WorldWideScience

Sample records for hoc wireless sensor

  1. Secure Geographic Routing in Ad Hoc and Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zahariadis Theodore

    2010-01-01

    Full Text Available Security in sensor networks is one of the most relevant research topics in resource constrained wireless devices and networks. Several attacks can be suffered in ad hoc and wireless sensor networks (WSN, which are highly susceptible to attacks, due to the limited resources of the nodes. In this paper, we propose innovative and lightweight localization techniques that allow for intrusion identification and isolation schemes and provide accurate location information. This information is used by our routing protocol which additionally incorporates a distributed trust model to prevent several routing attacks to the network. We finally evaluate our algorithms for accurate localization and for secure routing which have been implemented and tested in real ad hoc and wireless sensor networks.

  2. Wireless ad hoc and sensor networks management, performance, and applications

    CERN Document Server

    He, Jing

    2013-01-01

    Although wireless sensor networks (WSNs) have been employed across a wide range of applications, there are very few books that emphasize the algorithm description, performance analysis, and applications of network management techniques in WSNs. Filling this need, Wireless Ad Hoc and Sensor Networks: Management, Performance, and Applications summarizes not only traditional and classical network management techniques, but also state-of-the-art techniques in this area. The articles presented are expository, but scholarly in nature, including the appropriate history background, a review of current

  3. Recent development in wireless sensor and ad-hoc networks

    CERN Document Server

    Li, Xiaolong; Yang, Yeon-Mo

    2015-01-01

    Wireless Sensor Network (WSN) consists of numerous physically distributed autonomous devices used for sensing and monitoring the physical and/or environmental conditions. A WSN uses a gateway that provides wireless connectivity to the wired world as well as distributed networks. There are many open problems related to Ad-Hoc networks and its applications. Looking at the expansion of the cellular infrastructure, Ad-Hoc network may be acting as the basis of the 4th generation wireless technology with the new paradigm of ‘anytime, anywhere communications’. To realize this, the real challenge would be the security, authorization and management issues of the large scale WSNs. This book is an edited volume in the broad area of WSNs. The book covers various chapters like Multi-Channel Wireless Sensor Networks, its Coverage, Connectivity as well as Deployment. It covers comparison of various communication protocols and algorithms such as MANNET, ODMRP and ADMR Protocols for Ad hoc Multicasting, Location Based C...

  4. An ad hoc wireless sensor network for tele medicine applications

    International Nuclear Information System (INIS)

    Sheltami, Tarek R.; Mahmoud, Ashraf S.; Abu-Amara, Marwan H.

    2007-01-01

    Recent advances in embedded computing systems have led to the emergence of wireless sensor networks (SNETs), consisting of small, battery-powered motes with limited computation and radio communication capabilities. SNETs permit data gathering and computation to be deeply embedded in the physical environment. Large scale ad hoc sensor networks (ASNET), when deployed among mobile patients, can provide dynamic data query architecture to allow medical specialists to monitor patients at any place via the web or cellular network. In case of an emergency, doctors and/or nurses will be contacted automatically through their handheld personal digital assistants (PDAs) or cellular phones. In specific, the proposed network consists of sensor nodes at the first layer whose responsibility is to measure, collect and communicate, via wired or wireless interface, readings to a microcontroller presenting the second layer of architecture. Deployed microcontrollers process incoming readings and report to a central system via a wireless interface. The implemented network distinguishes between periodic sensor readings and critical or event driven readings where higher priorities is given for the latter. In this paper we implement 3 special cases for tracking and monitoring patients and doctors using SNETs. In addition, the performance of a large scale of our implementation has been tested by means of mathematical analysis. (author)

  5. Energy-Aware Routing Protocol for Ad Hoc Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mann Raminder P

    2005-01-01

    Full Text Available Wireless ad hoc sensor networks differ from wireless ad hoc networks from the following perspectives: low energy, lightweight routing protocols, and adaptive communication patterns. This paper proposes an energy-aware routing protocol (EARP suitable for ad hoc wireless sensor networks and presents an analysis for its energy consumption in various phases of route discovery and maintenance. Based on the energy consumption associated with route request processing, EARP advocates the minimization of route requests by allocating dynamic route expiry times. This paper introduces a unique mechanism for estimation of route expiry time based on the probability of route validity, which is a function of time, number of hops, and mobility parameters. In contrast to AODV, EARP reduces the repeated flooding of route requests by maintaining valid routes for longer durations.

  6. Handbook on theoretical and algorithmic aspects of sensor, ad hoc wireless, and peer-to-peer networks

    CERN Document Server

    Wu, Jie

    2005-01-01

    PrefaceAD HOC WIRELESS NETWORKSA Modular Cross Layer Architecture for Ad Hoc Networks, M. Conti, J. Crowcroft, G. Maselli, and G. TuriRouting Scalability in MANETs, J. Eriksson, S. Krishnamurthy and M. FaloutsosUniformly Distributed Algorithm for Virtual Backbone Routing in Ad Hoc Wireless Networks, D.S. KimMaximum Necessary Hop Count for Packet Routing in MANET, X. Chen and J. ShenEfficient Strategyproof Multicast in Selfish Wireless Networks, X.-Yang LiGeocasting in Ad Hoc and Sensor Networks, I. StojmenovicTopology Control for Ad hoc Networks: Present Solutions and Open Issues, C.-C. Shen a

  7. Maximization of Energy Efficiency in Wireless ad hoc and Sensor Networks With SERENA

    Directory of Open Access Journals (Sweden)

    Saoucene Mahfoudh

    2009-01-01

    Full Text Available In wireless ad hoc and sensor networks, an analysis of the node energy consumption distribution shows that the largest part is due to the time spent in the idle state. This result is at the origin of SERENA, an algorithm to SchEdule RoutEr Nodes Activity. SERENA allows router nodes to sleep, while ensuring end-to-end communication in the wireless network. It is a localized and decentralized algorithm assigning time slots to nodes. Any node stays awake only during its slot and the slots assigned to its neighbors, it sleeps the remaining time. Simulation results show that SERENA enables us to maximize network lifetime while increasing the number of user messages delivered. SERENA is based on a two-hop coloring algorithm, whose complexity in terms of colors and rounds is evaluated. We then quantify the slot reuse. Finally, we show how SERENA improves the node energy consumption distribution and maximizes the energy efficiency of wireless ad hoc and sensor networks. We compare SERENA with classical TDMA and optimized variants such as USAP in wireless ad hoc and sensor networks.

  8. Secure Adaptive Topology Control for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Ouyang

    2010-02-01

    Full Text Available This paper presents a secure decentralized clustering algorithm for wireless ad-hoc sensor networks. The algorithm operates without a centralized controller, operates asynchronously, and does not require that the location of the sensors be known a priori. Based on the cluster-based topology, secure hierarchical communication protocols and dynamic quarantine strategies are introduced to defend against spam attacks, since this type of attacks can exhaust the energy of sensor nodes and will shorten the lifetime of a sensor network drastically. By adjusting the threshold of infected percentage of the cluster coverage, our scheme can dynamically coordinate the proportion of the quarantine region and adaptively achieve the cluster control and the neighborhood control of attacks. Simulation results show that the proposed approach is feasible and cost effective for wireless sensor networks.

  9. SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2014-11-01

    Full Text Available Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  10. SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-11-25

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  11. Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources

    Science.gov (United States)

    Hortos, William S.

    2006-05-01

    A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the

  12. Energy-efficient algorithm for broadcasting in ad hoc wireless sensor networks.

    Science.gov (United States)

    Xiong, Naixue; Huang, Xingbo; Cheng, Hongju; Wan, Zheng

    2013-04-12

    Broadcasting is a common and basic operation used to support various network protocols in wireless networks. To achieve energy-efficient broadcasting is especially important for ad hoc wireless sensor networks because sensors are generally powered by batteries with limited lifetimes. Energy consumption for broadcast operations can be reduced by minimizing the number of relay nodes based on the observation that data transmission processes consume more energy than data reception processes in the sensor nodes, and how to improve the network lifetime is always an interesting issue in sensor network research. The minimum-energy broadcast problem is then equivalent to the problem of finding the minimum Connected Dominating Set (CDS) for a connected graph that is proved NP-complete. In this paper, we introduce an Efficient Minimum CDS algorithm (EMCDS) with help of a proposed ordered sequence list. EMCDS does not concern itself with node energy and broadcast operations might fail if relay nodes are out of energy. Next we have proposed a Minimum Energy-consumption Broadcast Scheme (MEBS) with a modified version of EMCDS, and aimed at providing an efficient scheduling scheme with maximized network lifetime. The simulation results show that the proposed EMCDS algorithm can find smaller CDS compared with related works, and the MEBS can help to increase the network lifetime by efficiently balancing energy among nodes in the networks.

  13. Securing ad hoc wireless sensor networks under Byzantine attacks by implementing non-cryptographic method

    Directory of Open Access Journals (Sweden)

    Shabir Ahmad Sofi

    2017-05-01

    Full Text Available Ad Hoc wireless sensor network (WSN is a collection of nodes that do not need to rely on predefined infrastructure to keep the network connected. The level of security and performance are always somehow related to each other, therefore due to limited resources in WSN, cryptographic methods for securing the network against attacks is not feasible. Byzantine attacks disrupt the communication between nodes in the network without regard to its own resource consumption. This paper discusses the performance of cluster based WSN comparing LEACH with Advanced node based clusters under byzantine attacks. This paper also proposes an algorithm for detection and isolation of the compromised nodes to mitigate the attacks by non-cryptographic means. The throughput increases after using the algorithm for isolation of the malicious nodes, 33% in case of Gray Hole attack and 62% in case of Black Hole attack.

  14. Development of Innovative and Inexpensive Optical Sensors in Wireless Ad-hoc Sensor Networks for Environmental Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    Due to the heterogeneity and dynamic of ecosystems, the observation and monitoring of natural processes necessitate a high temporal and spatial resolution. This also requires inexpensive and adaptive measurements as well as innovative monitoring strategies. To this end, the application of ad-hoc wireless sensor networks holds the potential of creating an adequate monitoring platform. In order to achieve a comprehensive monitoring in space and time with affordability, it is necessary to reduce the sensor costs. Common investigation methods, especially with regard to vegetation processes, are based on optical measurements. In particular, different wavelengths correspond to specific properties of the plants and preserve the possibility to derive information about the ecosystem, e.g. photosynthetic performance or nutrient content. In this context, photosynthetically active radiation (PAR) sensors and hyperspectral sensors are in major use. This work aims the development, evaluation and application of inexpensive but high performance optical sensors for the implementation in wireless sensor networks. Photosynthetically active radiation designates the spectral range from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis. PAR sensors enable the detection of the reflected solar light of the vegetation in the whole PAR wave band. The amount of absorption indicates photosynthetic activity of the plant, with good approximation. Hyperspectral sensors observe specific parts or rather distinct wavelengths of the solar light spectrum and facilitate the determination of the main pigment classes, e.g. Chlorophyll, Carotenoid and Anthocyanin. Due to the specific absorption of certain pigments, a characteristic spectral signature can be seen in the visible part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, also the presence and concentration of different nutrients cause a characteristic spectral

  15. Directional Medium Access Control (MAC Protocols in Wireless Ad Hoc and Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    David Tung Chong Wong

    2015-06-01

    Full Text Available This survey paper presents the state-of-the-art directional medium access control (MAC protocols in wireless ad hoc and sensor networks (WAHSNs. The key benefits of directional antennas over omni-directional antennas are longer communication range, less multipath interference, more spatial reuse, more secure communications, higher throughput and reduced latency. However, directional antennas lead to single-/multi-channel directional hidden/exposed terminals, deafness and neighborhood, head-of-line blocking, and MAC-layer capture which need to be overcome. Addressing these problems and benefits for directional antennas to MAC protocols leads to many classes of directional MAC protocols in WAHSNs. These classes of directional MAC protocols presented in this survey paper include single-channel, multi-channel, cooperative and cognitive directional MACs. Single-channel directional MAC protocols can be classified as contention-based or non-contention-based or hybrid-based, while multi-channel directional MAC protocols commonly use a common control channel for control packets/tones and one or more data channels for directional data transmissions. Cooperative directional MAC protocols improve throughput in WAHSNs via directional multi-rate/single-relay/multiple-relay/two frequency channels/polarization, while cognitive directional MAC protocols leverage on conventional directional MAC protocols with new twists to address dynamic spectrum access. All of these directional MAC protocols are the pillars for the design of future directional MAC protocols in WAHSNs.

  16. Cross-layer design for intrusion detection and data security in wireless ad hoc sensor networks

    Science.gov (United States)

    Hortos, William S.

    2007-09-01

    A wireless ad hoc sensor network is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. The nodes are severely resource-constrained, with limited processing, memory and power capacities and must operate cooperatively to fulfill a common mission in typically unattended modes. In a wireless sensor network (WSN), each sensor at a node can observe locally some underlying physical phenomenon and sends a quantized version of the observation to sink (destination) nodes via wireless links. Since the wireless medium can be easily eavesdropped, links can be compromised by intrusion attacks from nodes that may mount denial-of-service attacks or insert spurious information into routing packets, leading to routing loops, long timeouts, impersonation, and node exhaustion. A cross-layer design based on protocol-layer interactions is proposed for detection and identification of various intrusion attacks on WSN operation. A feature set is formed from selected cross-layer parameters of the WSN protocol to detect and identify security threats due to intrusion attacks. A separate protocol is not constructed from the cross-layer design; instead, security attributes and quantified trust levels at and among nodes established during data exchanges complement customary WSN metrics of energy usage, reliability, route availability, and end-to-end quality-of-service (QoS) provisioning. Statistical pattern recognition algorithms are applied that use observed feature-set patterns observed during network operations, viewed as security audit logs. These algorithms provide the "best" network global performance in the presence of various intrusion attacks. A set of mobile (software) agents distributed at the nodes implement the algorithms, by moving among the layers involved in the network response at each active node

  17. Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hong-Chuan Yang

    2007-01-01

    Full Text Available We study the energy-efficient configuration of multihop paths with automatic repeat request (ARQ mechanism in wireless ad hoc networks. We adopt a cross-layer design approach and take both the quality of each radio hop and the battery capacity of each transmitting node into consideration. Under certain constraints on the maximum tolerable transmission delay and the required packet delivery ratio, we solve optimization problems to jointly schedule the transmitting power of each transmitting node and the retransmission limit over each hop. Numerical results demonstrate that the path configuration methods can either significantly reduce the average energy consumption per packet delivery or considerably extend the average lifetime of the multihop route.

  18. Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Blanes-Vidal, Victoria; Jørgensen, Rasmus Nyholm

    2011-01-01

    are not easily accessible. Therefore, exploring novel sources of energy generation rather than operating electronics only on limited power supplies such as batteries is a major challenge. Monitoring free-ranging animal behavior is an application in which the entities (animals) within the MANET are not readily...... that the amount of energy generated by the vertical neck–head movement of sheep during grazing can be converted to useful electrical power adequate to provide power for operation of wireless sensor nodes on a continuous basis within a MANET-based animal behavior monitoring system.......The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET...

  19. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2009-05-01

    Full Text Available This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  20. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.

    Science.gov (United States)

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  1. Ad hoc mobile wireless networks principles, protocols and applications

    CERN Document Server

    Sarkar, Subir Kumar; Puttamadappa, C

    2007-01-01

    Ad hoc mobile wireless networks have seen increased adaptation in a variety of disciplines because they can be deployed with simple infrastructures and virtually no central administration. In particular, the development of ad hoc wireless and sensor networks provides tremendous opportunities in areas including disaster recovery, defense, health care, and industrial environments. Ad Hoc Mobile Wireless Networks: Principles, Protocols and Applications explains the concepts, mechanisms, design, and performance of these systems. It presents in-depth explanations of the latest wireless technologies

  2. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    OpenAIRE

    Chih-Yu Wen; Ying-Chih Chen

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show t...

  3. FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taegwon Jeong

    2011-05-01

    Full Text Available Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP, the Weighted-based Adaptive Clustering Algorithm (WACA, and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM. The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  4. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.

    Science.gov (United States)

    Lee, Chongdeuk; Jeong, Taegwon

    2011-01-01

    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  5. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  6. Wireless sensor and mobile ad-hoc networks vehicular and space applications

    CERN Document Server

    Al-Fuqaha, Ala

    2015-01-01

    This book describes the practical perspectives in using wireless sensor networks (WSN) to develop real world applications that can be used for space exploration. These applications include sensor interfaces, remote wireless vehicles, space crew health monitoring and instrumentation. The material discusses how applications of WSN originally developed for space travel and exploration are being applied and used in multiple real world applications, allowing for the development of smart systems that have characteristics such as self-healing, self-diagnosis, and emergency healthcare notification. This book also: ·         Discusses how multidisciplinary fields can be implemented in a single application ·         Reviews exhaustively the state-of-the-art research in WSN for space and vehicular applications ·         Covers smart systems that have self-healing, self-diagnosis, and emergency healthcare notification

  7. Information Potential Fields Navigation in Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yong Qi

    2011-05-01

    Full Text Available As wireless sensor networks (WSNs are increasingly being deployed in some important applications, it becomes imperative that we consider application requirements in in-network processes. We intend to use a WSN to aid information querying and navigation within a dynamic and real-time environment. We propose a novel method that relies on the heat diffusion equation to finish the navigation process conveniently and easily. From the perspective of theoretical analysis, our proposed work holds the lower constraint condition. We use multiple scales to reach the goal of accurate navigation. We present a multi-scale gradient descent method to satisfy users’ requirements in WSNs. Formula derivations and simulations show that the method is accurately and efficiently able to solve typical sensor network configuration information navigation problems. Simultaneously, the structure of heat diffusion equation allows more flexibility and adaptability in searching algorithm designs.

  8. Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Nyholm Jørgensen, Rasmus; Blanes-Vidal, Victoria

    2012-01-01

    Animal welfare is an issue of great importance in modern food production systems. Because animal behavior provides reliable information about animal health and welfare, recent research has aimed at designing monitoring systems capable of measuring behavioral parameters and transforming them...... into their corresponding behavioral modes. However, network unreliability and high-energy consumption have limited the applicability of those systems. In this study, a 2.4-GHz ZigBee-based mobile ad hoc wireless sensor network (MANET) that is able to overcome those problems is presented. The designed MANET showed high...... communication reliability, low energy consumption and low packet loss rate (14.8%) due to the deployment of modern communication protocols (e.g. multi-hop communication and handshaking protocol). The measured behavioral parameters were transformed into the corresponding behavioral modes using a multilayer...

  9. Statistical Delay QoS Provisioning for Energy-Efficient Spectrum-Sharing Based Wireless Ad Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-01-01

    Full Text Available In this paper, we develop the statistical delay quality-of-service (QoS provisioning framework for the energy-efficient spectrum-sharing based wireless ad hoc sensor network (WAHSN, which is characterized by the delay-bound violation probability. Based on the established delay QoS provisioning framework, we formulate the nonconvex optimization problem which aims at maximizing the average energy efficiency of the sensor node in the WAHSN while meeting PU’s statistical delay QoS requirement as well as satisfying sensor node’s average transmission rate, average transmitting power, and peak transmitting power constraints. By employing the theories of fractional programming, convex hull, and probabilistic transmission, we convert the original fractional-structured nonconvex problem to the additively structured parametric convex problem and obtain the optimal power allocation strategy under the given parameter via Lagrangian method. Finally, we derive the optimal average energy efficiency and corresponding optimal power allocation scheme by employing the Dinkelbach method. Simulation results show that our derived optimal power allocation strategy can be dynamically adjusted based on PU’s delay QoS requirement as well as the channel conditions. The impact of PU’s delay QoS requirement on sensor node’s energy efficiency is also illustrated.

  10. Reliable Routing Protocols for Dynamic Wireless Ad Hoc and Sensor Networks

    NARCIS (Netherlands)

    Wu Jian, W.J.

    2007-01-01

    The vision of ubiquitous computing requires the development of devices and technologies, which can be pervasive without being intrusive. The basic components of such a smart environment will be small nodes with sensing and wireless communications capabilities, able to organize flexibly into a

  11. DEHAR: a Distributed Energy Harvesting Aware Routing Algorithm for Ad-hoc Multi-hop Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Koefoed; Madsen, Jan; Hansen, Michael Reichhardt

    2010-01-01

    One of the key design goals in Wireless Sensor Networks is long lasting or even continuous operation. Continuous operation is made possible through energy harvesting. Keeping the network operational imposes a demand to prevent network segmentation and power loss in nodes. It is therefore important...... that the best energy-wise route is found for each data transfer from a source node to the sink node. We present a new adaptive and distributed routing algorithm for finding energy optimised routes in a wireless sensor network with energy harvesting. The algorithm finds an energy efficient route from each source...

  12. Sensor and ad-hoc networks theoretical and algorithmic aspects

    CERN Document Server

    Makki, S Kami; Pissinou, Niki; Makki, Shamila; Karimi, Masoumeh; Makki, Kia

    2008-01-01

    This book brings together leading researchers and developers in the field of wireless sensor networks to explain the special problems and challenges of the algorithmic aspects of sensor and ad-hoc networks. The book also fosters communication not only between the different sensor and ad-hoc communities, but also between those communities and the distributed systems and information systems communities. The topics addressed pertain to the sensors and mobile environment.

  13. Energy management in wireless cellular and ad-hoc networks

    CERN Document Server

    Imran, Muhammad; Qaraqe, Khalid; Alouini, Mohamed-Slim; Vasilakos, Athanasios

    2016-01-01

    This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services. .

  14. Ad hoc mobile wireless networks principles, protocols, and applications

    CERN Document Server

    Sarkar, Subir Kumar

    2013-01-01

    The military, the research community, emergency services, and industrial environments all rely on ad hoc mobile wireless networks because of their simple infrastructure and minimal central administration. Now in its second edition, Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications explains the concepts, mechanism, design, and performance of these highly valued systems. Following an overview of wireless network fundamentals, the book explores MAC layer, routing, multicast, and transport layer protocols for ad hoc mobile wireless networks. Next, it examines quality of serv

  15. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  16. Worm epidemics in wireless ad hoc networks

    Energy Technology Data Exchange (ETDEWEB)

    Nekovee, Maziar [BT Research, Polaris 134, Adastral Park, Martlesham, Suffolk IP5 3RE (United Kingdom); Centre for Computational Science, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2007-06-15

    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet.

  17. Worm epidemics in wireless ad hoc networks

    Science.gov (United States)

    Nekovee, Maziar

    2007-06-01

    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet.

  18. Worm epidemics in wireless ad hoc networks

    International Nuclear Information System (INIS)

    Nekovee, Maziar

    2007-01-01

    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet

  19. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    Science.gov (United States)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  20. Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

    Science.gov (United States)

    Chung, Yun Won; Hwang, Ho Young

    2010-01-01

    In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years) but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty. PMID:22219676

  1. Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

    Directory of Open Access Journals (Sweden)

    Yun Won Chung

    2010-06-01

    Full Text Available In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty.

  2. Analysis of Energy Consumption for Ad Hoc Wireless Sensor Networks Using a Bit-Meter-per-Joule Metric

    Science.gov (United States)

    Gao, J. L.

    2002-04-01

    In this article, we present a system-level characterization of the energy consumption for sensor network application scenarios. We compute a power efficiency metric -- average watt-per-meter -- for each radio transmission and extend this local metric to find the global energy consumption. This analysis shows how overall energy consumption varies with transceiver characteristics, node density, data traffic distribution, and base-station location.

  3. Wireless sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  4. Wireless sensor platform

    Science.gov (United States)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  5. Interference in wireless ad hoc networks with smart antennas

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2014-01-01

    In this paper, we show that the use of directional antennas in wireless ad hoc networks can actually increase interference due to limitations of virtual carrier sensing. We derive a simple mathematical expression for interference in both physical

  6. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  7. Node counting in wireless ad-hoc networks

    NARCIS (Netherlands)

    Evers, J.H.M.; Kiss, D.; Kowalczyk, W.; Navilarekallu, T.; Renger, D.R.M.; Sella, L.; Timperio, V.; Viorel, A.; Wijk, van A.C.C.; Yzelman, A.J.; Planqué, B.; Bhulai, S.; Hulshof, J.; Kager, W.; Rot, T.

    2012-01-01

    We study wireless ad-hoc networks consisting of small microprocessors with limited memory, where the wireless communication between the processors can be highly unreliable. For this setting, we propose a number of algorithms to estimate the number of nodes in the network, and the number of direct

  8. Intelligent Wireless Sensor Network

    OpenAIRE

    Saeed, Bakhtiar I.; Mehrdadi, Bruce

    2010-01-01

    In recent years, there has been significant increase in utilisation of embedded-microcontrollers in broad range of applications extending from commercial products to industrial process system monitoring. Furthermore, improvements in speed, size and power consumption of microcontrollers with added wireless capabilities has provided new generation of applications. These include versatile and\\ud low cost solutions in wireless sensor networking applications such as wireless system monitoring and ...

  9. Mobile agents affect worm spreading in wireless ad hoc networks

    International Nuclear Information System (INIS)

    Huang, Zi-Gang; Sun, Jin-Tu; Wang, Ying-Hai; Wang, Sheng-Jun; Xu, Xin-Jian

    2009-01-01

    Considering the dynamic nature of portable computing devices with wireless communication capability, an extended model is introduced for worm spreading in the wireless ad hoc network, with a population of mobile agents in a planar distribution, starting from an initial infected seed. The effect of agents' mobility on worm spreading is investigated via extensive Monte Carlo simulations. The threshold behavior and the dynamics of worm epidemics in the wireless networks are greatly affected by both agents' mobility and spatial and temporal correlations. The medium access control mechanism for the wireless communication promotes the sensitivity of the spreading dynamics to agents' mobility

  10. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  11. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  12. Securing DSR with mobile agents in wireless ad hoc networks

    Directory of Open Access Journals (Sweden)

    Ahmed Abosamra

    2011-03-01

    Full Text Available Ad hoc wireless network consists of a set of wireless nodes communicating with each other without a pre-defined infrastructure. They communicate by forwarding packets which can reach wireless nodes that do not exist in the range of the direct radio transmission. Designing ad hoc network routing protocols is a challenging task because of its decentralized infrastructure which makes securing ad hoc networks more and more challenging. Dynamic Source Routing (DSR protocol is a popular routing protocol designed for use in wireless ad hoc networks. Mobile agent is a promising technology used in diverse fields of network applications. In this paper, we try to implement DSR using mobile agents for securing this type of wireless network. Hybrid encryption technique (symmetric key encryption/public key encryption is used to improve performance; where symmetric keys are used to encrypt routing data to authenticate and authorize node sending data, while, public keys are used for the exchange of symmetric keys between nodes. We found that DSR may be secured using mobile agents with competitive performance.

  13. Challenges of evidence acquisition in wireless ad-hoc networks

    CSIR Research Space (South Africa)

    Mutanga, MB

    2010-05-01

    Full Text Available a big challenge. Thus, the aim of this paper is to explore the challenges of acquiring live evidence in wireless ad-hoc networks. We also give some legal requirements of evidence admissibility as outlined in the Communications and Transactions Act...

  14. Access Point Security Service for wireless ad-hoc communication

    NARCIS (Netherlands)

    Scholten, Johan; Nijdam, M.

    2006-01-01

    This paper describes the design and implementation of a security solution for ad-hoc peer-to-peer communication. The security solution is based on a scenario where two wireless devices require secure communication, but share no security relationship a priori. The necessary requirements for the

  15. Routing Protocol for Mobile Ad-hoc Wireless Networks

    Directory of Open Access Journals (Sweden)

    I. M. B. Nogales

    2007-09-01

    Full Text Available Bluetooth is a cutting-edge technology used for implementing wireless ad hoc networks. In order to provide an overall scheme for mobile ad hoc networks, this paper deals with scatternet topology formation and routing algorithm to form larger ad hoc wireless Networks. Scatternet topology starts by forming a robust network, which is less susceptible to the problems posed by node mobility. Mobile topology relies on the presence of free nodes that create multiple connections with the network and on their subsequently rejoining the network. Our routing protocol is a proactive routing protocol, which is tailor made for the Bluetooth ad hoc network. The connection establishment connects nodes in a structure that simplifies packet routing and scheduling. The design allows nodes to arrive and leave arbitrarily, incrementally building the topology and healing partitions when they occur. We present simulation results that show that the algorithm presents low formation latency and also generates an efficient topology for forwarding packets along ad-hoc wireless networks.

  16. Miniaturized wireless sensor network

    OpenAIRE

    Lecointre , Aubin; Dragomirescu , Daniela; Dubuc , David; Grenier , Katia; Pons , Patrick; Aubert , Hervé; Müller , A.; Berthou , Pascal; Gayraud , Thierry; Plana , Robert

    2006-01-01

    This paper addresses an overview of the wireless sensor networks. It is shown that MEMS/NEMS technologies and SIP concept are well suited for advanced architectures. It is also shown analog architectures have to be compatible with digital signal techniques to develop smart network of microsystem.

  17. Quality-of-service sensitivity to bio-inspired/evolutionary computational methods for intrusion detection in wireless ad hoc multimedia sensor networks

    Science.gov (United States)

    Hortos, William S.

    2012-06-01

    In the author's previous work, a cross-layer protocol approach to wireless sensor network (WSN) intrusion detection an identification is created with multiple bio-inspired/evolutionary computational methods applied to the functions of the protocol layers, a single method to each layer, to improve the intrusion-detection performance of the protocol over that of one method applied to only a single layer's functions. The WSN cross-layer protocol design embeds GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layer, respectively. The construct neglects to assess the net effect of the combined bioinspired methods on the quality-of-service (QoS) performance for "normal" data streams, that is, streams without intrusions. Analytic expressions of throughput, delay, and jitter, coupled with simulation results for WSNs free of intrusion attacks, are the basis for sensitivity analyses of QoS metrics for normal traffic to the bio-inspired methods.

  18. Wireless passive radiation sensor

    Science.gov (United States)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  19. Distributed Service Discovery for Heterogeneous Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.

    Service discovery in heterogeneous Wireless Sensor Networks is a challenging research objective, due to the inherent limitations of sensor nodes and their extensive and dense deployment. The protocols proposed for ad hoc networks are too heavy for sensor environments. This paper presents a

  20. Security For Wireless Sensor Network

    OpenAIRE

    Saurabh Singh,; Dr. Harsh Kumar Verma

    2011-01-01

    Wireless sensor network is highly vulnerable to attacks because it consists of various resourceconstrained devices with their low battery power, less memory, and associated low energy. Sensor nodescommunicate among themselves via wireless links. However, there are still a lot of unresolved issues in wireless sensor networks of which security is one of the hottest research issues. Sensor networks aredeployed in hostile environments. Environmental conditions along with resource-constraints give...

  1. Secure Wireless Sensor Networks: Problems and Solutions

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2003-08-01

    Full Text Available As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that should be solved for achieving the ad hoc security. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service and key management service. We also present some secure methods to achieve security in wireless sensor networks. Finally we present our integrated approach to securing sensor networks.

  2. Interference in wireless ad hoc networks with smart antennas

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2014-08-01

    In this paper, we show that the use of directional antennas in wireless ad hoc networks can actually increase interference due to limitations of virtual carrier sensing. We derive a simple mathematical expression for interference in both physical and virtual carrier sense networks, which reveals counter-intuitively that receivers in large dense networks with directional antennas can experience larger interference than in omnidirectional networks unless the beamwidth is sufficiently small. Validity of mathematical analysis is confirmed using simulations.

  3. MWAHCA: a multimedia wireless ad hoc cluster architecture.

    Science.gov (United States)

    Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra

    2014-01-01

    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  4. MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node’s capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss. The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  5. Wearable wireless photoplethysmography sensors

    Science.gov (United States)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  6. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    . This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  7. Performance Analysis of Routing Protocols in Ad-hoc and Sensor Networking Environments

    Directory of Open Access Journals (Sweden)

    L. Gavrilovska

    2009-06-01

    Full Text Available Ad-hoc and sensor networks are becoming an increasingly popular wireless networking concepts lately. This paper analyzes and compares prominent routing schemes in these networking environments. The knowledge obtained can serve users to better understand short range wireless network solutions thus leading to options for implementation in various scenarios. In addition, it should aid researchers develop protocol improvements reliable for the technologies of interest.

  8. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Directory of Open Access Journals (Sweden)

    Gyanendra Prasad Joshi

    2013-08-01

    Full Text Available A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  9. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  10. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  11. Capacity of Wireless Ad Hoc Networks with Opportunistic Collaborative Communications

    Directory of Open Access Journals (Sweden)

    Simeone O

    2007-01-01

    Full Text Available Optimal multihop routing in ad hoc networks requires the exchange of control messages at the MAC and network layer in order to set up the (centralized optimization problem. Distributed opportunistic space-time collaboration (OST is a valid alternative that avoids this drawback by enabling opportunistic cooperation with the source at the physical layer. In this paper, the performance of OST is investigated. It is shown analytically that opportunistic collaboration outperforms (centralized optimal multihop in case spatial reuse (i.e., the simultaneous transmission of more than one data stream is not allowed by the transmission protocol. Conversely, in case spatial reuse is possible, the relative performance between the two protocols has to be studied case by case in terms of the corresponding capacity regions, given the topology and the physical parameters of network at hand. Simulation results confirm that opportunistic collaborative communication is a promising paradigm for wireless ad hoc networks that deserves further investigation.

  12. Capacity of Wireless Ad Hoc Networks with Opportunistic Collaborative Communications

    Directory of Open Access Journals (Sweden)

    O. Simeone

    2007-03-01

    Full Text Available Optimal multihop routing in ad hoc networks requires the exchange of control messages at the MAC and network layer in order to set up the (centralized optimization problem. Distributed opportunistic space-time collaboration (OST is a valid alternative that avoids this drawback by enabling opportunistic cooperation with the source at the physical layer. In this paper, the performance of OST is investigated. It is shown analytically that opportunistic collaboration outperforms (centralized optimal multihop in case spatial reuse (i.e., the simultaneous transmission of more than one data stream is not allowed by the transmission protocol. Conversely, in case spatial reuse is possible, the relative performance between the two protocols has to be studied case by case in terms of the corresponding capacity regions, given the topology and the physical parameters of network at hand. Simulation results confirm that opportunistic collaborative communication is a promising paradigm for wireless ad hoc networks that deserves further investigation.

  13. Wireless sensor network

    Science.gov (United States)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  14. Increased longevity of wireless Ad hoc network through fuzzy system

    Directory of Open Access Journals (Sweden)

    Fawzia Abdali Larki

    2014-06-01

    Full Text Available The Ad hoc network is one of the multistep-based self-organizing networks, which are dynamically changing and are taken more into account as the ways of connecting the terminals through the development of wireless communication terminals. We are faced with numerous challenges in designing a wireless network such as the dynamic topology, common and limited bandwidth, and the limited energy. The nodes are moving according to the continuous changes in the topology and the source-to-destination paths are completely broken. Therefore, the repeated route discovery enhances the delay and overload of routing. Thus, it is essential to consider the link stability while designing the path in order to choose the routing protocol. Providing the multiple paths may lead to the better performance than a path. The transmission energy control in the wireless Ad hoc networks is the option for the level of transmission energy in order to transmit each node packet in this system. Therefore, transmission energy control affects the wireless medium interface. Because of choosing the appropriate protocol, the routing operation can be improved and the energy consumption can be controlled properly as well as enhancing the durability and longevity of network. The main objective of this study is to enhance the network longevity. The proposed algorithm in this research considers the combination of 2 parameters including the rate of node energy and number of steps in Fuzzy System applied on AOMDV Protocol, which is a Multipath Routing Protocol. The results of simulation also indicate the improved performance of proposed algorithm (AOMDV-F compared to AODV and AOMDV Protocols in NS2 simulator.

  15. Wireless Sensor Network Safety Study

    OpenAIRE

    M.Shankar; Dr.M.Sridar; Dr.M.Rajani

    2012-01-01

    Few security mechanisms in wireless sensor networks (WSNs) have been implemented, and even fewer have been applied in real deployments. The limited resources of each sensor node makes security in WSNs hard, as the tradeoff between security and practicality must be carefully considered. These complex systems include in their design different types of information and communication technology systems, such as wireless (mesh) sensor networks, to carry out control processes in real time. This fact...

  16. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  17. A peer-to-peer file search and download protocol for wireless ad-hoc networks

    NARCIS (Netherlands)

    Sözer, Hasan; Tekkalmaz, M.; Korpeoglu, I.

    Deployment of traditional peer-to-peer file sharing systems on a wireless ad-hoc network introduces several challenges. Information and workload distribution as well as routing are major problems for members of a wireless ad-hoc network, which are only aware of their immediate neighborhood. In this

  18. Wireless sensor network topology control

    OpenAIRE

    Zuk, Olexandr; Romanjuk, Valeriy; Sova, Oleg

    2010-01-01

    Topology control process for the wireless sensor network is considered. In this article the use of rule base for making decision on the search of optimum network topology is offered for the realization of different aims of network management.

  19. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  20. Adaptive Probabilistic Broadcasting over Dense Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Victor Gau

    2010-01-01

    Full Text Available We propose an idle probability-based broadcasting method, iPro, which employs an adaptive probabilistic mechanism to improve performance of data broadcasting over dense wireless ad hoc networks. In multisource one-hop broadcast scenarios, the modeling and simulation results of the proposed iPro are shown to significantly outperform the standard IEEE 802.11 under saturated condition. Moreover, the results also show that without estimating the number of competing nodes and changing the contention window size, the performance of the proposed iPro can still approach the theoretical bound. We further apply iPro to multihop broadcasting scenarios, and the experiment results show that within the same elapsed time after the broadcasting, the proposed iPro has significantly higher Packet-Delivery Ratios (PDR than traditional methods.

  1. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  2. Formal reconstruction of attack scenarios in mobile ad hoc and sensor networks

    Directory of Open Access Journals (Sweden)

    Rekhis Slim

    2011-01-01

    Full Text Available Abstract Several techniques of theoretical digital investigation are presented in the literature but most of them are unsuitable to cope with attacks in wireless networks, especially in Mobile Ad hoc and Sensor Networks (MASNets. In this article, we propose a formal approach for digital investigation of security attacks in wireless networks. We provide a model for describing attack scenarios in a wireless environment, and system and network evidence generated consequently. The use of formal approaches is motivated by the need to avoid ad hoc generation of results that impedes the accuracy of analysis and integrity of investigation. We develop an inference system that integrates the two types of evidence, handles incompleteness and duplication of information in them, and allows possible and provable actions and attack scenarios to be generated. To illustrate the proposal, we consider a case study dealing with the investigation of a remote buffer overflow attack.

  3. Wireless sensor network adaptive cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. [SynapSense Corp., Folsom, CA (United States)

    2009-07-01

    Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.

  4. Fuzzy-Based Sensor Fusion for Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Jalil Piran

    2015-01-01

    Full Text Available In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a unified interpretation. The best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and definitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET. In the proposed technique, we considered four input sensor readings (antecedents and one output (consequent. The employed mobile nodes in CR-VASNET are supposed to be equipped with diverse sensors, which cater to our antecedent variables, for example, The Jerk, Collision Intensity, and Temperature and Inclination Degree. Crash_Severity is considered as the consequent variable. The processing and fusion of the diverse sensory signals are carried out by fuzzy logic scenario. Accuracy and reliability of the proposed protocol, demonstrated by the simulation results, introduce it as an applicable system to be employed to reduce the causalities rate of the vehicles’ crashes.

  5. A Framework for a Distributed and Adaptive Query Processing Engine for Wireless Sensor Networks

    NARCIS (Netherlands)

    Chatterjea, Supriyo; Honda, S; Iwaoka, H; van Hoesel, L.F.W.; Havinga, Paul J.M.

    Wireless sensor networks (WSNs) are formed of tiny, highly energy-constrained sensor nodes that are equipped with wireless transceivers and can be used primarily in environmental monitoring applications. The nodes communicate with one another by autonomously creating ad-hoc multihop networks which

  6. Trust framework for a secured routing in wireless sensor network

    Directory of Open Access Journals (Sweden)

    Ouassila Hoceini

    2015-11-01

    Full Text Available Traditional techniques to eliminate insider attacks developed for wired and wireless ad hoc networks are not well suited for wireless sensors networks due to their resource constraints nature. In order to protect WSNs against malicious and selfish behavior, some trust-based systems have recently been modeled. The resource efficiency and dependability of a trust system are the most fundamental requirements for any wireless sensor network (WSN. In this paper, we propose a Trust Framework for a Secured Routing in Wireless Sensor Network (TSR scheme, which works with clustered networks. This approach can effectively reduce the cost of trust evaluation and guarantee a better selection of safest paths that lead to the base station. Theoretical as well as simulation results show that our scheme requires less communication overheads and consumes less energy as compared to the current typical trust systems for WSNs. Moreover, it detects selfish and defective nodes and prevents us of insider attacks

  7. Intelligent routing protocol for ad hoc wireless network

    Science.gov (United States)

    Peng, Chaorong; Chen, Chang Wen

    2006-05-01

    A novel routing scheme for mobile ad hoc networks (MANETs), which combines hybrid and multi-inter-routing path properties with a distributed topology discovery route mechanism using control agents is proposed in this paper. In recent years, a variety of hybrid routing protocols for Mobile Ad hoc wireless networks (MANETs) have been developed. Which is proactively maintains routing information for a local neighborhood, while reactively acquiring routes to destinations beyond the global. The hybrid protocol reduces routing discovery latency and the end-to-end delay by providing high connectivity without requiring much of the scarce network capacity. On the other side the hybrid routing protocols in MANETs likes Zone Routing Protocol still need route "re-discover" time when a route between zones link break. Sine the topology update information needs to be broadcast routing request on local zone. Due to this delay, the routing protocol may not be applicable for real-time data and multimedia communication. We utilize the advantages of a clustering organization and multi-routing path in routing protocol to achieve several goals at the same time. Firstly, IRP efficiently saves network bandwidth and reduces route reconstruction time when a routing path fails. The IRP protocol does not require global periodic routing advertisements, local control agents will automatically monitor and repair broke links. Secondly, it efficiently reduces congestion and traffic "bottlenecks" for ClusterHeads in clustering network. Thirdly, it reduces significant overheads associated with maintaining clusters. Fourthly, it improves clusters stability due to dynamic topology changing frequently. In this paper, we present the Intelligent Routing Protocol. First, we discuss the problem of routing in ad hoc networks and the motivation of IRP. We describe the hierarchical architecture of IRP. We describe the routing process and illustrate it with an example. Further, we describe the control manage

  8. Sinkhole Avoidance Routing in Wireless Sensor Networks

    Science.gov (United States)

    2011-05-09

    COVERED (From- To) 09-05-2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Sinkhole Avoidance Routing in Wireless Sensor Networks 5b . GRANT NUMBER . 5c...reliability of wireless sensor networks. 15. SUBJECT TERMS wireless sensor networks, sinkhole attack, routing protocol 16. SECURITY CLASSIFICATION...Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std . Z39.18 1 Sinkhole Avoidance Routing in Wireless Sensor Networks MIDN 1/C

  9. Simultaneity Analysis In A Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Malović Miodrag

    2015-06-01

    Full Text Available An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.

  10. The effect of DAD timeout period on address autoconfiguration in wireless ad-hoc networks

    CSIR Research Space (South Africa)

    Mutanga, MB

    2011-09-01

    Full Text Available Lack of manual management mechanisms in wireless ad-hoc networks means that automatic configuration of IP addresses and other related network parameters are very crucial. Many IP address autoconfiguration mechanisms have been proposed in literature...

  11. SURVEI TEKNIK CLUSTERING ROUTING BERDASARKAN MOBILITAS PADA WIRELESS AD-HOC NETWORK

    Directory of Open Access Journals (Sweden)

    I Nyoman Trisna Wirawan

    2016-01-01

    Full Text Available Wireless ad-hoc merupakan sebuah skema jaringan yang didesain supaya mampu beroperasi tanpa membutuhkan infrastruktur tetap serta bersifat otonom. Teknik flooding pada proses path discovery dalam kasus wireless ad-hoc network dapat menimbulkan masalah beban jaringan yang berlebihan. Oleh karena itu, sebuah skema clustering diusulkan untuk mengurangi adanya flooding paket yang berlebihan dengan membagi node-node dalam jaringan menjadi beberapa bagian berdasarkan parameter tertentu. Teknik ini efektifuntuk mengurangi paket yang harus dilewatkan dalam jaringan. Namun masalah muncul ketika sebuah jaringan wireless ad-hoc harus membentuk sebuah cluster dengan mempertimbangkan beberapa parameter khusus. Parameter tersebut harus disesuaikan dengan kasus yang dihadapi. Pada tulisan ini akan dibahas secara khusus mengenai penerapan skema clustering dalam lingkungan wireless ad-hoc network, baik pada MANETdan penyesuaian skema clustering yang harus dilakukan pada VANET berdasarkan mobilitasnya.

  12. Energy-Aware Broadcasting and Multicasting in Wireless Ad Hoc Networks: A Cross-Layering Approach

    National Research Council Canada - National Science Library

    Wieselthier, Jeffrey E; Nguyen, Gam D; Ephremides, Anthony

    2004-01-01

    ...) problems, especially when energy-aware operation is required. To address the specific problem of energy-aware tree construction in wireless ad hoc networks, we have developed the Broadcast Incremental Power (BIP...

  13. A flow level model for wireless multihop ad hoc network throughput

    NARCIS (Netherlands)

    Coenen, Tom Johannes Maria; van den Berg, Hans Leo; Boucherie, Richardus J.

    2005-01-01

    A flow level model for multihop wireless ad hoc networks is presented in this paper. Using a flow level view, we show the main properties and modeling challenges for ad hoc networks. Considering different scenarios, a multihop WLAN and a serial network with a TCP-like flow control protocol, we

  14. Collective intelligent wireless sensor networks

    NARCIS (Netherlands)

    Mihaylov, M.; Nowe, A.; Tuyls, K.P.; Nijholt, A.; Pantic, M.

    2008-01-01

    In this paper we apply the COllective INtelligence (COIN) framework ofWolpert et al. toWireless Sensor Networks (WSNs) with the aim to increase the autonomous lifetime of the network in a decentralized manner. COIN describes how selfish agents can learn to optimize their own performance, so that the

  15. 7th China Conference on Wireless Sensor Networks

    CERN Document Server

    Cui, Li; Guo, Zhongwen

    2014-01-01

    Advanced Technologies in Ad Hoc and Sensor Networks collects selected papers from the 7th China Conference on Wireless Sensor Networks (CWSN2013) held in Qingdao, October 17-19, 2013. The book features state-of-the-art studies on Sensor Networks in China with the theme of “Advances in wireless sensor networks of China”. The selected works can help promote development of sensor network technology towards interconnectivity, resource sharing, flexibility and high efficiency. Researchers and engineers in the field of sensor networks can benefit from the book. Xue Wang is a professor at Tsinghua University; Li Cui is a professor at Institute of Computing Technology, Chinese Academy of Sciences; Zhongwen Guo is a professor at Ocean University of China.

  16. Security Threats on Wireless Sensor Network Protocols

    OpenAIRE

    H. Gorine; M. Ramadan Elmezughi

    2016-01-01

    In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issue...

  17. Networking wireless sensors

    National Research Council Canada - National Science Library

    Krishnamachari, Bhaskar

    2005-01-01

    ... by networking techniques across multiple layers. The topics covered include network deployment, localization, time synchronization, wireless radio characteristics, medium-access, topology control, routing, data-centric techniques, and transport protocols. Ideal for researchers and designers seeking to create new algorithms and protocols and enginee...

  18. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  19. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  20. Ad hoc Sensor Networks to Support Maritime Interdiction Operations

    OpenAIRE

    Osmundson, John; Bordetsky, Alex

    2014-01-01

    Networking sensors, decision centers, and boarding parties supports success in Maritime Interdiction Operations. Led by a team from Naval Post-graduate School (NPS), experiments were conducted in 2012 to test the use of ad-hoc, self-forming communication networks to link sensors, people, and decision centers. The experiments involved international participants and successfully shared valuable biometric and radiological sensor data between boarding parties and decis...

  1. Integration of RFID and Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.

    2007-01-01

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  2. HARDWARE IMPLEMENTATION OF SECURE AODV FOR WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    S. Sharmila

    2010-12-01

    Full Text Available Wireless Sensor Networks are extremely vulnerable to any kind of routing attacks due to several factors such as wireless transmission and resource-constrained nodes. In this respect, securing the packets is of great importance when designing the infrastructure and protocols of sensor networks. This paper describes the hardware architecture of secure routing for wireless sensor networks. The routing path is selected using Ad-hoc on demand distance vector routing protocol (AODV. The data packets are converted into digest using hash functions. The functionality of the proposed method is modeled using Verilog HDL in MODELSIM simulator and the performance is compared with various target devices. The results show that the data packets are secured and defend against the routing attacks with minimum energy consumption.

  3. Game Theory in Wireless Ad-Hoc Opportunistic Radios

    OpenAIRE

    Mumtaz, Shahid; Gameiro, Atilio

    2010-01-01

    Emerging research in game theory based power control applied to ad hoc opportunist networks shows much promise to help understand the complex interactions between OR nodes in this highly dynamic and distributed environment. Also, the employment of game theory in modeling dynamic situations for opportunist ad hoc networks where OR nodes have incomplete information has led to the application of largely unexplored games such as games of imperfect monitoring. Ad hoc security using game theory is ...

  4. [Development of Bluetooth wireless sensors].

    Science.gov (United States)

    Moor, C; Schwaibold, M; Roth, H; Schöchlin, J; Bolz, A

    2002-01-01

    Wireless communication could help to overcome current obstacles in medical devices and could enable medical services to offer completely new scenarios in health care. The Bluetooth technology which is the upcoming global market leader in wireless communication turned out to be perfectly suited not only for consumer market products but also in the medical environment [1]. It offers a low power, low cost connection in the medium range of 1-100 m with a bandwidth of currently 723.2 kbaud. This paper describes the development of a wireless ECG device and a Pulse Oximeter. Equipped with a Bluetooth port, the measurement devices are enabled to transmit data between the sensor and a Bluetooth-monitor. Therefore, CSR's Bluetooth protocol embedded two-processor and embedded single-processor architecture has been used.

  5. Traffic Profiling in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Kirykos, Georgios

    2006-01-01

    .... Wireless sensor networks pose unique challenges and limitations to the traditional schemes, which are used in the other wireless networks for security protection, and are due mainly to the increased...

  6. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong

    2015-04-30

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  7. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2015-01-01

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  8. Dynamic wireless sensor networks

    CERN Document Server

    Oteafy, Sharief M A

    2014-01-01

    In this title, the authors leap into a novel paradigm of scalability and cost-effectiveness, on the basis of resource reuse. In a world with much abundance of wirelessly accessible devices, WSN deployments should capitalize on the resources already available in the region of deployment, and only augment it with the components required to meet new application requirements. However, if the required resources already exist in that region, WSN deployment converges to an assignment and scheduling scheme to accommodate for the new application given the existing resources. Such resources are polled

  9. Achieving sink node anonymity in tactical wireless sensor networks using a reactive routing protocol

    Science.gov (United States)

    2017-06-01

    node anonymity, base station anonymity, Wireless Sensor Networks (WSN), Mobile Ad hoc Network (MANET), Lightweight Ad hoc On-Demand – Next Generation ... Generation (LOADng) reactive-routing protocol to achieve anonymity. This modified protocol prevents an attacker from identifying the sink node without...within the constraints of WSN communication protocols, specifically IEEE 802.15.4. We use and modify the Lightweight Ad hoc On-Demand – Next Generation

  10. Wireless radiation sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  11. The MAGCLOUD wireless sensor network

    OpenAIRE

    Cuartero Moya, Narciso; Quintana Alcaraz, Sergio

    2011-01-01

    Initially, the aim of this project consisted in manufacturing some nodes for a wireless sensor network by hand. If this document concludes that they can be properly produced in the EETAC lab, the cost of a future large deployment using raw components would be much lower than in the case of acquiring the genuine factory assembled hardware. Also, the future students involved in the process could learn many useful advanced techniques along the way. The project ended sowing a future WSN con...

  12. Quality of Service Metrics in Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Snigdh, Itu; Gupta, Nisha

    2016-03-01

    Wireless ad hoc network is characterized by autonomous nodes communicating with each other by forming a multi hop radio network and maintaining connectivity in a decentralized manner. This paper presents a systematic approach to the interdependencies and the analogy of the various factors that affect and constrain the wireless sensor network. This article elaborates the quality of service parameters in terms of methods of deployment, coverage and connectivity which affect the lifetime of the network that have been addressed, till date by the different literatures. The analogy of the indispensable rudiments was discussed that are important factors to determine the varied quality of service achieved, yet have not been duly focused upon.

  13. Consistent sensor, relay, and link selection in wireless sensor networks

    NARCIS (Netherlands)

    Arroyo Valles, M.D.R.; Simonetto, A.; Leus, G.J.T.

    2017-01-01

    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need

  14. Wireless Sensor Needs Defined by SBIR Topics

    Science.gov (United States)

    Studor, George F.

    2010-01-01

    This slide presentation reviews the needs for wireless sensor technology from various U.S. government agencies as exhibited by an analysis of Small Business Innovation Research (SBIR) solicitations. It would appear that a multi-agency group looking at overlapping wireless sensor needs and technology projects is desired. Included in this presentation is a review of the NASA SBIR process, and an examination of some of the SBIR projects from NASA, and other agencies that involve wireless sensor development

  15. Wireless sensor communications and internet connectivity for sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, M. [Crossbow Technology, Inc., San Jose, CA (United States)

    2001-07-01

    A wireless sensor network architecture is an integrated hardware/software solution that has the potential to change the way sensors are used in a virtually unlimited range of industries and applications. By leveraging Bluetooth wireless technology for low-cost, short-range radio links, wireless sensor networks such as CrossNet{sup TM} enable users to create wireless sensor networks. These wireless networks can link dozens or hundreds of sensors of disparate types and brands with data acquisition/analysis systems, such as handheld devices, internet-enabled laptop or desktop PCs. The overwhelming majority of sensor applications are hard-wired at present, and since wiring is often the most time-consuming, tedious, trouble-prone and expensive aspect of sensor applications, users in many fields will find compelling reasons to adopt the wireless sensor network solution. (orig.)

  16. Wireless Sensor Networks Approach

    Science.gov (United States)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  17. Adaptive Naive Bayes classification for wireless sensor networks

    NARCIS (Netherlands)

    Zwartjes, G.J.

    2017-01-01

    Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed

  18. Passive Wireless SAW Humidity Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the preliminary development of passive wireless surface acoustic wave (SAW) based humidity sensors for NASA application to distributed...

  19. DESAIN ALGORITMA DAN SIMULASI ROUTING UNTUK GATEWAY AD HOC WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    Nixson Meok

    2009-12-01

    Full Text Available   Routing protocol to the wireless ad hoc networks is very needed in the communication process between some terminals, to send the data packet through one or several node(s to the destination address where the network typology is always changing. Many previous works that discussed about routing ad hoc both for manet (mobile ad hoc networks and wireless networks, but the emphasis have more focus on comparing the performance of several routing ad hoc. While in this work, there is a bulding of routing algorithm model to gateway in land to the nodes that analogized as a boat that move on the sea. With the assumption that the communication inter terminals to radio band of Very High Frequency, thus algorithm that built in the simulation based on the range gap of the HF frequency. The result of this simulation will be developed as the platform to implement the service development of multiuser communication

  20. Multicasting in Wireless Communications (Ad-Hoc Networks): Comparison against a Tree-Based Approach

    Science.gov (United States)

    Rizos, G. E.; Vasiliadis, D. C.

    2007-12-01

    We examine on-demand multicasting in ad hoc networks. The Core Assisted Mesh Protocol (CAMP) is a well-known protocol for multicast routing in ad-hoc networks, generalizing the notion of core-based trees employed for internet multicasting into multicast meshes that have much richer connectivity than trees. On the other hand, wireless tree-based multicast routing protocols use much simpler structures for determining route paths, using only parent-child relationships. In this work, we compare the performance of the CAMP protocol against the performance of wireless tree-based multicast routing protocols, in terms of two important factors, namely packet delay and ratio of dropped packets.

  1. Wireless Integrated Network Sensors Next Generation

    National Research Council Canada - National Science Library

    Merrill, William

    2004-01-01

    ..., autonomous networking, and distributed operations for wireless networked sensor systems. Multiple types of sensor systems were developed and provided including capabilities for acoustic, seismic, passive infrared detection, and visual imaging...

  2. Low-Power Wireless Sensor Networks Protocols, Services and Applications

    CERN Document Server

    Suhonen, Jukka; Kaseva, Ville; Hämäläinen, Timo D; Hännikäinen, Marko

    2012-01-01

    Wireless sensor network (WSN) is an ad-hoc network technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless networking. The applications for sensor networks range from home and industrial environments to military uses. Unlike the traditional computer networks, a WSN is application-oriented and deployed for a specific task. WSNs are data centric, which means that messages are not send to individual nodes but to geographical locations or regions based on the data content. A WSN node is typically battery powered and characterized by extremely small size and low cost. As a result, the processing power, memory, and energy resources of an individual sensor node are limited. However, the feasibility of a WSN lies on the collaboration between the nodes. A reference WSN node comprises a Micro-Controller Unit (MCU) having few Million Instructions Per Second (MIPS) processing speed, tens of kilobytes program memory, few kilobytes data m...

  3. Capacity, delay and mobility in wireless ad-hoc networks

    NARCIS (Netherlands)

    Bansal, N.; Liu, Z.

    2003-01-01

    Network throughput and packet delay are two important parameters in the design and the evaluation of routing protocols for ad-hoc networks. While mobility has been shown to increase the capacity of a network, it is not clear whether the delay can be kept low without trading off the throughput. We

  4. A Performance Evaluation Model for Mobile Ad Hoc Networks and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Heng LUO

    2014-03-01

    Full Text Available Potential applications in areas such as military sites and disaster relief fields that are characterized by absence of prefixed infrastructure justify the development of mobile ad hoc networks (MANETs and wireless sensor networks (WSNs. However, unfavorable wireless links and dynamic topology are still challenging, leading to the proposal of a collection of routing protocols for MANETs and WSNs. Nevertheless the performance of algorithms may vary with deployment scenario due to the application dependent philosophy behind algorithms. In this paper, the performance evaluation problem for MANETs and WSNs is investigated and a novel performance ranking model, termed AHP-SAW, is proposed. For simplicity but without loss of generality, the performance of two routing protocols DSDV and DSR are studies based on which ranking results are provided. Extensive simulations show that an overall 37.2 %, at most, gain may be achieved based on the AHP-SAW model.

  5. Performance analysis of differentiated resource-sharing in a wireless ad-hoc network

    NARCIS (Netherlands)

    Roijers, F.; van den Berg, H.; Mandjes, M.

    2010-01-01

    In this paper we model and analyze a relay node in a wireless ad-hoc network; the capacity available at this node is used to both transmit traffic from the source nodes (towards the relay node), and to serve traffic at the relay node (so that it can be forwarded to successor nodes). Clearly, a

  6. On the Geometrical Characteristics of Three-Dimensional Wireless Ad Hoc Networks and Their Applications

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available In a wireless ad hoc network, messages are transmitted, received, and forwarded in a finite geometrical region and the transmission of messages is highly dependent on the locations of the nodes. Therefore the study of geometrical relationship between nodes in wireless ad hoc networks is of fundamental importance in the network architecture design and performance evaluation. However, most previous works concentrated on the networks deployed in the two-dimensional region or in the infinite three-dimensional space, while in many cases wireless ad hoc networks are deployed in the finite three-dimensional space. In this paper, we analyze the geometrical characteristics of the three-dimensional wireless ad hoc network in a finite space in the framework of random graph and deduce an expression to calculate the distance probability distribution between network nodes that are independently and uniformly distributed in a finite cuboid space. Based on the theoretical result, we present some meaningful results on the finite three-dimensional network performance, including the node degree and the max-flow capacity. Furthermore, we investigate some approximation properties of the distance probability distribution function derived in the paper.

  7. Adjusting Sensing Range to Maximize Throughput on Ad-Hoc Multi-Hop Wireless Networks

    National Research Council Canada - National Science Library

    Roberts, Christopher

    2003-01-01

    .... Such a network is referred to as a multi-hop ad-hoc network, or simply a multi-hop network. Most multi-hop network protocols use some form of carrier sensing to determine if the wireless channel is in use...

  8. Adaptive Demand-Driven Multicast Routing in Multi-Hop Wireless Ad Hoc Networks

    National Research Council Canada - National Science Library

    Jetcheva, Jorjeta G

    2004-01-01

    ...) nodes that wish to communicate. Each node in the ad hoc network acts as a router and forwards packets on behalf of other nodes, allowing nodes that are not within wireless range of each other to communicate over multi-hop paths...

  9. System optimization for peer-to-peer multi hop video broadcasting in wireless ad hoc networks

    NARCIS (Netherlands)

    Dedeoglu, V.; Atici, C.; Salman, F.S.; Sunay, M.O.

    2008-01-01

    We consider peer-to-peer video broadcasting using cooperation among peers in an ad hoc wireless network. As opposed to the traditional single hop broadcasting, multiple hops cause an increase in broadcast video quality while creating interference and increasing transmission delay. We develop

  10. Address autoconfiguration in wireless ad hoc networks : Protocols and techniques

    NARCIS (Netherlands)

    Cempaka Wangi, N.I.; Prasad, R.V.; Jacobsson, M.; Niemegeers, I.

    2008-01-01

    With the advent of smaller devices having higher computational capacity and wireless communication capabilities, the world is becoming completely networked. Although, the mobile nature of these devices provides ubiquitous services, it also poses many challenges. In this article, we look in depth at

  11. Adaptive Probabilistic Routing in Wireless Ad Hoc Networks

    OpenAIRE

    Hasan, Affaf; Liaqat, Ismail

    2013-01-01

    The goal of this thesis work is to analyze how design elements and wireless attributes affect opportunistic routing, and in this context develop a new protocol. The algorithm developed aims to improve opportunistic elements in comparison to a well-known opportunistic protocol Simple Opportunistic Adaptive Routing (SOAR).

  12. Computing Nash Equilibrium in Wireless Ad Hoc Networks

    DEFF Research Database (Denmark)

    Bulychev, Peter E.; David, Alexandre; Larsen, Kim G.

    2012-01-01

    This paper studies the problem of computing Nash equilibrium in wireless networks modeled by Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe complex features such as timed energy constraints. Our contribution is a method for solving this problem...

  13. Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    OpenAIRE

    Li, Kai; Ni, Wei; Duan, Lingjie; Abolhasan, Mehran; Niu, Jianwei

    2017-01-01

    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need...

  14. Reliability of Wireless Sensor Networks

    Science.gov (United States)

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo

    2014-01-01

    Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553

  15. ENERGY EFFICIENT ROUTING PROTOCOLS FOR WIRELESS AD HOC NETWORKS – A SURVEY

    Directory of Open Access Journals (Sweden)

    K. Sankar

    2012-06-01

    Full Text Available Reducing energy consumption, primarily with the goal of extending the lifetime of battery-powered devices, has emerged as a fundamental challenge in wireless communication. The performance of the medium access control (MAC scheme not only has a fairly significant end-result on the behaviour of the routing approach employed, but also on the energy consumption of the wireless network interface card (NIC. We investigate the inadequacies of the MAC schemes designed for ad hoc wireless networks in the context of power awareness herein. The topology changes due to uncontrollable factors such as node mobility, weather, interference, noise, as well as on controllable parameters such as transmission power and antenna direction results in significant amount of energy loss. Controlling rapid topology changes by minimizing the maximum transmission power used in ad hoc wireless networks, while still maintaining networks connectivity can prolong battery life and hence network lifetime considerably. In addition, we systematically explore the potential energy consumption pitfalls of non–power-based and power based routing schemes. We suggest a thorough energy-based performance survey of energy aware routing protocols for wireless mobile ad-hoc networks. We also present the statistical performance metrics measured by our simulations.

  16. The art of wireless sensor networks

    CERN Document Server

    2014-01-01

    During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry.   “The Art of Wireless Sensor Networks: Volume 1: Fundamentals” focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks. All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and ...

  17. TCPL: A Defense against wormhole attacks in wireless sensor networks

    International Nuclear Information System (INIS)

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-01-01

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  18. Wireless Sensor Network –A Survey

    OpenAIRE

    Nirvika Chouhan; P.D.Vyavahare; Rekha Jain

    2013-01-01

    Wireless sensor networks are the networks consisting of large number of small and tiny sensor nodes. The nodes are supplied with limited power, memory and other resources and perform in-network processing. In this paper, various issues are discussed that actually put the limitations in the well working and the life time of the network. In Wireless sensor network, nodes should consume less power, memoryand so data aggregation should be performed. Security is another aspect which should be pres...

  19. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  20. Traffic Agents for Improving QoS in Mixed Infrastructure and Ad Hoc Modes Wireless LAN

    Directory of Open Access Journals (Sweden)

    Yuan Hai-Feng

    2006-01-01

    Full Text Available As an important complement to infrastructured wireless networks, mobile ad hoc networks (MANET are more flexible in providing wireless access services, but more difficult in meeting different quality of service (QoS requirements for mobile customers. Both infrastructure and ad hoc network structures are supported in wireless local area networks (WLAN, which can offer high data-rate wireless multimedia services to the mobile stations (MSs in a limited geographical area. For those out-of-coverage MSs, how to effectively connect them to the access point (AP and provide QoS support is a challenging issue. By mixing the infrastructure and the ad hoc modes in WLAN, we propose in this paper a new coverage improvement scheme that can identify suitable idle MSs in good service zones as traffic agents (TAs to relay traffic from those out-of-coverage MSs to the AP. The service coverage area of WLAN is then expanded. The QoS requirements (e.g., bandwidth of those MSs are considered in the selection process of corresponding TAs. Mathematical analysis, verified by computer simulations, shows that the proposed TA scheme can effectively reduce blocking probability when traffic load is light.

  1. Ad Hoc Wireless Networking and Shared Computation for Autonomous Multirobot Systems

    OpenAIRE

    Bevilacqua, Riccardo; Hall, Jason S.; Horning, James; Romano, Marcello

    2009-01-01

    The article of record as published may be located at http://dx.doi.org/10.2514/1.40734 A wireless ad hoc network is introduced that enables inter-robot communication and shared computation among multiple robots with PC/104-based single board computers running the real-time application interface patched Linux operating system. Through the use of IEEE 802.11 ad hoc technology and User Datagram Protocol, each robot is able to exchange data without the need of a centralized router ...

  2. Wireless sensors remotely powered by RF energy

    NARCIS (Netherlands)

    Visser, Hubregt J.; Vullers, Ruud J.M.

    2012-01-01

    Wireless, radiated far-field energy is being employed for charging a battery. This battery, while being recharged, is used to power a commercially of the shelf, low power, wireless sensor node. Propagation conditions in common office and house configurations are investigated experimentally. These

  3. Wireless Sensor Networks TestBed: ASNTbed

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-05-01

    Full Text Available Wireless sensor networks (WSNs) have been used in different types of applications and deployed within various environments. Simulation tools are essential for studying WSNs, especially for exploring large-scale networks. However, WSN testbeds...

  4. Predictive power control in wireless sensor networks

    NARCIS (Netherlands)

    Chincoli, M.; Syed, Aly; Mocanu, D.C.; Liotta, A.

    2016-01-01

    Communications in Wireless Sensor Networks (WSNs) are affected by dynamic environments, variable signal fluctuations and interference. Thus, prompt actions are necessary to achieve dependable communications and meet quality of service requirements. To this end, the reactive algorithms used in

  5. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  6. Availability Issues in Wireless Visual Sensor Networks

    Science.gov (United States)

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  7. Graphical user interface for wireless sensor networks simulator

    Science.gov (United States)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  8. Wireless sensor network and monitoring for environment

    OpenAIRE

    Han, Liang

    2011-01-01

    In recent years, wireless sensor network technology is developing at a surprisingly high speed. More and more fields have started to use the wireless sensor network technology and find the advantages of WSN, such as military applications, environmental observing and forecasting system, medical care, smart home, structure monitoring. The world Environmental Summit in Copenhagen on 2010 has just concluded that environment has become the world’s main concern. But regrettably the summit did no...

  9. Probabilistic Bandwidth Assignment in Wireless Sensor Networks

    OpenAIRE

    Khan , Dawood; Nefzi , Bilel; Santinelli , Luca; Song , Ye-Qiong

    2012-01-01

    International audience; With this paper we offer an insight in designing and analyzing wireless sensor networks in a versatile manner. Our framework applies probabilistic and component-based design principles for the wireless sensor network modeling and consequently analysis; while maintaining flexibility and accuracy. In particular, we address the problem of allocating and reconfiguring the available bandwidth. The framework has been successfully implemented in IEEE 802.15.4 using an Admissi...

  10. Cross-layer model design in wireless ad hoc networks for the Internet of Things.

    Directory of Open Access Journals (Sweden)

    Xin Yang

    Full Text Available Wireless ad hoc networks can experience extreme fluctuations in transmission traffic in the Internet of Things, which is widely used today. Currently, the most crucial issues requiring attention for wireless ad hoc networks are making the best use of low traffic periods, reducing congestion during high traffic periods, and improving transmission performance. To solve these problems, the present paper proposes a novel cross-layer transmission model based on decentralized coded caching in the physical layer and a content division multiplexing scheme in the media access control layer. Simulation results demonstrate that the proposed model effectively addresses these issues by substantially increasing the throughput and successful transmission rate compared to existing protocols without a negative influence on delay, particularly for large scale networks under conditions of highly contrasting high and low traffic periods.

  11. Cross-layer model design in wireless ad hoc networks for the Internet of Things.

    Science.gov (United States)

    Yang, Xin; Wang, Ling; Xie, Jian; Zhang, Zhaolin

    2018-01-01

    Wireless ad hoc networks can experience extreme fluctuations in transmission traffic in the Internet of Things, which is widely used today. Currently, the most crucial issues requiring attention for wireless ad hoc networks are making the best use of low traffic periods, reducing congestion during high traffic periods, and improving transmission performance. To solve these problems, the present paper proposes a novel cross-layer transmission model based on decentralized coded caching in the physical layer and a content division multiplexing scheme in the media access control layer. Simulation results demonstrate that the proposed model effectively addresses these issues by substantially increasing the throughput and successful transmission rate compared to existing protocols without a negative influence on delay, particularly for large scale networks under conditions of highly contrasting high and low traffic periods.

  12. Wireless sensor networks in chemical industry

    International Nuclear Information System (INIS)

    Minhas, A.A.; Jawad, S.

    2010-01-01

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  13. On Throughput Improvement of Wireless Ad Hoc Networks with Hidden Nodes

    Science.gov (United States)

    Choi, Hong-Seok; Lim, Jong-Tae

    In this letter, we present the throughput analysis of the wireless ad hoc networks based on the IEEE 802.11 MAC (Medium Access Control). Especially, our analysis includes the case with the hidden node problem so that it can be applied to the multi-hop networks. In addition, we suggest a new channel access control algorithm to maximize the network throughput and show the usefulness of the proposed algorithm through simulations.

  14. On the hop count statistics for randomly deployed wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; Rossi, M.; Havinga, Paul J.M.; Zorzi, M.

    2006-01-01

    In this paper we focus on exploiting the information provided by a generally accepted and largely ignored hypothesis (the random deployment of the nodes of an ad hoc or wireless sensor network) to design improved networking protocols. Specifically, we derive the relationship between the number of

  15. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... peripherals need to by duty-cycled and the low-power wireless radios are severely influenced by the environmental effects causing bursty and unreliable wireless channels. This dissertation presents a communication stack providing services for low-power communication, secure communication, data collection......, and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto...

  16. Fault Tolerant Mechanism for Multimedia Flows in Wireless Ad Hoc Networks Based on Fast Switching Paths

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Multimedia traffic can be forwarded through a wireless ad hoc network using the available resources of the nodes. Several models and protocols have been designed in order to organize and arrange the nodes to improve transmissions along the network. We use a cluster-based framework, called MWAHCA architecture, which optimizes multimedia transmissions over a wireless ad hoc network. It was proposed by us in a previous research work. This architecture is focused on decreasing quality of service (QoS parameters like latency, jitter, and packet loss, but other network features were not developed, like load balance or fault tolerance. In this paper, we propose a new fault tolerance mechanism, using as a base the MWAHCA architecture, in order to recover any multimedia flow crossing the wireless ad hoc network when there is a node failure. The algorithm can run independently for each multimedia flow. The main objective is to keep the QoS parameters as low as possible. To achieve this goal, the convergence time must be controlled and reduced. This paper provides the designed protocol, the analytical model of the algorithm, and a software application developed to test its performance in a real laboratory.

  17. Research on Propagation Model of Malicious Programs in Ad Hoc Wireless Network

    Directory of Open Access Journals (Sweden)

    Weimin GAO

    2014-01-01

    Full Text Available Ad Hoc wireless network faces more security threats than traditional network due to its P2P system structure and the limited node resources. In recent years, malicious program has become one of the most important researches on international network security and information security. The research of malicious programs on wireless network has become a new research hotspot in the field of malicious programs. This paper first analyzed the Ad Hoc network system structure, security threats, the common classification of malicious programs and the bionic propagation model. Then starting from the differential equations of the SEIR virus propagation model, the question caused by introducing the SEIR virus propagation model in Ad Hoc wireless network was analyzed. This paper improved the malicious program propagation model through introducing the network topology features and concepts such as immunization delay, and designed an improved algorithm combined with the dynamic evolution of malware propagation process. Considering of the network virus propagation characteristics, network characteristics and immunization strategy to improve simulation model experiment analysis, the experimental results show that both the immunization strategy and the degrees of node can affect the propagation of malicious program.

  18. Intelligent Stale-Frame Discards for Real-Time Video Streaming over Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Sheu Tsang-Ling

    2009-01-01

    Full Text Available Abstract This paper presents intelligent early packet discards (I-EPD for real-time video streaming over a multihop wireless ad hoc network. In a multihop wireless ad hoc network, the quality of transferring real-time video streams could be seriously degraded, since every intermediate node (IN functionally like relay device does not possess large buffer and sufficient bandwidth. Even worse, a selected relay node could leave or power off unexpectedly, which breaks the route to destination. Thus, a stale video frame is useless even if it can reach destination after network traffic becomes smooth or failed route is reconfigured. In the proposed I-EPD, an IN can intelligently determine whether a buffered video packet should be early discarded. For the purpose of validation, we implement the I-EPD on Linux-based embedded systems. Via the comparisons of performance metrics (packet/frame discards ratios, PSNR, etc., we demonstrate that video quality over a wireless ad hoc network can be substantially improved and unnecessary bandwidth wastage is greatly reduced.

  19. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  20. A New Intrusion Detection System Based on KNN Classification Algorithm in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2014-01-01

    abnormal nodes from normal nodes by observing their abnormal behaviors, and we analyse parameter selection and error rate of the intrusion detection system. The paper elaborates on the design and implementation of the detection system. This system has achieved efficient, rapid intrusion detection by improving the wireless ad hoc on-demand distance vector routing protocol (Ad hoc On-Demand Distance the Vector Routing, AODV. Finally, the test results show that: the system has high detection accuracy and speed, in accordance with the requirement of wireless sensor network intrusion detection.

  1. Dynamic Aggregation Protocol for Wireless Sensor Networks

    OpenAIRE

    Mounir Said , Adel; William Ibrahim , Ashraf; Soua , Ahmed; Afifi , Hossam

    2013-01-01

    International audience; Sensor networks suffer from limited capabilities such as bandwidth, low processing power, and memory size. There is therefore a need for protocols that deliver sensor data in an energy-efficient way to the sink. One of those techniques, it gathers sensors' data in a small size packet suitable for transmission. In this paper, we propose a new Effective Data Aggregation Protocol (DAP) to reduce the energy consumption in Wireless Sensor Networks (WSNs), which prolongs the...

  2. A multihop key agreement scheme for wireless ad hoc networks based on channel characteristics.

    Science.gov (United States)

    Hao, Zhuo; Zhong, Sheng; Yu, Nenghai

    2013-01-01

    A number of key agreement schemes based on wireless channel characteristics have been proposed recently. However, previous key agreement schemes require that two nodes which need to agree on a key are within the communication range of each other. Hence, they are not suitable for multihop wireless networks, in which nodes do not always have direct connections with each other. In this paper, we first propose a basic multihop key agreement scheme for wireless ad hoc networks. The proposed basic scheme is resistant to external eavesdroppers. Nevertheless, this basic scheme is not secure when there exist internal eavesdroppers or Man-in-the-Middle (MITM) adversaries. In order to cope with these adversaries, we propose an improved multihop key agreement scheme. We show that the improved scheme is secure against internal eavesdroppers and MITM adversaries in a single path. Both performance analysis and simulation results demonstrate that the improved scheme is efficient. Consequently, the improved key agreement scheme is suitable for multihop wireless ad hoc networks.

  3. Protocols for Detection and Removal of Wormholes for Secure Routing and Neighborhood Creation in Wireless Ad Hoc Networks

    Science.gov (United States)

    Hayajneh, Thaier Saleh

    2009-01-01

    Wireless ad hoc networks are suitable and sometimes the only solution for several applications. Many applications, particularly those in military and critical civilian domains (such as battlefield surveillance and emergency rescue) require that ad hoc networks be secure and stable. In fact, security is one of the main barriers to the extensive use…

  4. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  5. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    Science.gov (United States)

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  6. Analysis of DDoS Attack Effect and Protection Scheme in Wireless Mobile Ad-hoc Network

    OpenAIRE

    Ramratan Ahirwal; Leeladhar Mahour

    2012-01-01

    In Wireless mobile Ad Hoc Networks (MANET) every node functions as transmitter, router and data sink is network without infrastructure. Detecting malicious nodes in an open ad-hoc network in whichparticipating nodes have no previous security associations presents a number of challenges not faced by traditional wired networks. Traffic monitoring in wired networks is usually performed at switches,routers and gateways, but an ad-hoc network does not have these types of network elements where the...

  7. Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Vuckovic, Dusan; Di Mauro, Alessio

    2012-01-01

    Energy Harvesting comprises a promising solution to one of the key problems faced by battery-powered Wireless Sensor Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting energy from the surrounding environment, the sensors can have a continuous lifetime...... Sensor Networks with energy harvesting capability....... without any needs for battery recharge or replacement. However, energy harvesting introduces a change to the fundamental principles based on which WSNs are designed and realized. In this poster we sketch some of the key research challenges as well as our ongoing work in designing and realizing Wireless...

  8. Wireless sensor network for sodium leak detection

    International Nuclear Information System (INIS)

    Satya Murty, S.A.V.; Raj, Baldev; Sivalingam, Krishna M.; Ebenezer, Jemimah; Chandran, T.; Shanmugavel, M.; Rajan, K.K.

    2012-01-01

    Highlights: ► Early detection of sodium leak is mandatory in any reactor handling liquid sodium. ► Wireless sensor networking technology has been introduced for detecting sodium leak. ► We designed and developed a wireless sensor node in-house. ► We deployed a pilot wireless sensor network for handling nine sodium leak signals. - Abstract: To study the mechanical properties of Prototype Fast Breeder Reactor component materials under the influence of sodium, the IN Sodium Test (INSOT) facility has been erected and commissioned at Indira Gandhi Centre for Atomic Research. Sodium reacts violently with air/moisture leading to fire. Hence early detection of sodium leak if any is mandatory for such plants and almost 140 sodium leak detectors are placed throughout the loop. All these detectors are wired to the control room for data collection and monitoring. To reduce the cost, space and maintenance that are involved in cabling, the wireless sensor networking technology has been introduced in the sodium leak detection system of INSOT. This paper describes about the deployment details of the pilot wireless sensor network and the measures taken for the successful deployment.

  9. Virtual Lab for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    PICOVICI, D.

    2008-06-01

    Full Text Available This article details an experimental system developed to enhance the education and research in the area of wireless networks technologies. The system referred, as Virtual Lab (VL is primarily targeting first time users or users with limited experience in programming and using wireless sensor networks. The VL enables a set of predefined sensor networks to be remotely accessible and controlled for constructive and time-efficient experimentation. In order to facilitate the user's wireless sensor applications, the VL is using three main components: a a Virtual Lab Motes (VLM, representing the wireless sensor, b a Virtual Lab Client (VLC, representing the user's tool to interact with the VLM and c a Virtual Lab Server (VLS representing the software link between the VLM and VLC. The concept has been proven using the moteiv produced Tmote Sky modules. Initial experimental use clearly demonstrates that the VL approach reduces dramatically the learning curve involved in programming and using the associated wireless sensor nodes. In addition the VL allows the user's focus to be directed towards the experiment and not towards the software programming challenges.

  10. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  11. ENERGY EFFICIENT TRACKING SYSTEM USING WIRELESS SENSORS

    OpenAIRE

    Thankaselvi Kumaresan; Sheryl Mathias; Digja Khanvilkar; Prof. Smita Dange

    2014-01-01

    One of the most important applications of wireless sensor networks (WSNs) is surveillance system, which is used to track moving targets. WSN is composed of a large number of low cost sensors which operate on the power derived from batteries. Energy efficiency is an important issue in WSN, which determines the network lifetime. Due to the need for continuous monitoring with 100% efficiency, keeping all the sensor nodes active permanently leads to fast draining of batteries. Hen...

  12. Green partial packet recovery in wireless sensor networks

    KAUST Repository

    Daghistani, Anas; Ben Khalifa, Abderrahman; Showail, Ahmad; Shihada, Basem

    2015-01-01

    wireless sensor motes. We propose Green-Frag, a novel adaptive partial packet recovery mechanism that is energy friendly. It can help prolonging the battery life of wireless sensor motes that are usually resource constrained. It dynamically partitions

  13. Passive Wireless Temperature Sensor for Harsh Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless Sensor Technologies has for several years been developing a passive Wireless Temperature Sensor (WTS) for gas turbine engine and other harsh environment...

  14. Utilising artificial intelligence in software defined wireless sensor network

    CSIR Research Space (South Africa)

    Matlou, OG

    2017-10-01

    Full Text Available Software Defined Wireless Sensor Network (SDWSN) is realised by infusing Software Defined Network (SDN) model in Wireless Sensor Network (WSN), Reason for that is to overcome the challenges of WSN. Artificial Intelligence (AI) and machine learning...

  15. Wireless Sensor Networks for Ambient Assisted Living

    Directory of Open Access Journals (Sweden)

    Raúl Aquino-Santos

    2013-11-01

    Full Text Available This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study.

  16. Wireless motion sensor network for monitoring motion in a process, wireless sensor node, reasoning node, and feedback and/or actuation node for such wireless motion sensor network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Marin Perianu, Raluca; Marin Perianu, Mihai

    2010-01-01

    Wireless motion sensor network for monitoring motion in a process comprising at least one wireless sensor node for measuring at least one physical quantity related to motion or orientation, feature extraction means for deriving a feature for the measured quantities, a wireless transmitter connected

  17. Minimum Interference Planar Geometric Topology in Wireless Sensor Networks

    Science.gov (United States)

    Nguyen, Trac N.; Huynh, Dung T.

    The approach of using topology control to reduce interference in wireless sensor networks has attracted attention of several researchers. There are at least two definitions of interference in the literature. In a wireless sensor network the interference at a node may be caused by an edge that is transmitting data [15], or it occurs because the node itself is within the transmission range of another [3], [1], [6]. In this paper we show that the problem of assigning power to nodes in the plane to yield a planar geometric graph whose nodes have bounded interference is NP-complete under both interference definitions. Our results provide a rigorous proof for a theorem in [15] whose proof is unconvincing. They also address one of the open issues raised in [6] where Halldórsson and Tokuyama were concerned with the receiver model of node interference, and derived an O(sqrt {Δ}) upper bound for the maximum node interference of a wireless ad hoc network in the plane (Δ is the maximum interference of the so-called uniform radius network). The question as to whether this problem is NP-complete in the 2-dimensional case was left open.

  18. Topology Optimisation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thike Aye Min

    2016-01-01

    Full Text Available Wireless sensor networks are widely used in a variety of fields including industrial environments. In case of a clustered network the location of cluster head affects the reliability of the network operation. Finding of the optimum location of the cluster head, therefore, is critical for the design of a network. This paper discusses the optimisation approach, based on the brute force algorithm, in the context of topology optimisation of a cluster structure centralised wireless sensor network. Two examples are given to verify the approach that demonstrate the implementation of the brute force algorithm to find an optimum location of the cluster head.

  19. Functional Testing of Wireless Sensor Node Designs

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan

    2007-01-01

    Wireless sensor networks are networked embedded computer systems with stringent power, performance, cost and form-factor requirements along with numerous other constraints related to their pervasiveness and ubiquitousness. Therefore, only a systematic design methdology coupled with an efficient...... test approach can enable their conformance to design and deployment specifications. We discuss off-line, hierarchical, functional testing of complete wireless sensor nodes containing configurable logic through a combination of FPGA-based board test and Software-Based Self-Test (SBST) techniques...

  20. Wireless Sensor Applications in Extreme Aeronautical Environments

    Science.gov (United States)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  1. An Incentivized Approach for Fair Participation in Wireless Ad hoc Networks

    OpenAIRE

    Choudhuri, Arka Rai; S, Kalyanasundaram; Sridhar, Shriyak; B, Annappa

    2015-01-01

    In Wireless Ad hoc networks (WANETs), nodes separated by considerable distance communicate with each other by relaying their messages through other nodes. However, it might not be in the best interests of a node to forward the message of another node due to power constraints. In addition, all nodes being rational, some nodes may be selfish, i.e. they might not relay data from other nodes so as to increase their lifetime. In this paper, we present a fair and incentivized approach for participa...

  2. Extending lifetime of wireless sensor networks using multi-sensor ...

    Indian Academy of Sciences (India)

    SOUMITRA DAS

    In this paper a multi-sensor data fusion approach for wireless sensor network based on bayesian methods and ant colony ... niques for efficiently routing the data from source to the BS ... Literature review ... efficient scheduling and lot more to increase the lifetime of ... Nature-inspired algorithms such as ACO algorithms have.

  3. Resource aware sensor nodes in wireless sensor networks

    International Nuclear Information System (INIS)

    Merrett, G V; Al-Hashimi, B M; White, N M; Harris, N R

    2005-01-01

    Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput

  4. A Novel Optical Sensor Platform Designed for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Yang, Shuo; Zhou, Bochao; Sun, Tong; Grattan, Kenneth T V

    2013-01-01

    This paper presents a novel design of an optical sensor platform, enabling effective integration of a number of optical fibre ('wired') sensors with wireless sensor networks (WSNs). In this work, a fibre Bragg grating-based temperature sensor with low power consumption is specially designed as a sensing module and integrated successfully into a WSN, making full use of the advantages arising from both the advanced optical sensor designs and the powerful network functionalities resident in WSNs. The platform is expected to make an important impact on many applications, where either the conventional optical sensor designs or WSNs alone cannot meet the requirements.

  5. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety

    Directory of Open Access Journals (Sweden)

    Angelica Reyes-Muñoz

    2016-01-01

    Full Text Available The emergence of Body Sensor Networks (BSNs constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1 an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving that may cause traffic accidents is presented; (2 A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3 as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  6. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety.

    Science.gov (United States)

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-15

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  7. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety

    Science.gov (United States)

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-01

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels. PMID:26784204

  8. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  9. Advanced Communication for Wireless Sensor Networks

    Science.gov (United States)

    2016-08-22

    strategies that could be used to increase the single-hop transmission range of a wireless sensor network, increase energy efficiency (improve battery...substance placed within the reach of the network. Sensor measurements were quantized to save energy and bandwidth during transmission of the...the problem of assigning transmission powers to every node in order to maintain connectivity while minimizing the energy consumption of the whole

  10. Towards Self-Powered Wireless Sensor Networks

    OpenAIRE

    SPENZA, DORA

    2013-01-01

    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that co...

  11. Evaluation of svr: a wireless sensor network routing protocol

    International Nuclear Information System (INIS)

    Baloch, J.; Khanzada, T.J.S.

    2014-01-01

    The advancement in technology has made it possible to create small in size, low cost sensor nodes. However, the small size and low cost of such nodes comesat at price that is, reduced processing power, low memory and significantly small battery energy storage. WSNs (Wireless Sensor Networks) are inherently ad hoc in nature and are assumed to work in the toughest terrain. The network lifetime plays a pivotal role in a wireless sensor network. A long network lifetime, could be achieved by either making significant changes in these low cost devices, which is not a feasible solution or by improving the means of communication throughout the network. The communication in such networks could be improved by employing energy efficient routing protocols, to route the data throughout the network. In this paper the SVR (Spatial Vector Routing) protocol is compared against the most common WSN routing protocols, and from the results it could be inferred that the SVR protocol out performs its counterparts. The protocol provides an energy efficient means of communication in the network. (author)

  12. Synchronized Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...

  13. Wireless sensor networks principles, design and applications

    CERN Document Server

    Yang, Shuang-Hua

    2014-01-01

    Wireless Sensor Networks presents the latest practical solutions to the design issues presented in wireless-sensor-network-based systems. Novel features of the text, distributed throughout, include workable solutions, demonstration systems and case studies of the design and application of wireless sensor networks (WSNs) based on the first-hand research and development experience of the author, and the chapters on real applications: building fire safety protection; smart home automation; and logistics resource management. Case studies and applications illustrate the practical perspectives of: ·         sensor node design; ·         embedded software design; ·         routing algorithms; ·         sink node positioning; ·         co-existence with other wireless systems; ·         data fusion; ·         security; ·         indoor location tracking; ·         integrating with radio-frequency identification; and ·         In...

  14. How to secure a wireless sensor network

    NARCIS (Netherlands)

    Law, Y.W.; Havinga, Paul J.M.

    2005-01-01

    The security of wireless sensor networks (WSNs) is a complex issue. While security research of WSNs is progressing at a tremendous pace, and many security techniques have been proposed, no comprehensive framework has so far emerged that attempts to tie the bits and pieces together to ease the

  15. Cross-platform wireless sensor network development

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Kusy, Branislav

    Design and development of wireless sensor network applications adds an additional layer of complexity to traditional computer systems. The developer needs to be an expert in resource constrained embedded devices as well as traditional desktop computers. We propose Tinylnventor, an open...

  16. Problem solving for wireless sensor networks

    CERN Document Server

    Garcia-Hernando, Ana-Belen; Lopez-Navarro, Juan-Manuel; Prayati, Aggeliki; Redondo-Lopez, Luis

    2008-01-01

    Wireless Sensor Networks (WSN) is an area of huge research interest, attracting substantial attention from industry and academia for its enormous potential and its inherent challenges. This reader-friendly text delivers a comprehensive review of the developments related to the important technological issues in WSN.

  17. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  18. Audio coding in wireless acoustic sensor networks

    DEFF Research Database (Denmark)

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt

    2015-01-01

    In this paper, we consider the problem of source coding for a wireless acoustic sensor network where each node in the network makes its own noisy measurement of the sound field, and communicates with other nodes in the network by sending and receiving encoded versions of the measurements. To make...

  19. Energy harvesting for autonomous wireless sensor networks

    NARCIS (Netherlands)

    Vullers, R.J.M.; van Schaijk, R.T.F.; Visser, H.J.; Penders, J.; Van Hoof, C.

    2010-01-01

    Wireless sensor nodes (WSNs) are employed today in many different application areas, ranging from health and lifestyle to automotive, smart building, predictive maintenance (e.g., of machines and infrastructure), and active RFID tags. Currently these devices have limited lifetimes, however, since

  20. Collaborative communication protocols for wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; van Hoesel, L.F.W.; Nieberg, T.; Havinga, Paul J.M.

    In this document, the design of communication within a wireless sensor network is discussed. The resource limitations of such a network, especially in terms of energy, require an integrated approach for all (traditional) layers of communication. We present such an integrated, collaborative approach

  1. Benchmarking Block Ciphers for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Doumen, J.M.; Hartel, Pieter H.

    2004-01-01

    Choosing the most storage- and energy-efficient block cipher specifically for wireless sensor networks (WSNs) is not as straightforward as it seems. To our knowledge so far, there is no systematic evaluation framework for the purpose. We have identified the candidates of block ciphers suitable for

  2. Wireless SAW Sensors Having Integrated Antennas

    Science.gov (United States)

    Gallagher, Mark (Inventor); Malocha, Donald C. (Inventor)

    2015-01-01

    A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.

  3. Opportunistic Sensing in Wireless Sensor Networks

    NARCIS (Netherlands)

    Scholten, Johan; Bakker, Pascal

    Opportunistic sensing systems consist of changing constellations of wireless sensor nodes that, for a limited amount of time, work together to achieve a common goal. Such constellations are self-organizing and come into being spontaneously. This paper presents an opportunistic sensing system to

  4. Secure Broadcast in Energy-Aware Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Lazos, Loukas; Poovendran, Radha

    2002-01-01

    .... The authors show that existing efficient key distribution techniques for wired networks that rely on logical hierarchies are extremely energy inefficient for energy-constrained wireless ad-hoc networks...

  5. Improving TCP Performance over Wireless Ad Hoc Networks with Busy Tone Assisted Scheme

    Directory of Open Access Journals (Sweden)

    Cai Lin

    2006-01-01

    Full Text Available It is well known that transmission control protocol (TCP performance degrades severely in IEEE 802.11-based wireless ad hoc networks. We first identify two critical issues leading to the TCP performance degradation: (1 unreliable broadcast, since broadcast frames are transmitted without the request-to-send and clear-to-send (RTS/CTS dialog and Data/ACK handshake, so they are vulnerable to the hidden terminal problem; and (2 false link failure which occurs when a node cannot successfully transmit data temporarily due to medium contention. We then propose a scheme to use a narrow-bandwidth, out-of-band busy tone channel to make reservation for broadcast and link error detection frames only. The proposed scheme is simple and power efficient, because only the sender needs to transmit two short messages in the busy tone channel before sending broadcast or link error detection frames in the data channel. Analytical results show that the proposed scheme can dramatically reduce the collision probability of broadcast and link error detection frames. Extensive simulations with different network topologies further demonstrate that the proposed scheme can improve TCP throughput by 23% to 150%, depending on user mobility, and effectively enhance both short-term and long-term fairness among coexisting TCP flows in multihop wireless ad hoc networks.

  6. Cross-Layer QoS Control for Video Communications over Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Pei Yong

    2005-01-01

    Full Text Available Assuming a wireless ad hoc network consisting of homogeneous video users with each of them also serving as a possible relay node for other users, we propose a cross-layer rate-control scheme based on an analytical study of how the effective video transmission rate is affected by the prevailing operating parameters, such as the interference environment, the number of transmission hops to a destination, and the packet loss rate. Furthermore, in order to provide error-resilient video delivery over such wireless ad hoc networks, a cross-layer joint source-channel coding (JSCC approach, to be used in conjunction with rate-control, is proposed and investigated. This approach attempts to optimally apply the appropriate channel coding rate given the constraints imposed by the effective transmission rate obtained from the proposed rate-control scheme, the allowable real-time video play-out delay, and the prevailing channel conditions. Simulation results are provided which demonstrate the effectiveness of the proposed cross-layer combined rate-control and JSCC approach.

  7. Cooperative Technique Based on Sensor Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    ISLAM, M. R.

    2009-02-01

    Full Text Available An energy efficient cooperative technique is proposed for the IEEE 1451 based Wireless Sensor Networks. Selected numbers of Wireless Transducer Interface Modules (WTIMs are used to form a Multiple Input Single Output (MISO structure wirelessly connected with a Network Capable Application Processor (NCAP. Energy efficiency and delay of the proposed architecture are derived for different combination of cluster size and selected number of WTIMs. Optimized constellation parameters are used for evaluating derived parameters. The results show that the selected MISO structure outperforms the unselected MISO structure and it shows energy efficient performance than SISO structure after a certain distance.

  8. Automatic Decentralized Clustering for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen Chih-Yu

    2005-01-01

    Full Text Available We propose a decentralized algorithm for organizing an ad hoc sensor network into clusters. Each sensor uses a random waiting timer and local criteria to determine whether to form a new cluster or to join a current cluster. The algorithm operates without a centralized controller, it operates asynchronously, and does not require that the location of the sensors be known a priori. Simplified models are used to estimate the number of clusters formed, and the energy requirements of the algorithm are investigated. The performance of the algorithm is described analytically and via simulation.

  9. Data centric wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; Havinga, Paul J.M.

    2005-01-01

    The vision of wirteless sensing systems requires the development of devices and technologies that can be pervasive without being intrusive. The basic component of such a smart environment will be a small node with sensing and wireless communications capabilities, able to organize itself flexibly

  10. Wireless smart shipboard sensor network

    OpenAIRE

    Nozik, Andrew B.

    2005-01-01

    This thesis studies the feasibility of developing a smart shipboard sensor network. The objective of the thesis is to prove that sensors can be made smart by keeping calibration constants and other relevant data such as network information stored on the sensor and a server computer. Study will focus on the design and implementation of an Ipsil IP(micro)8930 microcontroller, which is then connected, by the standard TCP/IP implementation, to a network where the sensor information can be see...

  11. Wireless multimedia sensor networks on reconfigurable hardware information reduction techniques

    CERN Document Server

    Ang, Li-minn; Chew, Li Wern; Yeong, Lee Seng; Chia, Wai Chong

    2013-01-01

    Traditional wireless sensor networks (WSNs) capture scalar data such as temperature, vibration, pressure, or humidity. Motivated by the success of WSNs and also with the emergence of new technology in the form of low-cost image sensors, researchers have proposed combining image and audio sensors with WSNs to form wireless multimedia sensor networks (WMSNs).

  12. Priority image transmission in wireless sensor networks

    International Nuclear Information System (INIS)

    Nasri, M.; Helali, A.; Sghaier, H.; Maaref, H.

    2011-01-01

    The emerging technology during the last years allowed the development of new sensors equipped with wireless communication which can be organized into a cooperative autonomous network. Some application areas for wireless sensor networks (WSNs) are home automations, health care services, military domain, and environment monitoring. The required constraints are limited capacity of processing, limited storage capability, and especially these nodes are limited in energy. In addition, such networks are tiny battery powered which their lifetime is very limited. During image processing and transmission to the destination, the lifetime of sensor network is decreased quickly due to battery and processing power constraints. Therefore, digital image transmissions are a significant challenge for image sensor based Wireless Sensor Networks (WSNs). Based on a wavelet image compression, we propose a novel, robust and energy-efficient scheme, called Priority Image Transmission (PIT) in WSN by providing various priority levels during image transmissions. Different priorities in the compressed image are considered. The information for the significant wavelet coeffcients are transmitted with higher quality assurance, whereas relatively less important coefficients are transmitted with lower overhead. Simulation results show that the proposed scheme prolongs the system lifetime and achieves higher energy efficiency in WSN with an acceptable compromise on the image quality.

  13. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  14. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks.

    Science.gov (United States)

    Katiravan, Jeevaa; Sylvia, D; Rao, D Srinivasa

    2015-01-01

    In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.

  15. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jeevaa Katiravan

    2015-01-01

    Full Text Available In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.

  16. Wireless sensor for temperature and humidity measurement

    Science.gov (United States)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  17. Wireless sensor networks distributed consensus estimation

    CERN Document Server

    Chen, Cailian; Guan, Xinping

    2014-01-01

    This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investiga

  18. Wireless Sensor Network Localisation Strategies

    OpenAIRE

    Olafsen, Håkon Kløvstad

    2007-01-01

    The recent years WSNs have had a tremendous growth in interest. Many see the huge potential in this technology and the vast possibilities with small wireless autonomous nodes. WSN nodes have a few limitations like their small size and limited power consumption. A network might exist for years without any major maintenance, putting tight restrictions on available power. The price is also an important aspect, and cheap production technologies like CMOS is preferred. The applications vary fr...

  19. Wireless Sensor Network Security Analysis

    OpenAIRE

    Hemanta Kumar Kalita; Avijit Kar

    2009-01-01

    The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...

  20. JSC Wireless Sensor Network Update

    Science.gov (United States)

    Wagner, Robert

    2010-01-01

    Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.

  1. Multi-Source Energy Harvesting for Wireless Sensor Nodes.

    OpenAIRE

    Kang, Kai

    2012-01-01

    The past few years have seen an increasing interest in the development of wireless sensor networks. But the unsatisfactory or limited available energy source is one of the major bottlenecks which are limiting the wireless sensor technology from mass deployment. Ambient energy harvesting is the most promising solution towards autonomous sensor nodes by providing low cost, permanent, and maintenance-free energy source to wireless sensor nodes. In this paper, we first invested available energy s...

  2. Wireless Sensor Network for Forest Fire Detection 2

    OpenAIRE

    João Gilberto Fernandes Gonçalves Teixeira

    2017-01-01

    The main purpose for this project is the development of a semi-autonomous wireless sensor network for fire detection in remote territory. Making use of the IEEE 802.15.4 standard, a wireless standard for low-power, low-rate wireless sensor networks, a real sensor network and web application will be developed and deployed with the ability to monitor sensor data, detect a fire occurrence and generate early fire alerts.

  3. Transmission Power Control for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Kuo-Hsien Hsia

    2017-02-01

    Full Text Available Wireless sensor networks can be widely applied for a security system or a smart home system. Since some of the wireless remote sensor nodes may be powered by energy storage devices such as batteries, it is a very important issue to transmit signals at lower power with the consideration of the communication effectiveness. In this paper, we will provide a fuzzy controller with two inputs and one output for received signal strength indicator (RSSI and link quality indicator (LQI to adjust transmission power suitably in order to maintaining a certain communication level with a reduced energy consumption. And we will divide the sampling period of a sensor node into four intervals so that the sensor node radio device does not in receiving or transmission status all the time. Hence the sensor node can adjust transmission power automatically and reduce sensor node power consumption. Experimental results show that the battery life can be extended to about 10 times for the designed sensor node comparing to a normal node.

  4. Wireless tamper detection sensor and sensing system

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2011-01-01

    A wireless tamper detection sensor is defined by a perforated electrical conductor. The conductor is shaped to form a geometric pattern between first and second ends thereof such that the conductor defines an open-circuit that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The harmonic response changes when the conductor experiences a change in its geometric pattern due to severing of the conductor along at least a portion of the perforations. A magnetic field response recorder is used to wirelessly transmit the time-varying magnetic field and wirelessly detecting the conductor's harmonic response.

  5. Cooperative Jamming for Physical Layer Security in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    Interference is generally considered as the redundant and unwanted occurrence in wireless communication. This work proposes a novel cooperative jamming mechanism for scalable networks like Wireless Sensor Networks (WSNs) which makes use of friendly interference to confuse the eavesdropper...

  6. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2017-01-01

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S

  7. Wireless body sensor networks for health-monitoring applications

    International Nuclear Information System (INIS)

    Hao, Yang; Foster, Robert

    2008-01-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system. (topical review)

  8. A Comparison of Alternative Distributed Dynamic Cluster Formation Techniques for Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Gholami, Mohammad; Brennan, Robert W

    2016-01-06

    In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency.

  9. Wireless Smart Shipboard Sensor Network

    National Research Council Canada - National Science Library

    Nozik, Andrew B

    2005-01-01

    .... Study will focus on the design and implementation of an Ipsil IP 8930 microcontroller, which is then connected, by the standard TCP/IP implementation, to a network where the sensor information...

  10. Probabilistic Modelling of Information Propagation in Wireless Mobile Ad-Hoc Network

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Hansen, Martin Bøgsted; Schwefel, Hans-Peter

    2005-01-01

    In this paper the dynamics of broadcasting wireless ad-hoc networks is studied through probabilistic modelling. A randomized transmission discipline is assumed in accordance with existing MAC definitions such as WLAN with Decentralized Coordination or IEEE-802.15.4. Message reception is assumed...... to be governed by node power-down policies and is equivalently assumed to be randomized. Altogether randomization facilitates a probabilistic model in the shape of an integro-differential equation governing the propagation of information, where brownian node mobility may be accounted for by including an extra...... diffusion term. The established model is analyzed for transient behaviour and a travelling wave solution facilitates expressions for propagation speed as well as parametrized analysis of network reliability and node power consumption. Applications of the developed models for node localization and network...

  11. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks.

    Science.gov (United States)

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-07-14

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes.

  12. Security in wireless sensor networks

    CERN Document Server

    Oreku, George S

    2016-01-01

    This monograph covers different aspects of sensor network security including new emerging technologies. The authors present a mathematical approach to the topic and give numerous practical examples as well as case studies to illustrate the theory. The target audience primarily comprises experts and practitioners in the field of sensor network security, but the book may also be beneficial for researchers in academia as well as for graduate students.

  13. Application of Wireless Sensor Networks to Automobiles

    Science.gov (United States)

    Tavares, Jorge; Velez, Fernando J.; Ferro, João M.

    2008-01-01

    Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture and the choice/implementation of the protocols are identified. Security aspects are also addressed.

  14. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kalil A. Bispo

    2015-10-01

    Full Text Available Wireless sensor networks (WSNs are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks, which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS.

  15. Two-terminal reliability analyses for a mobile ad hoc wireless network

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2007-01-01

    Reliability is one of the most important performance measures for emerging technologies. For these systems, shortcomings are often overlooked in early releases as the cutting edge technology overshadows a fragile design. Currently, the proliferation of the mobile ad hoc wireless networks (MAWN) is moving from cutting edge to commodity and thus, reliable performance will be expected. Generally, ad hoc networking is applied for the flexibility and mobility it provides. As a result, military and first responders employ this network scheme and the reliability of the network becomes paramount. To ensure reliability is achieved, one must first be able to analyze and calculate the reliability of the MAWN. This work describes the unique attributes of the MAWN and how the classical analysis of network reliability, where the network configuration is known a priori, can be adjusted to model and analyze this type of network. The methods developed acknowledge the dynamic and scalable nature of the MAWN along with its absence of infrastructure. Thus, the methods rely on a modeling approach that considers the probabilistic formation of different network configurations in a MAWN. Hence, this paper proposes reliability analysis methods that consider the effect of node mobility and the continuous changes in the network's connectivity

  16. Key handling in wireless sensor networks

    International Nuclear Information System (INIS)

    Li, Y; Newe, T

    2007-01-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided

  17. Key handling in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Newe, T [Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland)

    2007-07-15

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  18. Key Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ismail Mansour

    2015-09-01

    Full Text Available Wireless sensor networks are a challenging field of research when it comes to security issues. Using low cost sensor nodes with limited resources makes it difficult for cryptographic algorithms to function without impacting energy consumption and latency. In this paper, we focus on key management issues in multi-hop wireless sensor networks. These networks are easy to attack due to the open nature of the wireless medium. Intruders could try to penetrate the network, capture nodes or take control over particular nodes. In this context, it is important to revoke and renew keys that might be learned by malicious nodes. We propose several secure protocols for key revocation and key renewal based on symmetric encryption and elliptic curve cryptography. All protocols are secure, but have different security levels. Each proposed protocol is formally proven and analyzed using Scyther, an automatic verification tool for cryptographic protocols. For efficiency comparison sake, we implemented all protocols on real testbeds using TelosB motes and discussed their performances.

  19. Wireless sensor networks and ecological monitoring

    CERN Document Server

    Jiang, Joe-Air

    2013-01-01

    This book presents the state of the art technologies and solutions to tackle the critical challenges faced by the building and development of the WSN and ecological monitoring system but also potential impact on society at social, medical and technological level. This book is dedicated to Sensing systems for Sensors, Wireless Sensor Networks and Ecological Monitoring. The book aims at Master and PhD degree students, researchers, practitioners, especially WSN engineers involved with ecological monitoring. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.  

  20. Wireless sensor platform for harsh environments

    Science.gov (United States)

    Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor); Toygur, Lemi (Inventor); He, Yunli (Inventor)

    2009-01-01

    Reliable and efficient sensing becomes increasingly difficult in harsher environments. A sensing module for high-temperature conditions utilizes a digital, rather than analog, implementation on a wireless platform to achieve good quality data transmission. The module comprises a sensor, integrated circuit, and antenna. The integrated circuit includes an amplifier, A/D converter, decimation filter, and digital transmitter. To operate, an analog signal is received by the sensor, amplified by the amplifier, converted into a digital signal by the A/D converter, filtered by the decimation filter to address the quantization error, and output in digital format by the digital transmitter and antenna.

  1. A Routing Strategy for Non-Cooperation Wireless Multi-Hop Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Dung T. Tran

    2012-01-01

    Full Text Available Choosing routes such that the network lifetime is maximized in a wireless network with limited energy resources is a major routing problem in wireless multi-hop ad hoc networks. In this paper, we study the problem where participants are rationally selfish and non-cooperative. By selfish we designate the users who are ready to tamper with their source-routing (senders could choose intermediate nodes in the routing paths or next hop selection strategies in order to increase the total number of packets transmitted, but do not try to harm or drop packets of the other nodes. The problem therefore amounts to a non-cooperative game. In the works [2,6,19,23], the authors show that the game admits Nash equilibria [1]. Along this line, we first show that if the cost function is linear, this game has pure-strategy equilibrium flow even though participants have different demands. However, finding a Nash equilibrium for a normal game is computationally hard [9]. In this work, inspired by mixed-strategy equilibrium, we propose a simple local routing algorithm called MIxed Path Routing protocol (MiPR. Using analysis and simulations, we show that MiPR drives the system to an equilibrium state where selfish participants do not have incentive to deviate. Moreover, MiPR significantly improves the network lifetime as compared to original routing protocols.

  2. Precoding Design and Power Allocation in Two-User MU-MIMO Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Haole Chen

    2017-10-01

    Full Text Available In this paper, we consider the precoding design and power allocation problem for multi-user multiple-input multiple-output (MU-MIMO wireless ad hoc networks. In the first timeslot, the source node (SN transmits energy and information to a relay node (RN simultaneously within the simultaneous wireless information and power transfer (SWIPT framework. Then, in the second timeslot, based on the decoder and the forwarding (DF protocol, after reassembling the received signal and its own signal, the RN forwards the information to the main user (U1 and simultaneously sends its own information to the secondary user (U2. In this paper, when the transmission rate of the U1 is restricted, the precoding, beamforming, and power splitting (PS transmission ratio are jointly considered to maximize the transmission rate of U2. To maximize the system rate, we design an optimal beamforming matrix and solve the optimization problem by semi-definite relaxation (SDR, considering the high complexity of implementing the optimal solution. Two sub-optimal precoding programs are also discussed: singular value decomposition and block diagonalization. Finally, the performance of the optimization and sub-optimization schemes are compared using a simulation.

  3. Graphical Model Theory for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Davis, William B.

    2002-01-01

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  4. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  5. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    Wireless Sensor Network Metrics for Real-Time Systems Phoebus Wei-Chih Chen Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Wireless Sensor Network Metrics for Real-Time Systems 5a. CONTRACT NUMBER 5b... wireless sensor networks (WSNs) is moving from studies of WSNs in isolation toward studies where the WSN is treated as a component of a larger system

  6. Reliable and Efficient Communications in Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Abdelhakim, M.M.

    2014-01-01

    , and has shown to be optimal from the information theory point of view. Next, we observe that: while simplifying the routing process, a major limitation with SENMA is that data transmission is limited by the physical speed of the mobile access points (MAs) and the length of their trajectory, resulting in low throughput and large delay. To solve this problem, we propose a novel mobile access coordinated wireless sensor network (MC-WSN) architecture. The proposed MC-WSN can provide reliable and time-sensitive information exchange through hop number control, which is achieved by active network development and topology design. We discuss the optimal topology design for MC-WSN such that the average number of hops between the source and its nearest sink is minimized, and analyze the performance of MC-WSN in terms of throughput, stability, delay, and energy efficiency by exploiting tools in information theory, queuing theory, and radio energy dissipation model. It is shown that MC-WSN achieves much higher throughput and significantly lower delay and energy consumption than that of SENMA. Finally, motivated by the observation that the number of hops in data transmission has a direct impact on the network performance, we introduce the concept of the N-hop networks. Based on the N-hop concept, we propose a unified framework for wireless networks and discuss general network design criteria. The unified framework reflects the convergence of centralized and ad-hoc networks. It includes all exiting network models as special cases, and makes the analytical characterization of the network performance more tractable. Further study on N-hop networks will be conducted in our future research.

  7. A survey on the wireless sensor network technology

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Jun, Hyeong Seop; Lee, Jae Cheol; Choi, Yoo Rak

    2007-12-01

    Wireless sensor technology is required in the safety inspection for safety-critical unit of nuclear power plant. This report describes wireless sensor technology related with the project named 'Development of a remote care system of NPP components based on the network and safety database'. This report includes contents of methodology and status of sensor network construction, status of zigbee sensor network, problem of security and sensor battery. Energy harvesting technology will be mentioned on the next report

  8. Wireless Sensor Network Handles Image Data

    Science.gov (United States)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  9. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  10. Track classification within wireless sensor network

    Science.gov (United States)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  11. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  12. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  13. Wireless sensors and sensor networks for homeland security applications.

    Science.gov (United States)

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  14. Reputation-based secure sensor localization in wireless sensor networks.

    Science.gov (United States)

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  15. Built-In Device Orientation Sensors for Ad-Hoc Pairing and Spatial Awareness

    DEFF Research Database (Denmark)

    Grønbæk, Jens Emil; O'Hara, Kenton

    Mobile devices are equipped with multiple sensors. The ubiquity of these sensors is key in their ability to support in-the-wild application and use. Building on the ubiquity we look at how we can use this existing sensing infrastructure combined with user mediation to support ad-hoc sharing with ...

  16. Indoor Wireless RF Energy Transfer for Powering Wireless Sensors

    Directory of Open Access Journals (Sweden)

    H. Visser

    2012-12-01

    Full Text Available For powering wireless sensors in buildings, rechargeable batteries may be used. These batteries will be recharged remotely by dedicated RF sources. Far-field RF energy transport is known to suffer from path loss and therefore the RF power available on the rectifying antenna or rectenna will be very low. As a consequence, the RF-to-DC conversion efficiency of the rectenna will also be very low. By optimizing not only the subsystems of a rectenna but also taking the propagation channel into account and using the channel information for adapting the transmit antenna radiation pattern, the RF energy transport efficiency will be improved. The rectenna optimization, channel modeling and design of a transmit antenna are discussed.

  17. Power control in wireless sensor networks with variable interference

    NARCIS (Netherlands)

    Chincoli, M.; Syed, A.A.; Exarchakos, G.; Liotta, A.

    2016-01-01

    Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counterproductive

  18. Lifetime Maximizing Adaptive Power Control in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Sun, Fangting; Shayman, Mark

    2006-01-01

    ...: adaptive power control. They focus on the sensor networks that consist of a sink and a set of homogeneous wireless sensor nodes, which are randomly deployed according to a uniform distribution...

  19. New Wireless Sensors for Diagnostics Under Harsh Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an acute need for robust sensors and sensor systems capable of operation in harsh environments. In particular, high temperature passive wireless surface...

  20. Design and Optimisation Problems in Wireless Sensor Networks

    Indian Academy of Sciences (India)

    Premkumar Karumbu,1.05 ECE,,+91-9448227167

    2010-11-14

    Nov 14, 2010 ... Wireless Networks of Multifunction Smart Sensors (WSNs). A smart sensor ... Energy and environment management networks in large buildings. Emerging ISA ... Monitoring mobile patients in hospitals and homes. Locating ...

  1. Distributed estimation based on observations prediction in wireless sensor networks

    KAUST Repository

    Bouchoucha, Taha; Ahmed, Mohammed F A; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    We consider wireless sensor networks (WSNs) used for distributed estimation of unknown parameters. Due to the limited bandwidth, sensor nodes quantize their noisy observations before transmission to a fusion center (FC) for the estimation process

  2. Data aggregation in wireless sensor networks using the SOAP protocol

    International Nuclear Information System (INIS)

    Al-Yasiri, A; Sunley, A

    2007-01-01

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks

  3. Data aggregation in wireless sensor networks using the SOAP protocol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Yasiri, A; Sunley, A [School of Computing, Science and Engineering, University of Salford, Greater Manchester, M5 4WT (United Kingdom)

    2007-07-15

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.

  4. COMPARATIVE ANALYSIS OF LEACH AND HEEMPCP PROTOCOLS FOR WIRELESS SENSOR NETWORKS SYSTEM

    OpenAIRE

    Richa Asstt. Pro.Misha Thakur

    2018-01-01

    In this paper author aims at describing a wireless sensor network. wireless sensor network consisting of spatially distributed autonomous devices using sensor to monitor physical or environmental conditions. Wireless sensor network can be used in wide range of applications including environmental monitoring, habitat monitoring, various military applications, smart home technologiesand agriculture. Wireless sensor networks constitute one of promising application areas of the recently developed...

  5. Wireless sensor networks from theory to applications

    CERN Document Server

    El Emary, Ibrahiem M M

    2013-01-01

    Although there are many books available on WSNs, most are low-level, introductory books. The few available for advanced readers fail to convey the breadth of knowledge required for those aiming to develop next-generation solutions for WSNs. Filling this void, Wireless Sensor Networks: From Theory to Applications supplies comprehensive coverage of WSNs. In order to provide the wide-ranging guidance required, the book brings together the contributions of domain experts working in the various subfields of WSNs worldwide. This edited volume examines recent advances in WSN technologies and consider

  6. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  7. Target Coverage in Wireless Sensor Networks with Probabilistic Sensors

    Science.gov (United States)

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao

    2016-01-01

    Sensing coverage is a fundamental problem in wireless sensor networks (WSNs), which has attracted considerable attention. Conventional research on this topic focuses on the 0/1 coverage model, which is only a coarse approximation to the practical sensing model. In this paper, we study the target coverage problem, where the objective is to find the least number of sensor nodes in randomly-deployed WSNs based on the probabilistic sensing model. We analyze the joint detection probability of target with multiple sensors. Based on the theoretical analysis of the detection probability, we formulate the minimum ϵ-detection coverage problem. We prove that the minimum ϵ-detection coverage problem is NP-hard and present an approximation algorithm called the Probabilistic Sensor Coverage Algorithm (PSCA) with provable approximation ratios. To evaluate our design, we analyze the performance of PSCA theoretically and also perform extensive simulations to demonstrate the effectiveness of our proposed algorithm. PMID:27618902

  8. Multi-Channel Wireless Sensor Networks: Protocols, Design and Evaluation

    OpenAIRE

    Durmaz, O.

    2009-01-01

    Pervasive systems, which are described as networked embedded systems integrated with everyday environments, are considered to have the potential to change our daily lives by creating smart surroundings and by their ubiquity, just as the Internet. In the last decade, “Wireless Sensor Networks��? have appeared as one of the real-world examples of pervasive systems by combining automated sensing, embedded computing and wireless networking into tiny embedded devices. A wireless sensor network typ...

  9. X-raying neighbour discovery in a wireless sensor network ...

    African Journals Online (AJOL)

    In most wireless sensor networks, the nodes are often assumed to be stationary. However, network connectivity is subject to changes arising from interference in wireless communication, changes in transmission power or loss of synchronization among neighbouring network nodes. Hence, even after a sensor node is aware ...

  10. Wireless sensor network for irrigation application in cotton

    Science.gov (United States)

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  11. Localisation system in wireless sensor networks using ns-2

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-04-01

    Full Text Available -1 /************************************************************************** ********** * * File: readme.asn * * Author: Adnan Abu-Mahfouz * * Date: March 2012 * * Description: Localisation system in wireless sensor networks using ns-2... *************************************************************************** *********/ /************************************************************************** *************************************************************************** *****/ 1. Introduction: ns-2 contains several flexible features that encourage researchers to use ns-2 to investigate the characteristics of wireless sensor networks (WSNs). However, to implement and evaluate localisation algorithms, the current ns- 2...

  12. Collaborative Algortihms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  13. Collaborative Algorithms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.; Basten, Twan; Geilen, Marc; de Groot, Harmke

    2003-01-01

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  14. PROTOCOLS FOR INCREASING THE LIFETIME OF NODES OF AD HOC WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    B.Malarkodi

    2010-03-01

    Full Text Available Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. Energy management deals with the process of managing energy resources by means of controlling the battery discharge, adjusting the transmission power and scheduling of power sources so as to increase the lifetime of the nodes of an ad hoc wireless network. In this paper, two protocols are proposed to improve the lifetime of the nodes. The first protocol assumes smart battery packages with L cells and uses dynamic programming (DP to optimally select the set of cells used to satisfy a request for power. The second one proposes a MAC layer protocol denoted as Power Aware medium Access Control (PAMAC protocol which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. The life time of the nodes using the DP based scheduling policy is found through simulation and compared with that obtained using the techniques reported in the literature. It is found that DP based policy increases the lifetime of the mobile nodes by a factor of 1.15 to 1.8. The life expectancy, the average power consumption and throughput of the network using PAMAC protocol are computed through simulation and compared with that of the other MAC layer protocols 802.11, MACA, and CSMA. Besides this, the life expectancy and average power consumption of the network for different values of threshold are also compared. From the simulation results, it is observed that PAMAC consumes the least power and provides the longest lifetime among the various MAC Layer protocols. Moreover, using PAMAC as the MAC layer protocol, the performance obtained using different routing layer

  15. Elliptic Curve Cryptography with Security System in Wireless Sensor Networks

    Science.gov (United States)

    Huang, Xu; Sharma, Dharmendra

    2010-10-01

    The rapid progress of wireless communications and embedded micro-electro-system technologies has made wireless sensor networks (WSN) very popular and even become part of our daily life. WSNs design are generally application driven, namely a particular application's requirements will determine how the network behaves. However, the natures of WSN have attracted increasing attention in recent years due to its linear scalability, a small software footprint, low hardware implementation cost, low bandwidth requirement, and high device performance. It is noted that today's software applications are mainly characterized by their component-based structures which are usually heterogeneous and distributed, including the WSNs. But WSNs typically need to configure themselves automatically and support as hoc routing. Agent technology provides a method for handling increasing software complexity and supporting rapid and accurate decision making. This paper based on our previous works [1, 2], three contributions have made, namely (a) fuzzy controller for dynamic slide window size to improve the performance of running ECC (b) first presented a hidden generation point for protection from man-in-the middle attack and (c) we first investigates multi-agent applying for key exchange together. Security systems have been drawing great attentions as cryptographic algorithms have gained popularity due to the natures that make them suitable for use in constrained environment such as mobile sensor information applications, where computing resources and power availability are limited. Elliptic curve cryptography (ECC) is one of high potential candidates for WSNs, which requires less computational power, communication bandwidth, and memory in comparison with other cryptosystem. For saving pre-computing storages recently there is a trend for the sensor networks that the sensor group leaders rather than sensors communicate to the end database, which highlighted the needs to prevent from the man

  16. Wireless Sensor Networks Database: Data Management and Implementation

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2014-04-01

    Full Text Available As the core application of wireless sensor network technology, Data management and processing have become the research hotspot in the new database. This article studied mainly data management in wireless sensor networks, in connection with the characteristics of the data in wireless sensor networks, discussed wireless sensor network data query, integrating technology in-depth, proposed a mobile database structure based on wireless sensor network and carried out overall design and implementation for the data management system. In order to achieve the communication rules of above routing trees, network manager uses a simple maintenance algorithm of routing trees. Design ordinary node end, server end in mobile database at gathering nodes and mobile client end that can implement the system, focus on designing query manager, storage modules and synchronous module at server end in mobile database at gathering nodes.

  17. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  18. Frame Transmission Efficiency-Based Cross-Layer Congestion Notification Scheme in Wireless Ad Hoc Networks.

    Science.gov (United States)

    He, Huaguang; Li, Taoshen; Feng, Luting; Ye, Jin

    2017-07-15

    Different from the traditional wired network, the fundamental cause of transmission congestion in wireless ad hoc networks is medium contention. How to utilize the congestion state from the MAC (Media Access Control) layer to adjust the transmission rate is core work for transport protocol design. However, recent works have shown that the existing cross-layer congestion detection solutions are too complex to be deployed or not able to characterize the congestion accurately. We first propose a new congestion metric called frame transmission efficiency (i.e., the ratio of successful transmission delay to the frame service delay), which describes the medium contention in a fast and accurate manner. We further present the design and implementation of RECN (ECN and the ratio of successful transmission delay to the frame service delay in the MAC layer, namely, the frame transmission efficiency), a general supporting scheme that adjusts the transport sending rate through a standard ECN (Explicit Congestion Notification) signaling method. Our method can be deployed on commodity switches with small firmware updates, while making no modification on end hosts. We integrate RECN transparently (i.e., without modification) with TCP on NS2 simulation. The experimental results show that RECN remarkably improves network goodput across multiple concurrent TCP flows.

  19. Further Development of Synchronous Array Method for Ad Hoc Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yingbo Hua

    2008-09-01

    Full Text Available A further development of the synchronous array method (SAM as a medium access control scheme for large-scale ad hoc wireless networks is presented. Under SAM, all transmissions of data packets between adjacent nodes are synchronized on a frame-by-frame basis, and the spacing between concurrent cochannel transmissions of data packets is properly controlled. An opportunistic SAM (O-SAM is presented which allows concurrent cochannel transmissions to be locally adaptive to channel gain variations. A distributed SAM (D-SAM is discussed that schedules all concurrent cochannel transmissions in a distributed fashion. For networks of low mobility, the control overhead required by SAM can be made much smaller than the payload. By analysis and simulation, the intranetwork throughput of O-SAM and D-SAM is evaluated. The effects of traffic load and multiple antennas on the intranetwork throughput are studied. The throughput of ALOHA is also analyzed and compared with that of O-SAM and D-SAM. By a distance-weighted throughput, a comparison of long distance transmission versus short distance transmission is also presented. The study of D-SAM reveals an important insight into the MSH-DSCH protocol adopted in IEEE 802.16 standards.

  20. Enhancing the selection of backoff interval using fuzzy logic over wireless Ad Hoc networks.

    Science.gov (United States)

    Ranganathan, Radha; Kannan, Kathiravan

    2015-01-01

    IEEE 802.11 is the de facto standard for medium access over wireless ad hoc network. The collision avoidance mechanism (i.e., random binary exponential backoff-BEB) of IEEE 802.11 DCF (distributed coordination function) is inefficient and unfair especially under heavy load. In the literature, many algorithms have been proposed to tune the contention window (CW) size. However, these algorithms make every node select its backoff interval between [0, CW] in a random and uniform manner. This randomness is incorporated to avoid collisions among the nodes. But this random backoff interval can change the optimal order and frequency of channel access among competing nodes which results in unfairness and increased delay. In this paper, we propose an algorithm that schedules the medium access in a fair and effective manner. This algorithm enhances IEEE 802.11 DCF with additional level of contention resolution that prioritizes the contending nodes according to its queue length and waiting time. Each node computes its unique backoff interval using fuzzy logic based on the input parameters collected from contending nodes through overhearing. We evaluate our algorithm against IEEE 802.11, GDCF (gentle distributed coordination function) protocols using ns-2.35 simulator and show that our algorithm achieves good performance.

  1. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  2. Node clustering for wireless sensor networks

    International Nuclear Information System (INIS)

    Bhatti, S.; Qureshi, I.A.; Memon, S.

    2012-01-01

    Recent years have witnessed considerable growth in the development and deployment of clustering methods which are not only used to maintain network resources but also increases the reliability of the WSNs (Wireless Sensor Network) and the facts manifest by the wide range of clustering solutions. Node clustering by selecting key parameters to tackle the dynamic behaviour of resource constraint WSN is a challenging issue. This paper highlights the recent progress which has been carried out pertaining to the development of clustering solutions for the WSNs. The paper presents classification of node clustering methods and their comparison based on the objectives, clustering criteria and methodology. In addition, the potential open issues which need to be considered for future work are high lighted. Keywords: Clustering, Sensor Network, Static, Dynamic

  3. Characterization of simple wireless neurostimulators and sensors.

    Science.gov (United States)

    Gulick, Daniel W; Towe, Bruce C

    2014-01-01

    A single diode with a wireless power source and electrodes can act as an implantable stimulator or sensor. We have built such devices using RF and ultrasound power coupling. These simple devices could drastically reduce the size, weight, and cost of implants for applications where efficiency is not critical. However, a shortcoming has been a lack of control: any movement of the external power source would change the power coupling, thereby changing the stimulation current or modulating the sensor response. To correct for changes in power and signal coupling, we propose to use harmonic signals from the device. The diode acts as a frequency multiplier, and the harmonics it emits contain information about the drive level and bias. A simplified model suggests that estimation of power, electrode bias, and electrode resistance is possible from information contained in radiated harmonics even in the presence of significant noise. We also built a simple RF-powered stimulator with an onboard voltage limiter.

  4. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  5. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  6. Dynamic ad hoc networks

    CERN Document Server

    Rashvand, Habib

    2013-01-01

    Motivated by the exciting new application paradigm of using amalgamated technologies of the Internet and wireless, the next generation communication networks (also called 'ubiquitous', 'complex' and 'unstructured' networking) are changing the way we develop and apply our future systems and services at home and on local, national and global scales. Whatever the interconnection - a WiMAX enabled networked mobile vehicle, MEMS or nanotechnology enabled distributed sensor systems, Vehicular Ad hoc Networking (VANET) or Mobile Ad hoc Networking (MANET) - all can be classified under new networking s

  7. One Kind of Routing Algorithm Modified in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wei Ni Ni

    2016-01-01

    Full Text Available The wireless sensor networks are the emerging next generation sensor networks, Routing technology is the wireless sensor network communication layer of the core technology. To build reliable paths in wireless sensor networks, we can consider two ways: providing multiple paths utilizing the redundancy to assure the communication reliability or constructing transmission reliability mechanism to assure the reliability of every hop. Braid multipath algorithm and ReInforM routing algorithm are the realizations of these two mechanisms. After the analysis of these two algorithms, this paper proposes a ReInforM routing algorithm based braid multipath routing algorithm.

  8. Approach to sensor node calibration for efficient localisation in wireless sensor networks in realistic scenarios

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-06-01

    Full Text Available Localisation or position determination is one of the most important applications for the wireless sensor networks. Numerous current techniques for localisation of sensor nodes use the Received Signal Strength Indicator (RSSI) from sensor nodes...

  9. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    Science.gov (United States)

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  10. Dynamic Session-Key Generation for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chen Chin-Ling

    2008-01-01

    Full Text Available Abstract Recently, wireless sensor networks have been used extensively in different domains. For example, if the wireless sensor node of a wireless sensor network is distributed in an insecure area, a secret key must be used to protect the transmission between the sensor nodes. Most of the existing methods consist of preselecting keys from a key pool and forming a key chain. Then, the sensor nodes make use of the key chain to encrypt the data. However, while the secret key is being transmitted, it can easily be exposed during transmission. We propose a dynamic key management protocol, which can improve the security of the key juxtaposed to existing methods. Additionally, the dynamic update of the key can lower the probability of the key to being guessed correctly. In addition, with the new protocol, attacks on the wireless sensor network can be avoided.

  11. Dynamic Session-Key Generation for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Cheng-Ta Li

    2008-09-01

    Full Text Available Recently, wireless sensor networks have been used extensively in different domains. For example, if the wireless sensor node of a wireless sensor network is distributed in an insecure area, a secret key must be used to protect the transmission between the sensor nodes. Most of the existing methods consist of preselecting m keys from a key pool and forming a key chain. Then, the sensor nodes make use of the key chain to encrypt the data. However, while the secret key is being transmitted, it can easily be exposed during transmission. We propose a dynamic key management protocol, which can improve the security of the key juxtaposed to existing methods. Additionally, the dynamic update of the key can lower the probability of the key to being guessed correctly. In addition, with the new protocol, attacks on the wireless sensor network can be avoided.

  12. A wireless acoustic emission sensor remotely powered by light

    International Nuclear Information System (INIS)

    Zahedi, F; Huang, H

    2014-01-01

    In this paper, wireless sensing of acoustic emission (AE) signals using a battery-free sensor node remotely powered by light is presented. The wireless sensor consists of a piezoelectric wafer active sensor (PWAS) for AE signal acquisition and a wireless transponder that performs signal conditioning, frequency conversion, and wireless transmission. For signal conditioning, a voltage follower that consumes less than 2 mW was introduced to buffer the high impedance of the PWAS from the low impedance of the wireless transponder. A photocell-based energy harvester with a stable voltage output was developed to power the voltage follower so that the wireless AE sensor can operate without an external power source. The principle of operation of the battery-free wireless AE sensor node and the sensor interrogation system is described, followed by a detailed description of the hardware implementation. The voltage follower and the wireless channel were characterized by ultrasound pitch–catch and pencil lead break experiments. (paper)

  13. Development of a Testbed for Wireless Underground Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mehmet C. Vuran

    2010-01-01

    Full Text Available Wireless Underground Sensor Networks (WUSNs constitute one of the promising application areas of the recently developed wireless sensor networking techniques. WUSN is a specialized kind of Wireless Sensor Network (WSN that mainly focuses on the use of sensors that communicate through soil. Recent models for the wireless underground communication channel are proposed but few field experiments were realized to verify the accuracy of the models. The realization of field WUSN experiments proved to be extremely complex and time-consuming in comparison with the traditional wireless environment. To the best of our knowledge, this is the first work that proposes guidelines for the development of an outdoor WUSN testbed with the goals of improving the accuracy and reducing of time for WUSN experiments. Although the work mainly aims WUSNs, many of the presented practices can also be applied to generic WSN testbeds.

  14. Existing PON Infrastructure Supported Hybrid Fiber-Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhao, Ying; Deng, Lei

    2012-01-01

    We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals.......We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals....

  15. A Review of Various Security Protocols in Wireless Sensor Network

    OpenAIRE

    Anupma Sangwan; Deepti Sindhu; Kulbir Singh

    2011-01-01

    Sensor networks are highly distributed networks of small, lightweight wireless sensor nodes, deployed in large numbers to monitor the environment or system by the measurement of physical parameters such as temperature, pressure, or relative humidity, sound, vibration, motion or pollutants, at different locations. A WSN [1] is composed of a large number of low-cost sensor nodes (SNs) and one or several base stations (BS) or destination nodes. SNs are typically small wireless devices with limit...

  16. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  17. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare

    Science.gov (United States)

    Haque, Shah Ahsanul; Rahman, Mustafizur; Aziz, Syed Mahfuzul

    2015-01-01

    Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR) and low False Positive Rate (FPR). PMID:25884786

  18. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  19. Multipath routing in wireless sensor networks: survey and research challenges.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  20. A Nodes Deployment Algorithm in Wireless Sensor Network Based on Distribution

    Directory of Open Access Journals (Sweden)

    Song Yuli

    2014-07-01

    Full Text Available Wireless sensor network coverage is a basic problem of wireless sensor network. In this paper, we propose a wireless sensor network node deployment algorithm base on distribution in order to form an efficient wireless sensor network. The iteratively greedy algorithm is used in this paper to choose priority nodes into active until the entire network is covered by wireless sensor nodes, the whole network to multiply connected. The simulation results show that the distributed wireless sensor network node deployment algorithm can form a multiply connected wireless sensor network.

  1. Development of wireless sensor network for landslide monitoring system

    International Nuclear Information System (INIS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S

    2017-01-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km 2 . Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website. (paper)

  2. Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2014-01-01

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702

  3. Bio-mimic optimization strategies in wireless sensor networks: a survey.

    Science.gov (United States)

    Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2013-12-24

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.

  4. Security for multihop wireless networks

    CERN Document Server

    Khan, Shafiullah

    2014-01-01

    Security for Multihop Wireless Networks provides broad coverage of the security issues facing multihop wireless networks. Presenting the work of a different group of expert contributors in each chapter, it explores security in mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and personal area networks.Detailing technologies and processes that can help you secure your wireless networks, the book covers cryptographic coprocessors, encryption, authentication, key management, attacks and countermeasures, secure routing, secure medium access control, intrusion detection, ep

  5. Software Defined Networks in Wireless Sensor Architectures

    Directory of Open Access Journals (Sweden)

    Jesús Antonio Puente Fernández

    2018-03-01

    Full Text Available Nowadays, different protocols coexist in Internet that provides services to users. Unfortunately, control decisions and distributed management make it hard to control networks. These problems result in an inefficient and unpredictable network behaviour. Software Defined Networks (SDN is a new concept of network architecture. It intends to be more flexible and to simplify the management in networks with respect to traditional architectures. Each of these aspects are possible because of the separation of control plane (controller and data plane (switches in network devices. OpenFlow is the most common protocol for SDN networks that provides the communication between control and data planes. Moreover, the advantage of decoupling control and data planes enables a quick evolution of protocols and also its deployment without replacing data plane switches. In this survey, we review the SDN technology and the OpenFlow protocol and their related works. Specifically, we describe some technologies as Wireless Sensor Networks and Wireless Cellular Networks and how SDN can be included within them in order to solve their challenges. We classify different solutions for each technology attending to the problem that is being fixed.

  6. Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Alex Ramos

    2015-01-01

    Full Text Available Due to their increasing dissemination, wireless sensor networks (WSNs have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE, a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.

  7. Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks

    Science.gov (United States)

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-01

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215

  8. Sensor data security level estimation scheme for wireless sensor networks.

    Science.gov (United States)

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-19

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.

  9. A simple sensing mechanism for wireless, passive pressure sensors.

    Science.gov (United States)

    Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H

    2016-08-01

    We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.

  10. Less is more : data reduction in wireless sensor networks

    NARCIS (Netherlands)

    Masoum, Alireza

    2018-01-01

    Wireless sensor networks are monitoring systems consisting of many small, low-cost and low-power devices called sensor nodes. A large number of sensor nodes are deployed in an environment to monitor a physical phenomenon, execute light processes on collected data, and send either raw data or

  11. Data retrieval time for energy harvesting wireless sensors

    NARCIS (Netherlands)

    Mitici, M.A.; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    2015-01-01

    We consider the problem of retrieving a reliable estimate of an attribute monitored by a wireless sensor network, where the sensors harvest energy from the environment independently, at random. Each sensor stores the harvested energy in batteries of limited capacity. Moreover, provided they have

  12. Redundancy reduction in wireless sensor networks via centrality metrics

    NARCIS (Netherlands)

    Mocanu, D.C.; Torres Vega, M.; Liotta, A.; Cui, P.; Aggarwal, C.; Zhou, Z.-H.; Tuzhilin, A.; Xiong, H.; Wu, X.

    2015-01-01

    The advances in wireless communications, together with the need of sensing and controlling various nature or human made systems in a large number of points (e.g. smart traffic control, environmental monitoring), lead to the emergence of Wireless Sensor Networks (WSN) as a powerful tool to fulfill

  13. Design issues and applications of wireless sensor networks ...

    African Journals Online (AJOL)

    ... using tiny wireless sensor motes known as “smart dusts”, which have been made possible by advances in micro-electromechanical systems (MEMS) technology, wireless communications and digital electronics. Design considerations for the hardware and the topology necessary to realize these networks were evaluated.

  14. Design of wireless sensor system for neonatal monitoring

    NARCIS (Netherlands)

    Chen, W.; Nguyen, S.T.; Bouwstra, S.; Coops, R.; Brown, L.; Bambang Oetomo, S.; Feijs, L.M.G.

    2011-01-01

    In this paper, we present the application of wireless sensor technology and the advantages it will inherently have for neonatal care and monitoring at Neonatal Intensive Care Units (NICU). An electrocardiography (ECG) readout board and a wireless transceiver module developed by IMEC at the Holst

  15. Programming signal processing applications on heterogeneous wireless sensor platforms

    NARCIS (Netherlands)

    Buondonno, L.; Fortino, G.; Galzarano, S.; Giannantonio, R.; Giordano, A.; Gravina, R.; Guerrieri, A.

    2009-01-01

    This paper proposes the SPINE frameworks (SPINE1.x and SPINE2) for the programming of signal processing applications on heterogeneous wireless sensor platforms. In particular, two integrable approaches based on the proposed frameworks are described that allow to develop applications for wireless

  16. Wireless coexistence and interference test method for low-power wireless sensor networks

    NARCIS (Netherlands)

    Serra, R.; Nabi, Majid

    2015-01-01

    Wireless sensor networks (WSNs) are being increasingly introduced for critical applications such as safety, security and health. One the main characteristic requirements of such networks are that they should function with relative low power. Therefore the wireless links are more vulnerable.

  17. Event localization in underwater wireless sensor networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew John Robert; Jamshaid, Kamran; Shihada, Basem; Ho, Pin-Han

    2012-01-01

    We propose m-courses (Monitoring Courses), a novel solution to localize events in an underwater wireless sensor network. These networks consists of surface gateways and relay nodes. GPS can localize the position of surface gateways which can

  18. Probability Grid: A Location Estimation Scheme for Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Stoleru, Radu; Stankovic, John A

    2004-01-01

    Location information is of paramount importance for Wireless Sensor Networks (WSN). The accuracy of collected data can significantly be affected by an imprecise positioning of the event of interest...

  19. Energy-Efficient Querying of Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Mann, Christopher R

    2007-01-01

    Due to the distributed nature of information collection in wireless sensor networks and the inherent limitations of the component devices, the ability to store, locate, and retrieve data and services...

  20. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  1. Performance Evaluation of a Routing Protocol in Wireless Sensor Network

    National Research Council Canada - National Science Library

    Cheng Kiat Amos, Teo

    2005-01-01

    ... and have topologies engineered. As such, recent research into wireless sensor networks has attracted great interest due to its diversity of applications, ranging in areas such as home, health, environmental and military applications...

  2. Optimal Node Placement in Underwater Wireless Sensor Networks

    KAUST Repository

    Felamban, M.; Shihada, Basem; Jamshaid, K.

    2013-01-01

    Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance

  3. a survey of security vulnerabilities in wireless sensor networks

    African Journals Online (AJOL)

    user

    which primarily are their stringent energy constraints to which sensing nodes typify and security vulnerabilities. Security concerns ... Keywords: Sensors, Wireless, Network, Vulnerabilities, Security. 1. .... If the node detects a transmission.

  4. Analysis and Classification of Traffic in Wireless Sensor Network

    National Research Council Canada - National Science Library

    Beng, Wang W

    2007-01-01

    .... Specifically, this thesis studied the traffic generated by wireless sensor networks by setting up two different commonly used network topologies, namely a direct connection to the base and a daisy...

  5. New Wireless Sensors for Diagnostics Under Harsh Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High-temperature passive wireless surface acoustic wave (SAW) sensors are highly desirable for improving safety and efficiency in aviation and space vehicles. This...

  6. light-weight digital signature algorithm for wireless sensor networks

    Indian Academy of Sciences (India)

    M LAVANYA

    2017-09-14

    Sep 14, 2017 ... WSN applications do not even consider the security aspects because of the heavy ...... security scheme in wireless sensor networks with mobile sinks. IEEE Trans. ... security protocols. PhD Thesis, Eindhoven University of.

  7. An Energy Oriented Model and Simulator for Wireless Sensor etworks

    African Journals Online (AJOL)

    Nafiisah

    Wireless Sensor Network, Energy Modeling, Simulation, Energy. Efficiency ..... xMBCR: This scheme is based on the MBCR strategy, but improves the battery ... Moreover WSNs require large scale deployment (smart dusts) in remote and.

  8. Adaptive and Reactive Security for Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Stankovic, John A

    2007-01-01

    .... WSNs are also susceptible to malicious, non-random security attacks. For example, a wireless sensor network deployed in remote regions to detect and classify targets could be rendered inoperative by various security attacks...

  9. Efficient Information Dissemination in Wireless Sensor Networks using Mobile Sinks

    National Research Council Canada - National Science Library

    Vincze, Zoltan; Vidacs, Attila; Vida, Rolland

    2006-01-01

    ...; therefore, relaying information between sensors and a sink node, possibly over multiple wireless hops, in an energy-efficient manner is a challenging task that preoccupies the research community for some time now...

  10. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  11. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.

    Science.gov (United States)

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-07-04

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  12. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Weijian Tu

    2017-07-01

    Full Text Available Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  13. Distributed estimation of sensors position in underwater wireless sensor network

    Science.gov (United States)

    Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi

    2016-05-01

    In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.

  14. Sleep Control Game for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sang Hoon Lee

    2016-01-01

    Full Text Available In wireless sensor networks (WSNs, each node controls its sleep to reduce energy consumption without sacrificing message latency. In this paper we apply the game theory, which is a powerful tool that explains how each individual acts for his or her own economic benefit, to analyze the optimal sleep schedule for sensor nodes. We redefine this sleep control game as a modified version of the Prisoner’s Dilemma. In the sleep control game, each node decides whether or not it wakes up for the cycle. Payoff functions of the sleep control game consider the expected traffic volume, network conditions, and the expected packet delay. According to the payoff function, each node selects the best wake-up strategy that may minimize the energy consumption and maintain the latency performance. To investigate the performance of our algorithm, we apply the sleep control game to X-MAC, which is one of the recent WSN MAC protocols. Our detailed packet level simulations confirm that the proposed algorithm can effectively reduce the energy consumption by removing unnecessary wake-up operations without loss of the latency performance.

  15. Application of wireless sensor network technology in logistics information system

    Science.gov (United States)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  16. Coverage and Connectivity Issue in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rachit Trivedi

    2013-04-01

    Full Text Available Wireless sensor networks (WSNs are an emerging area of interest in research and development. It finds use in military surveillance, health care, environmental monitoring, forest fire detection and smart environments. An important research issue in WSNs is the coverage since cost, area and lifetime are directly validated to it.In this paper we present an overview of WSNs and try to refine the coverage and connectivity issues in wireless sensor networks.

  17. Wireless Sensor Networks for Long Distance Pipeline Monitoring

    OpenAIRE

    Augustine C. Azubogu; Victor E. Idigo; Schola U. Nnebe; Obinna S. Oguejiofor; Simon E.

    2013-01-01

    The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are pr...

  18. Clinical potential of implantable wireless sensors for orthopedic treatments.

    Science.gov (United States)

    Karipott, Salil Sidharthan; Nelson, Bradley D; Guldberg, Robert E; Ong, Keat Ghee

    2018-04-01

    Implantable wireless sensors have been used for real-time monitoring of chemicals and physical conditions of bones, tendons and muscles to diagnose and study orthopedic diseases and injuries. Due to the importance of these sensors in orthopedic care, a critical review, which not only analyzes the underlying technologies but also their clinical implementations and challenges, will provide a landscape view on their current state and their future clinical role. Areas covered: By conducting an extensive literature search and following the leaders of orthopedic implantable wireless sensors, this review covers the battery-powered and battery-free wireless implantable sensor technologies, and describes their implementation for hips, knees, spine, and shoulder stress/strain monitoring. Their advantages, limitations, and clinical challenges are also described. Expert commentary: Currently, implantable wireless sensors are mostly limited for scientific investigations and demonstrative experiments. Although rapid advancement in sensors and wireless technologies will push the reliability and practicality of these sensors for clinical realization, regulatory constraints and financial viability in medical device industry may curtail their continuous adoption for clinical orthopedic applications. In the next five years, these sensors are expected to gain increased interest from researchers, but wide clinical adoption is still unlikely.

  19. Joint sensor placement and power rating selection in energy harvesting wireless sensor networks

    KAUST Repository

    Bushnaq, Osama M.; Al-Naffouri, Tareq Y.; Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper, the focus is on optimal sensor placement and power rating selection for parameter estimation in wireless sensor networks (WSNs). We take into account the amount of energy harvested by the sensing nodes, communication link quality

  20. Virtual View Image over Wireless Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Gamantyo Hendrantoro

    2011-12-01

    Full Text Available In general, visual sensors are applied to build virtual view images. When number of visual sensors increases then quantity and quality of the information improves. However, the view images generation is a challenging task in Wireless Visual Sensor Network environment due to energy restriction, computation complexity, and bandwidth limitation. Hence this paper presents a new method of virtual view images generation from selected cameras on Wireless Visual Sensor Network. The aim of the paper is to meet bandwidth and energy limitations without reducing information quality. The experiment results showed that this method could minimize number of transmitted imageries with sufficient information.

  1. Research Update: Nanogenerators for self-powered autonomous wireless sensors

    Science.gov (United States)

    Khan, Usman; Hinchet, Ronan; Ryu, Hanjun; Kim, Sang-Woo

    2017-07-01

    Largely distributed networks of sensors based on the small electronics have great potential for health care, safety, and environmental monitoring. However, in order to have a maintenance free and sustainable operation, such wireless sensors have to be self-powered. Among various energies present in our environment, mechanical energy is widespread and can be harvested for powering the sensors. Piezoelectric and triboelectric nanogenerators (NGs) have been recently introduced for mechanical energy harvesting. Here we introduce the architecture and operational modes of self-powered autonomous wireless sensors. Thereafter, we review the piezoelectric and triboelectric NGs focusing on their working mechanism, structures, strategies, and materials.

  2. Flexible quality of service model for wireless body area sensor networks.

    Science.gov (United States)

    Liao, Yangzhe; Leeson, Mark S; Higgins, Matthew D

    2016-03-01

    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this Letter, the authors provide a flexible quality of service model for ad hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems.

  3. Wireless sensor network: an aimless gadget or a necessary tool for natural hazards warning systems

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    The purpose of the current study is to review the current technical and scientific state of wireless sensor networks (WSNs) with application on natural hazards. WSN have received great attention from the research community in the last few years, mainly due to the theoretical and practical efforts from challenges that led to mature solutions and adoption of standards, such as Bluetooth [2] and ZigBee [3]. Wireless technology solutions allows Micro-ElectroMechanical Systems sensors (MEMS) to be integrated (with all the necessary circuitry) to small wireless capable devices, the nodes. Available MEMS today include pressure, temperature, humidity, inertial and strain-gauge sensors as well as transducers for velocity, acceleration, vibration, flow position and inclination [4]. A WSN is composed by a large number of nodes which are deployed densely adjacent to the area under monitoring. Each node collects data which transmitted to a gateway. The main requirements that WSNs must fulfilled are quite different than those of ad-hoc networks. WSNs have to be self-organized (since the positions of individual nodes are not known in advance), they must present cooperative processing of tasks (where groups of nodes cooperate in order to provide the gathered data to the user), they require security mechanisms that are adaptive to monitoring conditions and all algorithms must be energy optimized. In this paper, the state of the art in hardware, software, algorithms and protocols for WSNs, focused on natural hazards, is surveyed. Architectures for WSNs are investigated along with their advantages and drawbacks. Available research prototypes as well as commercially proposed solutions that can be used for natural hazards monitoring and early warning systems are listed and classified. [1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Comput. Networks (Elsevier) 38 (4) (2002) 393-422. [2] Dursch, A.; Yen, D.C.; Shih, D.H. Bluetooth

  4. Increased Efficiency of Face Recognition System using Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Rajani Muraleedharan

    2006-02-01

    Full Text Available This research was inspired by the need of a flexible and cost effective biometric security system. The flexibility of the wireless sensor network makes it a natural choice for data transmission. Swarm intelligence (SI is used to optimize routing in distributed time varying network. In this paper, SI maintains the required bit error rate (BER for varied channel conditions while consuming minimal energy. A specific biometric, the face recognition system, is discussed as an example. Simulation shows that the wireless sensor network is efficient in energy consumption while keeping the transmission accuracy, and the wireless face recognition system is competitive to the traditional wired face recognition system in classification accuracy.

  5. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  6. Wireless sensor node for surface seawater density measurements.

    Science.gov (United States)

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  7. Energy harvesting for wireless sensors by using piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Duerager, Christian [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland)

    2012-07-01

    Wireless sensor technology, which integrates transducers, measurement electronics and wireless communication, has become increasingly vital in structural health monitoring (SHM) applications. Compared to traditional wired systems, wireless solutions reduce the installation time and costs and are not subjected to breakage caused by harsh weather conditions or other extreme events. Because of the low installation costs, wireless sensor networks allow the deployment of a big number of wireless sensor nodes on the structures. Moreover, the nodes can be placed on particularly critical components of the structure difficult to reach by wires. In most of the cases the power supply are conventional batteries, which could be a problem because of their finite life span. Furthermore, in the case of wireless sensor nodes located on structures, it is often advantageous to embed them, which makes an access impossible. Therefore, if a method of obtaining the untapped energy surrounding these sensors was implemented, significant life could be added to the power supply. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. In this paper we first discuss the research that has been performed in the area of energy harvesting for wireless sensor technologies by using the ambient vibration energy. In many cases the energy produced by the ambient vibrations is far too small to directly power a wireless sensor node. Therefore, in a second step we discuss the development process for an electronic energy harvesting circuit optimized for piezoelectric transducers. In the last part of this paper an experiment with different piezoelectric transducers and their applicability for energy harvesting applications on vibrating structures will be discussed. (orig.)

  8. The Radio Frequency Health Node Wireless Sensor System

    Science.gov (United States)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  9. Ninth International Conference on Wireless Communication and Sensor Networks

    CERN Document Server

    Tiwari, Murlidhar; Arora, Anish

    2014-01-01

    Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and con...

  10. Energy- Efficient Routing Protocols For Wireless Sensor Network A Review

    Directory of Open Access Journals (Sweden)

    Pardeep Kaur

    2017-12-01

    Full Text Available There has been plenty of interest in building and deploying sensor networks. Wireless sensor network is a collection of a large number of small nodes which acts as routers also. These nodes carry very limited power source which is non-rechargeable and non-replaceable which makes energy consumption an significant issue. Energy conservation is a very important issue for prolonging the lifetime of the network. As the sensor nodes act like routers as well the determination of routing technique plays a key role in controlling the consumption of energy. This paper describes the framework of wireless sensor network and the analysis and study of various research work related to Energy Efficient Routing in Wireless Sensor Networks.

  11. A wireless soil moisture sensor powered by solar energy.

    Directory of Open Access Journals (Sweden)

    Mingliang Jiang

    Full Text Available In a variety of agricultural activities, such as irrigation scheduling and nutrient management, soil water content is regarded as an essential parameter. Either power supply or long-distance cable is hardly available within field scale. For the necessity of monitoring soil water dynamics at field scale, this study presents a wireless soil moisture sensor based on the impedance transform of the frequency domain. The sensor system is powered by solar energy, and the data can be instantly transmitted by wireless communication. The sensor electrodes are embedded into the bottom of a supporting rod so that the sensor can measure soil water contents at different depths. An optimal design with time executing sequence is considered to reduce the energy consumption. The experimental results showed that the sensor is a promising tool for monitoring moisture in large-scale farmland using solar power and wireless communication.

  12. Decentralized position verification in geographic ad hoc routing

    NARCIS (Netherlands)

    Leinmüller, Tim; Schoch, Elmar; Kargl, Frank; Maihöfer, Christian

    Inter-vehicle communication is regarded as one of the major applications of mobile ad hoc networks (MANETs). Compared to MANETs or wireless sensor networks (WSNs), these so-called vehicular ad hoc networks (VANETs) have unique requirements on network protocols. The requirements result mainly from

  13. Wireless Sensor Networks for Detection of IED Emplacement

    Science.gov (United States)

    2009-06-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but

  14. Sleep scheduling with expected common coverage in wireless sensor networks

    OpenAIRE

    Bulut, Eyuphan; Korpeoglu, Ibrahim

    2011-01-01

    Sleep scheduling, which is putting some sensor nodes into sleep mode without harming network functionality, is a common method to reduce energy consumption in dense wireless sensor networks. This paper proposes a distributed and energy efficient sleep scheduling and routing scheme that can be used to extend the lifetime of a sensor network while maintaining a user defined coverage and connectivity. The scheme can activate and deactivate the three basic units of a sensor node (sensing, proces...

  15. Self-powered wireless disposable sensor for welfare application.

    Science.gov (United States)

    Douseki, Takakuni; Tanaka, Ami

    2013-01-01

    A self-powered urinary incontinence sensor consisting of a flexible urine-activated battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The flexible urine-activated battery is embedded in a disposal diaper and makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit supplies the power to a wireless transmitter. A 315-MHz-band wireless transmitter performs low-power operation. To verify the effectiveness of the circuit scheme, we fabricated a prototype sensor system. When 80 cc of urine is poured onto the diaper, the battery outputs a voltage of 1 V; and the sensor can transmit an ID signal over a distance of 5 m.

  16. Local, distributed topology control for large-scale wireless ad-hoc networks

    NARCIS (Netherlands)

    Nieberg, T.; Hurink, Johann L.

    In this document, topology control of a large-scale, wireless network by a distributed algorithm that uses only locally available information is presented. Topology control algorithms adjust the transmission power of wireless nodes to create a desired topology. The algorithm, named local power

  17. Ultra-High Temperature Distributed Wireless Sensors

    Energy Technology Data Exchange (ETDEWEB)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O' Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  18. Geographic wormhole detection in wireless sensor networks.

    Directory of Open Access Journals (Sweden)

    Mehdi Sookhak

    Full Text Available Wireless sensor networks (WSNs are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP. The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS, Authentication of Nodes Scheme (ANS, Wormhole Detection uses Hound Packet (WHOP, and Wormhole Detection with Neighborhood Information (WDI using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR in the geographic routing protocols.

  19. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  20. Wirelessly powered sensor networks and computational RFID

    CERN Document Server

    2013-01-01

    The Wireless Identification and Sensing Platform (WISP) is the first of a new class of RF-powered sensing and computing systems.  Rather than being powered by batteries, these sensor systems are powered by radio waves that are either deliberately broadcast or ambient.  Enabled by ongoing exponential improvements in the energy efficiency of microelectronics, RF-powered sensing and computing is rapidly moving along a trajectory from impossible (in the recent past), to feasible (today), toward practical and commonplace (in the near future). This book is a collection of key papers on RF-powered sensing and computing systems including the WISP.  Several of the papers grew out of the WISP Challenge, a program in which Intel Corporation donated WISPs to academic applicants who proposed compelling WISP-based projects.  The book also includes papers presented at the first WISP Summit, a workshop held in Berkeley, CA in association with the ACM Sensys conference, as well as other relevant papers. The book provides ...

  1. Energy efficient medium access protocol for wireless medical body area sensor networks.

    Science.gov (United States)

    Omeni, O; Wong, A; Burdett, A J; Toumazou, C

    2008-12-01

    This paper presents a novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications. Wireless body area networks consist of wireless sensor nodes attached to the human body to monitor vital signs such as body temperature, activity or heart-rate. The network adopts a master-slave architecture, where the body-worn slave node periodically sends sensor readings to a central master node. Unlike traditional peer-to-peer wireless sensor networks, the nodes in this biomedical WBASN are not deployed in an ad hoc fashion. Joining a network is centrally managed and all communications are single-hop. To reduce energy consumption, all the sensor nodes are in standby or sleep mode until the centrally assigned time slot. Once a node has joined a network, there is no possibility of collision within a cluster as all communication is initiated by the central node and is addressed uniquely to a slave node. To avoid collisions with nearby transmitters, a clear channel assessment algorithm based on standard listen-before-transmit (LBT) is used. To handle time slot overlaps, the novel concept of a wakeup fallback time is introduced. Using single-hop communication and centrally controlled sleep/wakeup times leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee. As duty cycle is reduced, the overall power consumption approaches the standby power. The protocol is implemented in hardware as part of the Sensiumtrade system-on-chip WBASN ASIC, in a 0.13- mum CMOS process.

  2. On-Demand Routing in Multi-hop Wireless Mobile Ad Hoc Networks

    National Research Council Canada - National Science Library

    Maltz, David A

    2001-01-01

    .... Routing protocols used in ad hoc networks must automatically adjust to environments that can vary between the extremes of high mobility with low bandwidth, and low mobility with high bandwidth...

  3. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  4. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    Directory of Open Access Journals (Sweden)

    Shuangxi Zhou

    2016-09-01

    Full Text Available This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF Radio Frequency Identification (RFID technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  5. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  6. Hybrid emergency radiation detection: a wireless sensor network application for consequence management of a radiological release

    Science.gov (United States)

    Kyker, Ronald D.; Berry, Nina; Stark, Doug; Nachtigal, Noel; Kershaw, Chris

    2004-08-01

    The Hybrid Emergency Radiation Detection (HERD) system is a rapidly deployable ad-hoc wireless sensor network for monitoring the radiation hazard associated with a radiation release. The system is designed for low power, small size, low cost, and rapid deployment in order to provide early notification and minimize exposure. The many design tradeoffs, decisions, and challenges in the implementation of this wireless sensor network design will be presented and compared to the commercial systems available. Our research in a scaleable modular architectural highlights the need and implementation of a system level approach that provides flexibility and adaptability for a variety of applications. This approach seeks to minimize power, provide mission specific specialization, and provide the capability to upgrade the system with the most recent technology advancements by encapsulation and modularity. The implementation of a low power, widely available Real Time Operating System (RTOS) for multitasking with an improvement in code maintenance, portability, and reuse will be presented. Finally future design enhancements technology trends affecting wireless sensor networks will be presented.

  7. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-10-24

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S levels which are important for early warnings of two critical environmental conditions namely forest fires and industrial gas leaks. The temperature sensor has TCR of -0.018/°, the highest of any inkjet-printed sensor and the H2S sensor can detect as low as 3 ppm of gas. These sensors and an antenna have been realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing have been combined in order to realize a unique low-cost, fully integrated wireless sensor node. Field tests show that these sensor nodes can wirelessly communicate up to a distance of over 100m. Our proposed sensor node can be a part of internet of things with the aim of providing a better and safe living.

  8. Low power radio communication platform for wireless sensor network

    NARCIS (Netherlands)

    Dutta, R.; Bentum, Marinus Jan; van der Zee, Ronan A.R.; Kokkeler, Andre B.J.

    2009-01-01

    Wireless sensor networks are predicted to be the most versatile, popular and useful technology in the near future. A large number of applications are targeted which will hugely benefit from a network of tiny computers with few sensors, radio communication platform, intelligent networking and

  9. Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2014-01-01

    information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...

  10. Adaptive Information Access in Multiple Applications Support Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2012-01-01

    Nowadays, due to wide applicability of Wireless Sensor Network (WSN) added by the low cost sensor devices, its popularity among the researchers and industrialists are very much visible. A substantial amount of works can be seen in the literature on WSN which are mainly focused on application...

  11. Wireless sensor network effectively controls center pivot irrigation of sorghum

    Science.gov (United States)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  12. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  13. Reconfiguration of sustainable thermoelectric generation using wireless sensor network

    DEFF Research Database (Denmark)

    Chen, Min

    2014-01-01

    wireless sensor networks (WSNs), where remotely deployed temperature and voltage sensors as well as latching relays can be organized as a whole to intelligently identify and execute the optimal interconnection of TEM strings. A reconfigurable TEM array with a WSN controller and a maximum power point...

  14. The Use of Wireless Sensor Network for Increasing Airport Safety

    Directory of Open Access Journals (Sweden)

    Jakub Kraus

    2013-09-01

    Full Text Available This article deals with the use of wireless sensor networks for increasing safety at airports, respectively for replacing the current monitoring system to ensure safety. The article describes sensor networks and their applications to the identified processes and consideration of financial and safety benefits.

  15. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  16. Interference mitigation through adaptive power control in wireless sensor networks

    NARCIS (Netherlands)

    Chincoli, M.; Bacchiani, C.; Syed, Aly; Exarchakos, G.; Liotta, A.

    2016-01-01

    Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counter-productive

  17. Performance analysis of data retrieval in wireless sensor networks

    NARCIS (Netherlands)

    Mitici, M.A.

    2015-01-01

    Wireless sensor networks are currently revolutionizing the way we live, work, and interact with the surrounding environment. Due to their ease of deployment, cost effectiveness and versatile functionality, sensors are employed in a wide range of areas such as environmental monitoring, surveillance

  18. Benchmarking Block Ciphers for Wireless Sensor Networks (Extended Abstract)

    NARCIS (Netherlands)

    Law, Yee Wei; Doumen, Jeroen; Hartel, Pieter H.

    The energy efficiency requirement of wireless sensor networks (WSNs) is especially high because the sensor nodes are meant to operate without human intervention for a long period of time with little energy supply. Besides, available storage is scarce due to their small physical size. Therefore

  19. Optimal task scheduling policy in energy harvesting wireless sensor networks

    NARCIS (Netherlands)

    Rao, Vijay S.; Prasad, R. Venkatesha; Niemegeers, Ignas G M M

    2015-01-01

    Ambient energy harvesting for Wireless Sensor Networks (WSNs) is being pitched as a promising solution for long-lasting deployments in various WSN applications. However, the sensor nodes most often do not have enough energy to handle application, network and house-keeping tasks because amount of

  20. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...... (MMAE) approach to the data resulted in the highest classification success rate, due to the use of precise forth-order mathematical models which relate the feed offer to the pitch angle of the neck. This thesis shows that wireless sensor networks can be successfully employed to monitor the behavior...

  1. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  2. Small Worlds in the Tree Topologies of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Qiao, Li; Lingguo, Cui; Baihai, Zhang

    2010-01-01

    In this study, the characteristics of small worlds are investigated in the context of the tree topologies of wireless sensor networks. Tree topologies, which construct spatial graphs with larger characteristic path lengths than random graphs and small clustering coefficients, are ubiquitous...... in wireless sensor networks. Suffering from the link rewiring or the link addition, the characteristic path length of the tree topology reduces rapidly and the clustering coefficient increases greatly. The variety of characteristic path length influences the time synchronization characteristics of wireless...... sensor networks greatly. With the increase of the link rewiring or the link addition probability, the time synchronization error decreases drastically. Two novel protocols named LEACH-SW and TREEPSI-SW are proposed to improve the performances of the sensor networks, in which the small world...

  3. Temperature estimation of induction machines based on wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2018-04-01

    Full Text Available In this paper, a fourth-order Kalman filter (KF algorithm is implemented in the wireless sensor node to estimate the temperatures of the stator winding, the rotor cage and the stator core in the induction machine. Three separate wireless sensor nodes are used as the data acquisition systems for different input signals. Six Hall sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All of them are processed to root mean square (rms in ampere and volt. A rotary encoder is mounted for the rotor speed and Pt-1000 is used for the temperature of the coolant air. The processed signals in the physical unit are transmitted wirelessly to the host wireless sensor node, where the KF is implemented with fixed-point arithmetic in Contiki OS. Time-division multiple access (TDMA is used to make the wireless transmission more stable. Compared to the floating-point implementation, the fixed-point implementation has the same estimation accuracy at only about one-fifth of the computation time. The temperature estimation system can work under any work condition as long as there are currents through the machine. It can also be rebooted for estimation even when wireless transmission has collapsed or packages are missing.

  4. Addressing practical challenges in utility optimization of mobile wireless sensor networks

    Science.gov (United States)

    Eswaran, Sharanya; Misra, Archan; La Porta, Thomas; Leung, Kin

    2008-04-01

    This paper examines the practical challenges in the application of the distributed network utility maximization (NUM) framework to the problem of resource allocation and sensor device adaptation in a mission-centric wireless sensor network (WSN) environment. By providing rich (multi-modal), real-time information about a variety of (often inaccessible or hostile) operating environments, sensors such as video, acoustic and short-aperture radar enhance the situational awareness of many battlefield missions. Prior work on the applicability of the NUM framework to mission-centric WSNs has focused on tackling the challenges introduced by i) the definition of an individual mission's utility as a collective function of multiple sensor flows and ii) the dissemination of an individual sensor's data via a multicast tree to multiple consuming missions. However, the practical application and performance of this framework is influenced by several parameters internal to the framework and also by implementation-specific decisions. This is made further complex due to mobile nodes. In this paper, we use discrete-event simulations to study the effects of these parameters on the performance of the protocol in terms of speed of convergence, packet loss, and signaling overhead thereby addressing the challenges posed by wireless interference and node mobility in ad-hoc battlefield scenarios. This study provides better understanding of the issues involved in the practical adaptation of the NUM framework. It also helps identify potential avenues of improvement within the framework and protocol.

  5. Preventing Wormhole Attacks on Wireless Ad Hoc Networks: A Graph Theoretic Approach

    National Research Council Canada - National Science Library

    Lazos, L; Poovendran, Radha; Meadows, C; Syverson, P; Chang, L. W

    2005-01-01

    We study the problem of characterizing the wormhole attack, an attack that can be mounted on a wide range of wireless network protocols without compromising any cryptographic quantity or network node...

  6. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  7. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  8. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  9. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  10. Design of verification platform for wireless vision sensor networks

    Science.gov (United States)

    Ye, Juanjuan; Shang, Fei; Yu, Chuang

    2017-08-01

    At present, the majority of research for wireless vision sensor networks (WVSNs) still remains in the software simulation stage, and the verification platforms of WVSNs that available for use are very few. This situation seriously restricts the transformation from theory research of WVSNs to practical application. Therefore, it is necessary to study the construction of verification platform of WVSNs. This paper combines wireless transceiver module, visual information acquisition module and power acquisition module, designs a high-performance wireless vision sensor node whose core is ARM11 microprocessor and selects AODV as the routing protocol to set up a verification platform called AdvanWorks for WVSNs. Experiments show that the AdvanWorks can successfully achieve functions of image acquisition, coding, wireless transmission, and obtain the effective distance parameters between nodes, which lays a good foundation for the follow-up application of WVSNs.

  11. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  12. A Family of Key Agreement Mechanisms for Mission Critical Communications for Secure Mobile Ad Hoc and Wireless Mesh Internetworking

    Directory of Open Access Journals (Sweden)

    Tryfonas Theo

    2011-01-01

    Full Text Available Future wireless networks like mobile ad hoc networks and wireless mesh networks are expected to play important role in demanding communications such as mission critical communications. MANETs are ideal for emergency cases where the communication infrastructure has been completely destroyed and there is a need for quick set up of communications among the rescue/emergency workers. In such emergency scenarios wireless mesh networks may be employed in a later phase for providing advanced communications and services acting as a backbone network in the affected area. Internetworking of both types of future networks will provide a broad range of mission critical applications. While offering many advantages, such as flexibility, easy of deployment and low cost, MANETs and mesh networks face important security and resilience threats, especially for such demanding applications. We introduce a family of key agreement methods based on weak to strong authentication associated with several multiparty contributory key establishment methods. We examine the attributes of each key establishment method and how each method can be better applied in different scenarios. The proposed protocols support seamlessly both types of networks and consider system and application requirements such as efficient and secure internetworking, dynamicity of network topologies and support of thin clients.

  13. Open-WiSe: a solar powered wireless sensor network platform.

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  14. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  15. Data Driven Performance Evaluation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Antonio A. F. Loureiro

    2010-03-01

    Full Text Available Wireless Sensor Networks are presented as devices for signal sampling and reconstruction. Within this framework, the qualitative and quantitative influence of (i signal granularity, (ii spatial distribution of sensors, (iii sensors clustering, and (iv signal reconstruction procedure are assessed. This is done by defining an error metric and performing a Monte Carlo experiment. It is shown that all these factors have significant impact on the quality of the reconstructed signal. The extent of such impact is quantitatively assessed.

  16. MASY: Management of secret keys in federated wireless sensor networks

    OpenAIRE

    Maerien, Jef; Michiels, Sam; Huygens, Christophe; Joosen, Wouter

    2010-01-01

    Wireless Sensor Networks are becoming federated and mobile environments. These new capabilities pose a lot of new possibilities and challenges. One of these challenges is to create a secure environment to allow multiple trusted companies to share and merge their sensor network infrastructure. The most basic need for a secure environment is the deployment of key material. However, most current day research assumes pre-shared secrets between the sensor nodes of most, if not all, companies in a ...

  17. Field test of wireless sensor network in the nuclear environment

    International Nuclear Information System (INIS)

    Li, L.; Wang, Q.; Bari, A.; Deng, C.; Chen, D.; Jiang, J.; Alexander, Q.; Sur, B.

    2014-01-01

    Wireless sensor networks (WSNs) are appealing options for the health monitoring of nuclear power plants due to their low cost and flexibility. Before they can be used in highly regulated nuclear environments, their reliability in the nuclear environment and compatibility with existing devices have to be assessed. In situ electromagnetic interference tests, wireless signal propagation tests, and nuclear radiation hardness tests conducted on candidate WSN systems at AECL Chalk River Labs are presented. The results are favourable to WSN in nuclear applications. (author)

  18. Field test of wireless sensor network in the nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, L., E-mail: lil@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Wang, Q.; Bari, A. [Univ. of Western Ontario, London, Ontario (Canada); Deng, C.; Chen, D. [Univ. of Electronic Science and Technology of China, Chengdu, Sichuan (China); Jiang, J. [Univ. of Western Ontario, London, Ontario (Canada); Alexander, Q.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-06-15

    Wireless sensor networks (WSNs) are appealing options for the health monitoring of nuclear power plants due to their low cost and flexibility. Before they can be used in highly regulated nuclear environments, their reliability in the nuclear environment and compatibility with existing devices have to be assessed. In situ electromagnetic interference tests, wireless signal propagation tests, and nuclear radiation hardness tests conducted on candidate WSN systems at AECL Chalk River Labs are presented. The results are favourable to WSN in nuclear applications. (author)

  19. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    Science.gov (United States)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is

  20. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    Science.gov (United States)

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  1. A wireless sensor tag platform for container security and integrity

    Science.gov (United States)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    2011-04-01

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. This allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.

  2. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization

  3. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks.

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-11-15

    An important criterion of wireless sensor network is the energy efficiency inspecified applications. In this wireless multimedia sensor network, the observations arederived from acoustic sensors. Focused on the energy problem of target tracking, this paperproposes a robust forecasting method to enhance the energy efficiency of wirelessmultimedia sensor networks. Target motion information is acquired by acoustic sensornodes while a distributed network with honeycomb configuration is constructed. Thereby,target localization is performed by multiple sensor nodes collaboratively through acousticsignal processing. A novel method, combining autoregressive moving average (ARMA)model and radial basis function networks (RBFNs), is exploited to perform robust targetposition forecasting during target tracking. Then sensor nodes around the target areawakened according to the forecasted target position. With committee decision of sensornodes, target localization is performed in a distributed manner and the uncertainty ofdetection is reduced. Moreover, a sensor-to-observer routing approach of the honeycombmesh network is investigated to solve the data reporting considering the residual energy ofsensor nodes. Target localization and forecasting are implemented in experiments.Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimentalresults verify that energy efficiency of wireless multimedia sensor network is enhanced bythe proposed target tracking method.

  4. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2007-06-01

    Full Text Available Owing to numerous potential applications, wireless sensor networks have been attracting significant research effort recently. The critical challenge that wireless sensor networks often face is to sustain long-term operation on limited battery energy. Coverage maintenance schemes can effectively prolong network lifetime by selecting and employing a subset of sensors in the network to provide sufficient sensing coverage over a target region. We envision future wireless sensor networks composed of a vast number of miniaturized sensors in exceedingly high density. Therefore, the key issue of coverage maintenance for future sensor networks is the scalability to sensor deployment density. In this paper, we propose a novel coverage maintenance scheme, scalable coverage maintenance (SCOM, which is scalable to sensor deployment density in terms of communication overhead (i.e., number of transmitted and received beacons and computational complexity (i.e., time and space complexity. In addition, SCOM achieves high energy efficiency and load balancing over different sensors. We have validated our claims through both analysis and simulations.

  5. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  6. A comparative study of misalignment detection using a novel Wireless Sensor with conventional Wired Sensors

    International Nuclear Information System (INIS)

    Arebi, L; Gu, F; Ball, A

    2012-01-01

    The advancement in low cost and low power MEMS sensors makes it possible to develop a cost-effective wireless accelerometer for condition monitoring. Especially, the MEMS accelerometer can be mounted directly on a rotating shaft, which has the potential to capture the dynamics of the shaft more accurately and hence to achieve high monitoring performance. In this paper a systematic comparison of shaft misalignment detection is conducted, based on a bearing test rig, between the wireless sensor measurement scheme and other three common sensors: a laser vibrometer, an accelerometer and a shaft encoder. These four sensors are used to measure simultaneously the dynamic responses: Instantaneous Angular Speed (IAS) from the encoder, bearing house acceleration from the accelerometer, shaft displacements from the laser vibrometer and angular acceleration from the wireless sensor. These responses are then compared in both the time and frequency domains in detecting and diagnosing different levels of shaft misalignment. Results show the effectiveness of wireless accelerometer in detecting the faults.

  7. Multi-objective ant algorithm for wireless sensor network positioning

    International Nuclear Information System (INIS)

    Fidanova, S.; Shindarov, M.; Marinov, P.

    2013-01-01

    It is impossible to imagine our modern life without telecommunications. Wireless networks are a part of telecommunications. Wireless sensor networks (WSN) consist of spatially distributed sensors, which communicate in wireless way. This network monitors physical or environmental conditions. The objective is the full coverage of the monitoring region and less energy consumption of the network. The most appropriate approach to solve the problem is metaheuristics. In this paper the full coverage of the area is treated as a constrain. The objectives which are optimized are a minimal number of sensors and energy (lifetime) of the network. We apply multi-objective Ant Colony Optimization to solve this important telecommunication problem. We chose MAX-MIN Ant System approach, because it is proven to converge to the global optima

  8. Tracking Mobile Robot in Indoor Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2014-01-01

    Full Text Available This work addresses the problem of tracking mobile robots in indoor wireless sensor networks (WSNs. Our approach is based on a localization scheme with RSSI (received signal strength indication which is used widely in WSN. The developed tracking system is designed for continuous estimation of the robot’s trajectory. A WSN, which is composed of many very simple and cheap wireless sensor nodes, is deployed at a specific region of interest. The wireless sensor nodes collect RSSI information sent by mobile robots. A range-based data fusion scheme is used to estimate the robot’s trajectory. Moreover, a Kalman filter is designed to improve tracking accuracy. Experiments are provided to assess the performance of the proposed scheme.

  9. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  10. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  11. A solar charge and discharge controller for wireless sensor nodes

    Science.gov (United States)

    Dang, Yibo; Shen, Shu

    2018-02-01

    Aiming at the energy supply problem that restricts the life of wireless sensor nodes, a solar energy charge and discharge controller suitable for wireless sensor nodes is designed in this paper. A Microcontroller is used as the core of the solar charge and discharge controller. The software of the solar charge and discharge controller adopts the C language to realize the program of the main control module. Firstly, the function of monitoring solar panel voltage and lithium battery voltage are simulated by Protel software, and the charge time is tested in cloudy and overcast outdoor environment. The results of the experiment show that our controller meets the power supply demand of wireless sensor nodes.

  12. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  13. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  14. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-03-01

    Full Text Available Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  15. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  16. Autonomous solutions for powering wireless sensor nodes in rivers

    Science.gov (United States)

    Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.

    2015-05-01

    There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.

  17. Localization in Wireless Sensor Networks: A Survey on Algorithms, Measurement Techniques, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Anup Kumar Paul

    2017-10-01

    Full Text Available Localization is an important aspect in the field of wireless sensor networks (WSNs that has developed significant research interest among academia and research community. Wireless sensor network is formed by a large number of tiny, low energy, limited processing capability and low-cost sensors that communicate with each other in ad-hoc fashion. The task of determining physical coordinates of sensor nodes in WSNs is known as localization or positioning and is a key factor in today’s communication systems to estimate the place of origin of events. As the requirement of the positioning accuracy for different applications varies, different localization methods are used in different applications and there are several challenges in some special scenarios such as forest fire detection. In this paper, we survey different measurement techniques and strategies for range based and range free localization with an emphasis on the latter. Further, we discuss different localization-based applications, where the estimation of the location information is crucial. Finally, a comprehensive discussion of the challenges such as accuracy, cost, complexity, and scalability are given.

  18. Wireless sensor network performance metrics for building applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, W.S. (Department of Civil Engineering Yeungnam University 214-1 Dae-Dong, Gyeongsan-Si Gyeongsangbuk-Do 712-749 South Korea); Healy, W.M. [Building and Fire Research Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899-8632 (United States)

    2010-06-15

    Metrics are investigated to help assess the performance of wireless sensors in buildings. Wireless sensor networks present tremendous opportunities for energy savings and improvement in occupant comfort in buildings by making data about conditions and equipment more readily available. A key barrier to their adoption, however, is the uncertainty among users regarding the reliability of the wireless links through building construction. Tests were carried out that examined three performance metrics as a function of transmitter-receiver separation distance, transmitter power level, and obstruction type. These tests demonstrated, via the packet delivery rate, a clear transition from reliable to unreliable communications at different separation distances. While the packet delivery rate is difficult to measure in actual applications, the received signal strength indication correlated well with the drop in packet delivery rate in the relatively noise-free environment used in these tests. The concept of an equivalent distance was introduced to translate the range of reliability in open field operation to that seen in a typical building, thereby providing wireless system designers a rough estimate of the necessary spacing between sensor nodes in building applications. It is anticipated that the availability of straightforward metrics on the range of wireless sensors in buildings will enable more widespread sensing in buildings for improved control and fault detection. (author)

  19. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  20. A Piezoelectric Passive Wireless Sensor for Monitoring Strain

    Science.gov (United States)

    Zou, Xiyue; Ferri, Paul N.; Hogan, Ben; Mazzeo, Aaron D.; Hull. Patrick V.

    2017-01-01

    Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-?). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.

  1. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  2. Configuration of Wireless Cooperative/Sensor Networks

    National Research Council Canada - National Science Library

    Shafiee, Hamid R; Maham, B; Vazifehdan, J

    2008-01-01

    .... When employing more than one antenna at each node of a wireless network is not applicable, cooperation diversity protocols exploit the inherent spatial diversity of relay channels by allowing mobile...

  3. Characteristics of Key Update Strategies for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2011-01-01

    Wireless sensor networks offer the advantages of simple and low-resource communication. Challenged by this simplicity and low-resources, security is of particular importance in many cases such as transmission of sensitive data or strict requirements of tamper-resistance. Updating the security keys...... is one of the essential points in security, which restrict the amount of data that may be exposed when a key is compromised. In this paper, we investigate key update methods that may be used in wireless sensor networks, and benefiting from stochastic model checking we derive characteristics...

  4. An LDPC decoder architecture for wireless sensor network applications.

    Science.gov (United States)

    Biroli, Andrea Dario Giancarlo; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%-80%, depending on considered environment, distance and bit error rate.

  5. An LDPC Decoder Architecture for Wireless Sensor Network Applications

    Science.gov (United States)

    Giancarlo Biroli, Andrea Dario; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%–80%, depending on considered environment, distance and bit error rate. PMID:22438724

  6. A key design to prolong lifetime of wireless sensor network

    International Nuclear Information System (INIS)

    Qiu, Bo; Chen, XiQiu; Wu, Qi

    2016-01-01

    In order to solve the contradiction between the connectivity of the wireless sensor network and the key storage consumption, under the premise of reducing network storage consumption, the key pre-distribution management scheme with higher connectivity rate is proposed using the hexagonal network deployment information, which adopts the idea of the matrix space for the square deployment information strategy to reduce the burden of the network storage. Ability against the capture attack is improved obviously. The results show that contradiction between the network connectivity rate and the energy consumption has a better solution, and the proposed algorithm is suitable for the wireless sensor networks of energy limited.

  7. The Application of Wireless Sensor Networks in Management of Orchard

    Science.gov (United States)

    Zhu, Guizhi

    A monitoring system based on wireless sensor network is established, aiming at the difficulty of information acquisition in the orchard on the hill at present. The temperature and humidity sensors are deployed around fruit trees to gather the real-time environmental parameters, and the wireless communication modules with self-organized form, which transmit the data to a remote central server, can realize the function of monitoring. By setting the parameters of data intelligent analysis judgment, the information on remote diagnosis and decision support can be timely and effectively feed back to users.

  8. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  9. A Survey of Routing Protocols in Wireless Body Sensor Networks

    Science.gov (United States)

    Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed

    2014-01-01

    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses. PMID:24419163

  10. Sensors on speaking terms: Schedule-based medium access control protocols for wireless sensor networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.

    2007-01-01

    Wireless sensor networks make the previously unobservable, observable. The basic idea behind these networks is straightforward: all wires are cut in traditional sensing systems and the sensors are equipped with batteries and radio's to virtually restore the cut wires. The resulting sensors can be

  11. Real-Time Support on IEEE 802.11 Wireless Ad-Hoc Networks: Reality vs. Theory

    Science.gov (United States)

    Kang, Mikyung; Kang, Dong-In; Suh, Jinwoo

    The usable throughput of an IEEE 802.11 system for an application is much less than the raw bandwidth. Although 802.11b has a theoretical maximum of 11Mbps, more than half of the bandwidth is consumed by overhead leaving at most 5Mbps of usable bandwidth. Considering this characteristic, this paper proposes and analyzes a real-time distributed scheduling scheme based on the existing IEEE 802.11 wireless ad-hoc networks, using USC/ISI's Power Aware Sensing Tracking and Analysis (PASTA) hardware platform. We compared the distributed real-time scheduling scheme with the real-time polling scheme to meet deadline, and compared a measured real bandwidth with a theoretical result. The theoretical and experimental results show that the distributed scheduling scheme can guarantee real-time traffic and enhances the performance up to 74% compared with polling scheme.

  12. Analyzing Multimode Wireless Sensor Networks Using the Network Calculus

    Directory of Open Access Journals (Sweden)

    Xi Jin

    2015-01-01

    Full Text Available The network calculus is a powerful tool to analyze the performance of wireless sensor networks. But the original network calculus can only model the single-mode wireless sensor network. In this paper, we combine the original network calculus with the multimode model to analyze the maximum delay bound of the flow of interest in the multimode wireless sensor network. There are two combined methods A-MM and N-MM. The method A-MM models the whole network as a multimode component, and the method N-MM models each node as a multimode component. We prove that the maximum delay bound computed by the method A-MM is tighter than or equal to that computed by the method N-MM. Experiments show that our proposed methods can significantly decrease the analytical delay bound comparing with the separate flow analysis method. For the large-scale wireless sensor network with 32 thousands of sensor nodes, our proposed methods can decrease about 70% of the analytical delay bound.

  13. Capacity of wireless ad-hoc broadcast networks under realistic channel models

    NARCIS (Netherlands)

    Atici, C.; Sunay, M.O.

    2009-01-01

    In a wireless broadcasting scenario, some of the nodes can help the source node by forwarding the received information. Due to the interference from multiple transmissions, selection of these nodes directly affects the performance of the system under a given total power and hop constraint. In this

  14. Compressive sensing based wireless sensor for structural health monitoring

    Science.gov (United States)

    Bao, Yuequan; Zou, Zilong; Li, Hui

    2014-03-01

    Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.

  15. Steam distribution and energy delivery optimization using wireless sensors

    Science.gov (United States)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  16. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-02-05

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  17. A Localization Algorithm Based on AOA for Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Sun Lee

    2012-01-01

    Full Text Available Knowledge of positions of sensor nodes in Wireless Sensor Networks (WSNs will make possible many applications such as asset monitoring, object tracking and routing. In WSNs, the errors may happen in the measurement of distances and angles between pairs of nodes in WSN and these errors will be propagated to different nodes, the estimation of positions of sensor nodes can be difficult and have huge errors. In this paper, we will propose localization algorithm based on both distance and angle to landmark. So, we introduce a method of incident angle to landmark and the algorithm to exchange physical data such as distances and incident angles and update the position of a node by utilizing multiple landmarks and multiple paths to landmarks.

  18. Wireless instrumentation for data transfer of smart sensors

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Kwon, Il Bum

    2005-01-01

    A wireless instrumentation system was constructed to transfer the data from a structure site to a monitoring site. The device was composed of a transmitter and a receiver. The transmitter was connected with smart sensors, as fiber optic sensors, piezo-sensors, and shape memory alloy sensors. The specification of this device was as follows: 2.4 GHz of transmitted frequency, 8 channels, 57600 bps of the transmitted speed, and 10 mW of the transmitted power. By bending the beam, the strain data were well transmitted to a monitor PC.

  19. Wireless overhead line temperature sensor based on RF cavity resonance

    International Nuclear Information System (INIS)

    Ghafourian, Maryam; Nezhad, Abolghasem Zeidaabadi; Bridges, Greg E; Thomson, Douglas J

    2013-01-01

    The importance of maximizing power transfer through overhead transmission lines necessitates the use of dynamic power control to keep transmission line temperatures within acceptable limits. Excessive conductor operating temperatures lead to an increased sag of the transmission line conductor and may reduce their expected life. In this paper, a passive wireless sensor based on a resonant radio frequency (RF) cavity is presented which can be used to measure overhead transmission line temperature. The temperature sensor does not require a power supply and can be easily clamped to the power line with an antenna attached. Changing temperature causes a change of cavity dimensions and a shift in resonant frequency. The resonant frequency of the cavity can be interrogated wirelessly. This temperature sensor has a resolution of 0.07 °C and can be interrogated from distances greater than 4.5 m. The sensor has a deviation from linearity of less than 2 °C. (paper)

  20. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  1. ZigBee wireless sensor network for environmental monitoring system

    Science.gov (United States)

    Chai, Shun-qi; Ji, Lei; Wu, Hong

    2009-11-01

    ZigBee is a new close-up, low-complexity, low-power, low data rate, low-cost wireless networking technology, mainly used for short distance wireless transmission. It is based on IEEE802.15.4 standards, thousands of tiny sensors form a network through mutual coordination to communications. This paper introduces the ZigBee wireless sensor networks in environmental monitoring applications. The hardware design, including microprocessor, data acquisition, antenna and peripheral circuits of the chips, and through software design composed ZigBee mesh network that can make data acquisition and communication. This network has low power consumption, low cost, the effective area is big, and information transfers reliable merits. And have confirmed the network's communication applicability by the Serial Com Assistant, also testified the network have very good pragmatism by the NS2 emulation the network's operation.

  2. Wireless implantable passive strain sensor: design, fabrication and characterization

    International Nuclear Information System (INIS)

    Umbrecht, F; Wägli, P; Dechand, S; Hierold, Ch; Gattiker, F; Neuenschwander, J; Sennhauser, U

    2010-01-01

    This work presents a new passive sensor concept for monitoring the deformation of orthopedic implants. The novel sensing principle of the WIPSS (wireless implantable passive strain sensor) is based on a hydro-mechanical amplification effect. The WIPSS is entirely made from biocompatible PMMA and consists of a microchannel attached to a reservoir, which is filled with an incompressible fluid. As the reservoir is exposed to strain, its volume changes and consequently the fill level inside the microchannel varies. The wireless detection of the microchannel's strain-dependent fill level is based on ultrasound. The WIPSS' sensing principle is proved by finite-element simulations and the reservoir's design is optimized toward maximum volume change, in order to achieve high sensitivity. A fabrication process for WIPSS sensor devices entirely made from PMMA is presented. The obtained measurement results confirmed the sensor's functionality and showed very good agreement with the obtained results of the conducted FE simulations regarding the sensor's sensitivity. A strain resolution of 1.7 ± 0.2 × 10 −5 was achieved. Further, the determination of the cross-sensitivity to temperature and strains applied out of the sensing direction is presented. The response to dynamic inputs (0.1–5 Hz) has been measured and showed decreasing sensor output with increasing frequency. Test structures of the sensor device allow the application of a signal bandwidth up to 1 Hz. Therefore, the proposed sensor concept of the WIPSS presents a promising new sensor system for static in vivo strain monitoring of orthopedic implants. In combination with the developed ultrasound-based read-out method, this new sensor system offers the potential of wireless sensor read-out with medical ultrasound scanners, which are commercially available.

  3. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    OpenAIRE

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers ...

  4. Wireless powering for low-power distributed sensors

    Directory of Open Access Journals (Sweden)

    Popović Zoya B.

    2006-01-01

    Full Text Available In this paper, an overview of the field of wireless powering is presented with an emphasis on low-power applications. Several rectenna elements and arrays are discussed in more detail: (1 a 10-GHz array for powering sensors in aircraft wings; (2 a single antenna in the 2.4-GHz ISM band for low-power assisted-living sensors; and (3 a broadband array for power harvesting in the 2-18GHz frequency range.

  5. Cluster Based Hierarchical Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Rahim, Muhammad Sajjadur; Ullah, Shaikh Enayet

    2012-01-01

    The efficient use of energy source in a sensor node is most desirable criteria for prolong the life time of wireless sensor network. In this paper, we propose a two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP). We introduce a new concept called head-set, consists of one active cluster head and some other associate cluster heads within a cluster. The head-set members are responsible for control and management of the network. Results show that t...

  6. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  7. Supporting Learning with Wireless Sensor Data

    Directory of Open Access Journals (Sweden)

    Arttu Perttula

    2013-03-01

    Full Text Available In this article, learning is studied in in situ applications that involve sensors. The main questions are how to conceptualize experiential learning involving sensors and what kinds of learning applications using sensors already exist or could be designed. It is claimed that experiential learning, context information and sensor data supports twenty first century learning. The concepts of context, technology-mediated experiences, shared felt experiences and experiential learning theory will be used to describe a framework for sensor-based mobile learning environments. Several scenarios and case examples using sensors and sensor data will be presented, and they will be analyzed using the framework. Finally, the article contributes to the discussion concerning the role of technology-mediated learning experiences and collective sensor data in developing twenty first century learning by characterizing what kinds of skills and competences are supported in learning situations that involve sensors.

  8. Non-line-of-sight optical wireless sensor network operating in multiscattering channel

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-11-01

    Networks of sensors are envisaged to be major participants in future data-gathering systems for civilian and military applications, including medical and environmental monitoring and surveillance, home security, agriculture, and industry. Typically, a very large number of miniature sensing and communicating nodes are distributed ad hoc at the location of interest, where they establish a network and wirelessly communicate sensed data either to one another or to a base station using various network topologies. The optical modality is a potential solution for the links, due to the small and lightweight hardware and low power consumption, as well as other special features. Notably, the backscattering of light by molecules and aerosols in the atmosphere can function as a vehicle of communication in a way similar to the deployment of numerous tiny reflecting mirrors. The scattering of light at solar-blind ultraviolet wavelengths is of particular interest since scattering by atmospheric particles is significant and ambient solar interference is minimal. In this paper we derive a mathematical model of a simple and low-cost non-line-of-sight (NLOS) optical wireless sensor network operating in the solar-blind ultraviolet spectral range. The viability and limitations of the internode link are evaluated and found to facilitate miniature operational sensor networks.

  9. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Science.gov (United States)

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  10. Information Source Selection and Management Framework in Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2013-01-01

    information source selection and management framework and presents an algorithm which selects the information source based on the information mismatch probability [1]. The sampling rate for every access is decided as per the maximum allowable power consumption limit. Index Terms-wireless sensor network...

  11. GCF: Green Conflict Free TDMA Scheduling for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Pawar, Pranav M.; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2012-01-01

    The last few years have seen the promising growth in the application of wireless sensor networks (WSNs). The contribution of this paper is on a cluster-based time division multiple access (TDMA) scheduling algorithm to improve the performance of WSN applications in terms of energy efficiency, delay...

  12. Deployment of Wireless Sensor Networks in Crop Storages

    DEFF Research Database (Denmark)

    Juul, Jakob Pilegaard; Green, Ole; Jacobsen, Rune Hylsberg

    2015-01-01

    of a wireless sensor network based system that provides continuous, automatic, and up-to-date information on a crop storage, while presenting the data in an easily accessible manner, is also described. The design decisions, challenges, and practical experiences from real-world large scale deployment...

  13. Sustainable Performance in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Dragoni, Nicola

    2013-01-01

    In this practical demo we illustrate the concept of "sustainable performance" in Energy-Harvesting Wireless Sensor Networks (EH-WSNs). In particular, for different classes of applications and under several energy harvesting scenarios, we show how it is possible to have sustainable performance when...

  14. Node Heterogeneity for Energy Efficient Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    The energy of the node in the Wireless Sensor Networks (WSNs) is scare and causes the variation in the lifetime of the network. Also, the throughput and delay of the network depend on how long the network sustains i.e. energy consumption. One way to increase the sustainability of network...

  15. Self-Propagating Worms in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Giannetsos, Thanassis; Dimitriou, Tassos; Prasad, Neeli R.

    2009-01-01

    Malicious code is defined as software designed to execute attacks on software systems. This work demonstrates the possibility of executing malware on wireless sensor nodes that are based on the von Neumann architecture. This is achieved by exploiting a buffer overflow vulnerability to smash the c...

  16. Energy Aware Cluster Based Routing Scheme For Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Roy Sohini

    2015-09-01

    Full Text Available Wireless Sensor Network (WSN has emerged as an important supplement to the modern wireless communication systems due to its wide range of applications. The recent researches are facing the various challenges of the sensor network more gracefully. However, energy efficiency has still remained a matter of concern for the researches. Meeting the countless security needs, timely data delivery and taking a quick action, efficient route selection and multi-path routing etc. can only be achieved at the cost of energy. Hierarchical routing is more useful in this regard. The proposed algorithm Energy Aware Cluster Based Routing Scheme (EACBRS aims at conserving energy with the help of hierarchical routing by calculating the optimum number of cluster heads for the network, selecting energy-efficient route to the sink and by offering congestion control. Simulation results prove that EACBRS performs better than existing hierarchical routing algorithms like Distributed Energy-Efficient Clustering (DEEC algorithm for heterogeneous wireless sensor networks and Energy Efficient Heterogeneous Clustered scheme for Wireless Sensor Network (EEHC.

  17. Low Cost Wireless Sensor Network for Continuous Bridge monitoring

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Tragas, P

    2012-01-01

    Continuous monitoring wireless sensor networks (WSN) are considered as one of the most promising means to harvest information from large structures in order to assist in structural health monitoring and management. At the same time, continuous monitoring WSNs suffer from limited network lifetimes...

  18. A Low Energy Intelligent Clustering Protocol for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Li, Qiao; Cui, Lingguo; Zhang, Baihai

    2010-01-01

    LEACH (low-energy adaptive clustering hierarchy) is a well-known self-organizing, adaptive clustering protocol of wireless sensor networks. However it has some shortcomings when it faces such problems as the cluster construction and energy management. In this paper, LEICP (low energy intelligent...

  19. A Latent Variable Clustering Method for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Vasilev, Vladislav; Iliev, Georgi; Poulkov, Vladimir

    2016-01-01

    In this paper we derive a clustering method based on the Hidden Conditional Random Field (HCRF) model in order to maximizes the performance of a wireless sensor. Our novel approach to clustering in this paper is in the application of an index invariant graph that we defined in a previous work and...

  20. Multi-Channel Wireless Sensor Networks: Protocols, Design and Evaluation

    NARCIS (Netherlands)

    Durmaz, O.

    2009-01-01

    Pervasive systems, which are described as networked embedded systems integrated with everyday environments, are considered to have the potential to change our daily lives by creating smart surroundings and by their ubiquity, just as the Internet. In the last decade, “Wireless Sensor Networks��? have

  1. Distributed Event Detection in Wireless Sensor Networks for Disaster Management

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Poel, Mannes; Taghikhaki, Zahra; Havinga, Paul J.M.

    2010-01-01

    Recently, wireless sensor networks (WSNs) have become mature enough to go beyond being simple fine-grained continuous monitoring platforms and become one of the enabling technologies for disaster early-warning systems. Event detection functionality of WSNs can be of great help and importance for

  2. Energy Aware GPSR Routing Protocol in a Wireless Sensor Network ...

    African Journals Online (AJOL)

    Energy is the scarce resource in wireless sensor networks (WSNs), and it determines the lifetime of WSNs. For this reason, WSN algorithms and routing protocols should be selected in a manner which fulfills these energy requirements. This paper presents a solution to increase the lifetime of WSNs by decreasing their ...

  3. Self-learning power control in wireless sensor networks

    NARCIS (Netherlands)

    Chincoli, Michele; Liotta, Antonio

    2018-01-01

    Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and

  4. Assessment of proactive transmission power control for wireless sensor networks

    NARCIS (Netherlands)

    kotian, Roshan; Exarchakos, Georgios; Liotta, Antonio

    2014-01-01

    In order to prolong lifetime of Wireless Sensor Networks (WSN), Transmission Power Control (TPC) techniques are employed. The existing TPC schemes adjust the transmission power mostly reacting to changes at link quality between communicating nodes. Proactive TPC has been proposed in the recent past

  5. In-node cognitive power control in Wireless Sensor Networks

    NARCIS (Netherlands)

    Chincoli, Michele; Liotta, Antonio

    2017-01-01

    Reliability, interoperability and efficiency are fundamental in Wireless Sensor Network deployment. Herein we look at how transmission power control may be used to reduce interference, which is particularly problematic in high-density conditions. We adopt a distributed approach where every node has

  6. Towards airflow sensors with energy harvesting and wireless transmitting properties

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Sørensen, John Aasted; Lynggaard, Per

    2018-01-01

    to traditional anemometers, ultrasonic measurement or expensive LIDAR (Light Imaging, Detection and Ranging) systems. This paper presents the initial design considerations for a low-cost combined air speed and wind direction sensor, which harvests energy to drive it and to power the wireless transmission...... of system configurations and measurements. An energy-budget for this transmission is included....

  7. Extending Lifetime of Wireless Sensor Networks using Forward Error Correction

    DEFF Research Database (Denmark)

    Donapudi, S U; Obel, C O; Madsen, Jan

    2006-01-01

    Communication between nodes in wireless sensor networks (WSN) is susceptible to transmission errors caused by low signal strength or interference. These errors manifest themselves as lost or corrupt packets. This often leads to retransmission, which in turn results in increased power consumption...

  8. Overview of wireless underground sensor networks for agriculture ...

    African Journals Online (AJOL)

    In recent years, many applications have been proposed for wireless sensor networks (WSN). One of these is agriculture, where WSN can play an important role in the handling and management of water resources for agricultural irrigation and so on. The WSN suffer from intensive human involvement and delay of ...

  9. Security in Wireless Sensor Networks Employing MACGSP6

    Science.gov (United States)

    Nitipaichit, Yuttasart

    2010-01-01

    Wireless Sensor Networks (WSNs) have unique characteristics which constrain them; including small energy stores, limited computation, and short range communication capability. Most traditional security algorithms use cryptographic primitives such as Public-key cryptography and are not optimized for energy usage. Employing these algorithms for the…

  10. Fast and Accurate Residential Fire Detection Using Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, Majid; Meratnia, Nirvana; Havinga, Paul J.M.

    2010-01-01

    Prompt and accurate residential fire detection is important for on-time fire extinguishing and consequently reducing damages and life losses. To detect fire sensors are needed to measure the environmental parameters and algorithms are required to decide about occurrence of fire. Recently, wireless

  11. Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon

    Focusing on Wireless Sensor Networks (WSN) that are powered by energy harvesting, this dissertation focuses on energy-efficient communication links between senders and receivers that are alternating between active and sleeping states of operation. In particular, the focus lies on Medium Access...

  12. A 60-GHz rectenna for monolithic wireless sensor tags

    NARCIS (Netherlands)

    Gao, H.; Johannsen, U.; Matters - Kammerer, M.; Milosevic, D.; Smolders, A.B.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the design of a 60-GHz rectenna with an on-chip antenna and rectifier in 65nm CMOS technology. The rectenna is often the bottleneck in realizing a fully-integrated monolithic wireless sensor tag. In this paper, problems of the mm-wave rectifier are discussed, and the

  13. Unlocking the Laboratory: Autonomous Wireless Sensor Authentication in Practice

    Science.gov (United States)

    Huggard, Meriel; McGoldrick, Ciaran

    2013-01-01

    Purpose: The purpose of this study is to evaluate a practical laboratory task where final year undergraduate students design, implement and validate an inferred security wireless sensor access system. Design/methodology/approach: The quality of the learning and technical environment was evaluated from a number of perspectives using a mixed methods…

  14. Cluster-based service discovery for heterogeneous wireless sensor networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.; Hartel, Pieter H.

    2007-01-01

    We propose an energy-efficient service discovery protocol for heterogeneous wireless sensor networks. Our solution exploits a cluster overlay, where the clusterhead nodes form a distributed service registry. A service lookup results in visiting only the clusterhead nodes. We aim for minimizing the

  15. Wireless-accessible sensor populations for monitoring biological variables

    NARCIS (Netherlands)

    Mazzu, Marco; Scalvini, Simonetta; Giordano, A.; Frumento, E.; Wells, Hannah; Lokhorst, C.; Glisenti, Fulvio

    2008-01-01

    The current health-care infrastructure is generally considered to be inadequate to meet the needs of an increasingly older population. We have investigated the feasibility of a passive in-home monitoring system based on wireless accessible sensor populations (WASP). In an EU-funded project we have

  16. Localization and Communication for UWB-based Wireless Sensor Networks

    NARCIS (Netherlands)

    Wang, Y.

    2011-01-01

    The great demand for location-aware wireless sensor networks (WSNs) motivates the research in this thesis. The unique characteristics of WSNs impose numerous challenges on localization and communication. In this thesis, we handle some key challenges and provide affordable solutions. Impulse radio

  17. Autonomous Vehicle Coordination with Wireless Sensor and Actuator Networks

    NARCIS (Netherlands)

    Marin Perianu, Mihai; Bosch, S.; Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.

    2010-01-01

    A coordinated team of mobile wireless sensor and actuator nodes can bring numerous benefits for various applications in the field of cooperative surveillance, mapping unknown areas, disaster management, automated highway and space exploration. This article explores the idea of mobile nodes using

  18. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  19. Positioning system in wireless sensor networks using NS-2

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-10-01

    Full Text Available The practical difficulties of setting up a wireless sensor network (WSN) and analysing its performance have made simulation essential for the study of WSNs. The ns-2 network simulator is one of the most widely used tools by researchers...

  20. Prototyping Service Discovery and Usage in Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.

    2007-01-01

    Heterogeneous Wireless Sensor Networks (WSNs) are envisioned to provide different types of services in an open and dynamic environment. This paper presents the design, implementation and evaluation of a service discovery and usage solution for heterogeneous WSNs. The users have the possibility to

  1. Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Dragoni, Nicola

    2012-01-01

    ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever-ch...

  2. Sleep Scheduling in Critical Event Monitoring with Wireless Sensor Networks

    NARCIS (Netherlands)

    Guo, Peng; Jiang, Tao; Zhang, Qian; Zhang, Kui

    In this paper, we focus on the applications of wireless sensor networks (WSNs) for critical event monitoring, where normally there are only small number of packets need to be transmitted, while when urgent event occurs, the alarm should be broadcast to the entire network as soon as possible. During

  3. Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Doumen, J.M.; Hartel, Pieter H.

    Choosing the most storage- and energy-efficient block cipher specifically for wireless sensor networks (WSNs) is not as straightforward as it seems. To our knowledge so far, there is no systematic evaluation framework for the purpose. In this paper, we have identified the candidates of block ciphers

  4. Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Doumen, J.M.; Hartel, Pieter H.

    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time

  5. Benchmarking Block Ciphers for Wireless Sensor Networks (Extended Abstract)

    NARCIS (Netherlands)

    Law, Y.W.; Doumen, J.M.; Hartel, Pieter H.

    2004-01-01

    Choosing the most storage- and energy-efficient block cipher specifically for wireless sensor networks (WSNs) is not as straightforward as it seems. To our knowledge so far, there is no systematic evaluation framework for the purpose. We have identified the candidates of block ciphers suitable for

  6. Java-based mobile agent platforms for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Carbone, A.; Fortino, G.; Galzarano, S.; Ganzha, M.; Paprzycki, M.

    2010-01-01

    This paper proposes an overview and comparison of mobile agent platforms for the development of wireless sensor network applications. In particular, the architecture, programming model and basic performance of two Java-based agent platforms, Mobile Agent Platform for Sun SPOT (MAPS) and Agent

  7. Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Dragoni, Nicola

    2015-01-01

    Energy Harvesting - Wireless Sensor Networks (EH-WSNs) constitute systems of networked sensing nodes that are capable of extracting energy from the environment and that use the harvested energy to operate in a sustainable state. Sustainability, seen as design goal, has a significant impact...

  8. Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are

  9. A Vehicle-mounted Crop Detector with Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhenjiang ZHONG

    2014-03-01

    Full Text Available In order to detect crop chlorophyll content in real-time, a new vehicle-mounted detector for measuring crop canopy spectral characteristics was developed. It was designed to work as a wireless sensor network with several optical sensor nodes and one control unit. All the optical sensor nodes were mounted on an on-board mechanical structure so that they could collect the canopy spectral data while in mobile condition. Each optical sensor node was designed to contain four optical channels, which allowed it work at the wavebands of 550, 650, 766 and 850 nm. The control unit included a PDA (Personal Digital Assistant device with a ZigBee wireless network coordinator and a GPRS module. It was used to receive, display, store all the data sent from optical sensor nodes and send data to the server through GPRS module. The calibration tests verified the stability of the wireless network and the measurement precision of the sensors. Both stationary and moving field experiments were also conducted in a winter wheat experimental field. Results showed that the correlation between chlorophyll content and vegetation index had high significance with the highest R2 of 0.6824. Those results showed the potential of the detector for field application.

  10. Thermoelectric Powered Wireless Sensors for Dry-Cask Storage

    Science.gov (United States)

    Carstens, Thomas Alan

    This study focuses on the development of self-powered wireless sensors. These sensors can be used to measure key parameters in extreme environments; e.g., temperature monitoring for spent nuclear fuel during dry-cask storage. This study has developed a design methodology for these self-powered monitoring systems. The main elements that constitute this work consist of selecting and testing a power source for the wireless sensor, determination of the attenuation of the wireless signal, and testing the wireless sensor circuitry in an extreme environment. OrigenArp determined the decay heat and gamma/neutron source strength of the spent fuel throughout the service life of the dry-cask. A first principles analysis modeled the temperatures inside the dry-cask. A finite-element heat transfer code calculated the temperature distribution of the thermoelectric and heat sink. The temperature distributions determine the power produced by the thermoelectric. It was experimentally verified that a thermoelectric generator (HZ-14) with a DC/DC converter (Linear Technology LTC3108EDE) can power a transceiver (EmbedRF) at condition which represent prototypical conditions throughout and beyond the service life of the dry-cask. The wireless sensor is required to broadcast with enough power to overcome the attenuation from the dry-cask. It will be important to minimize the attenuation of the signal in order to broadcast with a small transmission power. To investigate the signal transmission through the dry-cask, CST Microwave Studio was used to determine the scattering parameter S2,1 for a horizontal dry-cask. Important parameters that can influence the transmission of the signal are antenna orientation, antenna placement, and transmission frequency. The thermoelectric generator, DC/DC converter, and transceiver were exposed to 60Co gamma radiation (exposure rate170.3 Rad/min) at the University of Wisconsin Medical Radiation Research Center. The effects of gamma radiation on the

  11. An epidemic model for biological data fusion in ad hoc sensor networks

    Science.gov (United States)

    Chang, K. C.; Kotari, Vikas

    2009-05-01

    Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.

  12. A Survey on Trust Management for Mobile Ad Hoc Networks

    Science.gov (United States)

    2011-11-01

    expects, trust is dangerous implying the possible betrayal of trust. In his comments on Lagerspetz’s book titled Trust: The Tacit Demand, Lahno [24...AODV Zouridaki et al. (2005 ) [79] (2006) [80] Secure routing Direct observation [79][80] Reputation by secondhand information [80] Packet dropping...areas of signal processing, wireless communications, sensor and mobile ad hoc networks. He is co-editor of the book Wireless Sensor Networks: Signal

  13. Spatial reuse of wireless medium in multi-hop wireless sensor networks

    NARCIS (Netherlands)

    Geerlings, J.; Geerlings, J.; van Hoesel, L.F.W.; Hoeksema, F.W.; Slump, Cornelis H.; Havinga, Paul J.M.

    2007-01-01

    The idea of multi-hop communication originates from the 1990’s and is eagerly incorporated in the wireless sensor network research field, since a tremendous amount of energy can be saved by letting —often battery powered– nodes in the network assist each other in forwarding packets. In such systems

  14. Wireless Sensor Networks : Structure and Algorithms

    NARCIS (Netherlands)

    van Dijk, T.C.

    2014-01-01

    In this thesis we look at various problems in wireless networking. First we consider two problems in physical-model networks. We introduce a new model for localisation. The model is based on a range-free model of radio transmissions. The first scheme is randomised and we analyse its expected

  15. Optimalization of Beacon Selection for Localization in Wireless AD-HOC Networks

    Directory of Open Access Journals (Sweden)

    Martin Matula

    2008-01-01

    Full Text Available In this paper we engage in optimalization of convenient beacons for localization position of a node in the ad-hoc network. An algorithm designed by us localizes position of moving or static node by RSS (Received Signal Strength method and trilateration. At first, localization of unknown node runs by combination of all beacons. Than optimalizating algorithmreduces the number of beacons (and repeats localization, while only three left. Its reduction is based on highest levels of received signal strength. It is only when signals are from the nearest beacons. Position localizating exactness is statistically interpreted from all localization by beacons combination and its repeating.

  16. Passive wireless sensor systems can recognize activites of daily living.

    Science.gov (United States)

    Urwyler, Prabitha; Stucki, Reto; Muri, Rene; Mosimann, Urs P; Nef, Tobias

    2015-08-01

    The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.

  17. Performance Analysis of a Cluster-Based MAC Protocol for Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jesús Alonso-Zárate

    2010-01-01

    Full Text Available An analytical model to evaluate the non-saturated performance of the Distributed Queuing Medium Access Control Protocol for Ad Hoc Networks (DQMANs in single-hop networks is presented in this paper. DQMAN is comprised of a spontaneous, temporary, and dynamic clustering mechanism integrated with a near-optimum distributed queuing Medium Access Control (MAC protocol. Clustering is executed in a distributed manner using a mechanism inspired by the Distributed Coordination Function (DCF of the IEEE 802.11. Once a station seizes the channel, it becomes the temporary clusterhead of a spontaneous cluster and it coordinates the peer-to-peer communications between the clustermembers. Within each cluster, a near-optimum distributed queuing MAC protocol is executed. The theoretical performance analysis of DQMAN in single-hop networks under non-saturation conditions is presented in this paper. The approach integrates the analysis of the clustering mechanism into the MAC layer model. Up to the knowledge of the authors, this approach is novel in the literature. In addition, the performance of an ad hoc network using DQMAN is compared to that obtained when using the DCF of the IEEE 802.11, as a benchmark reference.

  18. Wireless Sensor Networks for Developmental and Flight Instrumentation

    Science.gov (United States)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments

  19. Why General Outlier Detection Techniques Do Not Suffice For Wireless Sensor Networks?

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Raw data collected in wireless sensor networks are often unreliable and inaccurate due to noise, faulty sensors and harsh environmental effects. Sensor data that significantly deviate from normal pattern of sensed data are often called outliers. Outlier detection in wireless sensor networks aims at

  20. Wireless Power Transfer Protocols in Sensor Networks: Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Sotiris Nikoletseas

    2017-04-01

    Full Text Available Rapid technological advances in the domain of Wireless Power Transfer pave the way for novel methods for power management in systems of wireless devices, and recent research works have already started considering algorithmic solutions for tackling emerging problems. In this paper, we investigate the problem of efficient and balanced Wireless Power Transfer in Wireless Sensor Networks. We employ wireless chargers that replenish the energy of network nodes. We propose two protocols that configure the activity of the chargers. One protocol performs wireless charging focused on the charging efficiency, while the other aims at proper balance of the chargers’ residual energy. We conduct detailed experiments using real devices and we validate the experimental results via larger scale simulations. We observe that, in both the experimental evaluation and the evaluation through detailed simulations, both protocols achieve their main goals. The Charging Oriented protocol achieves good charging efficiency throughout the experiment, while the Energy Balancing protocol achieves a uniform distribution of energy within the chargers.