressure. The actuating voltage is greatly reduced by applying pressure, providing the possibility of low-voltage driving. By regulating the applied pressure, large actuation strain and displacement are obtained simultaneously and the distributions of stretch, true stress and the true electric field become more homogeneous. (paper)

  13. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  14. Simulation of Cell Dielectric Properties Based on COMSOL

    Directory of Open Access Journals (Sweden)

    Shudong Li

    2018-03-01

    Full Text Available The dielectric properties of cells can be observed by injecting a low amplitude current at different frequencies (1MHz~100MHz. The simulation research is taken on the software platform named COMSOL Multiphysics. The electric field and the cell model is created with prior information. By simulation, itrs verified that at low frequencies, the region of interest (ROI behaves the conductivity characteristic while the electrical signal cannot pass through the cell membrane due to its capacitor properties. With the excitation frequency increasing, the ROI behaves more permittivity characteristic that the current flowing through the cell membrane becomes more and the current density increases. The research of the cell dielectric properties provides an auxiliary method to diagnose the status of the cell.

  15. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    Science.gov (United States)

    Wang, Zhengling; Li, Shiqiang; Chang, R. P. H.; Ketterson, John B.

    2014-07-01

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  16. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    Science.gov (United States)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  17. Accelerating Dielectrics Design Using Thinking Machines

    Science.gov (United States)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  18. Dielectric relaxation spectra of liquid crystals in relation to molecular structure

    International Nuclear Information System (INIS)

    Wrobel, S.

    1986-07-01

    The dielectric spectra obtained for some members of two homologous series, i.e. for di-alkoxyazoxybenzenes and penthyl-alkoxythiobenzoates, are discussed qualitatively on the basis of the Nordio-Rigatti-Segre diffusion model. It is additionally assumed that the molecular reorientations take place about the principal axes of the inertia tensor. The distribution of correlation times, which is strongly temperature dependent in the vicinity of the clearing point, is interpreted as being caused by fluctuations of the principal axes frame which are due to conformation changes inside the end chains. The Bauer equation is used to describe both principal molecular reorientations, i.e. the reorientations about the long and short axis, observed in liquid crystalline structure by means of dielectric relaxation methods. The energies and entropies of activation have been computed for both principal reorientations. The differences between the high frequency limit of the dielectric permittivity and the refractive index squared of liquid crystals are explained in terms of two librational motions of the molecules observed by other experimental techniques, viz. far infra-red, Raman and inelastic neutron scattering spectroscopies, and found in this work on the basis of dielectrically measured energy barriers. It has been shown qualitatively that intramolecular libratory motions greatly effect the high frequency dielectric spectrum. Finally, molecular motions in liquid crystals are divided into two types: coherent and incoherent. 127 refs., 56 figs., 17 tabs. (author)

  19. Developments of ozone generation using dielectric barrier discharge at the Universidad del Valle

    OpenAIRE

    Echeverry-Ibarra, Diego F.

    2013-01-01

    This paper presents the research results related to ozone technology using dielectric barrier discharge DBD, obtained at the Universidad del Valle. Particular emphasis is placed on increasing efficiency, the modeling of the surface dielectric barrier discharge generator and the control technique which modifies the relation production vs. efficiency of the generators. Finally, the ozone applications worked at the university are presented. The current state of these developments is promising fo...

  20. Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

    Science.gov (United States)

    Usacheva, T. M.

    2018-05-01

    Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean value of the O-H···O bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

  1. A combination dielectric and acoustic laboratory instrument for petrophysics

    Science.gov (United States)

    Josh, Matthew

    2017-12-01

    Laboratory testing of rock samples is the primary method for establishing the physics models which relate the rock properties (i.e. porosity, fluid permeability, pore-fluid and saturation) essential to evaluating a hydrocarbon reservoir, to the physical properties (resistivity, nuclear magnetic resonance, dielectric permittivity and acoustic properties) which can be measured with borehole logging instrumentation. Rock samples usually require machining to produce a suitable geometry for each test as well as specific sample preparation, e.g. multiple levels of saturation and chemical treatments, and this leads to discrepancies in the condition of the sample between different tests. Ideally, multiphysics testing should occur on one sample simultaneously so that useful correlations between data sets can be more firmly established. The world’s first dielectric and acoustic combination cell has been developed at CSIRO, so that a sample may be machined and prepared, then measured to determine the dielectric and acoustic properties simultaneously before atmospheric conditions in the laboratory affect the level of hydration in the sample. The dielectric measurement is performed using a conventional three-terminal parallel plate capacitor which can operate from 40 Hz up to 110 MHz, with modified electrodes incorporating a 4 MHz P-wave piezo crystal. Approximately 10 (acoustic P-) wavelengths interact with a typical (10 mm thick) sample so that the user may reliably ‘pick’ the P-wave arrival times with acceptable resolution. Experimental evidence indicates that the instrument is able to resolve 0.25 mm thickness in a Teflon sample test piece. For a number of engineering materials including Teflon and glass and also for a geological samples (Donnybrook sandstone from Western Australia) there is a perfectly linear relationship between both capacitance and P-wave arrival time with sample thickness. Donnybrook sandstone has a consistently linear increase in dielectric

  2. Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics

    International Nuclear Information System (INIS)

    Kim, Se Hyun; Yun, Won Min; Kwon, Oh-Kwan; Hong, Kipyo; Yang, Chanwoo; Park, Chan Eon; Choi, Woon-Seop

    2010-01-01

    Here, we report on the fabrication of low-voltage-operating pentacene-based organic field-effect transistors (OFETs) that utilize crosslinked cyanoethylated poly(vinyl alcohol) (CR-V) gate dielectrics. The crosslinked CR-V-based OFET could be operated successfully at low voltages (below 4 V), but abnormal behaviour during device operation, such as uncertainty in the field-effect mobility (μ) and hysteresis, was induced by the slow polarization of moieties embedded in the gate dielectric (e.g. polar functionalities, ionic impurities, water and solvent molecules). In an effort to improve the stability of OFET operation, we measured the dependence of μ and hysteresis on dielectric thickness, CR-V crosslinking conditions and sweep rate of the gate bias. The influence of the CR-V surface properties on μ, hysteresis, and the structural and morphological features of the pentacene layer grown on the gate dielectric was characterized and compared with the properties of pentacene grown on a polystyrene surface.

  3. Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances.

    Science.gov (United States)

    Yao, Zhonghua; Song, Zhe; Hao, Hua; Yu, Zhiyong; Cao, Minghe; Zhang, Shujun; Lanagan, Michael T; Liu, Hanxing

    2017-05-01

    The demand for dielectric capacitors with higher energy-storage capability is increasing for power electronic devices due to the rapid development of electronic industry. Existing dielectrics for high-energy-storage capacitors and potential new capacitor technologies are reviewed toward realizing these goals. Various dielectric materials with desirable permittivity and dielectric breakdown strength potentially meeting the device requirements are discussed. However, some significant limitations for current dielectrics can be ascribed to their low permittivity, low breakdown strength, and high hysteresis loss, which will decrease their energy density and efficiency. Thus, the implementation of dielectric materials for high-energy-density applications requires the comprehensive understanding of both the materials design and processing. The optimization of high-energy-storage dielectrics will have far-reaching impacts on the sustainable energy and will be an important research topic in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cm-3.

    Science.gov (United States)

    Cortes, Francisco Javier Quintero; Phillips, Jonathan

    2015-09-17

    The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC), with energy density greater than 200 J·cm - ³, which rival the best reported energy density of electric double layer capacitors (EDLC), also known as supercapacitors, are reported. The first generation super dielectric materials (SDM) are multi-material mixtures with dielectric constants greater than 1.0 × 10⁵, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM), introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO₂ based TSDM were found to have dielectric constants at ~0 Hz greater than 10⁷ in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.

  5. Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cm−3

    Directory of Open Access Journals (Sweden)

    Francisco Javier Quintero Cortes

    2015-09-01

    Full Text Available The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC, with energy density greater than 200 J·cm−3, which rival the best reported energy density of electric double layer capacitors (EDLC, also known as supercapacitors, are reported. The first generation super dielectric materials (SDM are multi-material mixtures with dielectric constants greater than 1.0 × 105, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM, introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO2 based TSDM were found to have dielectric constants at ~0 Hz greater than 107 in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.

  6. Dielectric studies of molecular motions in glassy and liquid nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Paluch, M [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Ziolo, J [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington DC 20375-5320 (United States)

    2006-06-21

    The dielectric permittivity and loss spectra of glassy and liquid states of nicotine have been measured over the frequency range 10{sup -2}-10{sup 9} Hz. The relaxation spectra are similar to common small molecular glass-forming substances, showing the structural {alpha}-relaxation and its precursor, the Johari-Goldstein {beta}-relaxation. The {alpha}-relaxation is well described by the Fourier transform of the Kohlrausch-Williams-Watts stretched exponential function with an approximately constant stretch exponent that is equal to 0.70 as the glass transition temperature is approached. The dielectric {alpha}-relaxation time measured over 11 orders of magnitude cannot be described by a single Vogel-Fulcher-Tamman-Hesse equation. The most probable Johari-Goldstein {beta}-relaxation time determined from the dielectric spectra is in good agreement with the primitive relaxation time of the coupling model calculated from parameters of the structural {alpha}-relaxation. The shape of the dielectric spectra of nicotine is compared with that of other glass-formers having about the same stretch exponent, and they are shown to be nearly isomorphic. The results indicate that the molecular dynamics of nicotine conform to the general pattern found in other glass-formers, and the presence of the universal Johari-Goldstein secondary relaxation, which plays a role in the crystallization of amorphous pharmaceuticals.

  7. Development of accurate UWB dielectric properties dispersion at CST simulation tool for modeling microwave interactions with numerical breast phantoms

    International Nuclear Information System (INIS)

    Maher, A.; Quboa, K. M.

    2011-01-01

    In this paper, a reformulation for the recently published dielectric properties dispersion models of the breast tissues is carried out to be used by CST simulation tool. The reformulation includes tabulation of the real and imaginary parts versus frequency on ultra-wideband (UWB) for these models by MATLAB programs. The tables are imported and fitted by CST simulation tool to second or first order general equations. The results have shown good agreement between the original and the imported data. The MATLAB programs written in MATLAB code are included in the appendix.

  8. Dielectric material options for integrated capacitors

    NARCIS (Netherlands)

    Ruhl, G.; Lehnert, W.; Lukosius, M.; Wenger, C.; Baristiran Kaynak, C.; Blomberg, T.; Haukka, S.; Baumann, P.K.; Besling, W.F.A.; Roest, A.L.; Riou, B.; Lhostis, S.; Halimaou, A.; Roozeboom, F.; Langereis, E.; Kessels, W.M.M.; Zauner, A.; Rushworth, S.A.

    2014-01-01

    Future MIM capacitor generations will require significantly increased specific capacitances by utilization of high-k dielectric materials. In order to achieve high capacitance per chip area, these dielectrics have to be deposited in three-dimensional capacitor structures by ALD or AVD (atomic vapor

  9. Nanostructure multilayer dielectric materials for capacitors and insulators

    Science.gov (United States)

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  10. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics

    International Nuclear Information System (INIS)

    Jiang Lan; Tsai, H.-L.

    2008-01-01

    It remains a big challenge to theoretically predict the material removal mechanism in femtosecond laser ablation. To bypass this unresolved problem, many calculations of femtosecond laser ablation of nonmetals have been based on the free electron density distribution without the actual consideration of the phase change mechanism. However, this widely used key assumption needs further theoretical and experimental confirmation. By combining the plasma model and improved two-temperature model developed by the authors, this study focuses on investigating ablation threshold fluence, depth, and shape during femtosecond laser ablation of dielectrics through nonthermal processes (the Coulomb explosion and electrostatic ablation). The predicted ablation depths and shapes in fused silica, by using (1) the plasma model only and (2) the plasma model plus the two-temperature equation, are both in agreement with published experimental data. The widely used assumptions for threshold fluence, ablation depth, and shape in the plasma model based on free electron density are validated by the comparison study and experimental data

  11. Dielectric Properties of PANI/CuO Nanocomposites

    Science.gov (United States)

    Ambalagi, Sharanabasamma M.; Devendrappa, Mahalesh; Nagaraja, Sannakki; Sannakki, Basavaraja

    2018-02-01

    The combustion method is used to prepare the Copper Oxide (CuO) nanoparticles. The nanocomposites of Polyaniline (PANI) by doping with copper oxide nanoparticles have synthesized at 10, 20, 30, 40 and 50 different weight percentages during the in-situ polymerization. The samples of nanocomposite of PANI-CuO were characterized by using X-Ray diffraction (XRD) technique. The physical properties such as dielectric constant, dielectric loss and A C conductivity of the nanocomposites are studied as a function of frequency in the range 5Hz-35MHz at room temperature. It is found that the dielectric constant decreases as the frequency increases. The dielectric constant it remains constant at higher frequencies and it is also observed that in particular frequency both the dielectric constant and dielectric loss are decreased as a weight percentage of CuO increased. In case of AC conductivity it is found that as the frequency increases the AC conductivity remains constant up to 3.56MHz and afterwards it increases as frequency increases. This is due to the increase in charge carriers through the hopping mechanism in the polymer nanocomposites. It is also observed that as a weight percentage of CuO increased the AC conductivity is also increasing at a particular frequency.

  12. Dielectric silicone elastomers with mixed ceramic nanoparticles

    International Nuclear Information System (INIS)

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-01-01

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles

  13. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  14. Elaboration and dielectric characterization of a doped ferroelectric ...

    African Journals Online (AJOL)

    ... 1150,1180 and 1200 °C successively to optimize the sintering temperature optimal where the density of the sample is maximum (near theoretical density) and therefore the product has better physical quality. The study of dielectric properties of all samples showed a high permittivity dielectric εr = 18018, low dielectric loss: ...

  15. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  16. Dielectric measurements on PWB materials at microwave frequencies

    Indian Academy of Sciences (India)

    Unknown

    the angular frequency and c0 the velocity of light, c the thickness of the ... Dielectric parameters, absorption index and refractive index for pure PSF and pure PMMA at 8⋅92 GHz frequency and at 35°C temperature. Dielectric. Dielectric. Loss. Relaxation. Conductivity Absorption. Refractive. Thickness, constant loss tangent.

  17. Dielectric characteristics of PZT 95/5 ferroelectric ceramics at high pressures

    International Nuclear Information System (INIS)

    Spears, R.K.

    1978-01-01

    The room temperature dielectric properties of a ferroelectric ceramic having a nominal composition of 95 atomic percent lead zirconate and 5 atomic percent lead titanate (designated as PZT 95/5) with a niobium dopant were examined at high hydrostatic pressures using a tetrahedral anvil apparatus. This ceramic has practical applications as a power source in which large quantities of charge are released by dynamic (shock wave) depolarization. Numerous mathematical models of this process have been proposed; however, the use of models has been limited because of the lack of high pressure electrical properties. This study attempted to provide these data on PZT 95/5 by determining the small signal and high electric field dielectric properties at pressures over 4 GPa

  18. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites

    International Nuclear Information System (INIS)

    Sui, G.; Jana, S.; Zhong, W.H.; Fuqua, M.A.; Ulven, C.A.

    2008-01-01

    The properties of semi-crystalline polymer nanocomposites are affected by the nanofillers directly and indirectly, as two phases, i.e., crystalline and amorphous, exist in the polymer. The effects of nanofillers on the two phases could be competitive. The dielectric properties and conductivity of carbon nanofibers (CNF)/semi-crystalline polymer nanocomposites are studied in this paper. CNF/polypropylene (PP) nanocomposites are prepared in experiment by melt blending. The resulting morphology and crystalline structure are characterized by means of differential scanning calorimetry, wide angle X-ray diffraction and scanning electron microscopy. The PP nanocomposite containing 5 wt.% CNF exhibits a surprisingly high dielectric constant under wide sweep frequencies attended by low dielectric loss. Its dielectric constant is >600 under lower frequency, and remains >200 at a frequency of 4000 Hz. The electrical and thermal conductivities of the nanocomposites are studied, and enhancements are seen with increased CNF content. Theoretical analyses on the physical properties are carried out by applying the existing models. Research results indicate that a common commercial plastic with good comprehensive performance, which exhibited the potential for applications in advanced electronics, was obtained by a simple industry benign technique

  19. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    Science.gov (United States)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  20. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  1. Radiation pressure on a dielectric surface

    International Nuclear Information System (INIS)

    Hirose, A.

    2010-01-01

    The radiation pressure on an insulating dielectric medium should be calculable from the force acting on the polarization vector P. The well-known force proposed by Gordon (Phys. Rev. A, 8, 14 (1973) disappears in the case of a steady-state plane wave. A new form of force explicitly involving the polarization vector is proposed and applied to determine the partition of the incident momentum among the reflected and transmitted wave, and the dielectric medium. The momentum of electromagnetic wave in a dielectric medium thus found is consistent with the classical relationship, wave momentum flux density = wave intensity/wave velocity. (author)

  2. High thermal conductivity lossy dielectric using co-densified multilayer configuration

    Science.gov (United States)

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-06-17

    Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.

  3. Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors

    Science.gov (United States)

    Baniecki, John David

    This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form

  4. SUCCESS AND PITFALLS OF THE DIELECTRIC CONTINUUM MODEL IN QUANTUM-CHEMICAL CALCULATIONS

    NARCIS (Netherlands)

    DEVRIES, AH; VANDUIJNEN, PT; JUFFER, AH

    1993-01-01

    Recently we presented an extension of the direct reaction field (DRF) method, in which a quantum system and a set of point charges and interacting polarizabilities are embedded in a continuum that is characterized by a dielectric constant epsilon and a finite ionic strength. The reaction field of

  5. Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor

    Science.gov (United States)

    Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.

    2017-12-01

    A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.

  6. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Directory of Open Access Journals (Sweden)

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  7. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  8. Organic dielectrics in high voltage cables

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, J

    1962-03-01

    It appears that the limit has been reached in the applicability of oil-impregnated paper as the dielectric for ehv cables, as with rising voltages the prevention of conductor losses becomes increasingly difficult, while the dielectric losses of the insulation, increasing as the square of the voltage, contribute to a greater extent to the temperature rise of the conductor. The power transmitting capacity of ehv cables reaches a maximum at 500 to 600 kV for these reasons. Apart from artificial cooling, a substantial improvement can be obtained only with the use of insulating materials with much lower dielectric losses; these can moreover be applied with a smaller wall thickness, but this means higher field strengths. Synthetic polymer materials meet these requirements but can be used successfully only in the form of lapped film tapes impregnated with suitable liquids. The electrical properties of these heterogeneous dielectrics, in particular, their impulse breakdown strengths are studied in detail.

  9. Inelastic cross-sections for electron transport in liquid water: a comparison of dielectric models

    International Nuclear Information System (INIS)

    Emfietzoglou, D.

    2003-01-01

    Various methodologies for constructing inelastic cross-sections for low-energy (<10 keV) electron transport in liquid water are presented and compared. They are all based on an optical-data model which provides the dependence on energy loss, and a dispersion algorithm which incorporates the momentum-transfer dependence. A Drude dielectric model was used to analytically represent the optical data. Various dispersion schemes were examined: the Bethe approximation, the δ-oscillator models of Ashley and Liljequist, and two forms of Ritchie's extended-Drude model. They all have been used in Monte-Carlo (MC) codes for analog electron transport in the condensed phase. Results in the form of differential and total inelastic cross-sections are presented. Where possible, comparisons with results of other studies are made. It was found that, despite the application of general constraints (e.g. sum rules), the optical model has a notable influence on the single-collision energy loss spectrum. In addition, both the shape and peak position of the total and differential cross-section distributions depend strongly on the dispersion model adopted. The work is particularly relevant to the development of event-by-event MC transport codes for liquid water, as well as, to the calculations of stopping-powers below the range of applicability of Bethe's formula

  10. Laser amplification in excited dielectrics

    Science.gov (United States)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  11. Tribo-electric charging of dielectric solids of identical composition

    Science.gov (United States)

    Angus, John C.; Greber, Isaac

    2018-05-01

    Despite its long history and importance in many areas of science and technology, there is no agreement on the mechanisms responsible for tribo-electric charging, including especially the tribo-charging of chemically identical dielectric solids. Modeling of the excitation, diffusional transport, and de-excitation of electrons from hot spots shows that a difference in local surface roughness of otherwise identical solid dielectric objects leads to different transient excited electron concentrations during tribo-processes. The model predicts that excited electron concentrations are lower and concentration gradients higher in solids with rougher rather than smoother surfaces. Consequently, during contact, the flux of charge carriers (electrons or holes) from hot spots will be greater into the rougher solid than into the smoother solid. These predictions are in agreement with current and historical observations of tribo-electric charge transfer between solids of the same composition. This effect can take place in parallel with other processes and may also play a role in the charging of solids of different composition.

  12. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  13. Advanced dielectric continuum model of preferential solvation

    Science.gov (United States)

    Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail

    2009-01-01

    A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.

  14. Dielectric properties of carbon nanotubes/epoxy composites.

    Science.gov (United States)

    Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong

    2013-02-01

    Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.

  15. Aging of Dielectric Properties below Tg

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    The dielectric loss at 1Hz in TPP is studied during a temperature step from one equilibrium state to another. In the applied cryostate the temperature can be equilibrated on a timescale of 1 second. The aging time dependence of the dielectric loss is studied below Tg applying temperature steps...

  16. Dielectric relaxation of glass particles with conductive nano-coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid [Applied Technologies Department, QinetiQ Limited, Cody Technology Park, Farnborough, Hampshire, GU14 0LX (United Kingdom)

    2009-03-21

    This research focuses on the dielectric properties of particles consisting of glass cores with nanometre conductive coatings. The effects of the core glass particle shape (sphere, flake and fibre) and size are investigated for different coating characteristics over the frequency range 0.5-18 GHz. Experimental results for the coated glass particle combinations show the existence of a dielectric loss peak. This feature is associated with interfacial relaxation between the insulating core glass particle and the nanoscale conductive coating. The relaxation mechanism provides enhanced loss that is not observed in conventional solid metal particle composites. The results are fitted to a model, which shows that the relaxation frequency increases with increasing coating conductivity and thickness, with additional parameters identified for further particle optimizations.

  17. Identification of structural relaxation in the dielectric response of water

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Kisliuk, Alexander; Solokov, Alexei P.

    2016-01-01

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we...... unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols....

  18. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  19. Dielectric-filled radiofrequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  20. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Science.gov (United States)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  1. Calculating the dielectric anisotropy of nematic liquid crystals: a reinvestigation of the Maier–Meier theory

    International Nuclear Information System (INIS)

    Ran, Zhang; Jun, He; Zeng-Hui, Peng; Li, Xuan

    2009-01-01

    This paper investigates the average dielectric permittivity (ε-bar ) in the Maier–Meier theory for calculating the dielectric anisotropy (Δε) of nematic liquid crystals. For the reason that ε-bar of nematics has the same expression as the dielectric permittivity of the isotropic state, the Onsager equation for isotropic dielectric was used to calculate it. The computed ε-bar shows reasonable agreement with the results of the numerical methods used in the literature. Molecular parameters, such as the polarizability and its anisotropy, the dipole moment and its angle with the molecular long axis, were taken from semi-empirical quantum chemistry (MOCPAC/AM1) modeling. The calculated values of Δε according to the Maier–Meier equation are in good agreement with the experimental results for the investigated compounds having different core structures and polar substituents. (condensed matter: structure, thermal and mechanical properties)

  2. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  3. Accuracy Solution of Boundary Problems in Electrostatics for Systems "Conductors-Dielectrics" by Means of Auxiliary Charges

    CERN Document Server

    Topuriya, T P

    2004-01-01

    The analysis has been carried out on checking the influence of auxiliary charges on solution accuracy of boundary problems of electrostatics for systems "conductors-dielectrics". This accuracy depends on the number of charges and configuration of their allocation. The extended round dielectric in the electric field of a parallel-plate capacitor was taken as a physical model.

  4. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides

    DEFF Research Database (Denmark)

    Gainaru, Catalin; Hecksher, Tina; Olsen, Niels Boye

    2012-01-01

    Propylene carbonate and a mixture of two secondary amides, N-ethylformamide and Nethylacetamide, are investigated by means of broadband dielectric and mechanical shear spectroscopy. The similarities between the rheological and the dielectric responses of these liquids and of the previously invest...... in the secondary amides. In addition, the predictions of the shoving model are confirmed for the investigated liquids...

  5. Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials

    Science.gov (United States)

    Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan

    2014-01-01

    A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.

  6. A dielectric approach to high temperature superconductivity

    International Nuclear Information System (INIS)

    Mahanty, J.; Das, M.P.

    1989-01-01

    The dielectric response of an electron-ion system to the presence of a pair of charges is investigated. From the nature of the dielectric function, it is shown that a strong attractive pair formation is possible depending on the dispersion of the ion branches. The latter brings a reduction to the sound velocity which is used as a criterion for the superconductivity. By solving the BCS equation with the above dielectric function, we obtain a reasonable value of T/sub c/. 17 refs., 1 fig

  7. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

    Science.gov (United States)

    Tutcuoglu, A.; Majidi, C.

    2014-12-01

    Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

  8. Whispering-gallery-mode resonance sensor for dielectric sensing of drug tablets

    International Nuclear Information System (INIS)

    Neshat, Mohammad; Chen, Huanyu; Safavi-Naeini, Safieddin; Gigoyan, Suren; Saeedkia, Daryoosh

    2010-01-01

    We propose, for the first time, the application of whispering gallery mode (WGM) perturbation technique in dielectric analysis of disk shape pharmaceutical tablets. Based on WGM resonance, a low-cost high sensitivity sensor in milllimeter-wave frequency range is presented. A comprehensive sensitivity analysis was performed to show that a change in the order of 10 −4 in the sample permittivity can be detected by the proposed sensor. The results of various experiments carried out on drug tablets are reported to demonstrate the potential multifunctional capabilities of the sensor in moisture sensing, counterfeit drug detection and contamination screening. Analytically, two sample placement configurations, i.e. a tablet placed on top of a dielectric disk resonator and inside a dielectric ring resonator, have been studied to predict the resonance frequency and Q-factor of the combined sample-resonator structure. The accuracy of the analytical model was tested against full-wave simulations and experimental data

  9. The dielectric calibration of capacitance probes for soil hydrology using an oscillation frequency response model

    Directory of Open Access Journals (Sweden)

    D. A. Robinson

    1998-01-01

    Full Text Available Capacitance probes are a fast, safe and relatively inexpensive means of measuring the relative permittivity of soils, which can then be used to estimate soil water content. Initial experiments with capacitance probes used empirical calibrations between the frequency response of the instrument and soil water content. This has the disadvantage that the calibrations are instrument-dependent. A twofold calibration strategy is described in this paper; the instrument frequency is turned into relative permittivity (dielectric constant which can then be calibrated against soil water content. This approach offers the advantages of making the second calibration, from soil permittivity to soil water content. instrument-independent and allows comparison with other dielectric methods, such as time domain reflectometry. A physically based model, used to calibrate capacitance probes in terms of relative permittivity (εr is presented. The model, which was developed from circuit analysis, predicts, successfully, the frequency response of the instrument in liquids with different relative permittivities, using only measurements in air and water. lt was used successfully to calibrate 10 prototype surface capacitance insertion probes (SCIPS and a depth capacitance probe. The findings demonstrate that the geometric properties of the instrument electrodes were an important parameter in the model, the value of which could be fixed through measurement. The relationship between apparent soil permittivity and volumetric water content has been the subject of much research in the last 30 years. Two lines of investigation have developed, time domain reflectometry (TDR and capacitance. Both methods claim to measure relative permittivity and should therefore be comparable. This paper demonstrates that the IH capacitance probe overestimates relative permittivity as the ionic conductivity of the medium increases. Electrically conducting ionic solutions were used to test the

  10. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  11. Self-Healing, High-Permittivity Silicone Dielectric Elastomer

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    possesses high dielectric permittivity and consists of an interpenetrating polymer network of silicone elastomer and ionic silicone species that are cross-linked through proton exchange between amines and acids. The ionically cross-linked silicone provides self-healing properties after electrical breakdown...... or cuts made directly to the material due to the reassembly of the ionic bonds that are broken during damage. The dielectric elastomers presented in this paper pave the way to increased lifetimes and the ability of dielectric elastomers to survive millions of cycles in high-voltage conditions....

  12. FD-TD modeling of 2-D dielectric waveguides for propagation and scattering of femtosecond optical solitons

    Science.gov (United States)

    Joseph, Rose; Goorjian, Peter; Taflove, Allen

    1993-01-01

    Experimentalists have produced all-optical switches capable of 100-fs responses. To adequately model such switches, nonlinear effects in optical materials (both instantaneous and dispersive) must be included. In principle, the behavior of electromagnetic fields in nonlinear dielectrics can be determined by solving Maxwell's equations subject to the assumption that the electric polarization has a nonlinear relation to the electric field. However, until our previous work, the resulting nonlinear Maxwell's equations have not been solved directly. Rather, approximations have been made that result in a class of generalized nonlinear Schrodinger equations (GNLSE) that solve only for the envelope of the optical pulses. In this paper, we present first-time calculations from the vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional systems of dielectric waveguides exhibiting the Kerr and Raman quantum effects. We use the finite-difference time-domain (FD-TD) method in an extension of our 1-D work. There, in a fundamental innovation, we treated the linear and nonlinear convolutions for the electric polarization as new dependent variables. By differentiating these convolutions in the time domain, we derived an equivalent system of coupled, nonlinear second-order ODE's. These equations together with Maxwell's equations form the system that is solved to determine the electromagnetic fields in inhomogeneous nonlinear dispersive media. Backstorage in time is limited to only that needed by the time-integration algorithm for the ODE's, rather than that needed to store the time-history of the kernel functions of the convolutions (1000-10,000 time steps). Thus, a 2-D nonlinear optics model from Maxwell's equations is now feasible.

  13. Dielectric behaviour of strontium tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    dielectric loss (tan δ) as functions of frequency and temperature. Ion core type ... Since the data on dielectric properties of strontium tartrate trihydrate (STT) do not ... through 'AE' make 15-amp dimmerstat, the rate of heating was maintained ...

  14. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Andryieuski, Andrei; Sipe, John E.

    2014-01-01

    -dielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high- k waves...

  15. Effects of N2O plasma treatment on perhydropolysilazane spin-on-dielectrics for inter-layer-dielectric applications

    International Nuclear Information System (INIS)

    Park, Kyoung-Seok; Ko, Pil-Seok; Kim, Sam-Dong

    2014-01-01

    Effects of the N 2 O plasma treatment (PT) on perhydropolysilazane spin-on-dielectric (PHPS SOD) were examined as potential inter-layer-dielectrics (ILDs) for sub-30 nm Si circuits. The spin-coated PHPS (18.5 wt.%) ILD layers converted at 650 °C were integrated with the 0.18 μm Si front-end-of-the line process. A modified contact pre-cleaning scheme using N 2 O PT produced more uniform and stable contact chain resistances from the SOD ILDs than the case of pre-cleaning only by buffered oxide etcher. Our analysis shows that this enhancement is due to the minimized carbon contamination on the PHPS side-wall surface densified by PT. - Highlights: • Perhydropolysilazane (PHPS) layer is evaluated as a Si interlayer dielectric. • Examine effects of the N 2 O plasma treatment (PT) on PHPS spin-on-dielectrics (SODs) • Significantly improved metal contact resistances are achieved using the N 2 O PT. • Contact resistance enhancement by PT is due to the minimized carbon contamination

  16. Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures

    OpenAIRE

    Krasnok, Alex; Caldarola, Martin; Bonod, Nicolas; Alú, Andrea

    2017-01-01

    Resonant dielectric nanoparticles (RDNs) made of materials with large positive dielectric permittivity, such as Si, GaP, GaAs, have become a powerful platform for modern light science, enabling various fascinating applications in nanophotonics and quantum optics. In addition to light localization at the nanoscale, dielectric nanostructures provide electric and magnetic resonant responses throughout the visible and infrared spectrum, low dissipative losses and optical heating, low doping effec...

  17. Mathematic modeling of the method of measurement relative dielectric permeability

    Science.gov (United States)

    Plotnikova, I. V.; Chicherina, N. V.; Stepanov, A. B.

    2018-05-01

    The method of measuring relative permittivity’s and the position of the interface between layers of a liquid medium is considered in the article. An electric capacitor is a system consisting of two conductors that are separated by a dielectric layer. It is mathematically proven that at any given time it is possible to obtain the values of the relative permittivity in the layers of the liquid medium and to determine the level of the interface between the layers of the two-layer liquid. The estimation of measurement errors is made.

  18. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  19. Dielectric function of semiconductor superlattice

    International Nuclear Information System (INIS)

    Qin Guoyi.

    1990-08-01

    We present a calculation of the dielectric function for semiconductor GaAs/Ga 1-x Al x As superlattice taking account of the extension of the electron envelope function and the difference of both the dielectric constant and width between GaAs and Ga 1-x Al x As layers. In the appropriate limits, our results exactly reduce to the well-known results of the quasi two-dimensional electron gas obtained by Lee and Spector and of the period array of two-dimensional electron layers obtained by Das Sarma and Quinn. By means of the dielectric function of the superlattice, the dispersion relation of the collective excitation and the screening property of semiconductor superlattice are discussed and compared with the results of the quasi two-dimensional system and with the results of the periodic array of the two-dimensional electron layers. (author). 4 refs, 3 figs

  20. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Yu, Liyun; Skov, Anne Ladegaard

    of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to a very attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative-permittivity changes as a function of filler loading...

  1. Analysis of Circularly Polarized Hemispheroidal Dielectric Resonator Antenna Phased Arrays Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs are subsequen......The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs...

  2. Porous (Ba,SrTiO3 ceramics for tailoring dielectric and tunability properties: Modelling and experiment

    Directory of Open Access Journals (Sweden)

    Roxana E. Stanculescu

    2017-12-01

    Full Text Available 3D Finite Element Method simulations were employed in order to describe tunability properties in anisotropic porous paraelectric structures. The simulations predicted that properties of a ceramic can be tailored by using various levels of porosity. Porous Ba0.6Sr0.4TiO3 (BST ceramics have been studied in order to investigate the influence of porosity on their functional properties. The BST ceramics with various porosity levels have been obtained by solid-state reaction. Lamellar graphite in different concentration of 10, 20 and 35 vol.% was added as sacrificial pore forming agent. The structural, microstructural, dielectric and tunability properties were investigated. By comparison with dense BST ceramic, porous samples present a fracture mode transformation from intragranular to an intergranular fracture and a decrease of grain size. Lower dielectric constants, low dielectric losses, but higher values of tunability than in the dense material were obtained in the porous BST structures as a result of local field inhomogeneity generated by the presence of air pores-ceramic interfaces.

  3. Dielectric elastomer actuators used for pneumatic valve technology

    International Nuclear Information System (INIS)

    Giousouf, Metin; Kovacs, Gabor

    2013-01-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications. (paper)

  4. Dielectric relaxation studies of dilute solutions of amides

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, M.; Sabesan, R.; Krishnan, S

    2003-11-15

    The dielectric constants and dielectric losses of formamide, acetamide, N-methyl acetamide, acetanilide and N,N-dimethyl acetamide in dilute solutions of 1,4-dioxan/benzene have been measured at 308 K using 9.37 GHz, dielectric relaxation set up. The relaxation time for the over all rotation {tau}{sub (1)} and that for the group rotation {tau}{sub (2)} of (the molecules were determined using Higasi's method. The activation energies for the processes of dielectric relaxation and viscous flow were determined by using Eyring's rate theory. From relaxation time behaviour of amides in non-polar solvent, solute-solvent and solute-solute type of molecular association is proposed.

  5. Dielectric properties of solution-grown-undoped and acrylic-acid ...

    Indian Academy of Sciences (India)

    Unknown

    secondly, it increases the dielectric loss by forming charge transfer complexes. Keywords. .... generator model GM 2308/90, in the frequency range. 01–100 kHz ... on the free volume. In the glassy ... room for rotational or translation motion of the molecules to occur at Tg, ... electric field changes the energy balance, favouring.

  6. Temperature dependence of the dielectric properties of rubber wood

    Science.gov (United States)

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  7. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Maaroufi, A., E-mail: maaroufi@fsr.ac.ma [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Oabi, O. [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Lucas, B. [XLIM UMR 7252 – Université de Limoges/CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO–55 mol%P{sub 2}O{sub 5}, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator – semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10{sup −1} S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10{sup −8} S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 10{sup 5} for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson–Cole and Havriliak–Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson–Cole model, and an account of the interpretation of results is given. - Highlights: • Composites of ZnO-P{sub 2}O{sub 5}/metal were investigated by impedance spectroscopy. • Original ac-conductivity behavior was discovered in ZnO-P{sub 2}O{sub 5}/metal composites. • High dielectric constant is measured in ZnO-P{sub 2}O{sub 5}/metal composites. • Dielectric constant as filler function is well interpreted with percolation theory. • Observed relaxation processes are well described using electric modulus formalism.

  8. Preparation and Characterization of Pure Organic Dielectric Composites for Capacitors

    Directory of Open Access Journals (Sweden)

    Mao Xin

    2018-01-01

    Full Text Available This work reports the excellent dielectric composites were prepared from polyimide (PI and poly(vinylidene fluoride (PVDF via solution blending and thermal imidization or chemical imidization. The dielectric and thermal properties of the composites were studied. Results indicated that the dielectric properties of the composites synthesized by these two methods were enhanced through the introduction of PVDF, and the composites exhibited excellent thermal stability. Compared to the thermal imidization, the composites prepared by chemical imidization exhibited superior dielectric properties. This study demonstrated that the PI/PVDF composites were potential dielectric materials in the field of electronics.

  9. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  10. Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface.

    Science.gov (United States)

    Debu, Desalegn T; Bauman, Stephen J; French, David; Churchill, Hugh O H; Herzog, Joseph B

    2018-02-19

    We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.

  11. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  12. Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge

    Science.gov (United States)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.

  13. Plasma polymerized high energy density dielectric films for capacitors

    Science.gov (United States)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  14. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  15. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Dielectric properties such as dielectric constant (ε′) and dielectric loss tangent (tan δ) of mixed. Mn–Zn–Er ferrites having the compositional formula Mn0⋅58Zn0⋅37Fe2⋅05–xErxO4 (where x = 0⋅2, 0⋅4, 0⋅6, 0⋅8 and. 1⋅0) were measured at room temperature in the frequency range 1–13 MHz using a HP ...

  16. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.

    Science.gov (United States)

    Simoes, Ricardo; Silva, Jaime; Vaia, Richard; Sencadas, Vítor; Costa, Pedro; Gomes, João; Lanceros-Méndez, Senentxu

    2009-01-21

    The low concentration behaviour and the increase of the dielectric constant in carbon nanotubes/polymer nanocomposites near the percolation threshold are still not well understood. In this work, a numerical model has been developed which focuses on the effect of the inclusion of conductive fillers in a dielectric polymer matrix on the dielectric constant and the dielectric strength. Experiments have been carried out in carbon nanotubes/poly(vinylidene fluoride) nanocomposites in order to compare to the simulation results. This work shows how the critical concentration is related to the formation of capacitor networks and that these networks give rise to high variations in the electrical properties of the composites. Based on numerical studies, the dependence of the percolation transition on the preparation of the nanocomposite is discussed. Finally, based on numerical and experimental results, both ours and from other authors, the causes of anomalous percolation behaviour of the dielectric constant are identified.

  17. THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS

    Science.gov (United States)

    Xu, Jing; He, Bo; Liu, Han Xing

    It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.

  18. Three-dimensional periodic dielectric structures having photonic Dirac points

    Science.gov (United States)

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  19. PLZT capacitor and method to increase the dielectric constant

    Science.gov (United States)

    Taylor, Ralph S.; Fairchild, Manuel Ray; Balachjandran, Uthamalingam; Lee, Tae H.

    2017-12-12

    A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300.degree. C.

  20. Three-dimensional periodic dielectric structures having photonic Dirac points

    Energy Technology Data Exchange (ETDEWEB)

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  1. Magnetic force induced tristability for dielectric elastomer actuators

    Science.gov (United States)

    Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-10-01

    This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.

  2. Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam

    International Nuclear Information System (INIS)

    Chen Ye; Wan Xiao-Sheng; Zhao Ding; Liu Wen-Xin; Wang Yong

    2012-01-01

    A three-dimensional model of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam for the beam-wave interaction is proposed. Based on this model, the hybrid-mode dispersion equation is derived with the Borgnis potential function by using the field-matching method. Its approximate solution is obtained under the assumption of a dilute electron beam. By using the Ansoft high frequency structural simulator (HFSS) code, the electromagnetic field distribution in the interaction structure is given. Through numerical calculations, the effects of beam thickness, beam and dielectric-layer gap distance, beam voltage, and current density on the resonant growth rate are analysed in detail

  3. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    OpenAIRE

    Beloborodov, Roman; Pervukhina, Marina; Han, Tongcheng; Josh, Matthew

    2017-01-01

    High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for t...

  4. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  5. Dielectric and photo-dielectric properties of TlGaSeS crystals

    Indian Academy of Sciences (India)

    Administrator

    cDepartment of Physics, Middle East Technical University, 06800 Ankara, Turkey. MS received ... The crystals are observed to exhibit a dark high frequency effective dielectric constant value of ~ 10\\65 x ... communication systems. Keywords.

  6. Dielectric functions, pseudopotentials and applications to lattice dynamics

    International Nuclear Information System (INIS)

    Sinha, S.K.

    1975-01-01

    An attempt has been made to review the method of calculating the phonon spectra of crystals in terms of the basic electronic structure. Solids with defects, disordered solids and anharmonic effects have been excluded. The most general technique, viz. the Born-Oppenheimer perturbation theory has been discussed. The structure of the dynamic matrix has been discussed and the manifestations of the Fermi surface in the phonon spectrum explained. A pseudopotential concept for the free electron like metals has been justified and a brief account of these potentials from the point of view of the OPW method as well as from that of the phase shift analysis is included. The formalism of the basic results of the phenomenological dipolar models and their recent generalizations have been reviewed. It has pointed out that this could be derived from the microscopic theory by factorization approximation for the dielectric matrix, and the same method could lead even to more general models and the dielectric properties of the crystal could be obtained from such a microscopic theory. It is expected that the results may be applied to optical properties of the crystal. (K.B.)

  7. Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis

    International Nuclear Information System (INIS)

    Jacobs, William R; Dodd, Tony J; Anderson, Sean R; Wilson, Emma D; Porrill, John; Assaf, Tareq; Rossiter, Jonathan

    2015-01-01

    Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics. (paper)

  8. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  9. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi -Yong [Chongqing Univ. of Technology, Chongqing (China); Univ. of California, Riverside, CA (United States); Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  10. Electrostatic field in inhomogeneous dielectric media. I. Indirect boundary element method

    International Nuclear Information System (INIS)

    Goel, N.S.; Gang, F.; Ko, Z.

    1995-01-01

    A computationally fast method is presented for calculating electrostatic field in arbitrary inhomogeneous dielectric media with open boundary condition. The method involves dividing the whole space into cubical cells and then finding effective dielectric parameters for interfacial cells consisting of several dielectrics. The electrostatic problem is then solved using either the indirect boundary element method described in this paper or the so-called volume element method described in the companion paper. Both methods are tested for accuracy by comparing the numerically calculated electrostatic fields against those analytically obtained for a dielectric sphere and dielectric ellipsoid in a uniform field and for a dielectric sphere in a point charge field

  11. A Flexible Capacitive Sensor with Encapsulated Liquids as Dielectrics

    Directory of Open Access Journals (Sweden)

    Yasunari Hotta

    2012-03-01

    Full Text Available Flexible and high-sensitive capacitive sensors are demanded to detect pressure distribution and/or tactile information on a curved surface, hence, wide varieties of polymer-based flexible MEMS sensors have been developed. High-sensitivity may be achieved by increasing the capacitance of the sensor using solid dielectric material while it deteriorates the flexibility. Using air as the dielectric, to maintain the flexibility, sacrifices the sensor sensitivity. In this paper, we demonstrate flexible and highly sensitive capacitive sensor arrays that encapsulate highly dielectric liquids as the dielectric. Deionized water and glycerin, which have relative dielectric constants of approximately 80 and 47, respectively, could increase the capacitance of the sensor when used as the dielectric while maintaining flexibility of the sensor with electrodes patterned on flexible polymer substrates. A reservoir of liquids between the electrodes was designed to have a leak path, which allows the sensor to deform despite of the incompressibility of the encapsulated liquids. The proposed sensor was microfabricated and demonstrated successfully to have a five times greater sensitivity than sensors that use air as the dielectric.

  12. Vegetable oil based liquid nanocomposite dielectric

    Directory of Open Access Journals (Sweden)

    Leon Chetty

    2013-01-01

    Full Text Available Physically smaller dielectric materials would improve the optimisation of space for power systems. Development of nanotechnology provides an effective way to improve the performances of insulating oils used in power system applications. In this research study, we focused on the development of nanomodified vegetable oils to be used in power transformers. Higher conduction currents were observed in virgin linseed oil than in virgin castor oil. However, for both virgin linseed and virgin castor oil, the DC conduction current increased approximately linearly with the applied DC voltage. In nanomodified linseed oil, the characteristic curve showed two distinct regions: a linear region (at lower applied voltage and a saturation region (at slightly higher voltage. Conversely, in nanomodified castor oil, the characteristic curve showed three distinct regions: a linear region (at lower applied voltage, a saturation region (at intermediate applied voltage and an exponential growth region (at higher applied voltage. The nanomodified linseed oil exhibited a better dielectric performance than the nanomodified castor oil. Overall, the addition of nanodielectrics to vegetable oils decreased the dielectric performance of the vegetable oils. The results of this study contribute to the understanding of the pre-breakdown phenomenon in liquid nanocomposite dielectrics.

  13. Effect of deformation and dielectric filling on electromagnetic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    great significance in the development of microwave communication networks and ... media. Rectangular dielectric waveguide structures are analysed by Bierwirth ..... Schweig E, Bridges W B 1984 Computer analysis of dielectric waveguide: A ...

  14. Thermally stimulated discharge current (TSDC) and dielectric ...

    Indian Academy of Sciences (India)

    Unknown

    2001-10-09

    Oct 9, 2001 ... Measurements of TSDC and dielectric constant, ε′, have been ... Keywords. Semiconducting glass; TSDC; trap energy; dielectric constant. 1. ... determination of mean depth of the internal charge, activation ... thermal charging, viz. (i) internal ... the basis of d.c. conductivity and short range Na+ ion motion.

  15. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Alamgir; Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H.; Ahmad, Shabbir

    2015-01-01

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO 2 synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO 2 NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ ac ) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO 2

  16. Migration characterization of Ga and In adatoms on dielectric surface in selective MOVPE

    International Nuclear Information System (INIS)

    Chen Wei-Jie; Han Xiao-Biao; Lin Jia-Li; Hu Guo-Heng; Liu Ming-Gang; Yang Yi-Bin; Chen Jie; Wu Zhi-Sheng; Zhang Bai-Jun; Liu Yang

    2015-01-01

    Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO 2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned SiO 2 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface. (paper)

  17. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  18. Bulk and interface dielectric functions: New results within the tight-binding approximation

    International Nuclear Information System (INIS)

    Elvira, V.D.; Duran, J.C.

    1991-01-01

    A tight-binding approach is used to analyze the dielectric behaviour of bulk semiconductors and semiconductor interfaces. This time interactions between second nearest neighbours are taken into account and several electrostatic models are proposed for the induced charge density around the atoms. The bulk dielectric function of different semiconductors (Si, Ge, GaAs and AlAs) are obtained and compared with other theoretical and experimental results. Finally, the energy band offset for GaAs-AlAs(1,0,0) interface is obtained and related to bulk properties of both semiconductors. The results presented in this paper show how the use of very simple but more realistic electrostatic models improve the analysis of the screening properties in semiconductors, giving a new support to the consistent tight-binding method for studying characteristics related to those properties. (Author)

  19. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    Science.gov (United States)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  20. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    Science.gov (United States)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  1. Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; DeFord, J.F.; Staggs, M.C.

    1993-01-01

    Atomic force microscopy (AFM) and electromagnetic field modeling were used to study the influence of nodular coating defects on laser-induced damage of multilayer dielectric coatings. In studies of HfO 2 /SiO 2 mirrors with 1.06 μm illumination, AFM results showed that nodular defects with high dome heights (>0.6 μm) were most susceptible to laser damage. Crater defects, formed by nodules ejected from the coating prior to illumination, were not damaged when illuminated over the same range of fluences. A finite-difference time-domain electromagnetic modeling code was used to study the influence of 3-D nodule defects on the E-field distribution within the interference coating. The modeling results show that Enfield enhancements as large as a factor of 4 can be present at the defects. Crater defects, however, result in minimal enhancement of the E-fields within the coating. These modeling results are consistent with the AFM experimental data, indicating that E-field enhancement is a contributing mechanism in defect-dominated laser damage of optical coatings

  2. Dielectric constant extraction of graphene nanostructured on SiC substrates from spectroscopy ellipsometry measurement using Gauss–Newton inversion method

    Energy Technology Data Exchange (ETDEWEB)

    Maulina, Hervin; Santoso, Iman, E-mail: iman.santoso@ugm.ac.id; Subama, Emmistasega; Nurwantoro, Pekik; Abraha, Kamsul [DepartmenFisika, Universitas Gadjah Mada, Sekip Utara BLS 21 Yogyakarta (Indonesia); Rusydi, Andrivo [Physics Department, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2016-04-19

    The extraction of the dielectric constant of nanostructured graphene on SiC substrates from spectroscopy ellipsometry measurement using the Gauss-Newton inversion (GNI) method has been done. This study aims to calculate the dielectric constant and refractive index of graphene by extracting the value of ψ and Δ from the spectroscopy ellipsometry measurement using GNI method and comparing them with previous result which was extracted using Drude-Lorentz (DL) model. The results show that GNI method can be used to calculate the dielectric constant and refractive index of nanostructured graphene on SiC substratesmore faster as compared to DL model. Moreover, the imaginary part of the dielectric constant values and coefficient of extinction drastically increases at 4.5 eV similar to that of extracted using known DL fitting. The increase is known due to the process of interband transition and the interaction between the electrons and electron-hole at M-points in the Brillouin zone of graphene.

  3. Atomic layer deposition of dielectrics for carbon-based electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J., E-mail: jiyoung.kim@utdallas.edu; Jandhyala, S.

    2013-11-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics.

  4. Atomic layer deposition of dielectrics for carbon-based electronics

    International Nuclear Information System (INIS)

    Kim, J.; Jandhyala, S.

    2013-01-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics

  5. Actuation response of polyacrylate dielectric elastomers

    DEFF Research Database (Denmark)

    Kofod, G.; Kornbluh, R.; Pelrine, R.

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improved......, though there are discrepancies. Further analysis suggests that these arise mostly from imperfect manufacture of the actuators, though there is a small contribution from an explicitly electrostrictive behavior of the acrylic adhesive. Measurements of the dielectric constant of stretched polymer reveal...... that the dielectric constant drops, when the polymer is strained, indicating the existence of a small electrostrictive effect. Finally, measurements of the electric breakdown field were made. These also show a dependence upon the strain. In the unstrained state the breakdown field is 20 WV/m, which grows to 218MV...

  6. Toward superlensing with metal-dielectric composites and multilayers

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Bundgaard; Thoreson, M.D.; Chen, W.

    2010-01-01

    We report on the fabrication of two types of adjustable, near-field superlens designs: metal–dielectric composites and metal–dielectric multilayer films. We fabricated a variety of films with different materials, thicknesses and compositions. These samples were characterized physically...... and optically to determine their film composition, quality, and optical responses. Our results on metal–dielectric composites indicate that although the real part of the effective permittivity generally follows effective medium theory predictions, the imaginary part does not and substantially higher losses...

  7. Dielectric relaxation of selenium-tellurium mixed former glasses

    Science.gov (United States)

    Palui, A.; Ghosh, A.

    2017-05-01

    We report the study of dielectric properties of mixed network former glasses of composition 0.3Ag2O-0.7(xSeO2-(1-x)TeO2); x=0, 0.1, 0.3, 0.4, 0.5 and 0.6 in a wide frequency 10 Hz - 2 MHz and temperature range 223 K - 403 K. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been analyzed using the Cole-Cole function. The inverse temperature dependence of relaxation time obtained from real part of dielectric permittivity data follows the Arrhenius relation. The activation energy shows mixed glass former effect with variation of mixed former ratio. A non-zero value of shape parameters is observed and it is almost independent of temperature and composition.

  8. Super soft silicone elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Hvilsted, Søren

    2015-01-01

    Dielectric elastomers (DEs) have many favourable properties. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young’s modulus and increasing the dielectric permittivity of silicone...... elastomers. A decrease in Young’s modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. New soft elastomer matrices with high dielectric permittivity and low Young’s modulus, with no loss of mechanical stability, were prepared by two different...... approaches using chloropropyl-functional silicone polymers. The first approach was based on synthesised chloropropyl-functional copolymers that were cross-linkable and thereby formed the basis of new silicone networks with high dielectric permittivity (e.g. a 43% increase). These networks were soft without...

  9. The Dielectric Behavior of Cyano-Substituted Poly imides

    International Nuclear Information System (INIS)

    Elshazly, E.S.; Abdelrahman, A.A.M.; Elmasry, M.A.A.

    2013-01-01

    A number of amorphous poly imides containing polar functional groups, cyano group, have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The piezoelectric constants are related to the polarization. The remanent polarization and hence piezoelectric response of a material is determined by dielectric relaxation strength which is the difference in dielectric constant at the glass transition temperature vicinity. The intent of this work is to clarify the mechanism and key components required for developing piezoelectricity in amorphous polymers and further to apply this understanding in designing a unique high temperature piezoelectric polyimide. In this paper, experimental investigations of dielectric constant of piezoelectric cyano -substituted poly imides have been tested as a function of temperature to measure the dielectric relaxation strength in the glass transition temperature region.

  10. Synthetic Strategies for High Dielectric Constant Silicone Elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt

    synthetic strategies were developed in this Ph.D. thesis, in order to create silicone elastomers with high dielectric constants and thereby higher energy densities. The work focused on maintaining important properties such as dielectric loss, electrical breakdown strength and elastic modulus....... The methodology therefore involved chemically grafting high dielectric constant chemical groups onto the elastomer network, as this would potentially provide a stable elastomer system upon continued activation of the material. The first synthetic strategy involved the synthesis of a new type of cross...... extender’ that allowed for chemical modifications such as Cu- AAC. This route was promising for one-pot elastomer preparation and as a high dielectric constant additive to commercial silicone systems. The second approach used the borane-catalysed Piers-Rubinsztajn reaction to form spatially well...

  11. Longitudinally mounted light emitting plasma in a dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Gilliard, Richard; DeVincentis, Marc; Hafidi, Abdeslam; O' Hare, Daniel; Hollingsworth, Gregg [LUXIM Corporation, 1171 Borregas Avenue, Sunnyvale, CA 94089 (United States)

    2011-06-08

    Methods for coupling power from a dielectric resonator to a light-emitting plasma have been previously described (Gilliard et al IEEE Trans. Plasma Sci. at press). Inevitably, regardless of the efficiency of power transfer, much of the emitted light is absorbed in the resonator itself which physically surrounds much if not all of the radiating material. An investigation into a method is presented here for efficiently coupling power to a longitudinally mounted plasma vessel which is mounted on the surface of the dielectric material of the resonator, thereby eliminating significant absorption of light within the resonator structure. The topology of the resonator and its physical properties as well as those of the metal halide plasma are presented. Results of basic models of the field configuration and plasma are shown as well as a configuration suitable as a practical light source.

  12. Nanocomposite dielectrics-properties and implications

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J K; Hu, Y [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2005-01-21

    The incorporation of nanoparticles into thermosetting resins is seen to impart desirable dielectric properties when compared with conventional (micron-sized particulates) composites. Although the improvements are accompanied by the mitigation of internal charge in the materials, the nature of the interfacial region is shown to be pivotal in determining the dielectric behaviour. In particular, it is shown that the conditions and enhanced area of the interface changes the bonding that may give rise to an interaction zone, which affects the interfacial polarization through the formation of local conductivity.

  13. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  14. Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an APSO-based nonlinear Preisach NARX fuzzy model

    International Nuclear Information System (INIS)

    Truong, Bui Ngoc Minh; Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2013-01-01

    Dielectric electro-active polymer (DEAP) materials are attractive since they are low cost, lightweight and have a large deformation capability. They have no operating noise, very low electric power consumption and higher performance and efficiency than competing technologies. However, DEAP materials generally have strong hysteresis as well as uncertain and nonlinear characteristics. These disadvantages can limit the efficiency in the use of DEAP materials. To address these limitations, this research will present the combination of the Preisach model and the dynamic nonlinear autoregressive exogenous (NARX) fuzzy model-based adaptive particle swarm optimization (APSO) identification algorithm for modeling and identification of the nonlinear behavior of one typical type of DEAP actuator. Firstly, open loop input signals are applied to obtain nonlinear features and to investigate the responses of the DEAP actuator system. Then, a Preisach model can be combined with a dynamic NARX fuzzy structure to estimate the tip displacement of a DEAP actuator. To optimize all unknown parameters of the designed combination, an identification scheme based on a least squares method and an APSO algorithm is carried out. Finally, experimental validation research is carefully completed, and the effectiveness of the proposed model is evaluated by employing various input signals. (paper)

  15. Low frequency complex dielectric (conductivity) response of dilute clay suspensions: Modeling and experiments.

    Science.gov (United States)

    Hou, Chang-Yu; Feng, Ling; Seleznev, Nikita; Freed, Denise E

    2018-04-11

    In this work, we establish an effective medium model to describe the low-frequency complex dielectric (conductivity) dispersion of dilute clay suspensions. We use previously obtained low-frequency polarization coefficients for a charged oblate spheroidal particle immersed in an electrolyte as the building block for the Maxwell Garnett mixing formula to model the dilute clay suspension. The complex conductivity phase dispersion exhibits a near-resonance peak when the clay grains have a narrow size distribution. The peak frequency is associated with the size distribution as well as the shape of clay grains and is often referred to as the characteristic frequency. In contrast, if the size of the clay grains has a broad distribution, the phase peak is broadened and can disappear into the background of the canonical phase response of the brine. To benchmark our model, the low-frequency dispersion of the complex conductivity of dilute clay suspensions is measured using a four-point impedance measurement, which can be reliably calibrated in the frequency range between 0.1 Hz and 10 kHz. By using a minimal number of fitting parameters when reliable information is available as input for the model and carefully examining the issue of potential over-fitting, we found that our model can be used to fit the measured dispersion of the complex conductivity with reasonable parameters. The good match between the modeled and experimental complex conductivity dispersion allows us to argue that our simplified model captures the essential physics for describing the low-frequency dispersion of the complex conductivity of dilute clay suspensions. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Dielectric barrier discharges applied for soft ionization and their mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Sebastian; Klute, Felix David; Schütz, Alexander; Franzke, Joachim, E-mail: joachim.franzke@isas.de

    2017-01-25

    Dielectric barrier discharges are used for analytical applications as dissociative source for optical emission spectrometry and for ambient-ionization techniques. In the range of ambient-ionization techniques it has attracted much attention in fields like food safety, biological analysis, mass spectrometry for reaction monitoring and imaging forensic identification. In this review some examples are given for the application as desorption/ionization source as well as for the sole application as ionization source with different sample introductions. It will be shown that the detection might depend on the certain distance of the plasma in reference to the sample or the kind of discharge which might be produced by different shapes of the applied high voltage. Some attempts of characterization are presented. A more detailed characterization of the dielectric barrier discharge realized with two ring electrodes, each separately covered with a dielectric layer, is described. - Highlights: • Dielectric barrier discharge applied as desorption/ionization source. • Dielectric barrier discharge applied solely as ionization source. • Different geometries in order to maintain soft ionization. • Characterization of the LTP probe. • Dielectric barrier discharges with two dielectric barriers (ring-ring shape).

  17. Dielectric properties of polycrystalline Cu-Zn ferrites at microwave frequencies

    International Nuclear Information System (INIS)

    Lamani, Ashok R.; Jayanna, H.S.; Parameswara, P.; Somashekar, R.; Ramachander,; Rao, Ramchandra; Prasanna, G.D.

    2011-01-01

    Highlights: → Cu 1-x Zn x Fe 2 O 4 at different concentration are suitable for high frequency applications. → Dielectric properties are related with W-H plot. → The anisotropy due to the crystallite size effect is significant in change of dielectric constant. - Abstract: The real dielectric constant ε' and complex dielectric constant ε'' of Cu 1-x Zn x Fe 2 O 4 have been measured at room temperature in the high frequency range 1 MHz to 1.8 GHz. At low frequencies the dielectric loss is found to be constant up to 1.4 GHz and there is a sudden rise at 1.5 GHz. A qualitative explanation is given for the composition, frequency dependence of the dielectric constant and dielectric loss of Cu 1-x Zn x Fe 2 O 4 . These are correlated with the W-H plot which gives the information about change in the average crystal size and strain of the samples. The micro-morphological features of the samples were obtained by Scanning Electron Microscopy (SEM). The micrograph shows that the increase of the Zn content in Cu ferrite increases the grain size.

  18. Anomalous behavior of secondary dielectric relaxation in polypropylene glycols

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-09-19

    A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.

  19. Dielectric constant of ionic solutions: a field-theory approach.

    Science.gov (United States)

    Levy, Amir; Andelman, David; Orland, Henri

    2012-06-01

    We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.

  20. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling......In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...

  1. Inverse design of dielectric materials by topology optimization

    DEFF Research Database (Denmark)

    Otomori, M.; Andkjær, Jacob Anders; Sigmund, Ole

    2012-01-01

    The capabilities and operation of electromagnetic devices can be dramatically enhanced if artificial materials that provide certain prescribed properties can be designed and fabricated. This paper presents a systematic methodology for the design of dielectric materials with prescribed electric...... permittivity. A gradient-based topology optimization method is used to find the distribution of dielectric material for the unit cell of a periodic microstructure composed of one or two dielectric materials. The optimization problem is formulated as a problem to minimize the square of the difference between...

  2. Improvement of MRR and surface roughness during electrical discharge machining (EDM) using aluminum oxide powder mixed dielectric fluid

    Science.gov (United States)

    Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.

    2018-01-01

    This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.

  3. Investigation of dielectric relaxation in systems with hierarchical organization: From time to frequency domain and back again

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)

    2017-06-28

    Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.

  4. The use of dielectric spectroscopy for the characterization of polymer-induced flocculation of polystyrene particles

    DEFF Research Database (Denmark)

    Christensen, Peter Vittrup; Keiding, Kristian

    2008-01-01

    in dilute suspensions. Thus, techniques usable for flocculation characterization in high-solids suspensions are desirable. This study investigates the use of dielectric spectroscopy to monitor the flocculation of polystyrene particles with a cationic polymer. The frequency-dependent permittivity is modeled......The flocculation of colloidal suspensions is an important unit operation in many industries, as it greatly improves the performance of solid separation processes. The number of available techniques for evaluating flocculation processes on line is limited, and most of these are only functional...... as a decrease in the magnitude of the dielectric dispersion. The use of dielectric spectroscopy is found to be valuable for assessing flocculation processes in high-solids suspensions, as changes in parameters Such as floc size and charge can be detected....

  5. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available Two-dimensional metasurfaces are widely focused on for their ability for flexible light manipulation (phase, amplitude, polarization over sub-wavelength propagation distances. Most of the metasurfaces can be divided into two categories by the material type of unit structure, i.e., plasmonic metasurfaces and dielectric metasurfaces. For plasmonic metasurfaces, they are made on the basis of metallic meta-atoms whose optical responses are driven by the plasmon resonances supported by metallic particles. For dielectric metasurfaces, the unit structure is constructed with high refractive index dielectric resonators, such as silicon, germanium or tellurium, which can support electric and magnetic dipole responses based on Mie resonances. The responses of plasmonic and dielectric metasurfaces are all relevant to the characteristics of unit structure, such as dimensions and materials. One can manipulate the electromagnetic field of light wave scattered by the metasurfaces through designing the dimension parameters of each unit structure in the metasurfaces. In this review article, we give a brief overview of our recent progress in plasmonic and dielectric metasurface-assisted nanophotonic devices and their design, fabrication and applications, including the metasurface-based broadband and the selective generation of orbital angular momentum (OAM carrying vector beams, N-fold OAM multicasting using a V-shaped antenna array, a metasurface on conventional optical fiber facet for linearly-polarized mode (LP11 generation, graphene split-ring metasurface-assisted terahertz coherent perfect absorption, OAM beam generation using a nanophotonic dielectric metasurface array, as well as Bessel beam generation and OAM multicasting using a dielectric metasurface array. It is believed that metasurface-based nanophotonic devices are one of the devices with the most potential applied in various fields, such as beam steering, spatial light modulator, nanoscale

  6. Dielectric properties of isolated clusters beam deflection studies

    CERN Document Server

    Heiles, Sven

    2013-01-01

    A broad range of state-of-the-art methods to determine properties of clusters are presented. The experimental setup and underlying physical concepts of these experiments are described. Furthermore, existing theoretical models to explain the experimental observations are introduced and the possibility to deduce structural information from measurements of dielectric properties is discussed. Additional case studies are presented in the book to emphasize the possibilities but also drawbacks of the methods.

  7. Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes

    International Nuclear Information System (INIS)

    Wang, Y.; Cheng, Y.L.; Zhang, Y.W.; Chan, H.L.W.; Choy, C.L.

    2003-01-01

    This paper reports on the dielectric behaviors of lead zirconate titanate (PZT) capacitors with coplanar electrodes. Usually a ferroelectric device has a metal-ferroelectric-metal configuration (parallel plate capacitor); when both the electrodes are on one side of a ceramic to form a coplanar capacitor, different dielectric behaviors will be anticipated because of the change in the distribution of the test field inside the dielectrics. This paper describes how the capacitance and dielectric loss of PZT-based coplanar capacitors change with electrode distance, area and test frequency

  8. Synthesis and Characterization of High-Dielectric-Constant Nanographite-Polyurethane Composite

    Science.gov (United States)

    Mishra, Praveen; Bhat, Badekai Ramachandra; Bhattacharya, B.; Mehra, R. M.

    2018-05-01

    In the face of ever-growing demand for capacitors and energy storage devices, development of high-dielectric-constant materials is of paramount importance. Among various dielectric materials available, polymer dielectrics are preferred for their good processability. We report herein synthesis and characterization of nanographite-polyurethane composite with high dielectric constant. Nanographite showed good dispersibility in the polyurethane matrix. The thermosetting nature of polyurethane gives the composite the ability to withstand higher temperature without melting. The resultant composite was studied for its dielectric constant (ɛ) as a function of frequency. The composite exhibited logarithmic variation of ɛ from 3000 at 100 Hz to 225 at 60 kHz. The material also exhibited stable dissipation factor (tan δ) across the applied frequencies, suggesting its ability to resist current leakage.

  9. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  10. Electromagnetic properties of metal-dielectric media and their applications

    Science.gov (United States)

    Animilli, Shravan Rakesh

    The main objective of this dissertation is to investigate nano-structured random composite materials, which exhibit anomalous phenomena, such as the extraordinary enhancements of linear and non-linear optical processes due to excitation of collective electronic states, surface plasmons (SP). The main goal is to develop a time and memory efficient novel numerical method to study the properties of these random media in three dimensions (3D) by utilization of multi core processing and packages such as MPI for parallel execution. The developed numerical studies are then utilized to provide a comprehensive characterization and optimization of a surface plasmon enhanced solar cell (SPESC) and to serve as a test bed for enhanced bio and chemical sensing. In this context, this thesis work develops an efficient and exact numerical algorithm here referred to as Block Elimination Method (BE) which provides the unique capability of modeling extremely large scale composite materials (with up to 1 million strongly interacting metal or dielectric particles). This capability is crucial in order to study the electromagnetic response of large scale inhomogeneous (fractal) films and bulk composites at critical concentrations (percolation). The developed numerical method is used to accurately estimate parameters that describe the composite materials, including the effective conductivity and correlation length scaling exponents, as well as density of states and localization length exponents at the band center. This works reveals, for a first time, a unique de-localization mechanism that plays an important role in the excitation of charge-density waves, i.e. surface plasmons (SP), in metal-dielectric composites. It also shows that in 3D metal-dielectric percolation systems the local fields distribution function for frequencies close to the single particle plasmon resonance is log-normal which is a signature of a metal-dielectric phase transition manifested in the optical response of the

  11. Extraction and dielectric properties of curcuminoid films grown on Si substrate for high-k dielectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Dakhel, A.A.; Jasim, Khalil E. [Department of Physics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, P.O. Box 15503 (Bahrain); Henari, F.Z., E-mail: fzhenari@rcsi-mub.com [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, P.O. Box 15503 (Bahrain)

    2013-09-20

    Highlights: • The unknown insulating properties of curcuminoid extract are systematically studied. • Optical study gives a bandgap of 3.15 eV and a refractive index of 1.92 at 505 nm. • Turmeric is a high-k environmental friendly material for use in microelectronics. • Curcuminoid extract can be used as insulator of MIS devices with ε{sup ′}{sub ∞}≈54.2. -- Abstract: Curcuminoids were extracted from turmeric powder and evaporated in vacuum to prepare thin films on p-Si and glass substrates for dielectric and optical investigations. The optical absorption spectrum of the prepared amorphous film was not identical to that of the molecular one, which was identified by a strong wide absorption band in between ∼220 and 540 nm. The onset energy of the optical absorption of the film was calculated by using Hamberg et al. method. The dielectric properties of this material were systematically studied for future eco friendly applications in metal–insulator–semiconductor MIS field of applications. The complex dielectric properties were studied in the frequency range of 1–1000 kHz and was analysed in-terms of dielectric impedance Z{sup *}(ω) and modulus M{sup *}(ω). Generally, the curcuminoid complex can be considered as a high-k material and can be used in the environmental friendly production of microelectronic devices.

  12. Extraction and dielectric properties of curcuminoid films grown on Si substrate for high-k dielectric applications

    International Nuclear Information System (INIS)

    Dakhel, A.A.; Jasim, Khalil E.; Cassidy, S.; Henari, F.Z.

    2013-01-01

    Highlights: • The unknown insulating properties of curcuminoid extract are systematically studied. • Optical study gives a bandgap of 3.15 eV and a refractive index of 1.92 at 505 nm. • Turmeric is a high-k environmental friendly material for use in microelectronics. • Curcuminoid extract can be used as insulator of MIS devices with ε ′ ∞ ≈54.2. -- Abstract: Curcuminoids were extracted from turmeric powder and evaporated in vacuum to prepare thin films on p-Si and glass substrates for dielectric and optical investigations. The optical absorption spectrum of the prepared amorphous film was not identical to that of the molecular one, which was identified by a strong wide absorption band in between ∼220 and 540 nm. The onset energy of the optical absorption of the film was calculated by using Hamberg et al. method. The dielectric properties of this material were systematically studied for future eco friendly applications in metal–insulator–semiconductor MIS field of applications. The complex dielectric properties were studied in the frequency range of 1–1000 kHz and was analysed in-terms of dielectric impedance Z * (ω) and modulus M * (ω). Generally, the curcuminoid complex can be considered as a high-k material and can be used in the environmental friendly production of microelectronic devices

  13. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps

    International Nuclear Information System (INIS)

    Belasri, A.; Harrache, Z.

    2010-01-01

    A pulsed dielectric-barrier discharge in xenon has been simulated for operating conditions typical to excimer lamps, in which the discharge is considered spatially homogeneous. The computer model developed is based on the xenon plasma chemistry, the circuit, and the Boltzmann equations. First, the validity of the physical model was checked and compared to experimental and theoretical works, and then the model is applied in the case of a sinusoidal voltage at period frequencies in the range of 50 kHz-2 MHz. The results obtained with the present description are in good agreement with experimental measurements and one-dimensional fluid prediction in terms of electrical characteristics and vacuum ultraviolet (vuv) emission. The effect of operation voltage, power source frequency, dielectric capacitance, as well as gas pressure on the discharge efficiency and the 172, 150, and 147 nm photon generation, under the typical experimental operating conditions and for the case of a sinusoidal applied voltage, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to vuv emission in the lamp is greater than 38%, and it will be very affected at high power source frequency and high gas pressure with a significant dependence on the dielectric capacitance.

  14. Test plan for prototype dielectric permittivity sensor

    International Nuclear Information System (INIS)

    Pfeifer, M.C.

    1993-07-01

    The digface characterization project funded by the Buried Waste Integrated Demonstration (BWID) is designed to test a new method of monitoring hazardous conditions during the remediation at waste sites. Often on a large scale, the exact cause of each anomaly is difficult to determine and ambiguities remain in the characterization of a site. The digface characterization concept is designed to alleviate some of this uncertainty by creating systems that monitor small volumes of soil and detect anomalous areas during remediation before they are encountered. The goal of the digface characterization demonstration is to detect changes in the physical properties from one volume to another and relate these changes in physical properties to changes in the level of contamination. Dielectric permittivity mapping is a method that might prove useful in digface characterization. In this project, the role of a dielectric permittivity monitoring device is under investigation. This project addresses two issues: what are the optimal means of mapping dielectric permittivity contrasts and what types of targets can be detected using dielectric permittivity mapping

  15. Dielectric image line groove antennas for millimeterwaves

    Science.gov (United States)

    Solbach, K.; Wolff, I.

    Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.

  16. Resonance dielectric dispersion of TEA-CoCl2Br2 nanocrystals incorporated into the PMMA matrix

    Science.gov (United States)

    Kapustianyk, V.; Shchur, Ya; Kityk, I.; Rudyk, V.; Lach, G.; Laskowski, L.; Tkaczyk, S.; Swiatek, J.; Davydov, V.

    2008-09-01

    The dielectric properties of TEA-CoCl2Br2 nanocrystals incorporated into the polymethylmethacrylate matrix within the frequency range of 3 × 105-2.6 × 109 Hz in the temperature region of 90-300 K were investigated. The considerable difference in the dielectric spectra of the nanocomposite compared to those of the bulk crystal and the pure polymer matrix was observed. The dielectric dispersion of the composite material reveals a resonance type (resonance frequency was found to be near 1.3 GHz) and may be qualitatively explained as the result of piezoelectric resonance on the nanocrystals. The model interpretation of this phenomenon based on the forced-dumped oscillator is presented.

  17. Dielectric strength of SiO2 in a CMOS transistor structure

    International Nuclear Information System (INIS)

    Soden, J.M.

    1979-01-01

    The distribution of experimental dielectric strengths of SiO 2 gate dielectric in a CMOS transistor structure is shown to be composed of a primary, statistically-normal distribution of high dielectric strength and a secondary distribution spread through the lower dielectric strength region. The dielectric strength was not significantly affected by high level (1 x 10 6 RADS (Si)) gamma radiation or high temperature (200 0 C) stress. The primary distribution breakdowns occurred at topographical edges, mainly at the gate/field oxide interface, and the secondary distribution breakdowns occurred at random locations in the central region of the gate

  18. New Dielectric Measurement Data to Determine the Permittivity of Seawater at 1.4313 Hz

    Science.gov (United States)

    Lang, R.; Zhou, Y.; Utku, C.; Levine, D.

    2012-01-01

    This paper describes the new measurements - made in 2010-2011 - of the dielectric constant of seawater at 1.413 GHz using a resonant cavity technique. The purpose of these measurements is to develop an accurate relationship concerning the dependence of the dielectric constant of seawater on temperature and salinity for use by the Aquarius inversion algorithm. Aquarius is a NASA/CONAE satellite mission launched in June of 2011 with the primary mission of measuring global sea surface salinity with a 1.413 GHz radiometer to an accuracy of 0.2 psu. A brass microwave cavity resonant at 1.413 GHz has been used to measure the dielectric constant of seawater. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The change of resonant frequency and the cavity Q value are used to determine the real and imaginary parts of the dielectric constant of seawater. Measurements are automated with Visual Basic software developed at the George Washington University. In this paper, new results from measurements made since September 2010 will be presented for salinities of 30, 35 and 38 psu with a temperature range of 0 C to 35 C in intervals of 5 C. These measurements are more accurate than earlier measurements made in 2008. The new results will be compared to the Klein-Swift (KS) and Meissner-Wentz (MW) model functions. The importance of an accurate model function will be illustrated by using these model functions to invert the Aquarius brightness temperature to retrieve the salinity values. The salinity values will be compared to co-located in situ data collected by Argo buoys.

  19. Dielectric spectra of proteins in conducting media

    International Nuclear Information System (INIS)

    Ruderman, G.; Xammar Oro, J.R. de

    1990-10-01

    Dielectric measurements of serum albumin and myoglobin in solutions of varying conductivities were performed. The results presented confirm that also for protein solutions, the Maxwell predictions of a threshold frequency in conducting materials holds. The threshold frequency of a serum albumin solution was experimentally determined. Attention should be recalled that, if the dielectric spectra of proteins solutions want to be measured, three distinct frequency regions are to be observed: a low frequency region, where the sample behaves like a conductor; an intermediate region centered around the threshold frequency, where the free charges partially screen the fixed ones; and a high frequency region where the sample behaves like a good dielectric. (author). 8 refs, 5 figs

  20. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  1. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2016-01-01

    Full Text Available The importance of nanoparticles in controlling physical properties of polymeric nanocomposite materials leads us to study effects of these nanoparticles on electric and dielectric properties of polymers in industry In this research, the dielectric behaviour of High-Density Polyethylene (HDPE nanocomposites materials that filled with nanoparticles of clay or fumed silica has been investigated at various frequencies (10 Hz-1 kHz and temperatures (20-60°C. Dielectric spectroscopy has been used to characterize ionic conduction, then, the effects of nanoparticles concentration on the dielectric losses and capacitive charge of the new nanocomposites can be stated. Capacitive charge and loss tangent in high density polyethylene nanocomposites are measured by dielectric spectroscopy. Different dielectric behaviour has been observed depending on type and concentration of nanoparticles under variant thermal conditions.

  2. First-principles study of dielectric properties of cerium oxide

    International Nuclear Information System (INIS)

    Yamamoto, Takenori; Momida, Hiroyoshi; Hamada, Tomoyuki; Uda, Tsuyoshi; Ohno, Takahisa

    2005-01-01

    We have theoretically investigated the dielectric properties of fluorite CeO 2 as well as hexagonal and cubic Ce 2 O 3 by using first-principles pseudopotentials techniques within the local density approximation. Calculated electronic and lattice dielectric constants of CeO 2 are in good agreement with previous theoretical and experimental results. For Ce 2 O 3 , the hexagonal phase has a lattice dielectric constant comparable to that of CeO 2 , whereas the cubic phase has a much smaller one. We have concluded that the enhancement of the dielectric constant in CeO 2 epitaxially grown on Si is not due to its lattice expansion experimentally observed nor regular formation of oxygen vacancies in CeO 2

  3. Insight into the electrical properties and chain conformation of spherical polyelectrolyte brushes by dielectric spectroscopy

    Science.gov (United States)

    Guo, Xiaoxia; Zhao, Kongshuang

    2017-02-01

    We report here a dielectric study on three kinds of anionic spherical polyelectrolyte brush (SPBs, consisting of a polystyrene (PS) core and three different poly (acrylic acid) chains grafted onto the core) suspensions over a frequency ranging from 40 Hz to 110 MHz. The relaxation behavior of the SPB suspensions shows significant changes in the brush-layer properties when the mass fraction of SPBs and the pH of the suspensions change. Two definite relaxations related to the interfacial polarization are observed around 100 kHz and 10 MHz. A single-layer spherical-shell model is applied to describe the SPB suspensions wherein the suspended SPB is modeled as a spherical-shell composite particle in which an insulated PS sphere is surrounded by a conducting ion-permeable shell (the polyelectrolyte chain layer). We developed the curve-fitting procedure to analyze the dielectric spectrum in order to obtain the dielectric properties of the components of the SPBs, especially the properties of the polyelectrolyte brush. Based on this method and model, the permittivity and conductivity of the brush layer, ζ potential, etc are calculated. The ordered orientation of the water molecules in the layer leads to an additional electrical dipole moment; increasing pH causes the brush layer to swell. In addition, the repulsive force between the SPB particles are evaluated using the brush-layer thickness, which is obtained by fitting dielectric spectra, combined with relative theoretical formulas. Increasing PH values or SPB concentration would improve the stability of the SPBs dispersion.

  4. Modeling of Dual Gate Material Hetero-dielectric Strained PNPN TFET for Improved ON Current

    Science.gov (United States)

    Kumari, Tripty; Saha, Priyanka; Dash, Dinesh Kumar; Sarkar, Subir Kumar

    2018-01-01

    The tunnel field effect transistor (TFET) is considered to be a promising alternative device for future low-power VLSI circuits due to its steep subthreshold slope, low leakage current and its efficient performance at low supply voltage. However, the main challenging issue associated with realizing TFET for wide scale applications is its low ON current. To overcome this, a dual gate material with the concept of dielectric engineering has been incorporated into conventional TFET structure to tune the tunneling width at source-channel interface allowing significant flow of carriers. In addition to this, N+ pocket is implanted at source-channel junction of the proposed structure and the effect of strain is added for exploring the performance of the model in nanoscale regime. All these added features upgrade the device characteristics leading to higher ON current, low leakage and low threshold voltage. The present work derives the surface potential, electric field expression and drain current by solving 2D Poisson's equation at different boundary conditions. A comparative analysis of proposed model with conventional TFET has been done to establish the superiority of the proposed structure. All analytical results have been compared with the results obtained in SILVACO ATLAS device simulator to establish the accuracy of the derived analytical model.

  5. Towards all-dielectric, polarization-independent optical cloaks

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    Fully enclosing, all-dielectric cloaks working for both E-z and H-z polarizations simultaneously are presented in this letter. The cloaks are effective for two antiparallel angles of incidence, and the layout of standard dielectric material in the cloak is determined by topology optimization. Sca...... effectively when distributing a material with lower permittivity than the background material....

  6. A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics

    Science.gov (United States)

    Wallace, Robert M.

    2001-03-01

    Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.13 um complementary metal oxide semiconductor (CMOS) technology. The prospect of replacing SiO2 is a formidable task because the alternate gate dielectric must provide many properties that are, at a minimum, comparable to those of SiO2 yet with a much higher permittivity. A systematic examination of the required performance of gate dielectrics suggests that the key properties to consider in the selection an alternative gate dielectric candidate are (a) permittivity, band gap and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. We will review the performance requirements for materials associated with CMOS scaling, the challenges associated with these requirements, and the state-of-the-art in current research for alternate gate dielectrics. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.

  7. Complex dielectric modulus and relaxation response at low microwave frequency region of dielectric ceramic Ba6-3xNd8+2xTi18O54

    Directory of Open Access Journals (Sweden)

    Chian Heng Lee

    2014-10-01

    Full Text Available The desirable characteristics of Ba6-3xNd8+2xTi18O54 include high dielectric constant, low loss tangent, and high quality factor developed a new field for electronic applications. The microwave dielectric properties of Ba6-3xNd8+2xTi18O54, with x = 0.15 ceramics at different sintering temperatures (600–1300°C were investigated. The phenomenon of polarization produced by the applied electric field was studied. The dielectric properties with respect to frequency from 1 MHz to 1.5 GHz were measured using Impedance Analyzer, and the results were compared and analyzed. The highest dielectric permittivity and lowest loss factor were defined among the samples. The complex dielectric modulus was evaluated from the measured parameters of dielectric measurement in the same frequency range, and used to differentiate the contribution of grain and grain boundary.

  8. High temperature dielectric relaxation anomaly of Y3+ and Mn2+ doped barium strontium titanate ceramics

    International Nuclear Information System (INIS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2014-01-01

    Relaxation like dielectric anomaly is observed in Y 3+ and Mn 2+ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  9. Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds

    International Nuclear Information System (INIS)

    Daoud, Jamal; Tabrizian, Maryam; Asami, Koji; Rosenberg, Lawrence

    2012-01-01

    In this study, we introduce a cellular differentiation cellular model based on dielectric spectroscopy that characterizes epithelial differentiation processes. Non-invasive cellular monitoring was achieved within a three-dimensional microenvironment consisting of a cell-containing collagen I gel seeded onto microfabricated scaffolds. In this proof-of-concept investigation, Madin–Darby canine kidney cells were cultured within microfabricated, geometrically controlled scaffolds and allowed us to differentiate to hollow cyst-like structures. This transformation within the three-dimensional environment is monitored and characterized through dielectric spectroscopy while maintaining cell culture in vitro. (paper)

  10. Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite

    Science.gov (United States)

    Agami, W. R.

    2018-04-01

    Ferrite samples of Mn0.5Ni0.1Zn0.4NdxFe2-xO4 (x = 0.0, 0.01, 0.02, 0.05, 0.075 and 0.1) have been prepared by usual ceramic method. The temperature and composition dependences of the dc electric resistivity (ρdc) were studied. The frequency and composition dependences of the ac electric resistivity (ρac) and dielectric parameters (dielectric constant ε' and dielectric loss ε'') have been investigated. ρdc was found to decrease with temperature for all samples while it increases with increasing Nd3+ concentration. On the other hand, ρac and the dielectric properties were found to decrease with increasing the frequency while ρac increases and both ε' and ε'' decrease with increasing Nd3+ concentration. These results were explained by the Maxwell-Wagner two-layer model and Koops's theory. The improvement in dc and ac electric resistivities shows that these prepared materials are valid for decreasing the eddy current losses at high frequencies, so they can be used in the fabrication of multilayer chip inductor (MLCI) devices.

  11. Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies

    Science.gov (United States)

    Berrag, A.; Belkhiat, S.; Madani, L.

    2018-04-01

    Polyvinyl chloride (PVC) is widely used as insulator in electrical engineering especially as cable insulation sheaths. In order to improve the dielectric properties, polymers are mixed with ceramics. In this paper, PVC composites with different weight percentages 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared and investigated. Loss index (𝜀″) and dielectric constant (𝜀‧) have been measured using an impedance analyzer RLC. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray (EDX) have been used as characterization techniques. The incorporation of BaTiO3 does not modify the crystallinity and the morphology of the PVC but reduces the space charges, therefore the dielectric losses. The frequency response analysis has been followed in the frequency ranges (20-140 Hz and 115-1 MHz). Relaxation frequencies have been evaluated in each frequency range. Experimental measurements have been validated using Cole-Cole’s model. Experimental results show well that BaTiO3 as a filler improves the dielectric properties of PVC.

  12. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites

    Science.gov (United States)

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-01

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled

  13. Controlling Dielectric and Magnetic Properties of PVdF/Magnetite Nanocomposite Fibre Webs

    Directory of Open Access Journals (Sweden)

    A. P. Venugopal

    2014-01-01

    Full Text Available The ability of filtration and separation media containing fibres to remove impurities from oil, water, and blood can be enhanced using magnetic fields. The ability to regulate the dielectric and magnetic behaviour of fibrous webs in terms of superparamagnetic or ferromagnetic properties by adjusting material composition is fundamental to meeting end-use requirements. Electrospun fibres were produced from PVdF (polyvinylidene fluoride and nanomagnetite (Fe3O4 nanoparticles from solutions of PVdF in dimethylacetamide containing Fe3O4 nanoparticle contents ranging from 3 to 10 wt%. Fibre dimensions, morphology, and nanoparticle agglomeration were characterised by environmental scanning electron microscopy (ESEM and field emission gun transmission electron microscopy (FEGTEM. Dielectric behaviour of the fibre webs was influenced by web porosity and the Fe3O4 nanoparticle content. Impedance analysis of the webs indicated an increase in dielectric constant of ∼80% by the addition of 10 wt% Fe3O4 nanoparticles compared to 100 wt% PVdF. The dielectric constants of the webs were compared with those obtained from the theoretical mixing models of Maxwell and Lichtenecker. Vibrating sample magnetometer (VSM magnetisation measurements indicated a blocking temperature above 300 K suggesting ferrimagnetic rather than superparamagnetic behaviour as a result of Fe3O4 nanoparticle agglomeration within fibres.

  14. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    Science.gov (United States)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  15. Parameterization of the dielectric function of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, P., E-mail: petrik@mfa.kfki.hu

    2014-11-15

    Optical methods like spectroscopic ellipsometry are sensitive to the structural properties of semiconductor films such as crystallinity or grain size. The imaginary part of the dielectric function is proportional to the joint density of electronic states. Consequently, the analysis of the dielectric function around the critical point energies provides useful information about the electron band structure and all related parameters like the grain structure, band gap, temperature, composition, phase structure, and carrier mobility. In this work an attempt is made to present a selection of the approaches to parameterize and analyze the dielectric function of semiconductors, as well as some applications.

  16. Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Toor, Anju, E-mail: atoor@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); So, Hongyun, E-mail: hyso@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Pisano, Albert P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093 (United States)

    2017-08-31

    Highlights: • Ligand-modified gold NP/SU-8 nanocomposites were synthesized and demonstrated. • Particle agglomeration and dispersion were characterized with different NPs concentration. • Nanocomposites showed higher average dielectric permittivity compared to SU-8 only. • Relatively lower dielectric loss (average 0.09 at 1 kHz) was achieved with 10 % w/w NPs. - Abstract: This article reports the enhanced dielectric properties of a photodefinable polymer nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of the dielectric permittivity and loss tangent on the particle concentration, and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  17. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju; So, Hongyun; Pisano, Albert P.

    2017-01-01

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  18. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju

    2017-04-15

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  19. Electrical modulus and dielectric behavior of Cr{sup 3+} substituted Mg–Zn nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, S.F.; Abdo, M.A.

    2017-04-15

    The dielectric parameters and ac electrical conductivity of Mg{sub 0.8}Zn{sub 0.2}Cr{sub x}Fe{sub 2−x}O{sub 4}; (0≤x≤0.025) nanoferrites synthesized citrate–nitrate auto-combustion method were studied using the complex impedance technique in the frequency and temperature ranges 4 Hz–5 MHz and 303–873 K respectively. Hopping of charge carriers plus interfacial polarization could interpret the behaviors of dielectric constant (ε′), dielectric loss tangent (tanδ) and ac electrical conductivity (σ{sub ac}) with frequency, temperatures and composition. The up-normal behavior observed in tanδ trend with temperatures confirms the presence of relaxation loss (dipoles losses). Correlated barrier hopping (CBH) of electron is the conduction mechanism of the investigated nanoferrites. Cole-Cole plots at different temperatures emphasize the main role of grain and grain boundaries in the properties of the investigated nanoferrites. Cr{sup 3+} substitution can control the dielectric parameters and ac electrical conductivity of Mg-Zn nanoferrites making it candidates for versatile applications. - Highlights: • The composition dependence of ε′, tanδ, and σ{sub ac} showed the same trend. • CBH model is the conduction mechanism of the investigated nanoferrite. • Cole-Cole plots confirmed the role of grain and grain boundaries in our nanoferrites.

  20. Metal-dielectric interfaces in gigascale electronics thermal and electrical stability

    CERN Document Server

    He, Ming

    2012-01-01

    Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying  the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate  interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics  provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric i...

  1. Optimization of nitridation conditions for high quality inter-polysilicon dielectric layers

    NARCIS (Netherlands)

    Klootwijk, J.H.; Bergveld, H.J.; van Kranenburg, H.; Woerlee, P.H.; Wallinga, Hans

    1996-01-01

    Nitridation of deposited high temperature oxides (HTO) was studied to form high quality inter-polysilicon dielectric layers for embedded non volatile memories. Good quality dielectric layers were obtained earlier by using an optimized deposition of polysilicon and by performing a post-dielectric

  2. Role of electron swarm studies in the development of gaseous dielectrics

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1981-01-01

    Recent knowledge provided by swarm studies allowing control of the number densities and energies of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for mixtures is outlined

  3. Controlled opacity in a class of nonlinear dielectric media

    Science.gov (United States)

    Bittencourt, E.; Camargo, G. H. S.; De Lorenci, V. A.; Klippert, R.

    2017-03-01

    Motivated by new technologies for designing and tailoring metamaterials, we seek properties for certain classes of nonlinear optical materials that allow room for a reversibly controlled opacity-to-transparency phase transition through the application of external electromagnetic fields. We examine some mathematically simple models for the dielectric parameters of the medium and compute the relevant geometric quantities that describe the speed and polarization of light rays.

  4. Influence of color on dielectric properties of marinated poultry breast meat.

    Science.gov (United States)

    Samuel, D; Trabelsi, S

    2012-08-01

    The dielectric behavior of foods when exposed to radio-frequency and microwave electric fields is highly influenced by moisture content and the degree of water binding with constituents of the food materials. The ability to correlate specific food quality characteristics with the dielectric properties can lead to the development of rapid, nondestructive techniques for such quality measurements. Water-holding capacity is a critical attribute in meat quality. Up to 50% of raw poultry meat in the United States is marinated with mixtures of water, salts, and phosphates. The objective of this study was to determine if variations in breast meat color would affect the dielectric properties of marinated poultry meat over a broad frequency range from 500 MHz to 50 GHz. Poultry meat was obtained from a local commercial plant in Georgia (USA). Color and pH measurements were taken on the breast filets. Groups of breast filets were sorted into classes of pale and normal before adding marination pickup percentages of 0, 5, 10, and 15. Breast filets were vacuum-tumbled and weighed for pickup percentages. Dielectric properties of the filets were measured with a coaxial open-ended probe on samples equilibrated to 25°C. Samples from pale meat exhibited higher dielectric properties than samples from normal meat. No differences could be observed between samples from pale and normal meat after marination of the samples. Overall, dielectric properties increased as the marination pickup increased (α=0.05). Marination pickup strongly influenced the dielectric loss factor. Differences between samples marinated at different pickup levels were more pronounced at lower frequencies for the dielectric loss factor. As frequency increased, the differences between samples decreased. Differences in dielectric constant between samples were not as consistent as those seen with the dielectric loss factor.

  5. In-beam dielectric properties of alumina

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  6. Critical behavior of the spontaneous polarization and the dielectric susceptibility close to the cubic-tetragonal transition in BaTiO3

    Directory of Open Access Journals (Sweden)

    H. Yurtseven

    2015-09-01

    Full Text Available Using Landau mean field model, the spontaneous polarization and the dielectric susceptibility are analyzed as functions of temperature and pressure close to the cubic–tetragonal (ferroelectric–paraelectric transition in BaTiO3. From the analysis of the dielectric susceptibility and the spontaneous polarization, the critical exponents are deduced in the classical and quantum limits for BaTiO3. From the critical behavior of the dielectric susceptibility, the spontaneous polarization can be described for the ferroelectric–paraelectric (cubic to tetragonal transition between 4 and 8 GPa at constant temperatures of 0 to 200 K in BaTiO3 within the Landau mean field model given here.

  7. Dielectric materials electrization by fast electrons

    International Nuclear Information System (INIS)

    Dyrkov, V.A.; Kononov, B.A.

    1990-01-01

    Electrization of short-circuited high-ohmage targets under irradiation by 50-200 keV electrons non-uniformly by volume is investigated both experimentally and theoretically. The obtained data show that effect of space charge field increases monotonically up to stationary state during irradiation. Time constant for space charge accumulation constitutes 1-10 min and has lower value for polymethylmethacrylate as compared with polyethyleneterephthalate and decreases with increase of beam current density. Good agreement of experimental and theoretical results for both materials confirms the validity of main positions of phonomenological model of space charge formation in dielectric materials under fast electron irradiation

  8. Surface structures and dielectric response of ultrafine BaTiO3 particles

    International Nuclear Information System (INIS)

    Jiang, B.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Characteristic differences are observed for the dielectric response and microstructures of BaTiO 3 nanoscale fine powders prepared using sol gel (SG) and steric acid gel (SAG) methods. The former exhibit a critical size below which there is no paraelectric/ferroelectric phase transition whereas BaTiO 3 prepared via the SAG route remained cubic for all conditions. Atomic resolution images of both varieties showed a high density of interesting surface steps and facets. Computer simulated images of surface structure models showed that the outer (100) surface was typically a BaO layer and that at corners and ledges the steps are typically finished with Ba+2 ions; i.e. the surfaces and steps are Ba-rich. Otherwise the surfaces were typically clean and free of amorphous layers. The relationship between the observed surfaces structures and theoretical models for size effects on the dielectric properties is discussed. (authors)

  9. Theoretical analysis of ozone generation by pulsed dielectric barrier discharge in oxygen

    Science.gov (United States)

    Wei, L. S.; Zhou, J. H.; Wang, Z. H.; Cen, K. F.

    2007-08-01

    The use of very short high-voltage pulses combined with a dielectric layer results in high-energy electrons that dissociate oxygen molecules into atoms, which are a prerequisite for the subsequent production of ozone by collisions with oxygen molecules and third particles. The production of ozone depends on both the electrical and the physical parameters. For ozone generation by pulsed dielectric barrier discharge in oxygen, a mathematical model, which describes the relation between ozone concentration and these parameters that are of importance in its design, is developed according to dimensional analysis theory. A formula considering the ozone destruction factor is derived for predicting the characteristics of the ozone generation, within the range of the corona inception voltage to the gap breakdown voltage. The trend showing the dependence of the concentration of ozone in oxygen on these parameters generally agrees with the experimental results, thus confirming the validity of the mathematical model.

  10. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers

    International Nuclear Information System (INIS)

    Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M

    2010-01-01

    We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.

  11. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers

    Energy Technology Data Exchange (ETDEWEB)

    Bordag, M; Geyer, B; Klimchitskaya, G L; Mostepanenko, V M [Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany)

    2010-01-08

    We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.

  12. All-dielectric band stop filter at terahertz frequencies

    Science.gov (United States)

    Yin, Shan; Chen, Lin

    2018-01-01

    We design all-dielectric band stop filters with silicon subwavelength rod and block arrays at terahertz frequencies. Supporting magnetic dipole resonances originated from the Mia resonance, the all-dielectric filters can modulate the working band by simply varying the structural geometry, while eliminating the ohmic loss induced by the traditional metallic metamaterials and uninvolved with the complicated mechanism. The nature of the resonance in the silicon arrays is clarified, which is attributed to the destructive interference between the directly transmitted waves and the waves emitted from the magnetic dipole resonances, and the resonance frequency is determined by the dielectric structure. By particularly designing the geometrical parameters, the profile of the transmission spectrum can be tailored, and the step-like band edge can be obtained. The all-dielectric filters can realize 93% modulation of the transmission within 0.04 THz, and maintain the bandwidth of 0.05 THz. This work provides a method to develop THz functional devices, such as filters, switches and sensors.

  13. Temperature Effects of Dielectric Properties of ER Fluids

    Science.gov (United States)

    Qiu, Z. Y.; Hu, L.; Liu, M. W.; Bao, H. X.; Jiang, Y. G.; Zhou, L. W.; Tang, Y.; Gao, Z.; Sun, M.; Korobko, E. V.

    Under the consideration of the role that energy transfer and dissipation play in ER effect, an improved theory frame for ER effects, polarization-dissipation-structure-rheology, is suggested. The theory frame is substantiated by the basic physical laws and certain critical experimental facts. The dielectric response of a diatomite ER fluid to temperature is measured in the temperature range of 140 K to 400 K. By comparison of the DC conductivity with the AC effective conductivity of the sample, we found that the AC dielectric loss consists of two parts. One part comes from the DC conductivity, the other from the response of the bound charges in scope of particle to AC field. It is suggested that the response of bound charges is very important to ER effects. Besides, the effect of temperature on shear stress is measured, and interpreted based on the dielectric measurements. The source of two loss peaks in the curve of the dielectric loss versus temperature is not clear.

  14. Influence of Zn doping on structural, optical and dielectric properties of LaFeO3

    Science.gov (United States)

    Manzoor, Samiya; Husain, Shahid

    2018-05-01

    The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.

  15. Dielectric properties of proteins from simulations: tools and techniques

    Science.gov (United States)

    Simonson, Thomas; Perahia, David

    1995-09-01

    Tools and techniques to analyze the dielectric properties of proteins are described. Microscopic dielectric properties are determined by a susceptibility tensor of order 3 n, where n is the number of protein atoms. For perturbing charges not too close to the protein, the dielectric relaxation free energy is directly related to the dipole-dipole correlation matrix of the unperturbed protein, or equivalently to the covariance matrix of its atomic displacements. These are straightforward to obtain from existing molecular dynamics packages such as CHARMM or X- PLOR. Macroscopic dielectric properties can be derived from the dipolar fluctuations of the protein, by idealizing the protein as one or more spherical media. The dipolar fluctuations are again directly related to the covariance matrix of the atomic displacements. An interesting consequence is that the quasiharmonic approximation, which by definition exactly reproduces this covariance matrix, gives the protein dielectric constant exactly. Finally a technique is reviewed to obtain normal or quasinormal modes of vibration of symmetric protein assemblies. Using elementary group theory, and eliminating the high-frequency modes of vibration of each monomer, the limiting step in terms of memory and computation is finding the normal modes of a single monomer, with the other monomers held fixed. This technique was used to study the dielectric properties of the Tobacco Mosaic Virus protein disk.

  16. Center for dielectric studies

    Science.gov (United States)

    Cross, L. E.; Newnham, R. E.; Biggers, J. V.

    1984-05-01

    This report focuses upon the parts of the Center program which have drawn most extensively upon Navy funds. In the basic study of polarization processes in high K dielectrics, major progress has been made in understanding the mechanisms in relaxor ferroelectric in the perovskite structure families. A new effort is also being mounted to obtain more precise evaluation of the internal stress effects in fine grained barium titanate. Related to reliability, studies of the effects of induced macro-defects are described, and preparation for the evaluation of space charge by internal potential distribution measurements discussed. To develop new processing methods for very thin dielectric layers, a new type of single barrier layer multilayer is discussed, and work on the thermal evaporation of oriented crystalline antimony sulphur iodide describe.

  17. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sanne, A.; Movva, H. C. P.; Kang, S.; McClellan, C.; Corbet, C. M.; Banerjee, S. K. [Microelectronics Research Center, University of Texas, Austin, Texas 78758 (United States)

    2014-02-24

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriers as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.

  18. Dielectric and AC Conductivity Studies in PPy-Ag Nanocomposites

    OpenAIRE

    Praveenkumar, K.; Sankarappa, T.; Ashwajeet, J. S.; Ramanna, R.

    2015-01-01

    Polypyrrole and silver nanoparticles have been synthesized at 277 K by chemical route. Nanoparticles of polypyrrole-silver (PPy-Ag) composites were prepared by mixing polypyrrole and silver nanoparticles in different weight percentages. Dielectric properties as a function of temperature in the range from 300 K to 550 K and frequency in the range from 50 Hz to 1 MHz have been measured. Dielectric constant decreased with increase in frequency and temperature. Dielectric loss decreased with incr...

  19. Realization of a complementary medium using dielectric photonic crystals.

    Science.gov (United States)

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  20. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    Science.gov (United States)

    Clifford, Jallisa Janet

    quantitatively using BbDS. These materials are typically used in solid oxide fuel cells (SOFC). Results show significant effect of microstructural design on material properties at multiple temperatures (up to 800 °C). In the later part of the thesis, we will focus on microstructural changes of fiber reinforced composite materials due to impact and static loading. The changes in dielectric response can then be linked to the bulk mechanical properties of the material and various damage modes. Observing trends in dielectric response enables us to further determine local mechanisms and distribution of properties throughout the damaged specimens. A 3D X-ray microscope and a digital microscope have been used to visualize these changes in material microstructure and validate experimental observations. The increase in damage observed in the material microstructure can then also be linked to the changes in dielectric response. Results show that BbDS is an extremely useful tool for identifying microstructural changes within a heterogeneous material and particularly useful in relating remaining properties. Dielectric material variables can be used directly in property degradation laws and help develop a framework for future predictive modeling methodologies.

  1. The behaviour of charge distributions in dielectric media

    NARCIS (Netherlands)

    van Duijnen, Petrus; de Gier, Hilde D.; Broer, Ria; Havenith, Remco W. A.

    2014-01-01

    Screened Coulomb interaction in dielectrics is often used as an argument for a lower exciton binding energy and easier exciton dissociation in a high dielectric material. In this paper, we show that at length scales of excitons (10-20 angstrom), the screened Coulomb law is invalid and a microscopic

  2. Dielectric Screening Meets Optimally Tuned Density Functionals.

    Science.gov (United States)

    Kronik, Leeor; Kümmel, Stephan

    2018-04-17

    A short overview of recent attempts at merging two independently developed methods is presented. These are the optimal tuning of a range-separated hybrid (OT-RSH) functional, developed to provide an accurate first-principles description of the electronic structure and optical properties of gas-phase molecules, and the polarizable continuum model (PCM), developed to provide an approximate but computationally tractable description of a solvent in terms of an effective dielectric medium. After a brief overview of the OT-RSH approach, its combination with the PCM as a potentially accurate yet low-cost approach to the study of molecular assemblies and solids, particularly in the context of photocatalysis and photovoltaics, is discussed. First, solvated molecules are considered, with an emphasis on the challenge of balancing eigenvalue and total energy trends. Then, it is shown that the same merging of methods can also be used to study the electronic and optical properties of molecular solids, with a similar discussion of the pros and cons. Tuning of the effective scalar dielectric constant as one recent approach that mitigates some of the difficulties in merging the two approaches is considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ion association at discretely-charged dielectric interfaces: Giant charge inversion

    Science.gov (United States)

    Wang, Zhi-Yong; Wu, Jianzhong

    2017-07-01

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  4. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  5. Characterization and modelling of low-pressure rf discharges at 2-500 MHz for miniature alkali vapour dielectric barrier discharge lamps

    International Nuclear Information System (INIS)

    Venkatraman, Vinu; Shea, Herbert; Pétremand, Yves; Rooij, Nico de

    2012-01-01

    Low-pressure dielectric barrier discharge (DBD) alkali vapour lamps are of particular interest for portable atomic clocks because they (1) could enable low-power operation, (2) generate the precise required wavelength, (3) are planar simplifying chip-level integration and (4) use external electrodes, which increases the lifetime. Given the stringent requirements on lamps for atomic clocks, it is important to identify the parameters that can be optimized to meet these performance requirements (size, power consumption, stability, reliability). We report on the electrical and optical characteristics of dielectric barrier plasma discharges observed in two configurations: (1) in a vacuum chamber over a wide low-pressure range (2-100 mbar) for three different buffer gases (He, Ar, N 2 ) driven at different frequencies between 2 and 500 MHz and (2) on microfabricated hermetically sealed Rb vapour cells filled with 30 and 70 mbar of Ar. We discuss the optimum conditions for a low-power and stable operation of a Rb vapour DBD lamp, aimed at chip-scale atomic clocks. We also present the electrical modelling of the discharge parameters to understand the power distribution mechanisms and the input power to discharge power coupling efficiency.

  6. Coaxial two-channel high-gradient dielectric wakefield accelerator

    Directory of Open Access Journals (Sweden)

    G. V. Sotnikov

    2009-06-01

    Full Text Available A new scheme for a dielectric wakefield accelerator is proposed that employs a cylindrical multizone dielectric structure configured as two concentric dielectric tubes with outer and inner vacuum channels for drive and accelerated bunches. Analytical and numerical studies have been carried out for such coaxial dielectric-loaded structures (CDS for high-gradient acceleration. An analytical theory of wakefield excitation by particle bunches in a multizone CDS has been formulated. Numerical calculations are presented for an example of a CDS using dielectric tubes with dielectric permittivity 5.7, having external diameters of 2.121 and 0.179 mm with inner diameters of 2.095 and 0.1 mm. An annular 5 GeV, 6 nC electron bunch with rms length of 0.035 mm energizes a wakefield on the structure axis having an accelerating gradient of ∼600  MeV/m with a transformer ratio ∼8∶1. The period of the accelerating field is ∼0.33  mm. If the width of the drive bunch channel is decreased, it is possible to obtain an accelerating gradient of >1  GeV/m while keeping the transformer ratio approximately the same. Full numerical simulations using a particle-in-cell code have confirmed results of the linear theory and furthermore have shown the important influence of the quenching wave that restricts the region of the wakefield to within several periods following the drive bunch. Numerical simulations for another example have shown nearly stable transport of drive and accelerated bunches through the CDS, using a short train of drive bunches.

  7. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India); Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Ahmad, Shabbir [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2015-05-15

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO{sub 2} synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO{sub 2} NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ{sub ac}) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO{sub 2}.

  8. Experimental Investigation of an X-Band Tunable Dielectric Accelerating Structure

    CERN Document Server

    Kanareykin, Alex; Karmanenko, Sergei F; Nenasheva, Elisaveta; Power, John G; Schoessow, Paul; Semenov, Alexei

    2005-01-01

    Experimental study of a new scheme to tune the resonant frequency for dielectric based accelerating structure (driven either by the wakefield of a beam or an external rf source) is underway. The structure consists of a single layer of conventional dielectric surrounded by a very thin layer of ferroelectric material situated on the outside. Carefully designed electrodes are attached to a thin layer of ferroelectric material. A DC bias can be applied to the electrodes to change the permittivity of the ferroelectric layer and therefore, the dielectric overall resonant frequency can be tuned. In this paper, we present the test results for an 11.424 GHz rectangular DLA prototype structure that the ferroelectric material's dielectric constant of 500 and show that a frequency tuning range of 2% can be achieved. If successful, this scheme would compensate for structure errors caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity.

  9. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.

    Science.gov (United States)

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-05-21

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.

  10. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries

    International Nuclear Information System (INIS)

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-01-01

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties

  11. Theory of the dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1990-10-01

    The general theory for all angular modes m of the dielectric wakefield accelerator is reformulated. The expressions for the accelerating electric fields and transverse wake forces are written in terms of matrices, the zeros of one of which determine the excitation frequencies of the dielectric structure. In this scheme it is possible to obtain a maximum accelerating gradient of 2.0 megavolts per meter per nanoCoulomb of driver beam charge, for a driver beam of 0.7 millimeters rms bunch length. 29 refs., 5 figs

  12. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  13. A New Vogel-Like Law: Ionic Conductivity, Dielectric Relaxation and Viscosity Near the Glass Transition

    National Research Council Canada - National Science Library

    Bendler, John

    2001-01-01

    A model, based on defect diffusion, is developed that describes temperature and pressure dependence of dielectric relaxation, ionic conductivity and viscosity of glass-forming liquids near the glass...

  14. Dielectric dispersion of porous media as a fractal phenomenon

    Science.gov (United States)

    Thevanayagam, S.

    1997-09-01

    It is postulated that porous media is made up of fractal solid skeleton structure and fractal pore surface. The model thus developed satisfies measured anomalous dielectric behavior of three distinctly different porous media: kaolin, montmorillonite, and shaly sand rock. It is shown that the underlying mechanism behind dielectric dispersion in the kHz range to high MHz range is indeed Maxwell-Wagner mechanism but modified to take into account the multiphase nature of the porous media as opposed to the traditional two-phase Maxwell-Wagner charge accumulation effect. The conductivity of the surface water associated with the solid surface and charge accumulation across the surface irregularities, asperity, and bridging between particles at the micro-scale-level pores are shown to contribute to this modified Maxwell-Wagner mechanism. The latter is dominant at low frequencies. The surface water thickness is calculated to be about 2-6 nm for a variety of porous media.

  15. Growth, characterization and dielectric property studies of gel grown ...

    Indian Academy of Sciences (India)

    Administrator

    chemical reaction method. Plate-like single ... Barium succinate; gel growth; single crystals; dielectric constant; dielectric loss. 1. .... The chemical reaction involved in the birth of a new .... due to the displacement of electrons and ions, respec-.

  16. Artificial magnetism and left-handed media from dielectric rings and rods

    International Nuclear Information System (INIS)

    Jelinek, L; Marques, R

    2010-01-01

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  17. Artificial magnetism and left-handed media from dielectric rings and rods

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, L [Department of Electromagnetic Field, Czech Technical University in Prague, 166 27-Prague (Czech Republic); Marques, R, E-mail: l_jelinek@us.e [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla (Spain)

    2010-01-20

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  18. A Molecular Dynamics Study of Crosslinked Phthalonitrile Polymers: The Effect of Crosslink Density on Thermomechanical and Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Janel Chua

    2018-01-01

    Full Text Available In this work, molecular dynamics (MD and molecular mechanics (MM simulations are used to study well-equilibrated models of 4,4′-bis(3,4-dicyanophenoxybiphenyl (BPh–1,3-bis(3-aminophenoxybenzene (m-APB phthalonitrile (PN system with a range of crosslink densities. A cross-linking technique is introduced to build a series of systems with different crosslink densities; several key properties of this material, including thermal expansion, mechanical properties and dielectric properties are studied and compared with experimental results. It is found that the coefficient of linear thermal expansion predicted by the model is in good agreement with experimental results and indicative of the good thermal stability of the PN polymeric system. The simulation also shows that this polymer has excellent mechanical property, whose strength increases with increasing crosslink density. Lastly and most importantly, the calculated dielectric constant—which shows that this polymer is an excellent insulating material—indicates that there is an inverse relation between cross-linking density and dielectric constant. The trend gave rise to an empirical quadratic function which can be used to predict the limits of attainable dielectric constant for highly crosslinked polymer systems. The current computational work provides strong evidence that this polymer is a promising material for aerospace applications and offers guidance for experimental studies of the effect of cross-linking density on the thermal, mechanical and dielectric properties of the material.

  19. Ka Band Phase Locked Loop Oscillator Dielectric Resonator Oscillator for Satellite EHF Band Receiver

    Directory of Open Access Journals (Sweden)

    S. Coco

    2008-01-01

    Full Text Available This paper describes the design and fabrication of a Ka Band PLL DRO having a fundamental oscillation frequency of 19.250 GHz, used as local oscillator in the low-noise block of a down converter (LNB for an EHF band receiver. Apposite circuital models have been created to describe the behaviour of the dielectric resonator and of the active component used in the oscillator core. The DRO characterization and measurements have shown very good agreement with simulation results. A good phase noise performance is obtained by using a very high Q dielectric resonator.

  20. Wide-scan dielectric dome antenna with reduced profile

    NARCIS (Netherlands)

    Gandini, E.; Silvestri, F.; Benini, A.; Gerini, G.; Martini, E.; Maci, S.; Viganò, M.C.; Toso, G.; Monni, S.

    2017-01-01

    In this contribution, a dielectric dome antenna design in Ka-band is presented. The dome antenna is based on the combination of a phased array and a dielectric lens. The goal of the combination of these structures is to enlarge the field of view of the antenna. In particular, the array is considered