WorldWideScience

Sample records for hoko simulation model

  1. Magnetostratigraphy and Tectonic Rotation of the Eocene-Oligocene Makah and Hoko River Formations, Northwest Washington, USA

    Directory of Open Access Journals (Sweden)

    Donald R. Prothero

    2009-01-01

    Full Text Available The Eocene-Oligocene Makah Formation and subjacent middle Eocene Hoko River Formation of the northwestern Olympic Peninsula, Washington, yield mollusks, crustaceans, foraminifera, and early neocete whales; their age has never been precisely established. We sampled several sections; most samples showed a stable single-component remanence held largely in magnetite and passed a Class I reversal test. The upper Refugian (late Eocene and lower Zemorrian (early Oligocene rocks at Baada Point correlate with Chron C13r (33.7–34.7 Ma and Chron C12r (30–33 Ma. The Ozette Highway section of the Makah Formation spanned the early Refugian to late Refugian, with a sequence that correlates with Chrons C15r-C13r (33.7–35.3 Ma, and a long reversed early Zemorrian section that correlates with Chron C12r (30–33 Ma. The type section of the Hoko River Formation correlates with Chron C18r (40.0–41.2 Ma. The area sampled shows about 45∘ of post-Oligocene counterclockwise tectonic rotation, consistent with results obtained from the Eocene-Oligocene rocks in the region.

  2. EMC Simulation and Modeling

    Science.gov (United States)

    Takahashi, Takehiro; Schibuya, Noboru

    The EMC simulation is now widely used in design stage of electronic equipment to reduce electromagnetic noise. As the calculated electromagnetic behaviors of the EMC simulator depends on the inputted EMC model of the equipment, the modeling technique is important to obtain effective results. In this paper, simple outline of the EMC simulator and EMC model are described. Some modeling techniques of EMC simulation are also described with an example of the EMC model which is shield box with aperture.

  3. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  4. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...... of models has been somewhat narrow-minded reducing the notion of validation to establishment of truth. This article puts forward the diversity in applications of simulation models that demands a corresponding diversity in the notion of validation....

  5. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  6. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  7. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  8. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  9. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  10. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  11. Notes on modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.

  12. ASPECTS ABOUT SIMULATED MODEL TRUSTINESS

    Directory of Open Access Journals (Sweden)

    CRISAN DANIELA ALEXANDRA

    2009-05-01

    Full Text Available Nowadays, grace of computing possibilities that electronic computers offer and namely, big memory volume and computing speed, there is the improving of modeling methods, an important role having complex system modeling using simulation techniques. These o

  13. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation...... in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed....

  14. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. We argue that validation is part of the whole MSE system and is contingent upon 1) understanding and coping with sources...

  15. Defense Modeling and Simulation Initiative

    Science.gov (United States)

    1992-05-01

    an artificial battlefield created by computer-based simulation software. The most important constraint associated with this type of simulators is the...techniques for improving on this situation, which draw on artificial intelligence, mathematical programming, and simpler operations research methods...algoriims, data structwres for real-time represenmion and modeling • Develop a global hierarchy ofinn erable environmental models - Develop inteligent

  16. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  17. Model Calibration for Ship Simulations

    NARCIS (Netherlands)

    E.F.G. van Daalen (Ed); J. Fehribach; T. van Leeuwen (Tristan); C. Reinhardt; N. Schenkels; R. Sheombarsing

    2014-01-01

    htmlabstractModel calibration is an important aspect in ship simulation. Here, ship motion is described by an ODE which includes tuning parameters that capture complex physical processes such as friction of the hull. In order for the simulations to be realistic for a wide range of

  18. Model Calibration for Ship Simulations

    NARCIS (Netherlands)

    van Daalen, Ed; Fehribach, Joseph; van Leeuwen, Tristan; Reinhardt, Christian; Schenkels, Nick; Sheombarsing, Ray

    2014-01-01

    Model calibration is an important aspect in ship simulation. Here, ship motion is described by an ODE which includes tuning parameters that capture complex physical processes such as friction of the hull. In order for the simulations to be realistic for a wide range of scenarios these tuning

  19. Progress in modeling and simulation.

    Science.gov (United States)

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  20. TREAT Modeling and Simulation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  1. Modeling and Simulation at NASA

    Science.gov (United States)

    Steele, Martin J.

    2009-01-01

    This slide presentation is composed of two topics. The first reviews the use of modeling and simulation (M&S) particularly as it relates to the Constellation program and discrete event simulation (DES). DES is defined as a process and system analysis, through time-based and resource constrained probabilistic simulation models, that provide insight into operation system performance. The DES shows that the cycles for a launch from manufacturing and assembly to launch and recovery is about 45 days and that approximately 4 launches per year are practicable. The second topic reviews a NASA Standard for Modeling and Simulation. The Columbia Accident Investigation Board made some recommendations related to models and simulations. Some of the ideas inherent in the new standard are the documentation of M&S activities, an assessment of the credibility, and reporting to decision makers, which should include the analysis of the results, a statement as to the uncertainty in the results,and the credibility of the results. There is also discussion about verification and validation (V&V) of models. There is also discussion about the different types of models and simulation.

  2. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  3. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    trials. However, if simulation models would be used, good quality input data must be available. To model FMD, several disease spread models are available. For this project, we chose three simulation model; Davis Animal Disease Spread (DADS), that has been upgraded to DTU-DADS, InterSpread Plus (ISP......) and the North American Animal Disease Spread Model (NAADSM). The models are rather data intensive, but in varying degrees. They generally demand data on the farm level, including farm location, type, number of animals, and movement and contact frequency to other farms. To be able to generate a useful model...... of FMD spread that can provide useful and trustworthy advises, there are four important issues, which the model should represent: 1) The herd structure of the country in question, 2) the dynamics of animal movements and contacts between herds, 3) the biology of the disease, and 4) the regulations...

  4. Greenhouse simulation models.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    A model is a representation of a real system to describe some properties i.e. internal factors of that system (out-puts) as function of some external factors (inputs). It is impossible to describe the relation between all internal factors (if even all internal factors could be defined) and all

  5. Complex systems models: engineering simulations

    OpenAIRE

    Polack, Fiona A. C.; Hoverd, Tim; Sampson, Adam T.; Stepney, Susan; Timmis, Jon,

    2008-01-01

    As part of research towards the CoSMoS unified infrastructure for modelling and simulating complex systems, we review uses of definitional and descriptive models in natural science and computing, and existing integrated platforms. From these, we identify requirements for engineering models of complex systems, and consider how some of the requirements could be met, using state-of-the-art model management and a mobile, process-oriented computing paradigm.

  6. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  8. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  9. Modelling, simulating and optimizing Boilers

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verication as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and re tube boilers. A detailed dynamic model...... of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic- Equation system. Being able to operate...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantication of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to dene parts...

  10. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...

  11. Modeling control in manufacturing simulation

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, S.; Sánchez, P.J.; Ferrin, D.; Morrice, D.J.

    2003-01-01

    A significant shortcoming of traditional simulation languages is the lack of attention paid to the modeling of control structures, i.e., the humans or systems responsible for manufacturing planning and control, their activities and the mutual tuning of their activities. Mostly they are hard coded

  12. Modeling and Simulation of Nanoindentation

    Science.gov (United States)

    Huang, Sixie; Zhou, Caizhi

    2017-11-01

    Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

  13. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance......, a correct spectral shape, and non-Gaussian statistics, is selected in order to evaluate the model turbulence. An actual turbulence record is analyzed in detail providing both a standard for comparison and input statistics for the generalized spectral analysis, which in turn produces a set of orthonormal....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  14. Model continuity in discrete event simulation: A framework for model-driven development of simulation models

    NARCIS (Netherlands)

    Cetinkaya, D; Verbraeck, A.; Seck, MD

    2015-01-01

    Most of the well-known modeling and simulation (M&S) methodologies state the importance of conceptual modeling in simulation studies, and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to how to

  15. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  16. Simulation Framework for Teaching in Modeling and Simulation Areas

    Science.gov (United States)

    De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan

    2008-01-01

    Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…

  17. Standard for Models and Simulations

    Science.gov (United States)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  18. Telco Clouds: Modelling and Simulation

    OpenAIRE

    Krzywda, Jakub; Tärneberg, William; Östberg, Per-Olov; Kihl, Maria; Elmroth, Erik

    2015-01-01

    In this paper, we propose a telco cloud meta-model that can be used to simulate different infrastructure con- figurations and explore their consequences on the system performance and costs. To achieve this, we analyse current telecommunication and data centre infrastructure paradigms, describe the architecture of the telco cloud and detail the benefits of merging both infrastructures in a unified system. Next, we detail the dynamics of the telco cloud and identify the components that are the ...

  19. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  20. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  1. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  2. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  3. Uterine Contraction Modeling and Simulation

    Science.gov (United States)

    Liu, Miao; Belfore, Lee A.; Shen, Yuzhong; Scerbo, Mark W.

    2010-01-01

    Building a training system for medical personnel to properly interpret fetal heart rate tracing requires developing accurate models that can relate various signal patterns to certain pathologies. In addition to modeling the fetal heart rate signal itself, the change of uterine pressure that bears strong relation to fetal heart rate and provides indications of maternal and fetal status should also be considered. In this work, we have developed a group of parametric models to simulate uterine contractions during labor and delivery. Through analysis of real patient records, we propose to model uterine contraction signals by three major components: regular contractions, impulsive noise caused by fetal movements, and low amplitude noise invoked by maternal breathing and measuring apparatus. The regular contractions are modeled by an asymmetric generalized Gaussian function and least squares estimation is used to compute the parameter values of the asymmetric generalized Gaussian function based on uterine contractions of real patients. Regular contractions are detected based on thresholding and derivative analysis of uterine contractions. Impulsive noise caused by fetal movements and low amplitude noise by maternal breathing and measuring apparatus are modeled by rational polynomial functions and Perlin noise, respectively. Experiment results show the synthesized uterine contractions can mimic the real uterine contractions realistically, demonstrating the effectiveness of the proposed algorithm.

  4. Knowledge Support of Simulation Model Reuse

    Directory of Open Access Journals (Sweden)

    M. Valášek

    2004-01-01

    Full Text Available This describes the knowledge support for engineering design based on virtual modelling and simulation. These are the results of the EC Clockwork project. A typical and important step in the development of a simulation model is the phase of reusing. Virtual modelling and simulation often use the components of previous models. The usual problem is that the only remaining part of the previous simulation models is the model itself. However, a large amount of knowledge and intermediate models have been used, developed and then lost. A special methodology and special tools have therefore been developed on support of storing, retrieving and reusing the knowledge from previous simulation models. The knowledge support includes informal knowledge, formal knowledge and intermediate engineering models. This paper describes the overall methodology and tools, using the example of developing a simulation model of Trijoint, a new machine tool.

  5. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  6. Benchmark simulation models, quo vadis?

    Science.gov (United States)

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  7. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  8. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  9. Modeling and simulation of spacecraft power systems

    Science.gov (United States)

    Lee, J. R.; Cho, B. H.; Kim, S. J.; Lee, F. C.

    1987-01-01

    EASY5 modeling of a complete spacecraft power processing system is presented. Component models are developed, and several system models including a solar array switching system, a partially-shunted solar array system and COBE system are simulated. The power system's modes of operation, such as shunt mode, battery-charge mode, and battery-discharge mode, are simulated for a complete orbit cycle.

  10. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  11. Modeling and Simulation of LDMOS Device

    OpenAIRE

    Sunitha HD; Keshaveni N

    2015-01-01

    Laterally Diffused MOSFET (LDMOS) are widely used in modern communication industry and other applications. LDMOS offers various advantages over conventional MOSFETs with little process change. In the present paper, an LDMOS device is modeled and simulated in SILVACO device simulator package using the ATHENA and ATLAS modules. The complete fabrication process is modeled and the device performance is simulated. The modeled device gives a 46 V breakdown voltage for a devi...

  12. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    release: distribution unlimited. PA#16490 Air Force Research Laboratory Collisionless Electrostatic Shock Modeling and Simulation Daniel W. Crews In-Space... ModelSimulation Results and Verification • Future Work 3Distribution A. Approved for public release: distribution unlimited. PA#16490 Background... model problem for simulation code validation. What’s the Point? 5Distribution A. Approved for public release: distribution unlimited. PA#16490 The

  13. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  14. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  15. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  16. SEIR model simulation for Hepatitis B

    Science.gov (United States)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B. With approval from the proceedings editor article 020185 titled, "SEIR model simulation for Hepatitis B," is retracted from the public record, as it is a duplication of article 020198 published in the same volume.

  17. Dynamic simulation of DH house substations. Simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Thorsen, J.E. [Danfoss A/S, Nordborg (Denmark). Building Control Division

    2003-06-01

    Danfoss AS proceeds on developing simulation models of HVAC components including control equipment for district heating systems. The author presents an example of a simulated domestic hot water service station, describes some of the model components and shows the link between mathematical model and simulation model. Furthermore, an example of hardware in the loop simulation is presented. In this case a domestic heating system is built up in the laboratory by hardware components connected with real time simulations. This system forms the basis for test and evaluation of new control strategies. (orig.) [German] Danfoss AS, Nordborg/Daenemark, entwickelt Simulationsmodelle fuer Komponenten im Bereich Heizung/Lueftung/Klimatechnik einschliesslich der Regelungssysteme fuer Fernwaermeanlagen. Der Autor stellt das Simulationsmodell fuer einen Warmwassererwaermer dar. Darueber hinaus wird das Beispiel einer Simulation unter Einbeziehung von realen Komponenten beschrieben. Dabei wurde im Labor eine Heizanlage aufgebaut und an ein Echtzeit-Simulationsprogramm angeschlossen. Dieses System bildet die Grundlage fuer die Erprobung und Evaluierung neuer Regelungsstrategien. In den letzten 10 Jahren hat Danfoss mit dem Einsatz dynamischer Simulationen bei der Entwicklung von Regelungssystemen fuer Fernwaermeanlagen positive Erfahrungen gesammelt. Es hat sich gezeigt, dass die Simulation erfolgreich eingesetzt werden kann, und zwar nicht nur zur Erprobung besonderer Entwicklungsvorschlaege. Ebenso wichtig war es, Informationen und ein besseres Verstaendnis der Wechselbeziehungen zwischen verschiedenen Parametern zu gewinnen, die das Funktionieren einer Heizungs- oder Heisswasseranlage beeinflussen. Danfoss richtet zur Zeit ein Zentrum fuer die Anwendung von Gebaeudeautomatisierungssystemen ein. Dieses Zentrum wird Moeglichkeiten zur Fortbildung und praktischen Erfahrung auf dem Gebiet der Heizungs- Lueftungs- und Klimatechnik bieten. Die Simulationsprogramme werden einen

  18. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  19. Simulation modeling for the health care manager.

    Science.gov (United States)

    Kennedy, Michael H

    2009-01-01

    This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.

  20. Techniques and Simulation Models in Risk Management

    Directory of Open Access Journals (Sweden)

    Mirela GHEORGHE

    2012-12-01

    Full Text Available In the present paper, the scientific approach of the research starts from the theoretical framework of the simulation concept and then continues in the setting of the practical reality, thus providing simulation models for a broad range of inherent risks specific to any organization and simulation of those models, using the informatics instrument @Risk (Palisade. The reason behind this research lies in the need for simulation models that will allow the person in charge with decision taking inside the field of risk management to adopt new corporate strategies which will answer their current needs. The results of the research are represented by two simulation models specific to risk management. The first model follows the net profit simulation as well as simulating the impact that could be generated by a series of inherent risk factors such as losing some important colleagues, a drop in selling prices, a drop in sales volume, retrofitting, and so on. The second simulation model is associated to the IT field, through the analysis of 10 informatics threats, in order to evaluate the potential financial loss.

  1. Animated simulation models: Miracle or menace

    Directory of Open Access Journals (Sweden)

    P.S Kruger

    2003-12-01

    Full Text Available There has been a dramatic increase in the use of computer based simulation modelling over the last decade. A development that has made a significant contribution to the popularity of the simulation approach is the availability of animation facilities. These facilities are usually part of simulation model development software and often do not require very expensive microcomputer equipment. Animation provides some significant advantages during most phases of a simulation modelling effort but also has some inherent dangers and pitfalls. The purpose of this paper is: to identify and discuss some of the more important advantages and disadvantages of animation, and to provide information about some of the available simulation model development software supporting animation capabilities.

  2. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  3. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    This is supposed to recall gambling and hence the name Monte Carlo simulation. The procedure was developed by. Stanislaw Ulam and John Van Neumann. They used the simu- lation method to solve partial differential equations for diffu- sion of neutrons! (Box 2). We can illustrate the MC method by a simple example.

  4. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  5. Monte Carlo simulation of model Spin systemsr

    Indian Academy of Sciences (India)

    three~dimensional Ising models and Heisenberg models are dealt with in some detail. Recent applications of the Monte Carlo method to spin glass systems and to estimate renormalisation group critical exponents are reviewod. Keywords. _ Monte-carlo simulation; critical phenomena; Ising models; Heisenberg models ...

  6. Effects of simulation language and modeling methodology on simulation modeling performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.J.

    1987-01-01

    Research in simulation modeling has made little advance over the past two decades. Many simulation languages and modeling methodologies were designed but not evaluated. Model developers were given no criteria for selecting from among these modeling tools. A framework of research in simulation modeling was developed to identify factors that might most affect simulation modeling performance. First, two simulation languages (MAGIE and GPSS) that differ greatly in complexity were compared. Both languages are similar in their design philosophy. However, MAGIE is a small simulation language with ten model building blocks while GPSS is a large simulation language with fifty-six model building blocks. Secondly, two modeling methodologies, namely the top-down and the bottom-up approaches, were compared. This research shows that it is feasible to apply the user-based empirical research methodology to study simulation modeling. It is also concluded that modeling with a large simulation language does not necessarily yield better results than modeling with a small simulation language. Furthermore, it was found that using the top-down modeling approach does not necessarily yield better results than using the bottom-up modeling approach.

  7. Microgrid Modeling and Simulation Study

    Science.gov (United States)

    2016-09-01

    lightning , and other scenarios need to be simulated and hardware tested to characterize system robustness. The reviewed M&S tools were divided into the...5 capability categories for tactical microgrids: Demand Management, Power Distribution, Source Management, Communications, and Smart Controls. In...requires a short-term investment to produce results. • Component Metadata is the use of digital information from equipment for microgrid Smart

  8. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose of the s......The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  9. Modeling and simulation for RF system design

    CERN Document Server

    Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen

    2005-01-01

    Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.

  10. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  11. Computational Modeling of Simulation Tests.

    Science.gov (United States)

    1980-06-01

    cavity was simulated with a nonrigid, partially reflecting heavy gas (the rigid wall of 905.0021 was replaced with additional cells of ideal gas which...the shock tunnel at the 4.14-Mpa range found in calculation 906.1081. The driver consisted of 25 cells of burned ammonium nitrate and fuel oil ( ANFO ...mm AX = 250 mm Reflected Wave Geometry--Calculation 906.1091 65 m Driver Region Reaction Region Boundary Burned Rigid ANFO Real Air Reflecting k 90.6

  12. SEIR model simulation for Hepatitis B

    Science.gov (United States)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.

  13. Gas Turbine Plant Modeling for Dynamic Simulation

    OpenAIRE

    Endale Turie, Samson

    2012-01-01

    Gas turbines have become effective in industrial applications for electric and thermal energy production partly due to their quick response to load variations. A gas turbine power plant is a complex assembly of a varietyof components that are designed on the basis of aero thermodynamiclaws. This thesis work presents model development of a single-shaft gas turbine plant cycle that can operate at wide range of load settings in complete dynamic GTP simulator. The modeling and simulation has been...

  14. Theory, modeling, and simulation annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  15. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  16. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  17. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...

  18. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Likewise, ships and buildings are built by naval and civil architects. While these are useful, they are, in most cases, static models. We are ..... The basic theory of transition from one state to another was developed by the Russian mathematician. Andrei Markov and hence the name Markov chains. Andrei Markov [1856-1922] ...

  19. Network Modeling and Simulation (NEMSE)

    Science.gov (United States)

    2013-07-01

    Prioritized Packet Fragmentation", IEEE Trans. Multimedia , Oct. 2012. [13 SYSENG] . Defense Acquisition Guidebook, Chapter 4 System Engineering, and...2012 IEEE High Performance Extreme Computing Conference (HPEC) poster session [1 Ross]. Motivation  Air Force Research Lab needs o Capability...is virtual. These eight virtualizations were: System-in-the-Loop (SITL) using OPNET Modeler, COPE, Field Programmable Gate Array ( FPGA Physical

  20. Computer Based Modelling and Simulation-Modelling and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Computer Based Modelling and Simulation-Modelling and Simulation with Probability and Throwing Dice. N K Srinivasan. General Article Volume 6 Issue 4 April 2001 pp 69-77 ...

  1. Land surface modeling in convection permitting simulations

    Science.gov (United States)

    van Heerwaarden, Chiel; Benedict, Imme

    2017-04-01

    The next generation of weather and climate models permits convection, albeit at a grid spacing that is not sufficient to resolve all details of the clouds. Whereas much attention is being devoted to the correct simulation of convective clouds and associated precipitation, the role of the land surface has received far less interest. In our view, convective permitting simulations pose a set of problems that need to be solved before accurate weather and climate prediction is possible. The heart of the problem lies at the direct runoff and at the nonlinearity of the surface stress as a function of soil moisture. In coarse resolution simulations, where convection is not permitted, precipitation that reaches the land surface is uniformly distributed over the grid cell. Subsequently, a fraction of this precipitation is intercepted by vegetation or leaves the grid cell via direct runoff, whereas the remainder infiltrates into the soil. As soon as we move to convection permitting simulations, this precipitation falls often locally in large amounts. If the same land-surface model is used as in simulations with parameterized convection, this leads to an increase in direct runoff. Furthermore, spatially non-uniform infiltration leads to a very different surface stress, when scaled up to the course resolution of simulations without convection. Based on large-eddy simulation of realistic convection events at a large domain, this study presents a quantification of the errors made at the land surface in convection permitting simulation. It compares the magnitude of the errors to those made in the convection itself due to the coarse resolution of the simulation. We find that, convection permitting simulations have less evaporation than simulations with parameterized convection, resulting in a non-realistic drying of the atmosphere. We present solutions to resolve this problem.

  2. Model Driven Development of Simulation Models : Defining and Transforming Conceptual Models into Simulation Models by Using Metamodels and Model Transformations

    NARCIS (Netherlands)

    Küçükkeçeci Çetinkaya, D.

    2013-01-01

    Modeling and simulation (M&S) is an effective method for analyzing and designing systems and it is of interest to scientists and engineers from all disciplines. This thesis proposes the application of a model driven software development approach throughout the whole set of M&S activities and it

  3. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L

    1996-01-01

    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  4. A model for personality and emotion simulation

    NARCIS (Netherlands)

    Egges, A.; Kshirsagar, S.; Magnenat-Thalmann, N.

    2003-01-01

    This paper describes a generic model for personality, mood and emotion simulation for conversational virtual humans. We present a generic model for describing and updating the parameters related to emotional behaviour. Also, this paper explores how existing theories for appraisal can be integrated

  5. The behaviour of adaptive boneremodeling simulation models

    NARCIS (Netherlands)

    Weinans, H.; Huiskes, R.; Grootenboer, H.J.

    1992-01-01

    The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to

  6. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect inc...

  7. Molecular simulation and modeling of complex I.

    Science.gov (United States)

    Hummer, Gerhard; Wikström, Mårten

    2016-07-01

    Molecular modeling and molecular dynamics simulations play an important role in the functional characterization of complex I. With its large size and complicated function, linking quinone reduction to proton pumping across a membrane, complex I poses unique modeling challenges. Nonetheless, simulations have already helped in the identification of possible proton transfer pathways. Simulations have also shed light on the coupling between electron and proton transfer, thus pointing the way in the search for the mechanistic principles underlying the proton pump. In addition to reviewing what has already been achieved in complex I modeling, we aim here to identify pressing issues and to provide guidance for future research to harness the power of modeling in the functional characterization of complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Landscape Modelling and Simulation Using Spatial Data

    Directory of Open Access Journals (Sweden)

    Amjed Naser Mohsin AL-Hameedawi

    2017-08-01

    Full Text Available In this paper a procedure was performed for engendering spatial model of landscape acclimated to reality simulation. This procedure based on combining spatial data and field measurements with computer graphics reproduced using Blender software. Thereafter that we are possible to form a 3D simulation based on VIS ALL packages. The objective was to make a model utilising GIS, including inputs to the feature attribute data. The objective of these efforts concentrated on coordinating a tolerable spatial prototype, circumscribing facilitation scheme and outlining the intended framework. Thus; the eventual result was utilized in simulation form. The performed procedure contains not only data gathering, fieldwork and paradigm providing, but extended to supply a new method necessary to provide the respective 3D simulation mapping production, which authorises the decision makers as well as investors to achieve permanent acceptance an independent navigation system for Geoscience applications.

  9. Development of NASA's Models and Simulations Standard

    Science.gov (United States)

    Bertch, William J.; Zang, Thomas A.; Steele, Martin J.

    2008-01-01

    From the Space Shuttle Columbia Accident Investigation, there were several NASA-wide actions that were initiated. One of these actions was to develop a standard for development, documentation, and operation of Models and Simulations. Over the course of two-and-a-half years, a team of NASA engineers, representing nine of the ten NASA Centers developed a Models and Simulation Standard to address this action. The standard consists of two parts. The first is the traditional requirements section addressing programmatics, development, documentation, verification, validation, and the reporting of results from both the M&S analysis and the examination of compliance with this standard. The second part is a scale for evaluating the credibility of model and simulation results using levels of merit associated with 8 key factors. This paper provides an historical account of the challenges faced by and the processes used in this committee-based development effort. This account provides insights into how other agencies might approach similar developments. Furthermore, we discuss some specific applications of models and simulations used to assess the impact of this standard on future model and simulation activities.

  10. Fully Adaptive Radar Modeling and Simulation Development

    Science.gov (United States)

    2017-04-01

    have developed a MATLAB-based modeling and simulation (M&S) architecture for distributed fully adaptive radar (FAR) that will enable algorithm...development and testing on simulated, previously collected, and real-time streaming data. The architecture is coded in MATLAB using an object oriented...programming approach. The architecture includes a FAR engine to control the operation of the perception-action cycle and software objects that determine the

  11. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented....

  12. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together...... to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal...... and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work...

  13. Modelling and Simulation of Crude Oil Dispersion

    Directory of Open Access Journals (Sweden)

    Abdulfatai JIMOH

    2006-01-01

    Full Text Available This research work was carried out to develop a model equation for the dispersion of crude oil in water. Seven different crude oils (Bonny Light, Antan Terminal, Bonny Medium, Qua Iboe Light, Brass Light Mbede, Forcados Blend and Heavy H were used as the subject crude oils. The developed model equation in this project which is given as...It was developed starting from the equation for the oil dispersion rate in water which is given as...The developed equation was then simulated with the aid of MathCAD 2000 Professional software. The experimental and model results obtained from the simulation of the model equation were plotted on the same axis against time of dispersion. The model results revealed close fittings between the experimental and the model results because the correlation coefficients and the r-square values calculated using Spreadsheet Program were both found to be unity (1.00.

  14. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  15. Modeling salmonella Dublin into the dairy herd simulation model Simherd

    DEFF Research Database (Denmark)

    Kudahl, Anne Braad

    2010-01-01

    Infection with Salmonella Dublin in the dairy herd and effects of the infection and relevant control measures are currently being modeled into the dairy herd simulation model called Simherd. The aim is to compare the effects of different control strategies against Salmonella Dublin on both within...... of the simulations will therefore be used for decision support in the national surveillance and eradication program against Salmonella Dublin. Basic structures of the model are programmed and will be presented at the workshop. The model is in a phase of face-validation by a group of Salmonella......-herd- prevalence and economy by simulations. The project Dublin on both within-herd- prevalence and economy by simulations. The project is a part of a larger national project "Salmonella 2007 - 2011" with the main objective to reduce the prevalence of Salmonella Dublin in Danish Dairy herds. Results...

  16. TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  17. A universal simulator for ecological models

    DEFF Research Database (Denmark)

    Holst, Niels

    2013-01-01

    Software design is an often neglected issue in ecological models, even though bad software design often becomes a hindrance for re-using, sharing and even grasping an ecological model. In this paper, the methodology of agile software design was applied to the domain of ecological models. Thus the...... the principles for a universal design of ecological models were arrived at. To exemplify this design, the open-source software Universal Simulator was constructed using C++ and XML and is provided as a resource for inspiration....

  18. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  19. EXACT SIMULATION OF A BOOLEAN MODEL

    Directory of Open Access Journals (Sweden)

    Christian Lantuéjoul

    2013-06-01

    Full Text Available A Boolean model is a union of independent objects (compact random subsets located at Poisson points. Two algorithms are proposed for simulating a Boolean model in a bounded domain. The first one applies only to stationary models. It generates the objects prior to their Poisson locations. Two examples illustrate its applicability. The second algorithm applies to stationary and non-stationary models. It generates the Poisson points prior to the objects. Its practical difficulties of implementation are discussed. Both algorithms are based on importance sampling techniques, and the generated objects are weighted.

  20. Multiscale modelling and simulation: a position paper

    NARCIS (Netherlands)

    Hoekstra, A.; Chopard, B.; Coveney, P.

    2014-01-01

    We argue that, despite the fact that the field of multiscale modelling and simulation has enjoyed significant success within the past decade, it still holds many open questions that are deemed important but so far have barely been explored. We believe that this is at least in part due to the fact

  1. preliminary multidomain modelling and simulation study

    African Journals Online (AJOL)

    user

    PRELIMINARY MULTIDOMAIN MODELLING AND SIMULATION STUDY OF A. HORIZONTAL AXIS WIND TURBINE (HAWT) TOWER VIBRATION. I. lliyasu1, I. Iliyasu2, I. K. Tanimu3 and D. O Obada4. 1,4 DEPARTMENT OF MECHANICAL ENGINEERING, AHMADU BELLO UNIVERSITY, ZARIA, KADUNA STATE. NIGERIA.

  2. MATLAB Based PCM Modeling and Simulation

    OpenAIRE

    Yongchao Jin; Hong Liang; Weiwei Feng; Qiong Wang

    2013-01-01

    PCM is the key technology of digital communication, and has especially been widely used in the optical fiber communication, digital microwave communication, satellite communication. Modeling PCM communication systems with the pulse code system by programming, and conduct computer simulation by MATLAB, to analysis performance of the linear PCM and logarithmic PCM.  

  3. Agent Based Modelling for Social Simulation

    NARCIS (Netherlands)

    Smit, S.K.; Ubink, E.M.; Vecht, B. van der; Langley, D.J.

    2013-01-01

    This document is the result of an exploratory project looking into the status of, and opportunities for Agent Based Modelling (ABM) at TNO. The project focussed on ABM applications containing social interactions and human factors, which we termed ABM for social simulation (ABM4SS). During the course

  4. Model based development of fruit simulators

    Science.gov (United States)

    Huang, Huijian; Tunnicliffe, Mark; Shim, Young-Min; Bronlund, John E.

    2017-10-01

    Optimisation of temperature management in postharvest operations, such as precooling, requires extensive experimental measurement. For this purpose, real fruit are used, but due to their relatively high cost and perishable nature, commercial scale trials are not easily conducted. In addition, significant variability between trials exists (Vigneault et al., 2005). Physical fruit analogues or simulators could provide a solution to overcome these issues. To be a solution the fruit simulators must be designed to mimic the relevant heat transfer modes and properties of individual and/or bulk fruit, ideally using an inexpensive and durable material that allows the fruit simulator to be mass produced (Redding et al., 2016). In this paper, we use a mathematical model to characterize the relative importance of the different heat transfer modes occurring during precooling. Based on this model, the modes of heat transfer that must be matched by the fruit simulator are identified. A simplified model is used, representing four fruit stacked on top of each other in a column. The contribution of each heat transfer mode can be evaluated by including or excluding terms in the model.

  5. Modeling and Simulation of Count Data

    Science.gov (United States)

    Plan, E L

    2014-01-01

    Count data, or number of events per time interval, are discrete data arising from repeated time to event observations. Their mean count, or piecewise constant event rate, can be evaluated by discrete probability distributions from the Poisson model family. Clinical trial data characterization often involves population count analysis. This tutorial presents the basics and diagnostics of count modeling and simulation in the context of pharmacometrics. Consideration is given to overdispersion, underdispersion, autocorrelation, and inhomogeneity. PMID:25116273

  6. Adaptive System Modeling for Spacecraft Simulation

    Science.gov (United States)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  7. Twitter's tweet method modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    This paper seeks to purpose the concept of Twitter marketing methods. The tools that Twitter provides are modelled and simulated using iThink in the context of a Twitter media-marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following models have been developed for a twitter marketing agent/company and tested in real circumstances and with real numbers. These models were finalized through a number of revisions and iterators of the design, develop, simulate, test and evaluate. It also addresses these methods that suit most organized promotion through targeting, to the Twitter social media service. The validity and usefulness of these Twitter marketing methods models for the day-to-day decision making are authenticated by the management of the company organization. It implements system dynamics concepts of Twitter marketing methods modelling and produce models of various Twitter marketing situations. The Tweet method that Twitter provides can be adjusted, depending on the situation, in order to maximize the profit of the company/agent.

  8. Fault diagnosis based on continuous simulation models

    Science.gov (United States)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  9. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  10. A parallel computational model for GATE simulations.

    Science.gov (United States)

    Rannou, F R; Vega-Acevedo, N; El Bitar, Z

    2013-12-01

    GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Modeling, simulation and optimization of bipedal walking

    CERN Document Server

    Berns, Karsten

    2013-01-01

    The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...

  12. Simulating the Sulphur Lamp with PLASIMO, a plasma simulation model.

    Science.gov (United States)

    Johnston, C. W.; van der Heijden, H.; van Dijk, Jan; van der Mullen Joost

    1999-10-01

    Several electrodeless lamps are currently available on the market. Examples of these are the Philips QL, Osrams Endura and GE's Genura. While these lamps make use of induction as a means of power coupling, the source of their light, namely mercury, remains the same as in older lamps. Another electrodeless configuration is the microwave powered Sulphur Lamp. Sulphur lighting has several advantages over other lamp systems. Firstly, large fluxes (≈100,000 lm) of high quality light are obtained with circuit efficacies of up to 60 percent. Secondly, unlike fluorescent and HID lamps there is no decrease in brightness with time since phospors and electrodes are not needed. Another significant aspect of the sulphur lamp is that it contains no mercury, lessening environmental hazards associated with disposal. In order to simulate the operation of this light source, PLASIMO, a plasma modeling tool which was developed at the Eindhoven University of Technology, was used. Modules were included to describe the transport properties and power in- coupling. Results of the simulations will be shown and compared with experiment.

  13. Dynamics modeling and simulation of flexible airships

    Science.gov (United States)

    Li, Yuwen

    The resurgence of airships has created a need for dynamics models and simulation capabilities of these lighter-than-air vehicles. The focus of this thesis is a theoretical framework that integrates the flight dynamics, structural dynamics, aerostatics and aerodynamics of flexible airships. The study begins with a dynamics model based on a rigid-body assumption. A comprehensive computation of aerodynamic effects is presented, where the aerodynamic forces and moments are categorized into various terms based on different physical effects. A series of prediction approaches for different aerodynamic effects are unified and applied to airships. The numerical results of aerodynamic derivatives and the simulated responses to control surface deflection inputs are verified by comparing to existing wind-tunnel and flight test data. With the validated aerodynamics and rigid-body modeling, the equations of motion of an elastic airship are derived by the Lagrangian formulation. The airship is modeled as a free-free Euler-Bernoulli beam and the bending deformations are represented by shape functions chosen as the free-free normal modes. In order to capture the coupling between the aerodynamic forces and the structural elasticity, local velocity on the deformed vehicle is used in the computation of aerodynamic forces. Finally, with the inertial, gravity, aerostatic and control forces incorporated, the dynamics model of a flexible airship is represented by a single set of nonlinear ordinary differential equations. The proposed model is implemented as a dynamics simulation program to analyze the dynamics characteristics of the Skyship-500 airship. Simulation results are presented to demonstrate the influence of structural deformation on the aerodynamic forces and the dynamics behavior of the airship. The nonlinear equations of motion are linearized numerically for the purpose of frequency domain analysis and for aeroelastic stability analysis. The results from the latter for the

  14. A Simulation Model for Extensor Tendon Repair

    Directory of Open Access Journals (Sweden)

    Elizabeth Aronstam

    2017-07-01

    Full Text Available Audience: This simulation model is designed for use by emergency medicine residents. Although we have instituted this at the PGY-2 level of our residency curriculum, it is appropriate for any level of emergency medicine residency training. It might also be adapted for use for a variety of other learners, such as practicing emergency physicians, orthopedic surgery residents, or hand surgery trainees. Introduction: Tendon injuries commonly present to the emergency department, so it is essential that emergency physicians be competent in evaluating such injuries. Indeed, extensor tendon repair is included as an ACGME Emergency Medicine Milestone (Milestone 13, Wound Management, Level 5 – “Performs advanced wound repairs, such as tendon repairs…”.1 However, emergency medicine residents may have limited opportunity to develop these skills due to a lack of patients, competition from other trainees, or preexisting referral patterns. Simulation may provide an alternative means to effectively teach these skills in such settings. Previously described tendon repair simulation models that were designed for surgical trainees have used rubber worms4, licorice5, feeding tubes, catheters6,7, drinking straws8, microfoam tape9, sheep forelimbs10 and cadavers.11 These models all suffer a variety of limitations, including high cost, lack of ready availability, or lack of realism. Objectives: We sought to develop an extensor tendon repair simulation model for emergency medicine residents, designed to meet ACGME Emergency Medicine Milestone 13, Level 5. We wished this model to be simple, inexpensive, and realistic. Methods: The learner responsible content/educational handout component of our innovation teaches residents about emergency department extensor tendon repair, and includes: 1 relevant anatomy 2 indications and contraindications for emergency department extensor tendon repair 3 physical exam findings 4 tendon suture techniques and 5 aftercare. During

  15. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  16. Simulation as a surgical teaching model.

    Science.gov (United States)

    Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos

    2018-01-01

    Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Modeling and simulation of economic processes

    Directory of Open Access Journals (Sweden)

    Bogdan Brumar

    2010-12-01

    Full Text Available In general, any activity requires a longer action often characterized by a degree of uncertainty, insecurity, in terms of size of the objective pursued. Because of the complexity of real economic systems, the stochastic dependencies between different variables and parameters considered, not all systems can be adequately represented by a model that can be solved by analytical methods and covering all issues for management decision analysis-economic horizon real. Often in such cases, it is considered that the simulation technique is the only alternative available. Using simulation techniques to study real-world systems often requires a laborious work. Making a simulation experiment is a process that takes place in several stages.

  18. Mathematical models and numerical simulation in electromagnetism

    CERN Document Server

    Bermúdez, Alfredo; Salgado, Pilar

    2014-01-01

    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  19. Facebook's personal page modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.

  20. Optimisation Strategies for Modelling and Simulation

    Science.gov (United States)

    Louchet, Jean

    2007-12-01

    Progress in computation techniques has been dramatically reducing the gap between modeling and simulation. Simulation as the natural outcome of modeling is used both as a tool to predict the behavior of natural or artificial systems, a tool to validate modeling, and a tool to build and refine models - in particular identify model internal parameters. In this paper we will concentrate upon the latter, model building and identification, using modern optimization techniques, through application examples taken from the digital imaging field. The first example is given by Image Processing with retrieval of known patterns in an image. The second example is taken from synthetic image animation: we show how it is possible to learn the model's internal physical parameters from actual trajectory examples, using Darwin-inspired evolutionary algorithms. In the third example, we will demonstrate how it is possible, when the problem cannot easily be handled by a reasonably simple optimization technique, to split the problem into simpler elements which can be efficiently evolved by an evolutionary optimization algorithm - which is now called "Parisian Evolution". The "Fly algorithm" is a realtime stereovision algorithm which skips conventional preliminary stages of image processing, now applied into mobile robotics and medical imaging. The main question left is now, to which degree is it possible to delegate to a computer a part of the physicist's role, which is to collect examples and build general laws from these examples?

  1. Theory, modeling and simulation: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  2. Simulation modelling of fynbos ecosystems: Systems analysis and conceptual models

    CSIR Research Space (South Africa)

    Kruger, FJ

    1985-03-01

    Full Text Available This report outlines progress with the development of computer based dynamic simulation models for ecosystems in the fynbos biome. The models are planned to run on a portable desktop computer with 500 kbytes of memory, extended BASIC language...

  3. eShopper modeling and simulation

    Science.gov (United States)

    Petrushin, Valery A.

    2001-03-01

    The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.

  4. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... wind farm, the simulated results cannot be compared directly with wind farm measurements that have a high uncertainty in the measured reference wind direction. When this uncertainty is used to post-process the CFD results, a fairer comparison with measurements is achieved....... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...

  5. Difficulties with True Interoperability in Modeling & Simulation

    Science.gov (United States)

    2011-12-01

    Standards in M&S cover multiple layers of technical abstraction. There are middleware specifica- tions, such as the High Level Architecture (HLA) ( IEEE Xplore ... IEEE Xplore Digital Library. 2010. 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) – Framework and Rules...using different communication protocols being able to allow da- 2642978-1-4577-2109-0/11/$26.00 ©2011 IEEE Report Documentation Page Form ApprovedOMB No

  6. Streptococcus mutans, Caries and Simulation Models

    OpenAIRE

    Ouwehand, Arthur C.; Marika Björklund; Forssten, Sofia D.

    2010-01-01

    Dental caries and dental plaque are among the most common diseases worldwide, and are caused by a mixture of microorganisms and food debris. Specific types of acid-producing bacteria, especially Streptococcus mutans, colonize the dental surface and cause damage to the hard tooth structure in the presence of fermentable carbohydrates e.g., sucrose and fructose. This paper reviews the link between S. mutans and caries, as well as different simulation models that are available for studying carie...

  7. A Placement Model for Flight Simulators.

    Science.gov (United States)

    1982-09-01

    simulator basing strategies. Captains David R. VanDenburg and Jon D. Veith developed a mathematical model to assist in the placement analysis of A-7...Institute for Defense Analysis, Arlington VA, August 1977. AD A049979. 23. Sugarman , Robert C., Steven L. Johnson, and William F. H. Ring. "B-I Systems...USAF Cost and Plan- nin& Factors. AFR 173-13. Washington: Govern- ment Printing Office, I February 1982. * 30. Van Denburg, Captain David R., USAF

  8. High-Fidelity Roadway Modeling and Simulation

    Science.gov (United States)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  9. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  10. MODELING AND SIMULATION OF A HYDROCRACKING UNIT

    Directory of Open Access Journals (Sweden)

    HASSAN A. FARAG

    2016-06-01

    Full Text Available Hydrocracking is used in the petroleum industry to convert low quality feed stocks into high valued transportation fuels such as gasoline, diesel, and jet fuel. The aim of the present work is to develop a rigorous steady state two-dimensional mathematical model which includes conservation equations of mass and energy for simulating the operation of a hydrocracking unit. Both the catalyst bed and quench zone have been included in this integrated model. The model equations were numerically solved in both axial and radial directions using Matlab software. The presented model was tested against a real plant data in Egypt. The results indicated that a very good agreement between the model predictions and industrial values have been reported for temperature profiles, concentration profiles, and conversion in both radial and axial directions at the hydrocracking unit. Simulation of the quench zone conversion and temperature profiles in the quench zone was also included and gave a low deviation from the actual ones. In concentration profiles, the percentage deviation in the first reactor was found to be 9.28 % and 9.6% for the second reactor. The effect of several parameters such as: Pellet Heat Transfer Coefficient, Effective Radial Thermal Conductivity, Wall Heat Transfer Coefficient, Effective Radial Diffusivity, and Cooling medium (quench zone has been included in this study. The variation of Wall Heat Transfer Coefficient, Effective Radial Diffusivity for the near-wall region, gave no remarkable changes in the temperature profiles. On the other hand, even small variations of Effective Radial Thermal Conductivity, affected the simulated temperature profiles significantly, and this effect could not be compensated by the variations of the other parameters of the model.

  11. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  12. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  13. Simulation models generator. Applications in scheduling

    Directory of Open Access Journals (Sweden)

    Omar Danilo Castrillón

    2013-08-01

    Rev.Mate.Teor.Aplic. (ISSN 1409-2433 Vol. 20(2: 231–241, July 2013 generador de modelos de simulacion 233 will, in order to have an approach to reality to evaluate decisions in order to take more assertive. To test prototype was used as the modeling example of a production system with 9 machines and 5 works as a job shop configuration, testing stops processing times and stochastic machine to measure rates of use of machines and time average jobs in the system, as measures of system performance. This test shows the goodness of the prototype, to save the user the simulation model building

  14. Viscoelastic flow simulations in model porous media

    Science.gov (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.

    2017-05-01

    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  15. Integrating Visualizations into Modeling NEST Simulations

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  16. Biomedical Simulation Models of Human Auditory Processes

    Science.gov (United States)

    Bicak, Mehmet M. A.

    2012-01-01

    Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.

  17. Modeling and simulation of direct contact evaporators

    Directory of Open Access Journals (Sweden)

    Campos F.B.

    2001-01-01

    Full Text Available A dynamic model of a direct contact evaporator was developed and coupled to a recently developed superheated bubble model. The latter model takes into account heat and mass transfer during the bubble formation and ascension stages and is able to predict gas holdup in nonisothermal systems. The results of the coupled model, which does not have any adjustable parameter, were compared with experimental data. The transient behavior of the liquid-phase temperature and the vaporization rate under quasi-steady-state conditions were in very good agreement with experimental data. The transient behavior of liquid height was only reasonably simulated. In order to explain this partial disagreement, some possible causes were analyzed.

  18. Simulation and Modeling in High Entropy Alloys

    Science.gov (United States)

    Toda-Caraballo, I.; Wróbel, J. S.; Nguyen-Manh, D.; Pérez, P.; Rivera-Díaz-del-Castillo, P. E. J.

    2017-11-01

    High entropy alloys (HEAs) is a fascinating field of research, with an increasing number of new alloys discovered. This would hardly be conceivable without the aid of materials modeling and computational alloy design to investigate the immense compositional space. The simplicity of the microstructure achieved contrasts with the enormous complexity of its composition, which, in turn, increases the variety of property behavior observed. Simulation and modeling techniques are of paramount importance in the understanding of such material performance. There are numerous examples of how different models have explained the observed experimental results; yet, there are theories and approaches developed for conventional alloys, where the presence of one element is predominant, that need to be adapted or re-developed. In this paper, we review of the current state of the art of the modeling techniques applied to explain HEAs properties, identifying the potential new areas of research to improve the predictability of these techniques.

  19. Evaluation of wind noise in passenger car compartment in consideration of auditory masking and sound localization; Chokaku masking to hoko chikaku wo koryoshita kazekirion hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, H. [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Kato, H. [Toyota Motor Corp., Aichi (Japan)

    1998-05-01

    Discussed is a method for evaluating wind noise in passenger car compartment based on human auditory characteristics. In the study, noise in the compartment of a passenger car travelling at a constant speed is collected by use of a dummy head, and the collected noise is analyzed in view of the masking effect, directional sensation produced by binaural hearing, etc. A masked spectrum of noise in the compartment of a 6-cylinder vehicle travelling at 120km/h is analyzed, and it is found that some frequency bands, especially the band centering on 300Hz, are masked by a loud noise component falling in a low frequency band of 180Hz or lower. By use of masked spectrum analysis, the level of noise that is actually audible to human ears can be calculated. The noise level thus determined by masked spectrum analysis and the noise direction determined by a binaural signal processing model are examined, and then it is found that the noise direction is clearly determined when the noise belongs in a 450Hz band or higher where wind noise prevails. On the bases of the above-mentioned results and the directional sensation produced by binaural hearing, a `binaural wind noise evaluation method` is compiled. 20 refs., 9 figs., 1 tab.

  20. Best Practices for Crash Modeling and Simulation

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.

  1. Systematic simulations of modified gravity: chameleon models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Li, Baojiu [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Winther, Hans A. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zhao, Gong-Bo, E-mail: philippe.brax@cea.fr, E-mail: a.c.davis@damtp.cam.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: h.a.winther@astro.uio.no, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2013-04-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.

  2. Closed loop models for analyzing engineering requirements for simulators

    Science.gov (United States)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  3. Modeling and Simulation of Amorphous Materials

    Science.gov (United States)

    Pandey, Anup

    The general and practical inversion of diffraction data - producing a computer model correctly representing the material explored - is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this dissertation, we introduce a robust method, Force-Enhanced Atomic Refinement (FEAR), which jointly exploits the power of ab initio atomistic simulation along with the information carried by diffraction data. As a preliminary trial, the method has been implemented using empirical potentials for amorphous silicon (a-Si) and silica ( SiO2). The models obtained are comparable to the ones prepared by the conventional approaches as well as the experiments. Using ab initio interactions, the method is applied to two very different systems: amorphous silicon (a-Si) and two compositions of a solid electrolyte memory material silver-doped GeSe3. It is shown that the method works well for both the materials. Besides that, the technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. It offers a means to add a priori information in first principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information. Moreover, the method has also been used to create a computer model of a-Si, using highly precise X-ray diffraction data. The model predicts properties that are close to the continuous random network models but with no a priori assumptions. In addition, using the ab initio molecular dynamics simulations (AIMD) we explored the doping and transport in hydrogenated amorphous silicon a-Si:H with the most popular impurities: boron and phosphorous. We investigated doping for these impurities and the role of H in the doping process. We revealed the network motion and H hopping induced by

  4. Implications of Simulation Conceptual Model Development for Simulation Management and Uncertainty Assessment

    Science.gov (United States)

    Pace, Dale K.

    2000-01-01

    A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.

  5. A Simple Memristor Model for Circuit Simulations

    Science.gov (United States)

    Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team

    This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.

  6. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  7. Biomechanics trends in modeling and simulation

    CERN Document Server

    Ogden, Ray

    2017-01-01

    The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls ...

  8. An Agent-Based Monetary Production Simulation Model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2006-01-01

    An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable......An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable...

  9. Modelling and simulations of controlled release fertilizer

    Science.gov (United States)

    Irfan, Sayed Ameenuddin; Razali, Radzuan; Shaari, Ku Zilati Ku; Mansor, Nurlidia

    2016-11-01

    The recent advancement in controlled release fertilizer has provided an alternative solution to the conventional urea, controlled release fertilizer has a good plant nutrient uptake they are environment friendly. To have an optimum plant intake of nutrients from controlled release fertilizer it is very essential to understand the release characteristics. A mathematical model is developed to predict the release characteristics from polymer coated granule. Numerical simulations are performed by varying the parameters radius of granule, soil water content and soil porosity to study their effect on fertilizer release. Understanding these parameters helps in the better design and improve the efficiency of controlled release fertilizer.

  10. The mathematical model of a LUNG simulator

    Directory of Open Access Journals (Sweden)

    František Šolc

    2014-12-01

    Full Text Available The paper discusses the design, modelling, implementation and testing of a specific LUNG simulator,. The described research was performed as a part of the project AlveoPic – Advanced Lung Research for Veterinary Medicine of Particles for Inhalation. The simulator was designed to establish a combined study programme comprising Biomedical Engineering Sciences (FEEC BUT and Healthcare and Rehabilitation Technology (FH Technikum Wien. The simulator is supposed to be an advanced laboratory equipment which should enhance the standard of the existing research activities within the above-mentioned study programs to the required level. Thus, the proposed paper introduces significant technical equipment for the laboratory education of students at both FH Technikum Wien and the Faculty of Electrical Engineering and Communication, Brno University of Technology. The apparatuses described here will be also used to support cooperative research activities. In the given context, the authors specify certain technical solutions and parameters related to artificial lungs, present the electrical equipment of the system, and point out the results of the PC-based measurement and control.

  11. Simulation model for port shunting yards

    Science.gov (United States)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  12. Modeling and Simulation of Ultrasound Wave Propagation

    Science.gov (United States)

    Isler, Sylvia Kay

    The specific aim of this work is to model diagnostic ultrasound under strong acoustic scattering conditions. This work is divided into three main sub-topics. The first concerns the solution of the Helmholtz integral equation in three-dimensions. The Pade approximant method for accelerating the convergence of the Neumann series, first proposed by Chandra and Thompson for two-dimensional acoustic scattering problems, is extended to three-dimensions. Secondly, the propagation of acoustic pulses through a medium that is characterized by spatial variations in compressibility is considered. The medium is excited using an ideal, bandlimited acoustic transducer having a Gaussian radiation profile. The time response is determined by using a spatial Fourier wavenumber decomposition of the incident and scattered pressure fields. Using the Pade approximant method, the pressure is evaluated for each wavenumber at each spatial grid location. By taking the inverse Fourier transform of the result, the temporal and spatial evolution of the pressure field is obtained. The third part examines acoustic wave propagation in simulated soft tissue. Methods for generating spatially correlated random media are discussed and applied to simulating the structure of soft tissue. Simulated sonograms are constructed and the effects of strong scattering are considered.

  13. The Analysis of Ship Air Defense: The Simulation Model SEAROADS

    NARCIS (Netherlands)

    Dongen, M.P.F.M. van; Kos, J.

    1995-01-01

    The Simulation, Evaluation, Analysis, and Research On Air Defense Systems model (SEAROADS) is a computer simulation model for evaluating, analyzing, and studying the performance of air defense systems aboard naval frigates. The SEAROADS model simulates an engagement between a given ship

  14. A rainfall simulation model for agricultural development in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Sayedur Rahman

    2000-01-01

    Full Text Available A rainfall simulation model based on a first-order Markov chain has been developed to simulate the annual variation in rainfall amount that is observed in Bangladesh. The model has been tested in the Barind Tract of Bangladesh. Few significant differences were found between the actual and simulated seasonal, annual and average monthly. The distribution of number of success is asymptotic normal distribution. When actual and simulated daily rainfall data were used to drive a crop simulation model, there was no significant difference of rice yield response. The results suggest that the rainfall simulation model perform adequately for many applications.

  15. VISION: Verifiable Fuel Cycle Simulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  16. Modeling and numerical simulations of the influenced Sznajd model

    Science.gov (United States)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  17. Dispersion modeling by kinematic simulation: Cloud dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Fung, J C H [Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Perkins, R J [Laboratoire de Mecanique des Fluides et d' Acoustique, Ecole Centrale de Lyon (France)], E-mail: majfung@ust.hk

    2008-04-30

    A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.

  18. Modeling and simulation of cascading contingencies

    Science.gov (United States)

    Zhang, Jianfeng

    This dissertation proposes a new approach to model and study cascading contingencies in large power systems. The most important contribution of the work involves the development and validation of a heuristic analytic model to assess the likelihood of cascading contingencies, and the development and validation of a uniform search strategy. We model the probability of cascading contingencies as a function of power flow and power flow changes. Utilizing logistic regression, the proposed model is calibrated using real industry data. This dissertation analyzes random search strategies for Monte Carlo simulations and proposes a new uniform search strategy based on the Metropolis-Hastings Algorithm. The proposed search strategy is capable of selecting the most significant cascading contingencies, and it is capable of constructing an unbiased estimator to provide a measure of system security. This dissertation makes it possible to reasonably quantify system security and justify security operations when economic concerns conflict with reliability concerns in the new competitive power market environment. It can also provide guidance to system operators about actions that may be taken to reduce the risk of major system blackouts. Various applications can be developed to take advantage of the quantitative security measures provided in this dissertation.

  19. Tecnomatix Plant Simulation modeling and programming by means of examples

    CERN Document Server

    Bangsow, Steffen

    2015-01-01

    This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analys

  20. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  1. Detached eddy simulation and large eddy simulation models for the simulation of gas entrainment

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E.; Ninokata, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan); Baglietto, E. [CD-adapco, New York, NY (United States)

    2007-07-01

    The eventual entrainment of gas bubbles in the reactor core of a Light Metal Fast Breeder Reactors (LMFBR) may cause an effective increase in reactivity as in the current state of the art since LMFBRs have usually a positive void coefficient. Since this may have a negative effect on safety and operation, the possibility of gas entrainment needs to be evaluated in the thermohydraulics design. Several studies on the gas entrainment in a LMFBR system have been conducted over the years. The most common situations that may lead to gas entrainment have been classified into vortex dimple, concave free surface and breaking wave. Among these, the vortex-induced gas entrainment phenomenon is considered in the present work, because more likely to be present in operating or accidental conditions. The focus is on the issue of turbulence modeling for the simulation of gas-driving vortexes, and in particular for the benchmark case of Moriya. We will propose two different approaches: a large eddy simulation and a detached eddy simulation. Results are in excellent agreement with the experiment for the radial velocity even if no surface model has been employed. (authors)

  2. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    Science.gov (United States)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  3. Modeling and simulation of turbulent multiphase flows

    Science.gov (United States)

    Li, Zhaorui

    The atomization of liquid spray in turbulent reacting and non-reacting flows usually occurs in two successive steps, i.e., primary breakup and secondary breakup. In the primary breakup region, the evolution of the interface between the phases is usually complex and very difficult to model. In the secondary breakup region, the average droplet size and volume occupied by the droplets are relatively small but the number of droplets is usually very significant. In this study, we use different mathematical and numerical models for different regions of the spray. For dense spray simulations, a coupled Lagrangian interface-tracking and Eulerian level set method is developed and implemented. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties are obtained from the level set function. The level set function maintains a signed distance function via the particle-based Lagrangian re-initialization technique. Numerical simulations of several 'standard interface-moving' problems and two-fluid laminar and turbulent flows are conducted to assess this new hybrid method. The results of our analysis indicate that the hybrid particle-level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant mass loss or gain. The results obtained for isotropic two-fluid turbulence via the new particle-level set method are validated by comparison with those obtained by the 'zero Mach number', variable-density method. The two-way interactions between the turbulent velocity field and the interface are studied by the particle-level set method. Extensive analysis of vorticity and energy equations indicates that the destabilization effect of turbulence and stability effect of surface tension on the interface motion and interface's effect on turbulence are strongly dependent on the density ratio and Weber number. For

  4. Phase Equilibrium Modeling for Shale Production Simulation

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando

    simulator, which was then used to assess the impact of the capillary pressure on phase behavior in oil and gas production from tight reservoirs. Since capillary pressure and adsorption occur simultaneously in shale, its combined effect was studied. A model comparison for high-pressure adsorption in shale...... is presented. The adsorption data in shale is generally scarce, therefore, additional capabilities besides the accuracy were considered in the comparison. The multicomponent potential theory of adsorption yields the best results. Moreover, it shows to be useful to extrapolate adsorption data for hydrocarbons...... calculation tools for phase equilibrium in porous media with capillary pressure and adsorption effects. Analysis using these tools have shown that capillary pressure and adsorption have non-negligible effects on phase equilibrium in shale. As general tools, they can be used to calculate phase equilibrium...

  5. Modelling and Simulation of Search Engine

    Science.gov (United States)

    Nasution, Mahyuddin K. M.

    2017-01-01

    The best tool currently used to access information is a search engine. Meanwhile, the information space has its own behaviour. Systematically, an information space needs to be familiarized with mathematics so easily we identify the characteristics associated with it. This paper reveal some characteristics of search engine based on a model of document collection, which are then estimated the impact on the feasibility of information. We reveal some of characteristics of search engine on the lemma and theorem about singleton and doubleton, then computes statistically characteristic as simulating the possibility of using search engine. In this case, Google and Yahoo. There are differences in the behaviour of both search engines, although in theory based on the concept of documents collection.

  6. Assessing Molecular Dynamics Simulations with Solvatochromism Modeling.

    Science.gov (United States)

    Schwabe, Tobias

    2015-08-20

    For the modeling of solvatochromism with an explicit representation of the solvent molecules, the quality of preceding molecular dynamics simulations is crucial. Therefore, the possibility to apply force fields which are derived with as little empiricism as possible seems desirable. Such an approach is tested here by exploiting the sensitive solvatochromism of p-nitroaniline, and the use of reliable excitation energies based on approximate second-order coupled cluster results within a polarizable embedding scheme. The quality of the various MD settings for four different solvents, water, methanol, ethanol, and dichloromethane, is assessed. In general, good agreement with the experiment is observed when polarizable force fields and special treatment of hydrogen bonding are applied.

  7. Modeling and simulation technology readiness levels.

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.; Shneider, Max S.; Marburger, S. J.; Trucano, Timothy Guy

    2006-01-01

    This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we

  8. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...... and relevance Empirical and theoretical research is needed to develop in situ simulation and to theorize and experiment with how we best take reported critical incidents and adverse events back to the clinic. In situ simulation offers a unique way to study team interactions there are widely different approaches......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...

  9. Computational Modeling and Simulation of Developmental ...

    Science.gov (United States)

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  10. Using Computational Simulations to Confront Students' Mental Models

    Science.gov (United States)

    Rodrigues, R.; Carvalho, P. Simeão

    2014-01-01

    In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…

  11. Review of Modelling Approaches for Healthcare Simulation

    Directory of Open Access Journals (Sweden)

    Bożena Mielczarek

    2016-01-01

    Full Text Available The goal of this paper is to present a summary of various simulation methods applied to health services and to discuss several internal and external determinants for selecting a particular simulation method to study a given managerial problem within the healthcare system. The analysis presented is based on a literature survey and considers four primary simulation techniques: Monte Carlo, discrete-event simulation, agent-based simulation and system dynamics. A range of internal and external factors are reviewed and characterised to determine the most suitable simulation technique for addressing a particular healthcare decision problem. (original abstract

  12. Bringing consistency to simulation of population models--Poisson simulation as a bridge between micro and macro simulation.

    Science.gov (United States)

    Gustafsson, Leif; Sternad, Mikael

    2007-10-01

    Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.

  13. Combining Simulation and Optimization Models for Hardwood Lumber Production

    Science.gov (United States)

    G.A. Mendoza; R.J. Meimban; W.G. Luppold; Philip A. Araman

    1991-01-01

    Published literature contains a number of optimization and simulation models dealing with the primary processing of hardwood and softwood logs. Simulation models have been developed primarily as descriptive models for characterizing the general operations and performance of a sawmill. Optimization models, on the other hand, were developed mainly as analytical tools for...

  14. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  15. Modeling and Simulation at Tidewater Community College

    Science.gov (United States)

    Summers, Michael

    2008-01-01

    Investment of $1.5 million in medical simulation technology. Integration of medical simulation activities into the curriculum. Support from TCC leadership. Individual and team activities. Skill development and critical thinking/problem solving skills.

  16. An educational model for ensemble streamflow simulation and uncertainty analysis

    National Research Council Canada - National Science Library

    AghaKouchak, A; Nakhjiri, N; Habib, E

    2013-01-01

    ...) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching uncertainty analysis, parameter estimation, ensemble simulation and model sensitivity...

  17. Development of a Generic Didactic Model for Simulator Training

    National Research Council Canada - National Science Library

    Emmerik, M

    1997-01-01

    .... The development of such a model is motivated by the need to control training and instruction factors in research on simulator fidelity, the need to assess the benefit of training simulators, e.g...

  18. A generic testing framework for agent-based simulation models

    OpenAIRE

    Gürcan, Önder; Dikenelli, Oguz; Bernon, Carole

    2013-01-01

    Agent-based modelling and simulation (ABMS) had an increasing attention during the last decade. However, the weak validation and verification of agent-based simulation models makes ABMS hard to trust. There is no comprehensive tool set for verification and validation of agent-based simulation models, which demonstrates that inaccuracies exist and/or reveals the existing errors in the model. Moreover, on the practical side, many ABMS frameworks are in use. In this sense, we designed and develo...

  19. Modelling toolkit for simulation of maglev devices

    Science.gov (United States)

    Peña-Roche, J.; Badía-Majós, A.

    2017-01-01

    A stand-alone App1 has been developed, focused on obtaining information about relevant engineering properties of magnetic levitation systems. Our modelling toolkit provides real time simulations of 2D magneto-mechanical quantities for superconductor (SC)/permanent magnet structures. The source code is open and may be customised for a variety of configurations. Ultimately, it relies on the variational statement of the critical state model for the superconducting component and has been verified against experimental data for YBaCuO/NdFeB assemblies. On a quantitative basis, the values of the arising forces, induced superconducting currents, as well as a plot of the magnetic field lines are displayed upon selection of an arbitrary trajectory of the magnet in the vicinity of the SC. The stability issues related to the cooling process, as well as the maximum attainable forces for a given material and geometry are immediately observed. Due to the complexity of the problem, a strategy based on cluster computing, database compression, and real-time post-processing on the device has been implemented.

  20. Simulation and Modeling Application in Agricultural Mechanization

    Directory of Open Access Journals (Sweden)

    R. M. Hudzari

    2012-01-01

    Full Text Available This experiment was conducted to determine the equations relating the Hue digital values of the fruits surface of the oil palm with maturity stage of the fruit in plantation. The FFB images were zoomed and captured using Nikon digital camera, and the calculation of Hue was determined using the highest frequency of the value for R, G, and B color components from histogram analysis software. New procedure in monitoring the image pixel value for oil palm fruit color surface in real-time growth maturity was developed. The estimation of day harvesting prediction was calculated based on developed model of relationships for Hue values with mesocarp oil content. The simulation model is regressed and predicts the day of harvesting or a number of days before harvest of FFB. The result from experimenting on mesocarp oil content can be used for real-time oil content determination of MPOB color meter. The graph to determine the day of harvesting the FFB was presented in this research. The oil was found to start developing in mesocarp fruit at 65 days before fruit at ripe maturity stage of 75% oil to dry mesocarp.

  1. Simulation Models for Socioeconomic Inequalities in Health: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Niko Speybroeck

    2013-11-01

    Full Text Available Background: The emergence and evolution of socioeconomic inequalities in health involves multiple factors interacting with each other at different levels. Simulation models are suitable for studying such complex and dynamic systems and have the ability to test the impact of policy interventions in silico. Objective: To explore how simulation models were used in the field of socioeconomic inequalities in health. Methods: An electronic search of studies assessing socioeconomic inequalities in health using a simulation model was conducted. Characteristics of the simulation models were extracted and distinct simulation approaches were identified. As an illustration, a simple agent-based model of the emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 61 studies published between 1989 and 2013. Ten different simulation approaches were identified. The agent-based model illustration showed that multilevel, reciprocal and indirect effects of social determinants on health can be modeled flexibly. Discussion and Conclusions: Based on the review, we discuss the utility of using simulation models for studying health inequalities, and refer to good modeling practices for developing such models. The review and the simulation model example suggest that the use of simulation models may enhance the understanding and debate about existing and new socioeconomic inequalities of health frameworks.

  2. Powertrain modeling and simulation for off-road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, S. [McGill Univ., Montreal, PQ (Canada)

    2010-07-01

    Standard forward facing automotive powertrain modeling and simulation methodology did not perform equally for all vehicles in all applications in the 2010 winter Olympics, 2009 world alpine ski championships, summit station in Greenland, the McGill Formula Hybrid, Unicell QuickSider, and lunar mobility. This presentation provided a standard automotive powertrain modeling and simulation flow chart as well as an example. It also provided a flow chart for location based powertrain modeling and simulation and discussed location based powertrain modeling and simulation implementation. It was found that in certain applications, vehicle-environment interactions cannot be neglected in order to have good model fidelity. Powertrain modeling and simulation of off-road vehicles demands a new approach to powertrain modeling and simulation. It was concluded that the proposed location based methodology could improve the results for off-road vehicles. tabs., figs.

  3. Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova

    Energy Technology Data Exchange (ETDEWEB)

    James Glimm

    2009-06-04

    The three year plan for this project was to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (Direct Numerical Simulation (DNS), Large Eddy Simulations (LES), full two fluid simulations and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We model 2D and 3D perturbations of planar or circular interfaces. We compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. Multiple layers and reshock are considered here.

  4. Validation of Simulation Model for Full Scale Wave Simulator and Discrete Fuild Power PTO System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Hansen, Rico Hjerm

    2014-01-01

    In controller development for large scale machinery a good simulation model may serve as a time and money saving factor as well as a safety precaution. Having good models enables the developer to design and test control strategies in a safe and possibly less time consuming environment....... For applicable control strategies to take form in a simulation environment the model must with reasonable accuracy model the real system. The current paper presents a simulation model for a full scale wave simulator and a discrete fluid power Power Take Off (PTO) system. Good correlation is seen between...... the simulation model and the physical machine. Hence, this model may serve as a great bacis for model based controller development and for scaling the PTO system to a full wave energy converter....

  5. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  6. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  7. Modeling and simulation of bubbles and particles

    Science.gov (United States)

    Dorgan, Andrew James

    The interaction of particles, drops, and bubbles with a fluid (gas or liquid) is important in a number of engineering problems. The present works seeks to extend the understanding of these interactions through numerical simulation. To model many of these relevant flows, it is often important to consider finite Reynolds number effects on drag, lift, torque and history force. Thus, the present work develops an equation of motion for spherical particles with a no-slip surface based on theoretical analysis, experimental data and surface-resolved simulations which is appropriate for dispersed multiphase flows. The equation of motion is then extended to account for finite particle size. This extension is critical for particles which will have a size significantly larger than the grid cell size, particularly important for bubbles and low-density particles. The extension to finite particle size is accomplished through spatial-averaging (both volume-based and surface-based) of the continuous flow properties. This averaging is consistent with the Faxen limit for solid spheres at small Reynolds numbers and added mass and fluid stress forces at inviscid limits. Further work is needed for more quantitative assessment of the truncation terms in complex flows. The new equation of motion is then used to assess the relative importance of each force in the context of two low-density particles (an air bubble and a sand particle) in a boundary layer of water. This relative importance is measured by considering effects on particle concentration, visualization of particle-fluid interactions, diffusion rates, and Lagrangian statistics collected along the particle trajectory. Strong added mass and stress gradient effects are observed for the bubble but these were found to have little effect on a sand particle of equal diameter. Lift was shown to be important for both conditions provided the terminal velocity was aligned with the flow direction. The influence of lift was found to be

  8. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    Directory of Open Access Journals (Sweden)

    Peter C Lai

    2012-05-01

    Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.

  9. IDEF method-based simulation model design and development framework

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2009-09-01

    Full Text Available The purpose of this study is to provide an IDEF method-based integrated framework for a business process simulation model to reduce the model development time by increasing the communication and knowledge reusability during a simulation project. In this framework, simulation requirements are collected by a function modeling method (IDEF0 and a process modeling method (IDEF3. Based on these requirements, a common data model is constructed using the IDEF1X method. From this reusable data model, multiple simulation models are automatically generated using a database-driven simulation model development approach. The framework is claimed to help both requirement collection and experimentation phases during a simulation project by improving system knowledge, model reusability, and maintainability through the systematic use of three descriptive IDEF methods and the features of the relational database technologies. A complex semiconductor fabrication case study was used as a testbed to evaluate and illustrate the concepts and the framework. Two different simulation software products were used to develop and control the semiconductor model from the same knowledge base. The case study empirically showed that this framework could help improve the simulation project processes by using IDEF-based descriptive models and the relational database technology. Authors also concluded that this framework could be easily applied to other analytical model generation by separating the logic from the data.

  10. Historical Development of Simulation Models of Recreation Use

    Science.gov (United States)

    Jan W. van Wagtendonk; David N. Cole

    2005-01-01

    The potential utility of modeling as a park and wilderness management tool has been recognized for decades. Romesburg (1974) explored how mathematical decision modeling could be used to improve decisions about regulation of wilderness use. Cesario (1975) described a computer simulation modeling approach that utilized GPSS (General Purpose Systems Simulator), a...

  11. Simulation models in population breast cancer screening : A systematic review

    NARCIS (Netherlands)

    Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H

    The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for

  12. Case studies of simulation models of recreation use

    Science.gov (United States)

    David N. Cole

    2005-01-01

    Computer simulation models can be usefully applied to many different outdoor recreation situations. Model outputs can also be used for a wide variety of planning and management purposes. The intent of this chapter is to use a collection of 12 case studies to illustrate how simulation models have been used in a wide range of recreation situations and for diverse...

  13. Federated Modelling and Simulation for Critical Infrastructure Protection

    NARCIS (Netherlands)

    Rome, E.; Langeslag, P.J.H.; Usov, A.

    2014-01-01

    Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic

  14. Simulation Modeling of a Facility Layout in Operations Management Classes

    Science.gov (United States)

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  15. A New Model for Simulating TSS Washoff in Urban Areas

    Directory of Open Access Journals (Sweden)

    E. Crobeddu

    2011-01-01

    Full Text Available This paper presents the formulation and validation of the conceptual Runoff Quality Simulation Model (RQSM that was developed to simulate the erosion and transport of solid particles in urban areas. The RQSM assumes that solid particle accumulation on pervious and impervious areas is infinite. The RQSM simulates soil erosion using rainfall kinetic energy and solid particle transport with linear system theory. A sensitivity analysis was conducted on the RQSM to show the influence of each parameter on the simulated load. Total suspended solid (TSS loads monitored at the outlet of the borough of Verdun in Canada and at three catchment outlets of the City of Champaign in the United States were used to validate the RQSM. TSS loads simulated by the RQSM were compared to measured loads and to loads simulated by the Rating Curve model and the Exponential model of the SWMM software. The simulation performance of the RQSM was comparable to the Exponential and Rating Curve models.

  16. Business Process Simulation: Requirements for Business and Resource Models

    Directory of Open Access Journals (Sweden)

    Audrius Rima

    2015-07-01

    Full Text Available The purpose of Business Process Model and Notation (BPMN is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.

  17. RANDOM CLOSED SET MODELS: ESTIMATING AND SIMULATING BINARY IMAGES

    Directory of Open Access Journals (Sweden)

    Ángeles M Gallego

    2011-05-01

    Full Text Available In this paper we show the use of the Boolean model and a class of RACS models that is a generalization of it to obtain simulations of random binary images able to imitate natural textures such as marble or wood. The different tasks required, parameter estimation, goodness-of-fit test and simulation, are reviewed. In addition to a brief review of the theory, simulation studies of each model are included.

  18. A review on travel behaviour modelling in dynamic traffic simulation models for evacuations

    NARCIS (Netherlands)

    Pel, A.J.; Bliemer, M.C.J.; Hoogendoorn, S.P.

    2011-01-01

    Dynamic traffic simulation models are frequently used to support decisions when planning an evacuation. This contribution reviews the different (mathematical) model formulations underlying these traffic simulation models used in evacuation studies and the behavioural assumptions that are made. The

  19. Optical Imaging and Radiometric Modeling and Simulation

    Science.gov (United States)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  20. Modeling, Simulation and Position Control of 3DOF Articulated Manipulator

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2014-08-01

    Full Text Available In this paper, the modeling, simulation and control of 3 degrees of freedom articulated robotic manipulator have been studied. First, we extracted kinematics and dynamics equations of the mentioned manipulator by using the Lagrange method. In order to validate the analytical model of the manipulator we compared the model simulated in the simulation environment of Matlab with the model was simulated with the SimMechanics toolbox. A sample path has been designed for analyzing the tracking subject. The system has been linearized with feedback linearization and then a PID controller was applied to track a reference trajectory. Finally, the control results have been compared with a nonlinear PID controller.

  1. Global Information Enterprise (GIE) Modeling and Simulation (GIESIM)

    National Research Council Canada - National Science Library

    Bell, Paul

    2005-01-01

    ... AND S) toolkits into the Global Information Enterprise (GIE) Modeling and Simulation (GIESim) framework to create effective user analysis of candidate communications architectures and technologies...

  2. Functional Decomposition of Modeling and Simulation Terrain Database Generation Process

    National Research Council Canada - National Science Library

    Yakich, Valerie R; Lashlee, J. D

    2008-01-01

    .... This report documents the conceptual procedure as implemented by Lockheed Martin Simulation, Training, and Support and decomposes terrain database construction using the Integration Definition for Function Modeling (IDEF...

  3. Modelling domain knowledge for intelligent simulation learning environments

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.

    1992-01-01

    Computer simulations are an often applied and promising form of CAL. A main characteristic of computer simulations is that the domain knowledge is represented in amodel. This model contains all necessary information to calculate the behaviour of the simulation in terms of variables and parameters

  4. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  5. Theory, modeling and simulation of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory; Kamenev, Dmitry I [Los Alamos National Laboratory; Chumak, Alexander [INSTIT OF PHYSICS, KIEV; Kinion, Carin [LLNL; Tsifrinovich, Vladimir [POLYTECHNIC INSTIT OF NYU

    2011-01-13

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, that includes the resonator-drive, the resonator-bath, and resonator-qubit interactions. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using the solutions for the resonator field, we derive the equation that describes the qubit dynamics. The dependence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. We proposed a novel adiabatic method for the phase qubit measurement. The method utilizes a low-frequency, quasi-classical resonator inductively coupled to the qubit. The resonator modulates the qubit energy, and the back reaction of the qubit causes a shift in the phase of the resonator. The resonator phase shift can be used to determine the qubit state. We have simulated this measurement taking into the account the energy levels outside the phase qubit manifold. We have shown that, for qubit frequencies in the range of 8-12GHZ, a resonator frequency of 500 MHz and a measurement time of 100 ns, the phase difference between the two qubit states is greater than 0.2 rad. This phase difference exceeds the measurement uncertainty, and can be detected using a classical phase-meter. A fidelity of 0.9999 can be achieved for a relaxation time of 0.5 ms. We also model and simulate a microstrip-SQUID amplifier of frequency about 500 MHz, which could be used to amplify the resonator oscillations in the phase qubit adiabatic measurement. The voltage gain and the amplifier noise temperature are calculated. We simulate the preparation of a generalized Bell state and compute the relaxation times required for achieving high

  6. Simulation Tools Model Icing for Aircraft Design

    Science.gov (United States)

    2012-01-01

    the years from strictly a research tool to one used routinely by industry and other government agencies. Glenn contractor William Wright has been the architect of this development, supported by a team of researchers investigating icing physics, creating validation data, and ensuring development according to standard software engineering practices. The program provides a virtual simulation environment for determining where water droplets strike an airfoil in flight, what kind of ice would result, and what shape that ice would take. Users can enter geometries for specific, two-dimensional cross sections of an airfoil or other airframe surface and then apply a range of inputs - different droplet sizes, temperatures, airspeeds, and more - to model how ice would build up on the surface in various conditions. The program s versatility, ease of use, and speed - LEWICE can run through complex icing simulations in only a few minutes - have contributed to it becoming a popular resource in the aviation industry.

  7. Medical simulation: Overview, and application to wound modelling and management

    Directory of Open Access Journals (Sweden)

    Dinker R Pai

    2012-01-01

    Full Text Available Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a overall increase in the number of medical students vis-à-vis the availability of patients; b increasing awareness among patients of their rights and consequent increase in litigations and c tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.

  8. Construction Safety Risk Modeling and Simulation.

    Science.gov (United States)

    Tixier, Antoine J-P; Hallowell, Matthew R; Rajagopalan, Balaji

    2017-10-01

    By building on a genetic-inspired attribute-based conceptual framework for safety risk analysis, we propose a novel approach to define, model, and simulate univariate and bivariate construction safety risk at the situational level. Our fully data-driven techniques provide construction practitioners and academicians with an easy and automated way of getting valuable empirical insights from attribute-based data extracted from unstructured textual injury reports. By applying our methodology on a data set of 814 injury reports, we first show the frequency-magnitude distribution of construction safety risk to be very similar to that of many natural phenomena such as precipitation or earthquakes. Motivated by this observation, and drawing on state-of-the-art techniques in hydroclimatology and insurance, we then introduce univariate and bivariate nonparametric stochastic safety risk generators based on kernel density estimators and copulas. These generators enable the user to produce large numbers of synthetic safety risk values faithful to the original data, allowing safety-related decision making under uncertainty to be grounded on extensive empirical evidence. One of the implications of our study is that like natural phenomena, construction safety may benefit from being studied quantitatively by leveraging empirical data rather than strictly being approached through a managerial perspective using subjective data, which is the current industry standard. Finally, a side but interesting finding is that in our data set, attributes related to high energy levels (e.g., machinery, hazardous substance) and to human error (e.g., improper security of tools) emerge as strong risk shapers. © 2017 Society for Risk Analysis.

  9. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    Science.gov (United States)

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2017-08-10

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  10. Modular Modelling and Simulation Approach - Applied to Refrigeration Systems

    DEFF Research Database (Denmark)

    Sørensen, Kresten Kjær; Stoustrup, Jakob

    2008-01-01

    This paper presents an approach to modelling and simulation of the thermal dynamics of a refrigeration system, specifically a reefer container. A modular approach is used and the objective is to increase the speed and flexibility of the developed simulation environment. The refrigeration system...... is divided into components where the inputs and outputs are described by a set of XML files that can be combined into a composite system model that may be loaded into MATLABtrade. A set of tools that allows the user to easily load the model and run a simulation are provided. The results show a simulation...

  11. Vehicle Modeling for Future Generation Transportation Simulation

    Science.gov (United States)

    2009-05-10

    Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...

  12. Ophiucus: RDF-based visualization tool for health simulation models.

    Science.gov (United States)

    Sutcliffe, Andrew; Okhmatovskaia, Anya; Shaban-Nejad, Arash; Buckeridge, David

    2012-01-01

    Simulation modeling of population health is becoming increasingly popular for epidemiology research and public health policy-making. However, the acceptability of population health simulation models is inhibited by their complexity and the lack of established standards to describe these models. To address this issue, we propose Ophiuchus - an RDF (Resource Description Framework: http://www.w3.org/RDF/)-based visualization tool for generating interactive 2D diagrams of population health simulation models, which describe these models in an explicit and formal manner. We present the results of a preliminary system assessment and discuss current limitations of the system.

  13. Stochastic models to simulate paratuberculosis in dairy herds

    DEFF Research Database (Denmark)

    Nielsen, S.S.; Weber, M.F.; Kudahl, Anne Margrethe Braad

    2011-01-01

    Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... the models are somewhat different in their underlying principles and do put slightly different values on the different strategies, their overall findings are similar. Therefore, simulation models may be useful in planning paratuberculosis strategies in dairy herds, although as with all models caution...

  14. A Simulation Model Articulation of the REA Ontology

    Science.gov (United States)

    Laurier, Wim; Poels, Geert

    This paper demonstrates how the REA enterprise ontology can be used to construct simulation models for business processes, value chains and collaboration spaces in supply chains. These models support various high-level and operational management simulation applications, e.g. the analysis of enterprise sustainability and day-to-day planning. First, the basic constructs of the REA ontology and the ExSpect modelling language for simulation are introduced. Second, collaboration space, value chain and business process models and their conceptual dependencies are shown, using the ExSpect language. Third, an exhibit demonstrates the use of value chain models in predicting the financial performance of an enterprise.

  15. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)

    Mekuannint

    MODELING, SIMULATION AND PERFORMANCE EVALUATION OF. PARABOLIC TROUGH. SOLAR COLLECTOR POWER GENERATION SYSTEM. Mekuannint Mesfin and Abebayehu Assefa. Department of Mechanical Engineering. Addis Ababa University. ABSTRACT. Model of a parabolic trough power plant, taking.

  16. Impact of reactive settler models on simulated WWTP performance

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jeppsson, Ulf; Batstone, Damien J.

    2006-01-01

    for an ASM1 case study. Simulations with a whole plant model including the non-reactive Takacs settler model are used as a reference, and are compared to simulation results considering two reactive settler models. The first is a return sludge model block removing oxygen and a user-defined fraction of nitrate......, combined with a non-reactive Takacs settler. The second is a fully reactive ASM1 Takacs settler model. Simulations with the ASM1 reactive settler model predicted a 15.3% and 7.4% improvement of the simulated N removal performance, for constant (steady-state) and dynamic influent conditions respectively....... The oxygen/nitrate return sludge model block predicts a 10% improvement of N removal performance under dynamic conditions, and might be the better modelling option for ASM1 plants: it is computationally more efficient and it will not overrate the importance of decay processes in the settler....

  17. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  18. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  19. Synthesis of bipedal motion resembling actual human walking by neural oscillators and genetic algorithms; Shinkei shindoshi to identeki arugorizumu wo mochiita mi 2 soku hoko ruii undo no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Hase, K.; Yamazaki, N. [Keio Univ., Tokyo (Japan). Faculty of Science and Technology

    1997-05-31

    The human body motion like walking is not only a motion of musculoskeleton controlled by neural system, but also a synthetic result of passive resistant force generated by muscles, gravity force and inertial force acting at mass distribution of the human body. Therefore, the body motion is closely related to the morphological trait of the motion body-itself. In fact, the human walking pattern is similar to a natural vibration mode while using a multiple oscillator to model the human body. In this study, in order to reproduce the morphology of human body truly and apply it in practical walking analysis of imaginary human being, a mechanical model of whole body that simulates the main morphological trait and musculoskeletal system of a human body and a human walking simulator formed by neural models worked by neural oscillators are developed. It may be predicted that the influences of changing of morphology of human body upon the human walking manner which are required by plastic surgery and anthropology may be estimated by using the model thus developed. 19 refs., 7 figs., 3 tabs.

  20. Validation of a Simplified Building Cooling Load Model Using a Complex Computer Simulation Model

    OpenAIRE

    Stewart, Morgan Eugene

    2001-01-01

    Building energy simulation has become a useful tool for predicting cooling, heating and electrical loads for facilities. Simulation models have been validated throughout the years by comparing simulation results to actual measured values. The simulations have become more accurate as approaches were changed to be more comprehensive in their ability to model building features. These simulation models tend to require considerable experience in determining input parameters and large amounts of...

  1. New Simulation Models for Addressing Like X–Aircraft Responses ...

    African Journals Online (AJOL)

    The original Monte Carlo model was previously modified for use in simulating data that conform to certain resource flow constraints. Recent encounters in communication and controls render these data absolute and irrelevant to current needs. In order to cater for these needs, we are presenting alternative simulation models ...

  2. Object Oriented Toolbox for Modelling and Simulation of Dynamic Systems

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Poulsen, Mikael Zebbelin; Wagner, Falko Jens

    1999-01-01

    Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform.......Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform....

  3. Exploiting Modelling and Simulation in Support of Cyber Defence

    NARCIS (Netherlands)

    Klaver, M.H.A.; Boltjes, B.; Croom-Jonson, S.; Jonat, F.; Çankaya, Y.

    2014-01-01

    The rapidly evolving environment of Cyber threats against the NATO Alliance has necessitated a renewed focus on the development of Cyber Defence policy and capabilities. The NATO Modelling and Simulation Group is looking for ways to leverage Modelling and Simulation experience in research, analysis

  4. A generalized simulation model of an integrated emergency post

    NARCIS (Netherlands)

    Mes, Martijn R.K.; Bruens, M.A.; Laroque, C.

    2012-01-01

    This paper discusses the development of a discrete-event simulation model for an integrated emergency post. This post is a collaboration between a general practitioners post and an emergency department within a hospital. We present a generalized and flexible simulation model, which can easily be

  5. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model Intercomparison Project (AMIP) simulations and higher resolution National Centre for Environmental Prediction (NCEP) reanalysis downscalings are presented and evaluated in this paper. The model used is the ...

  6. Active site modeling in copper azurin molecular dynamics simulations

    NARCIS (Netherlands)

    Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R

    Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the

  7. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; W. H. West

    2005-11-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  8. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  9. Coupled Monte Carlo simulation and Copula theory for uncertainty analysis of multiphase flow simulation models.

    Science.gov (United States)

    Jiang, Xue; Na, Jin; Lu, Wenxi; Zhang, Yu

    2017-11-01

    Simulation-optimization techniques are effective in identifying an optimal remediation strategy. Simulation models with uncertainty, primarily in the form of parameter uncertainty with different degrees of correlation, influence the reliability of the optimal remediation strategy. In this study, a coupled Monte Carlo simulation and Copula theory is proposed for uncertainty analysis of a simulation model when parameters are correlated. Using the self-adaptive weight particle swarm optimization Kriging method, a surrogate model was constructed to replace the simulation model and reduce the computational burden and time consumption resulting from repeated and multiple Monte Carlo simulations. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were employed to identify whether the t Copula function or the Gaussian Copula is the optimal Copula function to match the relevant structure of the parameters. The results show that both the AIC and BIC values of the t Copula function are less than those of the Gaussian Copula function. This indicates that the t Copula function is the optimal function for matching the relevant structure of the parameters. The outputs of the simulation model when parameter correlation was considered and when it was ignored were compared. The results show that the amplitude of the fluctuation interval when parameter correlation was considered is less than the corresponding amplitude when parameter estimation was ignored. Moreover, it was demonstrated that considering the correlation among parameters is essential for uncertainty analysis of a simulation model, and the results of uncertainty analysis should be incorporated into the remediation strategy optimization process.

  10. Modeling and simulation of graphene devices

    Science.gov (United States)

    Chauhan, Jyotsna

    Graphene has been explored as one of the promising materials to sustain Moore's law especially with silicon approaching its limits. The extraordinary electronic properties of graphene like high mobility, high saturation velocity etc. have created a gold rush for graphene based electronics. The numerical study in this dissertation provides valuable insights into device physics and characteristics of graphene Field Effect Transistors (FETs). First part of dissertation studies the effect of inelastic phonon scattering in graphene FETs using semi classical approach. A kink behavior due to ambipolar transport is observed. Even the low field mobility is affected by inelastic phonon scattering in recent graphene FET experiments reporting high mobilities. Physical mechanisms for good linearity are explained. The high frequency performance limits of graphene FETs are studied by running quantum simulations. Although Klein band-to-band tunneling is significant for sub-100nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20nm. At a channel length of 20nm, the intrinsic cut-off frequency remains at a couple of THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. With a thin high-kappa gate insulator, the intrinsic ballistic fT is above 5THz for gate length of 10nm. The source and drain resistance severely degrade RF parameters, fMAX and f T. It is found that the intrinsic fT is close to the LC characteristic frequency set by graphene kinetic inductance and quantum capacitance. Graphene on silicon contacts are modeled. Graphene on silicon forms Schottky contact with a flexibility to tune the Schottky barrier height (SBH) by silicon doping and gate voltage. Multiple layers of graphene at the interface as well as donor type interface states reduce

  11. A novel FEA simulation model for RFID SAW tag.

    Science.gov (United States)

    Peng, Dasong; Yu, Fengqi

    2009-08-01

    Based on finite element analysis, we propose a simulation model for radio frequency identification (RFID) SAW tag devices. Electric properties of metal electrode on substrate greatly affect the characteristics of the device and are discussed in the paper. Then the right and left boundary conditions for the device are applied to remove large unwanted waves generated by wave propagation near the boundaries. To save computation time, a 2-D model is proposed, where some mesh skills are applied. The tag device is simulated in 2 steps. First, we use modal analysis to get the device phase velocity and harmonic frequency. Second, a tag with multireflectors is simulated. Based on the simulations, we have designed and fabricated a SAW tag. A comparison is made between simulation and experimental results and shows our simulation model agrees with the experiment very well.

  12. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    Science.gov (United States)

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  13. The invaluable benefits of modeling and simulation in our lives

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C., E-mail: carlos.lorencez@opg.com [Ontario Power Generation, Nuclear Safety Div., Pickering, Ontario (Canada)

    2015-07-01

    'Full text:' In general terms, we associate the words 'modeling and simulation' with semi-ideal mathematical models reproducing complex Engineering problems. However, the use of modeling and simulation is much more extensive than that: it is applied on a daily basis in almost every front of Science, from sociology and biology to climate change, medicine, robotics, war strategies, etc. It is also being applied by our frontal lobe when we make decisions. The results of these exercises on modeling and simulation have had invaluable benefits on our well being, and we are just at the beginning. (author)

  14. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  15. Handbook of Real-World Applications in Modeling and Simulation

    CERN Document Server

    Sokolowski, John A

    2012-01-01

    This handbook provides a thorough explanation of modeling and simulation in the most useful, current, and predominant applied areas, such as transportation, homeland security, medicine, operational research, military science, and business modeling.  The authors offer a concise look at the key concepts and techniques of modeling and simulation and then discuss how and why the presented domains have become leading applications.  The book begins with an introduction of why modeling and simulation is a reliable analysis assessment tool for complex syste

  16. Simplified Model of Brushless Synchronous Generator for Real Time Simulation

    CERN Document Server

    Lopez, M D; Rebollo, E; Blanquez, F R

    2015-01-01

    This paper presents a simplified model of brushless synchronous machine for saving hardware resources in a real time simulation system. Firstly, a brushless excitation system model is described. Thereafter, the simplified transfer function of an AC exciter and rotating diodes of the brushless excitation system is estimated. Finally, the complete system is simulated, comparing the main generator's voltage with both detailed and simplified excitation systems in several scenarios. These results show the accuracy of the simplified model against the detailed simulation model, resulting on an important hardware resources savings.

  17. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    : a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2...

  18. A study for production simulation model generation system based on data model at a shipyard

    Directory of Open Access Journals (Sweden)

    Myung-Gi Back

    2016-09-01

    Full Text Available Simulation technology is a type of shipbuilding product lifecycle management solution used to support production planning or decision-making. Normally, most shipbuilding processes are consisted of job shop production, and the modeling and simulation require professional skills and experience on shipbuilding. For these reasons, many shipbuilding companies have difficulties adapting simulation systems, regardless of the necessity for the technology. In this paper, the data model for shipyard production simulation model generation was defined by analyzing the iterative simulation modeling procedure. The shipyard production simulation data model defined in this study contains the information necessary for the conventional simulation modeling procedure and can serve as a basis for simulation model generation. The efficacy of the developed system was validated by applying it to the simulation model generation of the panel block production line. By implementing the initial simulation model generation process, which was performed in the past with a simulation modeler, the proposed system substantially reduced the modeling time. In addition, by reducing the difficulties posed by different modeler-dependent generation methods, the proposed system makes the standardization of the simulation model quality possible.

  19. Induction generator models in dynamic simulation tools

    DEFF Research Database (Denmark)

    Knudsen, Hans; Akhmatov, Vladislav

    1999-01-01

    For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained. It is fo......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...

  20. Developing model asphalt systems using molecular simulation : final model.

    Science.gov (United States)

    2009-09-01

    Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...

  1. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  2. Reducing outpatient waiting time: a simulation modeling approach.

    Science.gov (United States)

    Aeenparast, Afsoon; Tabibi, Seyed Jamaleddin; Shahanaghi, Kamran; Aryanejhad, Mir Bahador

    2013-09-01

    The objective of this study was to provide a model for reducing outpatient waiting time by using simulation. A simulation model was constructed by using the data of arrival time, service time and flow of 357 patients referred to orthopedic clinic of a general teaching hospital in Tehran. The simulation model was validated before constructing different scenarios. In this study 10 scenarios were presented for reducing outpatient waiting time. Patients waiting time was divided into three levels regarding their physicians. These waiting times for all scenarios were computed by simulation model. According to the final scores the 9th scenario was selected as the best way for reducing outpatient's waiting time. Using the simulation as a decision making tool helps us to decide how we can reduce outpatient's waiting time. Comparison of outputs of this scenario and the based- case scenario in simulation model shows that combining physician's work time changing with patient's admission time changing (scenario 9) would reduce patient waiting time about 73.09%. Due to dynamic and complex nature of healthcare systems, the application of simulation for the planning, modeling and analysis of these systems has lagged behind traditional manufacturing practices. Rapid growth in health care system expenditures, technology and competition has increased the complexity of health care systems. Simulation is a useful tool for decision making in complex and probable systems.

  3. Calibration of the simulation model of the VINCY cyclotron magnet

    Directory of Open Access Journals (Sweden)

    Ćirković Saša

    2002-01-01

    Full Text Available The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximumobtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  4. Calibration of the simulation model of the Vincy cyclotron magnet

    CERN Document Server

    Cirkovic, S; Vorozhtsov, A S; Vorozhtsov, S B

    2002-01-01

    The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximum obtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  5. Spiral Growth in Plants: Models and Simulations

    Science.gov (United States)

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  6. Cognitive model supported tactical training simulation

    NARCIS (Netherlands)

    Doesburg, W.A. van; Bosch, K. van den

    2005-01-01

    Simulation-based tactical training can be made more effective by using cognitive software agents to play key roles (e.g. team mate, adversaries, instructor). Due to the dynamic and complex nature of military tactics, it is hard to create agents that behave realistically and support the training

  7. Global Solar Dynamo Models: Simulations and Predictions

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2 ... Flux-transport type solar dynamos have achieved considerable success in correctly simulating many solar cycle features, and are now being used for ... We first define flux-transport dynamos and demonstrate how they work.

  8. MODELING AND SIMULATION OF INDUSTRIAL FORMALDEHYDE ABSORBERS

    NARCIS (Netherlands)

    WINKELMAN, JGM; SIJBRING, H; BEENACKERS, AACM; DEVRIES, ET

    1992-01-01

    The industrially important process of formaldehyde absorption in water constitutes a case of multicomponent mass transfer with multiple reactions and considerable heat effects. A stable solution algorithm is developed to simulate the performance of industrial absorbers for this process using a

  9. NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... Aerospace, our results were in good agreement with experimental data. By simulation studies predeterminations became very easy to prepare, this gain is the result of the development of computational methods and hardware remarkable revolution. So mastery of computers has become indispensable for ...

  10. Modeling and simulation of membrane process

    Science.gov (United States)

    Staszak, Maciej

    2017-06-01

    The article presents the different approaches to polymer membrane mathematical modeling. Traditional models based on experimental physicochemical correlations and balance models are presented in the first part. Quantum and molecular mechanics models are presented as they are more popular for polymer membranes in fuel cells. The initial part is enclosed by neural network models which found their use for different types of processes in polymer membranes. The second part is devoted to models of fluid dynamics. The computational fluid dynamics technique can be divided into solving of Navier-Stokes equations and into Boltzmann lattice models. Both approaches are presented focusing on membrane processes.

  11. Model and simulation of Krause model in dynamic open network

    Science.gov (United States)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  12. System Simulation Modeling: A Case Study Illustration of the Model Development Life Cycle

    Science.gov (United States)

    Janice K. Wiedenbeck; D. Earl Kline

    1994-01-01

    Systems simulation modeling techniques offer a method of representing the individual elements of a manufacturing system and their interactions. By developing and experimenting with simulation models, one can obtain a better understanding of the overall physical system. Forest products industries are beginning to understand the importance of simulation modeling to help...

  13. ESA Simulation Language (ESL) battery model upgrade

    Science.gov (United States)

    Hay, J. L.; Owen, J. R.

    1988-03-01

    An ESL nickel-cadmium battery model was extended to match the battery manufacturer's steady state cycling characteristics, and to increase the temperature range over which the model is valid. The model was validated by comparisons with test results in the ambient temperature range 0 to 20 C. Less confidence must be attached to results produced by the model outside the 0 to 20 C range, there being no battery cycling data outside this range with which to judge model performance.

  14. Discrete event simulation: Modeling simultaneous complications and outcomes

    NARCIS (Netherlands)

    Quik, E.H.; Feenstra, T.L.; Krabbe, P.F.M.

    2012-01-01

    OBJECTIVES: To present an effective and elegant model approach to deal with specific characteristics of complex modeling. METHODS: A discrete event simulation (DES) model with multiple complications and multiple outcomes that each can occur simultaneously was developed. In this DES model parameters,

  15. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  16. A cognitive human behaviour model for pedestrian behaviour simulation

    OpenAIRE

    Hollmann, Claudia

    2015-01-01

    Pedestrian behaviour simulation models are being developed with the intention to simulate human behaviour in various environments in both non-emergency and emergency situations. These models are applied with the objective to understand the underlying causes and dynamics of pedestrian behaviour and how the environment or the environment’s intrinsic procedures can be adjusted in order to provide an improvement of human comfort and safety.\\ud \\ud In order to realistically model pedestrian behavi...

  17. Improving hydrological simulations by incorporating GRACE data for model calibration

    Science.gov (United States)

    Bai, Peng; Liu, Xiaomang; Liu, Changming

    2018-02-01

    Hydrological model parameters are typically calibrated by observed streamflow data. This calibration strategy is questioned when the simulated hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE)-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. In this study, a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations was compared with the traditional single-objective calibration scheme based on only streamflow simulations. Two hydrological models were employed on 22 catchments in China with different climatic conditions. The model evaluations were performed using observed streamflows, GRACE-derived TWSC, and actual evapotranspiration (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration scheme provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. The improvement in TWSC and ET simulations was more significant in relatively dry catchments than in relatively wet catchments. In addition, hydrological models calibrated using GRACE-derived TWSC data alone cannot obtain accurate runoff simulations in ungauged catchments. This study highlights the importance of including additional constraints in addition to streamflow observations to improve performances of hydrological models.

  18. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  19. Coupled Model Simulation of Snowfall Events Over the Black Hills

    Science.gov (United States)

    Wang, Jianzhong; Hjelmfelt, M. R.; Capehart, W. J.

    2000-01-01

    Although many long-term simulations of snow accumulation and oblation have been made using stand-alone land surface models and surface models coupled with GCMs, less research has focused on short-term event simulations. Actually, accurate event simulations of snow-related processes are the basis for successful long-term simulation. Three advantages of event simulations of snowfall and snow melting are availability of: (1) intensive observation data from field experiments for validation; (2) more physically-realistic precipitation schemes for use in atmospheric models to simulate snowfall; and (3) a more detailed analysis of the snow melting processes. In addition to the complexities of snow related processes themselves, terrain-induced effects on snowfall/snow melting make simulations of snow events more difficult. Climatological observations indicate that terrain features such as the Black Hills of South Dakota and Wyoming can exert important effects on snow accumulation and snow oblation processes. One of the primary effects is that the orography causes forced uplift of airflow and causes atmospheric waves to form both upwind and downwind of it. Airflow often splits around the obstacle, converging on the lee side. This convergence may lead to precipitation enhancement. It also provides an elevated heat and moisture source that enhances atmospheric instability. During the period of April 5-May 5, 1999, the Upper Missouri River Basin Pilot Project (UMRBPP) made intensive observations on precipitation events occurring in the Black Hills. Two moderate snowfall events were captured during the period. The resulting high temporal and spatial resolution data provides opportunities to investigate terrain effects on snowfall amount, distribution, and melting. Successful simulation of snowfall amount, distribution, and evolution using atmospheric models is important to subsequent modeling of snow melting using snow sub-models in land surface schemes. In this paper, a

  20. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus; Condra, Thomas Joseph

    2003-01-01

    submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic- Equation system (DAE). Subsequently MatLab/Simulink has......A model for a ue gas boiler covering the ue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been dened for the furnace, the convection zone (split in 2: a zone...

  1. Modeling neutron guides using Monte Carlo simulations

    CERN Document Server

    Wang, D Q; Crow, M L; Wang, X L; Lee, W T; Hubbard, C R

    2002-01-01

    Four neutron guide geometries, straight, converging, diverging and curved, were characterized using Monte Carlo ray-tracing simulations. The main areas of interest are the transmission of the guides at various neutron energies and the intrinsic time-of-flight (TOF) peak broadening. Use of a delta-function time pulse from a uniform Lambert neutron source allows one to quantitatively simulate the effect of guides' geometry on the TOF peak broadening. With a converging guide, the intensity and the beam divergence increases while the TOF peak width decreases compared with that of a straight guide. By contrast, use of a diverging guide decreases the intensity and the beam divergence, and broadens the width (in TOF) of the transmitted neutron pulse.

  2. Modeling and simulation of direct contact evaporators

    OpenAIRE

    Campos F.B.; Lage P. L. C.

    2001-01-01

    A dynamic model of a direct contact evaporator was developed and coupled to a recently developed superheated bubble model. The latter model takes into account heat and mass transfer during the bubble formation and ascension stages and is able to predict gas holdup in nonisothermal systems. The results of the coupled model, which does not have any adjustable parameter, were compared with experimental data. The transient behavior of the liquid-phase temperature and the vaporization rate under q...

  3. Modeling and Simulation Network Data Standards

    Science.gov (United States)

    2011-09-30

    12.1 Open Shortest Path First ( OSPF ) Protocol commonly used to find the shortest path between two nodes. User defined. 12.2 Border Gateway Protocol...Element Definition 12.7 Request for Comments – 1256 (RFC-1256) Router discovery protocol. 13.0 OSPF Sub-elements define OSPF parameters 13.1...resolution network analysis simulation tool OSPF open shortest path first OV operational view PEO-I Program Executive Office - Information

  4. Modeling and Simulating Transitions from Authoritarian Rule

    Science.gov (United States)

    1993-01-01

    employed by the black market or the largely untaxed services industry. This makes up, according to some estimates, 50% of the economy in Hungary, where tax...simulation again... --Comments: 193 Endnotes: !Imre Macuch,The Tragedy of Man, trans. George Szirtes (Gvomaendrx., Hungary: Corvina Kiado, 1988), 46...Madach, Imre. The Tragedy of Man, trans. George Szirtes (Gyomaendrod, Hungary: Corvina Kiado, 1988). Mandelbrot, Benoit. The Fractal Geometry of Nature

  5. Crash simulation: an immersive learning model.

    Science.gov (United States)

    Wenham, John; Bennett, Paul; Gleeson, Wendy

    2017-12-26

    Far West New South Wales Local Emergency Management Committee runs an annual crash simulation exercise to assess the operational readiness of all local emergency services to coordinate and manage a multi-casualty exercise. Since 2009, the Broken Hill University Department of Rural Health (BHUDRH) has collaborated with the committee, enabling the inclusion of health students in this exercise. It is an immersive interprofessional learning experience that evaluates teamwork, communication and safe effective clinical trauma management outside the hospital setting. After 7 years of modifying and developing the exercise, we set out to evaluate its impact on the students' learning, and sought ethics approval from the University of Sydney for this study. At the start of this year's crash simulation, students were given information sheets and consent forms with regards to the research. Once formal debriefing had finished, the researchers conducted a semi-structured focus-group interview with the health students to gain insight into their experience and their perceived value of the training. Students also completed short-answer questionnaires, and the anonymised responses were analysed. Crash simulation … evaluates teamwork, communication and safe effective clinical trauma management IMPLICATIONS: Participants identified that this multidisciplinary learning opportunity in a pre-hospital mass casualty situation was of value to them. It has taken them outside of their usually protected hospital or primary care setting and tested their critical thinking and communication skills. We recommend this learning concept to other educational institutions. Further research will assess the learning value of the simulated event to the other agencies involved. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  6. Simulated Tempering and Swapping on Mean-Field Models

    OpenAIRE

    Bhatnagar, Nayantara; Randall, Dana

    2015-01-01

    Simulated and parallel tempering are families of Markov Chain Monte Carlo algorithms where a temperature parameter is varied during the simulation to overcome bottlenecks to convergence due to multimodality. In this work we introduce and analyze the convergence for a set of new tempering distributions which we call \\textit{entropy dampening}. For asymmetric exponential distributions and the mean field Ising model with and external field simulated tempering is known to converge slowly. We show...

  7. Execution of VHDL Models Using Parallel Discrete Event Simulation Algorithms

    OpenAIRE

    Ashenden, Peter J.; Henry Detmold; McKeen, Wayne S.

    1994-01-01

    In this paper, we discuss the use of parallel discrete event simulation (PDES) algorithms for execution of hardware models written in VHDL. We survey central event queue, conservative distributed and optimistic distributed PDES algorithms, and discuss aspects of the semantics of VHDL and VHDL-92 that affect the use of these algorithms in a VHDL simulator. Next, we describe an experiment performed as part of the Vsim Project at the University of Adelaide, in which a simulation kernel using the...

  8. Semiempirical model for nanoscale device simulations

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Petersen, Dan Erik; Smidstrup, Søren

    2010-01-01

    We present a semiempirical model for calculating electron transport in atomic-scale devices. The model is an extension of the extended Hückel method with a self-consistent Hartree potential that models the effect of an external bias and corresponding charge rearrangements in the device. It is also...

  9. Modelling and simulation of superalloys. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)

    2014-07-01

    Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.

  10. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  11. Systems modeling and simulation applications for critical care medicine

    Science.gov (United States)

    2012-01-01

    Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area. PMID:22703718

  12. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  13. An Open Simulation System Model for Scientific Applications

    Science.gov (United States)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  14. MODELING OF ANIMATED SIMULATIONS BY MAXIMA PROGRAM TOOLS

    Directory of Open Access Journals (Sweden)

    Nataliya O. Bugayets

    2015-06-01

    Full Text Available The article deals with the methodical features in training of computer simulation of systems and processes using animation. In the article the importance of visibility of educational material that combines sensory and thinking sides of cognition is noted. The concept of modeling and the process of building models has been revealed. Attention is paid to the development of skills that are essential for effective learning of animated simulation by visual aids. The graphical environment tools of the computer mathematics system Maxima for animated simulation are described. The examples of creation of models animated visual aids and their use for the development of research skills are presented.

  15. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M&S) users. Performing large-scale, massively...

  16. Influence of material modeling on simulation accuracy of aluminum stampings

    Science.gov (United States)

    Deng, Z.; Hennig, R.

    2017-09-01

    The best practice in modeling material yield, strain hardening and anisotropic behavior in plastic deformation has been analyzed for an AA 6016 aluminum alloy. The investigation was based on the extensive material property testing, stamping benchmarking and AutoForm simulations. For the material property testing, both the uniaxial tensile test and the hydraulic bulge test were conducted. The elliptic punch test and the cross die test served as the benchmarks to validate the simulation results. In the simulations, the material characteristics was modeled with the combinations of four strain-hardening models and three yield criteria. By comparing the simulation results with the experimental measurements, the influence of material modeling on aluminum stamping simulation accuracy was evaluated. It was concluded from this study that the yield criterion is the key factor in controlling the simulation accuracy. The simulation with the BBC2005 yield model predicts the most accurate results. It was also shown that the combined Swift/Hockett-Sherby strain-hardening model is most suitable to describe aluminum strain hardening behavior.

  17. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  18. Evaluation of articulation simulation system using artificial maxillectomy models.

    Science.gov (United States)

    Elbashti, M E; Hattori, M; Sumita, Y I; Taniguchi, H

    2015-09-01

    Acoustic evaluation is valuable for guiding the treatment of maxillofacial defects and determining the effectiveness of rehabilitation with an obturator prosthesis. Model simulations are important in terms of pre-surgical planning and pre- and post-operative speech function. This study aimed to evaluate the acoustic characteristics of voice generated by an articulation simulation system using a vocal tract model with or without artificial maxillectomy defects. More specifically, we aimed to establish a speech simulation system for maxillectomy defect models that both surgeons and maxillofacial prosthodontists can use in guiding treatment planning. Artificially simulated maxillectomy defects were prepared according to Aramany's classification (Classes I-VI) in a three-dimensional vocal tract plaster model of a subject uttering the vowel /a/. Formant and nasalance acoustic data were analysed using Computerized Speech Lab and the Nasometer, respectively. Formants and nasalance of simulated /a/ sounds were successfully detected and analysed. Values of Formants 1 and 2 for the non-defect model were 675.43 and 976.64 Hz, respectively. Median values of Formants 1 and 2 for the defect models were 634.36 and 1026.84 Hz, respectively. Nasalance was 11% in the non-defect model, whereas median nasalance was 28% in the defect models. The results suggest that an articulation simulation system can be used to help surgeons and maxillofacial prosthodontists to plan post-surgical defects that will be facilitate maxillofacial rehabilitation. © 2015 John Wiley & Sons Ltd.

  19. An Appraisal of Coupled Climate Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K

    2004-02-24

    In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''

  20. Probabilistic Load Models for Simulating the Impact of Load Management

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    to simulate the impact of load management. The joint-normal model is superior in modeling the tail region of the hourly load distribution and implementing the change of hourly standard deviation. Whereas the AR(12) model requires much less parameter and is superior in modeling the autocorrelation......This paper analyzes a distribution system load time series through autocorrelation coefficient, power spectral density, probabilistic distribution and quantile value. Two probabilistic load models, i.e. the joint-normal model and the autoregressive model of order 12 (AR(12)), are proposed....... It is concluded that the AR(12) model is favored with limited measurement data and that the joint-normal model may provide better results with a large data set. Both models can be applied in general to model load time series and used in time-sequential simulation of distribution system planning....

  1. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Thus, constructing a subsystem Markov model and matching its parameters with the specified safety factors provides the basis for the entire system analysis. For the system simulation, temporal databases and predictive control algorithm are designed. The simulation results are analyzed to assess the reliability of the system ...

  2. Tidal simulation using regional ocean modeling systems (ROMS)

    Science.gov (United States)

    Wang, Xiaochun; Chao, Yi; Li, Zhijin; Dong, Changming; Farrara, John; McWilliams, James C.; Shum, C. K.; Wang, Yu; Matsumoto, Koji; Rosenfeld, Leslie K.; hide

    2006-01-01

    The purpose of our research is to test the capability of ROMS in simulating tides. The research also serves as a necessary exercise to implement tides in an operational ocean forecasting system. In this paper, we emphasize the validation of the model tide simulation. The characteristics and energetics of tides of the region will be reported in separate publications.

  3. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  4. Efficient, Almost Exact Simulation of the Heston Stochastic Volatility Model

    NARCIS (Netherlands)

    van Haastrecht, A.; Pelsser, A

    2010-01-01

    We deal with discretization schemes for the simulation of the Heston stochastic volatility model. These simulation methods yield a popular and flexible pricing alternative for pricing and managing a book of exotic derivatives which cannot be valued using closed-form expressions. For the Heston

  5. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    Science.gov (United States)

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  6. Simulation, modeling and dynamical analysis of multibody flows

    Science.gov (United States)

    Blackmore, Denis; Rosato, Anthony; Sen, Surajit; Wu, Hao

    2017-04-01

    Recent particulate flow research using a discrete element simulation-dynamical systems approach is described. The simulation code used is very efficient and the mathematical model is an integro-partial differential equation. Examples are presented to show the effectiveness of the approach.

  7. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model Intercomparison. Project (AMIP) simulations ..... to solve the hydrostatic primitive equations (McGregor, 1996). It contains a ..... SJ and ROPELEWSKI CF (2007) Validation of satellite rainfall products over ...

  8. Regularization modeling for large-eddy simulation of diffusion flames

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Wesseling, P.; Oñate, E.; Périaux, J.

    We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more

  9. Application of wildfire simulation models for risk analysis

    Science.gov (United States)

    Alan A. Ager; Mark A. Finney

    2009-01-01

    Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of...

  10. Simulation models for food separation by adsorption process | Aoyi ...

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  11. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    Science.gov (United States)

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  12. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  13. Modified Numerical Simulation Model of Blood Flow in Bend.

    Science.gov (United States)

    Liu, X; Zhou, X; Hao, X; Sang, X

    2015-12-01

    The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect.

  14. Wind model for offshore power simulation

    OpenAIRE

    Hervada Sala, Carme; Jarauta Bragulat, Eusebio; Gibergans Baguena, José; Buenestado Caballero, Pablo

    2015-01-01

    Offshore wind energy is an alternative energy source of increased interest. A large offshore wind farms have been planned or under construction, mainly in northern Europe. One of the points needed to be able to implement offshore projects is to characterize and model the wind for marine generation. Models are needed for the design of the most appropriate control strategies. Some attempts have been done to do so; recently these models are implemented under a wind turbine block set in Matlab/Si...

  15. Simulation platform to model, optimize and design wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind

  16. Graduate Level Modeling and Simulation Overview Course

    Science.gov (United States)

    2006-03-24

    minutes. 4. Tactical to Practical: Segment 13. Produced by the History Channel, portion of Simulators; 15 minutes. 5. The Making of Jurassic Park ... Park is available as par of the Jurassic Park DVD set. All of these videos have made a good addition to UCF’s Introduction to M&S course. 8.6 GIT course...animatronics to digital effects. The History Channel videos may be ordered from http://store.aetv.com/html/home/index.jhtml and The Making of Jurassic

  17. Carbon nanotubes as nanopipette: modelling and simulations

    Science.gov (United States)

    Hwang, Ho Jung; Byun, Ki Ryang; Kang, Jeong Won

    2004-06-01

    This paper shows that carbon nanotubes can be applied to a nanopipette. Nanospace in atomic force microscope multi-wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic forces. Since the nanospace inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications showed the possibility of nanolithography or single-metallofullerene-transistor array fabrication.

  18. Proposed best practice for projects that involve modelling and simulation.

    Science.gov (United States)

    O'Kelly, Michael; Anisimov, Vladimir; Campbell, Chris; Hamilton, Sinéad

    2017-03-01

    Modelling and simulation has been used in many ways when developing new treatments. To be useful and credible, it is generally agreed that modelling and simulation should be undertaken according to some kind of best practice. A number of authors have suggested elements required for best practice in modelling and simulation. Elements that have been suggested include the pre-specification of goals, assumptions, methods, and outputs. However, a project that involves modelling and simulation could be simple or complex and could be of relatively low or high importance to the project. It has been argued that the level of detail and the strictness of pre-specification should be allowed to vary, depending on the complexity and importance of the project. This best practice document does not prescribe how to develop a statistical model. Rather, it describes the elements required for the specification of a project and requires that the practitioner justify in the specification the omission of any of the elements and, in addition, justify the level of detail provided about each element. This document is an initiative of the Special Interest Group for modelling and simulation. The Special Interest Group for modelling and simulation is a body open to members of Statisticians in the Pharmaceutical Industry and the European Federation of Statisticians in the Pharmaceutical Industry. Examples of a very detailed specification and a less detailed specification are included as appendices. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:It is the mission of the Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory to provide a means by which to virtually duplicate products...

  20. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  1. Teaching a Model-based Climatology Using Energy Balance Simulation.

    Science.gov (United States)

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  2. Modeling and simulation of the bioprocess with recirculation

    Directory of Open Access Journals (Sweden)

    Žerajić Stanko

    2007-01-01

    Full Text Available The bioprocess models with recirculation present an integration of the model of continuous bioreaction system and the model of separation system. The reaction bioprocess is integrated with separation the biomass, formed product, no consumed substrate or inhibitory substance. In this paper the simulation model of recirculation bioprocess was developed, which may be applied for increasing the biomass productivity and product biosynthesis increasing the conversion of a substrate-to-product, mixing efficiency and secondary C02 separation. The goal of the work is optimal bioprocess configuration, which is determined by simulation optimization. The optimal hemostat state was used as referent. Step-by-step simulation method is necessary because the initial bioprocess state is changing with recirculation in each step. The simulation experiment confirms that at the recirculation ratio a. = 0.275 and the concentration factor C = 4 the maximum glucose conversion to ethanol and at a dilution rate ten times larger.

  3. Modeling and simulation of bulk gallium nitride power semiconductor devices

    Directory of Open Access Journals (Sweden)

    G. Sabui

    2016-05-01

    Full Text Available Bulk gallium nitride (GaN power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  4. Comparison of performance of simulation models for floor heating

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    only the floor construction, the differences can be directly compared. In this comparison, a two-dimensional model of a slab-on-grade floor including foundation is used as reference. The other models include a one-dimensional model and a thermal network model including the linear thermal transmittance......This paper describes the comparison of performance of simulation models for floor heating with different level of detail in the modelling process. The models are compared in an otherwise identical simulation model containing room model, walls, windows, ceiling and ventilation system. By exchanging...... of the foundation. The result can be also be found in the energy consumption of the building, since up to half the energy consumption is lost through the ground. Looking at the different implementations it is also found, that including a 1m ground volume below the floor construction under a one-dimensional model...

  5. CHARMM-GUI 10 years for biomolecular modeling and simulation.

    Science.gov (United States)

    Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S; Beaven, Andrew H; Lee, Kyu Il; Rui, Huan; Park, Soohyung; Lee, Hui Sun; Roux, Benoît; MacKerell, Alexander D; Klauda, Jeffrey B; Qi, Yifei; Im, Wonpil

    2017-06-05

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Coarse grained model for semiquantitative lipid simulations

    NARCIS (Netherlands)

    Marrink, SJ; de Vries, AH; Mark, AE

    2004-01-01

    This paper describes the parametrization of a new coarse grained (CG) model for lipid and surfactant systems. Reduction of the number of degrees of freedom together with the use of short range potentials makes it computationally very efficient. Compared to atomistic models a gain of 3-4 orders of

  7. Modeling, simulation and performance evaluation of parabolic ...

    African Journals Online (AJOL)

    Model of a parabolic trough power plant, taking into consideration the different losses associated with collection of the solar irradiance and thermal losses is presented. MATLAB software is employed to model the power plant at reference state points. The code is then used to find the different reference values which are ...

  8. Models for simulation of transient events in a wind farm

    DEFF Research Database (Denmark)

    Sørensen, P.; Hansen, A. D.; Bindner, H.

    2002-01-01

    with different tools with each other and with measurements. This present paper limits to describe the models including our reflections on which effects we expect to be essential for obtaining useful simulation results. The models comprise the substation, where the wind farm is connected, the power collection...... system in the wind farm, and electric, mechanical and aerodynamic models for the wind turbines....

  9. Sensitivity of fire behavior simulations to fuel model variations

    Science.gov (United States)

    Lucy A. Salazar

    1985-01-01

    Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...

  10. Simulating tidal turbines with mesh optimisation and RANS turbulence models

    NARCIS (Netherlands)

    Abolghasemi, A.; Piggott, M.D.; Spinneken, J.; Vire, A.; Cotter, C.J.

    2015-01-01

    A versatile numerical model for the simulation of flow past horizontal axis tidal turbines has been developed. Currently most large-scale marine models employed to study marine energy use the shallow water equations and therefore can fail to account for important turbulent physics. The model

  11. Atomic scale simulations for improved CRUD and fuel performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    A more mechanistic description of fuel performance codes can be achieved by deriving models and parameters from atomistic scale simulations rather than fitting models empirically to experimental data. The same argument applies to modeling deposition of corrosion products on fuel rods (CRUD). Here are some results from publications in 2016 carried out using the CASL allocation at LANL.

  12. Usability and Information access challenges in complex simulation models

    CSIR Research Space (South Africa)

    Naidoo, S

    2008-07-01

    Full Text Available . One of the most affected groups of software classes are simulation modeling tools. This problem is further compounded by the fact that the model developers are not necessarily the model users and as such can hardly perceive how the users will interact...

  13. Dynamic Modelling and Simulation of Citric Acid Production from ...

    African Journals Online (AJOL)

    The modelling of batch production of citric acid from corn starch hydrolysate using Aspergillus niger ATCC 9142 was carried out in this work. A validated mathematical model was developed to describe the process. Four kinetic models, Monod, Haldane, logistic and hyperbolic for simulating the growth of the Aspergillus ...

  14. Platform for Modeling and Simulation of Photovoltaic Generation Systems

    Directory of Open Access Journals (Sweden)

    Anny A. Arroyave-Berrio

    2013-11-01

    Full Text Available A platform for modeling and simulation using Matlab is presented. The platform has four models of photovoltaic panels. It identifies the parameters of each one, for a given solar panel, based on experimental data of voltage, current and environmental conditions. Also the platform generates four blocks, for using in Matlab-Simulink and Psim simulation tools. The experimental validation of the platform was made using the PV panels of the Metropolitan Technological Institute (ITM Lab.

  15. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    Science.gov (United States)

    Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2013-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  16. A dynamic styrofoam-ball model for simulating molecular motion

    Science.gov (United States)

    Mak, Se-yuen; Cheung, Derek

    2001-01-01

    In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.

  17. Modeling and Simulation for Safeguards and Nonproliferation Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, Kimberly V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette Lugue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The Modeling and Simulation for Safeguards and Nonproliferation Workshop was held December 15–18, 2014, at Oak Ridge National Laboratory. This workshop was made possible by the Next Generation Safeguards Initiative Human Capital Development (NGSI HCD) Program. The idea of the workshop was to move beyond the tried-and-true boot camp training of nonproliferation concepts to spend several days on the unique perspective of applying modeling and simulation (M&S) solutions to safeguards challenges.

  18. Responsive supply chain: modeling and simulation

    National Research Council Canada - National Science Library

    Amit Kumar Sinha; Prerna Swati; Ankush Anand

    2015-01-01

    .... is the most challenging issues even for efficient global supply chain management. Therefore, modeling of responsive supply chain is an emerging technology for sustaining any firm/industry in future competitive environment...

  19. Dynamic modeling and simulation of power transformer maintenance costs

    Directory of Open Access Journals (Sweden)

    Ristić Olga

    2016-01-01

    Full Text Available The paper presents the dynamic model of maintenance costs of the power transformer functional components. Reliability is modeled combining the exponential and Weibull's distribution. The simulation was performed with the aim of corrective maintenance and installation of the continuous monitoring system of the most critical components. Simulation Dynamic System (SDS method and VENSIM PLE software was used to simulate the cost. In this way, significant savings in maintenance costs will be achieved with a small initial investment. [Projekat Ministarstva nauke Republike Srbije, br. III 41025 i br. OI 171007

  20. Comparison of Engineering Wake Models with CFD Simulations

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.

    2014-01-01

    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row...... of turbines in an atmospheric boundary layer, idealised cases of an infinitely long row of wind turbines and infinite wind farms with three different spacings. Both models include a wake expansion factor, which is calibrated to fit the simulated wake velocities. The analysis highlights physical deficiencies...

  1. Modeling and simulation for micro DC motor based on simulink

    Science.gov (United States)

    Shen, Hanxin; Lei, Qiao; Chen, Wenxiang

    2017-09-01

    The micro DC motor has a large market demand but there is a lack of theoretical research for it. Through detailed analysis of the commutation process of micro DC motor commutator, based on micro DC motor electromagnetic torque equation and mechanical torque equation, with the help of Simulink toolkit, a triangle connection micro DC motor simulation model is established. By using the model, a sample micro DC motor are simulated, and an experimental measurements has been carried on the sample micro DC motor. It is found that the simulation results are consistent with theoretical analysis and experimental results.

  2. Simulation model for a seven-phase BLDCM drive system

    Science.gov (United States)

    Park, Sang-Hoon; Lee, Won-Cheol; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen

    2007-12-01

    BLDC motors have many advantages over brushed DC motors and induction motors. So, BLDC motors extend their application to many industrial fields. In this paper, the digital simulation and modeling of a 7-phase brushless DC motor have been presented. The 14-switch inverter and a 7-phase brushless DC motor drive system are simulated using hysteresis current controller and logic of switching pattern with the Boolean¡s function. Through some simulations, we found that our modeling and analysis of a 7-phase BLDCM with PWM inverter would be helpful for the further studies of the multi-phase BLDCM drive systems.

  3. PRODUCTION SYSTEM MODELING AND SIMULATION USING DEVS FORMALISM

    Directory of Open Access Journals (Sweden)

    Darío Amaya Hurtado

    Full Text Available This article presents the Discrete Event System Specification (DEVS formalism, in their atomic and coupled configurations; it is used for discrete event systems modeling and simulation. Initially this work describes the analysis of discrete event systems concepts and its applicability. Then a comprehensive description of the DEVS formalism structure is presented, in order to model and simulate an industrial process, taking into account changes in parameters such as process service time, each station storage systems structure and process tasks coupling. For the MatLab® simulation, the Simevents Toolbox was used for theoretical developments validation.

  4. Tuning hydrological models for ecological modeling - improving simulations of low flows critical to stream ecology

    DEFF Research Database (Denmark)

    Olsen, Martin; Troldborg, Lars; Boegh, Eva

    2008-01-01

    The consequences of using simulated discharge from a conventional hydrological model as input in stream physical habitat modelling was investigated using output from the Danish national hydrological model and a physical habitat model of three small streams. It was found that low flow simulation e...

  5. Adaptive Modeling and Real-Time Simulation

    Science.gov (United States)

    1984-01-01

    34 Artificial Inteligence , Vol. 13, pp. 27-39 (1980). Describes circumscription which is just the assumption that everything that is known to have a particular... Artificial Intelligence Truth Maintenance Planning Resolution Modeling Wcrld Models ~ .. ~2.. ASSTR AT (Coninue n evrse sieIf necesaran Identfy by...represents a marriage of (1) the procedural-network st, planning technology developed in artificial intelligence with (2) the PERT/CPM technology developed in

  6. Abdominal surgery process modeling framework for simulation using spreadsheets.

    Science.gov (United States)

    Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja

    2015-08-01

    We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Managing health care decisions and improvement through simulation modeling.

    Science.gov (United States)

    Forsberg, Helena Hvitfeldt; Aronsson, Håkan; Keller, Christina; Lindblad, Staffan

    2011-01-01

    Simulation modeling is a way to test changes in a computerized environment to give ideas for improvements before implementation. This article reviews research literature on simulation modeling as support for health care decision making. The aim is to investigate the experience and potential value of such decision support and quality of articles retrieved. A literature search was conducted, and the selection criteria yielded 59 articles derived from diverse applications and methods. Most met the stated research-quality criteria. This review identified how simulation can facilitate decision making and that it may induce learning. Furthermore, simulation offers immediate feedback about proposed changes, allows analysis of scenarios, and promotes communication on building a shared system view and understanding of how a complex system works. However, only 14 of the 59 articles reported on implementation experiences, including how decision making was supported. On the basis of these articles, we proposed steps essential for the success of simulation projects, not just in the computer, but also in clinical reality. We also presented a novel concept combining simulation modeling with the established plan-do-study-act cycle for improvement. Future scientific inquiries concerning implementation, impact, and the value for health care management are needed to realize the full potential of simulation modeling.

  8. SpaceNet: Modeling and Simulating Space Logistics

    Science.gov (United States)

    Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen

    2008-01-01

    This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.

  9. Evolutionary Development of the Simulation by Logical Modeling System (SIBYL)

    Science.gov (United States)

    Wu, Helen

    1995-01-01

    Through the evolutionary development of the Simulation by Logical Modeling System (SIBYL) we have re-engineered the expensive and complex IBM mainframe based Long-term Hardware Projection Model (LHPM) to a robust cost-effective computer based mode that is easy to use. We achieved significant cost reductions and improved productivity in preparing long-term forecasts of Space Shuttle Main Engine (SSME) hardware. The LHPM for the SSME is a stochastic simulation model that projects the hardware requirements over 10 years. SIBYL is now the primary modeling tool for developing SSME logistics proposals and Program Operating Plan (POP) for NASA and divisional marketing studies.

  10. Midsummer Drought Pattern simulated by a coupled regional climate model

    Science.gov (United States)

    Martinez-Lopez, Benjamin; Cabos Narvaez, William David; Sein, Dmitry; Quintanar, Arturo

    2017-04-01

    In this work, a regional climate model of limited area, in both atmospheric and coupled mode, is used to simulate the historical period over a domain including Mexico and Central America. In the atmospheric mode, the REMO atmosphere model is used, while in the coupled simulation, REMO is coupled to the MPI-OM ocean model. In all simulations, REMO is driven at the open boundaries by reanalysis data from ERA-40. Several numerical experiments are performed using three different spatial resolutions (100 km, 50 km, and 25 km). Taylor diagrams of some meteorological and oceanic variables are used to get a quantitative idea of model performance. Additionally, the observed patterns of the Midsummer Drought are compared with the simulated ones. Among the results, it is noted that the coupled model with the highest resolution has the best performance to simulate the observed pattern of the Midsummer Drought. Over the eastern Pacific warm pool region, the coupled simulation generate fields of sea surface temperature, wind, and sea level pressure gradients more consistent with independent observations that those simulated in the atmospheric mode. In particular, the wind strengthened observed in July is well reproduced in the coupled simulation, which lead to higher values of vertically integrated water vapour transport coming from both the eastern tropical Pacific and the Caribbean. Despite the increased atmospheric humidity available above this region, the simulated fluxes are divergent and therefore the precipitation is reduced in July, in agreement with the observations. This July divergence in the vertically integrated water vapour transport is not present in the atmospheric mode.

  11. Responsive supply chain: modeling and simulation

    Directory of Open Access Journals (Sweden)

    Amit Kumar Sinha

    2015-06-01

    Full Text Available Unexpected occurrence like natural calamity, abruptly change in customer demands, upgradation of technologies, necessity of compatible suppliers etc. is the most challenging issues even for efficient global supply chain management. Therefore, modeling of responsive supply chain is an emerging technology for sustaining any firm/industry in future competitive environment. In this paper, an attempt has been made to not only analyze the performance of efficient supply chain management but also how to improve the performance of existing supply chain with the objective of developing a modeling of responsive supply chain management. The complexity of the model is also highlighted with the help of numerical example. This paper also explores the possibility to mathematical modeling of the responsive supply chain which will be an emerging topic for researchers and practitioners. The modeling of responsive supply chain can be employed as a competitive strategy for e-commerce, green supply chain, and compatible supplier selection problem. The another salient feature of this paper is that a distinct comparative literature review of the lean, agile, efficient, and responsive supply chain management has been presented.

  12. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  13. Measurement, modeling and simulation of LOS microwave channels

    Science.gov (United States)

    Hoffmeyer, James A.; Vogler, Lewis E.

    1988-03-01

    A brief summary of prior work in the field of microwave line-of-sight (LOS) channel propagation measurements, channel models, and channel simulators is presented. The objective of these efforts is the reliable prediction of microwave radio performance on any specified link. The ideal channel simulator is one that operates at RF, operates under computer control, is dynamic, stimulates both minimum and nonminimum phase distortions, and has a dual channel capability for the comparative evaluation of space and frequency diversity radios. Significant parameters of this ideal simulator should be based on a model that was validated through propagation measurements on different representative paths. Although much progress was made, a number of issues remain. The work in the area of channel simulation, propagation measurements, and modeling is described. Together with channel measurement programs currently underway, this work should be helpful in the resolution of many of the remaining issues.

  14. Modeling and simulation of longwall scraper conveyor considering operational faults

    Directory of Open Access Journals (Sweden)

    Cenacewicz Krzysztof

    2016-06-01

    Full Text Available The paper provides a description of analytical model of a longwall scraper conveyor, including its electrical, mechanical, measurement and control actuating systems, as well as presentation of its implementation in the form of computer simulator in the Matlab®/Simulink® environment. Using this simulator eight scenarios typical of usual operational conditions of an underground scraper conveyor can be generated. Moreover, the simulator provides a possibility of modeling various operational faults and taking into consideration a measurement noise generated by transducers. The analysis of various combinations of scenarios of operation and faults with description is presented. The simulator developed may find potential application in benchmarking of diagnostic systems, testing of algorithms of operational control or can be used for supporting the modeling of real processes occurring in similar systems.

  15. A modeling and simulation approach for a pyroprocess facility design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. J.; Kim, S. H.; Park, H. S.; Park, B. S.; Yoon, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    This paper provides insights about how a discrete event system modeling and simulation can be applied to a nuclear facility operation analysis. SimEvents and Stateflow in Mathworks Inc. were used for a headend process operation modeling and simulation to demonstrate a concrete DES modeling and simulation procedure. In particular, representative DES simulation results were also presented to demonstrate the analysis function such as a queuing, a stochastic analysis and a part of a reliability, availability and maintainability (RAM) analysis. These kinds of modeling and simulation are very important because they can contribute to a facility design in terms of an optimal process, an equipment layout, an efficient operation scheduling and a generic understanding for regulators, stake holders and operators and furthermore they can contribute to estimate an operational and maintenance cost. In the near future, a DES modeling and simulation technique is expected to contribute to a design study of the Korean pyroprocess facility design before its construction as well as an operation scheduling, annual throughput estimation and operating cost estimates.

  16. Simulation Modeling of Space Missions Using the High Level Architecture

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2013-01-01

    Full Text Available This paper discusses an environment being developed to model a mission of the Space Launch System (SLS and the Multipurpose Crew Vehicle (MPCV being launched from Kennedy Space Center (KSC to the International Space Station (ISS. Several models representing different phases of the mission such as the ground operations processes, engineered systems, and range components such as failure tree, blast, gas dispersion, and debris modeling are explained. These models are built using different simulation paradigms such as continuous, system dynamics, discrete-event, and agent-based simulation modeling. The High Level Architecture (HLA is the backbone of this distributed simulation. The different design decisions and the information fusion scheme of this unique environment are explained in detail for decision-making. This can also help in the development of exploration missions beyond the International Space Station.

  17. A Network Contention Model for the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  18. Simulation Model of Bus Rapid Transit

    Directory of Open Access Journals (Sweden)

    Gunawan Fergyanto E.

    2014-03-01

    Full Text Available Bus rapid transit system is modern solution for mass transportation system. The system, in comparison to the rail-based transportation system, is significantly cheaper and requires shorter development time, but lower performance. The BRT system performance strongly depends on variables related to station design and infrastructure. A numerical model offers an effective and efficient means to evaluate the system performance. This article offers a detailed numerical model on the basis of the discrete-event approach and demonstrates its application.

  19. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to

  20. Simulation and similarity using models to understand the world

    CERN Document Server

    Weisberg, Michael

    2013-01-01

    In the 1950s, John Reber convinced many Californians that the best way to solve the state's water shortage problem was to dam up the San Francisco Bay. Against massive political pressure, Reber's opponents persuaded lawmakers that doing so would lead to disaster. They did this not by empirical measurement alone, but also through the construction of a model. Simulation and Similarity explains why this was a good strategy while simultaneously providing an account of modeling and idealization in modern scientific practice. Michael Weisberg focuses on concrete, mathematical, and computational models in his consideration of the nature of models, the practice of modeling, and nature of the relationship between models and real-world phenomena. In addition to a careful analysis of physical, computational, and mathematical models, Simulation and Similarity offers a novel account of the model/world relationship. Breaking with the dominant tradition, which favors the analysis of this relation through logical notions suc...

  1. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the ue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...... transfer, circulation in the evaporator circuit and water level uctuations in the drum....

  2. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...... transfer, circulation in the evaporator circuit and water level fluctuations in the drum....

  3. Calibration and simulation of Heston model

    Directory of Open Access Journals (Sweden)

    Mrázek Milan

    2017-05-01

    Full Text Available We calibrate Heston stochastic volatility model to real market data using several optimization techniques. We compare both global and local optimizers for different weights showing remarkable differences even for data (DAX options from two consecutive days. We provide a novel calibration procedure that incorporates the usage of approximation formula and outperforms significantly other existing calibration methods.

  4. Collisional-Radiative Modeling In Flow Simulations

    Science.gov (United States)

    2008-09-08

    model validation of shock layer radiation in air. In AIAA, pages AIAA 2008–1246, Reno, Nevada. [7] Bose, D., Wright, M., Bogdanoff, D., Raiche , G., and...220. [8] Bose, D., Wright, M. J., Bogdanoff, D. W., Raiche , G. A., and Allen, G. A. (2006b). Mod- eling and experimental assessement of cn radiation

  5. SIMULATION TOOLS FOR ELECTRICAL MACHINES MODELLING ...

    African Journals Online (AJOL)

    Dr Obe

    This paper illustrates the way MATLAB is used to model non-linearites in synchronous ... Keywords: Asynchronous machine; MATLAB scripts; engineering education; skin-effect; saturation effect; dynamic behavour. 1.0 Introduction .... algorithm of Marquardt [10] is employed. In figure 1, the estimated function becomes,.

  6. Slow update stochastic simulation algorithms for modeling complex biochemical networks.

    Science.gov (United States)

    Ghosh, Debraj; De, Rajat K

    2017-10-30

    The stochastic simulation algorithm (SSA) based modeling is a well recognized approach to predict the stochastic behavior of biological networks. The stochastic simulation of large complex biochemical networks is a challenge as it takes a large amount of time for simulation due to high update cost. In order to reduce the propensity update cost, we proposed two algorithms: slow update exact stochastic simulation algorithm (SUESSA) and slow update exact sorting stochastic simulation algorithm (SUESSSA). We applied cache-based linear search (CBLS) in these two algorithms for improving the search operation for finding reactions to be executed. Data structure used for incorporating CBLS is very simple and the cost of maintaining this during propensity update operation is very low. Hence, time taken during propensity updates, for simulating strongly coupled networks, is very fast; which leads to reduction of total simulation time. SUESSA and SUESSSA are not only restricted to elementary reactions, they support higher order reactions too. We used linear chain model and colloidal aggregation model to perform a comparative analysis of the performances of our methods with the existing algorithms. We also compared the performances of our methods with the existing ones, for large biochemical networks including B cell receptor and FcϵRI signaling networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Model-driven agent-based simulation : Procedural semantics of a MAIA model

    NARCIS (Netherlands)

    Ghorbani, A.; Dijkema, G. P. J.; Bots, P.; Alderwereld, H.; Dignum, V.

    2014-01-01

    Agent-based modelling and simulation (ABMS) is highly instrumental for studying sociotechnical systems. MAIA - Modelling Agents using Institutional Analysis - is an ABMS modelling framework that formalises social sciences knowledge. It enables handling the complexity of large complex systems, allows

  8. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  9. Balancing the manufacturing lines through modelling and simulation using Tecnomatix Plant Simulation

    OpenAIRE

    Blaga Florin; Stanăşel Iulian; Hule Voichița; Pop Alin

    2017-01-01

    A frequently problem found in case of serial production is the balancing of flow lines. This paper shows how using modelling and simulation procedures can put in evidence the bottleneck in the manufacturing flow. These situations occur to the case where the corresponding times of the technological operations differ very much. Using the program TECNOMATIX PLANT SIMULATION can be highlighted those dysfunctions that may appear during of the manufacturing system operation. It is also possible to ...

  10. Micro-simulation Modeling Approach to Applications of On-line Simulation and Data Fusion

    OpenAIRE

    Chu, Lianyu; Recker, Will

    2004-01-01

    This report summarizes research work conducted under TO4143 at the California PATH ATMS Center at the University of California, Irvine. This project has two tasks: Functionality enhancements of the PARAMICS simulation model through API programming for the on-line simulation application; On-line data fusion algorithm for a better section travel time estimation based on point detector data and probe vehicle data. In order to conduct these two tasks, we complete the following two related studies...

  11. Developing Soil Models for Dynamic Impact Simulations

    Science.gov (United States)

    Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.

    2009-01-01

    This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.

  12. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  13. Cooperative global security programs modeling & simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Briand, Daniel

    2010-05-01

    The national laboratories global security programs implement sustainable technical solutions for cooperative nonproliferation, arms control, and physical security systems worldwide. To help in the development and execution of these programs, a wide range of analytical tools are used to model, for example, synthetic tactical environments for assessing infrastructure protection initiatives and tactics, systematic approaches for prioritizing nuclear and biological threat reduction opportunities worldwide, and nuclear fuel cycle enrichment and spent fuel management for nuclear power countries. This presentation will describe how these models are used in analyses to support the Obama Administration's agenda and bilateral/multinational treaties, and ultimately, to reduce weapons of mass destruction and terrorism threats through international technical cooperation.

  14. Simulation of large-scale rule-based models

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek, William S [Los Alamos National Laboratory; Monnie, Michael I [Los Alamos National Laboratory; Colvin, Joshua [NON LANL; Faseder, James [NON LANL

    2008-01-01

    Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein-protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of STOCHSIM. DYNSTOC differs from STOCHSIM by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at .

  15. Network Modeling and Simulation Environment (NEMSE)

    Science.gov (United States)

    2012-07-01

    transmission ( frame rate and resolution) and encoding (compression) characteristics of a video stream to adapt to changing bandwidth limitations. 3.3...transitions the NEMSE Demos to 6.2 research. The NEMSE Demos were System-in-the-Loop ( STIL ) using OPNET Modeler, COPE, FPGA Physical Layer Emulator...sensor payloads were flown by SUSEX: Gimbaled IR Video – LWIR, MWIR, & SWIR, WAMI – 1-5 frame /sec, large footprint, Gimbaled EO Video – 26x zoom, AR

  16. Catalog of Wargaming and Military Simulation Models

    Science.gov (United States)

    1989-09-01

    Department, Naval War College. POINT OF CONTACT: Micromodels Manager, (401) 841-3276, AV 948-3276. PURPOSE: AAR models air combat sustainability and...reactive only via system iterations. LIMITATIONS: Airborne intercepts are not factored into assessment algorithm. No on-beard/standoff jamming (land...vectoring, and recovery ); Airbase (fighter basing, rcfueling, and rearming); and fighter (remote air patrol, target detection, flyout, arrival, and engagement

  17. Catalog of Wargaming and Military Simulation Models

    Science.gov (United States)

    1992-02-07

    produces a LOS data file and target summary file. The target summary file rec9rds possible component interferences and errors encountered in procesoing ...links, messages, and monitors. SimMaster simulacion models are constructed from these object-oriented build- blocks. SiiuM(ster’s Radiation Monitor...Required for decisions as plan is built. Time Procesoing : Plan is static. Treatment of Randomness: Plan is deterministic, using expected value

  18. Responsive supply chain: modeling and simulation

    OpenAIRE

    Amit Kumar Sinha; Prerna Swati; Ankush Anand

    2015-01-01

    Unexpected occurrence like natural calamity, abruptly change in customer demands, upgradation of technologies, necessity of compatible suppliers etc. is the most challenging issues even for efficient global supply chain management. Therefore, modeling of responsive supply chain is an emerging technology for sustaining any firm/industry in future competitive environment. In this paper, an attempt has been made to not only analyze the performance of efficient supply chain management but also ho...

  19. Wind gusts simulations using regional model

    Science.gov (United States)

    Smirnova, M.; Rubinstein, K. G.; Kurbatov, G. A.

    2016-12-01

    Wind gusts are extreme event which can cause severe damage. They can reach significant values even at medium winds. However numerical atmospheric models are designed to represent average winds, not gusts. There are several methods to estimate wind gusts. They range from simple gust factor methods to complex methods using different variables that can be resolved by regional numeric weather models. Gusts can be considered as reflection from upper layers of the atmosphere or as fluctuations of wind speed connected with turbulence. Most frequently used methods were realized using WRF-ARW model forecasts. They are compared with each other and their performance in different cases was analyzed. Wind gusts obtained using different methods were compared to measurements on meteorological station network over European part of Russia as well as with high frequency wind speed measurements in several points. Most methods underestimate wind gusts except one which overestimates in many cases. A new combined method is suggested according to the results. According to stability type of atmospheric boundary layer different methods for estimation were chosen. These lead to obtain predictability of wind gust over 22 m/s over 80% in autumn and winter season. There are still some underestimate in summer season. Some methods used to detect convective instability areas with high probability of severe wind gusts. The authors acknowledge the support of the Russian Foundation for Basic Research (Project 16-05-00822 A)

  20. Computational Modeling and Simulation of Developmental ...

    Science.gov (United States)

    Developmental and Reproductive Toxicity (DART) testing is important for assessing the potential consequences of drug and chemical exposure on human health and well-being. Complexity of pregnancy and the reproductive cycle makes DART testing challenging and costly for traditional (animal-based) methods. A compendium of in vitro data from ToxCast/Tox21 high-throughput screening (HTS) programs is available for predictive toxicology. ‘Predictive DART’ will require an integrative strategy that mobilizes HTS data into in silico models that capture the relevant embryology. This lecture addresses progress on EPA's 'virtual embryo'. The question of how tissues and organs are shaped during development is crucial for understanding (and predicting) human birth defects. While ToxCast HTS data may predict developmental toxicity with reasonable accuracy, mechanistic models are still necessary to capture the relevant biology. Subtle microscopic changes induced chemically may amplify to an adverse outcome but coarse changes may override lesion propagation in any complex adaptive system. Modeling system dynamics in a developing tissue is a multiscale problem that challenges our ability to predict toxicity from in vitro profiling data (ToxCast/Tox21). (DISCLAIMER: The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the US EPA). This was an invited seminar presentation to the National Institute for Public H

  1. SIMULATION MODEL BASED ON REGIONAL DEVELOPMENT AND VIRTUAL CHANGES

    Directory of Open Access Journals (Sweden)

    Petr Dlask

    2015-10-01

    Full Text Available This paper reports on change as an indicator that can be provide more focused goals in studies of development. The paper offers an answer to the question: How might management gain information from a simulation model and thus influence reality through pragmatic changes. We focus on where and when to influence, manage, and control basic technical-economic proposals. These proposals are mostly formed as simulation models. Unfortunately, however, they do not always provide an explanation of formation changes. A wide variety of simulation tools have become available, e.g. Simulink, Wolfram SystemModeler, VisSim, SystemBuild, STELLA, Adams, SIMSCRIPT, COMSOL Multiphysics, etc. However, there is only limited support for the construction of simulation models of a technical-economic nature. Mathematics has developed the concept of differentiation. Economics has developed the concept of marginality. Technical-economic design has yet to develop an equivalent methodology. This paper discusses an,alternative approach that uses the phenomenon of change, and provides a way from professional knowledge, which can be seen as a purer kind of information, to a more dynamic computing model (a simulation model that interprets changes as method. The validation of changes, as a result for use in managerial decision making, and condition for managerial decision making, can thus be improved.

  2. Emergency Surgical Airway Model for Procedural Skills Simulation

    Directory of Open Access Journals (Sweden)

    Jason Stopyra

    2017-07-01

    Full Text Available Audience: Medical Students, Interns, Residents, Fellows and Attending Physicians. Introduction: Most residents graduate residency without having the opportunity to perform emergency cricothyrotomy in a real failed airway scenario. Simulation training is therefore often utilized to fulfill residents’ procedural education. Animal tracheas are common models, but there is difficulty maintaining the unattached trachea in appropriate alignment and exposure. This manuscript outlines the materials and steps to reproduce a realistic, reusable cricothyrotomy simulation model and utilize it in training. Methods: Supplies from a local hardware store plus beginner woodworking skills and tools were used to build a pig trachea holding device. This simulation model has been used by the site’s Emergency Medicine residents as a tool for procedural airway training since 2011. Results: The pig trachea simulation model has become a reusable, favorable tool and permanent part of resident skills training sessions, which are held at the beginning of every academic year. A survey was administered which revealed that the model was easy to use, was a good simulation, and improved residents’ comfort level performing a cricothyrotomy. Conclusion: The inexpensive, reusable surgical airway model using a pig trachea holder and cadaveric skin is a useful, high fidelity procedural training tool. It has successfully fulfilled trainees’ need to practice this rare but potentially life-saving procedure.

  3. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures.

    Science.gov (United States)

    Kerrien, E; Yureidini, A; Dequidt, J; Duriez, C; Anxionnat, R; Cotin, S

    2017-01-01

    Endovascular interventions can benefit from interactive simulation in their training phase but also during pre-operative and intra-operative phases if simulation scenarios are based on patient data. A key feature in this context is the ability to extract, from patient images, models of blood vessels that impede neither the realism nor the performance of simulation. This paper addresses both the segmentation and reconstruction of the vasculature from 3D Rotational Angiography data, and adapted to simulation: An original tracking algorithm is proposed to segment the vessel tree while filtering points extracted at the vessel surface in the vicinity of each point on the centerline; then an automatic procedure is described to reconstruct each local unstructured point set as a skeleton-based implicit surface (blobby model). The output of successively applying both algorithms is a new model of vasculature as a tree of local implicit models. The segmentation algorithm is compared with Multiple Hypothesis Testing (MHT) algorithm (Friman et al., 2010) on patient data, showing its greater ability to track blood vessels. The reconstruction algorithm is evaluated on both synthetic and patient data and demonstrate its ability to fit points with a subvoxel precision. Various tests are also reported where our model is used to simulate catheter navigation in interventional neuroradiology. An excellent realism, and much lower computational costs are reported when compared to triangular mesh surface models. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. An electromechanical based deformable model for soft tissue simulation.

    Science.gov (United States)

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  5. Modeling and simulation of HTS cables for scattering parameter analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Chang, Seung Jin; Lee, Chun-Kwon [School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03772 (Korea, Republic of); Sohn, Songho; Park, Kijun [Korea Electric Power Corporation Research Institute, Daejeon, 34056 (Korea, Republic of); Shin, Yong-June, E-mail: yongjune@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03772 (Korea, Republic of)

    2016-11-15

    Most of modeling and simulation of high temperature superconducting (HTS) cables are inadequate for high frequency analysis since focus of the simulation’s frequency is fundamental frequency of the power grid, which does not reflect transient characteristic. However, high frequency analysis is essential process to research the HTS cables transient for protection and diagnosis of the HTS cables. Thus, this paper proposes a new approach for modeling and simulation of HTS cables to derive the scattering parameter (S-parameter), an effective high frequency analysis, for transient wave propagation characteristics in high frequency range. The parameters sweeping method is used to validate the simulation results to the measured data given by a network analyzer (NA). This paper also presents the effects of the cable-to-NA connector in order to minimize the error between the simulated and the measured data under ambient and superconductive conditions. Based on the proposed modeling and simulation technique, S-parameters of long-distance HTS cables can be accurately derived in wide range of frequency. The results of proposed modeling and simulation can yield the characteristics of the HTS cables and will contribute to analyze the HTS cables.

  6. Engine simulation models for the cycles of BE1 and report on obtained performance data: Model development with the Gas turbine Simulation Program (GSP)

    NARCIS (Netherlands)

    Visser, W.P.J.; Head, A.J.

    2013-01-01

    report describes the work conducted by TUD for WP 1.3.3 of the ESPOSA project for the development of the BE1 engine simulation model in NLR’s Gas turbine Simulation Program, GSP. Results include simulation results, validation and the GSP model project files. The model is based on simulated data from

  7. Edge detection based on Hodgkin-Huxley neuron model simulation.

    Science.gov (United States)

    Yedjour, Hayat; Meftah, Boudjelal; Lézoray, Olivier; Benyettou, Abdelkader

    2017-08-01

    In this paper, we propose a spiking neural network model for edge detection in images. The proposed model is biologically inspired by the mechanisms employed by natural vision systems, more specifically by the biologically fulfilled function of simple cells of the human primary visual cortex that are selective for orientation. Several aspects are studied in this model according to three characteristics: feedforward spiking neural structure; conductance-based model of the Hodgkin-Huxley neuron and Gabor receptive fields structure. A visualized map is generated using the firing rate of neurons representing the orientation map of the visual cortex area. We have simulated the proposed model on different images. Successful computer simulation results are obtained. For comparison, we have chosen five methods for edge detection. We finally evaluate and compare the performances of our model toward contour detection using a public dataset of natural images with associated contour ground truths. Experimental results show the ability and high performance of the proposed network model.

  8. Dynamic modeling, simulation and control of energy generation

    CERN Document Server

    Vepa, Ranjan

    2013-01-01

    This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli

  9. Modeling and simulation the computer science of illusion

    CERN Document Server

    Raczynski, Stanislaw

    2006-01-01

    Simulation is the art of using tools - physical or conceptual models, or computer hardware and software, to attempt to create the illusion of reality. The discipline has in recent years expanded to include the modelling of systems that rely on human factors and therefore possess a large proportion of uncertainty, such as social, economic or commercial systems. These new applications make the discipline of modelling and simulation a field of dynamic growth and new research. Stanislaw Raczynski outlines the considerable and promising research that is being conducted to counter the problems of

  10. Impact Simulation With an Aircraft Wing Using SPH Bird Model

    Directory of Open Access Journals (Sweden)

    Bogdan-Alexandru BELEGA

    2015-09-01

    Full Text Available The work presents an approach to simulate a model bird-strike on an aircraft wing using Lagrange mesh free method in Autodyn. The presented SPH model has been used to simulate a threedimensional impact of the bird with the aircraft wing, at different angles, at a velocity of 262,22m/ s. The bird was modeled as a fluid cylinder with two hemispherical ends representing a commonly used shape in the numerical studies of bird strike. The main objective was to identify the safe impact velocities for which the wing is not damaged.

  11. NTP system simulation and detailed nuclear engine modeling

    Science.gov (United States)

    Anghaie, Samim

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal propulsion (NTP) & detailed nuclear engine modeling; modeling and engineering simulation of nuclear thermal rocket systems; nuclear thermal rocket simulation system; INSPI-NTVR core axial flow profiles; INSPI-NTRV core axial flow profiles; specific impulse vs. chamber pressure; turbine pressure ratio vs. chamber pressure; NERVA core axial flow profiles; P&W XNR2000 core axial flow profiles; pump pressure rise vs. chamber pressure; streamline of jet-induced flow in cylindrical chamber; flow pattern of a jet-induced flow in a chamber; and radiative heat transfer models.

  12. ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation

    Science.gov (United States)

    Hughes, Ryan; Walker, David

    2009-01-01

    This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.

  13. Mixing characteristics of sludge simulant in a model anaerobic digester.

    Science.gov (United States)

    Low, Siew Cheng; Eshtiaghi, Nicky; Slatter, Paul; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam

    2016-03-01

    This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid-base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The 'cavern' shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number.

  14. Electromagnetic simulations of simple models of ferrite loaded kickers

    CERN Document Server

    Zannini, Carlo; Salvant, B; Metral, E; Rumolo, G

    2010-01-01

    The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of simplified models of ferrite loaded kickers. The simulation results have been successfully compared with some existing analytical expressions. In the transverse plane, the dipolar and quadrupolar contributions to the wake potentials have been estimated from the results of these simulations. For some cases, simulations have also been benchmarked against measurements on PS kickers. It turns out that the large simulated quadrupolar contributions of these kickers could explain both the negative total (dipolar+quadrupolar) horizontal impedance observed in bench measurements and the positive horizontal tune shift measured with the SPS beam.

  15. Simulation modeling of forest landscape disturbances: An overview

    Science.gov (United States)

    Ajith H. Perera; Brian R. Sturtevant; Lisa J. Buse

    2015-01-01

    Quantification of ecological processes and formulation of the mathematical expressions that describe those processes in computer models has been a cornerstone of landscape ecology research and its application. Consequently, the body of publications on simulation models in landscape ecology has grown rapidly in recent decades. This trend is also evident in the subfield...

  16. A fire management simulation model using stochastic arrival times

    Science.gov (United States)

    Eric L. Smith

    1987-01-01

    Fire management simulation models are used to predict the impact of changes in the fire management program on fire outcomes. As with all models, the goal is to abstract reality without seriously distorting relationships between variables of interest. One important variable of fire organization performance is the length of time it takes to get suppression units to the...

  17. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  18. Modelling and Simulating multi-echelon food systems

    NARCIS (Netherlands)

    Vorst, van der J.G.A.J.; Beulens, A.J.M.; Beek, van P.

    2000-01-01

    This paper presents a method for modelling the dynamic behaviour of food supply chains and evaluating alternative designs of the supply chain by applying discrete-event simulation. The modelling method is based on the concepts of business processes, design variables at strategic and operational

  19. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  20. Simulation Tools for Electrical Machines Modelling: Teaching and ...

    African Journals Online (AJOL)

    Simulation tools are used both for research and teaching to allow a good comprehension of the systems under study before practical implementations. This paper illustrates the way MATLAB is used to model non-linearites in synchronous machine. The machine is modeled in rotor reference frame with currents as state ...

  1. Simulating an elastic bipedal robot based on musculoskeletal modeling

    NARCIS (Netherlands)

    Bortoletto, Roberto; Sartori, Massimo; He, Fuben; Pagello, Enrico

    2012-01-01

    Many of the processes involved into the synthesis of human motion have much in common with problems found in robotics research. This paper describes the modeling and the simulation of a novel bipedal robot based on series elastic actuators [1]. The robot model takes in- spiration from the human

  2. Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing

    2007-01-01

    Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...

  3. Development of computer simulation models for pedestrian subsystem impact tests

    NARCIS (Netherlands)

    Kant, R.; Konosu, A.; Ishikawa, H.

    2000-01-01

    The European Enhanced Vehicle-safety Committee (EEVC/WG10 and WG17) proposed three component subsystem tests for cars to assess pedestrian protection. The objective of this study is to develop computer simulation models of the EEVC pedestrian subsystem tests. These models are available to develop a

  4. The behavior of adaptive bone-remodeling simulation models

    NARCIS (Netherlands)

    H.H. Weinans (Harrie); R. Huiskes (Rik); H.J. Grootenboer

    1992-01-01

    textabstractThe process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule

  5. Event-based Simulation Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jaeger, G; Khrennikov, A; Schlosshauer, M; Weihs, G

    2011-01-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified

  6. Models Robustness for Simulating Drainage and NO3-N Fluxes

    Science.gov (United States)

    Jabro, Jay; Jabro, Ann

    2013-04-01

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.

  7. Computer simulation study of water using a fluctuating charge model

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Hydrogen bonding in small water clusters is studied through computer simulation methods using a sophisticated, empirical model of interaction developed by Rick et al (S W Rick, S J Stuart and B J Berne 1994 J. Chem. Phys. 101 6141) and others. The model allows for the charges on the interacting sites to ...

  8. Arctic Ocean freshwater: How robust are model simulations?

    NARCIS (Netherlands)

    Jahn, A.; Aksenov, Y.; de Cuevas, B.A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the

  9. A naturalistic decision making model for simulated human combatants

    Energy Technology Data Exchange (ETDEWEB)

    HUNTER,KEITH O.; HART,WILLIAM E.; FORSYTHE,JAMES C.

    2000-05-01

    The authors describe a naturalistic behavioral model for the simulation of small unit combat. This model, Klein's recognition-primed decision making (RPD) model, is driven by situational awareness rather than a rational process of selecting from a set of action options. They argue that simulated combatants modeled with RPD will have more flexible and realistic responses to a broad range of small-scale combat scenarios. Furthermore, they note that the predictability of a simulation using an RPD framework can be easily controlled to provide multiple evaluations of a given combat scenario. Finally, they discuss computational issues for building an RPD-based behavior engine for fully automated combatants in small conflict scenarios, which are being investigated within Sandia's Next Generation Site Security project.

  10. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-11-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a “living document” that will be modified over the course of the execution of this work.

  11. RAM simulation model for SPH/RSV systems

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, J.C.; Primm, A.H.; Nelson, S.C.

    1995-12-31

    The US Army`s Project Manager, Crusader is sponsoring the development of technologies that apply to the Self-Propelled Howitzer (SPH), formerly the Advanced Field Artillery System (AFAS), and Resupply Vehicle (RSV), formerly the Future Armored Resupply Vehicle (FARV), weapon system. Oak Ridge National Laboratory (ORNL) is currently performing developmental work in support of the SPH/PSV Crusader system. Supportive analyses of reliability, availability, and maintainability (RAM) aspects were also performed for the SPH/RSV effort. During FY 1994 and FY 1995 OPNL conducted a feasibility study to demonstrate the application of simulation modeling for RAM analysis of the Crusader system. Following completion of the feasibility study, a full-scale RAM simulation model of the Crusader system was developed for both the SPH and PSV. This report provides documentation for the simulation model as well as instructions in the proper execution and utilization of the model for the conduct of RAM analyses.

  12. Electrostatic and magnetostatic particle simulation models in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, H.; Lee, W.W.; Cheng, C.Z.

    1978-07-01

    Electrostatic and magnetostatic particle simulation models have been developed and tested for a magnetically confined plasma near thermal equilibrium. The model makes use of a three-dimensional grid elongated in the direction of a magnetic field to simulate plasma confinement devices. Linear interpolation is used on a two-dimensional grid perpendicular to a magnetic field while quadratic or cubic interpolation is used in the direction of the magnetic field. It is found that the energy conservation is good and the fluctuation spectra for the electric and magnetic fields agree with theoretical predictions. The model presented here may be used as an alternative method to simulate a laboratory device along with the hybrid model which makes use of the combination of a two-dimensional spatial grid and an eigenfunction expansion along the main magnetic field.

  13. Smart modeling and simulation for complex systems practice and theory

    CERN Document Server

    Ren, Fenghui; Zhang, Minjie; Ito, Takayuki; Tang, Xijin

    2015-01-01

    This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.

  14. A dynamic simulation model of desertification in Egypt

    Directory of Open Access Journals (Sweden)

    M. Rasmy

    2010-12-01

    Full Text Available This paper presents the development of a system dynamic model to simulate and analyze potential future state of desertification in Egypt. The presented model enhances the MEDALUS methodology developed by European Commission. It illustrates the concept of desertification through different equations and simulation output graphs. It is supplemented with a causal loop diagram showing the feedback between different variables. For the purpose of testing and measuring the effect of different policy scenarios on desertification in Egypt, a simulation model using stock and flow diagram was designed. Multi-temporal data were used to figure out the dynamic changes in desertification sensitivity related to the dynamic nature of desert environment. The model was applied to Al Bihira governorate in western Nile Delta, Egypt, as the study area, and the results showed that the urban expansion, salinization, and not applying the policy enforcement are considered the most variables provoking the desertification.

  15. Modelling social identification and helping in evacuation simulation

    CERN Document Server

    von Sivers, I; Künzner, F; Köster, G; Drury, J; Philippides, A; Neckel, T; Bungartz, H -J

    2016-01-01

    Social scientists have criticised computer models of pedestrian streams for their treatment of psychological crowds as mere aggregations of individuals. Indeed most models for evacuation dynamics use analogies from physics where pedestrians are considered as particles. Although this ensures that the results of the simulation match important physical phenomena, such as the deceleration of the crowd with increasing density, social phenomena such as group processes are ignored. In particular, people in a crowd have social identities and share those social identities with the others in the crowd. The process of self categorisation determines norms within the crowd and influences how people will behave in evacuation situations. We formulate the application of social identity in pedestrian simulation algorithmically. The goal is to examine whether it is possible to carry over the psychological model to computer models of pedestrian motion so that simulation results correspond to observations from crowd psychology. ...

  16. Autonomous agent-based simulation of a model simulating the human air-threat assessment process

    OpenAIRE

    Ozkan, Baris Egemen

    2004-01-01

    Approved for public release; distribution is unlimited The Air Defense Laboratory (ADL) Simulation is a software program that models the way an air-defense officer thinks in the threat assessment process. The model uses multi-agent system (MAS) technology and is implemented in Java programming language. This research is a portion of Red Intent Project whose goal is to ultimately implement a model to predict the intent of any given track in the environment. For any air track in the simulati...

  17. Dynamics Simulation of Human Gait Model With Predictive Capability.

    Science.gov (United States)

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2017-12-13

    In this article, it is proposed the central nervous system controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the central nervous system (CNS). The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees of freedom. The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes Model Predictive Control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a PD controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  18. Modeling, Simulation and Analysis of Public Key Infrastructure

    Science.gov (United States)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  19. Calibration of microscopic traffic simulation models using metaheuristic algorithms

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-06-01

    Full Text Available This paper presents several metaheuristic algorithms to calibrate a microscopic traffic simulation model. The genetic algorithm (GA, Tabu Search (TS, and a combination of the GA and TS (i.e., warmed GA and warmed TS are implemented and compared. A set of traffic data collected from the I-5 Freeway, Los Angles, California, is used. Objective functions are defined to minimize the difference between simulated and field traffic data which are built based on the flow and speed. Several car-following parameters in VISSIM, which can significantly affect the simulation outputs, are selected to calibrate. A better match to the field measurements is reached with the GA, TS, and warmed GA and TS when comparing with that only using the default parameters in VISSIM. Overall, TS performs very well and can be used to calibrate parameters. Combining metaheuristic algorithms clearly performs better and therefore is highly recommended for calibrating microscopic traffic simulation models.

  20. A practical guide for operational validation of discrete simulation models

    Directory of Open Access Journals (Sweden)

    Fabiano Leal

    2011-04-01

    Full Text Available As the number of simulation experiments increases, the necessity for validation and verification of these models demands special attention on the part of the simulation practitioners. By analyzing the current scientific literature, it is observed that the operational validation description presented in many papers does not agree on the importance designated to this process and about its applied techniques, subjective or objective. With the expectation of orienting professionals, researchers and students in simulation, this article aims to elaborate a practical guide through the compilation of statistical techniques in the operational validation of discrete simulation models. Finally, the guide's applicability was evaluated by using two study objects, which represent two manufacturing cells, one from the automobile industry and the other from a Brazilian tech company. For each application, the guide identified distinct steps, due to the different aspects that characterize the analyzed distributions

  1. Application of computer simulated persons in indoor environmental modeling

    DEFF Research Database (Denmark)

    Topp, C.; Nielsen, P. V.; Sørensen, Dan Nørtoft

    2002-01-01

    Computer simulated persons are often applied when the indoor environment is modeled by computational fluid dynamics. The computer simulated persons differ in size, shape, and level of geometrical complexity, ranging from simple box or cylinder shaped heat sources to more humanlike models. Little...... effort, however, has been focused on the influence of the geometry. This work provides an investigation of geometrically different computer simulated persons with respect to both local and global airflow distribution. The results show that a simple geometry is sufficient when the global airflow...... of a ventilated enclosure is considered, as little or no influence of geometry was observed at some distance from the computer simulated person. For local flow conditions, though, a more detailed geometry should be applied in order to assess thermal and atmospheric comfort....

  2. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  3. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  4. Process Modelling Support for the Conceptual Modelling Phase of a Simulation Project

    OpenAIRE

    Heavey, Cathal; Ryan, John

    2006-01-01

    While many developments have taken place around supportingthe model coding task of simulation, there are few toolsavailable to assist in the conceptual modelling phase. Severalauthors have reported the advantages of using processmodelling tools in the early phases of a simulation project.This paper provides an overview of process modelling toolsin relation to their support for simulation, categorizing thetools into formal method and descriptive methods. A conclusionfrom this review is that no...

  5. Rejection-free stochastic simulation of BNGL-encoded models

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek, William S [Los Alamos National Laboratory; Monine, Michael I [Los Alamos National Laboratory; Colvin, Joshua [TRANSLATIONAL GENOM; Posner, Richard G [NORTHERN ARIZONA UNIV.; Von Hoff, Daniel D [TRANSLATIONAL GENOMICS RESEARCH INSTIT.

    2009-01-01

    Formal rules encoded using the BioNetGen language (BNGL) can be used to represent the system-level dynamics of molecular interactions. Rules allow one to compactly and implicitly specify the reaction network implied by a set of molecules and their interactions. Typically, the reaction network implied by a set of rules is large, which makes generation of the underlying rule-defined network expensive. Moreover, the cost of conventional simulation methods typically depends on network size. Together these factors have limited application of the rule-based modeling approach. To overcome this limitation, several methods have recently been developed for determining the reaction dynamics implied by rules while avoiding the expensive step of network generation. The cost of these 'network-free' simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is needed for the analysis of rule-based models of biochemical systems. Here, we present a software tool called RuleMonkey that implements a network-free stochastic simulation method for rule-based models. The method is rejection free, unlike other network-free methods that introduce null events (i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated), and the software is capable of simulating models encoded in BNGL, a general-purpose model-specification language. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant general-purpose simulator for rule-based models, as well as various problem-specific codes that implement network-free simulation methods. RuleMonkey enables the simulation of models defined by rule sets that imply large-scale reaction networks. It is faster than DYNSTOC for stiff problems, although it requires the use of more computer memory. RuleMonkey is freely available for non-commercial use as a stand

  6. Modeling and simulation of dust behaviors behind a moving vehicle

    Science.gov (United States)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust

  7. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    Science.gov (United States)

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  8. Mathematical and Simulation Model Development of Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    S. V. Aleksandrovsky

    2011-01-01

    Full Text Available The switched reluctance motor (SRM represents a great interest while being applied in various fields as an alternative to asynchronous motors with a short-circuit rotor. A SRM disadvantage is a nonlinearity of its characteristics. Due to this reason it is desirable to execute investigations using a developed simulation model. The simulation results (electromagnetic torque and current are in good agreement with those values studied in the literature.

  9. An Object Model for a Rocket Engine Numerical Simulator

    Science.gov (United States)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  10. The rise of games and high-performance computing for modeling and simulation

    National Research Council Canada - National Science Library

    Committee on Modeling, Simulation, and Games; Standing Committee on Technology Insight--Gauge, Evaluate, and Review; National Research Council

    2010-01-01

    "The technical and cultural boundaries between modeling, simulation, and games are increasingly blurring, providing broader access to capabilities in modeling and simulation and further credibility...

  11. Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter

    DEFF Research Database (Denmark)

    Toxvaerd, Søren

    2001-01-01

    Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...

  12. Modeling and simulation of the space platform power system

    Science.gov (United States)

    Patil, A. R.; Kim, S. J.; Cho, B. H.; Lee, F. C.

    1990-01-01

    A comprehensive computer-aided modeling and simulation technique for the space platform power system is described. Large-signal and small-signal modeling is presented for the system components. The component models have been integrated to form the complete power system model. The system model is shown to be a powerful tool in simulating the behavior of the system with variation of illumination level and load. It can be used to study the bus regulation in each mode and to observe mode changes as the solar array is subjected to transitions from sunlight to eclipse and back to sunlight. System simulations show how the bus regulation is maintained by activating the shunt switching unit, the charger, or the discharger, depending on the available illumination level. The system model is suitable for verifying hardware results of for analyzing the performance of a proposed system where hardware testing is not feasible. The EASY5 dynamic analysis program is used as the host software for the modeling and simulation.

  13. Generic aerodynamic model for simulation of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fortmann, Jens [REpower Systems AG, Osterroenfeld (Germany)

    2010-07-01

    There is an increased international interest in electrical simulation models of wind turbines for stability analysis and interconnection studies. So-called ''generic'' models, with a model structure that is publicly available, have been required in the USA by many utilities. A working group of the Western Electricity Coordinating Council (WECC) and IEEE has developed models for different types of generators, among others for wind turbines using doubly fed induction generators (DFIG) and full size converters (FSC). Those models were so far mainly used in the USA, and the models were able to represent wind turbines with respect to common US grid code requirements. Due to an increased international interest in generic models, there is a need for updating existing models in order to improve the accuracy of the models since validation requirements in many countries now require a comparison with measurements (and not to more detailed simulation models only). It can be shown that the proposed model allows for an improved representation of the aerodynamic effects during grid faults compared to existing model approaches based on cp {lambda}-tables while still requiring far less parameters. The results of simulations using the proposed generator model are compared to measurements during voltage dips of a 2MW and 6MW wind turbine. The new generic aerodynamic model will be proposed as extension for the WECC/IEEE aerodynamic models as well as basis for the draft of the IEC TC88 working group 27 (61400-27) on modelling and model validation. (orig.)

  14. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  15. Generic simplified simulation model for DFIG with active crowbar

    Energy Technology Data Exchange (ETDEWEB)

    Buendia, Francisco Jimenez [Gamesa Innovation and Technology, Sarriguren, Navarra (Spain). Technology Dept.; Barrasa Gordo, Borja [Assystem Iberia, Bilbao, Vizcaya (Spain)

    2012-07-01

    Simplified models for transient stability studies are a general requirement for transmission system operators to wind turbine (WTG) manufacturers. Those models must represent the performance of the WTGs for transient stability studies, mainly voltage dips originated by short circuits in the electrical network. Those models are implemented in simulation software as PSS/E, DigSilent or PSLF. Those software platforms allow simulation of transients in large electrical networks with thousands of busses, generators and loads. The high complexity of the grid requires that the models inserted into the grid should be simplified in order to allow the simulations being executed as fast as possible. The development of a model which is simplified enough to be integrated in those complex grids and represent the performance of WTG is a challenge. The IEC TC88 working group has developed generic models for different types of generators, among others for WTGs using doubly fed induction generators (DFIG). This paper will focus in an extension of the models for DFIG WTGs developed in IEC in order to be able to represent the simplified model of DFIG with an active crowbar, which is required to withstand voltage dips without disconnecting from the grid. This paper improves current generic model of Type 3 for DFIG adding a simplified version of the generator including crowbar functionality and a simplified version of the crowbar firing. In addition, this simplified model is validated by correlation with voltage dip field test from a real wind turbine. (orig.)

  16. [Modeling the eye based on simulated refractive surgery].

    Science.gov (United States)

    Lamard, M; Cochener, B

    2001-10-01

    To achieve three-dimensional modelizing of the eyeball (morphological and mechanical behavior) in order to simulate the impact of various refractive surgery techniques and to study the normal and pathological states of the eye. Rebuilding the ocular shell is based on different kinds of imaging (MRI, ultrasound) including information provided by video topography. Image data are treated using suitable numerized filters that allow automatic segmentations of ocular globus edges. Reconstruction is based on specific mathematical functions (B-splines). The mechanical behavior of a reconstructed model is simulated by solving equations of linearized elasticity with the finitude elements method. Numerous simulations mimmed different refractive surgical techniques and, then validated the model. In addition, simulations of various pathologies allowed us to verify certain clinical hypotheses. This work, although still experimental, demonstrates the advantages of such simulations and will allow novice physicians an easier approach to different surgical techniques and will help them understand their effect. Furthermore, it might be useful for simulation of new surgical concepts even before their in vivo evaluation.

  17. Dynamic information architecture system (DIAS) : multiple model simulation management.

    Energy Technology Data Exchange (ETDEWEB)

    Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.

    2002-05-13

    Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers

  18. MULTISCALE SPARSE APPEARANCE MODELING AND SIMULATION OF PATHOLOGICAL DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    Rami Zewail

    2017-08-01

    Full Text Available Machine learning and statistical modeling techniques has drawn much interest within the medical imaging research community. However, clinically-relevant modeling of anatomical structures continues to be a challenging task. This paper presents a novel method for multiscale sparse appearance modeling in medical images with application to simulation of pathological deformations in X-ray images of human spine. The proposed appearance model benefits from the non-linear approximation power of Contourlets and its ability to capture higher order singularities to achieve a sparse representation while preserving the accuracy of the statistical model. Independent Component Analysis is used to extract statistical independent modes of variations from the sparse Contourlet-based domain. The new model is then used to simulate clinically-relevant pathological deformations in radiographic images.

  19. Analysis of Using Resources in Business Process Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Vasilecas Olegas

    2014-12-01

    Full Text Available One of the key purposes of Business Process Model and Notation (BPMN is to support graphical representation of the process model. However, such models have a lack of support for the graphical representation of resources, whose processes are used during simulation or execution of process instance. The paper analyzes different methods and their extensions for resource modeling. Further, this article presents a selected set of resource properties that are relevant for resource modeling. The paper proposes an approach that explains how to use the selected set of resource properties for extension of process modeling using BPMN and simulation tools. They are based on BPMN, where business process instances use resources in a concurrency manner.

  20. Validating clustering of molecular dynamics simulations using polymer models

    Directory of Open Access Journals (Sweden)

    Phillips Joshua L

    2011-11-01

    Full Text Available Abstract Background Molecular dynamics (MD simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our

  1. Simulation of safety: a review of the state of the art in road safety simulation modelling.

    Science.gov (United States)

    Young, William; Sobhani, Amir; Lenné, Michael G; Sarvi, Majid

    2014-05-01

    Recent decades have seen considerable growth in computer capabilities, data collection technology and communication mediums. This growth has had considerable impact on our ability to replicate driver behaviour and understand the processes involved in failures in the traffic system. From time to time it is necessary to assess the level of development as a basis of determining how far we have come. This paper sets out to assess the state of the art in the use of computer models to simulate and assess the level of safety in existing and future traffic systems. It reviews developments in the area of road safety simulation models. In particular, it reviews computer models of driver and vehicle behaviour within a road context. It focuses on stochastic numerical models of traffic behaviour and how reliable these are in estimating levels of safety on the traffic network. Models of this type are commonly used in the assessment of traffic systems for capacity, delay and general performance. Adding safety to this assessment regime may allow more comprehensive assessment of future traffic systems. To date the models have focused primarily on vehicular traffic that is, cars and heavy vehicles. It has been shown that these models have potential in measuring the level of conflict on parts of the network and the measure of conflict correlated well with crash statistics. Interest in the prediction of crashes and crash severity is growing and new models are focusing on the continuum of general traffic conditions, conflict, severe conflict, crash and severe crashes. The paper also explores the general data types used to develop, calibrate and validate these models. Recent technological development in in-vehicle data collection, driver simulators and machine learning offers considerable potential for improving the behavioural base, rigour and application of road safety simulation models. The paper closes with some indication of areas of future development. Copyright © 2014. Published

  2. Modeling and simulation for a surf zone robot

    OpenAIRE

    Shuey, Eric; Shuey, Mika

    2012-01-01

    Outstanding Thesis Approved for public release; distribution is unlimited A kinematic and dynamic model for a three degree-of-freedom surf zone robot is developed and tested with a physical test platform and with a simulated robot in Robot Operating System. Derived from Lagrangian mechanics and relying on angular wheel velocities from encoders, the model successfully demonstrates accurate prediction of motion on simple terrain. The application of the model to future platforms is analyz...

  3. Perfect posterior simulation for mixture and hidden Marko models

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Breyer, Laird A.; Roberts, Gareth O.

    2010-01-01

    In this paper we present an application of the read-once coupling from the past algorithm to problems in Bayesian inference for latent statistical models. We describe a method for perfect simulation from the posterior distribution of the unknown mixture weights in a mixture model. Our method...... is extended to a more general mixture problem, where unknown parameters exist for the mixture components, and to a hidden Markov model....

  4. Motor simulation via coupled internal models using sequential Monte Carlo

    OpenAIRE

    Dindo H; Zambuto D.; Pezzulo G.

    2011-01-01

    We describe a generative Bayesian model for action understanding in which inverse-forward internal model pairs are considered 'hypotheses' of plausible action goals that are explored in parallel via an approximate inference mechanism based on sequential Monte Carlo methods. The reenactment of internal model pairs can be considered a form of motor simulation, which supports both perceptual prediction and action understanding at the goal level. However, this procedure is generally considered to...

  5. MODELLING AND SIMULATION OF THE POWER PLANT STEAM SUPERHEATERS

    Directory of Open Access Journals (Sweden)

    Camelia Maican

    2004-12-01

    Full Text Available In existed plants with minimum equipment to automatic control it is necessary to increase the safety control by using digital equipment for modelling and control using modern methods for simulation and control. It is necessary to improve the methods for early detection of process and equipment faults. The stabilization problem of steam superheaters is considered. For this goal, are compared three kinds of mathematical models and a suitable model for superheater is given, that highlight the transport delays.

  6. Simulation and visualization of coupled hydrodynamical, chemical and biological models

    Directory of Open Access Journals (Sweden)

    Dag Slagstad

    1997-04-01

    Full Text Available This paper briefly describes the principles of hydrodynamical and ecological modelling of marine systems and how model results are presented by use of MATLAB. Two application examples are shown. One refers to modelling and simulation of the carbon vertical transport in the Greenland Sea and the other is a study on the effect of wind pattern for the invasion success of zooplankton from the Norwegian Sea into the North Sea by use of particle tracking.

  7. Accelerating transient simulation of linear reduced order models.

    Energy Technology Data Exchange (ETDEWEB)

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  8. Simulation Models in Testing Reliability of Transport Process

    Directory of Open Access Journals (Sweden)

    Jacyna Marianna

    2016-07-01

    Full Text Available The paper touches the problem of applying simulation models to assess the reliability of services in transport networks. Investigation of the transport processes in terms of their reliability is a complex decision-making task. The paper describes a method for assessing the reliability of transport process on the base of the criterion of minimizing the normalized lost time of vehicles. The time is wasted in a result of conflict situations occurring in the transport network during the transport process. The study includes stochastic distributions of system input. It enables studying the quality parameters of the transport network equipment, including service providers working under different workload and all kinds of disturbances. The method uses simulation models. Simulation studies were performed with Java Modelling Tools.

  9. Mathematical Modeling and Simulation of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    T.A.T. Mohd

    2015-06-01

    Full Text Available As electric vehicles become promising alternatives for sustainable and cleaner energy emissions in transportation, the modeling and simulation of electric vehicles has attracted increasing attention from researchers. This paper presents a simulation model of a full electric vehicle on the Matlab-Simulink platform to examine power flow during motoring and regeneration. The drive train components consist of a motor, a battery, a motor controller and a battery controller; modeled according to their mathematical equations. All simulation results are plotted and discussed. The torque and speed conditions during motoring and regeneration were used to determine the energy flow, and performance of the drive. This study forms the foundation for further research and development.

  10. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    Science.gov (United States)

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future

  11. Numerical simulations of altocumulus with a cloud resolving model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Krueger, S.K. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  12. A Mesoscopic Simulation Model for Airport Curbside Management

    Directory of Open Access Journals (Sweden)

    Tyler M. Harris

    2017-01-01

    Full Text Available Airport curbside congestion is a growing problem as airport passenger traffic continues to increase. Many airports accommodate the increase in passenger traffic by relying on policy and design measures to alleviate congestion and optimize operations. This paper presents a mesoscopic simulation model to assess the effectiveness of such policies. The mesoscopic simulation model combines elements of both microscopic simulation which provides a high level of detail but requires large amounts of data and macroscopic simulation which requires very little data but provides few performance measures. The model is used to simulate scenarios such as double parking, alternative parking space allocation, increased passenger demand, and enforced dwell times at Pearson International Airport in Toronto, Canada. Scenario analysis shows that adjusting model inputs provides reasonable results, demonstrating the value in using this approach to evaluate curbside management policies. The results show that double parking reduces the utilization ratio and the level of service of the outer curbside but cuts down the passenger and vehicle waiting time. Inclement weather conditions reduce the utilization ratio of the inner curbside and the supply of commercial vehicles since it takes them longer to return to the airport. Finally, reducing the allowable parking time at the curbside decreases the average dwell time of private vehicles from 89 seconds to 75 seconds but increases the number of circulating vehicles by 30%.

  13. Modelling and simulation of information systems on computer: methodological advantages.

    Science.gov (United States)

    Huet, B; Martin, J

    1980-01-01

    Modelling and simulation of information systems by the means of miniatures on computer aim at two general objectives: (a) as an aid to design and realization of information systems; and (b) a tool to improve the dialogue between the designer and the users. An operational information system has two components bound by a dynamic relationship, an information system and a behavioural system. Thanks to the behaviour system, modelling and simulation allow the designer to integrate into the projects a large proportion of the system's implicit specification. The advantages of modelling to the information system relate to: (a) The conceptual phase: initial objectives are compared with the results of simulation and sometimes modified. (b) The external specifications: simulation is particularly useful for personalising man-machine relationships in each application. (c) The internal specifications: if the miniatures are built on the concept of process, the global design and the software are tested and also the simulation refines the configuration and directs the choice of hardware. (d) The implementation: stimulation reduces costs, time and allows testing. Progress in modelling techniques will undoubtedly lead to better information systems.

  14. Contribution to the Development of Simulation Model of Ship Turbine

    Directory of Open Access Journals (Sweden)

    Božić Ratko

    2015-01-01

    Full Text Available Simulation modelling, performed by System Dynamics Modelling Approach and intensive use of computers, is one of the most convenient and most successful scientific methods of analysis of performance dynamics of nonlinear and very complex natural technical and organizational systems [1]. The purpose of this work is to demonstrate the successful application of system dynamics simulation modelling at analyzing performance dynamics of a complex system of ship’s propulsion system. Gas turbine is a complex non-linear system, which needs to be systematically investigated as a unit consisting of a number of subsystems and elements, which are linked by cause-effect (UPV feedback loops (KPD, both within the propulsion system and with the relevant surrounding. In this paper the authors will present an efficient application of scientific methods for the study of complex dynamic systems called qualitative and quantitative simulation System Dynamics Methodology. Gas turbine will be presented by a set of non-linear differential equations, after which mental-verbal structural models and flowcharts in System dynamics symbols will be produced, and the performance dynamics in load condition will be simulated in POWERSIM simulation language.

  15. Modified network simulation model with token method of bus access

    Directory of Open Access Journals (Sweden)

    L.V. Stribulevich

    2013-08-01

    Full Text Available Purpose. To study the characteristics of the local network with the marker method of access to the bus its modified simulation model was developed. Methodology. Defining characteristics of the network is carried out on the developed simulation model, which is based on the state diagram-layer network station with the mechanism of processing priorities, both in steady state and in the performance of control procedures: the initiation of a logical ring, the entrance and exit of the station network with a logical ring. Findings. A simulation model, on the basis of which can be obtained the dependencies of the application the maximum waiting time in the queue for different classes of access, and the reaction time usable bandwidth on the data rate, the number of network stations, the generation rate applications, the number of frames transmitted per token holding time, frame length was developed. Originality. The technique of network simulation reflecting its work in the steady condition and during the control procedures, the mechanism of priority ranking and handling was proposed. Practical value. Defining network characteristics in the real-time systems on railway transport based on the developed simulation model.

  16. Equation-oriented specification of neural models for simulations

    Directory of Open Access Journals (Sweden)

    Marcel eStimberg

    2014-02-01

    Full Text Available Simulating biological neuronal networks is a core method of research in computational neuroscience. A full specification of such a network model includes a description of the dynamics and state changes of neurons and synapses, as well as the synaptic connectivity patterns and the initial values of all parameters. A standard approach in neuronal modelling software is to build models based on a library of pre-defined models and mechanisms; if a model component does not yet exist, it has to be defined in a special-purpose or general low-level language and potentially be compiled and linked with the simulator. Here we propose an alternative approach that allows flexible definition of models by writing textual descriptions based on mathematical notation. We demonstrate that this approach allows the definition of a wide range of models with minimal syntax. Furthermore, such explicit model descriptions allow the generation of executable code for various target languages and devices, since the description is not tied to an implementation. Finally, this approach also has advantages for readability and reproducibility, because the model description is fully explicit, and because it can be automatically parsed and transformed into formatted descriptions.The presented approach has been implemented in the Brian2 simulator.

  17. Modelling and simulation of vehicle electric power system

    Science.gov (United States)

    Lee, Wootaik; Choi, Daeho; Sunwoo, Myoungho

    In recent years, the demand for an increased number of vehicle functions by legislation and customer expectations has introduced many electronic control systems and electrical driven units in vehicles and has resulted in steadily increasing electrical loads. Moreover, due to heavy urban traffic conditions, the idling time fraction has increased and reduced the power generation of the alternator. In the vehicle design phase, in order to avoid an over- or under-design problem of the electric power system, it is necessary to understand both the characteristics of each component of the vehicle electric power system and the interactions between the components. For this purpose, model and simulation algorithms of the vehicle power system are required. In this study, the vehicle electric power system, which is mainly composed of a generator and battery, is modelled and evaluated. Among the various proposed battery models, two types are compared in terms of accuracy and ease-of-use. These two models are distinguished by the consideration of inrush current at the beginning of charging and discharging. In addition, a variable terminal voltage alternator model (VTVA model) is proposed, and is compared with a constant terminal voltage alternator model (CTVA model). Based on the major component model, a simulation algorithm is developed and used to perform a case study. Compared with real data from the vehicle, the simulation results of energy generation and consumption are comparable.

  18. The simulation model of teleradiology in telemedicine project.

    Science.gov (United States)

    Goodini, Azadeh; Torabi, Mashallah; Goodarzi, Maryam; Safdari, Reza; Darayi, Mohamad; Tavassoli, Mahdieh; Shabani, MohammadMehdi

    2015-01-01

    Telemedicine projects are aimed at offering medical services to people who do not have access to direct diagnosis and treatment services. As a powerful tool for analyzing the performance of complex systems and taking probable events into consideration, systemic simulation can facilitate the analysis of implementation processes of telemedicine projects in real-life-like situations. The aim of the present study was to propose a model for planning resource capacities and allocating human and operational resources to promote the efficiency of telemedicine project by investigating the process of teleradiology. In this article, after verification of the conceptual model by the experts of this field, the computerized simulation model is developed using simulation software Arena. After specifying the required data, different improvement scenarios are run using the computerized model by feeding the data into the software and validation and verification of the model. Fixing input data of the system such as the number of patients, their waiting time, and process time of each function, for example, magnetic resonance imaging or scan, has been compared with the current radiology process. Implementing the teleradiology model resulted in reduction of time of patients in the system (current: 1.84 ± 0.00, tele: 0.81 ± 0.00). Furthermore, through this process, they can allocate the lower resources to perform better functions of staff. The use of computerized simulation is essential for designing processes, optimal allocation of resources, planning, and making appropriate decisions for providing timely services to patients.

  19. USING COPULAS TO MODEL DEPENDENCE IN SIMULATION RISK ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Dana L. Kelly

    2007-11-01

    Typical engineering systems in applications with high failure consequences such as nuclear reactor plants often employ redundancy and diversity of equipment in an effort to lower the probability of failure and therefore risk. However, it has long been recognized that dependencies exist in these redundant and diverse systems. Some dependencies, such as common sources of electrical power, are typically captured in the logic structure of the risk model. Others, usually referred to as intercomponent dependencies, are treated implicitly by introducing one or more statistical parameters into the model. Such common-cause failure models have limitations in a simulation environment. In addition, substantial subjectivity is associated with parameter estimation for these models. This paper describes an approach in which system performance is simulated by drawing samples from the joint distributions of dependent variables. The approach relies on the notion of a copula distribution, a notion which has been employed by the actuarial community for ten years or more, but which has seen only limited application in technological risk assessment. The paper also illustrates how equipment failure data can be used in a Bayesian framework to estimate the parameter values in the copula model. This approach avoids much of the subjectivity required to estimate parameters in traditional common-cause failure models. Simulation examples are presented for failures in time. The open-source software package R is used to perform the simulations. The open-source software package WinBUGS is used to perform the Bayesian inference via Markov chain Monte Carlo sampling.

  20. Evaluating Voellmy resistance parameters for debris-flow simulation models

    Science.gov (United States)

    Schraml, Klaus; McArdell, Brian; Graf, Christoph; Thomschitz, Barbara; Kaitna, Roland

    2014-05-01

    Gravitationally-driven processes such as debris flows constitute a major risk in alpine regions. In order to avoid damages on infrastructure and settlements, the delineation of hazardous areas is required. For this, numerical simulation tools are often applied for use in engineering hazard assessment. For model calibration, information on past events provides a basis to estimate or constrain the essential input parameters. In this study we used two numerical simulation models for evaluating model friction parameters to best-fit runout lengths and deposition patterns of observed past debris-flow events on two alpine fans in Austria with flow deposit volumes of 10,000 m³ and 25,000 m³, respectively. The RAMMS-DF (RApid Mass MovementS - Debris Flow) runout model is based on a Voellmy-type relation to describe the flow friction, and the software DAN3D (Dynamic Analysis of Landslides) allows selecting different rheologies, including a Voellmy-type friction relation. All calculations were based on the same digital elevation model with a 1 m resolution and the same initial conditions. Our results show that both models are able to satisfactorily replicate observed deposition patterns. The best-fit parameter sets of the Voellmy-Coulomb friction coefficient and turbulent coefficient for both study sites and both simulation models were in the range of 0.07-0.11 and 200-400, respectively. In case the deposition area is forested, the Coulomb friction parameter was considerably increased by a factor of around 3 to account for additional surface roughness. A sensitivity analysis shows a slightly higher sensitivity of model parameters for the DAN3D model than for the RAMMS-DF model. This study contributes to the evaluation of realistic model parameters for the simulation of small alpine debris flows on forested and non-forested fans.

  1. Simulation of Evapotranspiration using an Optimality-based Ecohydrological Model

    Science.gov (United States)

    Chen, Lajiao

    2014-05-01

    Accurate estimation of evapotranspiration (ET) is essential in understanding the effect of climate change and human activities on ecosystem and water resource. As an important tool for ET estimation, most of the traditional hydrological or ecohydrological models treat ET as a physical process, controlled by energy, vapor, pressure and turbulence. It is at times questionable as transpiration, major component of ET, is biological activity closely linked to photosynthesis by stomatal conductivity. Optimality-based ecohydrological models consider the mutual interaction of ET and photosynthesis based on optimality principle. However, as a rising generation of ecohydrological models, so far there are only a few applications of the optimality-based model in different ecosystems. The ability and reliability of this kind of models for ecohydrological modeling need to be validated in more ecosystems. The objective of this study is to validate the optimality hypothesis for water-limited ecosystem. To achieve this, the study applied an optimality-based model Vegetation Optimality Model (VOM) to simulate ET and its components based on optimality principle. The model is applied in a semiarid watershed. The simulated ET and soil waster were compared with long term measurement data in Kendall and Lcukyhill sites in the watershed. The result showed that the temporal variations of simulated ET and soil water are in good agreement with observed data. Temporal dynamic of soil evaporation and transpiration and their response to precipitation events can be well captured with the model. This could come to a conclusion the optimality-based ecohydrological model could be a potential approach to simulate ET.

  2. Arctic Ocean Freshwater: How Robust are Model Simulations

    Science.gov (United States)

    Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; hide

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  3. Simulink and CATIA for Modelling, Simulation and Design

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    on fluid power and mechatronics based on tap water hydraulic proportional valves and servo actuators for motion control and power transmission. The results include engineering design and test of simulation models compared with two mechatronic test rig facilities powered by environmental friendly water......The paper presents a proposed IT-Tools concept for modelling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going research projects...

  4. Computational electronics semiclassical and quantum device modeling and simulation

    CERN Document Server

    Vasileska, Dragica; Klimeck, Gerhard

    2010-01-01

    Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of

  5. Stochastic models to simulate paratuberculosis in dairy herds

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Weber, M.F.; Kudahl, Anne Margrethe Braad

    2011-01-01

    Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... in the design of certification, surveillance, and control strategies for paratuberculosis in cattle herds. A detailed comparison is made between the Dutch JohneSSim and the Danish PTB-Simherd, using the same context of a set of control strategies in a typical Dutch/Danish herd. The conclusion is that while...

  6. A Software Development Simulation Model of a Spiral Process

    Science.gov (United States)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    There is a need for simulation models of software development processes other than the waterfall because processes such as spiral development are becoming more and more popular. The use of a spiral process can make the inherently difficult job of cost and schedule estimation even more challenging due to its evolutionary nature, but this allows for a more flexible process that can better meet customers' needs. This paper will present a discrete event simulation model of spiral development that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process.

  7. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation

    DEFF Research Database (Denmark)

    Mangado Lopez, Nerea; Ceresa, Mario; Duchateau, Nicolas

    2016-01-01

    Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient's anatomy while including an external device geometry remains challenging...... constitutive parameters to all components of the finite element model. This model can then be used to study in silico the effects of the electrical stimulation of the cochlear implant. Results are shown on a total of 25 models of patients. In all cases, a final mesh suitable for finite element simulations...

  8. A transient model to simulate HTPEM fuel cell impedance spectra

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-01-01

    diffusion of cathode gas species in gas diffusion layers and catalyst layer, transport of protons in the membrane and the catalyst layers, and double layer capacitive effects in the catalyst layers. The model has been fitted simultaneously to a polarization curve and to an impedance spectrum recorded......This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers...

  9. Role of modeling and simulation in pediatric investigation plans.

    Science.gov (United States)

    Manolis, Efthymios; Osman, Tariq Eldirdiry; Herold, Ralf; Koenig, Franz; Tomasi, Paolo; Vamvakas, Spiros; Saint Raymond, Agnes

    2011-03-01

    Ethical and practical constraints encourage the optimal use of resources in pediatric drug development. Modeling and simulation has emerged as a promising methodology acknowledged by industry, academia, and regulators. We previously proposed a paradigm in pediatric drug development, whereby modeling and simulation is used as a decision tool, for study optimization and/or as a data analysis tool. Three and a half years since the Paediatric Regulation came into force in 2007, the European Medicines Agency has gained substantial experience in the use of modeling and simulation in pediatric drug development. In this review, we present examples on how the proposed paradigm applies in real case scenarios of planned pharmaceutical developments. We also report the results of a pediatric database search to further 'validate' the paradigm. There were 47 of 210 positive pediatric investigation plan (PIP) opinions that made reference to modeling and simulation (data included all positive opinions issued up to January 2010). This reflects a major shift in regulatory thinking. The ratio of PIPs with modeling and simulation rose to two in five based on the summary reports. Population pharmacokinetic (POP-PK) and pharmacodynamics (POP-PD) and physiologically based pharmacokinetic models are widely used by industry and endorsed or even imposed by regulators as a way to circumvent some difficulties in developing medicinal products in children. The knowledge of the effects of age and size on PK is improving, and models are widely employed to make optimal use of this knowledge but less is known about the effects of size and maturation on PD, disease progression, and safety. Extrapolation of efficacy from different age groups is often used in pediatric medicinal development as another means to alleviate the burden of clinical trials in children, and this can be aided by modeling and simulation to supplement clinical data. The regulatory assessment is finally judged on clinical grounds

  10. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Directory of Open Access Journals (Sweden)

    Jeon Soohong

    2014-12-01

    Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  11. Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits

    Directory of Open Access Journals (Sweden)

    Leandro eWatanabe

    2014-11-01

    Full Text Available This paper describes a hierarchical stochastic simulation algorithm which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method.

  12. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Science.gov (United States)

    Jeon, Soohong; Kim, Daehwan; Hong, Chinsuk; Jeong, Weuibong

    2014-12-01

    This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  13. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Directory of Open Access Journals (Sweden)

    Soohong Jeon

    2014-12-01

    Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive ele- ments, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  14. a Discrete Mathematical Model to Simulate Malware Spreading

    Science.gov (United States)

    Del Rey, A. Martin; Sánchez, G. Rodriguez

    2012-10-01

    With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.

  15. Assessing surface solar radiation fluxes in CMIP5 model simulations

    Science.gov (United States)

    Loew, Alexander; Itkin, Mikhail; Andersson, Axel; Trentmann, Jörg; Fennig, Karsten; Schröder, Marc

    2014-05-01

    Sophisticated Earth System models (ESM) are an essential research tool for better understanding the global climate system and its interactions. They are indispensable tools for providing projections about potential evolutions of the Earth climate in the future. Given the complexity of these deterministic models, it is essential to have a solid knowledge of the uncertainties of the model results in difference aspects of the models. The present paper presents results from a comprehensive study analyzing the shortwave surface radiation fluxes. State-of-the-art globals datasets of surface radiation components (surface solar radiation flux, surface albedo, surface net radiation flux) are used to benchmark results from the recent Coupled Model Intercomparison Project (CMIP5) in a standardized manner at the regional to global scale. Different skill score metrices are compared. All CMIP5 models are ranked according to their performance skill scores. The uncertainties from current observational records compared to uncertainties in climate model simulations are also analyzed. The results indicate that there are still large uncertainties (inconsistencies) among the different existing global surface radiation dataset which lead to rather different (relative) model rankings. In other words, the rank of a model is not only determined by the skill of the model itself, but also largely by the choice of a benchmarking (reference) dataset. As the differences resulting from the choice of different observational datasets are larger than between different models, progress in surface radiation flux simulations of climate models might depend on further progress in achieving consistent observations of surface radiation fluxes from space.

  16. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Biocellion: accelerating computer simulation of multicellular biological system models

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  18. In silico simulations of experimental protocols for cardiac modeling.

    Science.gov (United States)

    Carro, Jesus; Rodriguez, Jose Felix; Pueyo, Esther

    2014-01-01

    A mathematical model of the AP involves the sum of different transmembrane ionic currents and the balance of intracellular ionic concentrations. To each ionic current corresponds an equation involving several effects. There are a number of model parameters that must be identified using specific experimental protocols in which the effects are considered as independent. However, when the model complexity grows, the interaction between effects becomes increasingly important. Therefore, model parameters identified considering the different effects as independent might be misleading. In this work, a novel methodology consisting in performing in silico simulations of the experimental protocol and then comparing experimental and simulated outcomes is proposed for parameter model identification and validation. The potential of the methodology is demonstrated by validating voltage-dependent L-type calcium current (ICaL) inactivation in recently proposed human ventricular AP models with different formulations. Our results show large differences between ICaL inactivation as calculated from the model equation and ICaL inactivation from the in silico simulations due to the interaction between effects and/or to the experimental protocol. Our results suggest that, when proposing any new model formulation, consistency between such formulation and the corresponding experimental data that is aimed at being reproduced needs to be first verified considering all involved factors.

  19. Simulation Models of Human Decision-Making Processes

    Directory of Open Access Journals (Sweden)

    Nina RIZUN

    2014-10-01

    Full Text Available The main purpose of the paper is presentation of the new concept of human decision-making process modeling via using the analogy with Automatic Control Theory. From the author's point of view this concept allows to develop and improve the theory of decision-making in terms of the study and classification of specificity of the human intellectual processes in different conditions. It was proved that the main distinguishing feature between the Heuristic / Intuitive and Rational Decision-Making Models is the presence of so-called phenomenon of "enrichment" of the input information with human propensity, hobbies, tendencies, expectations, axioms and judgments, presumptions or bias and their justification. In order to obtain additional knowledge about the basic intellectual processes as well as the possibility of modeling the decision results in various parameters characterizing the decision-maker, the complex of the simulation models was developed. These models are based on the assumptions that:  basic intellectual processes of the Rational Decision-Making Model can be adequately simulated and identified by the transient processes of the proportional-integral-derivative controller; basic intellectual processes of the Bounded Rationality and Intuitive Models can be adequately simulated and identified by the transient processes of the nonlinear elements.The taxonomy of the most typical automatic control theory elements and their compliance with certain decision-making models with a point of view of decision-making process specificity and decision-maker behavior during a certain time of professional activity was obtained.

  20. The medical simulation markup language - simplifying the biomechanical modeling workflow.

    Science.gov (United States)

    Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie

    2014-01-01

    Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.

  1. Simulation modelling: educational development roles for learning technologists

    Directory of Open Access Journals (Sweden)

    David Riley

    2002-12-01

    Full Text Available Simulation modelling was in the mainstream of CAL development in the 1980s when the late David Squires introduced this author to the Dynamic Modelling System. Since those early days, it seems that simulation modelling has drifted into a learning technology backwater to become a member of Laurillard's underutilized, 'adaptive and productive' media. Referring to her Conversational Framework, Laurillard constructs a pedagogic case for modelling as a productive student activity but provides few references to current practice and available resources. This paper seeks to complement her account by highlighting the pioneering initiatives of the Computers in the Curriculum Project and more recent developments in systems modelling within geographic and business education. The latter include improvements to system dynamics modelling programs such as STELLA®, the publication of introductory textbooks, and the emergence of online resources. The paper indicates several ways in which modelling activities may be approached and identifies some educational development roles for learning technologists. The paper concludes by advocating simulation modelling as an exemplary use of learning technologies - one that realizes their creative-transformative potential.

  2. Optimization Model for Web Based Multimodal Interactive Simulations.

    Science.gov (United States)

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  3. Neural system modeling and simulation using Hybrid Functional Petri Net.

    Science.gov (United States)

    Tang, Yin; Wang, Fei

    2012-02-01

    The Petri net formalism has been proved to be powerful in biological modeling. It not only boasts of a most intuitive graphical presentation but also combines the methods of classical systems biology with the discrete modeling technique. Hybrid Functional Petri Net (HFPN) was proposed specially for biological system modeling. An array of well-constructed biological models using HFPN yielded very interesting results. In this paper, we propose a method to represent neural system behavior, where biochemistry and electrical chemistry are both included using the Petri net formalism. We built a model for the adrenergic system using HFPN and employed quantitative analysis. Our simulation results match the biological data well, showing that the model is very effective. Predictions made on our model further manifest the modeling power of HFPN and improve the understanding of the adrenergic system. The file of our model and more results with their analysis are available in our supplementary material.

  4. cellGPU: Massively parallel simulations of dynamic vertex models

    Science.gov (United States)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  5. Extension of a human visual system model for display simulation

    Science.gov (United States)

    Marchessoux, Cédric; Rombaut, Alexis; Kimpe, Tom; Vermeulen, Brecht; Demeester, Piet

    2008-02-01

    In the context of medical display validation, a simulation chain has been developed to facilitate display design and image quality validation. One important part is the human visual observer model to quantify the quality perception of the simulated images. Since several years, multiple research groups are modeling the various aspects of human perception to integrate them in a complete Human Visual System (HVS) and developing visible image difference metrics. In our framework, the JNDmetrix is used. It reflects the human subjective assessment of images or video fidelity. Nevertheless, the system is limited and not suitable for our accurate simulations. There is a limitation to RGB 8 bits integer images and the model takes into account display parameters like gamma, black offset, ambient light... It needs to be extended. The solutions proposed to extend the HVS model are: precision enhancement to overcome the 8 bit limit, color space conversion between XYZ and RGB and adaptation to the display parameters. The preprocessing does not introduce any kind of perceived distortion caused for example by precision enhancement. With this extension the model is used in a daily basis in the display simulation chain.

  6. Regression models for public health surveillance data: a simulation study.

    Science.gov (United States)

    Kim, H; Kriebel, D

    2009-11-01

    Poisson regression is now widely used in epidemiology, but researchers do not always evaluate the potential for bias in this method when the data are overdispersed. This study used simulated data to evaluate sources of overdispersion in public health surveillance data and compare alternative statistical models for analysing such data. If count data are overdispersed, Poisson regression will not correctly estimate the variance. A model called negative binomial 2 (NB2) can correct for overdispersion, and may be preferred for analysis of count data. This paper compared the performance of Poisson and NB2 regression with simulated overdispersed injury surveillance data. Monte Carlo simulation was used to assess the utility of the NB2 regression model as an alternative to Poisson regression for data which had several different sources of overdispersion. Simulated injury surveillance datasets were created in which an important predictor variable was omitted, as well as with an incorrect offset (denominator). The simulations evaluated the ability of Poisson regression and NB2 to correctly estimate the true determinants of injury and their confidence intervals. The NB2 model was effective in reducing overdispersion, but it could not reduce bias in point estimates which resulted from omitting a covariate which was a confounder, nor could it reduce bias from using an incorrect offset. One advantage of NB2 over Poisson for overdispersed data was that the confidence interval for a covariate was considerably wider with the former, providing an indication that the Poisson model did not fit well. When overdispersion is detected in a Poisson regression model, the NB2 model should be fit as an alternative. If there is no longer overdispersion, then the NB2 results may be preferred. However, it is important to remember that NB2 cannot correct for bias from omitted covariates or from using an incorrect offset.

  7. A Lookahead Behavior Model for Multi-Agent Hybrid Simulation

    Directory of Open Access Journals (Sweden)

    Mei Yang

    2017-10-01

    Full Text Available In the military field, multi-agent simulation (MAS plays an important role in studying wars statistically. For a military simulation system, which involves large-scale entities and generates a very large number of interactions during the runtime, the issue of how to improve the running efficiency is of great concern for researchers. Current solutions mainly use hybrid simulation to gain fewer updates and synchronizations, where some important continuous models are maintained implicitly to keep the system dynamics, and partial resynchronization (PR is chosen as the preferable state update mechanism. However, problems, such as resynchronization interval selection and cyclic dependency, remain unsolved in PR, which easily lead to low update efficiency and infinite looping of the state update process. To address these problems, this paper proposes a lookahead behavior model (LBM to implement a PR-based hybrid simulation. In LBM, a minimal safe time window is used to predict the interactions between implicit models, upon which the resynchronization interval can be efficiently determined. Moreover, the LBM gives an estimated state value in the lookahead process so as to break the state-dependent cycle. The simulation results show that, compared with traditional mechanisms, LBM requires fewer updates and synchronizations.

  8. Noise Simulations of the High-Lift Common Research Model

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.; Vatsa, Veer N.; O'Connell, Matthew D.; Duda, Benjamin; Fares, Ehab

    2017-01-01

    The PowerFLOW(TradeMark) code has been used to perform numerical simulations of the high-lift version of the Common Research Model (HL-CRM) that will be used for experimental testing of airframe noise. Time-averaged surface pressure results from PowerFLOW(TradeMark) are found to be in reasonable agreement with those from steady-state computations using FUN3D. Surface pressure fluctuations are highest around the slat break and nacelle/pylon region, and synthetic array beamforming results also indicate that this region is the dominant noise source on the model. The gap between the slat and pylon on the HL-CRM is not realistic for modern aircraft, and most nacelles include a chine that is absent in the baseline model. To account for those effects, additional simulations were completed with a chine and with the slat extended into the pylon. The case with the chine was nearly identical to the baseline, and the slat extension resulted in higher surface pressure fluctuations but slightly reduced radiated noise. The full-span slat geometry without the nacelle/pylon was also simulated and found to be around 10 dB quieter than the baseline over almost the entire frequency range. The current simulations are still considered preliminary as changes in the radiated acoustics are still being observed with grid refinement, and additional simulations with finer grids are planned.

  9. Dynamic simulation of sustainable farm development scenarios using cognitive modeling

    Directory of Open Access Journals (Sweden)

    Tuzhyk Kateryna

    2017-03-01

    Full Text Available Dynamic simulation of sustainable farm development scenarios using cognitive modeling. The paper presents a dynamic simulation system of sustainable development scenarios on farms using cognitive modeling. The system incorporates relevant variables which affect the sustainable development of farms. Its user provides answers to strategic issues connected with the level of farm sustainability over a long-term perspective of dynamic development. The work contains a description of the model structure as well as the results of simulations carried out on 16 farms in northern Ukraine. The results show that the process of sustainability is based mainly on the potential for innovation in agricultural production and biodiversity. The user is able to simulate various scenarios for the sustainable development of a farm and visualize the influence of factors on the economic and social situation, as well as on environmental aspects. Upon carrying out a series of simulations, it was determined that the development of farms characterized by sustainable development is based on additional profit, which serves as the main motivation for transforming a conventional farm into a sustainable one. Nevertheless, additional profit is not the only driving force in the system of sustainable development. The standard of living, market condition, and legal regulations as well as government support also play a significant motivational role.

  10. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  11. MASADA: A Modeling and Simulation Automated Data Analysis framework for continuous data-intensive validation of simulation models

    CERN Document Server

    Foguelman, Daniel Jacob; The ATLAS collaboration

    2016-01-01

    Complex networked computer systems are usually subjected to upgrades and enhancements on a continuous basis. Modeling and simulation of such systems helps with guiding their engineering processes, in particular when testing candi- date design alternatives directly on the real system is not an option. Models are built and simulation exercises are run guided by specific research and/or design questions. A vast amount of operational conditions for the real system need to be assumed in order to focus on the relevant questions at hand. A typical boundary condition for computer systems is the exogenously imposed workload. Meanwhile, in typical projects huge amounts of monitoring information are logged and stored with the purpose of studying the system’s performance in search for improvements. Also research questions change as systems’ operational conditions vary throughout its lifetime. This context poses many challenges to determine the validity of simulation models. As the behavioral empirical base of the sys...

  12. MASADA: A MODELING AND SIMULATION AUTOMATED DATA ANALYSIS FRAMEWORK FOR CONTINUOUS DATA-INTENSIVE VALIDATION OF SIMULATION MODELS

    CERN Document Server

    Foguelman, Daniel Jacob; The ATLAS collaboration

    2016-01-01

    Complex networked computer systems are usually subjected to upgrades and enhancements on a continuous basis. Modeling and simulation of such systems helps with guiding their engineering processes, in particular when testing candi- date design alternatives directly on the real system is not an option. Models are built and simulation exercises are run guided by specific research and/or design questions. A vast amount of operational conditions for the real system need to be assumed in order to focus on the relevant questions at hand. A typical boundary condition for computer systems is the exogenously imposed workload. Meanwhile, in typical projects huge amounts of monitoring information are logged and stored with the purpose of studying the system’s performance in search for improvements. Also research questions change as systems’ operational conditions vary throughout its lifetime. This context poses many challenges to determine the validity of simulation models. As the behavioral empirical base of the sys...

  13. NEAMS FPL M2 Milestone Report: Development of a UO₂ Grain Size Model using Multicale Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-06-01

    This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO₂ fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.

  14. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  15. GENERAL REQUIREMENTS FOR SIMULATION MODELS IN WASTE MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Ian; Kossik, Rick; Voss, Charlie

    2003-02-27

    Most waste management activities are decided upon and carried out in a public or semi-public arena, typically involving the waste management organization, one or more regulators, and often other stakeholders and members of the public. In these environments, simulation modeling can be a powerful tool in reaching a consensus on the best path forward, but only if the models that are developed are understood and accepted by all of the parties involved. These requirements for understanding and acceptance of the models constrain the appropriate software and model development procedures that are employed. This paper discusses requirements for both simulation software and for the models that are developed using the software. Requirements for the software include transparency, accessibility, flexibility, extensibility, quality assurance, ability to do discrete and/or continuous simulation, and efficiency. Requirements for the models that are developed include traceability, transparency, credibility/validity, and quality control. The paper discusses these requirements with specific reference to the requirements for performance assessment models that are used for predicting the long-term safety of waste disposal facilities, such as the proposed Yucca Mountain repository.

  16. Protein adsorption on nanoparticles: model development using computer simulation.

    Science.gov (United States)

    Shao, Qing; Hall, Carol K

    2016-10-19

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles.

  17. Protein adsorption on nanoparticles: model development using computer simulation

    Science.gov (United States)

    Shao, Qing; Hall, Carol K.

    2016-10-01

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles.

  18. A whole body statistical shape model for radio frequency simulation.

    Science.gov (United States)

    Lee, Su-Lin; Ali, Khaleda; Brizzi, Alessio; Keegan, Jennifer; Hao, Yang; Yang, Guang-Zhong

    2011-01-01

    The development of ultra low power wireless sensors for customized wearable and implantable medical devices requires patient specific models for radio frequency simulation to understand wave propagation in the body. In practice, the creation of a patient specific whole-body model is difficult and time consuming to create. It is therefore necessary to establish a method for studying a population in a statistical manner. In this paper, we present a statistical shape model for the whole body for RF simulation. It is built from 10 male and 10 female subjects of varying size and height. This model has the ability to instantiate a new surface mesh with the parameters allowed by the training set. This model would provide shapes of varying sizes for studies, without the requirement of obtaining subject specific whole body models. Results from finite-differences time-domain simulation are presented on the extreme shapes from the model and demonstrate the need for a full understanding of the range in body shapes.

  19. Mean Line Pump Flow Model in Rocket Engine System Simulation

    Science.gov (United States)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  20. Modeling and inverse simulation of somersaults on the trampoline.

    Science.gov (United States)

    Blajer, W; Czaplicki, A

    2001-12-01

    This paper describes a biomechanical model for numerical simulation of front and back somersaults, without twist, performed on the trampoline. The developed mathematical formulation is used to solve an inverse dynamics problem, in which the moments of muscle forces at the joints that result in a given (measured) motion are determined. The nature of the stunts and the way the human body is maneuvered and controlled can be studied. The calculated torques can then be used as control signals for a dynamic simulation. This provides a way to check the inverse dynamics procedures, and influence of typical control errors on somersault performance can be studied. To achieve these goals, the nonlinear dynamical model of the trampolinist and the interacting trampoline bed has been identified, and a methodology for recording the actual somersault performances was proposed. Some results of numerical simulations are reported.

  1. RLV vehicle health management system modeling and simulation

    Science.gov (United States)

    Wangu, Srimal

    1999-02-01

    Sanders, a Lockheed Martin Company, is leading the development and integration of the Vehicle Health Management (VHM) system for Lockheed Martin's VentureStar Reusable Launch Vehicle. The primary objective of this effort is to provide an automated health status and decision-making system for the vehicle. A detailed simulation of the VHM system on RLV is currently being developed using the Foresight Design and Modeling Tool. The simulation will consists of models of key components of the RLV VHM system. An effective detailed system simulation will allow for system and design engineering, as well as program management teams, to accurately and efficiently system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions form older technologies to newer ones. This methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.

  2. Three-dimensional particle cloud simulation based on illumination model

    Science.gov (United States)

    Xing, Yumeihui; Duan, Jin; Zhu, Yong; Wang, Hao

    2017-11-01

    The simulation of 3D clouds has been a challenging research question in the field of computer graphics. Aiming at the problem that the existing three-dimensional cloud is not realistic, a three-dimensional particle cloud simulation method based on the illumination model is proposed, which randomly generate the particles according to the principle of the particle system and give the particles the initial color, size and shape. And then add the lighting effects and render them to achieve the three-dimensional cloud simulation. Comparing with the previous three-dimensional cloud modeling method, this method has the advantages of rapid rendering of cloud, because of the effect of adding light, the real feeling more intense.

  3. Quantitative identification of technological discontinuities using simulation modeling

    CERN Document Server

    Park, Hyunseok

    2016-01-01

    The aim of this paper is to develop and test metrics to quantitatively identify technological discontinuities in a knowledge network. We developed five metrics based on innovation theories and tested the metrics by a simulation model-based knowledge network and hypothetically designed discontinuity. The designed discontinuity is modeled as a node which combines two different knowledge streams and whose knowledge is dominantly persistent in the knowledge network. The performances of the proposed metrics were evaluated by how well the metrics can distinguish the designed discontinuity from other nodes on the knowledge network. The simulation results show that the persistence times # of converging main paths provides the best performance in identifying the designed discontinuity: the designed discontinuity was identified as one of the top 3 patents with 96~99% probability by Metric 5 and it is, according to the size of a domain, 12~34% better than the performance of the second best metric. Beyond the simulation ...

  4. Monte-Carlo simulation-based statistical modeling

    CERN Document Server

    Chen, John

    2017-01-01

    This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

  5. Simulation and Computer Modelling of Carbonate Concentration in Brewery Effluent

    Directory of Open Access Journals (Sweden)

    O. D. ADENIYI

    2003-08-01

    Full Text Available The development of a mathematical model to predict the concentration of carbonates in effluent discharged from a brewery industry is the aim of this paper. This was achieved by obtaining effluent data for several years and using the method of least squares to develop the model. A mean deviation of 9% was observed by comparing the experimental data with the simulated results. The constituent parameter with the greatest influence on the simulated model was found to be sodium ion (Na+ with a coefficient of 0.87642 while that with the least effect was the temperature with a coefficient of 0.0514255. In addition, a control model was developed to monitor the conversions of the effluent constituents in three Continuous Stirred Tank Reactors (CSTRs, some deviation was observed between the set-point values and the empirical values.

  6. The drying of amaranth grain: mathematical modeling and simulation

    Directory of Open Access Journals (Sweden)

    A. Calzetta Resio

    2005-06-01

    Full Text Available A model for isothermal diffusion of bound water was used to simulate the thin-layer drying kinetics of amaranth grain. The model assumes that the driving force for the transport of bound water is the gradient of spreading pressure. The gradient of spreading pressure was related to the moisture gradient using the GAB isotherm. This variation shows a relative maximum moisture content about 8% (d.b, after which the diffusion coefficient falls sharply as the moisture content is further reduced. To verify the model, drying tests of amaranth grain were conducted at 40 to 70ºC in a laboratory drier from 32.5 to 6% moisture (d.b.. Equilibrium moisture contents were also determined using an electronic hygrometer at temperatures and relative humidities corresponding to drying conditions. The applicability of the model to simulation of drying curves was satisfactory in the full range of moisture.

  7. An educational model for ensemble streamflow simulation and uncertainty analysis

    Directory of Open Access Journals (Sweden)

    A. AghaKouchak

    2013-02-01

    Full Text Available This paper presents the hands-on modeling toolbox, HBV-Ensemble, designed as a complement to theoretical hydrology lectures, to teach hydrological processes and their uncertainties. The HBV-Ensemble can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI and an ensemble simulation scheme that can be used for teaching uncertainty analysis, parameter estimation, ensemble simulation and model sensitivity. HBV-Ensemble was administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of uncertainty in hydrological modeling.

  8. Markov chain Monte Carlo simulation for Bayesian Hidden Markov Models

    Science.gov (United States)

    Chan, Lay Guat; Ibrahim, Adriana Irawati Nur Binti

    2016-10-01

    A hidden Markov model (HMM) is a mixture model which has a Markov chain with finite states as its mixing distribution. HMMs have been applied to a variety of fields, such as speech and face recognitions. The main purpose of this study is to investigate the Bayesian approach to HMMs. Using this approach, we can simulate from the parameters' posterior distribution using some Markov chain Monte Carlo (MCMC) sampling methods. HMMs seem to be useful, but there are some limitations. Therefore, by using the Mixture of Dirichlet processes Hidden Markov Model (MDPHMM) based on Yau et. al (2011), we hope to overcome these limitations. We shall conduct a simulation study using MCMC methods to investigate the performance of this model.

  9. Aero-acoustic modeling using large eddy simulation

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar...... flow past a NACA 0015 airfoil at a Reynolds number of 800, a Mach number of 0.2 and an angle of attack of 20 degrees. The model is then applied to compute turbulent flow past a NACA 0015 airfoil at a Reynolds number of 100 000, a Mach number of 0.2 and an angle of attack of 20 degrees. The predicted...

  10. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  11. Heavy truck modeling for fuel consumption. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, T.

    2001-12-01

    Fuel consumption for heavy trucks depends on many factors like roads, weather, and driver behavior that are hard for a manufacturer to influence. However, one design possibility is the power train configuration. Here a new simulation program for heavy trucks is created to find the configuration of the power train that gives the lowest fuel consumption for each transport task. For efficient simulations the model uses production code for speed and gear control, and it uses exchangeable data sets to allow simulation of the whole production range of engine types, on recorded road profiles from all over the world. Combined with a graphical user interface this application is called STARS (Scania Truck And Road Simulation). The forces of rolling resistance and air resistance in the model are validated through an experiment where the propeller shaft torque of a heavy truck is measured. It is found that the coefficient of rolling resistance is strongly dependent on tire temperature, not only on vehicle speed as expected. This led to the development of a new model for rolling resistance. The model includes the dynamic behavior of the tires and relates rolling resistance to tire temperature and vehicle speed. In another experiment the fuel consumption of a test truck in highway driving is measured. The altitude of the road is recorded with a barometer and used in the corresponding simulations. Despite of the limited accuracy of this equipment the simulation program manage to predict a level of fuel consumption only 2% lower than the real measurements. It is concluded that STARS is a good tool for predicting fuel consumption for trucks in highway driving and for comparing different power train configurations.

  12. The Madden-Julian Oscillation in NCEP Coupled Model Simulation

    Directory of Open Access Journals (Sweden)

    Wanqiu Wang Kyong-Hwan Seo

    2009-01-01

    Full Text Available This study documents a detailed analysis on the Madden-Julian Oscillation (MJO simulated by the National Centers for Environmental Prediction (NCEP using the Global Forecast System (GFS model version 2003 coupled with the Climate Forecast System model (CFS consisting of the 2003 version of GFS and the Geophysical Fluid Dynamics Laboratory (GFDL Modular Ocean Model V.3 (MOM3. The analyses are based upon a 21-year simulation of AMIP-type with GFS and CMIP-type with CFS. It is found that air-sea coupling in CFS is shown to improve the coherence between convection and large-scale circulation associated with the MJO. The too fast propagation of convection from the Indian Ocean to the maritime continents and the western Pacific in GFS is improved (slowed down in CFS. Both GFS and CFS produce too strong intraseasonal convective heating and circulation anomalies in the central-eastern Pacific; further, the air-sea coupling in CFS enhances this unrealistic feature. The simulated mean slow phase speed of east ward propagating low-wavenumber components shown in the wavenumber-frequency spectra is due to the slow propagation in the central-eastern Pacific in both GFS and CFS. Errors in model climatology may have some effect upon the simulated MJO and two possible influences are: (i CFS fails to simulate the westerlies over maritime continents and western Pacific areas, resulting in an unrealistic representation of surface latent heat flux associated with the MJO; and (ii vertical easterly wind shear from the Indian Ocean to the western Pacific in CFS is much weaker than that in the observation and in GFS, which may adversely affect the eastward propagation of the simulated MJO.

  13. Exact simulation of conditioned Wright-Fisher models.

    Science.gov (United States)

    Zhao, Lei; Lascoux, Martin; Waxman, David

    2014-12-21

    Forward and backward simulations play an increasing role in population genetics, in particular when inferring the relative importance of evolutionary forces. It is therefore important to develop fast and accurate simulation methods for general population genetics models. Here we present an exact simulation method that generates trajectories of an allele׳s frequency in a finite population, as described by a general Wright-Fisher model. The method generates conditioned trajectories that start from a known frequency at a known time, and which achieve a specific final frequency at a known final time. The simulation method applies irrespective of the smallness of the probability of the transition between the initial and final states, because it is not based on rejection of trajectories. We illustrate the method on several different populations where a Wright-Fisher model (or related) applies, namely (i) a locus with 2 alleles, that is subject to selection and mutation; (ii) a locus with 3 alleles, that is subject to selection; (iii) a locus in a metapopulation consisting of two subpopulations of finite size, that are subject to selection and migration. The simulation method allows the generation of conditioned trajectories that can be used for the purposes of visualisation, the estimation of summary statistics, and the development/testing of new inferential methods. The simulated trajectories provide a very simple approach to estimating quantities that cannot easily be expressed in terms of the transition matrix, and can be applied to finite Markov chains other than the Wright-Fisher model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Lattice Boltzmann modeling and simulation of liquid jet breakup

    Science.gov (United States)

    Saito, Shimpei; Abe, Yutaka; Koyama, Kazuya

    2017-07-01

    A three-dimensional color-fluid lattice Boltzmann model for immiscible two-phase flows is developed in the framework of a three-dimensional 27-velocity (D3Q27) lattice. The collision operator comprises the D3Q27 versions of three suboperators: a multiple-relaxation-time (MRT) collision operator, a generalized Liu-Valocchi-Kang perturbation operator, and a Latva-Kokko-Rothman recoloring operator. A D3Q27 version of an enhanced equilibrium distribution function is also incorporated into this model to improve the Galilean invariance. Three types of numerical tests, namely, a static droplet, an oscillating droplet, and the Rayleigh-Taylor instability, show a good agreement with analytical solutions and numerical simulations. Following these numerical tests, this model is applied to liquid-jet-breakup simulations. The simulation conditions are matched to the conditions of the previous experiments. In this case, numerical stability is maintained throughout the simulation, although the kinematic viscosity for the continuous phase is set as low as 1.8 ×10-4 , in which case the corresponding Reynolds number is 3.4 ×103 ; the developed lattice Boltzmann model based on the D3Q27 lattice enables us to perform the simulation with parameters directly matched to the experiments. The jet's liquid column transitions from an asymmetrical to an axisymmetrical shape, and entrainment occurs from the side of the jet. The measured time history of the jet's leading-edge position shows a good agreement with the experiments. Finally, the reproducibility of the regime map for liquid-liquid systems is assessed. The present lattice Boltzmann simulations well reproduce the characteristics of predicted regimes, including varicose breakup, sinuous breakup, and atomization.

  15. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  16. Real time modeling, simulation and control of dynamical systems

    CERN Document Server

    Mughal, Asif Mahmood

    2016-01-01

    This book introduces modeling and simulation of linear time invariant systems and demonstrates how these translate to systems engineering, mechatronics engineering, and biomedical engineering. It is organized into nine chapters that follow the lectures used for a one-semester course on this topic, making it appropriate for students as well as researchers. The author discusses state space modeling derived from two modeling techniques and the analysis of the system and usage of modeling in control systems design. It also contains a unique chapter on multidisciplinary energy systems with a special focus on bioengineering systems and expands upon how the bond graph augments research in biomedical and bio-mechatronics systems.

  17. Electrophoresis simulated with the cage model for reptation

    NARCIS (Netherlands)

    Heukelum, A. van; Beljaars, H.R.W.

    2000-01-01

    The cage model for polymer reptation is extended to simulate gel electrophoresis. With increasing electric field strength E, the drift velocity v of a long polymer with length L shows three different regimes: (a) the linear regime where v~E/ L; (b) the quadratic regime where v~E^2 ,

  18. Extended period simulation (EPS) modelling of urban water ...

    African Journals Online (AJOL)

    Water distribution network was constructed, calibrated and validated for extended period simulation studies using the network's physical, operational, calibration and validation data. The model was then applied to evaluate: (i) effects of fluctuating water demand on system storage over 24 hour period and (ii) level of service ...

  19. Physical simulation of dry microburst using impinging jet model with ...

    African Journals Online (AJOL)

    In this work, an attempt has been made to simulate the dry microburst (microburst not accompanied by rain) experimentally using the impinging jet model for investigating the macroflow dynamics and scale (Reynolds number) dependency of the downburst flow. Flow visualization is done using a smoke generator for ...

  20. nIFTy galaxy cluster simulations II: radiative models

    CSIR Research Space (South Africa)

    Sembolini, F

    2016-04-01

    Full Text Available We have simulated the formation of a massive galaxy cluster (M(supcrit)(sub200) = 1.1×10(sup15)h(sup-1)M) in a CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative...