WorldWideScience

Sample records for hoffman brain phantom

  1. Quality assessment of brain images by Hoffman phantom

    International Nuclear Information System (INIS)

    Karimian, A.R.; Saddad, F.; Mosalla, B.; Moradkhani, S.; Degbankhan, R.; Pouladi, M.

    2002-01-01

    The purpose of this investigation is using Hoffman brain phantom for quality assessment of brian images in SPECT system. There are the following standards for quality control in nuclear medicine: American Association of Physicists in Medicine, National Electrical Manufacturers Association, International Electromechanical Commission, International Atomic Energy Agency. Each of the above standards has the following important orders: Physical inspection, Acceptance and Reference Testing, Periodic Q C tests (Daily, Weekly, Monthly, Quarterly, Annually). The above tests are simple physics measures. To more meaningful ones based on performance of some tasks related to clinical application it is better to use from organs' phantoms, such as: brain, cardiac, etc. In this research we made a comparison between normal and abnormal states of Hoffman brain phantom. Methods of Hoffman brain phantom was filled with a solution of Tc- 99 m (5 mCi) and water (1300 cc). this results: The investigation of small abnormalities strongly related to the operating conditions and deviation from best tuning state of the system

  2. Quality of brain perfusion single-photon emission tomography images: multicentre evaluation using an anatomically accurate three-dimensional phantom

    International Nuclear Information System (INIS)

    Heikkinen, J.; Kuikka, J.T.; Ahonen, A.; Rautio, P.

    1998-01-01

    The aim of the study was to evaluate the quality of routine brain perfusion single-photon emission tomography (SPET) images in Finnish nuclear medicine laboratories. Twelve laboratories participated in the study. A three-dimensional high resolution brain phantom (Data Spectrum's 3D Hoffman Brain Phantom) was filled with a well-mixed solution of technetium-99m (110 MBq), water and detergent. Acquisition, reconstruction and printing were performed according to the clinical routine in each centre. Three nuclear medicine specialists blindly evaluated all image sets. The results were ranked from 1 to 5 (poor quality-high quality). Also a SPET performance phantom (Nuclear Associates' PET/SPECT Performance Phantom PS 101) was filled with the same radioactivity concentration as the brain phantom. The parameters for the acquisition, the reconstruction and the printing were exactly the same as with the brain phantom. The number of detected ''hot'' (from 0 to 8) and ''cold'' lesions (from 0 to 7) was visually evaluated from hard copies. Resolution and contrast were quantified from digital images. Average score for brain phantom images was 2.7±0.8 (range 1.5-4.5). The average diameter of the ''hot'' cylinders detected was 16 mm (range 9.2-20.0 mm) and that of the ''cold'' cylinders detected, 11 mm (5.9-14.3 mm) according to visual evaluation. Quantification of digital images showed that the hard copy was one reason for low-quality images. The quality of the hard copies was good only in four laboratories and was amazingly low in the others when comparing it with the actual structure of the brain phantom. The described quantification method is suitable for optimizing resolution and contrast detectability of hard copies. This study revealed the urgent need for external quality assurance of clinical brain perfusion SPET images. (orig.)

  3. Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: An experimental evaluation using an oncology and brain phantom.

    Science.gov (United States)

    Mansor, Syahir; Pfaehler, Elisabeth; Heijtel, Dennis; Lodge, Martin A; Boellaard, Ronald; Yaqub, Maqsood

    2017-12-01

    In longitudinal oncological and brain PET/CT studies, it is important to understand the repeatability of quantitative PET metrics in order to assess change in tracer uptake. The present studies were performed in order to assess precision as function of PET/CT system, reconstruction protocol, analysis method, scan duration (or image noise), and repositioning in the field of view. Multiple (repeated) scans have been performed using a NEMA image quality (IQ) phantom and a 3D Hoffman brain phantom filled with 18 F solutions on two systems. Studies were performed with and without randomly (PET/CT, especially in the case of smaller spheres (PET metrics depends on the combination of reconstruction protocol, data analysis methods and scan duration (scan statistics). Moreover, precision was also affected by phantom repositioning but its impact depended on the data analysis method in combination with the reconstructed voxel size (tissue fraction effect). This study suggests that for oncological PET studies the use of SUV peak may be preferred over SUV max because SUV peak is less sensitive to patient repositioning/tumor sampling. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  4. Collimator Selection in Nuclear Medicine Imaging Using I-123 Generated by Te-124 Reaction

    International Nuclear Information System (INIS)

    Kim, Hee Joung; Son, Hye Kyung; Nam, Ki Pyo; Lee, Hee Kyung; Bong, Joung Kyun

    1996-01-01

    In the case of I-123 from the Te-124(p,2n)reaction, the radionuclidic impurity is the high-energy gamma-emitting I-124, which interferes greatly with nuclear medicine images. The choice of a collimator can affect the quality of clinical SPECT images of [I-123]MIBG, [I-123]μ-CIT, or [I-123]IPT. The tradeoffs that two different collimators make among spatial resolution, sensitivity, and scatter were studied by imaging a line source at 5 cm, 10 cm, 15 cm distance using a number of plexiglass sheets between source and collimator, petridish, two-dimensional Hoffman brain phantom, Jaszczak phantom, and three-dimensional Hoffman brain phantom after filling with I-123. (FWHM, FWTM, Sensitivity) for low-energy ultrahigh-resolution parallel-hole(LEUHRP) collimator and medium-energy general-purpose(MEGP) collimator were measured as (9.27 mm, 61.27 mm, 129 CPM/μCi) and (10.53 mm, 23.17 mm, 105CPM/μ/Ci), respectively. The image quality of two-dimensional Hoffman brain phantom with LEUHRP looked better than the one with MEGP. However, the image quality of Jaszczak phantom and three-dimensional Hoffman brain phantom with LEUHRP looked much worse than the one with MEGP because of scatter contributions in three-dimensional imaging situation. The results suggest that the MEGP is preferable to LEUHRP for three-dimensional imaging studies of [I-123]MIBG, [I-123] β-CIT, or [I-123] IPT.

  5. Effects of scatter and attenuation corrections on phantom and clinical brain SPECT

    International Nuclear Information System (INIS)

    Prando, S.; Robilotta, C.C.R.; Oliveira, M.A.; Alves, T.C.; Busatto Filho, G.

    2002-01-01

    Aim: The present work evaluated the effects of combinations of scatter and attenuation corrections on the analysis of brain SPECT. Materials and Methods: We studied images of the 3D Hoffman brain phantom and from a group of 20 depressive patients with confirmed cardiac insufficiency (CI) and 14 matched healthy controls (HC). Data were acquired with a Sophy-DST/SMV-GE dual-head camera after venous injection of 1110MBq 99m Tc-HMPAO. Two energy windows, 15% on 140keV and 30% centered on 108keV of the Compton distribution, were used to obtain corresponding sets of 128x128x128 projections. Tomograms were reconstructed using OSEM (2 iterations, 8 sub-sets) and Metz filter (order 8, 4 pixels FWHM psf) and FBP with Butterworth filter (order 10, frequency 0.7 Nyquist). Ten combinations of Jaszczak correction (factors 0.3, 0.4 and 0.5) and the 1st order Chang correction (u=0.12cm -1 and 0.159cm -1 ) were applied on the phantom data. In all the phantom images, contrast and signal-noise ratio between 3 ROIs (ventricle, occipital and thalamus) and cerebellum, as well as the ratio between activities in gray and white matters, were calculated and compared with the expected values. The patients images were corrected with k=0.5 and u=0.159cm -1 and reconstructed with OSEM and Metz filter. The images were inspected visually and blood flow comparisons between the CI and the HC groups were performed using Statistical Parametric Mapping (SPM). Results: The best results in the analysis of the contrast and activities ratio were obtained with k=0.5 and u=0.159cm -1 . The results of the activities ratio obtained with OSEM e Metz filter are similar to those published by Laere et al.[J.Nucl.Med 2000;41:2051-2062]. The method of correction using effective attenuation coefficient produced results visually acceptable, but inadequate for the quantitative evaluation. The results of signal-noise ratio are better with OSEM than FBP reconstruction method. The corrections in the CI patients studies

  6. Evaluation of accuracy in target positions of multmodality imaging using brain phantom

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2002-07-01

    Determination of target positions in radiation therapy or radiosurgery is critical to the successful treatment. It is often difficult to recognize the target position only from single image modality since each image modality has unique image pattern and image distortion problem. The purpose of this study is to evaluate the accuracy of target positions with multimodality brain phantom. We obtained CT, MR, and SPECT scan images with the specially designed brain phantom. Brain phantom consists of brain for images and frame for localization. The phantom was a water fillable cylinder containing 58 axial layers of 2.0 mm thickness. Each layer allows water to permeate various regions to match gray matter to white matter of 1:1 ratio. Localization frame with 5mm inner diameter and 150/160 mm length were attached to the outside of the brain slice and inside of the phantom cylinder. The phantom was filled with 0.16 M CuSO{sub 4} solution for MRI scan, and distilled water for CT and 15mCi (555 MBq) Tc-99m for SPECT. Axial slice images and volume images including the targets and localizer were obtained for each modality. To evaluate the errors in target positions, the position of localization and target balls measured in SPECT were compared with MR and CT. Transformation parameters for translation, rotation and scaling were determined by surface matching each SPECT with MR and CT images. Multimodality phantom was very useful to evaluate the accuracy of target positions among the different types of image modality such as CT, MR and SPECT.

  7. An easy to produce and economical three-dimensional brain phantom for stereotactic computed tomographic-guided brain biopsy training in the dog.

    Science.gov (United States)

    Sidhu, Deepinder S; Ruth, Jeffrey D; Lambert, Gregory; Rossmeisl, John H

    2017-07-01

    To develop and validate a three-dimensional (3D) brain phantom that can be incorporated into existing stereotactic headframes to simulate stereotactic brain biopsy (SBB) and train veterinary surgeons. Experimental study. Canine brain phantoms were fabricated from osteological skull specimens, agarose brain parenchyma, and cheddar and mozzarella cheese molds (simulating meningiomas and gliomas). The neuroradiologic and viscoelastic properties of phantoms were quantified with computed tomography (CT) and oscillatory compression tests, respectively. Phantoms were validated by experienced and novice operators performing SBB on phantoms containing randomly placed, focal targets. Target yield and needle placement error (NPE) were compared between operators. Phantoms were produced in brain parenchyma, and contrast-enhancing tumors of meningeal and glial origin, respectively. The complex moduli of the agarose and cheeses were comparable to the viscoelastic properties of in vivo brain tissues and brain tumors. The overall diagnostic yield of SBB was 88%. Although NPE did not differ between novice (median 3.68 mm; range, 1.46-14.54 mm) and experienced surgeons (median 1.17 mm, range, 0.78-1.58 mm), our results support the relevance of the learning curve associated with the SBB procedure. This 3D phantom replicates anatomical, CT, and tactile features of brain tissues and tumors and can be used to develop the technical skills required to perform SBB. © 2017 The American College of Veterinary Surgeons.

  8. Deep brain stimulation for phantom limb pain.

    Science.gov (United States)

    Bittar, Richard G; Otero, Sofia; Carter, Helen; Aziz, Tipu Z

    2005-05-01

    Phantom limb pain is an often severe and debilitating phenomenon that has been reported in up to 85% of amputees. Its pathophysiology is poorly understood. Peripheral and spinal mechanisms are thought to play a role in pain modulation in affected individuals; however central mechanisms are also likely to be of importance. The neuromatrix theory postulates a genetically determined representation of body image, which is modified by sensory input to create a neurosignature. Persistence of the neurosignature may be responsible for painless phantom limb sensations, whereas phantom limb pain may be due to abnormal reorganisation within the neuromatrix. This study assessed the clinical outcome of deep brain stimulation of the periventricular grey matter and somatosensory thalamus for the relief of chronic neuropathic pain associated with phantom limb in three patients. These patients were assessed preoperatively and at 3 month intervals postoperatively. Self-rated visual analogue scale pain scores assessed pain intensity, and the McGill Pain Questionnaire assessed the quality of the pain. Quality of life was assessed using the EUROQOL EQ-5D scale. Periventricular gray stimulation alone was optimal in two patients, whilst a combination of periventricular gray and thalamic stimulation produced the greatest degree of relief in one patient. At follow-up (mean 13.3 months) the intensity of pain was reduced by 62% (range 55-70%). In all three patients, the burning component of the pain was completely alleviated. Opiate intake was reduced in the two patients requiring morphine sulphate pre-operatively. Quality of life measures indicated a statistically significant improvement. This data supports the role for deep brain stimulation in patients with phantom limb pain. The medical literature relating to the epidemiology, pathogenesis, and treatment of this clinical entity is reviewed in detail.

  9. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  10. Time-difference imaging of magnetic induction tomography in a three-layer brain physical phantom

    International Nuclear Information System (INIS)

    Liu, Ruigang; Li, Ye; Fu, Feng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen

    2014-01-01

    Magnetic induction tomography (MIT) is a contactless and noninvasive technique to reconstruct the conductivity distribution in a human cross-section. In this paper, we want to study the feasibility of imaging the low-contrast perturbation and small volume object in human brains. We construct a three-layer brain physical phantom which mimics the real conductivity distribution of brains by introducing an artificial skull layer. Using our MIT data acquisition system on this phantom and differential algorithm, we have obtained a series of reconstructed images of conductivity perturbation objects. All of the conductivity perturbation objects in the brain phantom can be clearly distinguished in the reconstructed images. The minimum detectable conductivity difference between the object and the background is 0.03 S m −1  (12.5%). The minimum detectable inner volume of the objects is 3.4 cm 3 . The three-layer brain physical phantom is able to simulate the conductivity distribution of the main structures of a human brain. The images of the low-contrast perturbation and small volume object show the prospect of MIT in the future. (paper)

  11. The Aomori Prefecture Brain Blood Flow SPECT Phantom Study (First information). Comparison between reference image and each facility to aim at grasp of the situation

    International Nuclear Information System (INIS)

    Ishikura, Makihito; Narita, Kazuo; Terayama, Yoshio; Kudou, Sukehiro

    2008-01-01

    As the single photon emission computed tomography (SPECT) image has rather big between-facility and -machine differences, a questionnaire was done to 18 SPECT facilities in Aomori Prefecture in May, 03, 15 of which answered, for the purpose of standardization of the brain blood flow images in the prefecture. The questionnaire concerned the condition of data collection, image display and reconstruction, and quantitative analysis, based on whose results the Phantom Study was then conducted to see the relationship between the average count and Butterworth filter (BWF) cut-off value by comparison of reference and facilities' images. The gamma camera PRISM 200XP, processor Odyssey Fx and low-energy high-resolution (LEHR) collimator were used for the reference image with collection matrix 128 x 128, 3.5 mm pixel size, Ramp reconstruction filter, Chang decay correction (coefficient μ=0.09) and null scattering correction. Used was the Hoffman phantom containing 30-37 MBq of 99m Tc or 8-18 MBq of 123 I. It was found that the fluctuation of cut-off values became small depending on the increase of count and the collection count was low for both nuclides in those facilities, and thus further study of the measure for increasing the collection count was thought necessary. (R.T.)

  12. Receiver operating characteristic analysis and its potential role in evaluating the effect of head movement in PET of the brain

    International Nuclear Information System (INIS)

    Patterson, H.; Clarke, G.H.; Lombardo, P.; McKay, W.J.; Austin and Repatriation Medical Centre, Heidelberg, VIC

    1999-01-01

    Full text: We outline an example of receiver operating characteristic (ROC) analysis in the assessment of image quality. ROC analysis is a measure of image quality that accounts for the consequences of the decision and the role of the observer. Kim and Haynie (Nuclear Diagnostic Imaging: Practical Clinical Applications. Melbourne: Macmillan, 1987) describe ROC analysis as an 'objective approach to the evaluation of diagnostic decision making'. ROC analysis is an ideal technique for evaluating images of a Hoffman brain phantom obtained using positron emission tomography. Images have been acquired with the phantom in different positions. The position of the phantom and the time the phantom remained in each position was based on the measurements of head movement during simulated brain imaging (Patterson et al., Technologists Symposium, ANZSNM, 1998). This study was undertaken to explore the potential of ROC analysis in determining the effect of movement on the ability to detect lesions of various sizes

  13. Acquired ichthyosis with hoffman's syndrome

    Directory of Open Access Journals (Sweden)

    Sathyanarayana B

    2003-01-01

    Full Text Available A middle aged man presented with features of acquired ichthyosis with Hoffman's syndrome. Laboratory tests support hypothyodism. Myoedema and hypertrophy of muscles were present. Patient was previously treated for Pellagra.

  14. Hoffman etal 2016 Fisheries Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fish collection data associated with the data analysis presented in Hoffman et al. 2016. Fisheries 41(1):26-37, DOI: 10.1080/03632415.2015.1114926. This dataset is...

  15. Can fruits and vegetables be used as substitute phantoms for normal human brain tissues in magnetic resonance imaging?

    International Nuclear Information System (INIS)

    Teramoto, Daisuke; Ushioda, Yuichi; Sasaki, Ayaka; Sakurai Yuki; Nagahama, Hiroshi; Nakamura, Manami; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Various custom-made phantoms designed to optimize magnetic resonance imaging (MRI) sequences have been created and subsequently reported in Japanese Society of Radiological Technology (JSRT). However, custom-made phantoms that correctly match the T 1 -value and T 2 -values of human brain tissue (gray matter and white matter) cannot be made easily or quickly. The aim of this project was to search for alternative materials, such as fruits and vegetables, for optimizing MRI sequences. The following eight fruits and vegetables were investigated: apple, tomato, melon, apple mango (Mangifera indica), banana, avocado, peach, and eggplant. Their potential was studied for use in modeling phantoms of normal human brain tissues. MRI (T 1 - and T 2 -weighted sequences) was performed on the human brain and the fruits and vegetables using various concentrations of contrast medium (gadolinium) in the same size tubes as the custom-made phantom. The authors compared the signal intensity (SI) in human brain tissue (gray matter and white matter) with that of the fruits and the custom-made phantom. The T 1 and T 2 values were measured for banana tissue and compared with those for human brain tissue in the literature. Our results indicated that banana tissue is similar to human brain tissue (both gray matter and white matter). Banana tissue can thus be employed as an alternative phantom for the human brain for the purpose of MRI. (author)

  16. Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.

    Science.gov (United States)

    Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.

  17. A new iterative reconstruction technique for attenuation correction in high-resolution positron emission tomography

    International Nuclear Information System (INIS)

    Knesaurek, K.; Machac, J.; Vallabhajosula, S.; Buchsbaum, M.S.

    1996-01-01

    A new interative reconstruction technique (NIRT) for positron emission computed tomography (PET), which uses transmission data for nonuniform attenuation correction, is described. Utilizing the general inverse problem theory, a cost functional which includes a noise term was derived. The cost functional was minimized using a weighted-least-square maximum a posteriori conjugate gradient (CG) method. The procedure involves a change in the Hessian of the cost function by adding an additional term. Two phantoms were used in a real data acquisition. The first was a cylinder phantom filled with uniformly distributed activity of 74 MBq of fluorine-18. Two different inserts were placed in the phantom. The second was a Hoffman brain phantom filled with uniformly distributed activity of 7.4 MBq of 18 F. Resulting reconstructed images were used to test and compare a new interative reconstruction technique with a standard filtered backprojection (FBP) method. The results confirmed that NIRT, based on the conjugate gradient method, converges rapidly and provides good reconstructed images. In comaprison with standard results obtained by the FBP method, the images reconstructed by NIRT showed better noise properties. The noise was measured as rms% noise and was less, by a factor of 1.75, in images reconstructed by NIRT than in the same images reconstructed by FBP. The distance between the Hoffman brain slice created from the MRI image was 0.526, while the same distance for the Hoffman brain slice reconstructed by NIRT was 0.328. The NIRT method suppressed the propagation of the noise without visible loss of resolution in the reconstructed PET images. (orig.)

  18. Development of a realistic, dynamic digital brain phantom for CT perfusion validation

    Science.gov (United States)

    Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2016-03-01

    Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.

  19. Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3-dimensional brain phantom

    International Nuclear Information System (INIS)

    Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki

    2014-01-01

    The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123 I brain SPECT obtained by the hybrid SPECT/CT device. We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123 I solution (20.1 kBq/mL) in the gray matter region and with K 2 HPO 4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity

  20. A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols.

    Science.gov (United States)

    van den Boom, Rieneke; Manniesing, Rashindra; Oei, Marcel T H; van der Woude, Willem-Jan; Smit, Ewoud J; Laue, Hendrik O A; van Ginneken, Bram; Prokop, Mathias

    2014-07-01

    Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients' hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. A patient-specific 4D digital phantom allows for realistic simulation of mean values and

  1. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    International Nuclear Information System (INIS)

    Martínez, José M; Jarosz, Boguslaw J

    2015-01-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20–32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10–11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m −1 , 115  ±  4 dB m −1 and 175  ±  9 dB m −1 , respectively. The density and acoustic speed determination at room temperature (∼24 °C) gave 1040  ±  40 kg m −3 and 1545  ±  44 m s −1 , respectively. The average thermal conductivity was 0.532 W m −1  K −1 . The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies. (paper)

  2. Physical and subjective evaluation of a three-detector (TRIAD 88) SPECT system

    International Nuclear Information System (INIS)

    D'Souza, M.F.; Mumma, C.G.; Allen, E.W.; Phal, J.J.; Prince, J.R.

    1995-01-01

    The three-detector TRIAD 88 is a variable cylindrical FOV whole-body SPECT system designed for both brain as well as body organ imaging. The system performance was assessed in terms of physical indices and clinical quality. Measures of low contrast resolution using contrast-detail curves, high contrast resolution using LSFs and associated frequency descriptors, display characteristics, system sensitivity, energy resolution and uniformity analysis were utilized. In addition, images of Carlson phantom, Hoffman brain phantom and clinical brain images were used to compare two collimators subjectively. Measurements and calculations were obtained for two sets of parallel hole collimators, i.e., LEUR P AR and LEHR P AR. Of special interest is the consistency among the three detectors. The planar and volume sensitivities for the LEUR P AR collimator were about 58% of those of the LEHR P AR collimator. The planar spatial resolution of the two collimators differed by about 14%. The display was characterized by a logistic model H and D curve. The planar contrast-detail curves demonstrated no statistical difference in lesion detectability between the two collimator types, however SPECT phantom and clinical images demonstrated improved performance with the LEUR P AR collimator. Images of Hoffman single slice brain and Carlson phantoms and Tc-99m (HMPAO) brain images demonstrated excellent image quality. There was similarity in performance parameters of the three detector heads. 49 refs., 6 tabs., 8 figs

  3. Technical Note: Development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis

    International Nuclear Information System (INIS)

    Negus, Ian S.; Holmes, Robin B.; Thorne, Gareth C.; Saunders, Margaret; Jordan, Kirsty C.; Nash, David A.

    2016-01-01

    Purpose: To make an adaptable, head shaped radionuclide phantom to simulate molecular imaging of the brain using clinical acquisition and reconstruction protocols. This will allow the characterization and correction of scanner characteristics, and improve the accuracy of clinical image analysis, including the application of databases of normal subjects. Methods: A fused deposition modeling 3D printer was used to create a head shaped phantom made up of transaxial slabs, derived from a simulated MRI dataset. The attenuation of the printed polylactide (PLA), measured by means of the Hounsfield unit on CT scanning, was set to match that of the brain by adjusting the proportion of plastic filament and air (fill ratio). Transmission measurements were made to verify the attenuation of the printed slabs. The radionuclide distribution within the phantom was created by adding 99m Tc pertechnetate to the ink cartridge of a paper printer and printing images of gray and white matter anatomy, segmented from the same MRI data. The complete subresolution sandwich phantom was assembled from alternate 3D printed slabs and radioactive paper sheets, and then imaged on a dual headed gamma camera to simulate an HMPAO SPECT scan. Results: Reconstructions of phantom scans successfully used automated ellipse fitting to apply attenuation correction. This removed the variability inherent in manual application of attenuation correction and registration inherent in existing cylindrical phantom designs. The resulting images were assessed visually and by count profiles and found to be similar to those from an existing elliptical PMMA phantom. Conclusions: The authors have demonstrated the ability to create physically realistic HMPAO SPECT simulations using a novel head-shaped 3D printed subresolution sandwich method phantom. The phantom can be used to validate all neurological SPECT imaging applications. A simple modification of the phantom design to use thinner slabs would make it suitable for

  4. Technical Note: Development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis

    Energy Technology Data Exchange (ETDEWEB)

    Negus, Ian S.; Holmes, Robin B.; Thorne, Gareth C.; Saunders, Margaret [Department of Medical Physics and Bioengineering, University Hospitals Bristol NHS Foundation Trust, Bristol BS28HW (United Kingdom); Jordan, Kirsty C. [Department of Biomedical Engineering, University of Strathclyde, Glasgow G11XQ (United Kingdom); Nash, David A. [Department of Medical Physics, Portsmouth Hospitals NHS Trust, Portsmouth PO63LY (United Kingdom)

    2016-09-15

    Purpose: To make an adaptable, head shaped radionuclide phantom to simulate molecular imaging of the brain using clinical acquisition and reconstruction protocols. This will allow the characterization and correction of scanner characteristics, and improve the accuracy of clinical image analysis, including the application of databases of normal subjects. Methods: A fused deposition modeling 3D printer was used to create a head shaped phantom made up of transaxial slabs, derived from a simulated MRI dataset. The attenuation of the printed polylactide (PLA), measured by means of the Hounsfield unit on CT scanning, was set to match that of the brain by adjusting the proportion of plastic filament and air (fill ratio). Transmission measurements were made to verify the attenuation of the printed slabs. The radionuclide distribution within the phantom was created by adding {sup 99m}Tc pertechnetate to the ink cartridge of a paper printer and printing images of gray and white matter anatomy, segmented from the same MRI data. The complete subresolution sandwich phantom was assembled from alternate 3D printed slabs and radioactive paper sheets, and then imaged on a dual headed gamma camera to simulate an HMPAO SPECT scan. Results: Reconstructions of phantom scans successfully used automated ellipse fitting to apply attenuation correction. This removed the variability inherent in manual application of attenuation correction and registration inherent in existing cylindrical phantom designs. The resulting images were assessed visually and by count profiles and found to be similar to those from an existing elliptical PMMA phantom. Conclusions: The authors have demonstrated the ability to create physically realistic HMPAO SPECT simulations using a novel head-shaped 3D printed subresolution sandwich method phantom. The phantom can be used to validate all neurological SPECT imaging applications. A simple modification of the phantom design to use thinner slabs would make it suitable

  5. Parental Expression of Disappointment: Should It Be a Factor in Hoffman's Model of Parental Discipline?

    Science.gov (United States)

    Patrick, Renee B.; Gibbs, John C.

    2007-01-01

    The authors addressed whether parental expression of disappointment should be included as a distinct factor in M. L. Hoffman's (2000) well-established typology of parenting styles (induction, love withdrawal, power assertion). Hoffman's 3-factor model, along with a more inclusive 4-factor model (induction, love withdrawal, power assertion, and…

  6. A 4D Digital Phantom for Patient-Specific Simulation of Brain CT Perfusion Protocols

    NARCIS (Netherlands)

    Boom, R. van den; Manniesing, R.; Oei, M.T.H.; Woude, W.J. van der; Smit, E.J.; Laue, H.O.A.; Ginneken, B. van; Prokop, M.

    2014-01-01

    Purpose Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters.

  7. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    Science.gov (United States)

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (Pdynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  8. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  9. The study on acquisition mode and reconstruction parameters of brain FDG PET images

    International Nuclear Information System (INIS)

    Zuo Chuantao; Liu Yongchang; Guan Yihui; Zhao Jun; Lin Xiangtong

    2001-01-01

    Objective: To evaluate the effect of acquisition mode on the brain PET images. Methods: After changing conditions and parameters, the authors got brain PET images of different acquisition modes, different emission counts, different transmission times; and compared with the reference images the impacts of different acquisition modes, different acquisition conditions were assessed. Results: Compared with 2D mode, much higher background and noise were observed on the reconstruction images of 3D mode, and the bottoms of the brain structure were not well displayed. But the middle part of brain structure displayed well in 2D and 3D mode without difference; the gray/white radioactivity ratios were 2.108 +- 0.183 and 2.286 +- 0.232 under 2D and 3D mode, respectively. The gray/white radioactivity ratios with different emission counts were 2.108 +- 0.183, 2.215 +- 0.158, 2.161 +- 0.176, respectively, there was no evident difference among them. With transmission counts increasing, the segmented image outline of Hoffman phantom and brain structure became clear and integral. Conclusions: Different acquisition modes, different emission counts and different transmission times are of certain impacts on brain FDG PET images, and it should be paid more attention in clinical practice

  10. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, I.V.B., E-mail: isabelle.lacerda@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Oliveira, M.L.; Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PB), Recife (Brazil)

    2017-07-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  11. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    International Nuclear Information System (INIS)

    Lacerda, I.V.B.; Vieira, J.W.; Oliveira, M.L.; Lima, F.R.A.

    2017-01-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  12. Thermal neutron dose calculations in a brain phantom from 7Li(p,n) reaction based BNCT setup

    International Nuclear Information System (INIS)

    Elshahat, B.A.; Naqvi, A.A.; Maalej, N.; Abdallah, Khalid

    2006-01-01

    Monte Carlo simulations were carried out to calculate neutron dose in a brain phantom from a 7 Li(p,n) reaction based setup utilizing a high density polyethylene moderator with graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal /(fast +thermal) neutron intensity ratio as a function of geometric parameters of the setup. Results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated Peak Therapeutic Ratio for the setup was found to be 2.15. With further improvement in the moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor. (author)

  13. "Hiding in Plain Sight": An Interview with Cara Hoffman

    Science.gov (United States)

    Hosey, Sara

    2014-01-01

    Cara Hoffman's work enacts George Orwell's imperative to "pay attention to the obvious" (an idea that several sympathetic characters repeat in her 2011 novel "So Much Pretty"), probing aspects of twenty-first century life in the United States that have become so accepted as to be unremarkable, such as epidemic levels of…

  14. Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.

    Science.gov (United States)

    Weaver, Bruce; Black, Ryan A

    2015-06-01

    Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.

  15. Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.

    Science.gov (United States)

    Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru

    2011-01-01

    In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.

  16. Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations

    Science.gov (United States)

    Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.

  17. Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations

    Energy Technology Data Exchange (ETDEWEB)

    Faber, T L; Raghunath, N; Tudorascu, D; Votaw, J R [Department of Radiology, Emory University Hospital, 1364 Clifton Road, N.E. Atlanta, GA 30322 (United States)], E-mail: tfaber@emory.edu

    2009-02-07

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.

  18. Region of interest evaluation of SPECT image reconstruction methods using a realistic brain phantom

    International Nuclear Information System (INIS)

    Xia, Weishi; Glick, S.J.; Soares, E.J.

    1996-01-01

    A realistic numerical brain phantom, developed by Zubal et al, was used for a region-of-interest evaluation of the accuracy and noise variance of the following SPECT reconstruction methods: (1) Maximum-Likelihood reconstruction using the Expectation-Maximization (ML-EM) algorithm; (2) an EM algorithm using ordered-subsets (OS-EM); (3) a re-scaled block iterative EM algorithm (RBI-EM); and (4) a filtered backprojection algorithm that uses a combination of the Bellini method for attenuation compensation and an iterative spatial blurring correction method using the frequency-distance principle (FDP). The Zubal phantom was made from segmented MRI slices of the brain, so that neuro-anatomical structures are well defined and indexed. Small regions-of-interest (ROIs) from the white matter, grey matter in the center of the brain and grey matter from the peripheral area of the brain were selected for the evaluation. Photon attenuation and distance-dependent collimator blurring were modeled. Multiple independent noise realizations were generated for two different count levels. The simulation study showed that the ROI bias measured for the EM-based algorithms decreased as the iteration number increased, and that the OS-EM and RBI-EM algorithms (16 and 64 subsets were used) achieved the equivalent accuracy of the ML-EM algorithm at about the same noise variance, with much fewer number of iterations. The Bellini-FDP restoration algorithm converged fast and required less computation per iteration. The ML-EM algorithm had a slightly better ROI bias vs. variance trade-off than the other algorithms

  19. Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom

    International Nuclear Information System (INIS)

    Onishi, Hideo; Matsutomo, Norikazu; Matsutake, Yuki; Kawashima, Hiroki; Amijima, Hizuru

    2011-01-01

    In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25 deg or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means. (author)

  20. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    Energy Technology Data Exchange (ETDEWEB)

    Teuho, J., E-mail: jarmo.teuho@tyks.fi [Turku PET Centre, Turku (Finland); Johansson, J. [Turku PET Centre, Turku (Finland); Linden, J. [Turku PET Centre, Turku (Finland); Department of Mathematics and Statistics, University of Turku, Turku (Finland); Saunavaara, V.; Tolvanen, T.; Teräs, M. [Turku PET Centre, Turku (Finland)

    2014-01-11

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template. -- Highlights: • Comparison between PET, PET/CT and PET/MR was performed with a novel brain phantom. • The performance of reconstruction and attenuation correction in PET/MR was studied. • A recently developed brain phantom was found feasible for PET/MR imaging. • Contrast reduction

  1. A new head phantom with realistic shape and spatially varying skull resistivity distribution.

    Science.gov (United States)

    Li, Jian-Bo; Tang, Chi; Dai, Meng; Liu, Geng; Shi, Xue-Tao; Yang, Bin; Xu, Can-Hua; Fu, Feng; You, Fu-Sheng; Tang, Meng-Xing; Dong, Xiu-Zhen

    2014-02-01

    Brain electrical impedance tomography (EIT) is an emerging method for monitoring brain injuries. To effectively evaluate brain EIT systems and reconstruction algorithms, we have developed a novel head phantom that features realistic anatomy and spatially varying skull resistivity. The head phantom was created with three layers, representing scalp, skull, and brain tissues. The fabrication process entailed 3-D printing of the anatomical geometry for mold creation followed by casting to ensure high geometrical precision and accuracy of the resistivity distribution. We evaluated the accuracy and stability of the phantom. Results showed that the head phantom achieved high geometric accuracy, accurate skull resistivity values, and good stability over time and in the frequency domain. Experimental impedance reconstructions performed using the head phantom and computer simulations were found to be consistent for the same perturbation object. In conclusion, this new phantom could provide a more accurate test platform for brain EIT research.

  2. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom

    International Nuclear Information System (INIS)

    Evans, Jeffrey F.; Blue, Thomas E.; Gupta, Nilendu

    2001-01-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85x109x120 lattice of voxels, where each voxel is 2.2x2.2x1.4 mm 3 . This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose

  3. Phantom Sensations, Supernumerary Phantom Limbs and Apotemnophilia: Three Body Representation Disorders.

    Science.gov (United States)

    Tatu, Laurent; Bogousslavsky, Julien

    2018-01-01

    Body representation disorders continue to be mysterious and involve the anatomical substrate that underlies the mental representation of the body. These disorders sit on the boundaries of neurological and psychiatric diseases. We present the main characteristics of 3 examples of body representation disorders: phantom sensations, supernumerary phantom limb, and apotemnophilia. The dysfunction of anatomical circuits that regulate body representation can sometimes have paradoxical features. In the case of phantom sensations, the patient feels the painful subjective sensation of the existence of the lost part of the body after amputation, surgery or trauma. In case of apotemnophilia, now named body integrity identity disorder, the subject wishes for the disappearance of the existing and normal limb, which can occasionally lead to self-amputation. More rarely, a brain-damaged patient with 4 existing limbs can report the existence of a supernumerary phantom limb. © 2018 S. Karger AG, Basel.

  4. A capillary-based perfusion phantom for simulation of brain perfusion for MRI; Ein kapillarbasiertes Phantom zur Simulation der Gehirnperfusion mit der Magnet-Resonanz-Tomografie

    Energy Technology Data Exchange (ETDEWEB)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neuroradiologie; Wille, C. [Fachhochschule Bingen (Germany). Inst. fuer Informatik; Kempski, O. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neurochirurgische Pathophysiologie; Stoeter, P. [CEDIMAT, Santo Domingo (Dominican Republic). Inst. of Neuroradiology

    2010-10-15

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  5. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    DEFF Research Database (Denmark)

    Jonasson, L S; Axelsson, J; Riklund, K

    2017-01-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET...... cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events...... from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function...

  6. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Endo, Kiyoshi; Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan)

    2002-12-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient. (author)

  7. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    CERN Document Server

    Yamamoto, K; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, T

    2002-01-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient.

  8. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study.

    Science.gov (United States)

    Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi

    2018-03-19

    Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.

  9. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  10. Preliminary Evidence for Training-Induced Changes of Morphology and Phantom Limb Pain

    Directory of Open Access Journals (Sweden)

    Sandra Preißler

    2017-06-01

    Full Text Available The aim of this study was to investigate whether a special prosthetic training in phantom limb pain patients aimed at increasing the functional use of the prosthesis leads to neural morphological plasticity of brain structures and a reduction in phantom limb pain. For chronic pain disorders, it was shown that morphological alterations due to pain might become at least partially reversed by pain therapies. Phantom limb pain is a chronic pain disorder that is frequently followed by neural plasticity of anatomical brain structures. In our study, 10 patients with amputation of the upper limb participated in a two-week training with a myoelectric prosthesis with somatosensory feedback. Grip strength was fed back with electrocutaneous stimulus patterns applied to the stump. Phantom limb pain was assessed before and after the two-week training. Similarly, two T1 weighted MRI scans were conducted for longitudinal thickness analyses of cortical brain structures. As result of this treatment, patients experienced a reduction in phantom limb pain and a gain in prosthesis functionality. Furthermore, we found a change of cortical thickness in small brain areas in the visual stream and the post-central gyrus ipsilateral to the amputation indicating morphological alterations in brain areas involved in vision and pain processing.

  11. Relationship between pre-reconstruction filter and accuracy of registration software based on mutual-information maximization. A study of SPECT-MR brain phantom images

    International Nuclear Information System (INIS)

    Mito, Suzuko; Magota, Keiichi; Arai, Hiroshi; Omote, Hidehiko; Katsuura, Hidenori; Suzuki, Kotaro; Kubo Naoki

    2005-01-01

    Image registration technique is becoming an increasingly important tool in SPECT. Recently, software based on mutual-information maximization has been developed for automatic multimodality image registration. The accuracy of the software is important for its application to image registration. During SPECT reconstruction, the projection data are pre-filtered in order to reduce Poisson noise, commonly using a Butterworth filter. We have investigated the dependence of the absolute accuracy of MRI-SPECT registration on the cut-off frequencies of a range of Butterworth filters. This study used a 3D Hoffman phantom (Model No. 9000, Data-spectrum Co.). For the reference volume, an magnetization prepared rapid gradient echo (MPRage) sequence was performed on a Vision MRI (Siemence, 1.5 T). For the floating volumes, SPECT data of a phantom including 99m Tc 85 kBq/mL were acquired by a GCA-9300 (Toshiba Medical Systems Co.). During SPECT, the orbito-meatal (OM) line of the phantom was tilted by 5 deg and 15 deg to mimic the incline of a patient's head. The projection data were pre-filtered with Butterworth filters (cut-off frequency varying between 0.24 to 0.94 cycles/cm in 0.02 steps, order 8). The automated registrations were performed using iNRT β version software (Nihon Medi. Co.) and the rotation angles of SPECT for registration were noted. In this study, the registrations of all SPECT data were successful. Graphs of registration rotation angles against cut-off frequencies were scattered and showed no correlation between the two. The registration rotation angles ranged with changing cut-off frequency from -0.4 deg to +3.8 deg at a 5 deg tilt and from +12.7 deg to +19.6 deg at a 15 deg tilt. The registration rotation angles showed variation even for slight differences in cut-off frequencies. The absolute errors were a few degrees for any cut-off frequency. Regardless of the cut-off frequency, automatic registration using this software provides similar results. (author)

  12. Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter

    The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...

  13. Optimization of brain PET imaging for a multicentre trial: the French CATI experience.

    Science.gov (United States)

    Habert, Marie-Odile; Marie, Sullivan; Bertin, Hugo; Reynal, Moana; Martini, Jean-Baptiste; Diallo, Mamadou; Kas, Aurélie; Trébossen, Régine

    2016-12-01

    CATI is a French initiative launched in 2010 to handle the neuroimaging of a large cohort of subjects recruited for an Alzheimer's research program called MEMENTO. This paper presents our test protocol and results obtained for the 22 PET centres (overall 13 different scanners) involved in the MEMENTO cohort. We determined acquisition parameters using phantom experiments prior to patient studies, with the aim of optimizing PET quantitative values to the highest possible per site, while reducing, if possible, variability across centres. Jaszczak's and 3D-Hoffman's phantom measurements were used to assess image spatial resolution (ISR), recovery coefficients (RC) in hot and cold spheres, and signal-to-noise ratio (SNR). For each centre, the optimal reconstruction parameters were chosen as those maximizing ISR and RC without a noticeable decrease in SNR. Point-spread-function (PSF) modelling reconstructions were discarded. The three figures of merit extracted from the images reconstructed with optimized parameters and routine schemes were compared, as were volumes of interest ratios extracted from Hoffman acquisitions. The net effect of the 3D-OSEM reconstruction parameter optimization was investigated on a subset of 18 scanners without PSF modelling reconstruction. Compared to the routine parameters of the 22 PET centres, average RC in the two smallest hot and cold spheres and average ISR remained stable or were improved with the optimized reconstruction, at the expense of slight SNR degradation, while the dispersion of values was reduced. For the subset of scanners without PSF modelling, the mean RC of the smallest hot sphere obtained with the optimized reconstruction was significantly higher than with routine reconstruction. The putamen and caudate-to-white matter ratios measured on 3D-Hoffman acquisitions of all centres were also significantly improved by the optimization, while the variance was reduced. This study provides guidelines for optimizing quantitative

  14. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom.

    Science.gov (United States)

    Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi

    2013-06-01

    Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p Wilcoxon signed-rank test, p test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors

  15. Practical aspects of data-driven motion correction approach for brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.; Barnden, L.

    2002-01-01

    Full text: Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of a partial reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Phantom validation was performed to explore practical aspects of this approach. Noisy projection datasets simulating a patient undergoing at least one fully 3D movement during acquisition were compiled from various projections of the digital Hoffman brain phantom. Motion correction was then applied to the reconstructed studies. Correction success was assessed visually and quantitatively. Resilience with respect to subset order and missing data in the reconstruction and updating stages, detector geometry considerations, and the need for implementing an iterated correction were assessed in the process. Effective correction of the corrupted studies was achieved. Visually, artifactual regions in the reconstructed slices were suppressed and/or removed. Typically the ratio of mean square difference between the corrected and reference studies compared to that between the corrupted and reference studies was > 2. Although components of the motions are missed using a single-head implementation, improvement was still evident in the correction. The need for multiple iterations in the approach was small due to the bulk of misalignment errors being corrected in the first pass. Dispersion of subsets for reconstructing and updating the partial reconstruction appears to give optimal correction. Further validation is underway using triple-head physical phantom data. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Specific absorption rate variation in a brain phantom due to exposure by a 3G mobile phone: problems in dosimetry.

    Science.gov (United States)

    Behari, J; Nirala, Jay Prakash

    2013-12-01

    A specific absorption rate (SAR) measurements system has been developed for compliance testing of personal mobile phone in a brain phantom material contained in a Perspex box. The volume of the box has been chosen corresponding to the volume of a small rat and illuminated by a 3G mobile phone frequency (1718.5 MHz), and the emitted radiation directed toward brain phantom .The induced fields in the phantom material are measured. Set up to lift the plane carrying the mobile phone is run by a pulley whose motion is controlled by a stepper motor. The platform is made to move at a pre-determined rate of 2 degrees per min limited up to 20 degrees. The measured data for induced fields in various locations are used to compute corresponding SAR values and inter comparison obtained. These data are also compared with those when the mobile phone is placed horizontally with respect to the position of the animal. The SAR data is also experimentally obtained by measuring a rise in temperature due to this mobile exposures and data compared with those obtained in the previous set. To seek a comparison with the safety criteria same set of measurements are performed in 10 g phantom material contained in a cubical box. These results are higher than those obtained with the knowledge of induced field measurements. It is concluded that SAR values are sensitive to the angular position of the moving platform and are well below the safety criteria prescribed for human exposure. The data are suggestive of having a fresh look to understand the mode of electromagnetic field -bio interaction.

  17. Averaged head phantoms from magnetic resonance images of Korean children and young adults

    Science.gov (United States)

    Han, Miran; Lee, Ae-Kyoung; Choi, Hyung-Do; Jung, Yong Wook; Park, Jin Seo

    2018-02-01

    Increased use of mobile phones raises concerns about the health risks of electromagnetic radiation. Phantom heads are routinely used for radiofrequency dosimetry simulations, and the purpose of this study was to construct averaged phantom heads for children and young adults. Using magnetic resonance images (MRI), sectioned cadaver images, and a hybrid approach, we initially built template phantoms representing 6-, 9-, 12-, 15-year-old children and young adults. Our subsequent approach revised the template phantoms using 29 averaged items that were identified by averaging the MRI data from 500 children and young adults. In females, the brain size and cranium thickness peaked in the early teens and then decreased. This is contrary to what was observed in males, where brain size and cranium thicknesses either plateaued or grew continuously. The overall shape of brains was spherical in children and became ellipsoidal by adulthood. In this study, we devised a method to build averaged phantom heads by constructing surface and voxel models. The surface model could be used for phantom manipulation, whereas the voxel model could be used for compliance test of specific absorption rate (SAR) for users of mobile phones or other electronic devices.

  18. Effect of scatter and attenuation correction in ROI analysis of brain perfusion scintigraphy. Phantom experiment and clinical study in patients with unilateral cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Bai, J. [Keio Univ., Tokyo (Japan). 21st Century Center of Excellence Program; Hashimoto, J.; Kubo, A. [Keio Univ., Tokyo (Japan). Dept. of Radiology; Ogawa, K. [Hosei Univ., Tokyo (Japan). Dept. of Electronic Informatics; Fukunaga, A.; Onozuka, S. [Keio Univ., Tokyo (Japan). Dept. of Neurosurgery

    2007-07-01

    The aim of this study was to evaluate the effect of scatter and attenuation correction in region of interest (ROI) analysis of brain perfusion single-photon emission tomography (SPECT), and to assess the influence of selecting the reference area on the calculation of lesion-to-reference count ratios. Patients, methods: Data were collected from a brain phantom and ten patients with unilateral internal carotid artery stenosis. A simultaneous emission and transmission scan was performed after injecting {sup 123}I-iodoamphetamine. We reconstructed three SPECT images from common projection data: with scatter correction and nonuniform attenuation correction, with scatter correction and uniform attenuation correction, and with uniform attenuation correction applied to data without scatter correction. Regional count ratios were calculated by using four different reference areas (contralateral intact side, ipsilateral cerebellum, whole brain and hemisphere). Results: Scatter correction improved the accuracy of measuring the count ratios in the phantom experiment. It also yielded marked difference in the count ratio in the clinical study when using the cerebellum, whole brain or hemisphere as the reference. Difference between nonuniform and uniform attenuation correction was not significant in the phantom and clinical studies except when the cerebellar reference was used. Calculation of the lesion-to-normal count ratios referring the same site in the contralateral hemisphere was not dependent on the use of scatter correction or transmission scan-based attenuation correction. Conclusion: Scatter correction was indispensable for accurate measurement in most of the ROI analyses. Nonuniform attenuation correction is not necessary when using the reference area other than the cerebellum. (orig.)

  19. 77 FR 48550 - Sears Holdings Management Corporation, A Division of Sears Holdings Corporation, Hoffman Estates...

    Science.gov (United States)

    2012-08-14

    ... services to India; and that the workers at the Hoffman Estates, Illinois facility are similarly situated as... Determination Regarding Application for Reconsideration By application dated April 20, 2012, a worker requested administrative reconsideration of the negative determination regarding workers' eligibility to apply for Trade...

  20. Magnetoencephalography Phantom Comparison and Validation: Hospital Universiti Sains Malaysia (HUSM) Requisite.

    Science.gov (United States)

    Omar, Hazim; Ahmad, Alwani Liyan; Hayashi, Noburo; Idris, Zamzuri; Abdullah, Jafri Malin

    2015-12-01

    Magnetoencephalography (MEG) has been extensively used to measure small-scale neuronal brain activity. Although it is widely acknowledged as a sensitive tool for deciphering brain activity and source localisation, the accuracy of the MEG system must be critically evaluated. Typically, on-site calibration with the provided phantom (Local phantom) is used. However, this method is still questionable due to the uncertainty that may originate from the phantom itself. Ideally, the validation of MEG data measurements would require cross-site comparability. A simple method of phantom testing was used twice in addition to a measurement taken with a calibrated reference phantom (RefPhantom) obtained from Elekta Oy of Helsinki, Finland. The comparisons of two main aspects were made in terms of the dipole moment (Qpp) and the difference in the dipole distance from the origin (d) after the tests of statistically equal means and variance were confirmed. The result of Qpp measurements for the LocalPhantom and RefPhantom were 978 (SD24) nAm and 988 (SD32) nAm, respectively, and were still optimally within the accepted range of 900 to 1100 nAm. Moreover, the shifted d results for the LocalPhantom and RefPhantom were 1.84 mm (SD 0.53) and 2.14 mm (SD 0.78), respectively, and these values were below the maximum acceptance range of within 5.0 mm of the nominal dipole location. The Local phantom seems to outperform the reference phantom as indicated by the small standard error of the former (SE 0.094) compared with the latter (SE 0.138). The result indicated that HUSM MEG system was in excellent working condition in terms of the dipole magnitude and localisation measurements as these values passed the acceptance limits criteria of the phantom test.

  1. Direct cone beam SPECT reconstruction with camera tilt

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.

    1993-01-01

    A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)

  2. Passive multi-frequency brain imaging and hyperthermia irradiation apparatus: the use of dielectric matching materials in phantom experiments

    International Nuclear Information System (INIS)

    Gouzouasis, Ioannis; Karathanasis, Konstantinos; Karanasiou, Irene; Uzunoglu, Nikolaos

    2009-01-01

    In this paper a hybrid system able to provide focused microwave radiometry and deep brain hyperthermia is experimentally tested. The system's main module is an ellipsoidal conductive wall cavity which acts as a beam former, focusing the electromagnetic energy on the medium of interest. The system's microwave radiometry component has extensively been studied theoretically and experimentally in the past few years with promising results. In this work, further investigation concerning the improvement of the hybrid system's focusing properties is conducted. Specifically, microwave radiometry and hyperthermia experiments are performed using water phantoms surrounded by dielectric layers used as matching material to enhance detection/penetration depth and spatial resolution. The results showed that the dielectric material reduces the reflected electromagnetic energy on the air–phantom interface, resulting in improved temperature resolution and higher detection or penetration of the energy when microwave radiometry and hyperthermia are applied respectively

  3. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval

    Science.gov (United States)

    Sugiura, T.; Hirata, H.; Hand, J. W.; van Leeuwen, J. M. J.; Mizushina, S.

    2011-10-01

    Clinical trials of hypothermic brain treatment for newborn babies are currently hindered by the difficulty in measuring deep brain temperatures. As one of the possible methods for noninvasive and continuous temperature monitoring that is completely passive and inherently safe is passive microwave radiometry (MWR). We have developed a five-band microwave radiometer system with a single dual-polarized, rectangular waveguide antenna operating within the 1-4 GHz range and a method for retrieving the temperature profile from five radiometric brightness temperatures. This paper addresses (1) the temperature calibration for five microwave receivers, (2) the measurement experiment using a phantom model that mimics the temperature profile in a newborn baby, and (3) the feasibility for noninvasive monitoring of deep brain temperatures. Temperature resolutions were 0.103, 0.129, 0.138, 0.105 and 0.111 K for 1.2, 1.65, 2.3, 3.0 and 3.6 GHz receivers, respectively. The precision of temperature estimation (2σ confidence interval) was about 0.7°C at a 5-cm depth from the phantom surface. Accuracy, which is the difference between the estimated temperature using this system and the measured temperature by a thermocouple at a depth of 5 cm, was about 2°C. The current result is not satisfactory for clinical application because the clinical requirement for accuracy must be better than 1°C for both precision and accuracy at a depth of 5 cm. Since a couple of possible causes for this inaccuracy have been identified, we believe that the system can take a step closer to the clinical application of MWR for hypothermic rescue treatment.

  4. MLE [Maximum Likelihood Estimator] reconstruction of a brain phantom using a Monte Carlo transition matrix and a statistical stopping rule

    International Nuclear Information System (INIS)

    Veklerov, E.; Llacer, J.; Hoffman, E.J.

    1987-10-01

    In order to study properties of the Maximum Likelihood Estimator (MLE) algorithm for image reconstruction in Positron Emission Tomographyy (PET), the algorithm is applied to data obtained by the ECAT-III tomograph from a brain phantom. The procedure for subtracting accidental coincidences from the data stream generated by this physical phantom is such that he resultant data are not Poisson distributed. This makes the present investigation different from other investigations based on computer-simulated phantoms. It is shown that the MLE algorithm is robust enough to yield comparatively good images, especially when the phantom is in the periphery of the field of view, even though the underlying assumption of the algorithm is violated. Two transition matrices are utilized. The first uses geometric considerations only. The second is derived by a Monte Carlo simulation which takes into account Compton scattering in the detectors, positron range, etc. in the detectors. It is demonstrated that the images obtained from the Monte Carlo matrix are superior in some specific ways. A stopping rule derived earlier and allowing the user to stop the iterative process before the images begin to deteriorate is tested. Since the rule is based on the Poisson assumption, it does not work well with the presently available data, although it is successful wit computer-simulated Poisson data

  5. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  6. ROC [Receiver Operating Characteristics] study of maximum likelihood estimator human brain image reconstructions in PET [Positron Emission Tomography] clinical practice

    International Nuclear Information System (INIS)

    Llacer, J.; Veklerov, E.; Nolan, D.; Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J.

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of 18 F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab

  7. WE-EF-303-06: Feasibility of PET Image-Based On-Line Proton Beam-Range Verification with Simulated Uniform Phantom and Human Brain Studies

    International Nuclear Information System (INIS)

    Lou, K; Sun, X; Zhu, X; Grosshans, D; Clark, J; Shao, Y

    2015-01-01

    Purpose: To study the feasibility of clinical on-line proton beam range verification with PET imaging Methods: We simulated a 179.2-MeV proton beam with 5-mm diameter irradiating a PMMA phantom of human brain size, which was then imaged by a brain PET with 300*300*100-mm 3 FOV and different system sensitivities and spatial resolutions. We calculated the mean and standard deviation of positron activity range (AR) from reconstructed PET images, with respect to different data acquisition times (from 5 sec to 300 sec with 5-sec step). We also developed a technique, “Smoothed Maximum Value (SMV)”, to improve AR measurement under a given dose. Furthermore, we simulated a human brain irradiated by a 110-MeV proton beam of 50-mm diameter with 0.3-Gy dose at Bragg peak and imaged by the above PET system with 40% system sensitivity at the center of FOV and 1.7-mm spatial resolution. Results: MC Simulations on the PMMA phantom showed that, regardless of PET system sensitivities and spatial resolutions, the accuracy and precision of AR were proportional to the reciprocal of the square root of image count if image smoothing was not applied. With image smoothing or SMV method, the accuracy and precision could be substantially improved. For a cylindrical PMMA phantom (200 mm diameter and 290 mm long), the accuracy and precision of AR measurement could reach 1.0 and 1.7 mm, with 100-sec data acquired by the brain PET. The study with a human brain showed it was feasible to achieve sub-millimeter accuracy and precision of AR measurement with acquisition time within 60 sec. Conclusion: This study established the relationship between count statistics and the accuracy and precision of activity-range verification. It showed the feasibility of clinical on-line BR verification with high-performance PET systems and improved AR measurement techniques. Cancer Prevention and Research Institute of Texas grant RP120326, NIH grant R21CA187717, The Cancer Center Support (Core) Grant CA016672

  8. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    Science.gov (United States)

    Raghunath, N.; Faber, T. L.; Suryanarayanan, S.; Votaw, J. R.

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  9. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    International Nuclear Information System (INIS)

    Raghunath, N; Faber, T L; Suryanarayanan, S; Votaw, J R

    2009-01-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  10. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, N; Faber, T L; Suryanarayanan, S; Votaw, J R [Department of Radiology, Emory University Hospital, 1364 Clifton Road, N.E. Atlanta, GA 30322 (United States)], E-mail: John.Votaw@Emory.edu

    2009-02-07

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  11. Quantitation of specific binding ratio in 123I-FP-CIT SPECT: accurate processing strategy for cerebral ventricular enlargement with use of 3D-striatal digital brain phantom.

    Science.gov (United States)

    Furuta, Akihiro; Onishi, Hideo; Amijima, Hizuru

    2018-06-01

    This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of 123 I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digital brain (SDB) phantom. Ventricular enlargement was simulated by three-dimensional extensions in a 3D-SDB phantom comprising segments representing the striatum, ventricle, brain parenchyma, and skull bone. The Evans Index (EI) was measured in 3D-SDB phantom images of an enlarged ventricle. Projection data sets were generated from the 3D-SDB phantoms with blurring, scatter, and attenuation. Images were reconstructed using the ordered subset expectation maximization (OSEM) algorithm and corrected for attenuation, scatter, and resolution recovery. We bundled DaTView (Southampton method) with the CSF-Mask processing software for SBR. We assessed SBR with the use of various coefficients (f factor) of the CSF-Mask. Specific binding ratios of 1, 2, 3, 4, and 5 corresponded to SDB phantom simulations with true values. Measured SBRs > 50% that were underestimated with EI increased compared with the true SBR and this trend was outstanding at low SBR. The CSF-Mask improved 20% underestimates and brought the measured SBR closer to the true values at an f factor of 1.0 despite an increase in EI. We connected the linear regression function (y = - 3.53x + 1.95; r = 0.95) with the EI and f factor using root-mean-square error. Processing with CSF-Mask generates accurate quantitative SBR from dopamine transporter SPECT images of patients with ventricular enlargement.

  12. Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-05-01

    Full Text Available Introduction: Prostheses for upper-limb amputees are currently controlled by either myoelectric or peripheral neural signals. Performance and dexterity of these devices is still limited, particularly when it comes to controlling hand function. Movement-related brain activity might serve as a complementary bio-signal for motor control of hand prosthesis. Methods: We introduced a methodology to implant a cortical interface without direct exposure of the brain surface in an upper-limb amputee. This bi-directional interface enabled us to explore the cortical physiology following long-term transhumeral amputation. In addition, we investigated neurofeedback of electrocorticographic brain activity related to the patient’s motor imagery to open his missing hand, i.e. phantom hand movement, for real-time control of a virtual hand prosthesis.Results: Both event-related brain potentials and cortical stimulation revealed mutually overlapping cortical representations of the phantom hand. Phantom hand movements could be robustly classified and the patient required only three training sessions to gain reliable control of the virtual hand prosthesis in an online closed-loop paradigm that discriminated between hand opening and rest. Conclusion: Epidural implants may constitute a powerful and safe alternative communication pathway between the brain and external devices for upper-limb amputees, thereby facilitating the integrated use of different signal sources for more intuitive and specific control of multi-functional devices in clinical use.

  13. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    Science.gov (United States)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  14. Construction of realistic phantoms from patient images and a commercial three-dimensional printer.

    Science.gov (United States)

    Leng, Shuai; Chen, Baiyu; Vrieze, Thomas; Kuhlmann, Joel; Yu, Lifeng; Alexander, Amy; Matsumoto, Jane; Morris, Jonathan; McCollough, Cynthia H

    2016-07-01

    The purpose of this study was to use three-dimensional (3-D) printing techniques to construct liver and brain phantoms having realistic pathologies, anatomic structures, and heterogeneous backgrounds. Patient liver and head computed tomography (CT) images were segmented into tissue, vessels, liver lesion, white and gray matter, and cerebrospinal fluid (CSF). Stereolithography files of each object were created and imported into a commercial 3-D printer. Printing materials were assigned to each object after test scans, which showed that the printing materials had CT numbers ranging from 70 to 121 HU at 120 kV. Printed phantoms were scanned on a CT scanner and images were evaluated. CT images of the liver phantom had measured CT numbers of 77.8 and 96.6 HU for the lesion and background, and 137.5 to 428.4 HU for the vessels channels, which were filled with iodine solutions. The difference in CT numbers between lesions and background (18.8 HU) was representative of the low-contrast values needed for optimization tasks. The liver phantom background was evaluated with Haralick features and showed similar texture between patient and phantom images. CT images of the brain phantom had CT numbers of 125, 134, and 108 HU for white matter, gray matter, and CSF, respectively. The CT number differences were similar to those in patient images.

  15. Symbol phantoms

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Hongo, Syozo; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures for computation of organ doses exposed to internal and/or external radiation sources. One method is to make mathematical phantoms on the basis of ORNL mathematical phantoms. Parameters to specify organs of Japanese mathematical phantom are determined by interpolations of the ORNL data, which define the organs of Caucasian males and females of various ages, i.e. new born, 1, 5, 10, 15 years and adult, with survey data for Japanese physiques. Another procedure is to build 'symbol phantoms' for the Japanese public. The concept and its method of the symbol phantom enables us to make a phantom for an individual when we have all of his transversal section images obtained by a medical imaging device like MRI, and thus we may achieve more realistic phantoms for Japanese public than the mathematical phantoms. Both studies are in progress in NIRS. (author)

  16. Studies on Phantom Vibration and Ringing Syndrome among Postgraduate Students

    Directory of Open Access Journals (Sweden)

    Atul Kumar Goyal

    2015-03-01

    Full Text Available Phantom vibrations and ringing of mobile phones are prevalent hallucinations in the general population. They might be considered as a normal brain mechanism. The aim of this study was to establish the prevalence of Phantom vibrations and ringing syndrome among students and to assess factors associated it. The survey of 300 postgraduate students belonging to different field of specialization was conducted at Kurukshetra University. 74% of students were found to have both Phantom vibrations and ringing syndrome. Whereas 17% of students felt Phantom vibration exclusively and 4% students face only Phantom ringing syndrome. Both the syndrome occurs more fervent in students who kept their mobile phone in shirt or jean pocket than to who kept mobile in handbag. 75% of students felt vibration or ringing even when the phone is switched off or phone was not in their pocket. Also the frequency of both the syndrome is directly proportional to the duration of mobile phone use and person emotional behavior. Although most of students agree that the Phantom syndrome did not bother them but some students deals with anxiety when they feel symptoms associated with Phantom syndrome. By using mobile phones in proper way, one can avoid these syndromes, or at least can ameliorate the symptoms.

  17. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

  18. Conversion of ICRP male reference phantom to polygon-surface phantom

    International Nuclear Information System (INIS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-01-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  19. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    list-mode dynamic RAMLA (LM-DRAMA). The system sensitivity was 21.4 cps kBq-1 as measured using an 18F line source aligned with the center of the transaxial FOV. High count rate capability was evaluated using a cylindrical phantom (20 cm diameter  ×  70 cm length), resulting in 249 kcps in true and 27.9 kcps at 11.9 kBq ml-1 at the peak count in a noise equivalent count rate (NECR_2R). Single-event data acquisition and on-the-fly software coincidence detection performed well, exceeding 25 Mcps and 2.3 Mcps for single and coincidence count rates, respectively. Using phantom studies, we also demonstrated its imaging capabilities by means of a 3D Hoffman brain phantom and an ultra-micro hot-spot phantom. The images obtained were of acceptable quality for high-resolution determination. As clinical and pre-clinical studies, we imaged brains of a human and of small animals.

  20. The role of nuclear in the US and in the world. Interview with Donald Hoffman

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2014-07-15

    Donald Hoffman, outgoing president of the American Nuclear Society (ANS), talks to NucNet about the economics of nuclear energy in the US, the role of SMRs and the need for 'fair and appropriate' 123 Agreements (Section 123 of the United States Atomic Energy Act of 1954, titled 'Cooperation With Other Nations', establishes an agreement for cooperation as a prerequisite for nuclear deals between the US and any other nation. Such agreements are called '123 Agreements'). (orig.)

  1. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT plans already planned on treatment planning system (TPS for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA. All the gantry angles were set to zero in case of slab phantom while set to as it is in actual plan in case of other two phantoms. All the plans were delivered by linear accelerator (LA and dose for each plan was measured by 0.13 cc ion chamber. The percentage (% variations between planned and measured doses were calculated and analyzed. Results: The mean % variations between planned and measured doses of all IMRT quality assurance (QA plans were as 0.65 (Standard deviation (SD: 0.38 with confidence limit (CL 1.39, 1.16 (SD: 0.61 with CL 2.36 and 2.40 (SD: 0.86 with CL 4.09 for slab phantom, acrylic head phantom and goat head phantom respectively. Conclusion: Higher dose variations found in case of real tissue phantom compare to results in case of slab and acrylic body phantoms. The algorithm AAA does not calculate doses in heterogeneous medium as accurate as it calculates in homogeneous medium. Therefore the patient specific absolute dosimetry should be done using heterogeneous phantom mimicking density wise as well as design wise to the actual human body.  

  2. Radiological response and dosimetry in physical phantom of head and neck for 3D conformational radiotherapy; Resposta radiologica e dosimetria em phantom fisico de cabeca e pescoco para radioterapia conformacional 3D

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa

    2013-07-01

    Phantoms are tools for simulation of organs and tissues of the human body in radiology and radiotherapy. This thesis describes the development, validation and, most importantly, the use of a physical head and neck phantom in radiology and radiotherapy, with the purpose of evaluating dose distribution using Gafchromic EBT2 film in 15 MV 3D conformal radiotherapy. The work was divided in two stages, (1) development of new equivalent tissues and improvement of the physical phantom, and (2) use of the physical phantom in experimental dosimetry studies. In phase (1) parameters such as mass density, chemical composition of tissues, anatomical and biometric measurements were considered, as well as aspects of imaging by computed tomography (CT) and radiological response representation in Hounsfield Units (HU), which were compared with human data. Radiological experiments of in-phantom simulated brain pathologies were also conducted. All those results matched human-sourced data, therefore the physical phantom is a suitable simulator that may be used to enhance radiological protocols and education in medical imaging. The main objective in phase (2) was to evaluate the spatial dose distribution in a brain tumor simulator inserted inside the head and neck phantom developed by the Ionizing Radiation Research Group (NRI), exposed to 15 MV 3D conformal radiotherapy, for internal dose assessment. Radiation planning was based on CT images of the physical phantom with a brain tumor simulator made with equivalent material. The treatment planning system (TPS), CAT3D software, used CT images and prescribed a dose of 200 cGy, distributed in three fields of radiation, in a T-shaped pattern. The TPS covered the planning treatment volume (PTV) with 97% of the prescribed dose. A solid water phantom and radiochromic Gafchromic EBT2 film were used for calibration procedures, generating a dose response curve as a function of optical density (OD). After calibration and irradiation, the film

  3. Hoffman's syndrome: pseudohypertrophic myopathy as initial manifestation of hypothyroidism. Case report Síndrome de Hoffman: miopatia pseudohipertrófica como manifestação inicial de hipotireoidismo. Relato de caso

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Rocha Vasconcellos

    2003-09-01

    Full Text Available The frequency of myopathy in hypothyroidism ranges from 30 to 80%. The major symptoms related are weakness, muscular cramps and myalgia. The pseudohyperthrophic form is called Hoffman's syndrome. The electrophysiological study reveals myopathy, neuropathy or mixed pattern. Laboratorial investigation generally shows increased levels of muscle enzymes and low serum thyroid hormones, with thyrotrophic-stimulating hormone (TSH elevated. The treatment consists in hormone replacement and the prognosis is good in most of the cases. We report an adult male who developed muscular cramps, myalgia, weakness, pseudohyperthrophy, associated with facial edema and alteration of his voice. The muscle enzymes were increased and T4 was undetectable with a raised level of TSH. The myopathy was the initial manifestation of hypothyroidism in this case.A frequência de miopatia no hipotireoidismo varia de 30% a 80%. Os sintomas relacionados ao acometimento muscular são fraqueza, cãimbras e mialgias. A forma pseudo-hipertrófica é denominada síndrome de Hoffman. O estudo eletrofisiológico pode revelar padrão miopático, neuropático ou misto. A investigação laboratorial em geral mostra aumento das enzimas musculares e redução dos níveis de hormônio tireoidiano com TSH elevado. O tratamento consiste na reposição oral de hormônio e o prognóstico é bom na maioria dos casos. Relatamos o caso de um adulto que apresentou cãimbras, mialgia, fraqueza com pseudohipertrofia muscular associados a edema facial e alteração da voz. As enzimas musculares estavam elevadas e o nível de T4 foi indetectável com aumento de TSH. A miopatia foi manifestação inicial de hipotireoidismo neste caso.

  4. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Perks, J; Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States); Lucero, S [UC Davis, Davis, CA (United States)

    2015-06-15

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specifically mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.

  5. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Zhong, Zhong; Takeda, Tohoru; Gigante, Giovanni E.

    2012-01-01

    The introduction of water, physiological, or iodine as contrast agents is shown to enhance minute image features in synchrotron-based X-ray diffraction radiographic and tomographic imaging. Anatomical features of rat kidney, such as papillary ducts, ureter, renal artery and renal vein are clearly distinguishable. Olfactory bulb, olfactory tact, and descending bundles of the rat brain are visible with improved contrast. - Highlights: ► Distinguishable anatomical structures features of rat kidney and rat brain are acquired with Sy-DEI in planar mode. ► Images of a small brain phantom and cylindrical phantom are acquired in tomography mode (Sy-DEI-CT) with contrast agents. ► Sy-DEI and Sy-DEI-CT techniques provide new source of information related to biological microanatomy.

  6. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    Science.gov (United States)

    Jonasson, L. S.; Axelsson, J.; Riklund, K.; Boraxbekk, C. J.

    2017-07-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function resolution modeling provided the most accurate data. For striatum, the BP changed by 0.08% for every 1% volume change, but for smaller volumes such as the posterior caudate the artificial change in BP was as high as 0.7% per 1% volume change. A simple gross correction for striatal volume is unsatisfactory, as the amplitude of the PVE on the BP differs depending on where in the striatum the change occurred. Therefore, to correctly interpret age-related longitudinal changes in the BP, we must account for volumetric changes also within a structure, rather than across the whole volume. The present 3D-printing technology, combined with the wall removal method, can be implemented to gain knowledge about the predictable bias introduced by the PVE differences in uptake regions of varying shape.

  7. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  8. Control volume based hydrocephalus research; a phantom study

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  9. Computer tomographic phantom

    International Nuclear Information System (INIS)

    Lonn, A.H.R.; Jacobsen, D.R.; Zech, D.J.

    1988-01-01

    A reference phantom for computer tomography employs a flexible member with means for urging the flexible member into contact along the curved surface of the lumbar region of a human patient. In one embodiment, the reference phantom is pre-curved in an arc greater than required. Pressure from the weight of a patient laying upon the reference phantom is effective for straightening out the curvature sufficiently to achieve substantial contact along the lumbar region. The curvature of the reference phantom may be additionally distorted by a resilient pad between the resilient phantom and a table for urging it into contact with the lumbar region. In a second embodiment of the invention, a flexible reference phantom is disposed in a slot in the top of a resilient cushion. The resilient cushion and reference phantom may be enclosed in a flexible container. A partially curved reference phantom in a slot in a resilient cushion is also contemplated. (author)

  10. Fabrication and characterization of a 3-D non-homogeneous tissue-like mouse phantom for optical imaging

    Science.gov (United States)

    Avtzi, Stella; Zacharopoulos, Athanasios; Psycharakis, Stylianos; Zacharakis, Giannis

    2013-11-01

    In vivo optical imaging of biological tissue not only requires the development of new theoretical models and experimental procedures, but also the design and construction of realistic tissue-mimicking phantoms. However, most of the phantoms available currently in literature or the market, have either simple geometrical shapes (cubes, slabs, cylinders) or when realistic in shape they use homogeneous approximations of the tissue or animal under investigation. The goal of this study is to develop a non-homogeneous realistic phantom that matches the anatomical geometry and optical characteristics of the mouse head in the visible and near-infrared spectral range. The fabrication of the phantom consisted of three stages. Initially, anatomical information extracted from either mouse head atlases or structural imaging modalities (MRI, XCT) was used to design a digital phantom comprising of the three main layers of the mouse head; the brain, skull and skin. Based on that, initial prototypes were manufactured by using accurate 3D printing, allowing complex objects to be built layer by layer with sub-millimeter resolution. During the second stage the fabrication of individual molds was performed by embedding the prototypes into a rubber-like silicone mixture. In the final stage the detailed phantom was constructed by loading the molds with epoxy resin of controlled optical properties. The optical properties of the resin were regulated by using appropriate quantities of India ink and intralipid. The final phantom consisted of 3 layers, each one with different absorption and scattering coefficient (μa,μs) to simulate the region of the mouse brain, skull and skin.

  11. Radiological response and dosimetry in physical phantom of head and neck for 3D conformational radiotherapy

    International Nuclear Information System (INIS)

    Thompson, Larissa

    2013-01-01

    Phantoms are tools for simulation of organs and tissues of the human body in radiology and radiotherapy. This thesis describes the development, validation and, most importantly, the use of a physical head and neck phantom in radiology and radiotherapy, with the purpose of evaluating dose distribution using Gafchromic EBT2 film in 15 MV 3D conformal radiotherapy. The work was divided in two stages, (1) development of new equivalent tissues and improvement of the physical phantom, and (2) use of the physical phantom in experimental dosimetry studies. In phase (1) parameters such as mass density, chemical composition of tissues, anatomical and biometric measurements were considered, as well as aspects of imaging by computed tomography (CT) and radiological response representation in Hounsfield Units (HU), which were compared with human data. Radiological experiments of in-phantom simulated brain pathologies were also conducted. All those results matched human-sourced data, therefore the physical phantom is a suitable simulator that may be used to enhance radiological protocols and education in medical imaging. The main objective in phase (2) was to evaluate the spatial dose distribution in a brain tumor simulator inserted inside the head and neck phantom developed by the Ionizing Radiation Research Group (NRI), exposed to 15 MV 3D conformal radiotherapy, for internal dose assessment. Radiation planning was based on CT images of the physical phantom with a brain tumor simulator made with equivalent material. The treatment planning system (TPS), CAT3D software, used CT images and prescribed a dose of 200 cGy, distributed in three fields of radiation, in a T-shaped pattern. The TPS covered the planning treatment volume (PTV) with 97% of the prescribed dose. A solid water phantom and radiochromic Gafchromic EBT2 film were used for calibration procedures, generating a dose response curve as a function of optical density (OD). After calibration and irradiation, the film

  12. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging

    International Nuclear Information System (INIS)

    Surry, K J M; Austin, H J B; Fenster, A; Peters, T M

    2004-01-01

    Poly(vinyl alcohol) cryogel, PVA-C, is presented as a tissue-mimicking material, suitable for application in magnetic resonance (MR) imaging and ultrasound imaging. A 10% by weight poly(vinyl alcohol) in water solution was used to form PVA-C, which is solidified through a freeze-thaw process. The number of freeze-thaw cycles affects the properties of the material. The ultrasound and MR imaging characteristics were investigated using cylindrical samples of PVA-C. The speed of sound was found to range from 1520 to 1540 m s -1 , and the attenuation coefficients were in the range of 0.075-0.28 dB (cm MHz) -1 . T1 and T2 relaxation values were found to be 718-1034 ms and 108-175 ms, respectively. We also present applications of this material in an anthropomorphic brain phantom, a multi-volume stenosed vessel phantom and breast biopsy phantoms. Some suggestions are made for how best to handle this material in the phantom design and development process

  13. Phantom position dependence

    International Nuclear Information System (INIS)

    Thorson, M.R.; Endres, G.W.R.

    1981-01-01

    Sensitivity of the Hanford dosimeter response to its position relative to the phantom and the neutron source has always been recognized. A thorough investigation was performed to quantify dosimeter response according to: (a) dosimeter position on phantom, (b) dosimeter distance from phantom, and (c) angular relationship of dosimeter relative to neutron source and phantom. Results were obtained for neutron irradiation at several different energies

  14. Evolution and applications of radiochemical procedures. From Marie Curie to Darleane Hoffman

    International Nuclear Information System (INIS)

    Contis, E. T.; Rengan, K.

    1996-01-01

    Marie Curie carried out the first radiochemical separations which eventually lead to the discovery of polonium and radium, two new elements. Nearly a century later Darleane Hoffman and her collaborators are devising new radiochemical separation procedures for studying the chemical properties of newly discovered transactinide elements. Safety requirements as well as changes necessitated by fast decaying radionuclides have transformed the nature of radiochemical separations. Further, applications in a wide variety of areas such as analysis of trace elements in food to radioimmunoassay have broadened the use of radiochemical separations. Examples of some early, historically important, radiochemical separations are described in this article. In addition, recent trends in the use of radiochemical separations in neutron activation analysis, in dating applications, in fission product studies and in the study of transactinide elements are briefly described with specific examples. (author). 52 refs

  15. Gamma knife simulation using the MCNP4C code and the zubal phantom and comparison with experimental data

    International Nuclear Information System (INIS)

    Gholami, S.; Kamali Asl, A.; Aghamiri, M.; Allahverdi, M.

    2010-01-01

    Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.

  16. Gamma Knife Simulation Using the MCNP4C Code and the Zubal Phantom and Comparison with Experimental Data

    Directory of Open Access Journals (Sweden)

    Somayeh Gholami

    2010-06-01

    Full Text Available Introduction: Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.

  17. A novel phantom design for emission tomography enabling scatter- and attenuation-''free'' single-photon emission tomography imaging

    International Nuclear Information System (INIS)

    Larsson, S.A.; Johansson, L.; Jonsson, C.; Pagani, M.; Jacobsson, H.

    2000-01-01

    A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99m TcO 4 - depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain ''ideal'' experimental images (essentially built up by primary photons) for comparison with

  18. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.; Dias, Humberto G.

    2013-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  19. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.

    2015-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  20. Monte Carlo simulation studies on scintillation detectors and image reconstruction of brain-phantom tumors in TOFPET

    Directory of Open Access Journals (Sweden)

    Mondal Nagendra

    2009-01-01

    Full Text Available This study presents Monte Carlo Simulation (MCS results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu 2 SiO 5 : Ce in short LSO, Barium Fluoride (BaF 2 and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr 3 scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF 2 and LaBr 3 , although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom.

  1. Phantom pain and phantom sensations in upper limb amputees : an epidemiological study

    NARCIS (Netherlands)

    Kooijman, CM; Dijkstra, PU; Geertzen, JHB; Elzinga, A; van der Schans, CP

    Phantom pain in subjects with an amputated limb is a well-known problem. However, estimates of the prevalence of phantom pain differ considerably in the literature. Various factors associated with phantom pain have been described including pain before the amputation, gender, dominance, and time

  2. Individual virtual phantom reconstruction for organ dosimetry based on standard available phantoms

    International Nuclear Information System (INIS)

    Babapour Mofrad, F.; Aghaeizadeh Zoroofi, R.; Abbaspour Tehran Fard, A.; Akhlaghpoor, Sh.; Chen, Y. W.; Sato, Y.

    2010-01-01

    In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo Simulation and phantoms have been used in many works before. The shape, size and volume In organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framework for constructing individual phantom for dosimetry was performed on five liver CT scan data sets of Japanese normal individuals. The Zubal phantom was used as an original phantom to be adjusted by each individual data set. This registration was done by Spherical Harmonics and Thin-Plate Spline methods. Hausdorff distance was calculated for each case. Results: Result of Hausdorff distance for five lndividual phantoms showed that before registration ranged from 140.9 to 192.1, and after registration it changed to 52.5 to 76.7. This was caused by Index similarity ranged from %56.4 to %70.3. Conclusion: A new and automatic three-dimensional (3D) phantom construction approach was-suggested for individual internal dosimetry simulation via Spherical Harmonics and Thin-Plate Spline methods. The results showed that the Individual comparable phantom can be calculated with acceptable accuracy using geometric registration. This method could be used for race-specific statistical phantom modeling with major application in nuclear medicine for absorbed dose calculation.

  3. 'It's All Done With Mirrors': V.S. Ramachandran and the Material Culture of Phantom Limb Research.

    Science.gov (United States)

    Guenther, Katja

    2016-07-01

    This article examines the material culture of neuroscientist Vilayanur S. Ramachandran's research into phantom limbs. In the 1990s Ramachandran used a 'mirror box' to 'resurrect' phantom limbs and thus to treat the pain that often accompanied them. The experimental success of his mirror therapy led Ramachandran to see mirrors as a useful model of brain function, a tendency that explains his attraction to work on 'mirror neurons'. I argue that Ramachandran's fascination with and repeated appeal to the mirror can be explained by the way it allowed him to confront a perennial problem in the mind and brain sciences, that of the relationship between a supposedly immaterial mind and a material brain. By producing what Ramachandran called a 'virtual reality', relating in varied and complex ways to the material world, the mirror reproduced a form of psycho-physical parallelism and dualistic ontology, while conforming to the materialist norms of neuroscience today.

  4. Possible association between phantom vibration syndrome and occupational burnout

    Directory of Open Access Journals (Sweden)

    Chen CP

    2014-12-01

    Full Text Available Chao-Pen Chen,1 Chi-Cheng Wu,2 Li-Ren Chang,3 Yu-Hsuan Lin4 1Department of Education, National Taiwan University Hospital, 2Department of Family Medicine, Min-Sheng General Hospital, Taoyuan City, 3Department of Psychiatry, National Taiwan University, College of Medicine, 4Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan Background: Phantom vibration syndrome (PVS and phantom ringing syndrome (PRS occur in many cell phone users. Previous studies have indicated an association between PVS/PRS and job stress. The aim of this study was to determine if PVS/PRS were also associated with occupational burnout.Methods: This was a cross-sectional study of 384 employees of a high-tech company in northern Taiwan. They all completed a phantom vibration and ringing questionnaire, the Hospital Anxiety and Depression Scale, and the Chinese version of the Occupational Burnout Inventory.Results: Significantly more women and people with at least a college education were in the population with PRS and PVS, respectively. Anxiety and depression had no associations with PVS/PRS. Higher scores for personal fatigue, job fatigue, and service target fatigue had an independent impact on the presence of PVS, but only a higher score for service target fatigue had an independent impact on the presence of PRS.Conclusion: The independent association between work-related burnout and PVS/PRS suggests that PVS/PRS may be a harbinger of mental stress or a component of the clinical burnout syndrome, and may even be a more convenient and accurate predictor of occupational burnout. Keywords: phantom vibration syndrome, phantom ringing syndrome, occupational burnout

  5. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  7. Brain volume measurement using three-dimensional magnetic resonance images

    International Nuclear Information System (INIS)

    Ishimaru, Yoshihiro

    1996-01-01

    This study was designed to validate accurate measurement method of human brain volume using three dimensional (3D) MRI data on a workstation, and to establish optimal correcting method of human brain volume on diagnosis of brain atrophy. 3D MRI data were acquired by fast SPGR sequence using 1.5 T MR imager. 3D MRI data were segmented by region growing method and 3D image was displayed by surface rendering method on the workstation. Brain volume was measured by the volume measurement function of the workstation. In order to validate the accurate measurement method, phantoms and a specimen of human brain were examined. Phantom volume was measured by changing the lower level of threshold value. At the appropriate threshold value, percentage of error of phantoms and the specimen were within 0.6% and 0.08%, respectively. To establish the optimal correcting method, 130 normal volunteers were examined. Brain volumes corrected with height weight, body surface area, and alternative skull volume were evaluated. Brain volume index, which is defined as dividing brain volume by alternative skull volume, had the best correlation with age (r=0.624, p<0.05). No gender differences was observed in brain volume index in contrast to in brain volume. The clinical usefulness of this correcting method for brain atrophy diagnosis was evaluated in 85 patients. Diagnosis by 2D spin echo MR images was compared with brain volume index. Diagnosis of brain atrophy by 2D MR image was concordant with the evaluation by brain volume index. These results indicated that this measurement method had high accuracy, and it was important to set the appropriate threshold value. Brain volume index was the appropriate indication for evaluation of human brain volume, and was considered to be useful for the diagnosis of brain atrophy. (author)

  8. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    Science.gov (United States)

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  9. Phantom pain after eye amputation

    DEFF Research Database (Denmark)

    Rasmussen, Marie L R; Prause, Jan U; Toft, Peter B

    2011-01-01

    Purpose: To characterize the quality of phantom pain, its intensity and frequency following eye amputation. Possible triggers and relievers of phantom pain are investigated. Methods: The hospital database was searched using surgery codes for patients who received ocular evisceration, enucleation...... was conducted by a trained interviewer. Results: Of the 173 patients in the study, 39 experienced phantom pain. The median age of patients who had experienced phantom pain was 45 years (range: 19–88). Follow-up time from eye amputation to participation in the investigation was 4 years (range: 2–46). Phantom...... scale, ranging from 0 to 100, was 36 (range: 1–89). One-third of the patients experienced phantom pain every day. Chilliness, windy weather and psychological stress/fatigue were the most commonly reported triggers for pain. Conclusions: Phantom pain after eye amputation is relatively common. The pain...

  10. Study of the CT peripheral dose variation in a head phantom

    International Nuclear Information System (INIS)

    Mourao, Arnaldo P.

    2009-01-01

    The computed tomography is frequently used for the brain diagnosis and it is responsible for the largest doses in the head among the X-ray examinations. Established indexes define a reference dose value for a scan routine; however the dose value has a longitudinal variation in the scan. The purpose of this study is to investigate the variation of the peripheral doses in the head scan using a polymethylmethacrylate head phantom. The studies were performed using two different computed tomography scanners in the option single slice with a routine of a head adult protocol (i.e. default protocol in the scanner software). Radiation doses were measured using thermoluminescent dosimeter (LiF - TLD) rod model, distributed inside the PMMA head phantom in periphery and central area. The results allowed registering the variation dose curve, longitudinally the scan, for the peripheral area and to determine the MSAD value. The peripheral maximum dose value measured can be compared with the maximum dose value in the center of the phantom in each different routine (author)

  11. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    Science.gov (United States)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  12. Clinical evaluation of FMPSPGR sequence of the brain MR imaging

    International Nuclear Information System (INIS)

    Takahashi, Mitsuyuki; Hasegawa, Makoto; Mori, Naohiko; Yamanoguchi, Minoru; Matsubara, Tadashi

    1998-01-01

    In order to apply the FMPSPGR (fast multi planar spoiled GRASS) method to diagnose brain diseases, authors obtained the optimal condition for imaging by the phantom experiments and examined the clinical usefulness. Six kinds of the phantom, which were 4 of diluted Gd solution with different concentrations, olive oil and physiological saline solution were used. From the phantom experiments, TR/TE/FR=300/3.3/90 degrees was the optimal condition. The evaluation of the clinical images was performed on the same section by the ST method and the FMPSPGR method. Fifteen patients (9 men and 6 women, aged from 17 to 80 years) suspected of brain diseases were examined, including 8 of cerebral infarction, 1 of pontine infarction, 1 of brain contusion, 1 of intracerebral bleeding and 4 of brain tumors. Four cases of brain tumor were evaluated on the contrast imaging and the others were on the plain imaging. In the plain imaging, the FMPSPGR method was better than the SE method on the low signal region in the T1 weighted imaging. Furthermore, in the contrast imaging, it could give more clear images of the lesion in anterior cranial pit by suppressing artifacts of blood flow. The present results indicate that the FMPSPGR method is useful to diagnose brain diseases. (K.H.)

  13. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    International Nuclear Information System (INIS)

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan

    2015-01-01

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  14. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  15. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  16. Construction of Chinese reference female phantom

    International Nuclear Information System (INIS)

    Sheng Yinxiangzi; Liu Lixing; Xia Xiaobin

    2013-01-01

    In this study, a Voxel-based Chinese Reference female Phantom (VCRP-woman) is developed from an individual female phantom which was based on high resolution cross-sectional color photographs. An in-house C ++ program was developed to adjust the phantom. Finally, a reference female phantom with have the same height, weighte and similar organs masses with the Chinese reference adult female data. The adjusted phantom is then imported to MCNPX to calculate the organs absorbed dose and effective dose conversion coefficients. Results are compared between VCRP-woman and the ICRP adult reference female phantom. (authors)

  17. 21. Phantom pain.

    NARCIS (Netherlands)

    Wolff, A.P.; Vanduynhoven, E.; Kleef, M. van; Huygen, F.; Pope, J.E.; Mekhail, N.

    2011-01-01

    Phantom pain is pain caused by elimination or interruption of sensory nerve impulses by destroying or injuring the sensory nerve fibers after amputation or deafferentation. The reported incidence of phantom limb pain after trauma, injury or peripheral vascular diseases is 60% to 80%. Over half the

  18. Diffusion Capillary Phantom vs. Human Data: Outcomes for Reconstruction Methods Depend on Evaluation Medium

    Directory of Open Access Journals (Sweden)

    Sarah D. Lichenstein

    2016-09-01

    Full Text Available Purpose: Diffusion MRI provides a non-invasive way of estimating structural connectivity in the brain. Many studies have used diffusion phantoms as benchmarks to assess the performance of different tractography reconstruction algorithms and assumed that the results can be applied to in vivo studies. Here we examined whether quality metrics derived from a common, publically available, diffusion phantom can reliably predict tractography performance in human white matter tissue. Material and Methods: We compared estimates of fiber length and fiber crossing among a simple tensor model (diffusion tensor imaging, a more complicated model (ball-and-sticks and model-free (diffusion spectrum imaging, generalized q-sampling imaging reconstruction methods using a capillary phantom and in vivo human data (N=14. Results: Our analysis showed that evaluation outcomes differ depending on whether they were obtained from phantom or human data. Specifically, the diffusion phantom favored a more complicated model over a simple tensor model or model-free methods for resolving crossing fibers. On the other hand, the human studies showed the opposite pattern of results, with the model-free methods being more advantageous than model-based methods or simple tensor models. This performance difference was consistent across several metrics, including estimating fiber length and resolving fiber crossings in established white matter pathways. Conclusions: These findings indicate that the construction of current capillary diffusion phantoms tends to favor complicated reconstruction models over a simple tensor model or model-free methods, whereas the in vivo data tends to produce opposite results. This brings into question the previous phantom-based evaluation approaches and suggests that a more realistic phantom or simulation is necessary to accurately predict the relative performance of different tractography reconstruction methods. Acronyms: BSM: ball-and-sticks model; d

  19. Mathematical development of a 10 years old child phantom for use in internal dosimetry

    International Nuclear Information System (INIS)

    Deus, S.F.; Poston, J.W.; Watanabe, S.

    1989-08-01

    The main objectives of this work are: 1) to develop a project of a mathematical phantom representing as far as possible a child of 10 years old and 2)to use this phantom as a base for the specific absorbed fractions (SAF) calculations in the internal organs and skeleton due to the radioisotopes most used in nuclear medicine. This phantom was similar in shape to the Fisher and Snyder one, but several changes were introduced to make the phantom more realistic. Those changes included the addition of a neck region, puting the arms outside the trunk region, changes in the trunk, head and genitalia regions shapes. Several modifications were also done in the skeleton. For instance, the head bones, rib cage, pelvis, vertebral column, scapula, clavicles and the arms and legs bones were made very close to the real anatomic shapes. Some internal organs as the brain, lungs, liver, small and large intestines were also changed as a consenquence of the above modifications. In all those cases, the changes were made not only in the shapes but also in the organs and bones position in such a way to be more representative of the 10 years old anatomic age. Estimates of the SAF obtained by the use of this phantom, resulted, as expected, significantly different from those obtained by the use of a simpler model. In other words, the ratio between the SAF in the organs of the phantom developed in this project and the SAF in the organs of the phantom similar to the adult (obtained by reducing each region of the adult phantom by the use of appropriate factor) vary from 0.37 to 5. Those differences and their meaning are also discussed. (author) [pt

  20. Organ dose evaluation for CT scans based on in-phantom measurements

    International Nuclear Information System (INIS)

    Liu Haikuan; Zhuo Weihai; Chen Bo; Yi Yanling; Li Dehong

    2009-01-01

    Objective: To explore the organ doses and their distributions in different projections of CT scans. Methods: The CT values were measured and the linear absorption coefficients were derived for the main organs of the anthropomorphic phantom to compare with the normal values of human beings. The radiophotoluminescent glass dosimeters were set into various tissues or organs of the phantom for mimic measurements of the organ doses undergoing the head, chest, abdomen and pelvis CT scans, respectively. Results: The tissue equivalence of the phantom used in this study was good. The brain had the largest organ dose undergoing the head CT scan. The organ doses in thyroid, breast, lung and oesophagus were relatively large in performing the chest CT scan, while the liver, stomach, colon and lung had relatively hrge organ doses in abdomen CT practice. The doses in bone surface and colon exceeded by 50 mGy in a single pelvis CT scan. Conclusions: The organ doses and their distributions largely vary with different projections of CT scans. The organ doses of colon, bone marrow,gonads and bladder are fairly large in performing pelvis CT scan, which should be paid attention in the practice. (authors)

  1. An innovative phantom for quantitative and qualitative investigation of advanced x-ray imaging technologies

    International Nuclear Information System (INIS)

    Chiarot, C B; Siewerdsen, J H; Haycocks, T; Moseley, D J; Jaffray, D A

    2005-01-01

    Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D-spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy-from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery. (note)

  2. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L; Lee, Choonik; Bolch, Wesley E

    2007-01-01

    phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR(TM) and Rhinoceros(TM), were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB(TM) code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm-equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and

  3. SU-E-T-114: Analysis of MLC Errors On Gamma Pass Rates for Patient-Specific and Conventional Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, D; Ehler, E [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: To evaluate whether a 3D patient-specific phantom is better able to detect known MLC errors in a clinically delivered treatment plan than conventional phantoms. 3D printing may make fabrication of such phantoms feasible. Methods: Two types of MLC errors were introduced into a clinically delivered, non-coplanar IMRT, partial brain treatment plan. First, uniformly distributed random errors of up to 3mm, 2mm, and 1mm were introduced into the MLC positions for each field. Second, systematic MLC-bank position errors of 5mm, 3.5mm, and 2mm due to simulated effects of gantry and MLC sag were introduced. The original plan was recalculated with these errors on the original CT dataset as well as cylindrical and planar IMRT QA phantoms. The original dataset was considered to be a perfect 3D patient-specific phantom. The phantoms were considered to be ideal 3D dosimetry systems with no resolution limitations. Results: Passing rates for Gamma Index (3%/3mm and no dose threshold) were calculated on the 3D phantom, cylindrical phantom, and both on a composite and field-by-field basis for the planar phantom. Pass rates for 5mm systematic and 3mm random error were 86.0%, 89.6%, 98% and 98.3% respectively. For 3.5mm systematic and 2mm random error the pass rates were 94.7%, 96.2%, 99.2% and 99.2% respectively. For 2mm systematic error with 1mm random error the pass rates were 99.9%, 100%, 100% and 100% respectively. Conclusion: A 3D phantom with the patient anatomy is able to discern errors, both severe and subtle, that are not seen using conventional phantoms. Therefore, 3D phantoms may be beneficial for commissioning new treatment machines and modalities, patient-specific QA and end-to-end testing.

  4. SU-E-T-114: Analysis of MLC Errors On Gamma Pass Rates for Patient-Specific and Conventional Phantoms

    International Nuclear Information System (INIS)

    Sterling, D; Ehler, E

    2015-01-01

    Purpose: To evaluate whether a 3D patient-specific phantom is better able to detect known MLC errors in a clinically delivered treatment plan than conventional phantoms. 3D printing may make fabrication of such phantoms feasible. Methods: Two types of MLC errors were introduced into a clinically delivered, non-coplanar IMRT, partial brain treatment plan. First, uniformly distributed random errors of up to 3mm, 2mm, and 1mm were introduced into the MLC positions for each field. Second, systematic MLC-bank position errors of 5mm, 3.5mm, and 2mm due to simulated effects of gantry and MLC sag were introduced. The original plan was recalculated with these errors on the original CT dataset as well as cylindrical and planar IMRT QA phantoms. The original dataset was considered to be a perfect 3D patient-specific phantom. The phantoms were considered to be ideal 3D dosimetry systems with no resolution limitations. Results: Passing rates for Gamma Index (3%/3mm and no dose threshold) were calculated on the 3D phantom, cylindrical phantom, and both on a composite and field-by-field basis for the planar phantom. Pass rates for 5mm systematic and 3mm random error were 86.0%, 89.6%, 98% and 98.3% respectively. For 3.5mm systematic and 2mm random error the pass rates were 94.7%, 96.2%, 99.2% and 99.2% respectively. For 2mm systematic error with 1mm random error the pass rates were 99.9%, 100%, 100% and 100% respectively. Conclusion: A 3D phantom with the patient anatomy is able to discern errors, both severe and subtle, that are not seen using conventional phantoms. Therefore, 3D phantoms may be beneficial for commissioning new treatment machines and modalities, patient-specific QA and end-to-end testing

  5. Evolution of dosimetric phantoms

    International Nuclear Information System (INIS)

    Reddy, A.R.

    2010-01-01

    In this oration evolution of the dosimetric phantoms for radiation protection and for medical use is briefly reviewed. Some details of the development of Indian Reference Phantom for internal dose estimation are also presented

  6. Long-term high-dose oral morphine in phantom limb pain with no addiction risk

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2015-01-01

    Full Text Available Chronic phantom limb pain (PLP is a type of neuropathic pain, which is located in the missing/amputated limb. Phantom pain is difficult to treat as the exact basis of pain mechanism is still unknown. Various methods of treatment for PLP have been described, including pharmacological (NSAIDs, opioids, antiepileptic, antidepressants and non-pharmacological (TENS, sympathectomy, deep brain stimulation and motor cortex stimulation. Opioids are used for the treatment of neuropathic pain and dose of opioid is determined based on its effect and thus there is no defined ceiling dose for opioids. We report a case where a patient receiving high-dose oral morphine for chronic cancer pain did not demonstrate signs of addiction.

  7. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    Science.gov (United States)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  8. NOTE: An innovative phantom for quantitative and qualitative investigation of advanced x-ray imaging technologies

    Science.gov (United States)

    Chiarot, C. B.; Siewerdsen, J. H.; Haycocks, T.; Moseley, D. J.; Jaffray, D. A.

    2005-11-01

    Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D—spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy—from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.

  9. Monte Carlo and experimental internal radionuclide dosimetry in RANDO head phantom

    International Nuclear Information System (INIS)

    Ghahraman Asl, Ruhollah; Nasseri, Shahrokh; Parach, Ali Asghar; Zakavi, Seyed Rasoul; Momennezhad Mehdi; Davenport, David

    2015-01-01

    Monte Carlo techniques are widely employed in internal dosimetry to obtain better estimates of absorbed dose distributions from irradiation sources in medicine. Accurate 3D absorbed dosimetry would be useful for risk assessment of inducing deterministic and stochastic biological effects for both therapeutic and diagnostic radiopharmaceuticals in nuclear medicine. The goal of this study was to experimentally evaluate the use of Geant4 application for tomographic emission (GATE) Monte Carlo package for 3D internal dosimetry using the head portion of the RANDO phantom. GATE package (version 6.1) was used to create a voxel model of a human head phantom from computed tomography (CT) images. Matrix dimensions consisted of 319 × 216 × 30 voxels (0.7871 × 0.7871 × 5 mm 3 ). Measurements were made using thermoluminescent dosimeters (TLD-100). One rod-shaped source with 94 MBq activity of 99m Tc was positioned in the brain tissue of the posterior part of the human head phantom in slice number 2. The results of the simulation were compared with measured mean absorbed dose per cumulative activity (S value). Absorbed dose was also calculated for each slice of the digital model of the head phantom and dose volume histograms (DVHs) were computed to analyze the absolute and relative doses in each slice from the simulation data. The S-values calculated by GATE and TLD methods showed a significant correlation (correlation coefficient, r 2 ≥ 0.99, p < 0.05) with each other. The maximum relative percentage differences were ≤14 % for most cases. DVHs demonstrated dose decrease along the direction of movement toward the lower slices of the head phantom. Based on the results obtained from GATE Monte Carlopackage it can be deduced that a complete dosimetry simulation study, from imaging to absorbed dose map calculation, is possible to execute in a single framework.

  10. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    International Nuclear Information System (INIS)

    Johnson, Perry B.; Geyer, Amy; Borrego, David; Ficarrotta, Kayla; Johnson, Kevin; Bolch, Wesley E.

    2011-01-01

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific and patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences

  11. 3D Printing Openable Imaging Phantom Design

    International Nuclear Information System (INIS)

    Kim, Myoung Keun; Won, Jun Hyeok; Lee, Seung Wook

    2017-01-01

    The purpose of this study is to design an openable phantom that can replace the internal measurement bar used for contrast comparison in order to increase the efficiency of manufacturing imaging phantom used in the medical industry and to improve convenience using 3D printer. Phantom concept design, 3D printing, and Image reconstruction were defined as the scope of the thesis. Also, we study metal artifact reduction with openable phantom. We have designed a Openable phantom using 3D printing, and have investigated metal artifact reduction after inserting a metallic material inside the phantom. The openable phantom can be adjusted at any time to suit the user's experiment and can be easily replaced and useful.

  12. The subresolution DaTSCAN phantom: a cost-effective, flexible alternative to traditional phantom technology.

    Science.gov (United States)

    Taylor, Jonathan C; Vennart, Nicholas; Negus, Ian; Holmes, Robin; Bandmann, Oliver; Lo, Christine; Fenner, John

    2018-03-01

    The Alderson striatal phantom is frequently used to assess I-FP-CIT (Ioflupane) image quality and to test semi-quantification software. However, its design is associated with a number of limitations, in particular: unrealistic image appearances and inflexibility. A new physical phantom approach is proposed on the basis of subresolution phantom technology. The design incorporates thin slabs of attenuating material generated through additive manufacturing, and paper sheets with radioactive ink patterns printed on their surface, created with a conventional inkjet printer. The paper sheets and attenuating slabs are interleaved before scanning. Use of thin layers ensures that they cannot be individually resolved on reconstructed images. An investigation was carried out to demonstrate the performance of such a phantom in producing simplified I-FP-CIT uptake patterns. Single photon emission computed tomography imaging was carried out on an assembled phantom designed to mimic a healthy patient. Striatal binding ratio results and linear striatal dimensions were calculated from the reconstructed data and compared with that of 22 clinical patients without evidence of Parkinsonian syndrome, determined from clinical follow-up. Striatal binding ratio results for the fully assembled phantom were: 3.1, 3.3, 2.9 and 2.6 for the right caudate, left caudate, right putamen and right caudate, respectively. All were within two SDs of results derived from a cohort of clinical patients. Medial-lateral and anterior-posterior dimensions of the simulated striata were also within the range of values seen in clinical data. This work provides the foundation for the generation of a range of more clinically realistic, physical phantoms.

  13. Construction of Korean adult voxel phantoms for radiation dosimetry and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik

    2002-08-15

    stomach, thyroid, tests depending on the photon energy and the irradiation direction. These are caused by difference in trunk thickness between MIRD-type phantom and Korean voxel phantom, and differences of organ positions in the body. In the second example, dose to a brain tumor for a patient undergoing boronneutron- capture therapy(BNCT) was examined using head part of the KRMAN to demonstrate utility of voxel phantoms precisely describing an individual patient. In conclusion, although the MIRD-type phantoms are considered satisfactory for general purposes of external radiation protection dosimetry, partial modifications are needed for location and shape of some specific organs to improve accuracy of organ equivalent doses. Voxel phantoms can be used as tools providing references dosimetric values in this process. Since organ equivalent doses in internal exposure mode are sensitive to organ size and relative location, use of voxel phantoms is vital to enhance accuracy of patient dose assessment in therapy level of nuclear medicine. Refinement of KRMAN and KRWOMAN using additional image data is prerequisite of further applications. Development of methodology for accelerating voxel Monte Carlo calculations are also essential.

  14. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps.

    Science.gov (United States)

    Kirkwood, Melissa L; Arbique, Gary M; Guild, Jeffrey B; Zeng, Katie; Xi, Yin; Rectenwald, John; Anderson, Jon A; Timaran, Carlos

    2018-03-12

    Radiation to the interventionalist's brain during fluoroscopically guided interventions (FGIs) may increase the incidence of cerebral neoplasms. Lead equivalent surgical caps claim to reduce radiation brain doses by 50% to 95%. We sought to determine the efficacy of the RADPAD (Worldwide Innovations & Technologies, Lenexa, Kan) No Brainer surgical cap (0.06 mm lead equivalent at 90 kVp) in reducing radiation dose to the surgeon's and trainee's head during FGIs and to a phantom to determine relative brain dose reductions. Optically stimulated, luminescent nanoDot detectors (Landauer, Glenwood, Ill) inside and outside of the cap at the left temporal position were used to measure cap attenuation during FGIs. To check relative brain doses, nanoDot detectors were placed in 15 positions within an anthropomorphic head phantom (ATOM model 701; CIRS, Norfolk, Va). The phantom was positioned to represent a primary operator performing femoral access. Fluorography was performed on a plastic scatter phantom at 80 kVp for an exposure of 5 Gy reference air kerma with or without the hat. For each brain location, the percentage dose reduction with the hat was calculated. Means and standard errors were calculated using a pooled linear mixed model with repeated measurements. Anatomically similar locations were combined into five groups: upper brain, upper skull, midbrain, eyes, and left temporal position. This was a prospective, single-center study that included 29 endovascular aortic aneurysm procedures. The average procedure reference air kerma was 2.6 Gy. The hat attenuation at the temporal position for the attending physician and fellow was 60% ± 20% and 33% ± 36%, respectively. The equivalent phantom measurements demonstrated an attenuation of 71% ± 2.0% (P < .0001). In the interior phantom locations, attenuation was statistically significant for the skull (6% ± 1.4%) and upper brain (7.2% ± 1.0%; P < .0001) but not for the middle brain (1.4% ± 1.0%; P = .15

  15. Calibrating Doppler imaging of preterm intracerebral circulation using a microvessel flow phantom

    Directory of Open Access Journals (Sweden)

    Fleur A. Camfferman

    2015-01-01

    Full Text Available Introduction. Preterm infants are born during critical stages of brain development, in which the adaptive capacity of the fetus to extra-uterine environment is limited. Inadequate brain perfusion has been directly linked to preterm brain damage. Advanced high-frequency ultrasound probes and processing algorithms allow visualization of microvessels and depiction of regional variation. To assess whether visualization and flow velocity estimates of preterm cerebral perfusion using Doppler techniques is accurate, we conducted an in vitro experiment using a microvessel flow phantom.Materials and Methods. An in-house developed flow phantom containing two microvessels (inner diameter 200 and 700 microns with attached syringe pumps, filled with blood-mimicking fluid, was used to generate non-pulsatile perfusion of variable flow. Measurements were performed using an Esaote MyLab70 scanner.Results. Microvessel mimicking catheters with velocities as low as 1cm/sec were adequately visualized with a linear ultrasound probe. With a convex probe velocities <2 cm/sec could not be depicted. Within settings, velocity and diameter measurements were highly reproducible (intra class correlation 0.997 (95% CI 0.996-0.998 and 0.914 (0.864-0.946. Overall, mean velocity was overestimated up to 3-fold, especially in high velocity ranges. Significant differences were seen in velocity measurements when using steer angle correction and in vessel diameter estimation (p<0.05.Conclusion. Visualization of microvessel size catheters mimicking small brain vessels is feasible. Reproducible velocity and diameter results can be obtained, although important overestimation of the values is observed. Before velocity estimates of microcirculation can find its use in clinical practice, calibration of the ultrasound machine for any specific Doppler purpose is essential. The ultimate goal is to develop a sonographic tool that can be used for objective study of regional perfusion in routine

  16. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC

  17. MRI quality assurance using the ACR phantom in a multi-unit imaging center

    International Nuclear Information System (INIS)

    Ihalainen, Toni M.; Kuusela, Linda J.; Savolainen, Sauli E.; Loennroth, Nadja T.; Peltonen, Juha I.; Uusi-Simola, Jouni K.; Timonen, Marjut H.; Sipilae, Outi E.

    2011-01-01

    Background. Magnetic resonance imaging (MRI) instrumentation is vulnerable to technical and image quality problems, and quality assurance is essential. In the studied regional imaging center the long-term quality assurance has been based on MagNET phantom measurements. American College of Radiology (ACR) has an accreditation program including a standardized image quality measurement protocol and phantom. The ACR protocol includes recommended acceptance criteria for clinical sequences and thus provides possibility to assess the clinical relevance of quality assurance. The purpose of this study was to test the ACR MRI phantom in quality assurance of a multi-unit imaging center. Material and methods. The imaging center operates 11 MRI systems of three major manufacturers with field strengths of 3.0 T, 1.5 T and 1.0 T. Images of the ACR phantom were acquired using a head coil following the ACR scanning instructions. Both ACR T1- and T2-weighted sequences as well as T1- and T2-weighted brain sequences in clinical use at each site were acquired. Measurements were performed twice. The images were analyzed and the results were compared with the ACR acceptance levels. Results. The acquisition procedure with the ACR phantom was faster than with the MagNET phantoms. On the first and second measurement rounds 91% and 73% of the systems passed the ACR test. Measured slice thickness accuracies were not within the acceptance limits in site T2 sequences. Differences in the high contrast spatial resolution between the ACR and the site sequences were observed. In 3.0 T systems the image intensity uniformity was slightly lower than the ACR acceptance limit. Conclusion. The ACR method was feasible in quality assurance of a multi-unit imaging center and the ACR protocol could replace the MagNET phantom tests. An automatic analysis of the images will further improve cost-effectiveness and objectiveness of the ACR protocol

  18. A computer-simulated liver phantom (virtual liver phantom) for multidetector computed tomography evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Funama, Yoshinori [Kumamoto University, Department of Radiological Sciences, School of Health Sciences, Kumamoto (Japan); Awai, Kazuo; Nakayama, Yoshiharu; Liu, Da; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Miyazaki, Osamu; Goto, Taiga [Hitachi Medical Corporation, Tokyo (Japan); Hori, Shinichi [Gate Tower Institute of Image Guided Therapy, Osaka (Japan)

    2006-04-15

    The purpose of study was to develop a computer-simulated liver phantom for hepatic CT studies. A computer-simulated liver phantom was mathematically constructed on a computer workstation. The computer-simulated phantom was calibrated using real CT images acquired by an actual four-detector CT. We added an inhomogeneous texture to the simulated liver by referring to CT images of chronically damaged human livers. The mean CT number of the simulated liver was 60 HU and we added numerous 5-to 10-mm structures with 60{+-}10 HU/mm. To mimic liver tumors we added nodules measuring 8, 10, and 12 mm in diameter with CT numbers of 60{+-}10, 60{+-}15, and 60{+-}20 HU. Five radiologists visually evaluated similarity of the texture of the computer-simulated liver phantom and a real human liver to confirm the appropriateness of the virtual liver images using a five-point scale. The total score was 44 in two radiologists, and 42, 41, and 39 in one radiologist each. They evaluated that the textures of virtual liver were comparable to those of human liver. Our computer-simulated liver phantom is a promising tool for the evaluation of the image quality and diagnostic performance of hepatic CT imaging. (orig.)

  19. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, Hanna; Seppaelae, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Savolainen, Sauli [Department of Physics, POB 64, FI-00014 University of Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo, POB 1000, FI-02044 VTT (Finland); Kortesniemi, Mika, E-mail: hanna.koivunoro@helsinki.f [HUS Helsinki Medical Imaging Center, University of Helsinki, POB 340, FI-00029 HUS (Finland)

    2010-06-21

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The {sup 55}Mn(n,{gamma}) and {sup 197}Au(n,{gamma}) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The {sup 55}Mn(n,{gamma}) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size ({<=}0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  20. The design and implementation of a motion correction scheme for neurological PET

    International Nuclear Information System (INIS)

    Bloomfield, Peter M; Spinks, Terry J; Reed, Johnny; Schnorr, Leonard; Westrip, Anthony M; Livieratos, Lefteris; Fulton, Roger; Jones, Terry

    2003-01-01

    increasing from 4.7 mm at the 0 mm position, to 4.8 mm, 20 mm offset, in the vertical direction. The results from the multi-line source phantom with ±5 deg. rotations showed a maximum degradation in FWHM, when compared with the stationary phantom, of 0.6 mm, in the horizontal direction, and 0.3 mm in the vertical direction. The corresponding values for the larger rotation, ±15 deg., were 0.7 mm and 1.1 mm, respectively. The performance of the method was confirmed with a Hoffman brain phantom moved continuously, and a clinical acquisition using [ 11 C]raclopride (normal volunteer). A visual comparison of both the motion and non-motion corrected images of the Hoffman brain phantom clearly demonstrated the efficacy of the method. A sample time-activity curve extracted from the clinical study showed irregularities prior to motion correction, which were removed after correction. A method has been developed to accurately monitor the motion of the head during a neurological PET acquisition, and correct for this motion prior to image reconstruction. The method has been demonstrated to be accurate and does not add significantly to either the acquisition or the subsequent data processing

  1. Effect of phantom voxelization in CT simulations

    International Nuclear Information System (INIS)

    Goertzen, Andrew L.; Beekman, Freek J.; Cherry, Simon R.

    2002-01-01

    In computer simulations of x-ray CT systems one can either use continuous geometrical descriptions for phantoms or a voxelized representation. The voxelized approach allows arbitrary phantoms to be defined without being confined to geometrical shapes. The disadvantage of the voxelized approach is that inherent errors are introduced due to the phantom voxelization. To study effects of phantom discretization, analytical CT simulations were run for a fan-beam geometry with phantom voxel sizes ranging from 0.0625 to 2 times the reconstructed pixel size and noise levels corresponding to 10 3 -10 7 photons per detector pixel prior to attenuation. The number of rays traced per detector element was varied from 1 to 16. Differences in the filtered backprojection images caused by changing the phantom matrix sizes and number of rays traced were assessed by calculating the difference between reconstructions based on the finest matrix and coarser matrix simulations. In noise free simulations, all phantom matrix sizes produced a measurable difference in comparison with the finest phantom matrix used. When even a small amount of noise was added to the projection data, the differences due to the phantom discretization were masked by the noise, and in all cases there was almost no improvement by using a phantom matrix that was more than twice as fine as the reconstruction matrix. No substantial improvement was achieved by tracing more than 4 rays per detector pixel

  2. A general class of preconditioners for statistical iterative reconstruction of emission computed tomography

    International Nuclear Information System (INIS)

    Chinn, G.; Huang, S.C.

    1997-01-01

    A major drawback of statistical iterative image reconstruction for emission computed tomography is its high computational cost. The ill-posed nature of tomography leads to slow convergence for standard gradient-based iterative approaches such as the steepest descent or the conjugate gradient algorithm. In this paper new theory and methods for a class of preconditioners are developed for accelerating the convergence rate of iterative reconstruction. To demonstrate the potential of this class of preconditioners, a preconditioned conjugate gradient (PCG) iterative algorithm for weighted least squares reconstruction (WLS) was formulated for emission tomography. Using simulated positron emission tomography (PET) data of the Hoffman brain phantom, it was shown that the convergence rate of the PCG can reduce the number of iterations of the standard conjugate gradient algorithm by a factor of 2--8 times depending on the convergence criterion

  3. An anthropomorphic multimodality (CT/MRI) head phantom prototype for end-to-end tests in ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gallas, Raya R.; Huenemohr, Nora; Runz, Armin; Niebuhr, Nina I.; Greilich, Steffen [German Cancer Research Center (DKFZ), Heidelberg (Germany). Div. of Medical Physics in Radiation Oncology; National Center for Radiation Research in Oncology, Heidelberg (Germany). Heidelberg Institute of Radiation Oncology (HIRO); Jaekel, Oliver [German Cancer Research Center (DKFZ), Heidelberg (Germany). Div. of Medical Physics in Radiation Oncology; National Center for Radiation Research in Oncology, Heidelberg (Germany). Heidelberg Institute of Radiation Oncology (HIRO); Heidelberg University Hospital (Germany). Dept. of Radiation Oncology; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany)

    2015-07-01

    With the increasing complexity of external beam therapy ''end-to-end'' tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom. It is initially intended for ion radiotherapy but may also be used in photon therapy. As basis for the anthropomorphic head shape we have used a set of patient computed tomography (CT) images. The phantom recipient consisting of epoxy resin was produced by using a 3D printer. It includes a nasal air cavity, a cranial bone surrogate (based on dipotassium phosphate), a brain surrogate (based on agarose gel), and a surrogate for cerebrospinal fluid (based on distilled water). Furthermore, a volume filled with normoxic dosimetric gel mimicked a tumor. The entire workflow of a proton therapy could be successfully applied to the phantom. CT measurements revealed CT numbers agreeing with reference values for all surrogates in the range from 2 HU to 978 HU (120 kV). MRI showed the desired contrasts between the different phantom materials especially in T2-weighted images (except for the bone surrogate). T2-weighted readout of the polymerization gel dosimeter allowed approximate range verification.

  4. An anthropomorphic multimodality (CT/MRI) head phantom prototype for end-to-end tests in ion radiotherapy

    International Nuclear Information System (INIS)

    Gallas, Raya R.; Huenemohr, Nora; Runz, Armin; Niebuhr, Nina I.; Greilich, Steffen; Jaekel, Oliver

    2015-01-01

    With the increasing complexity of external beam therapy ''end-to-end'' tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom. It is initially intended for ion radiotherapy but may also be used in photon therapy. As basis for the anthropomorphic head shape we have used a set of patient computed tomography (CT) images. The phantom recipient consisting of epoxy resin was produced by using a 3D printer. It includes a nasal air cavity, a cranial bone surrogate (based on dipotassium phosphate), a brain surrogate (based on agarose gel), and a surrogate for cerebrospinal fluid (based on distilled water). Furthermore, a volume filled with normoxic dosimetric gel mimicked a tumor. The entire workflow of a proton therapy could be successfully applied to the phantom. CT measurements revealed CT numbers agreeing with reference values for all surrogates in the range from 2 HU to 978 HU (120 kV). MRI showed the desired contrasts between the different phantom materials especially in T2-weighted images (except for the bone surrogate). T2-weighted readout of the polymerization gel dosimeter allowed approximate range verification.

  5. An anthropomorphic multimodality (CT/MRI) head phantom prototype for end-to-end tests in ion radiotherapy.

    Science.gov (United States)

    Gallas, Raya R; Hünemohr, Nora; Runz, Armin; Niebuhr, Nina I; Jäkel, Oliver; Greilich, Steffen

    2015-12-01

    With the increasing complexity of external beam therapy "end-to-end" tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom. It is initially intended for ion radiotherapy but may also be used in photon therapy. As basis for the anthropomorphic head shape we have used a set of patient computed tomography (CT) images. The phantom recipient consisting of epoxy resin was produced by using a 3D printer. It includes a nasal air cavity, a cranial bone surrogate (based on dipotassium phosphate), a brain surrogate (based on agarose gel), and a surrogate for cerebrospinal fluid (based on distilled water). Furthermore, a volume filled with normoxic dosimetric gel mimicked a tumor. The entire workflow of a proton therapy could be successfully applied to the phantom. CT measurements revealed CT numbers agreeing with reference values for all surrogates in the range from 2 HU to 978 HU (120 kV). MRI showed the desired contrasts between the different phantom materials especially in T2-weighted images (except for the bone surrogate). T2-weighted readout of the polymerization gel dosimeter allowed approximate range verification. Copyright © 2015. Published by Elsevier GmbH.

  6. The Japanese adult, child and infant phantoms

    International Nuclear Information System (INIS)

    Cristy, Mark; Egbert, Stephen D.

    1987-01-01

    The mathematical phantom for adult Japanese atomic-bomb survivors is a modification of the 57-kg ORNL (Oak Ridge National Laboratory) phantom for Western 15-year-old males and adult females. For younger Japanese survivors mathematical phantoms were similarly modified from the 18 and 9 kg ORNL phantoms for Western 5- and 1-year-olds, respectively. To make the phantom correspond more closely with dimensions and organ sizes recommended for Japanese adults by Maruyama and coworkers (cf E184), changes were made in the size of the lungs, the pancreas, the thyroid, and the testes and in the length of the legs. Also, the head-and-neck region was modified to improve the dose estimates for the thyroid from external radiation, after the ideas of Nagarajan et al. The arms were separated from the trunk to represent more accurately the shielding by the phantom in external exposures. Furthermore, provisions were made to provide a phantom in a kneeling posture. The elemental composition of the tissues was changed to that given by Kerr. The resulting phantom is slightly smaller in mass (55 kg). Details of these changes are given

  7. Phantom cosmologies and fermions

    International Nuclear Information System (INIS)

    Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M

    2008-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid

  8. A statistically defined anthropomorphic software breast phantom

    International Nuclear Information System (INIS)

    Lau, Beverly A.; Reiser, Ingrid; Nishikawa, Robert M.; Bakic, Predrag R.

    2012-01-01

    Purpose: Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Methods: Phantoms with (0.5 mm) 3 voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm) 3 voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm 2 regions of interest. Results: Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Conclusions: Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable

  9. A custom-built PET phantom design for quantitative imaging of printed distributions

    International Nuclear Information System (INIS)

    Markiewicz, P J; Angelis, G I; Kotasidis, F; Green, M; Matthews, J C; Lionheart, W R; Reader, A J

    2011-01-01

    This note presents a practical approach to a custom-made design of PET phantoms enabling the use of digital radioactive distributions with high quantitative accuracy and spatial resolution. The phantom design allows planar sources of any radioactivity distribution to be imaged in transaxial and axial (sagittal or coronal) planes. Although the design presented here is specially adapted to the high-resolution research tomograph (HRRT), the presented methods can be adapted to almost any PET scanner. Although the presented phantom design has many advantages, a number of practical issues had to be overcome such as positioning of the printed source, calibration, uniformity and reproducibility of printing. A well counter (WC) was used in the calibration procedure to find the nonlinear relationship between digital voxel intensities and the actual measured radioactive concentrations. Repeated printing together with WC measurements and computed radiography (CR) using phosphor imaging plates (IP) were used to evaluate the reproducibility and uniformity of such printing. Results show satisfactory printing uniformity and reproducibility; however, calibration is dependent on the printing mode and the physical state of the cartridge. As a demonstration of the utility of using printed phantoms, the image resolution and quantitative accuracy of reconstructed HRRT images are assessed. There is very good quantitative agreement in the calibration procedure between HRRT, CR and WC measurements. However, the high resolution of CR and its quantitative accuracy supported by WC measurements made it possible to show the degraded resolution of HRRT brain images caused by the partial-volume effect and the limits of iterative image reconstruction. (note)

  10. An improved Virtual Torso phantom

    International Nuclear Information System (INIS)

    Kramer, Gary H; Crowley, Paul

    2000-01-01

    The virtual phantom that was previously designed by the Human Monitoring Laboratory had some limitations. It contained no sternum and the ribs extended all the way round the torso, whereas in reality the central part of the chest is covered with a mixture of cartilage (ribs) and bone (sternum). The ribs were located below the chest wall which added to the thickness of the chest wall. The lungs did not touch the inner surface of the chest wall along their length due to the differences in curvature between the ellipsoidal lungs and the ellipsoidal cylinder that defined the torso. As a result there was extra intervening tissue between the lungs and the chest wall. This was shown to have a noticeable effect on the simulation of low energy photons. The virtual phantom has been redesigned and comparison of measured and calculated counting efficiencies shows that it is a good representation of both of LLNL or JAERI at all photon energies measured. The redesigned virtual phantom agrees to within 11% of the torsos' counting efficiency over the energy range 17 - 240 keV. Before modification, the virtual phantom's counting efficiency was a of factor three lower at 17 keV and a factor of two lower at 20 keV; now it is within 5% at 17 keV and within 10% at 20 keV. This phantom can now be reliably used to simulate lung counting. The virtual phantom still contains no sternum and the ribs extend all the way round the torso, whereas in reality the central part of the chest is covered with cartilage (ribs) and bone (sternum). However, the above results indicate that this is not a major flaw in the design of the virtual phantom, as agreement between the Monte Carlo results and experimental data is good. (author)

  11. Examination of statistical noise in SPECT image and sampling pitch

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Watanabe, Hiroyuki; Murakami, Tomonori; Kawakami, Kazunori; Teraoka, Satomi; Kojima, Akihiro; Matsumoto, Masanori

    2008-01-01

    Statistical noise in single photon emission computed tomography (SPECT) image was examined for its relation with total count and with sampling pitch by simulation and phantom experiment to obtain their projection data under defined conditions. The former SPECT simulation was performed on assumption of a virtual, homogeneous water column (20 cm diameter) as an absorbing mass. In the latter, used were 3D-Hoffman brain phantom (Data Spectrum Corp.) filled with 370 MBq of 99m Tc-pertechnetate solution and a facing 2-detector SPECT machine with a low-energy/high-resolution collimator, E-CAM (Siemens). Projected data by the two methods were reconstructed through the filtered back projection to make each transaxial image. The noise was evaluated by vision, by their root mean square uncertainty calculated from average count and standard deviation (SD) in the region of interest (ROI) defined in reconstructed images and by normalized mean squares calculated from the difference between the reference image obtained with common sampling pitch to and all of obtained slices of, the simulation and phantom. As a conclusion, the pitch was recommended to be set in the machine as to approximating the value calculated by the sampling theorem, though the projection counts per one angular direction were smaller with the same total time of data acquisition. (R.T.)

  12. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    Science.gov (United States)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation

  13. Composition of MRI phantom equivalent to human tissues

    International Nuclear Information System (INIS)

    Kato, Hirokazu; Kuroda, Masahiro; Yoshimura, Koichi; Yoshida, Atsushi; Hanamoto, Katsumi; Kawasaki, Shoji; Shibuya, Koichi; Kanazawa, Susumu

    2005-01-01

    We previously developed two new MRI phantoms (called the CAG phantom and the CAGN phantom), with T1 and T2 relaxation times equivalent to those of any human tissue at 1.5 T. The conductivity of the CAGN phantom is equivalent to that of most types of human tissue in the frequency range of 1 to 130 MHz. In this paper, the relaxation times of human tissues are summarized, and the composition of the corresponding phantoms are provided in table form. The ingredients of these phantoms are carrageenan as the gelling agent, GdCl 3 as a T1 modifier, agarose as a T2 modifier, NaCl (CAGN phantom only) as a conductivity modifier, NaN 3 as an antiseptic, and distilled water. The phantoms have T1 values of 202-1904 ms and T2 values of 38-423 ms when the concentrations of GdCl 3 and agarose are varied from 0-140 μmol/kg, and 0%-1.6%, respectively, and the CAGN phantom has a conductivity of 0.27-1.26 S/m when the NaCl concentration is varied from 0%-0.7%. These phantoms have sufficient strength to replicate a torso without the use of reinforcing agents, and can be cut by a knife into any shape. We anticipate the CAGN phantom to be highly useful and practical for MRI and hyperthermia-related research

  14. CT and MR perfusion can discriminate severe cerebral hypoperfusion from perfusion absence: evaluation of different commercial software packages by using digital phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Uwano, Ikuko; Kudo, Kohsuke; Sasaki, Makoto [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Christensen, Soren [University of Melbourne, Royal Melbourne Hospital, Departments of Neurology and Radiology, Victoria (Australia); Oestergaard, Leif [Aarhus University Hospital, Department of Neuroradiology, Center for Functionally Integrative Neuroscience, DK, Aarhus C (Denmark); Ogasawara, Kuniaki; Ogawa, Akira [Iwate Medical University, Department of Neurosurgery, Morioka (Japan)

    2012-05-15

    Computed tomography perfusion (CTP) and magnetic resonance perfusion (MRP) are expected to be usable for ancillary tests of brain death by detection of complete absence of cerebral perfusion; however, the detection limit of hypoperfusion has not been determined. Hence, we examined whether commercial software can visualize very low cerebral blood flow (CBF) and cerebral blood volume (CBV) by creating and using digital phantoms. Digital phantoms simulating 0-4% of normal CBF (60 mL/100 g/min) and CBV (4 mL/100 g/min) were analyzed by ten software packages of CT and MRI manufacturers. Region-of-interest measurements were performed to determine whether there was a significant difference between areas of 0% and areas of 1-4% of normal flow. The CTP software detected hypoperfusion down to 2-3% in CBF and 2% in CBV, while the MRP software detected that of 1-3% in CBF and 1-4% in CBV, although the lower limits varied among software packages. CTP and MRP can detect the difference between profound hypoperfusion of <5% from that of 0% in digital phantoms, suggesting their potential efficacy for assessing brain death. (orig.)

  15. Geometry-Driven-Diffusion filtering of MR Brain Images using dissimilarities and optimal relaxation parameter

    Energy Technology Data Exchange (ETDEWEB)

    Bajla, Ivan [Austrian Research Centres Sibersdorf, Department of High Performance Image Processing and Video-Technology, A-2444 Seibersdorf (Austria); Hollander, Igor [Institute of information Processing, Austrian Academy of Sciences, Sonnenfelsgasse 19/2, 1010 Wien (Austria)

    1999-12-31

    A novel method of local adapting of the conductance using a pixel dissimilarity measure is developed. An alternative processing methodology is proposed, which is based on intensity gradient histogram calculated for region interiors and boundaries of a phantom which models real MR brain scans. It involves a specific cost function suitable for the calculation of the optimum relaxation parameter Kopt and for the selection of the optimal exponential conductance. Computer experiments for locally adaptive geometry-driven-diffusion filtering of an MR brain phantom have been performed and evaluated. (authors) 6 refs., 3 figs.2 tabs.

  16. Geometry-Driven-Diffusion filtering of MR Brain Images using dissimilarities and optimal relaxation parameter

    International Nuclear Information System (INIS)

    Bajla, Ivan; Hollander, Igor

    1998-01-01

    A novel method of local adapting of the conductance using a pixel dissimilarity measure is developed. An alternative processing methodology is proposed, which is based on intensity gradient histogram calculated for region interiors and boundaries of a phantom which models real MR brain scans. It involves a specific cost function suitable for the calculation of the optimum relaxation parameter Kopt and for the selection of the optimal exponential conductance. Computer experiments for locally adaptive geometry-driven-diffusion filtering of an MR brain phantom have been performed and evaluated. (authors)

  17. Effect of decimeter waves on brain and surrounding tissue temperature (experimental study)

    Energy Technology Data Exchange (ETDEWEB)

    Malikova, S.N.; Malyshev, V.L.; Balakyreva, V.N.; Gorban' , L.G.

    Temperature changes in brain and surrounding tissue evoked by decimeter waves (DMW) were studied on phantoms (wood shavings wetted with physiological solution), rabbits and dogs under light nembutal anesthesia and on animal cadavers. The data obtained showed that living organisms, in contrast to phantoms, exhibited a response to heat generation of DMW; this was manifested by maintenance of the temperature at certain level or by a tendency to lower it after about a 10 min exposure to DMW. Thus it was shown that there is a functional cooling system in living organisms: increased local blood flow and a specialized cooling system for the brain. Rabbits showed considerably higher brain temperature elevation than the experimental dogs. Overall, the brain temperature upon exposure to DMW depended on the intensity and duration of DMW action as well as on the state of circulating cooling system of the animals. 4 references, 4 figures.

  18. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain.

    Science.gov (United States)

    Ortiz-Catalan, Max; Guðmundsdóttir, Rannveig A; Kristoffersen, Morten B; Zepeda-Echavarria, Alejandra; Caine-Winterberger, Kerstin; Kulbacka-Ortiz, Katarzyna; Widehammar, Cathrine; Eriksson, Karin; Stockselius, Anita; Ragnö, Christina; Pihlar, Zdenka; Burger, Helena; Hermansson, Liselotte

    2016-12-10

    Phantom limb pain is a debilitating condition for which no effective treatment has been found. We hypothesised that re-engagement of central and peripheral circuitry involved in motor execution could reduce phantom limb pain via competitive plasticity and reversal of cortical reorganisation. Patients with upper limb amputation and known chronic intractable phantom limb pain were recruited at three clinics in Sweden and one in Slovenia. Patients received 12 sessions of phantom motor execution using machine learning, augmented and virtual reality, and serious gaming. Changes in intensity, frequency, duration, quality, and intrusion of phantom limb pain were assessed by the use of the numeric rating scale, the pain rating index, the weighted pain distribution scale, and a study-specific frequency scale before each session and at follow-up interviews 1, 3, and 6 months after the last session. Changes in medication and prostheses were also monitored. Results are reported using descriptive statistics and analysed by non-parametric tests. The trial is registered at ClinicalTrials.gov, number NCT02281539. Between Sept 15, 2014, and April 10, 2015, 14 patients with intractable chronic phantom limb pain, for whom conventional treatments failed, were enrolled. After 12 sessions, patients showed statistically and clinically significant improvements in all metrics of phantom limb pain. Phantom limb pain decreased from pre-treatment to the last treatment session by 47% (SD 39; absolute mean change 1·0 [0·8]; p=0·001) for weighted pain distribution, 32% (38; absolute mean change 1·6 [1·8]; p=0·007) for the numeric rating scale, and 51% (33; absolute mean change 9·6 [8·1]; p=0·0001) for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% (SD 37; absolute mean change 2·4 [2·3]; p=0·004) and 61% (39; absolute mean change 2·3 [1·8]; p=0·001), respectively. Two of four

  19. Toxicology Analysis of Tissue-Mimicking Phantom Made From Gelatin

    Science.gov (United States)

    Dolbashid, A. S.; Hamzah, N.; Zaman, W. S. W. K.; Mokhtar, M. S.

    2017-06-01

    Skin phantom mimics the biological skin tissues as it have the ability to respond to changes in its environment. The development of tissue-mimicking phantom could contributes towards the reduce usage of animal in cosmetics and pharmacokinetics. In this study, the skin phantoms made from gelatin were tested with four different commonly available cosmetic products to determine the toxicity of each substance. The four substances used were; mercury-based whitening face cream, carcinogenic liquid make-up foundation, paraben-based acne cleanser, and organic lip balm. Toxicity test were performed on all of the phantoms. For toxicity testing, topographical and electrophysiological changes of the phantoms were evaluated. The ability of each respective phantom to react with mild toxic substances and its electrical resistance were analysed in to determine the toxicity of all the phantom models. Four-electrode method along with custom made electrical impedance analyser was used to differentiate electrical resistance between intoxicated phantom and non-intoxicated phantom in this study. Electrical resistance values obtained from the phantom models were significantly higher than the control group. The result obtained suggests the phantom as a promising candidate to be used as alternative for toxicology testing in the future.

  20. A Software Phantom : Application in Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lazos, D; Kolitsi, Z; Badea, C; Pallikarakis, N [Medical Physics Laboratory, School of Medicine, Univercity of Patras (Greece)

    1999-12-31

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author) 4 refs., 3 figs

  1. A Software Phantom : Application in Digital Tomosynthesis

    International Nuclear Information System (INIS)

    Lazos, D.; Kolitsi, Z.; Badea, C.; Pallikarakis, N.

    1998-01-01

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author)

  2. Simultaneous 99mTc and 123I dual-isotope brain striatal phantom single photon emission computed tomography: validation of 99mTc-TRODAT-1 and 123I-IBZM simultaneous dopamine system brain imaging.

    Science.gov (United States)

    Kao, Pan-Fu; Wey, Shiaw-Pyng; Yang, An-Shoei

    2009-11-01

    [2[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3,2,1]-oct-2-yl]-methyl](2-mercaptoethyl)-amino]ethyl]amino]ethanethiolato(3-)-N2,N2',S2,S2]oxo-[1R-exo-exo)])-[99mTc]-technetium (99mTc-TRODAT-1) and 123I-iodobenzamide (123I-IBZM) are radiotracers for brain dopamine pre- and postsynaptic neuron imaging. The purpose of this study was to evaluate imaging parameters and crossed energy interference using simultaneous single photon emission computed tomography (SPECT) 99mTc and 123I data acquisition. A five-compartment brain striatal phantom was filled with 99mTc and/or 123I radioactive solutions with different striatal-to-background ratios, ranging from 3:1 to 9:1. SPECT data were acquired with energy window settings of 15% for the centered window at 140 keV for 99mTc and a 10% asymmetric window at 159 keV for 123I. The experiments were carried out using either individual (99mTc or 123I only) or both radionuclides. The striatal-to-background ratios and energy crossed interference between 99mTc and 123I were calculated. The phantom SPECT images demonstrated that the energy crossed interferences from 123I to 99mTc, and vice versa, were 22 +/- 12.4% and 0.4 +/- 1.0%, respectively. A net interference of 7.1 +/- 4.0% for the counts in the 15% centered 99mTc window can be expected from 123I and a net interference of 1.6 +/- 3.3% for the counts in the 10% asymmetric 123I window was derived from 99mTc. The correlation of striatal-to-background ratios between single isotope and simultaneous dual-isotope was excellent (R2 = 0.99). The imaging parameters used in this simultaneous dualisotope SPECT imaging could be used in future clinical practice for imaging patients with movement disorders by using 99mTc-TRODAT-1 and 123I-IBZM. The striatal-to-background ratios were not affected by the crossed interference between 99mTc and 123I.

  3. Simultaneous 99mTC and 123I Dual-Isotope Brain Striatal Phantom Single Photon Emission Computed Tomography: Validation of 99mTC-Trodat-1 and 123I-IBZM Simultaneous Dopamine System Brain Imaging

    Directory of Open Access Journals (Sweden)

    Pan-Fu Kao

    2009-11-01

    Full Text Available [2[[2-[[[3-(4-chlorophenyl-8-methyl-8-azabicyclo[3,2,1]-oct-2-yl]-methyl](2-mercaptoethylamino]ethyl]amino]ethanethiolato(3--N2,N2′,S2,S2]oxo-[1R-exo-exo]-[99mTc]-technetium (99mTc-TRODAT-1 and 123I-iodobenzamide (123I-IBZM are radiotracers for brain dopamine preand postsynaptic neuron imaging. The purpose of this study was to evaluate imaging parameters and crossed energy interference using simultaneous single photon emission computed tomography (SPECT 99mTc and 123I data acquisition. A five-compartment brain striatal phantom was filled with 99mTc and/or 123I radioactive solutions with different striatal-to-background ratios, ranging from 3:1 to 9:1. SPECT data were acquired with energy window settings of 15% for the centered window at 140 keV for 99mTc and a 10% asymmetric window at 159 keV for 123I. The experiments were carried out using either individual (99mTc or 123I only or both radionuclides. The striatal-to-background ratios and energy crossed interference between 99mTc and 123I were calculated. The phantom SPECT images demonstrated that the energy crossed interferences from 123I to 99mTc, and vice versa, were 22 ± 12.4% and 0.4 ± 1.0%, respectively. A net interference of 7.1 ± 4.0% for the counts in the 15% centered 99mTc window can be expected from 123I and a net interference of 1.6 ± 3.3% for the counts in the 10% asymmetric 123I window was derived from 99mTc. The correlation of striatal-to-background ratios between single isotope and simultaneous dual-isotope was excellent (R2 = 0.99. The imaging parameters used in this simultaneous dual-isotope SPECT imaging could be used in future clinical practice for imaging patients with movement disorders by using 99mTc-TRODAT-1 and 123I-IBZM. The striatal-to-background ratios were not affected by the crossed interference between 99mTc and 123I.

  4. Ultrasonographic Quantification of Fat Content in Fatty Liver Phantoms

    International Nuclear Information System (INIS)

    Kim, Il Young; Kim, Pyo Nyun; Joo, Gyung Soo; Kim, Ho Jung; Kim, Young Beom; Lee, Byoung Ho

    1995-01-01

    Assuming that the fat content of certain tissue might be quantified by measurirrg the ultrasound echo level, we analyzed the ultrasound histograms obtained from the fatty liver phantoms that contained various amount of fat. Various amount of margarine(Mazola. Cliff wood. USA) was mixed with 2% of agarin solution state to produce fatty liver phantoms that contained 5, 10, 20, 30 and 40% of fat. We obtained ultrasound histogram from each fatty liver phantom in gel state. We used 2% agar gel as a control. The ultrasound histograms from the control phantom showed gradual increase in echo level as the depth from the surface increased. The echo level from the phantom that contained 5% of fat showed gradual increase and subsequent decrease with the peak echo level at the depth of 3cm. The echo levels from the phantoms that contained more in 5% of fat gradually decreased as the depth from the surface increased; the change becoming more pronounced as the fat content of the phantom increased. The echo levels measured at the depth of 1cm were 9.3(control), 29.6(5%phantom), 3l.3 (10% phantom), 26.3 (20% phantom), l8.8 (30% phantom), and l6dB (40% phantom). Fat content of fatty phantoms can not be quantified by measuring only echo level. Simultaneous measurement of attenuation of ultrasound, which is not easy to do and not done in this study, is prerequisite to quantify fat content

  5. Phantom Eye Syndrome: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Agda M. Andreotti

    2014-01-01

    Full Text Available The purpose of this literature review was to describe the main features of phantom eye syndrome in relation to their possible causes, symptoms, treatments, and influence of eye amputation on quality of life of anophthalmic patients. For this, a bibliographical research was performed in Pubmed database using the following terms: “eye amputation,” “eye trauma,” “phantom eye syndrome,” “phantom pain,” and “quality of life,” associated or not. Thirteen studies were selected, besides some relevant references contained in the selected manuscripts and other studies hallowed in the literature. Thus, 56 articles were included in this review. The phantom eye syndrome is defined as any sensation reported by the patient with anophthalmia, originated anophthalmic cavity. In phantom eye syndrome, at least one of these three symptoms has to be present: phantom vision, phantom pain, and phantom sensations. This syndrome has a direct influence on the quality of life of the patients, and psychological support is recommended before and after the amputation of the eyeball as well as aid in the treatment of the syndrome. Therefore, it is suggested that, for more effective treatment of phantom eye syndrome, drug therapy should be associated with psychological approach.

  6. A phantom for quality control in mammography

    International Nuclear Information System (INIS)

    Gambaccini, M.; Rimondi, O.; Marziani, M.; Toti, A.

    1989-01-01

    A phantom for evaluating image quality in mammography has been designed and will be used in the Italian national programme ''Dose and Quality in Mammography''. The characteristics of the phantom are (a) about the same X-ray transmission as a 5 cm 50% fat and 50% water breast for energies between 15 and 50 keV and (b) optimum energies for imaging of the test objects (included in the phantom) in very close agreement with the optimum energies for imaging of calcifications and tumours in a 5 cm 50% fat and 50% water breast. An experimental comparison between the prototype and some commercial phantoms was carried out. Measurements are in progress to test the phantom's ability to evaluate the performances of mammographic systems quantitatively. (author)

  7. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  8. Phantom cosmology without Big Rip singularity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yurov, Artyom V.

    2012-01-01

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time (“phantom energy” without “Big Rip” singularity) and (ii) energy density tends to constant value with time (“cosmological constant” with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  9. Development of digital phantom for DRR evaluation

    International Nuclear Information System (INIS)

    Ikeda, Tsuyoshi; Katsuta, Shoichi; Oyama, Masaya; Ogino, Takashi

    2009-01-01

    Generally, digitally reconstructed radiograph (DRR) is evaluated by physical phantom. The CT image is camouflaged by the performance of the radiation treatment planning system and contains a variety of error factors. The CT image (as follows the digital phantom), where an arbitrary CT value is arranged in the matrix, is necessary to evaluate the pure performance of the radiation treatment planning system. In this study, the development of a digital phantom is described, and the utility is discussed. CTport and the radiation treatment planning system are evaluated with the use of a digital phantom as follows: geometrical accuracy evaluation of DRR, consisting of the center position, size of irradiation field, distortion, extension of X-ray, and beam axis, and the image quality evaluation of DRR, which consists of the contrast resolution. As for DRR made with CTport and the treatment planning system, the part that shifted geometrically was confirmed. In the image quality evaluation, there was a remarkable difference. Because the making accuracy and the installation accuracy of the phantom do not influence the digital phantom, the geometrical accuracy of the DRR is reliable. Because the CT conditions and the phantom factor have no influence, the peculiar DRR image quality can be evaluated and used to evaluate the best image processing parameters. (author)

  10. Development of the Reference Korean Female Voxel Phantom

    International Nuclear Information System (INIS)

    Ham, Bo Kyoung; Cho, Kun Woo; Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol

    2012-01-01

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm 3 and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm 3 for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  11. Development of the Reference Korean Female Voxel Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Bo Kyoung; Cho, Kun Woo [University of Science and Technology, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol [Hanyang University, Seoul (Korea, Republic of)

    2012-03-15

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm{sup 3} and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm{sup 3} for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  12. Development of a physical 3D anthropomorphic breast phantom

    Energy Technology Data Exchange (ETDEWEB)

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A. [Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States); XCounter AB, Svaerdvaegen 11, SE-182 33 Danderyd (Sweden); Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States)

    2011-02-15

    Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

  13. Application of Hoffman modulation contrast microscopy coupled with three-wavelength two-beam interferometry to the in situ direct observation of the growth process of a crystal in microgravity

    Science.gov (United States)

    Tsukamoto, Katsuo

    1988-01-01

    Direct visualization of three dimensional transfer process of both heat and mass around a growing crystal and mono-molecular growth layers on the surface is possible in situ by means of high resolution Hoffman modulation contrast microscopy coupled with three wavelength two beam Mach-Zehnder interferometry. This in situ observation is very suitable for the verification of the growth mechanism of a crystal in a solution or a melt in microgravity.

  14. Computational anthropomorphic phantoms for radiation protection dosimetry: evolution and prospects

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Jaiki

    2006-01-01

    Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as Magnetic Resonance (MR) imaging and Computed Tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed

  15. WE-D-303-00: Computational Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, John [Duke University Medical Center, Durham, NC (United States); Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-06-15

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computational phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.

  16. WE-D-303-00: Computational Phantoms

    International Nuclear Information System (INIS)

    Lewis, John

    2015-01-01

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computational phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems

  17. Paul Wittgenstein's right arm and his phantom: the saga of a famous concert pianist and his amputation.

    Science.gov (United States)

    Boller, François; Bogousslavsky, Julien

    2015-01-01

    Reports of postamputation pain and problems linked to phantom limbs have increased in recent years, particularly in relation to war-related amputations. These problems are still poorly understood and are considered rather mysterious, and they are difficult to treat. In addition, they may shed light on brain physiology and neuropsychology. Functional neuroimaging techniques now enable us to better understand their pathophysiology and to consider new rehabilitation techniques. Several artists have suffered from postamputation complications and this has influenced not only their personal life but also their artistic work. Paul Wittgenstein (1887-1961), a pianist whose right arm was amputated during the First World War, became a famous left-handed concert performer. His case provides insight into Post-World War I musical and political history. More specifically, the impact on the artistic life of this pianist illustrates various postamputation complications, such as phantom limb, stump pain, and especially moving phantom. The phantom movements of his right hand helped him develop the dexterity of his left hand. Wittgenstein played piano works that were written especially for him (the most famous being Ravel's Concerto for the Left Hand) and composed some of his own. Additionally, several famous composers had previously written for the left hand. © 2015 Elsevier B.V. All rights reserved.

  18. [Mirror, mirror of the wall: mirror therapy in the treatment of phantom limbs and phantom limb pain].

    Science.gov (United States)

    Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam

    2015-01-01

    Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.

  19. Contrast detail phantom for SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejas, M.L. de; Arashiro, J G; Giannone, C. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Camuyrano, M; Nohara, G [Universidad de Buenos Aires, Buenos Aires (Argentina). Facultad Ciencias Exactas

    1996-06-01

    A new low variable contrast phantom for single photon emission computed tomography (SPECT) was constructed, tested and compared with other existing phantoms. It contains simulated cylindrical lesions of four different diameters (D{sub i}), embedded in a cylindrical scattering medium and a uniform section to evaluate tomographic uniformity. The concentration of tracer in the simulated lesions and the scattering medium (background) can be varied to simulate hot and cold lesions. Different applications of the phantom were tested, including determination of the minimum object contrast (OCm) necessary to detect lesions as a function of lesion size, lesion type (hot or cold) and acquisition and processing protocols by visual inspection. This parameter allows categorization of instruments comparing an `image quality index` (IQI). Preliminary comparison with the Britten contrast processing method showed that the detectable OCm was of the same order of magnitude, but the presented device seems more suitable for training and intercomparison purposes. The constructed phantom, of simple design, has proved to be useful for acquisition and processing condition evaluation, OCm estimation and external quality control. (author). 11 refs, 4 figs.

  20. Impact of cardio-synchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro- and mini-beam radiation therapy.

    Science.gov (United States)

    Manchado de Sola, Francisco; Vilches, Manuel; Prezado, Yolanda; Lallena, Antonio M

    2018-05-15

    To assess the effects of brain movements induced by heartbeat on dose distributions in synchrotron micro- and mini-beam radiaton therapy and to develop a model to help guide decisions and planning for future clinical trials. The Monte Carlo code PENELOPE was used to simulate the irradiation of a human head phantom with a variety of micro- and mini-beam arrays, with beams narrower than 100 μm and above 500 μm, respectively, and with radiation fields of 1cm × 2cm and 2cm × 2cm. The dose in the phantom due to these beams was calculated by superposing the dose profiles obtained for a single beam of 1μm × 2cm. A parameter δ, accounting for the total displacement of the brain during the irradiation and due to the cardio-synchronous pulsation, was used to quantify the impact on peak-to-valley dose ratios and the full-width at half-maximum. The difference between the maximum (at the phantom entrance) and the minimum (at the phantom exit) values of the peak-to-valley dose ratio reduces when the parameter δ increases. The full-width at half-maximum remains almost constant with depth for any δ value. Sudden changes in the two quantities are observed at the interfaces between the various tissues (brain, skull and skin) present in the head phantom. The peak-to-valley dose ratio at the center of the head phantom reduces when δ increases, remaining above 70% of the static value only for mini-beams and δ smaller than ~ 200 μm. Optimal setups for brain treatments with synchrotron radiation micro- and mini-beam combs depend on the brain displacement due to cardio-synchronous pulsation. Peak-to-valley dose ratios larger than 90% of the maximum values obtained in the static case occur only for mini-beams and relatively large dose rates. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    Science.gov (United States)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  2. Comparison of photon organ and effective dose coefficients for PIMAL stylized phantom in bent positions in standard irradiation geometries

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, Shaheen; Hiller, Mauritius [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Environmental Sciences Division, Oak Ridge, TN (United States); Reed, K.L. [Georgia Institute of Technology, Nuclear and Radiological Engineering Program, Atlanta, GA (United States)

    2017-08-15

    Computational phantoms with articulated arms and legs have been constructed to enable the estimation of radiation dose in different postures. Through a graphical user interface, the Phantom wIth Moving Arms and Legs (PIMAL) version 4.1.0 software can be employed to articulate the posture of a phantom and generate a corresponding input deck for the Monte Carlo N-Particle (MCNP) radiation transport code. In this work, photon fluence-to-dose coefficients were computed using PIMAL to compare organ and effective doses for a stylized phantom in the standard upright position with those for phantoms in realistic work postures. The articulated phantoms represent working positions including fully and half bent torsos with extended arms for both the male and female reference adults. Dose coefficients are compared for both the upright and bent positions across monoenergetic photon energies: 0.05, 0.1, 0.5, 1.0, and 5.0 MeV. Additionally, the organ doses are compared across the International Commission on Radiological Protection's standard external radiation exposure geometries: antero-posterior, postero-anterior, left and right lateral, and isotropic (AP, PA, LLAT, RLAT, and ISO). For the AP and PA irradiation geometries, differences in organ doses compared to the upright phantom become more profound with increasing bending angles and have doses largely overestimated for all organs except the brain in AP and bladder in PA. In LLAT and RLAT irradiation geometries, energy deposition for organs is more likely to be underestimated compared to the upright phantom, with no overall change despite increased bending angle. The ISO source geometry did not cause a significant difference in absorbed organ dose between the different phantoms, regardless of position. Organ and effective fluence-to-dose coefficients are tabulated. In the AP geometry, the effective dose at the 45 bent position is overestimated compared to the upright phantom below 1 MeV by as much as 27% and 82% in the

  3. A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom.

    Science.gov (United States)

    Cutolo, Fabrizio; Meola, Antonio; Carbone, Marina; Sinceri, Sara; Cagnazzo, Federico; Denaro, Ennio; Esposito, Nicola; Ferrari, Mauro; Ferrari, Vincenzo

    2017-12-01

    Benefits of minimally invasive neurosurgery mandate the development of ergonomic paradigms for neuronavigation. Augmented Reality (AR) systems can overcome the shortcomings of commercial neuronavigators. The aim of this work is to apply a novel AR system, based on a head-mounted stereoscopic video see-through display, as an aid in complex neurological lesion targeting. Effectiveness was investigated on a newly designed patient-specific head mannequin featuring an anatomically realistic brain phantom with embedded synthetically created tumors and eloquent areas. A two-phase evaluation process was adopted in a simulated small tumor resection adjacent to Broca's area. Phase I involved nine subjects without neurosurgical training in performing spatial judgment tasks. In Phase II, three surgeons were involved in assessing the effectiveness of the AR-neuronavigator in performing brain tumor targeting on a patient-specific head phantom. Phase I revealed the ability of the AR scene to evoke depth perception under different visualization modalities. Phase II confirmed the potentialities of the AR-neuronavigator in aiding the determination of the optimal surgical access to the surgical target. The AR-neuronavigator is intuitive, easy-to-use, and provides three-dimensional augmented information in a perceptually-correct way. The system proved to be effective in guiding skin incision, craniotomy, and lesion targeting. The preliminary results encourage a structured study to prove clinical effectiveness. Moreover, our testing platform might be used to facilitate training in brain tumour resection procedures.

  4. Mathematical human phantoms and their application to radiation protection

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1998-01-01

    This review described the characteristics of mathematical phantoms, their history over 30 years and their application. Mathematical phantoms are classified into two models of formula and voxel types. In the former, human body and organs are described by 2- and/or 3-D mathematical formula and can be seen as a combination of solid bodies like spheres, cubes and ovals. The phantom is composed from three tissue components (bone, lung and soft tissue) and made on data on Reference Man in ICRP Publ. 23. The latter voxel (volume pixel) phantom consists from a number of small cubes based on CT and MRI images of a certain man. For instance, the phantom CHILD, 1.54 x 1.54 x 8.00 mm 3 in size, is based on a 7-year old child, which consisting from about one million voxels. The mathematical phantom was first made in Oak Ridge National Laboratory in the middle of the nineteen-sixties, which have undergone various improvements to reach MIRD-5 phantom. Thereafter, many similitude phantoms have been made as a variation of MIRD-5, depending on age and sex (e.g., ADAM and EVA). Voxel phantom was made in the middle of nineteen-eighties and have undergone improvements which are continued even currently in Japan, U.S. etc. The mathematical phantoms are used for calculation of radiation transport program by Monte Carlo method in the field of radiation protection. Also in the field of medicine, the phantom is used for calculation of internal and external exposure doses, of correction constants of externally measuring instruments, of doses for neutron capture therapy and of A-bomb exposure doses in Hiroshima and Nagasaki for reevaluation. Recently, the development of phantom is in the current from formula phantom to voxel one due to the purpose of precision and standardization. (K.H.)

  5. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy

    International Nuclear Information System (INIS)

    Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven

    2008-01-01

    Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed

  6. A new approach for quantitative evaluation of reconstruction algorithms in SPECT

    International Nuclear Information System (INIS)

    Raeisi, E.; Rajabi, H.; Aghamiri, S. M. R.

    2006-01-01

    In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems, and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire tomographic and planar image of the same structure. The planar image may be used as the reference image to evaluate the quality of reconstructed slices, using the companion software developed in MATLAB. Materials and Methods: The designed phantom was composed of 4 independent 2D slices that could have been placed juxtapose to the 3D phantom. Each slice was composed of objects of different size and shape (for example: circle, triangle, and rectangle). Each 2D slice was imaged at distances ranging from 0 to 15 cm from the collimator surface. The phantom in 3D configuration was imaged acquiring 128 views of 128*128 matrix size. Reconstruction was performed using different filtering condition and the reconstructed images were compared to the corresponding planar images. The modulation transfer function, scatter fraction and attenuation map were calculated for each reconstructed image. Results: Since all the parameters of the acquisition were identical for the 2D and the 3D imaging, it was assumed that the difference in the quality of the images has exclusively been due to the reconstruction condition. The planar images were assumed to be the most perfect images which could be obtained with the system. The comparison of the reconstructed slices with the corresponding planar images yielded the optimum reconstruction condition. The results clearly showed that Wiener filter yields superior quality image among the entire tested filters. The extent of the improvement has been quantified in terms of universal image quality index. Conclusion : The phantom and the accompanying software were evaluated and found to be quite useful in

  7. A dynamic phantom for radionuclide renography

    International Nuclear Information System (INIS)

    Heikkinen, J.O.

    1999-01-01

    The aim of the study was to develop and test a dynamic phantom simulating radionuclide renography. The phantom consisted of five partly lead covered plastic containers simulating kidneys, heart, bladder and background (soft tissues, liver and spleen). Dynamics were performed with multiple movable steel plates between containers and a gamma camera. Control of the plates is performed manually with a stopwatch following exact time schedules. The containers were filled with activities ( 99m Tc) which produce count rates close to clinical situations. Count rates produced by the phantom were compared with ten clinical renography cases: five 99m Tc MAG3 and five 99m Tc DTPA examinations. Two phantom simulations were repeated three times with separate fillings, acquisitions and analyses. Precision errors as a coefficient of variation (CV) of repeated measurements were calculated and theoretical values were compared with the corresponding measured ones. A multicentre comparison was made between 19 nuclear medicine laboratories and three clinical cases were simulated with the phantom. Correlations between count rates produced by the phantom and clinical studies were r=0.964 for 99m Tc MAG3 (p 99m Tc DTPA (p max was 4.0±1.6%. Images and curves of the scanned phantom were close to a real patient in all 19 laboratories but calculated parameters varied: the difference between theoretical and measured values for T max was 6.8±6.2%. The difference between laboratories is most probably due to variations in acquisition protocols and analysis programs: 19 laboratories with 18 different protocols and 8 different programs. The dynamics were found to be repeatable and suitable for calibration purposes for radionuclide renography programs and protocols as well as for multicentre comparisons. (author)

  8. Phantom inflation and the 'Big Trip'

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, Pedro F.; Jimenez-Madrid, Jose A.

    2004-01-01

    Primordial inflation is regarded to be driven by a phantom field which is here implemented as a scalar field satisfying an equation of state p=ωρ, with ω-1. Being even aggravated by the weird properties of phantom energy, this will pose a serious problem with the exit from the inflationary phase. We argue, however, in favor of the speculation that a smooth exit from the phantom inflationary phase can still be tentatively recovered by considering a multiverse scenario where the primordial phantom universe would travel in time toward a future universe filled with usual radiation, before reaching the big rip. We call this transition the 'Big Trip' and assume it to take place with the help of some form of anthropic principle which chooses our current universe as being the final destination of the time transition

  9. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    International Nuclear Information System (INIS)

    Lamart, Stephanie; Simon, Steven L; Lee, Choonsik; Bouville, Andre; Eckerman, Keith F; Melo, Dunstana

    2011-01-01

    The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a

  10. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    Science.gov (United States)

    Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik

    2011-11-01

    The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a

  11. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  12. Phantoms for IMRT dose distribution measurement and treatment verification

    International Nuclear Information System (INIS)

    Low, Daniel A.; Gerber, Russell L.; Mutic, Sasa; Purdy, James A.

    1998-01-01

    Background: The verification of intensity-modulated radiation therapy (IMRT) patient treatment dose distributions is currently based on custom-built or modified dose measurement phantoms. The only commercially available IMRT treatment planning and delivery system (Peacock, NOMOS Corp.) is supplied with a film phantom that allows accurate spatial localization of the dose distribution using radiographic film. However, measurements using other dosimeters are necessary for the thorough verification of IMRT. Methods: We have developed a phantom to enable dose measurements using a cylindrical ionization chamber and the localization of prescription isodose curves using a matrix of thermoluminescent dosimetry (TLD) chips. The external phantom cross-section is identical to that of the commercial phantom, to allow direct comparisons of measurements. A supplementary phantom has been fabricated to verify the IMRT dose distributions for pelvis treatments. Results: To date, this phantom has been used for the verification of IMRT dose distributions for head and neck and prostate cancer treatments. Designs are also presented for a phantom insert to be used with polymerizing gels (e.g., BANG-2) to obtain volumetric dose distribution measurements. Conclusion: The phantoms have proven useful in the quantitative evaluation of IMRT treatments

  13. Experimental phantom verification studies for simulations of light interactions with skin: liquid phantoms

    CSIR Research Space (South Africa)

    Karsten, A

    2010-09-01

    Full Text Available stream_source_info Karsten_2010_P.pdf.txt stream_content_type text/plain stream_size 5080 Content-Encoding UTF-8 stream_name Karsten_2010_P.pdf.txt Content-Type text/plain; charset=UTF-8 Experimental phantom verification... studies for simulations of light interactions with skin: Solid Phantoms Aletta E Karsten, A Singh Presented by: J E Smit National Laser Center CSIR South Africa akarsten@csir.co.za Slide 2 © CSIR 2009 www.csir.co.za Where...

  14. A flocking based method for brain tractography.

    Science.gov (United States)

    Aranda, Ramon; Rivera, Mariano; Ramirez-Manzanares, Alonso

    2014-04-01

    We propose a new method to estimate axonal fiber pathways from Multiple Intra-Voxel Diffusion Orientations. Our method uses the multiple local orientation information for leading stochastic walks of particles. These stochastic particles are modeled with mass and thus they are subject to gravitational and inertial forces. As result, we obtain smooth, filtered and compact trajectory bundles. This gravitational interaction can be seen as a flocking behavior among particles that promotes better and robust axon fiber estimations because they use collective information to move. However, the stochastic walks may generate paths with low support (outliers), generally associated to incorrect brain connections. In order to eliminate the outlier pathways, we propose a filtering procedure based on principal component analysis and spectral clustering. The performance of the proposal is evaluated on Multiple Intra-Voxel Diffusion Orientations from two realistic numeric diffusion phantoms and a physical diffusion phantom. Additionally, we qualitatively demonstrate the performance on in vivo human brain data. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Simulation of a Quality Control Jaszczak Phantom with SIMIND Monte Carlo and Adding the Phantom as an Accessory to the Program

    International Nuclear Information System (INIS)

    Pirayesh Islamian, J.; Bahreyni Toosi, M. T.; Momennezhad, M.; Naseri, Sh.; Ljungberg, M.

    2012-01-01

    Quality control is an important phenomenon in nuclear medicine imaging. A Jaszczak SPECT Phantom provides consistent performance information for any SPECT or PET system. This article describes the simulation of a Jaszczak phantom and creating an executable phantom file for comparing assessment of SPECT cameras using SIMIND Monte Carlo simulation program which is well-established for SPECT. The simulation was based on a Deluxe model of Jaszczak Phantom with defined geometry. Quality control tests were provided together with initial imaging example and suggested use for the assessment of parameters such as spatial resolution, limits of lesion detection, and contrast comparing with a Siemens E.Cam SPECT system. The phantom simulation was verified by matching tomographic spatial resolution, image contrast, and also uniformity compared with the experiment SPECT of the phantom from filtered backprojection reconstructed images of the spheres and rods. The calculated contrasts of the rods were 0.774, 0.627, 0.575, 0.372, 0.191, and 0.132 for an experiment with the rods diameters of 31.8, 25.4, 19.1, 15.9, 12.7, and 9.5 mm, respectively. The calculated contrasts of simulated rods were 0.661, 0.527, 0.487, 0.400, 0.23, and 0.2 for cold rods and also 0.92, 0.91, 0.88, 0.81, 0.76, and 0.56 for hot rods. Reconstructed spatial tomographic resolution of both experiment and simulated SPECTs of the phantom obtained about 9.5 mm. An executable phantom file and an input phantom file were created for the SIMIND Monte Carlo program. This phantom may be used for simulated SPECT systems and would be ideal for verification of the simulated systems with real ones by comparing the results of quality control and image evaluation. It is also envisaged that this phantom could be used with a range of radionuclide doses in simulation situations such as cold, hot, and background uptakes for the assessment of detection characteristics when a new similar clinical SPECT procedure is being simulated.

  16. Simulation of a Quality Control Jaszczak Phantom with SIMIND Monte Carlo and Adding the Phantom as an Accessory to the Program

    Directory of Open Access Journals (Sweden)

    Jalil Pirayesh Islamian

    2012-03-01

    Full Text Available Introduction Quality control is an important phenomenon in nuclear medicine imaging. A Jaszczak SPECT Phantom provides consistent performance information for any SPECT or PET system. This article describes the simulation of a Jaszczak phantom and creating an executable phantom file for comparing assessment of SPECT cameras using SIMIND Monte Carlo simulation program which is well-established for SPECT. Materials and Methods The simulation was based on a Deluxe model of Jaszczak Phantom with defined geometry. Quality control tests were provided together with initial imaging example and suggested use for the assessment of parameters such as spatial resolution, limits of lesion detection, and contrast comparing with a Siemens E.Cam SPECT system. Results The phantom simulation was verified by matching tomographic spatial resolution, image contrast, and also uniformity compared with the experiment SPECT of the phantom from filtered backprojection reconstructed images of the spheres and rods. The calculated contrasts of the rods were 0.774, 0.627, 0.575, 0.372, 0.191, and 0.132 for an experiment with the rods diameters of 31.8, 25.4, 19.1, 15.9, 12.7, and 9.5 mm, respectively. The calculated contrasts of simulated rods were 0.661, 0.527, 0.487, 0.400, 0.23, and 0.2 for cold rods and also 0.92, 0.91, 0.88, 0.81, 0.76, and 0.56 for hot rods. Reconstructed spatial tomographic resolution of both experiment and simulated SPECTs of the phantom obtained about 9.5 mm. An executable phantom file and an input phantom file were created for the SIMIND Monte Carlo program. Conclusion This phantom may be used for simulated SPECT systems and would be ideal for verification of the simulated systems with real ones by comparing the results of quality control and image evaluation. It is also envisaged that this phantom could be used with a range of radionuclide doses in simulation situations such as cold, hot, and background uptakes for the assessment of detection

  17. Performance evaluation of neuro-PET using silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jiwoong; Choi, Yong, E-mail: ychoi@sogang.ac.kr; Jung, Jin Ho, E-mail: jinho1115@gmail.com; Kim, Sangsu; Im, Ki Chun

    2016-05-21

    Recently, we have developed the second prototype Silicon photomultiplier (SiPM) based positron emission tomography (PET) scanner for human brain imaging. The PET system was comprised of detector block which consisted of 4×4 SiPMs and 4×4 Lutetium Yttrium Orthosilicate arrays, charge signal transmission method, high density position decoder circuit and FPGA-embedded ADC boards. The purpose of this study was to evaluate the performance of the newly developed neuro-PET system. The energy resolution, timing resolution, spatial resolution, sensitivity, stability of the photo-peak position and count rate performance were measured. Tomographic image of 3D Hoffman brain phantom was also acquired to evaluate imaging capability of the neuro-PET. The average energy and timing resolutions measured for 511 keV gamma rays were 17±0.1% and 3±0.3 ns, respectively. Spatial resolution and sensitivity at the center of field of view (FOV) were 3.1 mm and 0.8%, respectively. The average scatter fraction was 0.4 with an energy window of 350–650 keV. The maximum true count rate and maximum NECR were measured as 43.3 kcps and 6.5 kcps at an activity concentration of 16.7 kBq/ml and 5.5 kBq/ml, respectively. Long-term stability results show that there was no significant change in the photo-peak position, energy resolution and count rate for 60 days. Phantom imaging studies were performed and they demonstrated the feasibility for high quality brain imaging. The performance tests and imaging results indicate that the newly developed PET is useful for brain imaging studies, if the axial FOV is extended to improve the system sensitivity.

  18. Puzzles of dark energy in the Universe—phantom

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P

    2015-01-01

    This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives dominant negative pressure which acts as antigravity. We consider a phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to extraction of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same mass is impossible unless both of them are at rest and suddenly start moving with opposite velocities and kinetic energies. This effect is a classic analog of quantum mechanical particle pair creation in a strong electric field or physical vacuum. (paper)

  19. ICRU activity in the field of phantoms in diagnostic radiology

    International Nuclear Information System (INIS)

    Wambersie, A.

    1992-01-01

    The ICRU Report on 'Phantoms and Computational Models in Radiation Therapy, Diagnosis and Protection' is presented. Different types of phantoms may be defined. They may be broadly categorized according to their primary function: dosimetry, calibration and imaging. Within each functional category, there are 3 types or designs of phantoms: body phantoms (anthropomorphic), standard phantoms and reference phantoms (used in the definition and specification of certain radiation quantities). In radiological imaging, anthropomorphic body phantoms are used for measuring the absorbed dose distribution resulting from imaging procedures. Standard phantoms have simple reproducible geometry and are used for comparing measurements under standard conditions of exposure. Imaging phantoms are useful for evaluating a given imaging system; they contain different types of test pieces. The report contains a major section on human anatomy, from fetus to adult with the variations due to ethnic origin. Tolerance levels for the phantoms (composition, dimensions) are proposed and quality assurance programs are outlined. The report contains extensive appendices; human anatomical data and full specification of over 80 phantoms and computational models. ICRU Report 46 on 'Photon, electron, proton and neutron interaction data for body tissues' is closely related to the field of phantoms. It is a logical continuation on ICRU Report 44 (1989) on 'Tissue substitutes in radiation dosimetry and measurements' and contains the interaction data for more than 100 tissues, from fetal to adult, including some diseased tissues

  20. Patient specific 3D printed phantom for IMRT quality assurance

    International Nuclear Information System (INIS)

    Ehler, Eric D; Higgins, Patrick D; Dusenbery, Kathryn E; Barney, Brett M

    2014-01-01

    The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification. Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms. The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods. A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use. (paper)

  1. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    International Nuclear Information System (INIS)

    Traub, Richard J.

    2008-01-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness

  2. Correction of head motion artifacts in SPECT with fully 3-D OS-EM reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.

    1998-01-01

    Full text: A method which relies on continuous monitoring of head position has been developed to correct for head motion in SPECT studies of the brain. Head position and orientation are monitored during data acquisition by an inexpensive head tracking system (ADL-1, Shooting Star Technology, Rosedale, British Colombia). Motion correction involves changing the projection geometry to compensate for motion (using data from the head tracker), and reconstructing with a fully 3-D OS-EM algorithm. The reconstruction algorithm can accommodate any number of movements and any projection geometry. A single iteration of 3-D OS-EM using all available projections provides a satisfactory 3-D reconstruction, essentially free of motion artifacts. The method has been validated in studies of the 3-D Hoffman brain phantom. Multiple 36- degree acquisitions, each with the phantom in a different position, were performed on a Trionix triple head camera. Movements were simulated by combining projections from the different acquisitions. Accuracy was assessed by comparison with a motion-free reconstruction, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. Three-dimensional reconstruction of the 128 x 128 x 128 data set took 2- minutes on a SUN Ultra 1 workstation. This motion correction technique can be retro-fitted to existing SPECT systems and could be incorporated in future SPECT camera designs. It appears to be applicable in PET as well as SPECT, to be able to correct for any head movements, and to have the potential to improve the accuracy of tomographic brain studies under clinical imaging conditions

  3. Mathematical phantoms for evaluation of age-specific internal dose

    International Nuclear Information System (INIS)

    Cristy, M.

    1980-01-01

    A series of mathematical phantoms representing children has been developed for use with photon transport codes. These phantoms, patterned after the Fisher-Snyder adult phantom, consist of simple mathematical expressions for the boundaries of the major organs and body sections. The location and shape of the organs are consistent with drawings depicting developmental anatomy, with the organ volumes assigned such that the masses at the various ages conform closely with the data presented in Reference Man. The explicit mathematical expressions for the various ages overcome the potential misrepresentation of organ sizes that occurred in phantoms derived from simple mathematical transformations of the adult phantom. Female breast tissue has been added to the phantoms, including the adult, now allowing assessment of doses to this organ

  4. Usefulness of a functional tracheobronchial phantom for interventional procedure

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lim, Cheong Hwan; Kim, Jeong Koo

    2003-01-01

    To evaluate usefulness of a functional tracheobronchial phantom for interventional procedure. The functional phantom was made as a actual size with human normal anatomy used silicone and a paper clay mold. A tracheobronchial-shape clay mold was placed inside a square box and liquid silicone was poured. After the silicone was formed, the clay was removed. We measured film density and tracheobronchial angle at the human, animal and phantom respectively. The film density of trachea part were 0.76 (± 0.011) in human, 0.97 (± 0.015) in animal, 0.45 (± 0.016) in phantom. The tracheobronchial bifurcation part measured 0.51 (± 0.006) in human, 0.65 (± 0.005) in animal, 0.65 (± 0.008) in phantom. The right bronchus part measured 0.14 (± 0.008) in human, 0.59 (± 0.014) in animal and 0.04 (± 0.007) in phantom. The left bronchus were 0.54 (± 0.004) in human, 0.54 (± 0.008) in animal and 0.08 (± 0.008) in phantom. At the stent part were 0.54 (± 0.004) in human, 0.59 (± 0.011) in animal and 0.04 (± 0.007) in phantom, respectively. The tracheobronchial angle of the left bronchus site were 42.6 (± 2.07).deg. in human, 43.4 (± 2.40).deg. in animal and 35 (± 2.00).deg. in phantom, respectively. The right bronchus site were 32.8 (± 2.77).deg. in human, 34.6 (± 1.94).deg. in animal and 50.2 (± 1.30).deg. in phantom, respectively. The phantom was useful for in-vitro testing of tracheobronchial interventional procedure, since it was easy to reproduce

  5. Beyond body experiences: phantom limbs, pain and the locus of sensation.

    Science.gov (United States)

    Wade, Nicholas J

    2009-02-01

    Reports of perceptual experiences are found throughout history. However, the phenomena considered worthy of note have not been those that nurture our survival (the veridical features of perception) but the oddities or departures from the common and commonplace accuracies of perception. Some oddities (like afterimages) could be experienced by everyone, whereas others were idiosyncratic. Such phenomena were often given a paranormal interpretation before they were absorbed into the normal science of the day. This sequence is examined historically in the context of beyond body experiences or phantom limbs. The experience of sensations in lost body parts provides an example of the ways in which novel phenomena can be interpreted. The first phase of description probably occurred in medieval texts and was often associated with accounts of miraculous reconnection. Ambroise Paré (1510-1590) initiated medical interest in this intriguing aspect of perception, partly because more of his patients survived the trauma of surgery. Description is followed by attempts to incorporate the phenomenon into the body of extant theory. René Descartes (1596-1650) integrated sensations in amputated limbs into his dualist theory of mind, and used the phenomenon to support the unity of the mind in comparison to the fragmented nature of bodily sensations. Others, like William Porterfield (ca. 1696-1771), did not consider the phenomenon as illusory and interpreted it in terms of other projective features of perception. Finally, the phenomenon is accepted and utilized to gain more insights into the functioning of the senses and the brain. The principal features of phantom limbs were well known before they were given that name in the 19th century. Despite the puzzles they still pose, these phantoms continue to provide perception with some potent concepts: the association with theories of pain has loosened the link with peripheral stimulation and emphasis on the phenomenal dimension has slackened

  6. Phantom Pain

    Science.gov (United States)

    ... Because this is yet another version of tangled sensory wires, the result can be pain. A number of other factors are believed to contribute to phantom pain, including damaged nerve endings, scar tissue at the site of the amputation and the physical memory of pre-amputation pain in the affected area. ...

  7. Contrast enhancement in EIT imaging of the brain

    International Nuclear Information System (INIS)

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data. (paper)

  8. Contrast enhancement in EIT imaging of the brain.

    Science.gov (United States)

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data.

  9. Comparison of different phantoms used in digital diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bor, Dogan, E-mail: bor@eng.ankara.edu.tr [Ankara University, Faculty of Engineering, Department of Engineering Physics. Tandogan, 06100 Ankara (Turkey); Unal, Elif, E-mail: elf.unall@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey); Uslu, Anil, E-mail: m.aniluslu@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey)

    2015-09-21

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  10. Energy Efficient Resource Allocation for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr

    2016-04-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a

  11. [Psychotherapies for the Treatment of Phantom Limb Pain].

    Science.gov (United States)

    Cárdenas, Katherine; Aranda, Mariana

    The phantom limb pain has been described as a condition in which patients experience a feeling of itching, spasm or pain in a limb or body part that has been previously amputated. Such pain can be induced by a conflict between the representation of the visual and proprioceptive feedback of the previously healthy limb. The phantom limb pain occurs in at least 42 to 90% of amputees. Regular drug treatment of phantom limb pain is almost never effective. A systematic review of the literature was conducted in Medline and Cochrane using the MESH terms "phantom limb pain" and "psychotherapy", published in the last 10 years, in English and Spanish, finding 49 items. After reviewing the abstracts, 25 articles were excluded for not being related to the objective of the research. Additionally cross references of included articles and literature were reviewed. To describe the psychotherapies used in the management of phantom limb pain, their effectiveness and clinical application reported in the literature. The mechanisms underlying phantom limb pain were initially explained, as were the published studies on the usefulness of some psychotherapies such as mirror visual feedback and immersive virtual reality, visual imagery, desensitization and reprocessing eye movements and hypnosis. The phantom limb pain is a complex syndrome that requires pharmacological and psychotherapeutic intervention. The psychotherapies that have been used the most as adjuvants in the treatment of phantom limb pain are mirror visual feedback, desensitization and reprocessing eye movements, imagery and hypnosis. Studies with more representative samples, specifically randomized trials are required. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  12. Unveiling the development of intracranial injury using dynamic brain EIT: an evaluation of current reconstruction algorithms.

    Science.gov (United States)

    Li, Haoting; Chen, Rongqing; Xu, Canhua; Liu, Benyuan; Tang, Mengxing; Yang, Lin; Dong, Xiuzhen; Fu, Feng

    2017-08-21

    Dynamic brain electrical impedance tomography (EIT) is a promising technique for continuously monitoring the development of cerebral injury. While there are many reconstruction algorithms available for brain EIT, there is still a lack of study to compare their performance in the context of dynamic brain monitoring. To address this problem, we develop a framework for evaluating different current algorithms with their ability to correctly identify small intracranial conductivity changes. Firstly, a simulation 3D head phantom with realistic layered structure and impedance distribution is developed. Next several reconstructing algorithms, such as back projection (BP), damped least-square (DLS), Bayesian, split Bregman (SB) and GREIT are introduced. We investigate their temporal response, noise performance, location and shape error with respect to different noise levels on the simulation phantom. The results show that the SB algorithm demonstrates superior performance in reducing image error. To further improve the location accuracy, we optimize SB by incorporating the brain structure-based conductivity distribution priors, in which differences of the conductivities between different brain tissues and the inhomogeneous conductivity distribution of the skull are considered. We compare this novel algorithm (called SB-IBCD) with SB and DLS using anatomically correct head shaped phantoms with spatial varying skull conductivity. Main results and Significance: The results showed that SB-IBCD is the most effective in unveiling small intracranial conductivity changes, where it can reduce the image error by an average of 30.0% compared to DLS.

  13. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb

    DEFF Research Database (Denmark)

    Raffin, Estelle; Richard, Nathalie; Giraux, Pascal

    2016-01-01

    A substantial body of evidence documents massive reorganization of primary sensory and motor cortices following hand amputation, the extent of which is correlated with phantom limb pain. Many therapies for phantom limb pain are based upon the idea that plastic changes after amputation...... for the maladaptative plasticity model, we demonstrate for the first time that motor capacities of the phantom limb correlate with post-amputation reorganization, and that this reorganization is not limited to the face and hand representations but also includes the proximal upper-limb....

  14. The UF family of reference hybrid phantoms for computational radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L; Bolch, Wesley E

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR(TM). NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros(TM). The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  15. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    International Nuclear Information System (INIS)

    Cerqueira, R.A.D.; Maia, A.F.

    2014-01-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers. - Highlights: ► Two thyroid phantoms were developed (OSCT and OSAP) with different types of acrylics. ► Thyroid glands were represented anthropomorphically in the both phantoms. ► Different prototypes of thyroid were built of simulate healthy or unhealthy glands. ► Images indicate that anthropomorphic phantoms correctly simulate the thyroid gland

  16. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs.

    Science.gov (United States)

    Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin

    2016-09-08

    An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the

  17. Measurement of TLD Albedo response on various calibration phantoms

    International Nuclear Information System (INIS)

    Momose, T.; Tsujimura, N.; Shinohara, K.; Ishiguro, H.; Nakamura, T.

    1996-01-01

    The International Commission on Radiation Units and Measurements (ICRU) has recommended that individual dosemeter should be calibrated on a suitable phantom and has pointed out that the calibration factor of a neutron dosemeter is strongly influenced by the the exact size and shape of the body and the phantom to which the dosemeter is attached. As the principle of an albedo type thermoluminescent personal dosemeter (albedo TLD) is essentially based on a detection of scattered and moderated neutron from a human body, the sensitivity of albedo TLD is strongly influenced by the incident neutron energy and the calibration phantom. (1) Therefore for albedo type thermoluminescent personal dosemeter (albedo TLD), the information of neutron albedo response on the calibration phantom is important for appropriate dose estimation. In order to investigate the effect of phantom type on the reading of the albedo TLD, measurement of the TLD energy response and angular response on some typical calibration phantoms was performed using dynamitron accelerator and 252 Cf neutron source. (author)

  18. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy.

    Science.gov (United States)

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2017-01-01

    Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by "mirror therapy." Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one's own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one's own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain.

  19. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S.

    2015-01-01

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  20. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Matthew F. [Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, California 94305 (United States); Lee, Brian J. [Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, California 94305 (United States); Levin, Craig S., E-mail: cslevin@stanford.edu [Departments of Radiology, Physics, Bioengineering and Electrical Engineering, Stanford University, 300 Pasteur Dr., Stanford, California 94305-5128 (United States)

    2015-10-15

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  1. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.

    Science.gov (United States)

    Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S

    2015-10-01

    Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to

  2. An image-guided transcranial direct current stimulation system: a pilot phantom study

    International Nuclear Information System (INIS)

    Jung, Young-Jin; Kim, Jung-Hoon; Kim, Daejeong; Im, Chang-Hwan

    2013-01-01

    In this study, an image-guided transcranial direct current stimulation (IG-tDCS) system that can deliver an increased stimulation current to a target brain area without the need to adjust the location of an active electrode was implemented. This IG-tDCS system was based on the array-type tDCS concept, which was validated through computer simulations in a previous study. Unlike a previous study, the present IG-tDCS system adopts a single reference electrode and an active electrode array consisting of 16 (4 × 4) sub-electrodes. The proposed IG-tDCS system is capable of shaping current flow inside the human head by controlling the input currents of the arrayed electrodes. Once a target brain area has been selected, the optimal injection current of each arrayed sub-electrode is evaluated automatically using a genetic algorithm in order to deliver the maximum available current to the target area. The operation of our pilot system was confirmed through a simple phantom experiment. (paper)

  3. Design of a tracked ultrasound calibration phantom made of LEGO bricks

    Science.gov (United States)

    Walsh, Ryan; Soehl, Marie; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    PURPOSE: Spatial calibration of tracked ultrasound systems is commonly performed using precisely fabricated phantoms. Machining or 3D printing has relatively high cost and not easily available. Moreover, the possibilities for modifying the phantoms are very limited. Our goal was to find a method to construct a calibration phantom from affordable, widely available components, which can be built in short time, can be easily modified, and provides comparable accuracy to the existing solutions. METHODS: We designed an N-wire calibration phantom made of LEGO® bricks. To affirm the phantom's reproducibility and build time, ten builds were done by first-time users. The phantoms were used for a tracked ultrasound calibration by an experienced user. The success of each user's build was determined by the lowest root mean square (RMS) wire reprojection error of three calibrations. The accuracy and variance of calibrations were evaluated for the calibrations produced for various tracked ultrasound probes. The proposed model was compared to two of the currently available phantom models for both electromagnetic and optical tracking. RESULTS: The phantom was successfully built by all ten first-time users in an average time of 18.8 minutes. It cost approximately $10 CAD for the required LEGO® bricks and averaged a 0.69mm of error in the calibration reproducibility for ultrasound calibrations. It is one third the cost of similar 3D printed phantoms and takes much less time to build. The proposed phantom's image reprojections were 0.13mm more erroneous than those of the highest performing current phantom model The average standard deviation of multiple 3D image reprojections differed by 0.05mm between the phantoms CONCLUSION: It was found that the phantom could be built in less time, was one third the cost, compared to similar 3D printed models. The proposed phantom was found to be capable of producing equivalent calibrations to 3D printed phantoms.

  4. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, T.; Vanninen, E.; Kuikka, J.T. [Kuopio Central Hospital (Finland). Dept. of Clinical Physiology; Koskinen, M.O. [Dept. of Clinical Physiology and Nuclear Medicine, Tampere Univ. Hospital, Tampere (Finland); Alenius, S. [Signal Processing Lab., Tampere Univ. of Technology, Tampere (Finland)

    2000-09-01

    Filtered back-projection (FBP) is generally used as the reconstruction method for single-photon emission tomography although it produces noisy images with apparent streak artefacts. It is possible to improve the image quality by using an algorithm with iterative correction steps. The iterative reconstruction technique also has an additional benefit in that computation of attenuation correction can be included in the process. A commonly used iterative method, maximum-likelihood expectation maximisation (ML-EM), can be accelerated using ordered subsets (OS-EM). We have applied to the OS-EM algorithm a Bayesian one-step late correction method utilising median root prior (MRP). Methodological comparison was performed by means of measurements obtained with a brain perfusion phantom and using patient data. The aim of this work was to quantitate the accuracy of iterative reconstruction with scatter and non-uniform attenuation corrections and post-filtering in SPET brain perfusion imaging. SPET imaging was performed using a triple-head gamma camera with fan-beam collimators. Transmission and emission scans were acquired simultaneously. The brain phantom used was a high-resolution three-dimensional anthropomorphic JB003 phantom. Patient studies were performed in ten chronic pain syndrome patients. The images were reconstructed using conventional FBP and iterative OS-EM and MRP techniques including scatter and nonuniform attenuation corrections. Iterative reconstructions were individually post-filtered. The quantitative results obtained with the brain perfusion phantom were compared with the known actual contrast ratios. The calculated difference from the true values was largest with the FBP method; iteratively reconstructed images proved closer to the reality. Similar findings were obtained in the patient studies. The plain OS-EM method improved the contrast whereas in the case of the MRP technique the improvement in contrast was not so evident with post-filtering. (orig.)

  5. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction

    International Nuclear Information System (INIS)

    Kauppinen, T.; Vanninen, E.; Kuikka, J.T.; Alenius, S.

    2000-01-01

    Filtered back-projection (FBP) is generally used as the reconstruction method for single-photon emission tomography although it produces noisy images with apparent streak artefacts. It is possible to improve the image quality by using an algorithm with iterative correction steps. The iterative reconstruction technique also has an additional benefit in that computation of attenuation correction can be included in the process. A commonly used iterative method, maximum-likelihood expectation maximisation (ML-EM), can be accelerated using ordered subsets (OS-EM). We have applied to the OS-EM algorithm a Bayesian one-step late correction method utilising median root prior (MRP). Methodological comparison was performed by means of measurements obtained with a brain perfusion phantom and using patient data. The aim of this work was to quantitate the accuracy of iterative reconstruction with scatter and non-uniform attenuation corrections and post-filtering in SPET brain perfusion imaging. SPET imaging was performed using a triple-head gamma camera with fan-beam collimators. Transmission and emission scans were acquired simultaneously. The brain phantom used was a high-resolution three-dimensional anthropomorphic JB003 phantom. Patient studies were performed in ten chronic pain syndrome patients. The images were reconstructed using conventional FBP and iterative OS-EM and MRP techniques including scatter and nonuniform attenuation corrections. Iterative reconstructions were individually post-filtered. The quantitative results obtained with the brain perfusion phantom were compared with the known actual contrast ratios. The calculated difference from the true values was largest with the FBP method; iteratively reconstructed images proved closer to the reality. Similar findings were obtained in the patient studies. The plain OS-EM method improved the contrast whereas in the case of the MRP technique the improvement in contrast was not so evident with post-filtering. (orig.)

  6. Radiation dose verification using real tissue phantom in modern radiotherapy techniques

    International Nuclear Information System (INIS)

    Gurjar, Om Prakash; Mishra, S.P.; Bhandari, Virendra; Pathak, Pankaj; Patel, Prapti; Shrivastav, Garima

    2014-01-01

    In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as 'head phantom' and goat meat as 'tissue phantom'. The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD): 0.74), 2.36 (SD: 0.77), 3.62 (SD: 1.05), and 3.31 (SD: 0.78) for three-dimensional conformal radiotherapy (3DCRT) (head phantom), intensity modulated radiotherapy (IMRT; head phantom), 3DCRT (tissue phantom), and IMRT (tissue phantom), respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%), but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body. (author)

  7. Radiation dose verification using real tissue phantom in modern radiotherapy techniques

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2014-01-01

    Full Text Available In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as "head phantom" and goat meat as "tissue phantom". The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD: 0.74, 2.36 (SD: 0.77, 3.62 (SD: 1.05, and 3.31 (SD: 0.78 for three-dimensional conformal radiotherapy (3DCRT (head phantom, intensity modulated radiotherapy (IMRT; head phantom, 3DCRT (tissue phantom, and IMRT (tissue phantom, respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%, but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body.

  8. A Tool for Interactive Data Visualization: Application to Over 10,000 Brain Imaging and Phantom MRI Data Sets

    Directory of Open Access Journals (Sweden)

    Sandeep R Panta

    2016-03-01

    Full Text Available In this paper we propose a web-based approach for quick visualization of big data from brain magnetic resonance imaging (MRI scans using a combination of an automated image capture and processing system, nonlinear embedding, and interactive data visualization tools. We draw upon thousands of MRI scans captured via the COllaborative Imaging and Neuroinformatics Suite (COINS. We then interface the output of several analysis pipelines based on structural and functional data to a t-distributed stochastic neighbor embedding (t-SNE algorithm which reduces the number of dimensions for each scan in the input data set to two dimensions while preserving the local structure of data sets. Finally, we interactively display the output of this approach via a web-page, based on data driven documents (D3 JavaScript library. Two distinct approaches were used to visualize the data. In the first approach, we computed multiple quality control (QC values from pre-processed data, which were used as inputs to the t-SNE algorithm. This approach helps in assessing the quality of each data set relative to others. In the second case, computed variables of interest (e.g. brain volume or voxel values from segmented gray matter images were used as inputs to the t-SNE algorithm. This approach helps in identifying interesting patterns in the data sets. We demonstrate these approaches using multiple examples including 1 quality control measures calculated from phantom data over time, 2 quality control data from human functional MRI data across various studies, scanners, sites, 3 volumetric and density measures from human structural MRI data across various studies, scanners and sites. Results from (1 and (2 show the potential of our approach to combine t-SNE data reduction with interactive color coding of variables of interest to quickly identify visually unique clusters of data (i.e. data sets with poor QC, clustering of data by site quickly. Results from (3 demonstrate

  9. NURBS-based 3-d anthropomorphic computational phantoms for radiation dosimetry applications

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Lee, Choonik; Bolch, Wesley E.

    2007-01-01

    Computational anthropomorphic phantoms are computer models used in the evaluation of absorbed dose distributions within the human body. Currently, two classes of the computational phantoms have been developed and widely utilised for dosimetry calculation: (1) stylized (equation-based) and (2) voxel (image-based) phantoms describing human anatomy through the use of mathematical surface equations and 3-D voxel matrices, respectively. However, stylized phantoms have limitations in defining realistic organ contours and positioning as compared to voxel phantoms, which are themselves based on medical images of human subjects. In turn, voxel phantoms that have been developed through medical image segmentation have limitations in describing organs that are presented in low contrast within either magnetic resonance or computed tomography image. The present paper reviews the advantages and disadvantages of these existing classes of computational phantoms and introduces a hybrid approach to a computational phantom construction based on non-uniform rational B-Spline (NURBS) surface animation technology that takes advantage of the most desirable features of the former two phantom types. (authors)

  10. Regional heating patterns of RF hyperthermia applicators in phantoms

    International Nuclear Information System (INIS)

    Kantor, G.; Ruggera, P.S.; Samulski, T.V.

    1984-01-01

    An elliptical phantom (20 cm by 30 cm cross-section and 40 cm long) with a 1 cm fat layer filled with muscle material was used to compare the induced heating patterns of the NCDRH helical coil, a Henry Medical Magnetrode coil, both with a diameter of 35.6 cm, and the BSD Annular Phased Array System (APAS). Temperature profiles were taken in the midplane cross-sectional slice along the major and minor axes of the phantom. These profiles were measured with a Vitek thermistor probe and the associated specific absorption rates (SAR) were determined from this data. SAR curves for each applicator were obtained along the major and minor axes of the phantom. The depths of heating of the Magnetrode applicator are considerably smaller than those for the helical applicator. Heating patterns for the APAS can be highly variable and asymmetric depending on the frequency of operation and the location of the phantom within the APAS aperture. While the APAS requires a water bolus for good coupling, the NCDRH and Magnetrode coils need only to be air coupled for good phantom coupling. Both the helical applicator and APAS can provide significant heating in the central region of the phantom. However, the heating of the helical coil does not critically depend on the phantom loading

  11. Simulation of computed tomography dose based on voxel phantom

    Science.gov (United States)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  12. Phantom dark ghost in Einstein-Cartan gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Chiao [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); Bouhmadi-Lopez, Mariam [University of the Basque Country UPV/EHU, Department of Theoretical Physics, P.O. Box 644, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain); Chen, Pisin [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); SLAC National Accelerator Laboratory, Stanford University, Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA (United States)

    2017-05-15

    A class of dynamical dark energy models is constructed through an extended version of fermion fields corresponding to phantom dark ghost spinors, which are spin 1/2 with mass dimension 1. We find that if these spinors interact with torsion fields in a homogeneous and isotropic universe, then it does not imply any future dark energy singularity or any abrupt event, though the fermion has a negative kinetic energy. In fact, the equation of state of this dark energy model will asymptotically approach the value w = -1 from above without crossing the phantom divide and inducing therefore a de Sitter state. Consequently, we expect the model to be stable because no real phantom fields will be created. At late time, the torsion fields will vanish as the corresponding phantom dark ghost spinors dilute. As would be expected, intuitively, this result is unaffected by the presence of cold dark matter although the proof is not as straightforward as in general relativity. (orig.)

  13. Development of a web-based graphical user interface to design brain fiber models for tractography validation

    OpenAIRE

    González Vela, Guillem

    2017-01-01

    Diffusion Magnetic Resonance Imaging (MRI) is an advanced MRI technique which can provide brain white matter tissue microscopic information. From this information, the connectivity map of axons in the brain can be obtained using tractography algorithms. However, this cartography of the brain wiring is known to suffer from several biases. Phantomas is an open source library created with the aim of evaluating tractography. It allows the creation of in silico brain phantoms and simulates i...

  14. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  15. SPM analysis of cerebrovascular reserve capacity after stimulation with acetazolamide measured by Tc-99m ECD SPECT in normal brain MRI patient

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M. H.; Yoon, S. N.; Yoon, J. K.; Cho, C. W. [College of Medicine, Univ. of Ajou, Suwon (Korea, Republic of)

    2003-07-01

    This study was undertaken to evaluate normal response of acetazolamide in normal individuals, whose brain MRI is normal, using SPM99. In total, 10 Tc- 99m ECD brain SPECT were evaluated retrospectively. The half of the patients were male. Their mean age was 47.1 years old with a range of 33-61 years. They all visited our neurology department to evaluate stroke symptom. Their brain MRI was normal. Rest/acetazolamide brain SPECT was perfomed using Tc-99m ECD and the sequential injection and subtraction method. SPECT was acquired using fanbeam collimators and triple-head gamma camera (MultiSPECT III, Siemens medical systems, Inc. Hoffman Estates, III, USA). Chang's attenuation correction was applied their brain SPECT revealed normal rCBF pattern in visual analysis by two nuclear physician and they were diagnosed clinically normal. Using SPM method, we compared rest brain SPECT images with those of acetazolamide brain SPECT and measured the extent of the area with significant perfusion change (P<0.05) in predefined 34 cerebral regions. Acetazolamide brain SPECT showed no significant decreased region in comparison to rest brain SPECT. Only small portion of left mid temporal gyrus revealed increased rCBF on acetazolamide brain SPECT in comparison to rest brain SPECT. It apperas that there is no significant change in rCBF between rest and acetazolamide brain SPECT using Tc-99m ECD. The small number of this study is limitation of our study.

  16. Experimental and computational development of a natural breast phantom for dosimetry studies

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2013-01-01

    This paper describes the experimental and computational development of a natural breast phantom, anthropomorphic and anthropometric for studies in dosimetry of brachytherapy and teletherapy of breast. The natural breast phantom developed corresponding to fibroadipose breasts of women aged 30 to 50 years, presenting radiographically medium density. The experimental breast phantom was constituted of three tissue-equivalents (TE's): glandular TE, adipose TE and skin TE. These TE's were developed according to chemical composition of human breast and present radiological response to exposure. Completed the construction of experimental breast phantom this was mounted on a thorax phantom previously developed by the research group NRI/UFMG. Then the computational breast phantom was constructed by performing a computed tomography (CT) by axial slices of the chest phantom. Through the images generated by CT a computational model of voxels of the thorax phantom was developed by SISCODES computational program, being the computational breast phantom represented by the same TE's of the experimental breast phantom. The images generated by CT allowed evaluating the radiological equivalence of the tissues. The breast phantom is being used in studies of experimental dosimetry both in brachytherapy as in teletherapy of breast. Dosimetry studies by MCNP-5 code using the computational model of the phantom breast are in progress. (author)

  17. Evaluation of DQA for tomography using 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Uk [Dept. of Radiation Oncology, Catholic University of Incheon St. Mary' s Hospital, Incheon (Korea, Republic of); Kim, Jeong Koo [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2016-12-15

    The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at 0.76±0.59% and 1.37±0.76% in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were 97.72±0.02% and 99.26±0.01% in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were 94.21±0.02% and 93.02±0.01% in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

  18. The Phantom Menace

    DEFF Research Database (Denmark)

    Vium, Christian

    2013-01-01

    as a phantom menace, which asserts itself through a form of omnipresent fear, nurtured by an inherent opaqueness. As this fundamental fear progressively permeates the nomadic landscape, it engenders a recasting of mobile strategies among the nomadic pastoralist groups who inhabit the interstitial desert spaces....

  19. Simultaneous calibration phantom commission and geometry calibration in cone beam CT

    Science.gov (United States)

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-09-01

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  20. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom

    International Nuclear Information System (INIS)

    Garcia-Garduno, Olivia A.; Larraga-Gutierrez, Jose M.; Rodriguez-Villafuerte, Mercedes; Martinez-Davalos, Arnulfo; Celis, Miguel A.

    2010-01-01

    This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis (registered) , BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.

  1. Phantom study for the systemic performance of Gemini PET/CT

    International Nuclear Information System (INIS)

    Feng Yanlin; He Xiaohong; Huang Kemin; Yu Fengwen; Liu Dejun; Yuan Jianwei; Yuan Baihong; Su Shaodi

    2005-01-01

    Objective: To develop the methods and parameters for evaluating the systemic performance of Gemini PET/CT. Methods: The spatial resolution, standardized uptake value (SUV), uniformity and accuracy of image registration were selected as the evaluating indexes. The Jaszczak phantom with smaller inserts was filled with 18 F-fluorodeoxyglucose (FDG) solution and imaged with whole body and brain imaging modes, respectively, to evaluate the spatial resolution of the PET/CT; a Philips hollow phantom was filled with 18 F-FDG solution and imaged for calculating the SUV and the uniformity parameters; four 22 Na solid sources were put under the pad of the patient table and imaged synchronously with the patient's data acquisition to evaluate the accuracy of the PET and CT image fusion. Results: The rods of the diameter of 6.4 mm of both the hot and cold inserts were observed with whole body imaging mode, and rods of the diameters of 4.8 mm of both the hot and cold inserts were observed with brain imaging mode. The SUV with X-ray CT attenuation correction (CTAC) was 0.92 ± 0.24, and was 0.99±0.26 with 137 Cs attenuation correction (CsAC), and t=-1.327, P>0.05 between the two groups. The uniformity of the images with both CTAC and CsAC was very nice, no artifacts were seen either. The maximum pixel counts was 3790, the minimum was 1434, the average was 2581.23 and the standard deviation was 728.39 with CTAC; and were 4218, 1073, 2758.19 and 838.79 with CsAC correspondingly, and t=-1.069, P>0.05 between the two groups. The images of PET and CT were registrated better, and also no diversity was detected on the fusion images. Conclusions: These methods and parameters might be used to evaluate the systemic performance of the PET/CT, and could also be used as the supplementary items for the acceptance test and daily quality assurance of the PET/CT. (authors)

  2. SU-E-T-492: Implementing a Method for Brain Irradiation in Rats Utilizing a Commercially Available Radiosurgery Irradiator

    International Nuclear Information System (INIS)

    Cates, J; Drzymala, R

    2014-01-01

    Purpose: The purpose of the study was to implement a method for accurate rat brain irradiation using the Gamma Knife Perfexion unit. The system needed to be repeatable, efficient, and dosimetrically and spatially accurate. Methods: A platform (“rat holder”) was made such that it is attachable to the Leskell Gamma Knife G Frame. The rat holder utilizes two ear bars contacting bony anatomy and a front tooth bar to secure the rat. The rat holder fits inside of the Leskell localizer box, which utilizes fiducial markers to register with the GammaPlan planning system. This method allows for accurate, repeatable setup.A cylindrical phantom was made so that film can be placed axially in the phantom. We then acquired CT image sets of the rat holder and localizer box with both a rat and the phantom. Three treatment plans were created: a plan on the rat CT dataset, a phantom plan with the same prescription dose as the rat plan, and a phantom plan with the same delivery time as the rat plan. Results: Film analysis from the phantom showed that our setup is spatially accurate and repeatable. It is also dosimetrically accurate, with an difference between predicted and measured dose of 2.9%. Film analysis with prescription dose equal between rat and phantom plans showed a difference of 3.8%, showing that our phantom is a good representation of the rat for dosimetry purposes, allowing for +/- 3mm diameter variation. Film analysis with treatment time equal showed an error of 2.6%, which means we can deliver a prescription dose within 3% accuracy. Conclusion: Our method for irradiation of rat brain has been shown to be repeatable, efficient, and accurate, both dosimetrically and spatially. We can treat a large number of rats efficiently while delivering prescription doses within 3% at millimeter level accuracy

  3. SU-E-T-507: Internal Dosimetry in Nuclear Medicine Using GATE and XCAT Phantom: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose Monte Carlo simulations are routinely used for internal dosimetry studies. These studies are conducted with humanoid phantoms such as the XCAT phantom. In this abstract we present the absorbed doses for various pairs of source and target organs using three common radiotracers in nuclear medicine. Methods The GATE software package is used for the Monte Carlo simulations. A typical female XCAT phantom is used as the input. Three radiotracers 153Sm, 131I and 99mTc are studied. The Specific Absorbed Fraction (SAF) for gamma rays (99mTc, 153Sm and 131I) and Specific Fraction (SF) for beta particles (153Sm and 131I) are calculated for all 100 pairs of source target organs including brain, liver, lung, pancreas, kidney, adrenal, spleen, rib bone, bladder and ovaries. Results The source organs themselves gain the highest absorbed dose as compared to other organs. The dose is found to be inversely proportional to distance from the source organ. In SAF results of 153Sm, when the source organ is lung, the rib bone, gain 0.0730 (Kg-1) that is more than lung itself. Conclusion The absorbed dose for various organs was studied in terms of SAF and SF. Such studies hold importance for future therapeutic procedures and optimization of induced radiotracer.

  4. Phantom energy accretion onto black holes in a cyclic universe

    International Nuclear Information System (INIS)

    Sun Chengyi

    2008-01-01

    Black holes pose a serious problem in cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by phantom energy prior to turnaround before they can create any problems. In this paper, using the mechanism of phantom accretion onto black holes, we find that black holes do not disappear before phantom turnaround. But the remanent black holes will not cause any problems due to Hawking evaporation.

  5. Brain water mapping with MR imaging

    International Nuclear Information System (INIS)

    Laine, F.J.; Fatouros, P.P.; Kraft, K.A.

    1990-01-01

    This paper reports on a recently developed MR imaging technique to determine the spatial distribution of brain water to healthy volunteers. A noninvasive MR imaging technique to obtain absolute measurements of brain water has been developed and validated with phantom and animal studies. Patient confirmation was obtained from independent gravimetric measurements of brain tissue samples harvested by biopsy. This approach entails the production of accurate T1 maps from multiple inversion recovery images of a selected anatomic section and their subsequent conversion into an absolute water image by means of a previously determined calibration curve. Twenty healthy volunteers were studied and their water distribution was determined in a standard section. The following brain water values means and SD grams of water per gram of tissue) were obtained for selected brain regions; white matter, 68.9% ± 1.0; corpus callosum, 67.4% ± 1.1; thalamus, 75.3% ± 1.4; and caudate nucleus, 80.3% ± 1.4. MR imaging water mapping is a valid means of determining water content in a variety of brain tissues

  6. Construction of average adult Japanese voxel phantoms for dose assessment

    International Nuclear Information System (INIS)

    Sato, Kaoru; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira

    2011-12-01

    The International Commission on Radiological Protection (ICRP) adopted the adult reference voxel phantoms based on the physiological and anatomical reference data of Caucasian on October, 2007. The organs and tissues of these phantoms were segmented on the basis of ICRP Publication 103. In future, the dose coefficients for internal dose and dose conversion coefficients for external dose calculated using the adult reference voxel phantoms will be widely used for the radiation protection fields. On the other hand, the body sizes and organ masses of adult Japanese are generally smaller than those of adult Caucasian. In addition, there are some cases that the anatomical characteristics such as body sizes, organ masses and postures of subjects influence the organ doses in dose assessment for medical treatments and radiation accident. Therefore, it was needed to use human phantoms with average anatomical characteristics of Japanese. The authors constructed the averaged adult Japanese male and female voxel phantoms by modifying the previously developed high-resolution adult male (JM) and female (JF) voxel phantoms. It has been modified in the following three aspects: (1) The heights and weights were agreed with the Japanese averages; (2) The masses of organs and tissues were adjusted to the Japanese averages within 10%; (3) The organs and tissues, which were newly added for evaluation of the effective dose in ICRP Publication 103, were modeled. In this study, the organ masses, distances between organs, specific absorbed fractions (SAFs) and dose conversion coefficients of these phantoms were compared with those evaluated using the ICRP adult reference voxel phantoms. This report provides valuable information on the anatomical and dosimetric characteristics of the averaged adult Japanese male and female voxel phantoms developed as reference phantoms of adult Japanese. (author)

  7. Phantoms and computational models in therapy, diagnosis and protection

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The development of realistic body phantoms and computational models is strongly dependent on the availability of comprehensive human anatomical data. This information is often missing, incomplete or not easily available. Therefore, emphasis is given in the Report to organ and body masses and geometries. The influence of age, sex and ethnic origins in human anatomy is considered. Suggestions are given on how suitable anatomical data can be either extracted from published information or obtained from measurements on the local population. Existing types of phantoms and computational models used with photons, electrons, protons and neutrons are reviewed in this Report. Specifications of those considered important to the maintenance and development of reliable radiation dosimetry and measurement are given. The information provided includes a description of the phantom or model, together with diagrams or photographs and physical dimensions. The tissues within body sections are identified and the tissue substitutes used or recommended are listed. The uses of the phantom or model in radiation dosimetry and measurement are outlined. The Report deals predominantly with phantom and computational models representing the human anatomy, with a short Section devoted to animal phantoms in radiobiology

  8. Development of a head phantom to be used for quality control in stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Barbosa, Nilseia Aparecida

    2010-05-01

    It was designed and developed a geometric acrylic head phantom (GHP) for Quality Assurance (QA) in Stereotactic Radiosurgery (SRS). Inside the phantom there are inserts that are able to accommodate acrylic targets representing the tumor tissue and organ at risk in the region cranial brain, the brain stem. The tumor tissue is represented by two semi-spheres of acrylic with a diameter of 13.0 mm and cavities in the central region for accommodation of a TLD-100 detector and a small radiochromic EBT Gafchromic filmstrip. The brain stem is represented by the two parts of acrylic cylinder with a diameter 18.0 mm, 38.0 mm length and cavities along the central region to accommodate the 5 detectors TLD-100 and yet another of EBT film. The distance tumor - brain stem is 2.0 mm. The experimental setup was filled with water, attached to the stereotactic frame to determine the coordinates of the target and underwent computed tomography (CT). Cf images were transferred to the SRS planning system BrainLab (BrainScan). The contours of the lesion and organ at risk were delineated and, through the technique of multiple circular arcs, the planning was conduced with five arches, one isocenter and a collimator of 17.5 mm from the combination between the table and gantry . The dose delivered to the isocenter of the lesion was 3.0 Gy and the total coverage of tumor volume corresponds to the 75% isodose. This experimental arrangement is subjected to radiosurgery treatment, after which the dosimeters are evaluated and their responses compared with the values of planned doses. The linear accelerator used was a Varian CLlNAC 2300 CID, photon beam of 6 MV, installed at the National Cancer Institute (INCA). For verification of dose distributions in 3D, the films were irradiated in three planes: sagittal, caronal and axial. The .films were scanned and digitized on a scanner Microtek ScanMaker 9800XL model. The dose distributions in irradiated films were compared with the distributions of doses

  9. Benchmark calculations with simple phantom for neutron dosimetry (2)

    International Nuclear Information System (INIS)

    Yukio, Sakamoto; Shuichi, Tsuda; Tatsuhiko, Sato; Nobuaki, Yoshizawa; Hideo, Hirayama

    2004-01-01

    Benchmark calculations for high-energy neutron dosimetry were undertaken after SATIF-5. Energy deposition in a cylindrical phantom with 100 cm radius and 30 cm depth was calculated for the irradiation of neutrons from 100 MeV to 10 GeV. Using the ICRU four-element loft tissue phantom and four single-element (hydrogen, carbon, nitrogen and oxygen) phantoms, the depth distributions of deposition energy and those total at the central region of phantoms within l cm radius and at the whole region of phantoms within 100 cm radius were calculated. The calculated results of FLUKA, MCNPX, MARS, HETC-3STEP and NMTC/JAM codes were compared. It was found that FLUKA, MARS and NMTC/JAM showed almost the same results. For the high-energy neutron incident, the MCNP-X results showed the largest ones in the total deposition energy and the HETC-3STEP results show'ed smallest ones. (author)

  10. SU-E-QI-06: Design and Initial Validation of a Precise Capillary Phantom to Test Perfusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R; Iacobucci, G; Khobragade, P; Ying, L; Snyder, K; Wack, D; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-15

    Purpose: To design a precise perfusion phantom mimicking capillaries of the brain vasculature which could be used to test various perfusion protocols and algorithms which generate perfusion maps. Methods: A perfusion phantom was designed in Solidworks and built using additive manufacturing. The phantom was an overall cylindrical shape of diameter and height 20mm and containing capillaries of 200μm or 300μm which were parallel and in contact making up the inside volume where flow was allowed. We created a flow loop using a peristaltic pump and contrast agent was injected manually. Digital Subtraction Angiographic images and low contrast images with cone beam CT were acquired after the contrast was injected. These images were analyzed by our own code in LabVIEW software and Time-Density Curve, MTT and TTP was calculated. Results: Perfused area was visible in the cone beam CT images; however, individual capillaries were not distinguishable. The Time-Density Curve acquired was accurate, sensitive and repeatable. The parameters MTT, and TTP offered by the phantom were very sensitive to slight changes in the TDC shape. Conclusion: We have created a robust calibrating model for evaluation of existing perfusion data analysis systems. This approach is extremely sensitive to changes in the flow due to the high temporal resolution and could be used as a golden standard to assist developers in calibrating and testing of imaging perfusion systems and software algorithms. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  11. SU-E-QI-06: Design and Initial Validation of a Precise Capillary Phantom to Test Perfusion Systems

    International Nuclear Information System (INIS)

    Wood, R; Iacobucci, G; Khobragade, P; Ying, L; Snyder, K; Wack, D; Rudin, S; Ionita, C

    2014-01-01

    Purpose: To design a precise perfusion phantom mimicking capillaries of the brain vasculature which could be used to test various perfusion protocols and algorithms which generate perfusion maps. Methods: A perfusion phantom was designed in Solidworks and built using additive manufacturing. The phantom was an overall cylindrical shape of diameter and height 20mm and containing capillaries of 200μm or 300μm which were parallel and in contact making up the inside volume where flow was allowed. We created a flow loop using a peristaltic pump and contrast agent was injected manually. Digital Subtraction Angiographic images and low contrast images with cone beam CT were acquired after the contrast was injected. These images were analyzed by our own code in LabVIEW software and Time-Density Curve, MTT and TTP was calculated. Results: Perfused area was visible in the cone beam CT images; however, individual capillaries were not distinguishable. The Time-Density Curve acquired was accurate, sensitive and repeatable. The parameters MTT, and TTP offered by the phantom were very sensitive to slight changes in the TDC shape. Conclusion: We have created a robust calibrating model for evaluation of existing perfusion data analysis systems. This approach is extremely sensitive to changes in the flow due to the high temporal resolution and could be used as a golden standard to assist developers in calibrating and testing of imaging perfusion systems and software algorithms. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation

  12. Deformable and durable phantoms with controlled density of scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Charles-Etienne; Lamouche, Guy; Dufour, Marc; Monchalin, Jean-Pierre [Industrial Materials Institute, National Research Council Canada, 75 de Mortagne, Boucherville, Quebec J4B 6Y4 (Canada); Maciejko, Romain [Optoelectronics Laboratory, Engineering Physics, Ecole Polytechnique de Montreal, PO Box 6079, Station ' Centre-ville' Montreal, Quebec H3C 3A7 (Canada)], E-mail: charles-etienne.bisaillon@cnrc-nrc.gc.ca, E-mail: guy.lamouche@cnrc-nrc.gc.ca, E-mail: marc.dufour@cnrc-nrc.gc.ca, E-mail: jean-pierre.monchalin@cnrc-nrc.gc.ca, E-mail: romain.maciejko@polytml.ca

    2008-07-07

    We have developed deformable and durable optical tissue phantoms with a simple and well-defined microstructure including a novel combination of scatterers and a matrix material. These were developed for speckle and elastography investigations in optical coherence tomography, but should prove useful in many other fields. We present in detail the fabrication process which involves embedding silica microspheres in a silicone matrix. We also characterize the resulting phantoms with scanning electron microscopy and optical measurements. To our knowledge, no such phantoms were proposed in the literature before. Our technique has a wide range of applicability and could also be adapted to fabricate phantoms with various optical and mechanical properties. (note)

  13. A Novel Simple Phantom for Verifying the Dose of Radiation Therapy

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2015-01-01

    Full Text Available A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions.

  14. Advanced Radiation DOSimetry phantom (ARDOS): a versatile breathing phantom for 4D radiation therapy and medical imaging

    Science.gov (United States)

    Kostiukhina, Natalia; Georg, Dietmar; Rollet, Sofia; Kuess, Peter; Sipaj, Andrej; Andrzejewski, Piotr; Furtado, Hugo; Rausch, Ivo; Lechner, Wolfgang; Steiner, Elisabeth; Kertész, Hunor; Knäusl, Barbara

    2017-10-01

    A novel breathing phantom was designed for being used in conventional and ion-beam radiotherapy as well as for medical imaging. Accurate dose delivery and patient safety are aimed to be verified for four-dimensional (4D) treatment techniques compensating for breathing-induced tumor motion. The phantom includes anthropomorphic components representing an average human thorax. It consists of real tissue equivalent materials to fulfill the requirements for dosimetric experiments and imaging purposes. The different parts of the torso (lungs, chest wall, and ribs) and the tumor can move independently. Simple regular movements, as well as more advanced patient-specific breathing cycles are feasible while a reproducible setup can be guaranteed. The phantom provides the flexibility to use different types of dosimetric devices and was designed in a way that it is robust, transportable and easy to handle. Tolerance levels and the reliability of the phantom setup were determined in combination with tests on motion accuracy and reproducibility by using infrared optical tracking technology. Different imaging was performed including positron emission tomography imaging, 4D computed tomography as well as real-time in-room imaging. The initial dosimetric benchmarking studies were performed in a photon beam where dose parameters are predictable and the dosimetric procedures well established.

  15. Advanced Radiation DOSimetry phantom (ARDOS): a versatile breathing phantom for 4D radiation therapy and medical imaging.

    Science.gov (United States)

    Kostiukhina, Natalia; Georg, Dietmar; Rollet, Sofia; Kuess, Peter; Sipaj, Andrej; Andrzejewski, Piotr; Furtado, Hugo; Rausch, Ivo; Lechner, Wolfgang; Steiner, Elisabeth; Kertész, Hunor; Knäusl, Barbara

    2017-10-04

    A novel breathing phantom was designed for being used in conventional and ion-beam radiotherapy as well as for medical imaging. Accurate dose delivery and patient safety are aimed to be verified for four-dimensional (4D) treatment techniques compensating for breathing-induced tumor motion. The phantom includes anthropomorphic components representing an average human thorax. It consists of real tissue equivalent materials to fulfill the requirements for dosimetric experiments and imaging purposes. The different parts of the torso (lungs, chest wall, and ribs) and the tumor can move independently. Simple regular movements, as well as more advanced patient-specific breathing cycles are feasible while a reproducible setup can be guaranteed. The phantom provides the flexibility to use different types of dosimetric devices and was designed in a way that it is robust, transportable and easy to handle. Tolerance levels and the reliability of the phantom setup were determined in combination with tests on motion accuracy and reproducibility by using infrared optical tracking technology. Different imaging was performed including positron emission tomography imaging, 4D computed tomography as well as real-time in-room imaging. The initial dosimetric benchmarking studies were performed in a photon beam where dose parameters are predictable and the dosimetric procedures well established.

  16. Voxel anthropomorphic phantoms: review of models used for ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Lemosquet, A.; Carlan, L. de; Clairand, I.

    2003-01-01

    Computational anthropomorphic phantoms have been used since the 1970's for dosimetric calculations. Realistic geometries are required for this operation, resulting in the development of ever more accurate phantoms. Voxel phantoms, consisting of a set of small-volume elements, appeared towards the end of the 1980's, and significantly improved on the original mathematical models. Voxel phantoms are models of the human body, obtained using computed tomography (CT) or magnetic resonance images (MRI). These phantoms are an extremely accurate representation of the human anatomy. This article provides a review of the literature available on the development of these phantoms and their applications in ionising radiation dosimetry. The bibliographical study has shown that there is a wide range of phantoms, covering various characteristics of the general population in terms of sex, age or morphology, and that they are used in applications relating to all aspects of ionising radiation. (author)

  17. The safety of transcranial magnetic stimulation with deep brain stimulation instruments

    OpenAIRE

    Shimojima, Yoshio; Morita, Hiroshi; Nishikawa, Noriko; Kodaira, Minori; Hashimoto, Takao; Ikeda, Shu-ichi

    2010-01-01

    Objectives: Transcranial magnetic stimulation (TMS) has been employed in patients with an implanted deep brain Stimulation (DBS) device. We investigated the safety of TMS using Simulation models with an implanted DBS device. Methods: The DBS lead was inserted into plastic phantoms filled with dilute gelatin showing impedance similar to that of human brain. TMS was performed with three different types of magnetic coil. During TMS (I) electrode movement, (2) temperature change around the lead, ...

  18. Hubungan Phantom Vibration Syndrome Terhadap Sleep Disorder dan Kondisi Stress

    Directory of Open Access Journals (Sweden)

    Ajeng Yeni Setianingrum

    2017-10-01

    Full Text Available Phantom vibration syndrome is a condition where a person would feel the sensation of vibration of a cell phone as if there were incoming notification but the fact is not. This research investigated the relationship between phantom vibration syndromes, sleep disorder and stress condition. Questionnaires were distributed to 120 participants with age range 18 to 23 years old. Data of participants showed that all of participants using a smart mobile phone and 24% of them have more than one cell phone. Time usage of cell phone is at least 1 hour. 23% of participants using a cell phone for social media activity, followed by 21% related to entertainment (music, video and games. The results showed a positive relationship between phantom vibration syndrome, sleep disorder and stress condition. Insomnia contributed a greater influence on stress condition. However, the phantom vibration syndrome is more directly affecting the sleep apnea compared to insomnia and stress condition. Therefore, the phantom vibration syndrome more affects stress condition indirectly, through sleep disorder (sleep apnea and insomnia. Consequently, phantom vibration syndrome has a strong relationship with stress condition at the time of the phantom vibration syndrome can cause sleep disorder.

  19. Estimation of computed tomography dose in various phantom shapes and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Lae [Dept. of Radiological Science, Yonsei University, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The CTDI100center values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but CTDI{sub 100center} values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom CTDI{sub 100center} values were relatively low as the material density increased. However, in the case of Polyethylene, the CTDI{sub 100center} value was higher than that of PMMA at diameters exceeding 15 cm (CTDI{sub 100center} : 35.0 mGy). And a diameter greater than 30 cm (CTDI{sub 100center} : 17.7 mGy) showed more CTDI{sub 100center} than Water. We have used limited phantoms to evaluate CT doses. In this study, CTDI{sub 100center} values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

  20. A solid tissue phantom for photon migration studies

    International Nuclear Information System (INIS)

    Cubeddu, Rinaldo; Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Valentini, Gianluca

    1997-01-01

    A solid tissue phantom made of agar, Intralipid and black ink is described and characterized. The preparation procedure is fast and easily implemented with standard laboratory equipment. An instrumentation for time-resolved transmittance measurements was used to determine the optical properties of the phantom. The absorption and the reduced scattering coefficients are linear with the ink and Intralipid concentrations, respectively. A systematic decrease of the reduced scattering coefficient dependent on the agar content is observed, but can easily be managed. The phantom is highly homogeneous and shows good repeatability among different preparations. Moreover, agar inclusions can be easily embedded in either solid or liquid matrixes, and no artefacts are caused by the solid - solid or solid - liquid interfaces. This allows one to produce reliable and realistic inhomogeneous phantoms with known optical properties, particularly interesting for studies on optical imaging through turbid media. (author)

  1. Phantom inflation and the 'Big Trip'

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)]. E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Jimenez-Madrid, Jose A. [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)

    2004-08-19

    Primordial inflation is regarded to be driven by a phantom field which is here implemented as a scalar field satisfying an equation of state p={omega}{rho}, with {omega}-1. Being even aggravated by the weird properties of phantom energy, this will pose a serious problem with the exit from the inflationary phase. We argue, however, in favor of the speculation that a smooth exit from the phantom inflationary phase can still be tentatively recovered by considering a multiverse scenario where the primordial phantom universe would travel in time toward a future universe filled with usual radiation, before reaching the big rip. We call this transition the 'Big Trip' and assume it to take place with the help of some form of anthropic principle which chooses our current universe as being the final destination of the time transition.

  2. Fabrication of subcutaneous veins phantom for vessel visualization system

    Science.gov (United States)

    Cheng, Kai; Narita, Kazuyuki; Morita, Yusuke; Nakamachi, Eiji; Honda, Norihiro; Awazu, Kunio

    2013-09-01

    The technique of subcutaneous veins imaging by using NIR (Near Infrared Radiation) is widely used in medical applications, such as the intravenous injection and the blood sampling. In the previous study, an automatic 3D blood vessel search and automatic blood sampling system was newly developed. In order to validate this NIR imaging system, we adopted the subcutaneous vein in the human arm and its artificial phantom, which imitate the human fat and blood vessel. The human skin and subcutaneous vein is characterized as the uncertainty object, which has the individual specificity, non-accurate depth information, non-steady state and hardly to be fixed in the examination apparatus. On the other hand, the conventional phantom was quite distinct from the human's characteristics, such as the non-multilayer structure, disagreement of optical property. In this study, we develop a multilayer phantom, which is quite similar with human skin, for improvement of NIR detection system evaluation. The phantom consists of three layers, such as the epidermis layer, the dermis layer and the subcutaneous fat layer. In subcutaneous fat layer, we built a blood vessel. We use the intralipid to imitate the optical scattering characteristics of human skin, and the hemoglobin and melanin for the optical absorption characteristics. In this study, we did two subjects. First, we decide the fabrication process of the phantom. Second, we compared newly developed phantoms with human skin by using our NIR detecting system, and confirm the availability of these phantoms.

  3. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    Science.gov (United States)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  4. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications.

    Science.gov (United States)

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-21

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus H p (3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  5. Induction and separation of motion artifacts in EEG data using a mobile phantom head device.

    Science.gov (United States)

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P

    2016-06-01

    Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  6. Simplified spinal cord phantom for evaluation of SQUID magnetospinography

    International Nuclear Information System (INIS)

    Adachi, Y; Oyama, D; Uehara, G; Somchai, N; Kawabata, S

    2014-01-01

    Spinal cord functional imaging by magnetospinography (MSG) is a noninvasive diagnostic method for spinal cord diseases. However, the accuracy and spatial resolution of lesion localization by MSG have barely been evaluated in detail so far. We developed a simplified spinal cord phantom for MSG evaluation. The spinal cord phantom is composed of a cylindrical vessel filled with saline water, which acts as a model of a neck. A set of modeled vertebrae is arranged in the cylindrical vessel, which has a neural current model made from catheter electrodes. The neural current model emulates the current distribution around the activated site along the axon of the spinal cord nerve. Our MSG system was used to observe the magnetic field from the phantom; a quadrupole-like pattern of the magnetic field distribution, which is a typical distribution pattern for spinal cord magnetic fields, was successfully reproduced by the phantom. Hence, the developed spinal cord phantom can be used to evaluate MSG source analysis methods.

  7. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  8. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    International Nuclear Information System (INIS)

    Hintenlang, David E.

    2009-01-01

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ doses in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date

  9. Introduction of a stack-phantom for PET

    International Nuclear Information System (INIS)

    Jonsson, C.; Schnell, P.O.; Jacobsson, H.; Engelin, L.; Danielsson, A.M.; Johansson, L.; Larsson, S.A.; Pagani, M.; Stone-Elander, S.

    2002-01-01

    Aim: We have previously developed a new flexible phantom system for SPECT, i.e. 'the stack phantom' (Eur. J. Nucl. Med. 27, No.2, 131-139, 2000). The unique feature of this phantom system is that it allows studies with, as well as without major degrading impacts from photon attenuation and Compton scattering. The specific aim of this work was to further develop the system with special reference to PET. Material and methods: The principle of the phantom concept is discrete sampling of 3D objects by a series of equidistant 2D planes. The 2D planes are a digitised set of 2D sections, representing the radioactivity distribution in the object of interest. Using a grey scale related to the radioactivity concentration, selected images are printed by radioactive ink on thin paper sheets and stacked into the 3D structure with low-density or with tissue equivalent material in between. Using positron emitting radionuclides, the paper sheets alone may not be sufficiently thick to avoid annihilation losses due to escaping positrons. In order to investigate the amount of additional material needed, a spot of radioactivity ( 18 F) was printed out and subsequently covered by adding thin plastic films (0.055mm) on both sides of the paper. Short PET scans (ECAT 921) were performed and the count-rate was registered after each additional layer of plastic cover. A first prototype, a cylindrical cold-spot phantom was constructed on the basis of these results. Nine identical sheets were printed out and first mounted in between 4 mm plates of polystyrene (density 1.04 g/cm 3 ). After a PET-scan, the paper sheets were re-mounted in between a low-density material (Divinycell, H30, density 0.03 g/cm 3 ) before repeating the PET scan. Results: For 18 F, the number of registered annihilation photons increased with increasing number of plastic sheets from 70% for the pure paper sheet to about 100% with 0.5 mm plastic cover on each side. PET of the low-density stacked cold spot phantom

  10. Mammography dosimetry using an in-house developed polymethyl methacrylate phantom

    International Nuclear Information System (INIS)

    Sharma, R.; Sharma, S. D.; Mayya, Y. S.; Chourasiya, G.

    2012-01-01

    Phantom-based measurements in mammography are well-established for quality assurance (QA) and quality control (QC) procedures involving equipment performance and comparisons of X-ray machines. Polymethyl methacrylate (PMMA) is among the best suitable materials for simulation of the breast. For carrying out QA/QC exercises in India, a mammographic PMMA phantom with engraved slots for keeping thermoluminescence dosemeters (TLD) has been developed. The radiation transmission property of the developed phantom was compared with the commercially available phantoms for verifying its suitability for mammography dosimetry. The breast entrance exposure (BEE), mean glandular dose (MGD), percentage depth dose (PDD), percentage surface dose distribution (PSDD), calibration testing of automatic exposure control (AEC) and density control function of a mammography machine were measured using this phantom. MGD was derived from the measured BEE following two different methodologies and the results were compared. The PDD and PSDD measurements were carried out using LiF: Mg, Cu, P chips. The in-house phantom was found comparable with the commercially available phantoms. The difference in the MGD values derived using two different methods were found in the range of 17.5-32.6 %. Measured depth ranges in the phantom lie between 0.32 and 0.40 cm for 75 % depth dose, 0.73 and 0.92 cm for 50 % depth dose, and 1.54 and 1.78 cm for 25 % depth dose. Higher PSDD value was observed towards chest wall edge side of the phantom, which is due to the orientation of cathode-anode axis along the chest wall to the nipple direction. Results obtained for AEC configuration testing shows that the observed mean optical density (O.D) of the phantom image was 1.59 and O.D difference for every successive increase in thickness of the phantom was within ±0.15 O.D. Under density control function testing, at -2 and -1 density settings, the variation in film image O.D was within ±0.15 O.D of the normal density

  11. Development of skeletal system for mesh-type ICRP reference adult phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  12. Porous phantoms for PET and SPECT performance evaluation and quality assurance

    International Nuclear Information System (INIS)

    DiFilippo, Frank P.; Price, James P.; Kelsch, Daniel N.; Muzic, Raymond F. Jr.

    2004-01-01

    Characterization of PET and SPECT imaging performance often requires phantoms with complex radionuclide distributions. For example, lesion detection studies use multiple spherical regions of specific target-to-background ratios to simulate cancerous lesions. Such complex distributions are typically created using phantoms with multiple fillable chambers. However, such phantoms are typically difficult and time-consuming to prepare accurately and reproducibly. A new approach using a single-chamber phantom with a porous core can overcome these difficulties. Methods: Prototypes of two designs of porous core phantoms were produced and evaluated. The 'hot spheres' phantom contained a multitude of simulated spherical lesions with diameters ranging from 6.35 to 25.4 mm ('multi-resolution' slice) and with lesion-to-background ratios ranging from 1.6 to 4.4 ('multi-contrast' slice). The 'multi-attenuation' phantom consisted of two halves. One half contained a porous core to produce regions of different attenuation but uniform activity. The other half mimicked the NEMA-94 design with cold inserts of different attenuation. Results: Both phantoms produced the expected radionuclide distributions while requiring the preparation of only a single radionuclide solution and with much reduced preparation time. In images taken on clinical PET and SPECT scanners, the porous core structures were found to contribute negligible background noise or artifact. The measured lesion-to-background ratios from the hot spheres phantom differed slightly from calculated values, with the differences attributed mainly to uncertainty in pore diameter. The measured attenuation coefficients from the multi-attenuation phantom agreed well with expected values. However, it was found that trapped air bubbles due to manufacturing defects in the porous core could potentially cause quantitative errors. Conclusion: The hot spheres and multi-attenuation porous phantoms exhibited a wide range of imaging features

  13. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-12-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements-including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth-were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light-tissue interactions and characterizing biophotonic system performance.

  14. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  15. Assembling of a phantom for quality control in pediatric radiodiagnosis

    International Nuclear Information System (INIS)

    Oliveira, Silvana Carvalho de; Ghilardi Netto, Thomaz; Trad, Clovis Simao; Brochi, Marco Aurelio Corte; Rocha, Sergio Luis

    1996-01-01

    The adaptation of an homogeneous phantom equivalent to an adult patient is presented for the valuation of pediatric radiologic images. The phantom consists basically of two plastic (methyl methacrylate) slabs, each 2.5 cm tick and two aluminium slabs, 0.5 and 1.0 mm thick. The system can simulate the chest, the skull or pelvis, and the extremities. The phantom also enables the equipment calibration, in order to reach the best radiographic image. After calibration of the equipment for several kVp and m As combinations, a phantom with known details and equivalent thickness was used to produce images. These radiographs allowed the choice of the best combination to be used. The entrance surface doses are presented for several combinations used with the pelvis and chest phantoms

  16. Neutron production in a spherical phantom aboard ISS

    International Nuclear Information System (INIS)

    Tasbaz, A.; Machrafi, R.

    2012-01-01

    As part of an ongoing research program on radiation monitoring on International Space Station (ISS) that was established to analyze the radiation exposure levels onboard the ISS using different radiation instruments and a spherical phantom to simulate human body. Monte Carlo transport code was used to simulate the interaction of high energy protons and neutrons with the spherical phantom currently onboard ISS. The phantom has been exposed to individual proton energies and to a spectrum of neutrons. The internal to external neutron flux ratio was calculated and compared to the experimental data, recently, measured on the ISS. (author)

  17. Phantom shocks in patients with implantable cardioverter defibrillator

    DEFF Research Database (Denmark)

    Berg, Selina Kikkenborg; Moons, Philip; Zwisler, Ann-Dorthe

    2013-01-01

    of phantom shocks.METHODS AND RESULTS: The design was secondary explorative analyses of data from a randomized controlled trial. One hundred and ninety-six patients with first-time ICD implantation (79% male, mean age 58 years) were randomized (1 : 1) to either combined rehabilitation or a control group...... questions regarding the experience of phantom shocks, date, time, and place. Twelve patients (9.4%) experienced a phantom shock, 7 in the intervention group and 5 in the control group (NS). Neither age, sex, quality of life nor perceived health at baseline was significantly related to the probability...

  18. A Movable Phantom Design for Quantitative Evaluation of Motion Correction Studies on High Resolution PET Scanners

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Svarer, C.; Sibomana, M.

    2010-01-01

    maximization algorithm with modeling of the point spread function (3DOSEM-PSF), and they were corrected for motions based on external tracking information using the Polaris Vicra real-time stereo motion-tracking system. The new automatic, movable phantom has a robust design and is a potential quality......Head movements during brain imaging using high resolution positron emission tomography (PET) impair the image quality which, along with the improvement of the spatial resolution of PET scanners, in general, raises the importance of motion correction. Here, we present a new design for an automatic...

  19. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    Science.gov (United States)

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Whole-body detector calibrating with a modular phantom

    Energy Technology Data Exchange (ETDEWEB)

    Minev, L; Boshkova, T; Uzunov, P [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    Human body models (phantoms) of various size and weight are produced in order to calibrate gamma spectrometers for accurate activity measurement. The phantoms are built of separate modules with mass of 0.5 kg and size 20 x 14 x 2 cm. There are modules with standard Eu-152 and Am-241 radioactivity designed for homogenous radioactivity imitating and critical organs moulding, as well as `zero` -phantom modules without activity imitating a standard human body. Human organs are modelled by 11 x 9 x 0.5 cm modules with 0.16 kg mass. The phantoms have been used to obtain calibration curves and absolute efficiencies for selected energies of radionuclides expected to be found in the Kozloduy NPP staff. It is shown that the efficiency depends not only on the mass but on the geometric size of the measured object. Scanning of phantoms has been carried out and a profile of activity obtained. The profile consists of an abrupt rising of the sum of pulses (measuring time - 20 s) when the detector passes from neck to chest, a plateau when it moves over the head or the trunk and gradual decrease over the legs. Profiles of activity in organs are best obtained with a lead collimator. 4 refs., 7 figs., 2 tabs.

  1. Whole-body detector calibrating with a modular phantom

    International Nuclear Information System (INIS)

    Minev, L.; Boshkova, T.; Uzunov, P.

    1995-01-01

    Human body models (phantoms) of various size and weight are produced in order to calibrate gamma spectrometers for accurate activity measurement. The phantoms are built of separate modules with mass of 0.5 kg and size 20 x 14 x 2 cm. There are modules with standard Eu-152 and Am-241 radioactivity designed for homogenous radioactivity imitating and critical organs moulding, as well as 'zero' -phantom modules without activity imitating a standard human body. Human organs are modelled by 11 x 9 x 0.5 cm modules with 0.16 kg mass. The phantoms have been used to obtain calibration curves and absolute efficiencies for selected energies of radionuclides expected to be found in the Kozloduy NPP staff. It is shown that the efficiency depends not only on the mass but on the geometric size of the measured object. Scanning of phantoms has been carried out and a profile of activity obtained. The profile consists of an abrupt rising of the sum of pulses (measuring time - 20 s) when the detector passes from neck to chest, a plateau when it moves over the head or the trunk and gradual decrease over the legs. Profiles of activity in organs are best obtained with a lead collimator. 4 refs., 7 figs., 2 tabs

  2. Capturing the Perceived Phantom Limb through Virtual Reality

    Directory of Open Access Journals (Sweden)

    Christian Rogers

    2016-01-01

    Full Text Available Phantom limb is the sensation amputees may feel when the missing limb is still attached to the body and is still moving as it would if it still existed. Despite there being between 50 and 80% of amputees who report neuropathic pain, also known as phantom limb pain (PLP, there is still little understanding of why PLP occurs. There are no fully effective long-term treatments available. One of the struggles with PLP is the difficulty for amputees to describe the sensations of their phantom limbs. The sensations may be of a limb that is in a position that is impossible for a normal limb to attain. The goal of this project was to treat those with PLP by developing a system to communicate the sensations those with PLP were experiencing accurately and easily through various hand positions using a model arm with a user friendly interface. The system was developed with Maya 3D animation software, the Leap Motion input device, and the Unity game engine. The 3D modeled arm was designed to mimic the phantom sensation being able to go beyond normal joint extensions of regular arms. The purpose in doing so was to obtain a true 3D visualization of the phantom limb.

  3. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  4. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  5. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics

    Science.gov (United States)

    Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.

    2017-07-01

    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.

  6. Usefulness of ACR MRI phantom for quality assurance of MRI instruments

    International Nuclear Information System (INIS)

    Lee, Jung Whee; Ahn, Kook Jin; Lee, Seung Koo; Na, Dong Gyu; Oh, Chang Hyun; Chang, Yong Min; Lim, Tae Hwan

    2006-01-01

    To examine whether the ACR phantom could be used in quality standards for magnetic resonance imaging (MRI) instruments in Korea. We conducted the phantom test using the ACR MRI phantom in 20 MRI instruments currently used in Korea. According to ACR criteria, we acquired the phantom images which were then assessed by the following seven tests: geometric accuracy, high spatial resolution, slice thickness accuracy, slice position accuracy, image intensity uniformity, percent signal ghosting, and low contrast object detectability. The phantom images were interpreted by three experienced radiologists according to ACR criteria. Then, we examined the failure rate of each test and evaluated the inter-observer variation in the measurements and test failure. The failure rate of each test could be broken into the following components: geometric accuracy (11-21%), high contrast spatial resolution (10-15%), slice thickness accuracy(6-22%), slice position accuracy (5-17%), image intensity uniformity (6%), percent signal ghosting (16%), and low contrast object detectability (8-10%). In this series, all the failure rates were less than 30%. In addition, no inter-observer variation was seen in the measurements and test failure. ACR MRI phantom promises to be established as the standard phantom for MRI instruments in Korea because of its objectivity in assessing the phantom images

  7. Tracked ultrasound calibration studies with a phantom made of LEGO bricks

    Science.gov (United States)

    Soehl, Marie; Walsh, Ryan; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    In this study, spatial calibration of tracked ultrasound was compared by using a calibration phantom made of LEGO® bricks and two 3-D printed N-wire phantoms. METHODS: The accuracy and variance of calibrations were compared under a variety of operating conditions. Twenty trials were performed using an electromagnetic tracking device with a linear probe and three trials were performed using varied probes, varied tracking devices and the three aforementioned phantoms. The accuracy and variance of spatial calibrations found through the standard deviation and error of the 3-D image reprojection were used to compare the calibrations produced from the phantoms. RESULTS: This study found no significant difference between the measured variables of the calibrations. The average standard deviation of multiple 3-D image reprojections with the highest performing printed phantom and those from the phantom made of LEGO® bricks differed by 0.05 mm and the error of the reprojections differed by 0.13 mm. CONCLUSION: Given that the phantom made of LEGO® bricks is significantly less expensive, more readily available, and more easily modified than precision-machined N-wire phantoms, it prompts to be a viable calibration tool especially for quick laboratory research and proof of concept implementations of tracked ultrasound navigation.

  8. Fully-automated computer-assisted method of CT brain scan analysis for the measurement of cerebrospinal fluid spaces and brain absorption density

    Energy Technology Data Exchange (ETDEWEB)

    Baldy, R.E.; Brindley, G.S.; Jacobson, R.R.; Reveley, M.A.; Lishman, W.A.; Ewusi-Mensah, I.; Turner, S.W.

    1986-03-01

    Computer-assisted methods of CT brain scan analysis offer considerable advantages over visual inspection, particularly in research; and several semi-automated methods are currently available. A new computer-assisted program is presented which provides fully automated processing of CT brain scans, depending on ''anatomical knowledge'' of where cerebrospinal fluid (CSF)-containing spaces are likely to lie. After identifying these regions of interest quantitative estimates are then provided of CSF content in each slice in cisterns, ventricles, Sylvian fissure and interhemispheric fissure. Separate measures are also provided of mean brain density in each slice. These estimates can be summated to provide total ventricular and total brain volumes. The program shows a high correlation with measures derived from mechanical planimetry and visual grading procedures, also when tested against a phantom brain of known ventricular volume. The advantages and limitations of the present program are discussed.

  9. Influence of different contributions of scatter and attenuation on the threshold values in contrast-based algorithms for volume segmentation.

    Science.gov (United States)

    Matheoud, Roberta; Della Monica, Patrizia; Secco, Chiara; Loi, Gianfranco; Krengli, Marco; Inglese, Eugenio; Brambilla, Marco

    2011-01-01

    The aim of this work is to evaluate the role of different amount of attenuation and scatter on FDG-PET image volume segmentation using a contrast-oriented method based on the target-to-background (TB) ratio and target dimensions. A phantom study was designed employing 3 phantom sets, which provided a clinical range of attenuation and scatter conditions, equipped with 6 spheres of different volumes (0.5-26.5 ml). The phantoms were: (1) the Hoffman 3-dimensional brain phantom, (2) a modified International Electro technical Commission (IEC) phantom with an annular ring of water bags of 3 cm thickness fit over the IEC phantom, and (3) a modified IEC phantom with an annular ring of water bags of 9 cm. The phantoms cavities were filled with a solution of FDG at 5.4 kBq/ml activity concentration, and the spheres with activity concentration ratios of about 16, 8, and 4 times the background activity concentration. Images were acquired with a Biograph 16 HI-REZ PET/CT scanner. Thresholds (TS) were determined as a percentage of the maximum intensity in the cross section area of the spheres. To reduce statistical fluctuations a nominal maximum value is calculated as the mean from all voxel > 95%. To find the TS value that yielded an area A best matching the true value, the cross section were auto-contoured in the attenuation corrected slices varying TS in step of 1%, until the area so determined differed by less than 10 mm² versus its known physical value. Multiple regression methods were used to derive an adaptive thresholding algorithm and to test its dependence on different conditions of attenuation and scatter. The errors of scatter and attenuation correction increased with increasing amount of attenuation and scatter in the phantoms. Despite these increasing inaccuracies, PET threshold segmentation algorithms resulted not influenced by the different condition of attenuation and scatter. The test of the hypothesis of coincident regression lines for the three phantoms used

  10. Efficiency factors for Phoswich based lung monitor using ICRP Voxel phantoms

    International Nuclear Information System (INIS)

    Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    The actinide contamination in lungs is measured either using array of HPGe detector or Phoswich based lung monitors. This paper discusses the results obtained during numerical calibration of Phoswich based lung counting system using ICRP VOXEL phantoms. The results are also compared with measured efficiency values obtained using LLNL phantom. The efficiency factors of 241 Am present in the lungs for phoswich detector was simulated using ICRP male voxel phantom and compared with experimentally observed values using LLNL Phantom. The observed deviation is 12%. The efficiency of the same for female subjects was estimated using ICRP female voxel phantom for both supine and posterior geometries

  11. Phantom breast syndrome

    Directory of Open Access Journals (Sweden)

    Ramesh

    2009-01-01

    Full Text Available Phantom breast syndrome is a type of condition in which patients have a sensation of residual breast tissue and can include both non-painful sensations as well as phantom breast pain. The incidence varies in different studies, ranging from approximately 30% to as high as 80% of patients after mastectomy. It seriously affects quality of life through the combined impact of physical disability and emotional distress. The breast cancer incidence rate in India as well as Western countries has risen in recent years while survival rates have improved; this has effectively increased the number of women for whom post-treatment quality of life is important. In this context, chronic pain following treatment for breast cancer surgery is a significantly under-recognized and under-treated problem. Various types of chronic neuropathic pain may arise following breast cancer surgery due to surgical trauma. The cause of these syndromes is damage to various nerves during surgery. There are a number of assumed factors causing or perpetuating persistent neuropathic pain after breast cancer surgery. Most well-established risk factors for developing phantom breast pain and other related neuropathic pain syndromes are severe acute postoperative pain and greater postoperative use of analgesics. Based upon current evidence, the goals of prophylactic strategies could first target optimal peri-operative pain control and minimizing damage to nerves during surgery. There is some evidence that chronic pain and sensory abnormalities do decrease over time. The main group of oral medications studied includes anti-depressants, anticonvulsants, opioids, N-methyl-D-asparate receptor antagonists, mexilitine, topical lidocaine, cannabinoids, topical capsaicin and glysine antagonists. Neuromodulation techniques such as motor cortex stimulation, spinal cord stimulation, and intrathecal drug therapies have been used to treat various neuropathic pain syndromes.

  12. Image fusion tool: Validation by phantom measurements

    International Nuclear Information System (INIS)

    Zander, A.; Geworski, L.; Richter, M.; Ivancevic, V.; Munz, D.L.; Muehler, M.; Ditt, H.

    2002-01-01

    Aim: Validation of a new image fusion tool with regard to handling, application in a clinical environment and fusion precision under different acquisition and registration settings. Methods: The image fusion tool investigated allows fusion of imaging modalities such as PET, CT, MRI. In order to investigate fusion precision, PET and MRI measurements were performed using a cylinder and a body contour-shaped phantom. The cylinder phantom (diameter and length 20 cm each) contained spheres (10 to 40 mm in diameter) which represented 'cold' or 'hot' lesions in PET measurements. The body contour-shaped phantom was equipped with a heart model containing two 'cold' lesions. Measurements were done with and without four external markers placed on the phantoms. The markers were made of plexiglass (2 cm diameter and 1 cm thickness) and contained a Ga-Ge-68 core for PET and Vitamin E for MRI measurements. Comparison of fusion results with and without markers was done visually and by computer assistance. This algorithm was applied to the different fusion parameters and phantoms. Results: Image fusion of PET and MRI data without external markers yielded a measured error of 0 resulting in a shift at the matrix border of 1.5 mm. Conclusion: The image fusion tool investigated allows a precise fusion of PET and MRI data with a translation error acceptable for clinical use. The error is further minimized by using external markers, especially in the case of missing anatomical orientation. Using PET the registration error depends almost only on the low resolution of the data

  13. Linear versus circular polarization of head coils - comparison on phantom and in the clinic

    International Nuclear Information System (INIS)

    Schratter, M.; Kramer, J.; Prayer, L.; Wimberger, D.; Imhof, H.; Schmid, W.

    1990-01-01

    Two different head coils - one with linear polarization and the other with circular polarization - were compared under the same measurement conditions. Comparison was done on a phantom with waterfilled and gadolinium-filled pin-holes, as well as on anatomical MR images of 23 volunteers. In three volunteers the whole brain was examined while, in the remaining 20 volunteers the sella region or cerebellopontine angleregion was examined. Criteria for comparison were signal-to-noise ratio, background noise, and detail resolution (phantom), as well as subjective criteria - image sharpness, anatomical, contrast, and recognition of anatomical details -, evaluated on anatomical MR images by four radiologists independently of each other. The results show a significant improvement of signal-to-noise ratio, lower background noise and therefore marked improvement of images harpness, and moderate improvement in the recognition of anatomical details using the circular polarized head coil; as for as detail resolution and anatomical contrast were concerned, however, no significant difference was seen between the two coils. Major advantages of the circular, polarized head coil in clinical application are shorter measurement times (reduced number of acquisitions), as well as thinner slices without loss of signal-to-noise ratio. (orig.) [de

  14. Phantom positioning variation in the Gamma Knife® Perfexion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nathalia Almeida; Potiens, Maria da Penha Albuquerque [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Saraiva, Crystian [Hospital do Coracao, Sao Paulo, SP (Brazil)

    2015-07-01

    The use of small volume ionization chamber has become required for the dosimetry of equipment that use small radiation fields. A pinpoint ionization chamber is ideal for the dosimetry of a Gamma Knife® Perfexion (GKP) unit. In this work, this chamber was inserted into the phantom, and measurements were performed with the phantom in different positions, in order to verify if the change in the phantom positioning affects the dosimetry of the GKP. Three different phantom positions were performed. The variation in the result is within the range allowed for the dosimetry of a GKP equipment. (author)

  15. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    International Nuclear Information System (INIS)

    Miranda, D A; Cristiano, K L; Gutiérrez, J C

    2013-01-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated

  16. Evaluation of the 1Shot Phantom dedicated to the mammography system using FCR

    International Nuclear Information System (INIS)

    Nagashima, Chieko; Uchiyama, Nachiko; Moriyama, Noriyuki; Nagata, Mio; Kobayashi, Hiroyuki; Sankoda, Katsuhiro; Saotome, Shigeru; Tagi, Masahiro; Kusunoki, Tetsurou

    2009-01-01

    Currently daily quality control (QC) tests for mammography systems are generally evaluated by using visual analysis phantoms, which of course means subjective measurement. In our study, however, we evaluated a novel digital phantom, the 1Shot Phantom M plus (1Shot Phantom), together with automatic analysis software dedicated for mammography systems using Fuji computed radiography (FCR). The digital phantom enables objective evaluation by providing for actual physical measurement rather than subjective visual assessment. We measured contrast to noise ratio (CNR), image receptor homogeneity, missed tissue at chest wall side, modulation transfer function (MTF), and geometric distortion utilizing the 1Shot Phantom. We then compared the values obtained using the 1Shot Phantom with values obtained from the European guidelines and International Electrotechnical Commission (IEC) standards. In addition, we evaluated the convenience of using the digital phantom. The values utilizing the 1Shot Phantom and those from the European guidelines and IEC standards were consistent, but the QC tests for the European guidelines and IEC standards methods took about six hours while the same QC tests using the 1Shot Phantom took 10 minutes or less including exposure of the phantom image, measurement, and analysis. In conclusion, the digital phantom and dedicated software proved very useful and produced improved analysis for mammography systems using FCR in clinical daily QC testing because of their objectivity and substantial time-saving convenience. (author)

  17. Preliminary Study on Hybrid Computational Phantom for Radiation Dosimetry Based on Subdivision Surface

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Choi, Sang Hyoun; Cho, Sung Koo; Kim, Chan Hyeong

    2007-01-01

    The anthropomorphic computational phantoms are classified into two groups. One group is the stylized phantoms, or MIRD phantoms, which are based on mathematical representations of the anatomical structures. The shapes and positions of the organs and tissues in these phantoms can be adjusted by changing the coefficients of the equations in use. The other group is the voxel phantoms, which are based on tomographic images of a real person such as CT, MR and serially sectioned color slice images from a cadaver. Obviously, the voxel phantoms represent the anatomical structures of a human body much more realistically than the stylized phantoms. A realistic representation of anatomical structure is very important for an accurate calculation of radiation dose in the human body. Consequently, the ICRP recently has decided to use the voxel phantoms for the forthcoming update of the dose conversion coefficients. However, the voxel phantoms also have some limitations: (1) The topology and dimensions of the organs and tissues in a voxel model are extremely difficult to change, and (2) The thin organs, such as oral mucosa and skin, cannot be realistically modeled unless the voxel resolution is prohibitively high. Recently, a new approach has been implemented by several investigators. The investigators converted their voxel phantoms to hybrid computational phantoms based on NURBS (Non-Uniform Rational B-Splines) surface, which is smooth and deformable. It is claimed that these new phantoms have the flexibility of the stylized phantom along with the realistic representations of the anatomical structures. The topology and dimensions of the anatomical structures can be easily changed as necessary. Thin organs can be modeled without affecting computational speed or memory requirement. The hybrid phantoms can be also used for 4-D Monte Carlo simulations. In this preliminary study, the external shape of a voxel phantom (i.e., skin), HDRK-Man, was converted to a hybrid computational

  18. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  19. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    Science.gov (United States)

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  20. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    International Nuclear Information System (INIS)

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-01-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material. (paper)

  1. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2011-01-01

    We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. It is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph PET brain scanner. The structured light system...... is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a sequence...... of recon- structed PET frames. To align the structured light system with the PET coordinate system a novel registration algorithm based on the PET trans- mission scan and an initial surface has been developed. The performance of the complete setup has been evaluated using a custom made phantom based...

  2. Electromagnetic interference of GSM mobile phones with the implantable deep brain stimulator, ITREL-III

    Directory of Open Access Journals (Sweden)

    Alesch François

    2003-05-01

    Full Text Available Abstract Background The purpose was to investigate mobile phone interference with implantable deep brain stimulators by means of 10 different 900 Mega Hertz (MHz and 10 different 1800 MHz GSM (Global System for Mobile Communications mobile phones. Methods All tests were performed in vitro using a phantom especially developed for testing with deep brain stimulators. The phantom was filled with liquid phantom materials simulating brain and muscle tissue. All examinations were carried out inside an anechoic chamber on two implants of the same type of deep brain stimulator: ITREL-III from Medtronic Inc., USA. Results Despite a maximum transmitted peak power of mobile phones of 1 Watt (W at 1800 MHz and 2 W at 900 MHz respectively, no influence on the ITREL-III was found. Neither the shape of the pulse form changed nor did single pulses fail. Tests with increased transmitted power using CW signals and broadband dipoles have shown that inhibition of the ITREL-III occurs at frequency dependent power levels which are below the emissions of GSM mobile phones. The ITREL-III is essentially more sensitive at 1800 MHz than at 900 MHz. Particularly the frequency range around 1500 MHz shows a very low interference threshold. Conclusion These investigations do not indicate a direct risk for ITREL-III patients using the tested GSM phones. Based on the interference levels found with CW signals, which are below the mobile phone emissions, we recommend similar precautions as for patients with cardiac pacemakers: 1. The phone should be used at the ear at the opposite side of the implant and 2. The patient should avoid carrying the phone close to the implant.

  3. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    International Nuclear Information System (INIS)

    Fonseca, T C Ferreira; Vanhavere, F; Bogaerts, R; Hunt, John

    2014-01-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium. (paper)

  4. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    Science.gov (United States)

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  5. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    Science.gov (United States)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  6. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gu Songxiang; Kyprianou, Iacovos [Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD (United States); Gupta, Rajiv, E-mail: songxiang.gu@fda.hhs.gov, E-mail: rgupta1@partners.org, E-mail: iacovos.kyprianou@fda.hhs.gov [Massachusetts General Hospital, Boston, MA (United States)

    2011-09-21

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  7. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    International Nuclear Information System (INIS)

    Gu Songxiang; Kyprianou, Iacovos; Gupta, Rajiv

    2011-01-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  8. [Phantoms for the collection of genital secretions in stallions].

    Science.gov (United States)

    Klug, E; Brinkhoff, D; Flüge, A; Scherbarth, R; Essich, G; Kienzler, M

    1977-10-05

    Practical experiences of the phantom method for collection of genital secretions from stallions are reported. Taking a phantom used in the Richard-Götze-Haus Tierärztliche Hochschule Hannover as a prototype two further models slightly modified have been constructed, baring a flat hollow in the right side of the caudal phantom body for manual inserting of the Artificial Vagina. These three models fulfill four important conditions for routine use: (1) sufficient sexual attractivity for the stallions; 80-85% successful collections of presecretions out of a total of 1050 using the dummy and 70% successful semen collections from more than 240 in total; (2) solid and resistant construction; (3) easy cleaning and desinfection of the surface of the phantom to get representative samples; (4) firm installation on a hygienic floor.

  9. Phantom jam avoidance through in-car speed advice

    NARCIS (Netherlands)

    Suijs, L.C.W.; Wismans, Luc Johannes Josephus; Krol, L.; van Berkum, Eric C.

    2015-01-01

    The existence of phantom jams can be explained following the definition of Kerner & Konhäuser (1993) who state that a phantom jam occurs without the existence of a physical bottleneck and is caused by the imperfect driving style of road users under metastable traffic conditions. In order to prevent

  10. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  11. Prevalent hallucinations during medical internships: phantom vibration and ringing syndromes.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lin

    Full Text Available BACKGROUND: Phantom vibration syndrome is a type of hallucination reported among mobile phone users in the general population. Another similar perception, phantom ringing syndrome, has not been previously described in the medical literature. METHODS: A prospective longitudinal study of 74 medical interns (46 males, 28 females; mean age, 24.8±1.2 years was conducted using repeated investigations of the prevalence and associated factors of phantom vibration and ringing. The accompanying symptoms of anxiety and depression were evaluated with the Beck Anxiety and Depression Inventories before the internship began, and again at the third, sixth, and twelfth internship months, and two weeks after the internship ended. RESULTS: The baseline prevalence of phantom vibration was 78.1%, which increased to 95.9% and 93.2% in the third and sixth internship months. The prevalence returned to 80.8% at the twelfth month and decreased to 50.0% 2 weeks after the internship ended. The baseline prevalence of phantom ringing was 27.4%, which increased to 84.9%, 87.7%, and 86.3% in the third, sixth, and twelfth internship months, respectively. This returned to 54.2% two weeks after the internship ended. The anxiety and depression scores also increased during the internship, and returned to baseline two weeks after the internship. There was no significant correlation between phantom vibration/ringing and symptoms of anxiety or depression. The incidence of both phantom vibration and ringing syndromes significantly increased during the internship, and subsequent recovery. CONCLUSION: This study suggests that phantom vibration and ringing might be entities that are independent of anxiety or depression during evaluation of stress-associated experiences during medical internships.

  12. A fully-automated computer-assisted method of CT brain scan analysis for the measurement of cerebrospinal fluid spaces and brain absorption density

    International Nuclear Information System (INIS)

    Baldy, R.E.; Brindley, G.S.; Jacobson, R.R.; Reveley, M.A.; Lishman, W.A.; Ewusi-Mensah, I.; Turner, S.W.

    1986-01-01

    Computer-assisted methods of CT brain scan analysis offer considerable advantages over visual inspection, particularly in research; and several semi-automated methods are currently available. A new computer-assisted program is presented which provides fully automated processing of CT brain scans, depending on ''anatomical knowledge'' of where cerebrospinal fluid (CSF)-containing spaces are likely to lie. After identifying these regions of interest quantitative estimates are then provided of CSF content in each slice in cisterns, ventricles, Sylvian fissure and interhemispheric fissure. Separate measures are also provided of mean brain density in each slice. These estimates can be summated to provide total ventricular and total brain volumes. The program shows a high correlation with measures derived from mechanical planimetry and visual grading procedures, also when tested against a phantom brain of known ventricular volume. The advantages and limitations of the present program are discussed. (orig.)

  13. Effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral pediatric and adult CT angiography: a phantom study.

    Science.gov (United States)

    Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John

    2013-04-01

    The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition

  14. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    Science.gov (United States)

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of polygonal surface version of ICRP reference phantoms: Preliminary study for posture change

    International Nuclear Information System (INIS)

    Nguyen, Tat Thang; Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong

    2013-01-01

    Even though International Commission on Radiological Protection (ICRP) officially adopted a set of adult male and female voxel phantoms as the ICRP reference phantoms, there are several critical limitations due to the nature of voxel geometry and their low voxel resolutions. In order to overcome these limitations of the ICRP phantoms, we are currently developing polygonal surface version of ICRP reference phantoms by directly converting the ICRP voxel phantoms to polygonal surface geometries. Among the many advantages of the ICRP polygonal surface phantom, especially, it is flexible and deformable. In principle, it is, therefore, possible to make the posture-changed ICRP phantoms which can provide more accurate dose values for exposure situations strongly relevant to worker's postures. As a preliminary study for developing the posture-changed ICRP phantoms, in this work we changed the posture of the preliminary version of ICRP male polygon-surface phantom constructed in the previous study. Organ doses were then compared between original and posture-changed phantoms. In the present study, we successfully changed a posture of the preliminary version of ICRP male polygon-surface phantom to the walking posture. From this results, it was explicitly shown that the polygon-surface version of the ICRP phantoms can be sufficiently modified to be various postures with the posture-changing method used in this study. In addition, it was demonstrated that phantom's posture must be considered in certain exposure situations, which can differ dose values from the conventional standing-posture phantom

  16. A new image reconstruction method for 3-D PET based upon pairs of near-missing lines of response

    Energy Technology Data Exchange (ETDEWEB)

    Kawatsu, Shoji [Department of Radiology, Kyoritu General Hospital, 4-33 Go-bancho, Atsuta-ku, Nagoya-shi, Aichi 456-8611 (Japan) and Department of Brain Science and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo Moriaka-cho, Obu-shi, Aichi 474-8522 (Japan)]. E-mail: b6rgw@fantasy.plala.or.jp; Ushiroya, Noboru [Department of General Education, Wakayama National College of Technology, 77 Noshima, Nada-cho, Gobo-shi, Wakayama 644-0023 (Japan)

    2007-02-01

    We formerly introduced a new image reconstruction method for three-dimensional positron emission tomography, which is based upon pairs of near-missing lines of response. This method uses an elementary geometric property of lines of response, namely that two lines of response which originate from radioactive isotopes located within a sufficiently small voxel, will lie within a few millimeters of each other. The effectiveness of this method was verified by performing a simulation using GATE software and a digital Hoffman phantom.

  17. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    International Nuclear Information System (INIS)

    Xu, X. Geroge

    2011-01-01

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  18. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    Science.gov (United States)

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. AdS Black Hole with Phantom Scalar Field

    Directory of Open Access Journals (Sweden)

    Limei Zhang

    2017-01-01

    Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.

  1. Computer phantoms for simulating ultrasound B-mode and CFM images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Munk, Peter

    1997-01-01

    in a file that defines their position and amplitude. Adjusting the number of scatterers and their relative amplitude yields the proper image.Five different computer phantoms are described. The first one consists of a number of point targets. It is used for studying the point spread function as a function...... of spatial position, and can give an indication of sidelobe levels and focusing abilities. The second phantom contains a number of cysts and point tagets along with a homogeneous speckle pattern. This is used for investigating image contrast, and the system's ability to detect low-contrast objects. The third...... phantom is for realistic clinical imaging. It contains the image of a 12 week old fetus, where the placenta and the upper body of the fetus is visible. This phantom gives an indication of the whole system's capability for real imaging. The current fetus phantom is only two-dimensional, as it is constant...

  2. Construction of cardiac anthropomorphic phantom for simulation of radiological exams

    International Nuclear Information System (INIS)

    Bandeira, C.K.; Vieira Neto, H.; Vieira, M.P.M.M.

    2017-01-01

    Phantoms are simulating objects of structures of the human body and can be applied in the quality control and calibration of radiological equipment. The aim of the work is the development of a cardiac anthropomorphic phantom to assist in the elaboration of protocols of dynamic studies that demonstrate the blood circulation inside the cardiac chambers. For the construction of the phantom was used latex, applied in layers on an anatomical model of heart, having been constructed the cardiac chambers and atrioventricular valves. Cardiac chambers were connected to the cannulas for fluid injection and simulation of the circulatory system. The constructed phantom presents anthropomorphic characteristics and allows the circulation of the fluid without reflux, but the thickness of the catheters used does not yet allow flows of greater order of magnitude. This phantom has the potential to be used in the dynamic simulation of cardiac exams, contributing to the elaboration and adequacy of computed tomography protocols

  3. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes.

    Directory of Open Access Journals (Sweden)

    Sossena Wood

    Full Text Available The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications.An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource. The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner.Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla and the scattering parameter (measured using a network analyzer were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer.The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI.

  4. Whole-body voxel phantoms of paediatric patients—UF Series B

    Science.gov (United States)

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2006-09-01

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm × 0.86 mm × 3.0 mm, 0.90 mm × 0.90 mm × 5.0 mm, 1.16 mm × 1.16 mm × 6.0 mm, 0.94 mm × 0.94 mm × 6.00 mm and 1.18 mm × 1.18 mm × 6.72 mm, respectively.

  5. Dosimetric characteristics of water equivalent for two solid water phantoms

    International Nuclear Information System (INIS)

    Wang Jianhua; Wang Xun; Ren Jiangping

    2011-01-01

    Objective: To investigate the water equivalent of two solid water phantoms. Methods: The X-ray and electron beam depth-ion curves were measured in water and two solid water phantoms, RW3 and Virtual Water. The water-equivalency correction factors for the two solid water phantoms were compared. We measured and calculated the range sealing factors and the fluence correction factors for the two solid water phantoms in the case of electron beams. Results: The average difference between the measured ionization in solid water phantoms and water was 0.42% and 0.16% on 6 MV X-ray (t=-6.15, P=0.001 and t=-1.65, P=0.419) and 0.21% and 0.31% on 10 MV X-ray (t=1.728, P=0.135 and t=-2.296, P=0.061), with 17.4% and 14.5% on 6 MeV electron beams (t=-1.37, P=0.208 and t=-1.47, P=0.179) and 7.0% and 6.0% on 15 MeV electron beams (t=-0.58, P=0.581 and t=-0.90, P=0.395). The water-equivalency correction factors for the two solid water phantoms varied slightly largely, F=58.54, P=0.000 on 6 MV X-ray, F=0.211, P=0.662 on 10 MV X-ray, F=0.97, P=0.353 on 6 MeV electron beams, F=0.14, P=0.717 on 15 MeV electron beams. However, they were almost equal to 1 near the reference depths. The two solid water phantoms showed a similar tread of C pl increasing (F=26.40, P=0.014) and h pl decreasing (F=7.45, P=0.072) with increasing energy. Conclusion: The solid water phantom should undergo a quality control test before being clinical use. (authors)

  6. Early and effective use of ketamine for treatment of phantom limb pain

    Directory of Open Access Journals (Sweden)

    Harsha Shanthanna

    2010-01-01

    Full Text Available Treatment for phantom limb pain is difficult and challenging. There is often suboptimum treatment with fewer than 10% receiving lasting relief. Treatments based broadly on other neuropathic pains may not be appropriate for a clinical success. We report a case of phantom limb pain, which proved resistant to multiple analgesics, including opioids and continuous epidural blockade. Treatment with intravenous (IV ketamine as an alternate day infusion, gave complete remission of phantom limb pain. This demonstrates an early and effective use of a potent NMDA antagonist for treatment of phantom limb pain. Mechanisms underlying phantom limb pain are briefly discussed.

  7. Neutron measurements with a tissue-equivalent phantom

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J W [Health Physics Division, Atomic Energy Establishment, Harwell (United Kingdom)

    1962-03-15

    This Appendix 3E of the dosimetry experiment at the R-B reactor describes the apparatus used and presents the obtained results. The phantom used was a 1/4-inch thick polythene container, 60 cm high, of elliptical cross-section, with a major axis of 36 cm and a minor axis of 20 cm. This was filled with an approximately tissue-equivalent liquid. A light but rigid internal framework of Perspex supported a series of small detectors through the phantom. The detectors used in the first high-level run at Vinca, to measure flux above 0.5 MeV, were 0.5-cm wide track plates wrapped in cadmium foil. Each track plate was a sandwich of two Ilford El 50 - mu emulsions, with glass backing, separated by a 250-mu polythene radiator, and was oriented at an angle of 45 deg to the front surface of the phantom. Under these conditions the response is constant with neutron energy between 0.5 MeV and 8 MeV at 1.26 X 10 sup - sup 3 tracks/neutron to within +- 15%. The detectors used in the second high-level run were gold foils (260 mg/cm sup 2 thick) for determination of the show neutron distribution. Previous experiments with 0.13 MeV, 2.5 MeV, 14 MeV and Po-Be neutrons have shown that the shape of the curve through a phantom obtained from these gold foils is the same as that given by either manganese foils or sodium samples despite the difference in resonance integrals. From the relaxation length of the neutron flux in the phantom, as measured by the track plates, the mean energy of the neutrons with energies greater than 0.5 MeV may be found by comparison with the relaxation lengths obtained by irradiation of the phantom with monoenergetic neutrons. The results of these experiments are given. Track plate results from the Vinca experiment are shown. It can be seen that the backscattered fast flux is about one-third of the incident fast flux and that the energy indicated by the shape of the curve is considerably lower than the energy of the direct neutrons. It seems possible that the high

  8. Neutron measurements with a tissue-equivalent phantom

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J W [Health Physics Division, Atomic Energy Establishment, Harwell (United Kingdom)

    1962-03-01

    This Appendix 3E of the dosimetry experiment at the R-B reactor describes the apparatus used and presents the obtained results. The phantom used was a 1/4-inch thick polythene container, 60 cm high, of elliptical cross-section, with a major axis of 36 cm and a minor axis of 20 cm. This was filled with an approximately tissue-equivalent liquid. A light but rigid internal framework of Perspex supported a series of small detectors through the phantom. The detectors used in the first high-level run at Vinca, to measure flux above 0.5 MeV, were 0.5-cm wide track plates wrapped in cadmium foil. Each track plate was a sandwich of two Ilford El 50 - {mu} emulsions, with glass backing, separated by a 250-{mu} polythene radiator, and was oriented at an angle of 45 deg to the front surface of the phantom. Under these conditions the response is constant with neutron energy between 0.5 MeV and 8 MeV at 1.26 X 10{sup -3} tracks/neutron to within {+-} 15%. The detectors used in the second high-level run were gold foils (260 mg/cm{sup 2} thick) for determination of the show neutron distribution. Previous experiments with 0.13 MeV, 2.5 MeV, 14 MeV and Po-Be neutrons have shown that the shape of the curve through a phantom obtained from these gold foils is the same as that given by either manganese foils or sodium samples despite the difference in resonance integrals. From the relaxation length of the neutron flux in the phantom, as measured by the track plates, the mean energy of the neutrons with energies greater than 0.5 MeV may be found by comparison with the relaxation lengths obtained by irradiation of the phantom with monoenergetic neutrons. The results of these experiments are given. Track plate results from the Vinca experiment are shown. It can be seen that the backscattered fast flux is about one-third of the incident fast flux and that the energy indicated by the shape of the curve is considerably lower than the energy of the direct neutrons. It seems possible that the

  9. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz

    2017-03-28

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  10. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2017-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  11. New three-dimensional moving field radiation therapy for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyama, Fuyuki; Kanno, Tetsuo; Nagata, Yutaka; Koga, Sukehiko [Fujita-Gakuen Health Univ., Toyoake, Aichi (Japan); Jain, V K

    1992-06-01

    A new modified rotation radiation method called 'three-dimensional moving field radiation therapy' is described. The new method uses rotation in many planes while maintaining the same isocenter to achieve a good spatial dose distribution. This delivers a high dose to tumors and spares the surrounding normal structures. This easy method can be carried out using the equipment for conventional rotation radiation therapy. The new method was superior to the one plane rotation radiation therapy using a physical phantom with film, a chemical phantom using the iodine-starch reaction, and a new biological model using tumor cells. Treatment of six brain tumors irradiated with total air doses of 50-60 Gy caused no hair loss or radiation necrosis. (author).

  12. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, L.S.; Menezes, A.F.; Cardoso, M.A.C. [Programa de Engenharia Nuclear/COPPE (Brazil); Rosa, L.A.R. da [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Batista, D.V.S. [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer-Secao de Fisica Medica, Praca Cruz Vermelha, 23-Centro, 20230-130 Rio de Janeiro, RJ (Brazil); Cardoso, S.C. [Departamento de Fisica Nuclear, Instituto de Fisica, Universidade Federal do Rio de Janeiro, Bloco A-Sala 307, CP 68528, CEP 21941-972 Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear/COPPE (Brazil); Departamento de Engenharia Nuclear/Escola Politecnica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Facure, A. [Comissao Nacional de Energia Nuclear, R. Gal. Severiano 90, sala 409, 22294-900 Rio de Janeiro, RJ (Brazil)

    2012-01-15

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of {sup 60}Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively. - Highlights: Black-Right-Pointing-Pointer We use a method to optimize the CT image conversion in voxel model for MCNP simulation. Black-Right-Pointing-Pointer We present a methodology to compress a DICOM image before conversion to input file. Black-Right-Pointing-Pointer To validate this study an idealized radiosurgery applied to the Alderson phantom was used.

  13. Reversible induction of phantom auditory sensations through simulated unilateral hearing loss.

    Directory of Open Access Journals (Sweden)

    Roland Schaette

    Full Text Available Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from 30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug.

  14. Alderson-Rando phantom 'voxelization' for use in numerical dosimetry

    International Nuclear Information System (INIS)

    Santos, A.M.; Vieira, J.W.

    2008-01-01

    This paper presents the methodology used for creating a voxel phantom from the tomographic physical Alderson-Rando phantom images (HR) and to develop a computer model formed by exposure of the resulting phantom 'voxelization' of AR coupled to the Monte Carlo code EGS4 plus algorithms to simulate radioactive sources in internal dosimetry

  15. Dosimetric study on head CT scans using adult and newborn phantoms

    International Nuclear Information System (INIS)

    Paiva de O, G. A.; Prata M, A.

    2016-10-01

    Computed tomography is the radiodiagnostic method that most contributes to the dose deposition in population. Therefore, the dose reductions used in these tests are very important, especially for pediatric patients who have a life expectancy greater than the rest of the population. This study purpose to compare the doses generated from newborns compared to adult patients in head computed tomography scans. Two head phantoms in a cylindrical shape made in PMMA were used, one to adult and another to newborn patient dimensions. The pediatric routine scan protocol from a radiological service was used for the computed tomography scans. They were performed in General Electric Computed Tomography scanner, Bright Speed model with 4 channels. The absorbed dose measurements were performed with a pencil chamber placed into both phantoms. The newborn head phantom was developed in order to compare the amount of absorbed dose by the phantoms when it is used the same acquisition protocol. The dose found for newborn phantom was 29.9% higher than the adult phantom. (Author)

  16. Dosimetric study on head CT scans using adult and newborn phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Paiva de O, G. A.; Prata M, A., E-mail: giovanni_paiva@hotmail.com [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography is the radiodiagnostic method that most contributes to the dose deposition in population. Therefore, the dose reductions used in these tests are very important, especially for pediatric patients who have a life expectancy greater than the rest of the population. This study purpose to compare the doses generated from newborns compared to adult patients in head computed tomography scans. Two head phantoms in a cylindrical shape made in PMMA were used, one to adult and another to newborn patient dimensions. The pediatric routine scan protocol from a radiological service was used for the computed tomography scans. They were performed in General Electric Computed Tomography scanner, Bright Speed model with 4 channels. The absorbed dose measurements were performed with a pencil chamber placed into both phantoms. The newborn head phantom was developed in order to compare the amount of absorbed dose by the phantoms when it is used the same acquisition protocol. The dose found for newborn phantom was 29.9% higher than the adult phantom. (Author)

  17. Reconstruction of voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula Cristina Guimaraes

    2010-01-01

    Radiotherapy is a therapeutic modality that utilizes ionizing radiation for the destruction of neoplastic human cells. One of the requirements for this treatment methodology success lays on the appropriate use of planning systems, which performs, among other information, the patient's dose distribution estimate. Nowadays, transport codes have been providing huge subsidies to these planning systems, once it enables specific and accurate patient organ and tissue dosimetry. The model utilized by these codes to describe the human anatomy in a realistic way is known as voxel phantoms, which are represented by discrete volume elements (voxels) directly associated to tomographic data. Nowadays, voxel phantoms doable of being inserted and processed by the transport code MCNP (Monte Carlo N-Particle) presents a 3-4 mm image resolution; however, such resolution limits some thin body structure discrimination, such as skin. In this context, this work proposes a calculus routine that discriminates this region with thickness and localization in the voxel phantoms similar to the real, leading to an accurate dosimetric skin dose assessment by the MCNP code. Moreover, this methodology consists in manipulating the voxel phantoms volume elements by segmenting and subdividing it in different skin thickness. In addition to validate the skin dose calculated data, a set of experimental evaluations with thermoluminescent dosimeters were performed in an anthropomorphic phantom. Due to significant differences observed on the dose distribution of several skin representations, it was found that is important to discriminate the skin thickness similar to the real. The presented methodology is useful to obtain an accurate skin dosimetric evaluation for several radiotherapy procedures, with particular interest on the electron beam radiotherapy, in which highlights the whole body irradiation therapy (TSET), a procedure under implementation at the Hospital das Clinicas da Faculdade de Medicina da

  18. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Urso, P [Department of Occupational and Environmental Health, Hospital L. Sacco Unit, University of Milan, Via G B Grassi, 74-20157 Milan (Italy); Lualdi, M [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Colombo, A [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Carrara, M [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Tomatis, S [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Marchesini, R [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy)

    2007-05-21

    The complex inner layered structure of skin influences the photon diffusion inside the cutaneous tissues and determines the reflectance spectra formation. Phantoms are very useful tools to understand the biophysical meaning of parameters involved in light propagation through the skin. To simulate the skin reflectance spectrum, we realized a multilayered skin-like phantom and a multilayered skin phantom with a melanoma-like phantom embedded inside. Materials used were Al{sub 2}O{sub 3} particles, melanin of sepia officinalis and a calibrator for haematology systems dispersed in transparent silicon. Components were optically characterized with indirect techniques. Reflectance phantom spectra were compared with average values of in vivo spectra acquired on a sample of 573 voluntary subjects and 132 pigmented lesions. The phantoms' reflectance spectra agreed with those measured in vivo, mimicking the optical behaviour of the human skin. Further, the phantoms were optically stable and easily manageable, and represented a valid resource in spectra formation comprehension, in diagnostic laser applications and simulation model implementation, such as the Monte Carlo code for non-homogeneous media. (note)

  19. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms

    International Nuclear Information System (INIS)

    Urso, P; Lualdi, M; Colombo, A; Carrara, M; Tomatis, S; Marchesini, R

    2007-01-01

    The complex inner layered structure of skin influences the photon diffusion inside the cutaneous tissues and determines the reflectance spectra formation. Phantoms are very useful tools to understand the biophysical meaning of parameters involved in light propagation through the skin. To simulate the skin reflectance spectrum, we realized a multilayered skin-like phantom and a multilayered skin phantom with a melanoma-like phantom embedded inside. Materials used were Al 2 O 3 particles, melanin of sepia officinalis and a calibrator for haematology systems dispersed in transparent silicon. Components were optically characterized with indirect techniques. Reflectance phantom spectra were compared with average values of in vivo spectra acquired on a sample of 573 voluntary subjects and 132 pigmented lesions. The phantoms' reflectance spectra agreed with those measured in vivo, mimicking the optical behaviour of the human skin. Further, the phantoms were optically stable and easily manageable, and represented a valid resource in spectra formation comprehension, in diagnostic laser applications and simulation model implementation, such as the Monte Carlo code for non-homogeneous media. (note)

  20. Realistic deformable 3D numeric phantom for transcutaneous ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sergio Shiguemi, E-mail: fernando.okara@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Engenharia

    2017-01-15

    Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young's Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes. (author)

  1. Anthropomorphic phantom materials

    International Nuclear Information System (INIS)

    White, D.R.; Constantinou, C.

    1982-01-01

    The need, terminology and history of tissue substitutes are outlined. Radiation properties of real tissues are described and simulation procedures are outlined. Recent tissue substitutes are described and charted, as are calculated radiation classifications. Manufacturing procedures and quality control are presented. Recent phantom studies are reviewed and a discussion recorded. Elemental compositions of the recommended tissue substitutes are charted with elemental composition given for each tissue substitute

  2. Solid water phantom

    International Nuclear Information System (INIS)

    Arguiropulo, M.Y.; Ghilardi Neto, T.; Pela, C.A.; Ghilardi, A.J.P.

    1992-01-01

    A phantom were developed for simulating water, based in plastics. The material was evaluated for different energies, and the measures of relative transmission showed that the transmission and the water were inside of 0,6% for gamma rays. The results of this new material were presented, showing that it could be used in photon beam calibration with energies on radiotherapy range. (C.G.C.)

  3. Brain SPECT with short focal-length cone-beam collimation

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-01-01

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR CRB ) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR CRB , compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR CRB increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR CRB were relatively robust to mismatches

  4. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    Science.gov (United States)

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  5. Determination of photon conversion factors relating exposure and dose for several extremity phantom designs

    International Nuclear Information System (INIS)

    Roberson, P.L.; Eichner, F.N.; Reece, W.D.

    1986-09-01

    This report presents the results of measurements of dosimetric properties of simple extremity phantoms suitable for use in extremity dosimeter performance testing. Two sizes of phantoms were used in this study. One size represented the forearm or lower leg and the other size represented the finger or toe. For both phantom sizes, measurements were performed on solid plastic phantoms and on phantoms containing simulated bone material to determine the effect of backscattered radiations from the bone on the surface dose. Exposure-to-dose conversion factors (C/sub x/ factors) were determined for photon energies ranging from 16 to 1250 keV (average for 60 Co). The effect of the presence of a phantom was also measured for a 90 Sr/ 90 Y source. Significant differences in the measured C/sub x/ factors were found among the phantoms investigated. The factors for the finger-sized phantoms were uniformly less than for the arm-sized phantoms

  6. Development of a patient-specific two-compartment anthropomorphic breast phantom

    International Nuclear Information System (INIS)

    Prionas, Nicolas D; Burkett, George W; McKenney, Sarah E; Chen, Lin; Boone, John M; Stern, Robin L

    2012-01-01

    The purpose of this paper is to develop a technique for the construction of a two-compartment anthropomorphic breast phantom specific to an individual patient's pendant breast anatomy. Three-dimensional breast images were acquired on a prototype dedicated breast computed tomography (bCT) scanner as part of an ongoing IRB-approved clinical trial of bCT. The images from the breast of a patient were segmented into adipose and glandular tissue regions and divided into 1.59 mm thick breast sections to correspond to the thickness of polyethylene stock. A computer-controlled water-jet cutting machine was used to cut the outer breast edge and the internal regions corresponding to glandular tissue from the polyethylene. The stack of polyethylene breast segments was encased in a thermoplastic ‘skin’ and filled with water. Water-filled spaces modeled glandular tissue structures and the surrounding polyethylene modeled the adipose tissue compartment. Utility of the phantom was demonstrated by inserting 200 µm microcalcifications as well as by measuring point dose deposition during bCT scanning. Affine registration of the original patient images with bCT images of the phantom showed similar tissue distribution. Linear profiles through the registered images demonstrated a mean coefficient of determination (r 2 ) between grayscale profiles of 0.881. The exponent of the power law describing the anatomical noise power spectrum was identical in the coronal images of the patient's breast and the phantom. Microcalcifications were visualized in the phantom at bCT scanning. The real-time air kerma rate was measured during bCT scanning and fluctuated with breast anatomy. On average, point dose deposition was 7.1% greater than the mean glandular dose. A technique to generate a two-compartment anthropomorphic breast phantom from bCT images has been demonstrated. The phantom is the first, to our knowledge, to accurately model the uncompressed pendant breast and the glandular tissue

  7. IMRT delivery verification using a spiral phantom

    International Nuclear Information System (INIS)

    Richardson, Susan L.; Tome, Wolfgang A.; Orton, Nigel P.; McNutt, Todd R.; Paliwal, Bhudatt R.

    2003-01-01

    In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan

  8. Design of a phantom multitrous for a gamma camera quality control

    International Nuclear Information System (INIS)

    Ben Krir, Wafa; Ben Ameur, Narjes

    2009-01-01

    In this study we presented the technique of scintigraphy in its various theoretical and practical aspects. We have also shown the importance the quality control procedure according to international standards, as NEMA. Starting from different phantoms currently used, developed according to standards, we designed our phantom. On the other part, this implementation has helped to highlight our expectations in Concerning the functionality of the phantom. Indeed, these results were very conclusive since they made it possible to make a very fast cost and quality control without ambiguity lower. We have thus proved the very advanced stage of reliability of our phantom.

  9. Coupled oscillators as models of phantom and scalar field cosmologies

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2004-01-01

    We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model

  10. The design and fabrication of two portal vein flow phantoms by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S. [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States); Dodd, Gerald D., E-mail: gerald.dodd@ucdenver.edu; Chang, Samuel; Scherzinger, Ann L. [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States); Chen, S. James, E-mail: james.chen@ucdenver.edu [Department of Medicine, University of Colorado Denver, Colorado 80045 and Department of Medicine/Cardiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop B132, Aurora, Colorado 80045 (United States); Feng, Yusheng, E-mail: yusheng.feng@utsa.edu [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  11. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  12. Pediatric phantoms for use in dosimetric calculations

    International Nuclear Information System (INIS)

    Shoup, R.L.; Hwang, J.L.; Poston, J.W.; Warner, G.G.

    1976-01-01

    Estimating absorbed doses to children from external and internal radiation sources has become important to the nuclear industry and pediatric nuclear medicine. The Medical Physics and Internal Dosimetry Section at ORNL has recently completed the design of mathematical representations of children of ages newborn, 1 year, and 5 years old. These mathematical representations will be referred to as pediatric phantoms. Using these phantoms, relevant energy deposition data have been developed which establish a meaningful model for use in estimating radiation dose to children

  13. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    International Nuclear Information System (INIS)

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J; Hurwitz, M

    2015-01-01

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc

  14. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J [Brigham and Women’s Hospital, Boston, MA (United States); Hurwitz, M [Newton, MA (United States)

    2015-06-15

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc.

  15. SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D; Liu, Y [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes. The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.

  16. Phantom's construction for dose measurement in brachytherapy

    International Nuclear Information System (INIS)

    Tri Harjanto; Hidayat Joko Puspito; Joko Triyanto

    2009-01-01

    In nuclear medicine, dose rate validation is the key for a successful process in therapy and diagnose of any deases. Therefore, the brachytherapy equipment being designed and constructed is to be validated its dose rate received by the radiated object. A phantom for such validation purpose is designed and constructed as a correct as if on site geometrical position of sources. The design of phantom consists of seven layers of flexi glass plates: 10 mm thick, 105 mm wide, and 280 mm length. All the plates are to be holed according to the size of the applicator to be used. Every surface of the flexi glass layers is grooved 1 mm wide, 1 mm depth, and 10 mm distance between the groove. The applicator inside the phantom is positioned at a certain reference for measurement. Every TLD installed has a fix position toward the reference coordinate and has an index number. By this system of phantom, the isodose system can be plotted. (author)

  17. Gravitational Quasinormal Modes of Regular Phantom Black Hole

    Directory of Open Access Journals (Sweden)

    Jin Li

    2017-01-01

    Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.

  18. A suitability study of the fission product phantom and the bottle manikin absorption phantom for calibration of in vivo bioassay equipment for the DOELAP accreditation testing program

    International Nuclear Information System (INIS)

    Olsen, P.C.; Lynch, T.P.

    1991-08-01

    Pacific Northwest laboratory (PNL) conducted an intercomparison study of the Fission Product phantom and the bottle manikin absorption (BOMAB) phantom for the US Department of Energy (DOE) to determine the consistency of calibration response of the two phantoms and their suitability for certification and use under a planned bioassay laboratory accreditation program. The study was initiated to determine calibration factors for both types of phantoms and to evaluate the suitability of their use in DOE Laboratory Accreditation Program (DOELAP) round-robin testing. The BOMAB was found to be more appropriate for the DOELAP testing program. 9 refs., 9 figs., 9 tabs

  19. Development of realistic chest phantom for calibration of in-vivo plutonium counting facilities

    International Nuclear Information System (INIS)

    Shirotani, Takashi

    1987-06-01

    We have developed realistic chest phantom with removable model organs. The phantom is a torso and is terminated just above the femoral region. Tissue equivalent materials used in the phantom have been made of polyurethane with different amounts of ester of phosphoric acid, in order to simulate human soft tissues such as muscle, muscle-adipose mixtures and cartilage. Lung simulant has been made of foamed polyurethane. Capsulized small sources can be inserted into the holes, drilled in each sliced section of the model organ. Counting efficiencies, obtained with a pair of 12 cm diameter phoswich detectors set above the phantom chest, are 0.195 cpm/nCi for Pu-239 and 44.07 cpm/nCi for Am-241, respectively. The results agree well with efficiencies obtained with IAEA-Phantom. We conclude that the phantom can be used as a standard phantom for the calibration of Pu chest counting equipment. (author)

  20. Cosmological perturbations in transient phantom inflation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Richarte, Martin G. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil); Universidad de Buenos Aires, Ciudad Universitaria 1428, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Kremer, Gilberto M. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil)

    2017-01-15

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era. (orig.)

  1. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams

    Science.gov (United States)

    Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.

    2014-02-01

    The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.

  2. Creating 3D gelatin phantoms for experimental evaluation in biomedicine

    Directory of Open Access Journals (Sweden)

    Stein Nils

    2015-09-01

    Full Text Available We describe and evaluate a setup to create gelatin phantoms by robotic 3D printing. Key aspects are the large workspace, reproducibility and resolution of the created phantoms. Given its soft tissue nature, the gelatin is kept fluid during inside the system and we present parameters for additive printing of homogeneous, solid objects. The results indicate that 3D printing of gelatin can be an alternative for quickly creating larger soft tissue phantoms without the need for casting a mold.

  3. Development of PIMAL: Mathematical Phantom with Moving Arms and Legs

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eckerman, Keith F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2007-05-01

    The computational model of the human anatomy (phantom) has gone through many revisions since its initial development in the 1970s. The computational phantom model currently used by the Nuclear Regulatory Commission (NRC) is based on a model published in 1974. Hence, the phantom model used by the NRC staff was missing some organs (e.g., neck, esophagus) and tissues. Further, locations of some organs were inappropriate (e.g., thyroid).Moreover, all the computational phantoms were assumed to be in the vertical-upright position. However, many occupational radiation exposures occur with the worker in other positions. In the first phase of this work, updates on the computational phantom models were reviewed and a revised phantom model, which includes the updates for the relevant organs and compositions, was identified. This revised model was adopted as the starting point for this development work, and hence a series of radiation transport computations, using the Monte Carlo code MCNP5, was performed. The computational results were compared against values reported by the International Commission on Radiation Protection (ICRP) in Publication 74. For some of the organs (e.g., thyroid), there were discrepancies between the computed values and the results reported in ICRP-74. The reasons behind these discrepancies have been investigated and are discussed in this report.Additionally, sensitivity computations were performed to determine the sensitivity of the organ doses for certain parameters, including composition and cross sections used in the simulations. To assess the dose for more realistic exposure configurations, the phantom model was revised to enable flexible positioning of the arms and legs. Furthermore, to reduce the user time for analyses, a graphical user interface (GUI) was developed. The GUI can be used to visualize the positioning of the arms and legs as desired posture is achieved to generate the input file, invoke the computations, and extract the organ dose

  4. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    International Nuclear Information System (INIS)

    Lee, C.C.; Lee, Y.J.; Tung, C.J.; Cheng, H.W.; Chao, T.C.

    2014-01-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R 50% ) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R 50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent R eq,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively. - Highlights: ► Proton dose simulation based on the MCNPX 2.6.0 in homogeneous and CT phantoms. ► CT number (HU) conversion to electron density based on Schneider's approach. ► Good agreement among MCNPX, GEANT4 and FLUKA codes in a homogeneous water phantom. ► Water equivalent R 50 in CT phantoms are compatible to those of NIST database

  5. ICRU activity in the field of phantoms in diagnostic radiology

    International Nuclear Information System (INIS)

    Wambersie, A.; White, D.R.

    1992-01-01

    The ICRU Report on 'Phantoms and Computational Models in Radiation Therapy, Diagnosis and Protection' is presented. The Report contains a major section on human anatomy, from fetus to adult with the variations due to ethnic origin. Tolerance levels for the phantoms (composition, dimensions) are proposed and quality assurance programs are outlined. The report contains extensive appendices: human anatomical data and full specification of over 80 phantoms and computational models. ICRU Report 46 on 'Photon, electron, proton and neutron interaction data for body tissues' is closely related to the field of phantoms. It is a logical continuation on ICRU Report 44 (1989) on 'Tissue substitutes in radiation dosimetry and measurements' and contains the interaction data for more than 100 tissues, from fetal to adult, including some diseased tissues. (author)

  6. A resistive mesh phantom for assessing the performance of EIT systems.

    Science.gov (United States)

    Gagnon, Hervé; Cousineau, Martin; Adler, Andy; Hartinger, Alzbeta E

    2010-09-01

    Assessing the performance of electrical impedance tomography (EIT) systems usually requires a phantom for validation, calibration, or comparison purposes. This paper describes a resistive mesh phantom to assess the performance of EIT systems while taking into account cabling stray effects similar to in vivo conditions. This phantom is built with 340 precision resistors on a printed circuit board representing a 2-D circular homogeneous medium. It also integrates equivalent electrical models of the Ag/AgCl electrode impedances. The parameters of the electrode models were fitted from impedance curves measured with an impedance analyzer. The technique used to build the phantom is general and applicable to phantoms of arbitrary shape and conductivity distribution. We describe three performance indicators that can be measured with our phantom for every measurement of an EIT data frame: SNR, accuracy, and modeling accuracy. These performance indicators were evaluated on our EIT system under different frame rates and applied current intensities. The performance indicators are dependent on frame rate, operating frequency, applied current intensity, measurement strategy, and intermodulation distortion when performing simultaneous measurements at several frequencies. These parameter values should, therefore, always be specified when reporting performance indicators to better appreciate their significance.

  7. Development of the robot system to assist CT-guided brain surgery

    International Nuclear Information System (INIS)

    Koyama, H.; Funakubo, H.; Komeda, T.; Uchida, T.; Takakura, K.

    1999-01-01

    The robot technology was introduced into the stereotactic neurosurgery for application to biopsy, blind surgery, and functional neurosurgery. The authors have developed a newly designed the robot system to assist CT-guided brain surgery, designed to allow a biopsy needle to reach the targget such as a cerebral tumor within a brain automatically on the basis of the X,Y, and Z coordinates obtained by CT scanner. In this paper we describe construction of the robot, the control of the robot by CT image, robot simulation, and investigated a phantom experiment using CT image. (author)

  8. Atypical Odontalgia (Phantom Tooth Pain)

    Science.gov (United States)

    ... atypical facial pain, phantom tooth pain, or neuropathic orofacial pain, is characterized by chronic pain in a tooth ... such as a specialist in oral medicine or orofacial pain. The information contained in this monograph is for ...

  9. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    Indian Academy of Sciences (India)

    India. *Corresponding author. E-mail: bcpaul@iucaa.ernet.in. MS received 23 May ... We study an anisotropic Bianchi-I universe in the presence of a phantom ... The phantom cosmology has been analysed adopting phase space analysis ... the second part we study the critical points corresponding to the set of autonomous.

  10. Standardization of calibration method of whole-body counter. 1. Calibration by using anthropometric phantoms

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Matsumoto, Masaki; Uchiyama, Masafumi; Kobayashi, Sadayoshi; Mizushita, Seiichi.

    1995-01-01

    To standardize the calibration methods of whole-body counters, three anthropometric phantoms were manufactured based on dozens of Japanese average value of body size data. Using these phantoms, the calibrations of some whole-body counters were carried out and the comparison of counting efficiency between anthropometric phantoms and block phantoms, which used to be used for the calibration of whole-body counters generally, was implemented. Five whole-body counters, one scanning system, two stationary systems and two chair systems, were used for this study. The following results were derived: As an example, in NIRS scanning system, the counting efficiency of anthropometric phantom of 162cm height was 12.7% greater than that of block phantom of the same height. This means 137 Cs body burdens in adult men used to be estimated with the excess of about 10%. Body burdens tended to be estimated excessively in adult because the difference of counting efficiency between anthropometric phantom and block phantom increases with increase of height. To standardize body burden data measured with various whole-body counters, the calibration of each whole-body counter should be conducted using anthropometric phantoms and phantoms which used to be used for the calibration of that whole-body counter. (author)

  11. A biomimetic tumor tissue phantom for validating diffusion-weighted MRI measurements.

    Science.gov (United States)

    McHugh, Damien J; Zhou, Feng-Lei; Wimpenny, Ian; Poologasundarampillai, Gowsihan; Naish, Josephine H; Hubbard Cristinacce, Penny L; Parker, Geoffrey J M

    2018-07-01

    To develop a biomimetic tumor tissue phantom which more closely reflects water diffusion in biological tissue than previously used phantoms, and to evaluate the stability of the phantom and its potential as a tool for validating diffusion-weighted (DW) MRI measurements. Coaxial-electrospraying was used to generate micron-sized hollow polymer spheres, which mimic cells. The bulk structure was immersed in water, providing a DW-MRI phantom whose apparent diffusion coefficient (ADC) and microstructural properties were evaluated over a period of 10 months. Independent characterization of the phantom's microstructure was performed using scanning electron microscopy (SEM). The repeatability of the construction process was investigated by generating a second phantom, which underwent high resolution synchrotron-CT as well as SEM and MR scans. ADC values were stable (coefficients of variation (CoVs) < 5%), and varied with diffusion time, with average values of 1.44 ± 0.03 µm 2 /ms (Δ = 12 ms) and 1.20 ± 0.05 µm 2 /ms (Δ = 45 ms). Microstructural parameters showed greater variability (CoVs up to 13%), with evidence of bias in sphere size estimates. Similar trends were observed in the second phantom. A novel biomimetic phantom has been developed and shown to be stable over 10 months. It is envisaged that such phantoms will be used for further investigation of microstructural models relevant to characterizing tumor tissue, and may also find application in evaluating acquisition protocols and comparing DW-MRI-derived biomarkers obtained from different scanners at different sites. Magn Reson Med 80:147-158, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

  12. A set of 4D pediatric XCAT reference phantoms for multimodality research

    International Nuclear Information System (INIS)

    Norris, Hannah; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P.; Minhas, Anum; Frush, D.; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2014-01-01

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  13. A set of 4D pediatric XCAT reference phantoms for multimodality research

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Hannah, E-mail: Hannah.norris@duke.edu; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Minhas, Anum; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-03-15

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  14. Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.

    Science.gov (United States)

    Kramer, G H; Olender, G; Vlahovich, S; Hauck, B M; Meyerhof, D P

    1996-03-01

    The Human Monitoring Laboratory, which acts as the Canadian National Calibration Reference Centre for In Vivo Monitoring, has determined the performance characteristics of four thyroid phantoms for 125I thyroid monitoring. The phantoms were a phantom built to the specifications of the American National Standards Institute Standard N44.3; the phantom available from Radiology Support Devices; the phantom available from Kyoto Kagaku Hyohon; the phantom manufactured by the Human Monitoring Laboratory and known as the BRMD phantom. The counting efficiencies of the phantoms for 125I were measured at different phantom-to-detector distances. The anthropomorphic characteristics of the phantoms have been compared with the average man parameters. It was concluded that the BRMD, American National Standards Institute, and Radiology Support Devices phantoms have the same performance characteristics when the neck-to-detector distances are greater than 12 cm and all phantoms are essentially equivalent at 30 cm or more. The Kyoto Kagaku Hyohon phantom showed lower counting efficiencies at phantom-to-detector distances less than 30 cm. This was attributed to the design of the phantom. This study has also shown that the phantom need not be highly anthropomorphic provided the calibration is not performed at short neck-detector distances. Indeed, it might be possible to use t simple point source of 125I placed behind a 1.5 cm block of lucite at neck detector distances of 12 cm or more.

  15. Balloon sheaths for gastrointestinal guidance and access: a preliminary phantom study

    International Nuclear Information System (INIS)

    He, Xu; Shin, Ji Hoon; Kim, Hyo Cheol; Woo, Cheol Woong; Woo, Sung Ha; Choi, Won Chan; Kim, Jong Gyu; Lim, Jin Oh; Kim, Tae Hyung; Yoon, Chang Jin; Song, Ho Young; Kang, Wee Chang

    2005-01-01

    We wanted to evaluate the feasibility and usefulness of a newly designed balloon sheath for gastrointestinal guidance and access by conducting a phantom study. The newly designed balloon sheath consisted of an introducer sheath and a supporting balloon. A coil catheter was advanced over a guide wire into two gastroduodenal phantoms (one was with stricture and one was without stricture); group I was without a balloon sheath, group II was with a deflated balloon sheath, and groups III and IV were with an inflated balloon and with the balloon in the fundus and body, respectively. Each test was performed for 2 minutes and it was repeated 10 times in each group by two researchers, and the positions reached by the catheter tip were recorded. Both researchers had better performances with both phantoms in order of group IV, III, II and I. In group IV, both researchers advanced the catheter tip through the fourth duodenal segment in both the phantoms. In group I, however, the catheter tip never reached the third duodenal segment in both the phantoms by both the researchers. The numeric values for the four study groups were significantly different for both the phantoms (ρ < 0.001). A significant difference was also found between group III and IV for both phantoms (ρ < 0.001). The balloon sheath seems to be feasible for clinical use, and it has good clinical potential for gastrointestinal guidance and access, particularly when the inflated balloon is placed in the gastric body

  16. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    Science.gov (United States)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  17. Vector entropy imaging theory with application to computerized tomography

    International Nuclear Information System (INIS)

    Wang Yuanmei; Cheng Jianping; Heng, Pheng Ann

    2002-01-01

    Medical imaging theory for x-ray CT and PET is based on image reconstruction from projections. In this paper a novel vector entropy imaging theory under the framework of multiple criteria decision making is presented. We also study the most frequently used image reconstruction methods, namely, least square, maximum entropy, and filtered back-projection methods under the framework of the single performance criterion optimization. Finally, we introduce some of the results obtained by various reconstruction algorithms using computer-generated noisy projection data from the Hoffman phantom and real CT scanner data. Comparison of the reconstructed images indicates that the vector entropy method gives the best in error (difference between the original phantom data and reconstruction), smoothness (suppression of noise), grey value resolution and is free of ghost images. (author)

  18. A paper sheet phantom for scintigraphic planar imaging. Usefulness of pouch-laminated paper source

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Teraoka, Satomi; Murakami, Tomonori; Kojima, Akihiro; Matsumoto, Masanori

    2007-01-01

    In order to perform experimental measurements for evaluation of imaging device's performance, data acquisition technique, and clinical images on scintigraphic imaging, many kinds of phantoms are employed. However, since these materials are acrylic and plastic, the thickness and quality of those materials cause attenuation and scatter in itself. We developed a paper sheet phantom sealed with a pouch laminator, which can be a true radioactive source in air. In this study, the paper sheet phantom was compared to the acrylic liver phantom, with the thickness of 2 cm, which is commercially available. The results showed that although some scatter counts were contained within the image of the acrylic liver phantom, there were few scattered photons in the paper sheet phantom image. Furthermore, this laminated paper sheet phantom made handling of the source and its waste easier. If the paper sheet phantom will be designed more sophisticatedly, it becomes a useful tool for planar imaging experiments. (author)

  19. Tissue quantification for development of pediatric phantom

    International Nuclear Information System (INIS)

    Alves, A.F.F.; Miranda, J.R.A.; Pina, D.R.

    2013-01-01

    The optimization of the risk- benefit ratio is a major concern in the pediatric radiology, due to the greater vulnerability of children to the late somatic effects and genetic effects of exposure to radiation compared to adults. In Brazil, it is estimated that the causes of death from head trauma are 18 % for the age group between 1-5 years and the radiograph is the primary diagnostic test for the detection of skull fracture . Knowing that the image quality is essential to ensure the identification of structures anatomical and minimizing errors diagnostic interpretation, this paper proposed the development and construction of homogeneous phantoms skull, for the age group 1-5 years. The construction of the phantoms homogeneous was performed using the classification and quantification of tissue present in the skull of pediatric patients. In this procedure computational algorithms were used, using Matlab, to quantify distinct biological tissues present in the anatomical regions studied , using pictures retrospective CT scans. Preliminary data obtained from measurements show that between the ages of 1-5 years, assuming an average anteroposterior diameter of the pediatric skull region of the 145.73 ± 2.97 mm, can be represented by 92.34 mm ± 5.22 of lucite and 1.75 ± 0:21 mm of aluminum plates of a provision of PEP (Pacient equivalent phantom). After its construction, the phantoms will be used for image and dose optimization in pediatric protocols process to examinations of computerized radiography

  20. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    Science.gov (United States)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  1. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2015-10-01

    Full Text Available A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in ten healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in ten healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject’s head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space.

  2. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Science.gov (United States)

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  3. Development of breast phantom for quality assessment of mammographic images

    International Nuclear Information System (INIS)

    Arvelos, Jeniffer Miranda; Flores, Mabel Bustos; Amaral, Fernando; Rio, Margarita Chevalier del; Mourao, Arnaldo Prata; Universidade Federal de Minas Gerais; Universidad Complutense de Madrid

    2017-01-01

    Diagnosis of breast cancer in young women may be impaired by the tissue composition of breast in this age group, as fibroglandular tissue is present in greater amount in young women and it has higher density than fibrous and fatty tissues which predominate in women older than 40 years old. The higher density of breast tissue makes it difficult to identify nodules in two-dimensional techniques, due to the overlapping of dense layers. Breast phantoms are used in evaluation and quality control of clinical images, and therefore, it is important to develop non-homogeneous phantoms that may better simulate a real breast. Grouped microcalcifications are often the earliest changes associated with malignant neoplasm of breast. In this work, a phantom was developed in the form of a compressed breast using acrylic resin blend. The resin blend used to fulfill the interior of the phantom has similar mammographic density to the one in fibroglandular tissue, representing a dense breast. The lesions were made of acrylic resin blend and calcium compounds that might simulate breast abnormalities, representing nodules, macrocalcifications and microcalcifications of different dimensions and densities. They were distributed into the ma-terial representing fibroglandular tissue. The developed phantom has a thickness of 1 cm, and it may be matched with other plates to represent a dense breast of thickness between 5 and 6 cm. The main goal of the project is to evaluate the sensitivity of detection of these calcifications in relation to their density and location in the breast in two-dimensional images generated in mammography equipment. Mammographic images allow the visualization of the changes implemented in the phantom. The developed phantom may be used in evaluation of diagnostic images generated through two-dimensional and three-dimensional images. (author)

  4. Development of breast phantom for quality assessment of mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    Arvelos, Jeniffer Miranda; Flores, Mabel Bustos; Amaral, Fernando; Rio, Margarita Chevalier del; Mourao, Arnaldo Prata, E-mail: jenifferarvelos00@gmail.com [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Centro de Engenharia Biomedica; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Universidad Complutense de Madrid (UCM), Madrid (Spain). Faculdad de Medicina. Departmento de Radiologia

    2017-11-01

    Diagnosis of breast cancer in young women may be impaired by the tissue composition of breast in this age group, as fibroglandular tissue is present in greater amount in young women and it has higher density than fibrous and fatty tissues which predominate in women older than 40 years old. The higher density of breast tissue makes it difficult to identify nodules in two-dimensional techniques, due to the overlapping of dense layers. Breast phantoms are used in evaluation and quality control of clinical images, and therefore, it is important to develop non-homogeneous phantoms that may better simulate a real breast. Grouped microcalcifications are often the earliest changes associated with malignant neoplasm of breast. In this work, a phantom was developed in the form of a compressed breast using acrylic resin blend. The resin blend used to fulfill the interior of the phantom has similar mammographic density to the one in fibroglandular tissue, representing a dense breast. The lesions were made of acrylic resin blend and calcium compounds that might simulate breast abnormalities, representing nodules, macrocalcifications and microcalcifications of different dimensions and densities. They were distributed into the ma-terial representing fibroglandular tissue. The developed phantom has a thickness of 1 cm, and it may be matched with other plates to represent a dense breast of thickness between 5 and 6 cm. The main goal of the project is to evaluate the sensitivity of detection of these calcifications in relation to their density and location in the breast in two-dimensional images generated in mammography equipment. Mammographic images allow the visualization of the changes implemented in the phantom. The developed phantom may be used in evaluation of diagnostic images generated through two-dimensional and three-dimensional images. (author)

  5. Liver phantom for quality control and training in nuclear medicine

    International Nuclear Information System (INIS)

    Lima Ferreira, Fernanda Carla; Nascimento Souza, Divanizia do

    2011-01-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256x256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  6. Liver phantom for quality control and training in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lima Ferreira, Fernanda Carla [Departamento de Fisica, Universidade Federal de Sergipe, Sao Cristovao, SE, 49100 000 (Brazil); Nascimento Souza, Divanizia do, E-mail: divanizi@ufs.br [Departamento de Fisica, Universidade Federal de Sergipe, Sao Cristovao, SE, 49100 000 (Brazil)

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256x256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  7. Liver phantom for quality control and training in nuclear medicine

    Science.gov (United States)

    Lima Ferreira, Fernanda Carla; Souza, Divanizia do Nascimento

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256×256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  8. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with 15O-Gas Inhalation.

    Science.gov (United States)

    Magota, Keiichi; Shiga, Tohru; Asano, Yukari; Shinyama, Daiki; Ye, Jinghan; Perkins, Amy E; Maniawski, Piotr J; Toyonaga, Takuya; Kobayashi, Kentaro; Hirata, Kenji; Katoh, Chietsugu; Hattori, Naoya; Tamaki, Nagara

    2017-12-01

    In 3-dimensional PET/CT imaging of the brain with 15 O-gas inhalation, high radioactivity in the face mask creates cold artifacts and affects the quantitative accuracy when scatter is corrected by conventional methods (e.g., single-scatter simulation [SSS] with tail-fitting scaling [TFS-SSS]). Here we examined the validity of a newly developed scatter-correction method that combines SSS with a scaling factor calculated by Monte Carlo simulation (MCS-SSS). Methods: We performed phantom experiments and patient studies. In the phantom experiments, a plastic bottle simulating a face mask was attached to a cylindric phantom simulating the brain. The cylindric phantom was filled with 18 F-FDG solution (3.8-7.0 kBq/mL). The bottle was filled with nonradioactive air or various levels of 18 F-FDG (0-170 kBq/mL). Images were corrected either by TFS-SSS or MCS-SSS using the CT data of the bottle filled with nonradioactive air. We compared the image activity concentration in the cylindric phantom with the true activity concentration. We also performed 15 O-gas brain PET based on the steady-state method on patients with cerebrovascular disease to obtain quantitative images of cerebral blood flow and oxygen metabolism. Results: In the phantom experiments, a cold artifact was observed immediately next to the bottle on TFS-SSS images, where the image activity concentrations in the cylindric phantom were underestimated by 18%, 36%, and 70% at the bottle radioactivity levels of 2.4, 5.1, and 9.7 kBq/mL, respectively. At higher bottle radioactivity, the image activity concentrations in the cylindric phantom were greater than 98% underestimated. For the MCS-SSS, in contrast, the error was within 5% at each bottle radioactivity level, although the image generated slight high-activity artifacts around the bottle when the bottle contained significantly high radioactivity. In the patient imaging with 15 O 2 and C 15 O 2 inhalation, cold artifacts were observed on TFS-SSS images, whereas

  9. New mechanism to cross the phantom divide

    OpenAIRE

    Du, Yunshuang; Zhang, Hongsheng; Li, Xin-Zhou

    2010-01-01

    Recently, type Ia supernovae data appear to support a dark energy whose equation of state $w$ crosses -1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in the gravity with an additional inverse power-law term of Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. So...

  10. BOMAB phantom manufacturing quality assurance study using Monte Carlo computations

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1994-01-01

    Monte Carlo calculations have been performed to assess the importance of and quantify quality assurance protocols in the manufacturing of the Bottle-Manikin-Absorption (BOMAB) phantom for calibrating in vivo measurement systems. The parameters characterizing the BOMAB phantom that were examined included height, fill volume, fill material density, wall thickness, and source concentration. Transport simulation was performed for monoenergetic photon sources of 0.200, 0.662, and 1,460 MeV. A linear response was observed in the photon current exiting the exterior surface of the BOMAB phantom due to variations in these parameters. Sensitivity studies were also performed for an in vivo system in operation at the Pacific Northwest Laboratories in Richland, WA. Variations in detector current for this in vivo system are reported for changes in the BOMAB phantom parameters studied here. Physical justifications for the observed results are also discussed

  11. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    Indian Academy of Sciences (India)

    We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the ...

  12. A Unified Model of Phantom Energy and Dark Matter

    Directory of Open Access Journals (Sweden)

    Douglas Singleton

    2008-01-01

    Full Text Available To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys $w=p/ ho <-1/3$. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has $w=p/ ho <-1$. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann vector fields which act as a form of two component dark matter. Thus from a gauge theory based on a graded algebra we naturally obtained both phantom energy and dark matter.

  13. Development of a phantom for quality control of radiosurgery

    International Nuclear Information System (INIS)

    Scheidegger Soboll, D.; Reuters Schelin, H.

    2008-01-01

    The aim of this work was to build a phantom for quality control of stereotactic radiosurgery on linear accelerators. The outward appearance is a translucent human head filled with water and enclosing an insert with test objects of known shapes. The phantom was submitted to computerized tomography, magnetic resonance imaging and angiography exams, in order to perform a radiosurgery planning. Contours of the internal structures on the therapy planning system were drawn over the MRI images. Through the image fusion of CT and MRI, the contour data was transferred to CT images. Stereotactic registration of CT and angiography was made. One isocenter treatment was created, and using the stereotactic coordinates given by the therapy planning system, the phantom was placed on a linac. X-ray images were performed in order to verify the final positioning of the planned isocenter. In the whole process the phantom showed usefulness and adequacy for the positioning quality control of stereotactic radiosurgery with linacs, according to the main documents concerning the issue. (author)

  14. Realistic torso phantom for calibration of in-vivo transuranic-nuclide counting facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shirotani, Takashi

    1988-11-01

    A realistic torso phantom with average body size of Japanese adult males has been developed for the calibration of counting systems used for in-vivo measurements of plutonium and other actinides. The phantom contains removable model organs (lungs, liver, kidneys and heart), model trachea and artificial rib cage, and also includes chest plates that can be placed over the chest to simulate wide range adipose/muscle ratio in the human chest. Tissue substitutes used in the phantom were made of polyurethane with different concentrations of ester of phosphoric acid. Model lungs were made of foamed polyurethane with small quantities of the additive, and the artificial rib cage was made of epoxy resin with calcium carbonate. The experimental data have shown that the phantom can be used as a standard phantom for the calibration.

  15. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C.J. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia); Ng, K.H., E-mail: ngkh@um.edu.m [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia); Ramli, N.; Azman, R.R. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia)

    2011-02-15

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  16. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    International Nuclear Information System (INIS)

    Lim, C.J.; Ng, K.H.; Ramli, N.; Azman, R.R.

    2011-01-01

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  17. Phantom study of PET/CT guided delineation of radiation therapy volume

    International Nuclear Information System (INIS)

    Lin Lin; Zheng Rong; Wang Yibin; Geng Jianhua; Wu Ning; Zhao Ping

    2012-01-01

    Objective: To propose a model-based method for calculating the threshold in GTV determination by 18 F-FDG PET in a phantom study. Methods: A phantom was constructed of a 9 L cylindrical tank.Glass spheres with volumes ranging from 0.5 to 16 ml (0.5, 1, 2, 4, 8 and 16 ml) were suspended within the tank. The six spheres were filled with an identical concentration of FDG (203.5 MBq/L) and suspended within 3 different background baths of FDG (6.179, 16.021, 0 MBq/L) solutions, creating 3 target-to-background ratios of 32.96 : 1, 12.69 : 1 and target to zero background. A linear regressive function was constructed which represented the relationship between the threshold and the average activity concentration of the target. A 40% of maximum intensity threshold and the linear regressive function method were applied to define the spheres filled with 18 F-FDG. The volume differences between the two methods and the true volumes of the spheres were compared with t-test. Results: The linear regressive function model was derived as:threshold =(mean target concentration + 2.6227)/1.9752. The results indicated that a smaller deviation occurred when the function was utilized to estimate the volumes of the phantoms as compared to the 40% of maximum intensity threshold method, but there were no significant differences between them (t=0.306, P>0.05). The effect of the linear regressive function on volume was such that when the phantom sphere volumes were ≥ 1 ml, the average deviation between the defined volumes and the true volumes of phantoms was 1.01%; but when the phantom sphere volume was 0.5 ml, the average deviation was 9.53%. When the 40% of maximum intensity threshold method was applied to define the phantom spheres of volume ≥2 ml, the average deviation between the defined volumes and the true volumes of phantoms was -4.62%; but, the average deviation of that was 19.9% when the volumes of spheres were 0.5 and 1 ml. When the linear regressive function was applied to

  18. Development of a high resolution voxelised head phantom for medical physics applications.

    Science.gov (United States)

    Giacometti, V; Guatelli, S; Bazalova-Carter, M; Rosenfeld, A B; Schulte, R W

    2017-01-01

    Computational anthropomorphic phantoms have become an important investigation tool for medical imaging and dosimetry for radiotherapy and radiation protection. The development of computational phantoms with realistic anatomical features contribute significantly to the development of novel methods in medical physics. For many applications, it is desirable that such computational phantoms have a real-world physical counterpart in order to verify the obtained results. In this work, we report the development of a voxelised phantom, the HIGH_RES_HEAD, modelling a paediatric head based on the commercial phantom 715-HN (CIRS). HIGH_RES_HEAD is unique for its anatomical details and high spatial resolution (0.18×0.18mm 2 pixel size). The development of such a phantom was required to investigate the performance of a new proton computed tomography (pCT) system, in terms of detector technology and image reconstruction algorithms. The HIGH_RES_HEAD was used in an ad-hoc Geant4 simulation modelling the pCT system. The simulation application was previously validated with respect to experimental results. When compared to a standard spatial resolution voxelised phantom of the same paediatric head, it was shown that in pCT reconstruction studies, the use of the HIGH_RES_HEAD translates into a reduction from 2% to 0.7% of the average relative stopping power difference between experimental and simulated results thus improving the overall quality of the head phantom simulation. The HIGH_RES_HEAD can also be used for other medical physics applications such as treatment planning studies. A second version of the voxelised phantom was created that contains a prototypic base of skull tumour and surrounding organs at risk. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    Science.gov (United States)

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  20. Development of a phantom to test fully automated breast density software – A work in progress

    International Nuclear Information System (INIS)

    Waade, G.G.; Hofvind, S.; Thompson, J.D.; Highnam, R.; Hogg, P.

    2017-01-01

    Objectives: Mammographic density (MD) is an independent risk factor for breast cancer and may have a future role for stratified screening. Automated software can estimate MD but the relationship between breast thickness reduction and MD is not fully understood. Our aim is to develop a deformable breast phantom to assess automated density software and the impact of breast thickness reduction on MD. Methods: Several different configurations of poly vinyl alcohol (PVAL) phantoms were created. Three methods were used to estimate their density. Raw image data of mammographic images were processed using Volpara to estimate volumetric breast density (VBD%); Hounsfield units (HU) were measured on CT images; and physical density (g/cm 3 ) was calculated using a formula involving mass and volume. Phantom volume versus contact area and phantom volume versus phantom thickness was compared to values of real breasts. Results: Volpara recognized all deformable phantoms as female breasts. However, reducing the phantom thickness caused a change in phantom density and the phantoms were not able to tolerate same level of compression and thickness reduction experienced by female breasts during mammography. Conclusion: Our results are promising as all phantoms resulted in valid data for automated breast density measurement. Further work should be conducted on PVAL and other materials to produce deformable phantoms that mimic female breast structure and density with the ability of being compressed to the same level as female breasts. Advances in knowledge: We are the first group to have produced deformable phantoms that are recognized as breasts by Volpara software. - Highlights: • Several phantoms of different configurations were created. • Three methods to assess phantom density were implemented. • All phantoms were identified as breasts by the Volpara software. • Reducing phantom thickness caused a change in phantom density.

  1. CT images of an anthropomorphic and anthropometric male pelvis phantom

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares

    2009-07-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  2. CT images of an anthropomorphic and anthropometric male pelvis phantom

    International Nuclear Information System (INIS)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de

    2009-01-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  3. Phantom crash confirms models

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To test computer models of how a nuclear reactor's containment building would fare if an airplane crashed into it, the Muto Institute in Tokyo sponsored a 3.2 million dollar project at Sandia National Laboratory to slam an F-4 Phantom jet into a 500 ton concrete wall. The results showed that the computer calculations were accurate

  4. Noncontact ultrasound imaging applied to cortical bone phantoms.

    Science.gov (United States)

    Bulman, J B; Ganezer, K S; Halcrow, P W; Neeson, Ian

    2012-06-01

    The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm(3) and in bone mineral density from 0 to 1.7 g/cm(3). Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16-20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%-2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within 1%-2%. Transmittance

  5. Influence of the PMMA and the ISO slab phantom for calibrating personal dosemeters

    International Nuclear Information System (INIS)

    Ginjaume, M.; Ortega, X.; Barbosa, A.

    2000-01-01

    Wide agreement has been achieved among the main Bodies and Organisations involved in standardisation of radiation protection, related to the operational quantities for personal dosimetry. Since their definition in 1985, several reports have been published to clarify and define the experimental set up to be used for the calibration of dosemeters in terms of the above-mentioned quantities. Among these lines, ICRU 47 has listed five different phantoms that are used for calibration and whose results were accurate, within accepted uncertainties. However, to achieve uniformity in calibration procedures, the 30 cm x 30 cm x 15 cm PMMA slab phantom was recommended. The secondary calibration Laboratory from the Institut de Techniques Energetiques at the Technical University of Catalonia (UPC) agreed with the Spanish Nacional Laboratory to adopt the recommended PMMA phantom but to improve the accuracy of the calibration procedure, by introducing a correction factor for backscatter differences in a PMMA and an ICRU slab phantom. Such corrections were of the order of 8% for the low-energy X-ray qualities. Recently, ISO in ISO 4037-3, has proposed the ISO water slab phantom which consists of a 30 cm x 30 cm x 15 cm water phantom with PMMA walls (front wall 2.5 mm thick). This new phantom could be substituted by the above mentioned PMMA phantom for radiation qualities with mean energy equal or above that of 137 Cs. The aim of this work is to compare the influence of both phantoms when calibrating personal dosemeters with photons. A set of four TL personal dosemeters that are used in the UPC personal dosimetry Service and an electronic personal dosemeter (SIEMENS EPD-2) were calibrated in terms of H p (10) and H p (0.07) using the two proposed phantoms. Calibration factors for ISO X-ray narrow spectra, 137 Cs and 60 Co were experimentally obtained for each phantom and compared. In the TL measurements, differences were found to be within TL statistical uncertainty, provided that a

  6. Data-driven motion correction in brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.W.

    2002-01-01

    Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of the reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Digital and physical phantom validation was performed to investigate this approach. Noisy projection data simulating at least one fully 3D patient head movement during acquisition were constructed by projecting the digital Huffman brain phantom at various orientations. Motion correction was applied to the reconstructed studies. The importance of including attenuation effects in the estimation of motion and the need for implementing an iterated correction were assessed in the process. Correction success was assessed visually for artifact reduction, and quantitatively using a mean square difference (MSD) measure. Physical Huffman phantom studies with deliberate movements introduced during the acquisition were also acquired and motion corrected. Effective artifact reduction in the simulated corrupt studies was achieved by motion correction. Typically the MSD ratio between the corrected and reference studies compared to the corrupted and reference studies was > 2. Motion correction could be achieved without inclusion of attenuation effects in the motion estimation stage, providing simpler implementation and greater efficiency. Moreover the additional improvement with multiple iterations of the approach was small. Improvement was also observed in the physical phantom data, though the technique appeared limited here by an object symmetry. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Radiological equipment analyzed by specific developed phantoms and software

    International Nuclear Information System (INIS)

    Soto, M.; Campayo, J. M.; Mayo, P.; Verdu, G.; Rodenas, F.

    2010-10-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be computerized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In case of film-screen equipment s this analysis could be applied digitalising the image in a professional scanner. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment s. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment s and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques... etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (m As). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (Author)

  8. Radiological equipment analyzed by specific developed phantoms and software

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Campayo, J. M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, Local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Mayo, P. [TITANIA Servicios Tecnologicos SL, Sorolla Center, Local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Verdu, G.; Rodenas, F., E-mail: m.soto@lainsa.co [ISIRYIM Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain)

    2010-10-15

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be computerized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In case of film-screen equipment s this analysis could be applied digitalising the image in a professional scanner. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment s. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment s and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques... etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (m As). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (Author)

  9. TU-H-206-02: Novel Linearly-Filled Derenzo PET Phantom Design

    International Nuclear Information System (INIS)

    Graves, S; Cox, B; Valdovinos, H; Jeffery, J; Eliceiri, K; Barnhart, T; Nickles, R; Farhoud, M

    2016-01-01

    Purpose: To design a linearly-filled Derenzo positron emission tomography (PET) phantom, eliminating the extraneous radioisotope volumes in a conventional reservoir-type design. This activity reduction combined with the elimination of bubbles in smaller phantom channels would significantly reduce personnel dose, radioisotope cost, and would improve image quality by reducing out-of-slice activity scatter. Methods: A computer-aided design (CAD) was created of a modular Derenzo phantom consisting of three phantom layers with gaskets between the layers. The central piece contains the active pattern volume and channels connecting adjacent rods in a serpentine pattern. The two end-pieces contained an inlet and an outlet for filling purposes. Phantom prototypes were 3D printed on a Viper Si2 stereolithography machine. The two gaskets were fabricated from silicon sheets using a PLS 6.75 laser cutter. Phantoms were held together by pass-through glass-filled nylon bolts and nuts. Phantoms were filled with "5"2Mn, "6"4Cu, "7"4Br, and "1"2"4I for testing, and were imaged on a Siemens Inveon MicroPET scanner. Results: Four phantom prototypes were constructed using male Leur Lock fittings for inlet/outlet ports. 3D printed layers were sanded to ensure proper coupling to the silicon gaskets. The filling volume for each prototype was approximately 2.4 mL. The filling process was found to be rapid, leak-tight, and with minimal back-pressure. PET images were reconstructed by OSEM3D, and axial slices along the phantom pattern length were averaged to provide final images. Image distortion was isotope dependent with "5"2Mn and "6"4Cu having the least distortion and "1"2"4I having the most distortion. Conclusion: These results indicate that the linearlyfilled Derenzo design improves on conventional reservoir-type designs by eliminating potential bubbles in small channels and by reducing activity level, radioisotope volume, radioisotope cost, personnel dose, filling time, and out

  10. Fabrication of a phantom and its application for checking gamma camera performance

    International Nuclear Information System (INIS)

    Yesmin, S; Ahmad, G. U.; Afroz, S.; Hossain, S.; Rashid, H.

    2004-01-01

    The primary aim of the present work is to fabricate a total performance phantom, which could be used for checking the performance characteristics of gamma camera. The phantom was locally fabricated at machine shop of Bangladesh University of Engineering and Technology (BUET) and used for checking the performance characteristics of gamma camera LF-61 of Centre for Nuclear Medicine and Ultrasound, Dhaka. With 10 mCi of Tc-99m, imaging of the phantom acquired with a reasonable counts. The image was inspected physically for evaluation of the camera performances. The visual inspection of the phantom image revealed that the performance characteristics like: spatial resolution, linearity, uniformity and lesion detection capability of the gamma camera could clearly be evaluated with reasonable acceptance level. This phantom is expected to be useful for checking performance characteristics of SPECT system as well. (author)

  11. Design, manufacture, and evaluation of an anthropomorphic pelvic phantom purpose-built for radiotherapy dosimetric intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K. M.; Ebert, M. A.; Kron, T.; Howlett, S. J.; Cornes, D.; Hamilton, C. S.; Denham, J. W. [Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales 2298, Australia and School of Physics, University of Newcastle, New South Wales 2308 (Australia); Department of Radiation Oncology, Sir Charles Gairdner Hospital, Western Australia, Australia and School of Physics, University of Western Australia, Western Australia 6009 (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Victoria 8006 (Australia); Australiasian College of Physical Scientists and Engineers in Medicine, Sydney, New South Wales 2020 (Australia); Trans-Tasman Radiation Oncology Group, Calvary Mater Newcastle, New South Wales 2298 (Australia); Heidelberg Repatriation Hospital, Victoria 3081 (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales 2298, Australia and School of Medicine and Population Health, University of Newcastle, New South Wales 2308 (Australia)

    2011-10-15

    Purpose: An anthropomorphic pelvic phantom was designed and constructed to meet specific criteria for multicenter radiotherapy dosimetric intercomparison. Methods: Three dimensional external and organ outlines were generated from a computed tomography image set of a male pelvis, forming the basis of design for an anatomically realistic phantom. Clinically relevant points of interest were selected throughout the dataset where point-dose values could be measured with thermoluminescence dosimeters and a small-volume ionization chamber. Following testing, three materials were selected and the phantom was manufactured using modern prototyping techniques into five separate coronal slices. Time lines and resource requirements for the phantom design and manufacture were recorded. The ability of the phantom to mimic the entire treatment chain was tested. Results: The phantom CT images indicated that organ densities and geometries were comparable to those of the original patient. The phantom proved simple to load for dosimetry and rapid to assemble. Due to heat release during manufacture, small air gaps and density heterogeneities were present throughout the phantom. The overall cost for production of the prototype phantom was comparable to other commercial anthropomorphic phantoms. The phantom was shown to be suitable for use as a ''patient'' to mimic the entire treatment chain for typical external beam radiotherapy for prostate and rectal cancer. Conclusions: The phantom constructed for the present study incorporates all characteristics necessary for accurate Level III intercomparison studies. Following use in an extensive Level III dosimetric comparison over a large time scale and geographic area, the phantom retained mechanical stability and did not show signs of radiation-induced degradation.

  12. Anthropomorphic Phantoms for Confirmation of Linear Accelerator-Based Small Animal Irradiation.

    Science.gov (United States)

    Perks, Julian R; Lucero, Steven; Monjazeb, Arta M; Li, Jian Jian

    2015-03-01

    Three dimensional (3D) scanning and printing technology is utilized to create phantom models of mice in order to assess the accuracy of ionizing radiation dosing from a clinical, human-based linear accelerator. Phantoms are designed to simulate a range of research questions, including irradiation of lung tumors and primary subcutaneous or orthotopic tumors for immunotherapy experimentation. The phantoms are used to measure the accuracy of dose delivery and then refine it to within 1% of the prescribed dose.

  13. A low-cost phantom for simple routine testing of single photon emission computed tomography (SPECT) cameras

    International Nuclear Information System (INIS)

    Ng, A.H.; Ng, K.H.; Dharmendra, H.; Perkins, A.C.

    2009-01-01

    A simple sphere test phantom has been developed for routine performance testing of SPECT systems in situations where expensive commercial phantoms may not be available. The phantom was based on a design with six universal syringe hubs set in the frame to support a circular array of six glass blown spheres of different sizes. The frame was then placed into a water-filled CT abdomen phantom and scanned with a triple head camera system (Philips IRIX TM , USA). Comparison was made with a commercially available phantom (Deluxe Jaszczak phantom). Whereas the commercial phantom demonstrates cold spot resolution, an important advantage of the sphere test phantom was that hot spot resolution could be easily measured using almost half (370 MBq) of the activity recommended for use in the commercial phantom. Results showed that the contrast increased non-linearly with sphere volume and radionuclide concentration. The phantom was found to be suitable as an inexpensive option for daily performance tests.

  14. ANTHROPOMORPHIC PHANTOMS FOR ASSESSMENT OF STRAIN IMAGING METHODS INVOLVING SALINE-INFUSED SONOHYSTEROGRAPHY

    Science.gov (United States)

    Hobson, Maritza A.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Shi, Hairong; Hall, Timothy J.; Varghese, Tomy

    2008-01-01

    Two anthropomorphic uterine phantoms were developed which allow assessment and comparison of strain imaging systems adapted for use with saline-infused sonohysterography (SIS). Tissue-mimicking (TM) materials consist of dispersions of safflower oil in gelatin. TM fibroids are stiffer than the TM myometrium/cervix and TM polyps are softer. The first uterine phantom has 3-mm diameter TM fibroids randomly distributed in TM myometrium. The second uterine phantom has a 5-mm and an 8-mm spherical TM fibroid in addition to a 5-mm spherical and a 12.5-mm long (medicine-capsule-shaped) TM endometrial polyp protruding into the endometrial cavity; also, a 10-mm spherical TM fibroid projects from the serosal surface. Strain images using the first phantom show the stiffer 3-mm TM fibroids in the myometrium. Results from the second uterine phantom show that, as expected, parts of inclusions projecting into the uterine cavity will appear very stiff, whether they are stiff or soft. Results from both phantoms show that even though there is a five-fold difference in the Young’s moduli values, there is not a significant difference in the strain in the transition from the TM myometrium to the TM fat. These phantoms allow for realistic comparison and evolution of SIS strain imaging techniques and can aid clinical personnel to develop skills for SIS strain imaging. PMID:18514999

  15. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio

    2015-01-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm 2 each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed

  16. Dose evaluation of three-dimensional small animal phantom with film dosimetry

    International Nuclear Information System (INIS)

    Han, Su Chul; Park, Seung Woo

    2017-01-01

    The weight of small animal dosimetry has been continuously increased in pre-clinical studies using radiation in small animals. In this study, three-dimensional(3D) small animal phantom was fabricated using 3D printer which has been continuously used and studied in the various fields. The absorbed dose of 3D animal phantom was evaluated by film dosimetry. Previously, the response of film was obtained from the materials used for production of 3D small animal phantom and compared with the bolus used as the tissue equivalent material in the radiotherapy. When irradiated with gamma rays from 0.5 Gy to 6 Gy, it was confirmed that there was a small difference of less than 1% except 0.5 Gy dose. And when small animal phantom was irradiated with 5 Gy, the difference between the irradiated dose and calculated dose from film was within 2%. Based on this study, it would be possible to increase the reliability of dose in pre-clinical studies using irradiation in small animals by evaluating dose of 3D small animal phantom

  17. Dose evaluation of three-dimensional small animal phantom with film dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Chul [Div. of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Seung Woo [Radilogcial and Medico-Oncological Sciences, University of Sciences and Technology, Daejeon (Korea, Republic of)

    2017-03-15

    The weight of small animal dosimetry has been continuously increased in pre-clinical studies using radiation in small animals. In this study, three-dimensional(3D) small animal phantom was fabricated using 3D printer which has been continuously used and studied in the various fields. The absorbed dose of 3D animal phantom was evaluated by film dosimetry. Previously, the response of film was obtained from the materials used for production of 3D small animal phantom and compared with the bolus used as the tissue equivalent material in the radiotherapy. When irradiated with gamma rays from 0.5 Gy to 6 Gy, it was confirmed that there was a small difference of less than 1% except 0.5 Gy dose. And when small animal phantom was irradiated with 5 Gy, the difference between the irradiated dose and calculated dose from film was within 2%. Based on this study, it would be possible to increase the reliability of dose in pre-clinical studies using irradiation in small animals by evaluating dose of 3D small animal phantom.

  18. Viscosity-Induced Crossing of the Phantom Barrier

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2015-09-01

    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  19. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    International Nuclear Information System (INIS)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-01-01

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom

  20. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  1. SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Z; Vijayan, S; Kilian-Meneghin, J; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2016-06-15

    Purpose: To determine similarities and differences between various head phantoms that might be used for dose measurements in diagnostic imaging procedures. Methods: We chose four frequently used anthropomorphic head phantoms (SK-150, PBU-50, RS-240T and Alderson Rando), a computational patient phantom (Zubal) and the CTDI head phantom for comparison in our study. We did a CT scan of the head phantoms using the same protocol and compared their dimensions and CT numbers. The scan data was used to calculate dose values for each of the phantoms using EGSnrc Monte Carlo software. An .egsphant file was constructed to describe these phantoms using a Visual C++ program for DOSXYZnrc/EGSnrc simulation. The lens dose was calculated for a simulated CBCT scan using DOSXYZnrc/EGSnrc and the calculated doses were validated with measurements using Gafchromic film and an ionization chamber. Similar calculations and measurements were made for PA radiography to investigate the attenuation and backscatter differences between these phantoms. We used the Zubal phantom as the standard for comparison since it was developed based on a CT scan of a patient. Results: The lens dose for the Alderson Rando phantom is around 9% different than the Zubal phantom, while the lens dose for the PBU-50 phantom was about 50% higher, possibly because its skull thickness and the density of bone and soft tissue are lower than anthropometric values. The lens dose for the CTDI phantom is about 500% higher because of its totally different structure. The entrance dose profiles are similar for the five anthropomorphic phantoms, while that for the CTDI phantom was distinctly different. Conclusion: The CTDI and PBU-50 head phantoms have substantially larger lens dose estimates in CBCT. The other four head phantoms have similar entrance dose with backscatter hence should be preferred for dose measurement in imaging procedures of the head. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems

  2. Dependency of energy and spatial distributions of photons on edge of object in brain SPECT

    CERN Document Server

    Deloar, H M; Kudomi, N; Kim, K M; Aoi, T; Iida, H

    2003-01-01

    Accurate mu maps are important for quantitative image reconstruction in SPECT. The Compton scatter energy window (CSW) technique has been proposed to define the outline of objects. In this technique, a lower energy window image is acquired in addition to the main photo-peak energy window. The image of the lower energy window is used to estimate the edge of the scanned object to produce a constant attenuation map. The aim of this study was to investigate the dependency of CSW on the spatial and energy distribution of radioisotope to predict the edges of objects. Two particular cases of brain study were considered, namely uniform distribution and non-uniform distribution using Monte Carlo simulation and experiments with uniform cylindrical phantom and hotspot phantom. The phantoms were filled with water and a radioactive solution of sup 9 sup 9 sup m Tc. For each phantom, 20%, 30%, 40% and 50% thresholds of the mean profile were applied to estimate E sub w sub t , the energy window for minimum difference betwee...

  3. Development of age-specific Japanese physical phantoms for dose evaluation in infant CT examinations

    International Nuclear Information System (INIS)

    Yamauchi-Kawaura, C.; Fujii, K.; Imai, K.; Ikeda, M.; Akahane, K.; Obara, S.; Yamauchi, M.; Narai, K.; Katsu, T.

    2016-01-01

    Secondary to the previous development of age-specific Japanese head phantoms, the authors designed Japanese torso phantoms for dose assessment in infant computed tomography (CT) examinations and completed a Japanese 3-y-old head-torso phantom. For design of age-specific torso phantoms (0, 0.5, 1 and 3 y old), anatomical structures were measured from CT images of Japanese infant patients. From the CT morphometry, it was found that rib cages of Japanese infants were smaller than those in Europeans and Americans. Radiophotoluminescence glass dosemeters were used for dose measurement of a 3-y-old head-torso phantom. To examine the validity of the developed phantom, organ and effective doses by the in-phantom dosimetry system were compared with simulation values in a web-based CT dose calculation system (WAZA-ARI). The differences in doses between the two systems were <20 % at the doses of organs within scan regions and effective doses in head, chest and abdomino-pelvic CT examinations. (authors)

  4. Development of a three-dimensionally movable phantom system for dosimetric verifications

    International Nuclear Information System (INIS)

    Nakayama, Hiroshi; Mizowaki, Takashi; Narita, Yuichiro; Kawada, Noriyuki; Takahashi, Kunio; Mihara, Kazumasa; Hiraoka, Masahiro

    2008-01-01

    The authors developed a three-dimensionally movable phantom system (3D movable phantom system) which can reproduce three-dimensional movements to experimentally verify the impact of radiotherapy treatment-related movements on dose distribution. The phantom system consists of three integrated components: a three-dimensional driving mechanism (3D driving mechanism), computer control system, and phantoms for film dosimetry. The 3D driving mechanism is a quintessential part of this system. It is composed of three linear-motion tables (single-axis robots) which are joined orthogonally to each other. This mechanism has a motion range of 100 mm, with a maximum velocity of 200 mm/s in each dimension, and 3D motion ability of arbitrary patterns. These attributes are sufficient to reproduce almost all organ movements. The positional accuracy of this 3D movable phantom system in a state of geostationary is less than 0.1 mm. The maximum error in terms of the absolute position on movement was 0.56 mm. The positional reappearance error on movement was up to 0.23 mm. The observed fluctuation of time was 0.012 s in the cycle of 4.5 s of oscillation. These results suggested that the 3D movable phantom system exhibited a sufficient level of accuracy in terms of geometry and timing to reproduce interfractional organ movement or setup errors in order to assess the influence of these errors on high-precision radiotherapy such as stereotactic irradiation and intensity-modulated radiotherapy. In addition, the authors 3D movable phantom system will also be useful in evaluating the adequacy and efficacy of new treatment techniques such as gating or tracking radiotherapy

  5. WE-D-303-01: Development and Application of Digital Human Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Segars, P. [Duke University, Durham, NC (United States)

    2015-06-15

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computational phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.

  6. WE-D-303-01: Development and Application of Digital Human Phantoms

    International Nuclear Information System (INIS)

    Segars, P.

    2015-01-01

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computational phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems

  7. Determination of optimum filter in myocardial SPECT: A phantom study

    International Nuclear Information System (INIS)

    Takavar, A.; Shamsipour, Gh.; Sohrabi, M.; Eftekhari, M.

    2004-01-01

    Background: In myocardial perfusion SPECT images are degraded by photon attenuation, the distance-dependent collimator, detector response and photons scatter. Filters greatly affect quality of nuclear medicine images. Materials and Methods: A phantom simulating heart left ventricle was built. About 1mCi of 99m Tc was injected into the phantom. Images was taken from this phantom. Some filters including Parzen, Hamming, Hanning, Butter worth and Gaussian were exerted on the phantom images. By defining some criteria such as contrast, signal to noise ratio, and defect size detectability, the best filter can be determined. Results: 0.325 Nyquist frequency and 0.5 nq was obtained as the optimum cut off frequencies respectively for hamming and handing filters. Order 11, cut off 0.45 Nq and order 20 cut off 0.5 Nq obtained optimum respectively for Butter worth and Gaussian filters. Conclusion: The optimum member of every filter's family was obtained

  8. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    International Nuclear Information System (INIS)

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade

  9. Fuzzy classification of phantom parent groups in an animal model

    Directory of Open Access Journals (Sweden)

    Fikse Freddy

    2009-09-01

    Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy

  10. Population of 224 realistic human subject-based computational breast phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David W. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Wells, Jered R., E-mail: jered.wells@duke.edu [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Sturgeon, Gregory M. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Dobbins, James T. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Segars, W. Paul [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Electrical and Computer Engineering and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2016-01-15

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range

  11. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  12. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    Science.gov (United States)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  13. Influence of different types of phantoms on the calibration of dosemeters for eye lens dosimetry

    International Nuclear Information System (INIS)

    Yoshitomi, H.; Kowatari, M.

    2016-01-01

    Both a cylinder and a slab phantom have been recommended to be used as calibration phantoms for eye lens dosimetry in the International Atomic Energy Agency TECDOC. This study describes investigations on the influence of the type of phantom on the calibration of dosemeters. In order to fulfil the purpose, backscatter radiation from practically used water-filled phantoms was evaluated by calculations and experiments. For photons, the calculations showed that the cylinder phantom had 10 % lower backscattered effect at maximum than a slab phantom, and simulated well the backscattered effect of the human head or neck to within ±10 %. The irradiation results of non-filtered optically stimulated luminescence and radio-photoluminescence glass dosemeters indicated that the differences of the calibration factors between the two types of phantoms were up to 20 and 10 %, respectively, reflecting the response to backscattered photons. For electrons, no difference was found between the two types of phantoms. (authors)

  14. Survey of potential use of dynamic line phantom for quality control of Gamma camera

    International Nuclear Information System (INIS)

    Trindev, P.; Ozturk, N.

    2004-01-01

    Different phantoms, used to evaluate the essential for image quality parameters of gamma cameras in order to avoid artefacts, are presented. The prices are significant and it is a sensible approach to optimise the type and number of phantoms necessary for quality control. Among all phantoms the price of 'Dynamic Line Phantom' (DLP) is impressive, but it is announced to substitute several 'passive' and 'active' phantoms. The goal of this paper is to justify this statement. The programs, based on image profile are discussed in the paper and the practical uses of the different programs are given

  15. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Williams, Cameron H.; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  16. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    International Nuclear Information System (INIS)

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E.; Williams, Cameron H.; Frush, D.; Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2013-01-01

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest–abdomen–pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  17. Design and development of an ultrasound calibration phantom and system

    Science.gov (United States)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  18. Parameter estimation of brain tumors using intraoperative thermal imaging based on artificial tactile sensing in conjunction with artificial neural network

    International Nuclear Information System (INIS)

    Sadeghi-Goughari, M; Mojra, A; Sadeghi, S

    2016-01-01

    Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors. (paper)

  19. Influence of lucite phantoms on calibration of dosimetric pens

    International Nuclear Information System (INIS)

    Oliveira, E.C.; Xavier, M.; Caldas, L.E.V.

    1992-01-01

    Dosimetrical pens were studied for the answer repetition and were tested in gamma radiation fields ( 60 Co and 137 Cs) in air and in front of a lucite phantom, obtaining a backscattering contribution. The medium backscattering factors were 1,053 and 1,108 for respectively 60 Co and 137 Cs. The pens were placed behind the phantom for verifying the radiation attenuation. (C.G.C.)

  20. Verification of gamma knife based fractionated radiosurgery with newly developed head-thorax phantom

    International Nuclear Information System (INIS)

    Bisht, Raj Kishor; Kale, Shashank Sharad; Natanasabapathi, Gopishankar; Singh, Manmohan Jit; Agarwal, Deepak; Garg, Ajay; Rath, Goura Kishore; Julka, Pramod Kumar; Kumar, Pratik; Thulkar, Sanjay; Sharma, Bhawani Shankar

    2016-01-01

    Objective: Purpose of the study is to verify the Gamma Knife Extend™ system (ES) based fractionated stereotactic radiosurgery with newly developed head-thorax phantom. Methods: Phantoms are extensively used to measure radiation dose and verify treatment plan in radiotherapy. A human upper body shaped phantom with thorax was designed to simulate fractionated stereotactic radiosurgery using Extend™ system of Gamma Knife. The central component of the phantom aids in performing radiological precision test, dosimetric evaluation and treatment verification. A hollow right circular cylindrical space of diameter 7.0 cm was created at the centre of this component to place various dosimetric devices using suitable adaptors. The phantom is made of poly methyl methacrylate (PMMA), a transparent thermoplastic material. Two sets of disk assemblies were designed to place dosimetric films in (1) horizontal (xy) and (2) vertical (xz) planes. Specific cylindrical adaptors were designed to place thimble ionization chamber inside phantom for point dose recording along xz axis. EBT3 Gafchromic films were used to analyze and map radiation field. The focal precision test was performed using 4 mm collimator shot in phantom to check radiological accuracy of treatment. The phantom head position within the Extend™ frame was estimated using encoded aperture measurement of repositioning check tool (RCT). For treatment verification, the phantom with inserts for film and ion chamber was scanned in reference treatment position using X-ray computed tomography (CT) machine and acquired stereotactic images were transferred into Leksell Gammaplan (LGP). A patient treatment plan with hypo-fractionated regimen was delivered and identical fractions were compared using EBT3 films and in-house MATLAB codes. Results: RCT measurement showed an overall positional accuracy of 0.265 mm (range 0.223 mm–0.343 mm). Gamma index analysis across fractions exhibited close agreement between LGP and film

  1. A quantitative experimental phantom study on MRI image uniformity.

    Science.gov (United States)

    Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei

    2018-05-02

    Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e., Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included Spin Echo (SE) and gradient echo (GRE) scanned in three planes (i.e., Axial, Coronal, and Sagittal). Moreover, three surface coil types (i.e., Head and Neck or HN, Brain, and TMJ coils) and two image correction methods (i.e., Surface Coil Intensity Correction or SCIC, Phased array Uniformity Enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the NEMA peak-deviation non-uniformity method. Results showed that TMJ coils elicited the least uniform image and Brain coils outperformed HN coils when metallic materials were present. Additionally, when metallic materials were present, SE outperformed GRE especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e., no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g., coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.

  2. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    International Nuclear Information System (INIS)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-01-01

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use

  3. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.

  4. Optimization of phantom backscatter thickness and lateral scatter volume for radiographic film dosimetry

    International Nuclear Information System (INIS)

    Srivastava, R.P.; De Wagter, C.

    2012-01-01

    The aim of this study is to determine the optimal backscatter thickness and lateral phantom dimension beyond the irradiated volume for the dosimetric verification with radiographic film when applying large field sizes. Polystyrene and Virtual Water™ phantoms were used to study the influence of the phantom backscatter thickness. EDR2 and XV films were used in 6 and 18 MV photon beams. The results show 11.4% and 6.4% over-response of the XV2 film when compared to the ion chamber for 6 MV 30×30 and 10×10 cm 2 field sizes, respectively, when the phantom backscatter thickness is 5 cm. For the same setup, measurements with EDR2 films indicate 8.5% and 1.7% over-response. The XV2 film response in the polystyrene phantom is about 2.0% higher than in the Virtual Water™ phantom for the 6 MV beam and 20 cm backscatter thickness. Similar results were obtained for EDR2 film. In the lateral scatter study, film response was nearly constant within 5 cm of lateral thickness and it increases when lateral thickness increases due to more multiple scatter of low energy photons. The backscatter thickness of the phantom should be kept below 7 cm for the accuracy of the film dosimetry. The lateral extension of the phantom should not be more than 5 cm from the field boundary in case of large irradiated volumes.

  5. Do you believe in phantoms?

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    “Phantoms” are tools that simulate a therapy’s response by mimicking the conditions of the human body. They are required in hadron therapy in order to optimise and verify the therapy before performing it on the patient. The better the phantom, the more accurate the treatment plan and the more effective the therapy. In the framework of the EU-funded project ENTERVISION*, a team of CERN researchers has designed an innovative piece of equipment able to evaluate radiobiology-related parameters in a very accurate way.   The ENTERVISION phantom being tested at HIT. A key challenge in hadron therapy – i.e. the medical use of hadrons to treat cancer – is to evaluate the biological effect of the delivered radiation. This can be achieved by using accurate dosimetry techniques to study the biological response in terms of the dose deposited and other physical parameters of the beam, such as the Linear Energy Transfer (LET). The job of the “phan...

  6. Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System

    International Nuclear Information System (INIS)

    Kim, Yon Lae; Park, Byung Moon; Bae, Yong Ki; Kang, Min Young; Bang, Dong Wan; Lee, Gui Won

    2006-01-01

    Few researches have been performed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of 1.14 g/cm 3 , 0.32 g/cm 3 respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose distributions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distributions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles

  7. On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-01-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP

  8. Distributions of neutron and gamma doses in phantom under a mixed field

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.

    1982-06-01

    A calculation program, based on Monte Carlo method, allowed to estimate the absorbed doses relatives to the reactor primary radiation, in a water cubic phantom and in cylindrical phantoms modelized from tissue compositions. This calculation is a theoretical approach of gamma and neutron dose gradient study in an animal phantom. PIN junction dosimetric characteristics have been studied experimentally. Air and water phantom radiation doses measured by PIN junction and lithium 7 fluoride, in reactor field have been compared to doses given by dosimetry classical techniques as tissue equivalent plastic and aluminium ionization chambers. Dosimeter responses have been employed to evaluate neutron and gamma doses in plastinaut (tissue equivalent plastic) and animal (piglet). Dose repartition in the piglet bone medulla has been also determined. This work has been completed by comparisons with Doerschell, Dousset and Brown results and by neutron dose calculations; the dose distribution related to lineic energy transfer in Auxier phantom has been also calculated [fr

  9. Development of phantom periapical for control quality

    International Nuclear Information System (INIS)

    Mendes, J.M.S.; Sales Junior, E.S.; Ferreira, F.C.L.; Paschoal, C.M.M.

    2015-01-01

    This study aimed to develop a dental phantom with cysts for evaluation of periapical radiographs that was tested in private dental offices in the city of Maraba, northern Brazil. Through some tests with the object simulator (phantom) were obtained 12 periapical radiographs (one in each of the offices visited) that waking up to the standards of Ordinance No. 453 were visually evaluated by observing the physical parameters of exposure (kVp and mA), time revelation of the radiographic film, later the other radiographs were visually compared with C6 ray set as the default. Among the results, it was found that only two of the twelve rays cysts could not be viewed and, therefore, these two images were deemed unsuitable for accurate diagnosis in the 10 images the cysts could be displayed, however according the images have different qualities comparisons. In addition, it can be concluded that the performance of the phantom was highly satisfactory showing to be efficient for use in quality control testing of dental X-rays, the quality control of radiographs and continuing education of dental professionals for a price much more accessible. (authors)

  10. Evaluation of non-linear adaptive smoothing filter by digital phantom

    International Nuclear Information System (INIS)

    Sato, Kazuhiro; Ishiya, Hiroki; Oshita, Ryosuke; Yanagawa, Isao; Goto, Mitsunori; Mori, Issei

    2008-01-01

    As a result of the development of multi-slice CT, diagnoses based on three-dimensional reconstruction images and multi-planar reconstruction have spread. For these applications, which require high z-resolution, thin slice imaging is essential. However, because z-resolution is always based on a trade-off with image noise, thin slice imaging is necessarily accompanied by an increase in noise level. To improve the quality of thin slice images, a non-linear adaptive smoothing filter has been developed, and is being widely applied to clinical use. We developed a digital bar pattern phantom for the purpose of evaluating the effect of this filter and attempted evaluation from an addition image of the bar pattern phantom and the image of the water phantom. The effect of this filter was changed in a complex manner by the contrast and spatial frequency of the original image. We have confirmed the reduced effect of image noise in the low frequency component of the image, but decreased contrast or increased quantity of noise in the image of the high frequency component. This result represents the effect of change in the adaptation of this filter. The digital phantom was useful for this evaluation, but to understand the total effect of filtering, much improvement of the shape of the digital phantom is required. (author)

  11. Localization of the phantom force induced by the tunneling current

    Science.gov (United States)

    Wutscher, Thorsten; Weymouth, Alfred J.; Giessibl, Franz J.

    2012-05-01

    The phantom force is an apparently repulsive force, which can dominate the atomic contrast of an AFM image when a tunneling current is present. We described this effect with a simple resistive model, in which the tunneling current causes a voltage drop at the sample area underneath the probe tip. Because tunneling is a highly local process, the areal current density is quite high, which leads to an appreciable local voltage drop that in turn changes the electrostatic attraction between tip and sample. However, Si(111)-7×7 has a metallic surface state and it might be proposed that electrons should instead propagate along the surface state, as through a thin metal film on a semiconducting surface, before propagating into the bulk. In this paper, we first measure the phantom force on a sample that displays a metallic surface state [here, Si(111)-7×7] using tips with various radii. If the metallic surface state would lead to a constant electrostatic potential on the surface, we would expect a direct dependence of the phantom force with tip radius. In a second set of experiments, we study H/Si(100), a surface that does not have a metallic surface state. We conclude that a metallic surface state does not suppress the phantom force, but that the local resistance Rs has a strong effect on the magnitude of the phantom force.

  12. Construction of Korean female voxel phantom and its application to dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Ik

    2001-08-15

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established.

  13. The threshold contrast thickness evaluated with different CDMAM phantoms and software

    Directory of Open Access Journals (Sweden)

    Fabiszewska Ewa

    2016-03-01

    Full Text Available The image quality in digital mammography is described by specifying the thickness and diameter of disks with threshold visibility. The European Commission recommends the CDMAM phantom as a tool to evaluate threshold contrast visibility in digital mammography [1, 2]. Inaccuracy of the manufacturing process of CDMAM 3.4 phantoms (Artinis Medical System BV, as well as differences between software used to analyze the images, may lead to discrepancies in the evaluation of threshold contrast visibility. The authors of this work used three CDMAM 3.4 phantoms with serial numbers 1669, 1840, and 1841 and two mammography systems of the same manufacturer with an identical types of detectors. The images were analyzed with EUREF software (version 1.5.5 with CDCOM 1.6. exe file and Artinis software (version 1.2 with CDCOM 1.6. exe file. The differences between the observed thicknesses of the threshold contrast structures, which were caused by differences between the CDMAM 3.4 phantoms, were not reproduced in the same way on two mammography units of the same type. The thickness reported by the Artinis software (version 1.2 with CDCOM 1.6. exe file was generally greater than the one determined by the EUREF software (version 1.5.5 with CDCOM 1.6. exe file, but the ratio of the results depended on the phantom and diameter of the structure. It was not possible to establish correction factors, which would allow correction of the differences between the results obtained for different CDMAM 3.4 phantoms, or to correct the differences between software. Great care must be taken when results of the tests performed with different CDMAM 3.4 phantoms and with different software application are interpreted.

  14. Construction of Korean female voxel phantom and its application to dosimetry

    International Nuclear Information System (INIS)

    Lee, Choon Ik

    2001-08-01

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established

  15. Design and evaluation of two multi-pinhole collimators for brain SPECT.

    Science.gov (United States)

    Chen, Ling; Tsui, Benjamin M W; Mok, Greta S P

    2017-10-01

    SPECT is a powerful tool for diagnosing or staging brain diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) but is limited by its inferior resolution and sensitivity. At the same time, pinhole SPECT provides superior resolution and detection efficiency trade-off as compared to the conventional parallel-hole collimator for imaging small field-of-view (FOV), which fits for the case of brain imaging. In this study, we propose to develop and evaluate two multi-pinhole (MPH) collimator designs to improve the imaging of cerebral blood flow and striatum. We set the target resolutions to be 12 and 8 mm, respectively, and the FOV at 200 mm which is large enough to cover the whole brain. The constraints for system optimization include maximum and minimum detector-to-center-of-FOV (CFOV) distances of 344 and 294 mm, respectively, and minimal radius-of-rotation (ROR) of 135 mm to accommodate patients' shoulder. According to the targeted FOV, resolutions, and constraints, we determined the pinhole number, ROR, focal length, aperture acceptance angle, and aperture diameter which maximized the system sensitivity. We then assessed the imaging performance of the proposed MPH and standard low-energy high-resolution (LEHR) collimators using analytical simulations of a digital NCAT brain phantom with 99m Tc-HMPAO/ 99m Tc-TRODAT-1 distributions; Monte Carlo simulations of a hot-rod phantom; and a Defrise phantom using GATE v6.1. Projections were generated over 360° and reconstructed using the 3D MPH/LEHR OS-EM methods with up to 720 updates. The normalized mean square error (NMSE) was calculated over the cerebral and striatal regions extracted from the reconstructed images for 99m Tc-HMPAO and 99m Tc-TRODAT-1 simulations, respectively, and average normalized standard deviation (NSD) based on 20 noise realizations was assessed on selected uniform 3D regions as the noise index. Visual assessment and image profiles were applied to the results of Monte Carlo

  16. Monte Carlo-based investigation of water-equivalence of solid phantoms at 137Cs energy

    International Nuclear Information System (INIS)

    Vishwakarma, Ramkrushna S.; Palani Selvam, T.; Sahoo, Sridhar; Mishra, Subhalaxmi; Chourasiya, Ghanshyam

    2013-01-01

    Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at 137 Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 x 10 9 to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at 137 Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively. (author)

  17. A note on crossing the phantom divide in hybrid dark energy model

    International Nuclear Information System (INIS)

    Wei Hao; Cai Ronggen

    2006-01-01

    Recently a lot of attention has been given to building dark energy models in which the equation-of-state parameter w can cross the phantom divide w=-1. However, to our knowledge, these models with crossing the phantom divide only provide the possibility that w can cross -1. They do not answer another question: why crossing phantom divide occurs recently? Since in many existing models whose equation-of-state parameter can cross the phantom divide, w undulates around -1 randomly, why are we living in an epochw<-1? This can be regarded as the second cosmological coincidence problem. In this Letter, we propose a possible approach to alleviate this problem within a hybrid dark energy model

  18. Mixing formula for tissue-mimicking silicone phantoms in the near infrared

    Science.gov (United States)

    Böcklin, C.; Baumann, D.; Stuker, F.; Fröhlich, Jürg

    2015-03-01

    The knowledge of accurate optical parameters of materials is paramount in biomedical optics applications and numerical simulations of such systems. Phantom materials with variable but predefined parameters are needed to optimise these systems. An optimised integrating sphere measurement setup and reconstruction algorithm are presented in this work to determine the optical properties of silicone rubber based phantoms whose absorption and scattering properties are altered with TiO2 and carbon black particles. A mixing formula for all constituents is derived and allows to create phantoms with predefined optical properties.

  19. An Inexpensive and Easy Ultrasound Phantom: A Novel Use for SPAM.

    Science.gov (United States)

    Nolting, Laura; Hunt, Patrick; Cook, Thomas; Douglas, Barton

    2016-04-01

    Ultrasound models, commonly referred to as "phantoms," are simulation tools for ultrasound education. Commercially produced phantoms are available, but there are "homemade" alternatives such as raw poultry and gelatin molds. Precooked, processed meat, better known as SPAM (Hormel Foods Corporation, Austin, MN), can be used as an ultrasound phantom to teach several ultrasound applications. It is a versatile, hygienic, and easily manipulated medium that does not require refrigeration or preparatory work and can be easily discarded at the end of use. © 2016 by the American Institute of Ultrasound in Medicine.

  20. Efficiency Calibration of Phantom Family for Use in Direct Bioassay of Radionuclide in the Body

    International Nuclear Information System (INIS)

    Kim, Ji Seok; Ha, Wi Ho; Kim, Hyun Ki; Park, Gyung Deok; Lee, Jai Ki

    2008-01-01

    A major source of uncertainties of in vivo bioassay using a whole body counter calibrated against a body phantom containing known radioactivities is variation of counting geometry caused by the differences in body size of the subject from that of the phantom. Phantoms such as the BOMAB phantom are based on the body size of the reference man and usually single phantom is used in usual calibration of the counter. This is because it is difficult to apply a set of phantoms having different sizes. In order to reduce the potential errors due to variation of counting geometry, use of a set of phantoms having different body-shapes have been attempted. The efficiency files are stored in the computer analyzing the measurement data and a suitable one is retrieved for the specific subject. Experimental or computational approach can be employed in generation of the efficiency files. Carlan et al. demonstrated that Monte Carlo simulations can provide acceptable efficiencies by use of the IGOR phantom family. The body size of the individual subject undergoing in vivo bioassay should be determined by an appropriate method

  1. Synthetic digital radiographs using exposure computer models of Voxels / EGS4 Phantoms

    International Nuclear Information System (INIS)

    Kenned, Roberto; Vieira, Jose W.; Lima, Fernando R.A.; Loureiro, Eduardo

    2008-01-01

    The objective of this work is to produce synthetic digital radiographs from synthetic phantoms with the use of a Computational Model of Exposition (MCE). The literature explains a model consisted on a phantom, a Monte Carlo code and an algorithm of a radioactive source. In this work it was used the FAX phantom (Female Adult voXel), besides the EGS4 system code Eletron Shower-range version 4) and an external source, similar to that used in diagnostic radiology. The implementation of MCE creates files with information on external energy deposited in the voxels of fantoma used, here called EnergiaPorVoxel.dat. These files along with the targeted phantom (fax.sgi) worked as data entry for the DIP software (Digital Imaging Processing) to build the synthetic phantoms based on energy and the effective dose. This way you can save each slice that is the stack of pictures of these phantoms synthetics, which have been called synthetic digital radiography. Using this, it is possible to use techniques of emphasis in space to increase the contrast or elineate contours between organs and tissues. The practical use of these images is not only to allow a planning of examinations performed in clinics and hospitals and reducing unnecessary exposure to patients by error of radiographic techniques. (author)

  2. A Chinese Visible Human-based computational female pelvic phantom for radiation dosimetry simulation

    International Nuclear Information System (INIS)

    Nan, H.; Jinlu, S.; Shaoxiang, Z.; Qing, H.; Li-wen, T.; Chengjun, G.; Tang, X.; Jiang, S. B.; Xiano-lin, Z.

    2010-01-01

    Accurate voxel phantom is needed for dosimetric simulation in radiation therapy for malignant tumors in female pelvic region. However, most of the existing voxel phantoms are constructed on the basis of Caucasian or non-Chinese population. Materials and Methods: A computational framework for constructing female pelvic voxel phantom for radiation dosimetry was performed based on Chinese Visible Human datasets. First, several organs within pelvic region were segmented from Chinese Visible Human datasets. Then, polygonization and voxelization were performed based on the segmented organs and a 3D computational phantom is built in the form of a set of voxel arrays. Results: The generated phantom can be converted and loaded into treatment planning system for radiation dosimetry calculation. From the observed dosimetric results of those organs and structures, we can evaluate their absorbed dose and implement some simulation studies. Conclusion: A voxel female pelvic phantom was developed from Chinese Visible Human datasets. It can be utilized for dosimetry evaluation and planning simulation, which would be very helpful to improve the clinical performance and reduce the radiation toxicity on organ at risk.

  3. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Qi, E-mail: Qi.Duan@nih.gov; Duyn, Jeff H.; Gudino, Natalia; Zwart, Jacco A. de; Gelderen, Peter van [Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States); Sodickson, Daniel K.; Brown, Ryan [The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016 (United States)

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.

  4. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  5. Development of a QA Phantom for online image registration and resultant couch shifts

    International Nuclear Information System (INIS)

    Arumugam, S.; Jameson, M.G.; Holloway, L.C.

    2010-01-01

    Full text: Purpose Recently our centre purchased an Elekta-Synergy accelerator with kV-CBCT and a hexapod couch attachment. This system allows six degrees of freedom for couch lOp shifts, based on registration of on line imaging. We designed and built a phantom in our centre to test the accuracy and precision of this system. The goal of this project was to investigate the accuracy and practical utilisation of this phantom. Method The phantom was constructed from perspex sheets and high density dental putty (Fig. I). Five high density regions (three small regions to simulate prostate seeds and two larger regions to simulate boney anatomy) were incorporated to test the manual and automatic registrations within the software. The phantom was utilised to test the accuracy and precision of repositioning with the hexapod couch and imaging system. To achieve this, the phantom was placed on the couch at known orientations and the shifts were quantified using the registration of verification and reference image data sets. True shifts and those predicted by the software were compared. Results The geometrical accuracy of the phantom was verified with measurements of the CT scan to be with I mm of the intended geometry. The image registration and resultant couch shifts were found to be accurate within I mm and 0.5 degrees. The phantom was found to be practical and easy to use. Conclusion The presented phantom provides a less expensive and effective alternative to commercially available systems for verifying imaging registration and corresponding six degrees of freedom couch shifts. (author)

  6. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  7. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  8. Motion correction in neurological fan beam SPECT using motion tracking and fully 3D reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.; Eberl, S.; Meikle, S.; Braun, M.; Westmead Hospital, Westmead, NSW; University of Technology, Sydney, NSW

    1998-01-01

    Full text: We have previously proposed the use of fully three-dimensional (3D) reconstruction and continuous monitoring of head position to correct for motion artifacts in neurological SPECT and PET. Knowledge of the motion during acquisition provided by a head tracking system can be used to reposition the projection data in space in such a way as to negate motion effects during reconstruction. The reconstruction algorithm must deal with variations in the projection geometry resulting from differences in the timing and nature of motion between patients. Rotational movements about any axis other than the camera's axis of rotation give rise to projection geometries which necessitate the use of a fully 3D reconstruction algorithm. Our previous work with computer simulations assuming parallel hole collimation demonstrated the feasibility of correcting for motion. We have now refined our iterative 3D reconstruction algorithm to support fan beam data and attenuation correction, and developed a practical head tracking system for use on a Trionix Triad SPECT system. The correction technique has been tested in fan beam SPECT studies of the 3D Hoffman brain phantom. Arbitrary movements were applied to the phantom during acquisition and recorded by the head tracker which monitored the position and orientation of the phantom throughout the study. 3D reconstruction was then performed using the motion data provided by the tracker. The accuracy of correction was assessed by comparing the corrected images with a motion free study acquired immediately beforehand, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. 3D reconstruction of the 128x128x128 data set took 20 minutes on a SUN Ultra 1 workstation. The results of these phantom experiments suggest that the technique can effectively compensate for head motion under clinical SPECT imaging

  9. Dosimetry using radiochromic film and planning algorithms in heterogeneous phantoms

    International Nuclear Information System (INIS)

    Leite, Vinicius Freitas

    2012-01-01

    This work analyzes, through the study of the interaction of electromagnetic radiation with matter, two schemes of heterogeneous phantoms schematised to simulate real cases of planning with different electronic densities through the Pencil Beam, Collapsed Cone and Analytical Anisotropic Algorithm algorithms and compare with measurements Of relative absorbed dose in an IBA CC13 ionization chamber and Gafchromic® EBT2 radiochromic film. Epichlorohydrin rubber and its compatibility in comparison with human bone has also been evaluated. The assembly of the heterogeneous phantoms was feasible and the results regarding the density and attenuation of the rubber presented consistent values. However, the study of PDPs in constructed phantoms showed a considerable percentage discrepancy between measurements and planning

  10. Dosimetry in a torso phantom during a mammography

    International Nuclear Information System (INIS)

    Hernandez O, M.; Duran M, H. A.; Pinedo S, A.; Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R.; Rivera M, T.; Ventura M, J.

    2009-10-01

    Two dosimetric magnitudes, the absorbed dose and the kerma in air to the entrance of torso have been determined. These dosimetric magnitudes are due to the radiation that is dispersed in the mammary gland when the patient undergoes a mammography study. The kerma to the entrance of the torso and the absorbed dose by the torso was obtained in a phantom of paraffin and with thermoluminescent dosemeters of ZrO 2 . The dosemeters were placed on the surface of the torso phantom while the mammography was carried out. (author)

  11. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    International Nuclear Information System (INIS)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D

    2015-01-01

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647

  12. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    Energy Technology Data Exchange (ETDEWEB)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647.

  13. A feasiblity study of an ultrasonic test phantom arm

    Science.gov (United States)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  14. Radiation protection to the eye and thyroid during diagnostic cerebral angiography: a phantom study.

    LENUS (Irish Health Repository)

    Shortt, C P

    2008-08-01

    We measured radiation doses to the eye and thyroid during diagnostic cerebral angiography to assess the effectiveness of bismuth and lead shields at dose reduction. Phantom head angiographic studies were performed with bismuth (study 1) and lead shields (study 2). In study 1 (12 phantoms), thermoluminescent dosimeters (TLD) were placed over the eyes and thyroid in three groups: (i) no shields (four phantoms); (ii) anterior bismuth shields (four phantoms) and (iii) anterior and posterior bismuth shields (four phantoms). In a second study (eight phantoms), lead shields were placed over the thyroid only and TLD dose measurements obtained in two groups: (i) no shielding (four phantoms) and (ii) thyroid lead shielding (four phantoms). A standard 4-vessel cerebral angiogram was performed on each phantom. Study 1 (bismuth shields) showed higher doses to the eyes compared with thyroid (mean 13.03 vs 5.98 mSv, P < 0.001) and a higher eye dose on the X-ray tube side. Overall, the use of bismuth shielding did not significantly reduce dose to either eyes or thyroid in the measured TLD positions. In study 2, a significant thyroid dose reduction was found with the use of lead shields (47%, mean 2.46 vs 4.62 mSv, P < 0.001). Considerable doses to the eyes and thyroid highlight the need for increased awareness of patient protection. Eye shielding is impractical and interferes with diagnostic capability. Thyroid lead shielding yields significant protection to the thyroid, is not in the field of view and should be used routinely.

  15. Radiation protection to the eye and thyroid during diagnostic cerebral angiography : a phantom study

    International Nuclear Information System (INIS)

    Shortt, C. P.; Malone, L.; Thornton, J.; Brennan, P.; Lee, M. J.

    2008-01-01

    Full text: We measured radiation doses to the eye and thyroid during diagnostic cerebral angiography to assess the effectiveness of bismuth and lead shields at dose reduction. Phantom head angiographic studies were performed with bismuth (study 1) and lead shields (study 2). In study 1 (12 phantoms), thermoluminescent dosimeters (TLD) were placed over the eyes and thyroid in three groups: (i) no shields (four phantoms); (ii) anterior bismuth shields (four phantoms) and (iii) anterior and posterior bismuth shields (four phantoms). In a second study (eight phantoms), lead shields were placed over the thyroid only and TLD dose measurements obtained in two groups: (i) no shielding (four phantoms) and (ii) thyroid lead shielding (four phantoms). A standard 4-vessel cerebral angiogram was performed on each phantom. Study 1 (bismuth shields) showed higher doses to the eyes compared with thyroid (mean 13.03 vs 5.98 mSv, P < 0.001) and a higher eye dose on the X-ray tube side. Overall, the use of bismuth shielding did not significantly reduce dose to either eyes or thyroid in the measured TLD positions. In study 2, a significant thyroid dose reduction was found with the use of lead shields (47%, mean 2.46 vs 4.62 mSv, P < 0.001). Considerable doses to the eyes and thyroid highlight the need for increased awareness of patient protection. Eye shielding is impractical and interferes with diagnostic capability. Thyroid lead shielding yields significant protection to the thyroid, is not in the field of view and should be used routinely.

  16. Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T

    DEFF Research Database (Denmark)

    Lee, Hedok; Mortensen, Kristian; Sanggaard, Simon

    2017-01-01

    strategies for accurate 3D contrast concentration mapping at 9.4T were developed and whole brain dynamic concentration maps were derived to study solute transport via the glymphatic system. The newly developed approach will enable future quantitative studies of the glymphatic system in health and disease...... phantoms. Normal Wistar rats underwent Gd-DOTA infusion into CSF via the cisterna magna and continuous MRI for approximately 130 min using T1-weighted imaging. Dynamic Gd-DOTA concentration maps were calculated and parenchymal uptake was estimated. RESULTS: In the phantom study, T1 discrepancies between...

  17. Phantom limb phenomenon as an example of body image distortion

    Directory of Open Access Journals (Sweden)

    Razmus Magdalena

    2017-06-01

    Full Text Available Introduction: The perception of one’s own body, its mental representation, and emotional attitude to it are the components of so-called “body image” [1]. The aim of the research was to analyse phantom pain and non-painful phantom sensations as results of limb loss and to explain them in terms of body image distortion.

  18. Estimation of internal dose from radiocesium and phantom

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi; Nakamura, Yuji

    1994-01-01

    A complicated model describing the movement of a radionuclide in both the natural environment and socioeconomical systems is usually used to estimate the internal dose to the public in terms of collective dose, taking demographic data into account. The result can be certified for reliability in some compartments of the model. One of the compartments is the body content. In the case of radiocesium, the individual body burden can be measured using a whole-body counter. The measurement must be calibrated with a phantom. The public is composed of individuals of various ages. Accordingly, the whole-body counter should be calibrated with a set of phantoms approximating individuals of different body sizes. Relationships between counting efficiency and body size were analyzed on 137 Cs 134 Cs or 40 K incorporated into the whole-body using a set of phantoms. Four sizes covering average Japanese physiques from infant to adult male, were chosen to prepare an anthropomorphic phantom system. The distribution of 137 Cs in aquatic solution was homogeneous through the phantom. A whole-body counter at the National Institute of Radiological Sciences, was used at a rate of 5 cm per minute in a scanning mode. The measurements were carried out in an iron room. Relations were analyzed between counting efficiency and some anthropometric parameters. The best fit was given by a linear equation of both reciprocals of height in cm and weight in kg, with a correlation coefficient of 1.00 for 137 Cs. The result indicates that radioactivity of 137 Cs can be determined for individuals with different anthropometric parameters using the whole-body counter system. This means that effective equivalent doses for individuals can be computed accurately from the measurements. Further, an estimate on the body content from an dose estimation model using measurements of radioactivity in environmental substances can be evaluated by comparing the body burden measured. (J.P.N.)

  19. Effect of phantom dimension variation on Monte Carlo simulation speed and precision

    International Nuclear Information System (INIS)

    Lin Hui; Xu Yuanying; Xu Liangfeng; Li Guoli; Jiang Jia

    2007-01-01

    There is a correlation between Monte Carlo simulation speed and the phantom dimension. The effect of the phantom dimension on the Monte Carlo simulation speed and precision was studied based on a fast Monte Carlo code DPM. The results showed that when the thickness of the phantom was reduced, the efficiency would increase exponentially without compromise of its precision except for the position at the tailor. When the width of the phantom was reduced to outside the penumbra, the effect on the efficiency would be neglectable. However when it was reduced to within the penumbra, the efficiency would be increased at some extent without precision loss. This result was applied to a clinic head case, and the remarkable increased efficiency was acquired. (authors)

  20. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2015-07-01

    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  1. Quality assessment of ultrasonographic equipment using an ATS-539 multipurpose phantom

    International Nuclear Information System (INIS)

    Kim, Pyo Nyun; Lim, Joo Won; Kim, Hyun Cheol; Yoon, Young Cheol; Sung, Deuk Je; Moon, Min Hoan; Kim, Jeong Sook; Kim, Jong Chan

    2008-01-01

    To determine the rate of congruence and to standardize assessment of US (ultrasound) phantom images with the use of an ATS-539 multipurpose phantom for US equipment currently utilized in Korea. US phantom images were scanned with a 3.0-5.0 MHz convex transducer and were digitized by use of an analogue-digital converter. Members of a committee with consent evaluated the US phantom images from 108 types of ultrasound equipment. The dead zone, vertical and horizontal measurement, axial/lateral resolution, focal zone, sensitivity, functional resolution and gray scale/dynamic range were evaluated. Congruence or incongruence of ultrasound equipment was determined based on the results of dead zone, axial/lateral resolution and gray scale/dynamic range measurements. Other factors were evaluated for the possibility as criteria with the use of the Mann-Whitney U test and receiver operator characteristic (ROC) curve analysis. The dead zone, axial/lateral resolution and gray scale/dynamic range were 91.7%, 94.4% and 76.9%, respectively, for suitable US equipment. Considering all three factors, 78 types of ultrasound equipment were passed. The congruence rate of focal zone and functional resolution were 62.4% and 69.3% of the US equipment, respectively. Of the US equipment, 72.2% of the equipment was acceptable based on the dead zone, axial/lateral resolution, and gray scale/dynamic range measurement as determined with the use of an ATS-539 phantom. Focal zone and 8 mm-functional resolution can be useful as a standard in the assessment of a US phantom image

  2. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Batista Nogueira, Luciana [Anatomy and Imaging Department, Federal University of Minas Gerais, Belo Horizonte (Brazil); Lemos Silva, Hugo Leonardo [Santa Casa Hospital, Belo Horizonte (Brazil); Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio [Nuclear Engineering Department, Federal University of Minas Gerais, Belo Horizonte (Brazil)

    2015-07-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the

  3. Development of the new phantom for evaluation of SPECT performance

    International Nuclear Information System (INIS)

    Fukukita, H.; Oyamada, H.; Nagaiwa, K.; Kawai, H.; Terui, S.

    1984-01-01

    The authors developed a new Phantom designed to evaluate the SPECT system performances of rotational gamma cameras. This phantom is composed of 5 parts, and each of them has its own purpose; such as measurements of 1) spatial resolution 2) slice thickness, 3) dose linearity, 4) uniformity, and 5) image distortion. These parts are made of Acrylic (0.8 cm in thickness) and each of them has the same disc-shape, measuring 28.4 cm in inner diameter and 7 cm in inner length. For the large field of view cameras, it is possible to set up-to 4 parts together if necessary. Therefore, 4 different parameters can be obtained at one rotation. The phantom was filled with Tc-99m solution, and SPET data were obtained as follows: for the determination of spatial resolution and slice thickness, 128 linear sampling with every 5 0 angular rotation was performed, and 64 linear sampling with every 10 0 angular rotation for dose linearity uniformity, and image distortion. The values obtained with the phantom were FWHM of 19.1 mm for spatial resolution, FWHM of 19.9 mm for slice thickness, and integral uniformity of 36.4%. For dose linearity a good correlating (r=0.99) was obtained. For image distortion it was easy to detect the misalignment of the electrical and mechanical axes. The authors found that this phantom was a suitable tool as a routine quality control and daily maintenance of SPECT system

  4. Construction tool and suitability of voxel phantom for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio

    2011-01-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  5. Construction tool and suitability of voxel phantom for skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: ptsiquei@ipen.b, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  6. Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Nozari, Kourosh; Azizi, Tahereh; Setare, M.R.

    2009-01-01

    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition

  7. Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.

    Science.gov (United States)

    Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry

    2018-04-01

    Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.

  8. Specific developed phantoms and software to assess radiological equipment image quality

    International Nuclear Information System (INIS)

    Verdu, G.; Rodenas, F.

    2011-01-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  9. Specific developed phantoms and software to assess radiological equipment image quality

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G., E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear; Mayo, P., E-mail: p.mayo@titaniast.com [TITANIA Servicios Teconologicos, Valencia (Spain); Rodenas, F., E-mail: frodenas@mat.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Matematica Aplicada; Campayo, J.M., E-mail: j.campayo@lainsa.com [Logistica y Acondicionamientos Industriales S.A.U (LAINSA), Valencia (Spain)

    2011-07-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  10. Development and liver of phantom anthropomorphic application for use in radiology

    International Nuclear Information System (INIS)

    Melo, M.G.; Silva, L.F.; Ferreira, F. C.L.; Cunha, C.J.; Paschoal, C.M.M.

    2015-01-01

    The use of artificial ionizing radiation has also been employed in several areas, namely: medicine, agriculture, industry, ink curing etc. However, the use of radiation for medical purposes of diagnosis or therapy is being treated with more attention due to its increased use and the use of simulators object for quality control and training of professionals. The phantoms and are used to aid radiographic procedures, they may simulate a part of the body, both in its form as mass, density, and attenuation. The objective of this work was the development and application of liver anthropomorphic phantom for use in diagnostic radiology and training professionals. The construction of the liver anthropomorphic phantom was through literature and it was noticed that the use of phantoms are relatively low. For the construction of the mold of the phantom was used an adult human liver with early cirrhosis that was preserved in formalin for teaching demonstrations in Prof. Human Anatomy Museum collection Osvaldo Cruz of milk from the Federal University of Sergipe. With this work, we emphasize the need for the control program and quality assurance in radiology doctor to ensure image quality and low exposure of patients and professionals, since the radiological examinations are extremely important, because its contribution decisively in medical diagnosis. (authors)

  11. [99mTc]/[123I] Simultaneous dual-isotope brain striatum phantom SPECT study: preparing for simultaneous [99mTc]TRODAT-1/[123I]-IBZM pre- and post-synaptic dopamine imaging

    International Nuclear Information System (INIS)

    Kao, PF; Hsu, HT; Tzen, KY; Wey, SP

    2004-01-01

    Introduction: The brain dopamine transporters (DAT) and dopamine D2 receptors are implicated in all kinds of movement disorders. Both sites are also targets for drug treatment, Therefore, brain dopamine system is important in both basic and clinical neurological researches. Kung HF et al. developed [ 99m Tc]TRODAT-l for DAT and [ 123 I]IBZM for D2 receptor SPECT imaging in living human brain. In this work, the possibility of doing [ 99m Tc]TRODAT-1/[ 123 I]IBZM simultaneous dual-isotope SPECT for both DAT/D2 receptor imaging was studied. The SPECT acquisition protocol, the percent of 99m Tc/ 123 I energy cross contamination, and the reproducibility of striatal /background ratios were studied with a striatal phantom to confirm the accuracy of 99m Tc/ 123 I dual-isotope simultaneous SPECT technique. Materials and Methods: In each set of experiment, the 4 striatum (target) chambers and the rest of the brain (background) were filled with solutions containing 99m Tc only, 123 I only, and both isotopes. Several sets of experiment with different target/background ratios were tested. For SPECT image acquisition, a triple-head gamma camera equipp with high resolution fan-beam collimators (Siemens Multi-SPECT3). Energy window settings of a 15% centered window at 140KeV for 99m Tc and a 10% asymmetric window with a lower bound at 159KeV for 123 I were used. After filtered backprojection and Chang's attenuation correction, regions of interest were defined at the bilateral basal ganglia and occipital areas. The reproducibility of counting activity and the different target/background ratios from each isotope were observed. Results: The results of the study revealed that the energy crossed contaminations from I-123 into Tc- 99m and vice verse were 22±12.4 % and 0.4±1.0 %, respectively. The correlation of striatum/background ratios between single isotope and simultaneous was excellent (R2 = 0.99). The success of this simultaneous dual-isotope SPECT technique is suggestive of the

  12. [Development of a digital chest phantom for studies on energy subtraction techniques].

    Science.gov (United States)

    Hayashi, Norio; Taniguchi, Anna; Noto, Kimiya; Shimosegawa, Masayuki; Ogura, Toshihiro; Doi, Kunio

    2014-03-01

    Digital chest phantoms continue to play a significant role in optimizing imaging parameters for chest X-ray examinations. The purpose of this study was to develop a digital chest phantom for studies on energy subtraction techniques under ideal conditions without image noise. Computed tomography (CT) images from the LIDC (Lung Image Database Consortium) were employed to develop a digital chest phantom. The method consisted of the following four steps: 1) segmentation of the lung and bone regions on CT images; 2) creation of simulated nodules; 3) transformation to attenuation coefficient maps from the segmented images; and 4) projection from attenuation coefficient maps. To evaluate the usefulness of digital chest phantoms, we determined the contrast of the simulated nodules in projection images of the digital chest phantom using high and low X-ray energies, soft tissue images obtained by energy subtraction, and "gold standard" images of the soft tissues. Using our method, the lung and bone regions were segmented on the original CT images. The contrast of simulated nodules in soft tissue images obtained by energy subtraction closely matched that obtained using the gold standard images. We thus conclude that it is possible to carry out simulation studies based on energy subtraction techniques using the created digital chest phantoms. Our method is potentially useful for performing simulation studies for optimizing the imaging parameters in chest X-ray examinations.

  13. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    International Nuclear Information System (INIS)

    Angelis, Georgios I.; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R.; Fulton, Roger R.

    2014-01-01

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  14. Investigation of partial volume effect in different PET/CT systems: a comparison of results using the madeira phantom and the NEMA NU-2 2001 phantom

    International Nuclear Information System (INIS)

    Chipiga, L.; Sydoff, M.; Zvonova, I.; Bernhardsson, C.

    2016-01-01

    Positron emission tomography combined with computed tomography (PET/CT) is a quantitative technique used for diagnosing various diseases and for monitoring treatment response for different types of tumours. However, the accuracy of the data is limited by the spatial resolution of the system. In addition, the so-called partial volume effect (PVE) causes a blurring of image structures, which in turn may cause an underestimation of activity of a structure with high-activity content. In this study, a new phantom, MADEIRA (Minimising Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations) for activity quantification in PET and single photon emission computed tomography (SPECT) was used to investigate the influence on the PVE by lesion size and tumour-to-background activity concentration ratio (TBR) in four different PET/CT systems. These measurements were compared with data from measurements with the NEMA NU-2 2001 phantom. The results with the MADEIRA phantom showed that the activity concentration (AC) values were closest to the true values at low ratios of TBR (<10) and reduced to 50 % of the actual AC values at high TBR (30-35). For all scanners, recovery of true values became closer to 1 with an increasing diameter of the lesion. The MADEIRA phantom showed good agreement with the results obtained from measurements with the NEMA NU-2 2001 phantom but allows for a wider range of possibilities in measuring image quality parameters. (authors)

  15. Customized three-dimensional printed optical phantoms with user defined absorption and scattering

    Science.gov (United States)

    Pannem, Sanjana; Sweer, Jordan; Diep, Phuong; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren M.

    2016-03-01

    The use of reliable tissue-simulating phantoms spans multiple applications in spectroscopic imaging including device calibration and testing of new imaging procedures. Three-dimensional (3D) printing allows for the possibility of optical phantoms with arbitrary geometries and spatially varying optical properties. We recently demonstrated the ability to 3D print tissue-simulating phantoms with customized absorption (μa) and reduced scattering (μs`) by incorporating nigrosin, an absorbing dye, and titanium dioxide (TiO2), a scattering agent, to acrylonitrile butadiene styrene (ABS) during filament extrusion. A physiologically relevant range of μa and μs` was demonstrated with high repeatability. We expand our prior work here by evaluating the effect of two important 3D-printing parameters, percent infill and layer height, on both μa and μs`. 2 cm3 cubes were printed with percent infill ranging from 10% to 100% and layer height ranging from 0.15 to 0.40 mm. The range in μa and μs` was 27.3% and 19.5% respectively for different percent infills at 471 nm. For varying layer height, the range in μa and μs` was 27.8% and 15.4% respectively at 471 nm. These results indicate that percent infill and layer height substantially alter optical properties and should be carefully controlled during phantom fabrication. Through the use of inexpensive hobby-level printers, the fabrication of optical phantoms may advance the complexity and availability of fully customizable phantoms over multiple spatial scales. This technique exhibits a wider range of adaptability than other common methods of fabricating optical phantoms and may lead to improved instrument characterization and calibration.

  16. Spherical phantom for research of radiation situation in outer space. Design-structural special features

    International Nuclear Information System (INIS)

    Kartsev, I.S.; Eremenko, V.G.; Petrov, V.I.; Polenov, B.V.; Yudin, V.N.; Akatov, Yu.A.; Petrov, V.M.; Shurshakov, V.A.

    2005-01-01

    The design-structural features of the updated spherical phantom applied within the frameworks of the space experiment Matreshka-R at the Russian segment of International space station during ISS-8 and ISS-9 expeditions are described. The replacement of 48 polyethylene containers with TLD and STD assemblies by 16 cases installed from external side of the phantom and 4 tissue-equivalent caps of the central disk by 4 cases with detector assemblies is carried out. The updated tissue-equivalent phantom contains the active dosemeter based on 5 MOS detectors. The phantom cover is made from the non-flammable material NT-7. The basic characteristics of the flight specimen of the phantom are presented. The results of its on-Earth testing and real space flights are analyzed [ru

  17. NOTE: On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    Science.gov (United States)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-11-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP

  18. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    International Nuclear Information System (INIS)

    Ghaly, Michael; Du, Yong; Fung, George S K; Tsui, Benjamin M W; Frey, Eric; Links, Jonathan M

    2014-01-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48–184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as

  19. Use of VAP3D software in the construction of pathological anthropomorphic phantoms for dosimetric evaluations

    International Nuclear Information System (INIS)

    Lima, Lindeval Fernandes de; Lima, Fernando R.A.

    2011-01-01

    This paper performs a new type of dosimetric evaluation, where it was used a phantom of pathological voxels (representative phantom of sick person). The software VAP3D (Visualization and Analysis of Phantoms 3D) were used for, from a healthy phantom (phantom representative of healthy person), to introduce three dimensional regions to simulate tumors. It was used the Monte Carlo ESGnrc code to simulate the X ray photon transport, his interaction with matter and evaluation of absorbed dose in organs and tissues from thorax region of the healthy phantom and his pathological version. This is a computer model of typical exposure for programming the treatments in radiodiagnostic

  20. Nonvisualized ('Phantom') renal calyx: Causes and radiological approach to diagnosis

    International Nuclear Information System (INIS)

    Brennan, R.E.; Pollack, H.M.

    1979-01-01

    A calyx which fails completely to opacify on excretory urography (phantom calyx) is often the harbinger of serious underlying renal disease. Causes of a phantom calyx include tuberculosis, tumor, calculus, ischemia, trauma, and congenital anomaly. The pathololgic basis for the radiographic findings in each of these entities is described and an overall approach to diagnosis is set forth. (orig.) [de