WorldWideScience

Sample records for hoc unmanned vehicle

  1. Performance Analysis of Mobile Ad Hoc Unmanned Aerial Vehicle Communication Networks with Directional Antennas

    Directory of Open Access Journals (Sweden)

    Abdel Ilah Alshbatat

    2010-01-01

    Full Text Available Unmanned aerial vehicles (UAVs have the potential of creating an ad hoc communication network in the air. Most UAVs used in communication networks are equipped with wireless transceivers using omnidirectional antennas. In this paper, we consider a collection of UAVs that communicate through wireless links as a mobile ad-hoc network using directional antennas. The network design goal is to maximize the throughput and minimize the end-to-end delay. In this respect, we propose a new medium access control protocol for a network of UAVs with directional antennas. We analyze the communication channel between the UAVs and the effect of aircraft attitude on the network performance. Using the optimized network engineering tool (OPNET, we compare our protocol with the IEEE 802.11 protocol for omnidirectional antennas. The simulation results show performance improvement in end-to-end delay as well as throughput.

  2. Morphing unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Gomez, Juan Carlos; Garcia, Ephrahim

    2011-01-01

    Research on aircraft morphing has exploded in recent years. The motivation and driving force behind this has been to find new and novel ways to increase the capabilities of aircraft. Materials advancements have helped to increase possibilities with respect to actuation and, hence, a diversity of concepts and unimagined capabilities. The expanded role of unmanned aerial vehicles (UAVs) has provided an ideal platform for exploring these emergent morphing concepts since at this scale a greater amount of risk can be taken, as well as having more manageable fabrication and cost requirements. This review focuses on presenting the role UAVs have in morphing research by giving an overview of the UAV morphing concepts, designs, and technologies described in the literature. A presentation of quantitative information as well as a discussion of technical issues is given where possible to begin gaining some insight into the overall assessment and performance of these technologies. (topical review)

  3. Collaborative Unmanned Vehicles for Maritime Domain Awareness

    National Research Council Canada - National Science Library

    Healey, A. J; Horner, D. P; Kragelund, S. P

    2005-01-01

    Unmanned vehicles are becoming a critical component of military operations. As the vehicles develop in capability, there will be a trend for heterogeneous classes of unmanned vehicles to be able to work in a more collaborative fashion...

  4. Controlling Unmanned Vehicles : the Human Factors Solution

    NARCIS (Netherlands)

    Erp, J.B.F. van

    2000-01-01

    Recent developments and experiences have proven the usefulness and potential of Unmanned Vehicles (UVs). Emerging technologies enable new missions, broadening the applicability of UVs from simple remote spies towards unmanned combat vehicles carrying lethal weapons. However, despite the emerging

  5. Handbook of unmanned aerial vehicles

    CERN Document Server

    Vachtsevanos, George

    2015-01-01

    The Handbook of Unmanned Aerial Vehicles is a reference text for the academic and research communities, industry, manufacturers, users, practitioners, Federal Government, Federal and State Agencies, the private sector, as well as all organizations that are and will be using unmanned aircraft in a wide spectrum of applications. The Handbook covers all aspects of UAVs, from design to logistics and ethical issues. It is also targeting the young investigator, the future inventor and entrepreneur by providing an overview and detailed information of the state-of-the-art as well as useful new concepts that may lead to innovative research. The contents of the Handbook include material that addresses the needs and ‘know how’ of all of the above sectors targeting a very diverse audience. The Handbook offers a unique and comprehensive treatise of everything one needs to know about unmanned aircrafts, from conception to operation, from technologies to business activities, users, OEMs, reference sources, conferences, ...

  6. Unmanned Ground Vehicle

    Science.gov (United States)

    2001-11-01

    Systems ( JAUGS ). JAUGS is a JRP technology initiative under the cognizance of the Aviation and Missile Command Research, Development and Engineering Center...AMRDEC). The JAUGS focus is on developing a high-level command and control architecture for UGVs. As defined in the JRP Glossary, “ JAUGS is an upper...vehicle platforms and missions. JAUGS uses the Society of Automotive Engineers Generic Open Architecture framework to classify UGV interfaces and

  7. Bespilotne letjelice : Unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Vlado Jurić

    2016-12-01

    Full Text Available Bespilotne letjelice imaju širok spektar uporabe, i svrha im svakim danom sve više dobiva na značaju. Konstrukcija im se poboljšava, pronalaze se materijali koji su optimalniji za obavljanje funkcija s kojima se trebaju suočiti. Pravna regulativa za bespilotne letjelice do 150 kg težine na polijetanju (MTOW se razlikuje od države do države. : Unmanned aerial vehicles have a wide range of applications, and their purpose is every day more important. Construction has been improving, finding the materials that are optimal for carrying out the functions which need to be cope with. Legal regulations for unmanned aircrafts up to 150 kg take-off weight (MTOW varies from country to country.

  8. Formation keeping of unmanned ground vehicles

    Directory of Open Access Journals (Sweden)

    Muangmin Kamonwan

    2017-01-01

    Full Text Available Controlling motions of an unmanned ground vehicle becomes more popular in real world practices. Its application is useful for household chores, military services, medical purposes, and industrial revolutions, etc. An analysis of motions by using the Fundamental Equations of Constrained Motion (FECM is one effective tool to determine the motions. Its conceptualization is done in three-step procedure as follows: (I Determining an unconstrained motion (II Assigning constraint equations and (III Computing a constrained motion. The equations of motion obtained are expressed as liner functions of acceleration. Then other kinematical information of the unmanned ground vehicles can be obtained by integration its acceleration. In this work, the FECM is used as a tool to analyze motions of a group of unmanned ground vehicles in various forms. The simulation results show that control forces obtained from the approach can regulate motions of unmanned ground vehicles to maneuver in desired formations.

  9. Unmanned Vehicle Material Flammability Test

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  10. Cooperative path planning of unmanned aerial vehicles

    CERN Document Server

    Tsourdos, Antonios; Shanmugavel, Madhavan

    2010-01-01

    An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in...

  11. Cooperative Control of Multiple Unmanned Autonomous Vehicles

    Science.gov (United States)

    2005-06-03

    I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164

  12. Optimization of the Flight Path of an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Vasyl Myklukha

    2017-09-01

    Full Text Available The article describes the features of optimizing the flight path of an unmanned aerial vehicle. The paper analyzes the composition and designation of main equipment and payload of unmanned aerial vehicle. In particular, attention is drawn to the basic requirements that relate to the unmanned aerial vehicle today.

  13. Exploring Security Vulnerabilities of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Rodday, Nils Miro; de Oliveira Schmidt, R.; Pras, Aiko

    We are currently observing a significant increase in the popularity of Unmanned Aerial Vehicles (UAVs), popularly also known by their generic term drones. This is not only the case for recreational UAVs, that one can acquire for a few hundred dollars, but also for more sophisticated ones, namely

  14. OPTIMUM PROGRAMMABLE CONTROL OF UNMANNED FLYING VEHICLE

    Directory of Open Access Journals (Sweden)

    A. А. Lobaty

    2012-01-01

    Full Text Available The paper considers an analytical synthesis problem pertaining to programmable control of an unmanned flying vehicle while steering it to the fixed space point. The problem has been solved while applying a maximum principle which takes into account a final control purpose and its integral expenses. The paper presents an optimum law of controlling overload variation of a flying vehicle that has been obtained analytically

  15. The prospects for Unmanned Aerial Vehicles

    OpenAIRE

    Brookes, Andrew

    2000-01-01

    In this study Andrew Brookes argues that Unmanned Aerial Vehicles (UAV) is the military fashion of the moment. Since the end of the 1990s many nations have added UAVs to their military inventories, and in 1999 half a dozen nations used UAVs over Kosovo. In the light of operational experience in Kosovo, Brookes re-evaluates the potential of this vehicle, and examines the roles, capabilities and future challenges of UAV.

  16. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  17. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    Science.gov (United States)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  18. Developments and challenges for autonomous unmanned vehicles

    CERN Document Server

    Finn, Anthony

    2010-01-01

    It is widely anticipated that autonomous vehicles will have a transformational impact on military forces and will play a key role in many future force structures. As a result, many tasks have already been identified that unmanned systems could undertake more readily than humans. However, for this to occur, such systems will need to be agile, versatile, persistent, reliable, survivable and lethal. This will require many of the vehicles 'cognitive' or higher order functions to be more fully developed, whereas to date only the 'component' or physical functions have been successfully automated and

  19. A REVIEW OF TACTICAL UNMANNED AERIAL VEHICLE DESIGN STUDIES

    OpenAIRE

    Coban, Sezer; Oktay, Tugrul

    2017-01-01

    In this study, a literaturesearch was conducted on tactical unmanned aerial vehicles. First of all, it wasclassified as an unmanned aerial vehicle. It is mentioned about thecharacteristics of ZANKA-III, which is highly autonomous, passive and activemorphing, aerodynamically perfect, tactical unmanned aerial vehicle (TUAV)ZANKA-III, supported by TUBITAK's 1001 Ardeb program 115M603 by TUBITAK and itis mentioned that they have superior characteristics from other tacticalunmanned aerial veh...

  20. International Symposium on Unmanned Aerial Vehicles

    CERN Document Server

    Oh, Paul; Piegl, Les

    2009-01-01

    Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last decade in both military and civilian domains. It is anticipated that civilian applications will be dominant in the future, although there are still barriers to be overcome and technical challenges to be met. Integrating UAS into, for example, civilian space, navigation, autonomy, see-detect-and-avoid systems, smart designs, system integration, vision-based navigation and training, to name but a few areas, will be of prime importance in the near future. This special volume is the outcome of research presented at the International Symposium on Unmanned Aerial Vehicles, held in Orlando, Florida, USA, from June 23-25, 2008, and presents state-of-the-art findings on topics such as: UAS operations and integration into the national airspace system; UAS navigation and control; micro-, mini-, small UAVs; UAS simulation testbeds and frameworks; UAS research platforms and applications; UAS applications. This book aims at serving as ...

  1. Weed detection using unmanned aircraft vehicles

    Directory of Open Access Journals (Sweden)

    Pflanz, Michael

    2014-03-01

    Full Text Available In contrast to agricultural remote sensing technologies, which are based on images from satellites or manned aircrafts, photogrammetry at low altitude from unmanned aircraft vehicles lead to higher spatial resolution, real-time processing and lower costs. Moreover multicopter aircrafts are suitable vehicles to perform precise path or stationary flights. In terms of vegetation photogrammetry this minimises motion blur and provide better image overlapping for stitching and mapping procedures. Through improved image analyses and through the recent increase in the availability of powerful batteries, microcontrollers and multispectral cameras, it can be expected in future that spatial mapping of weeds from low altitudes will be promoted. A small unmanned aircraft vehicle with a modified RGB camera was tested taking images from agricultural fields. A microcopter with six rotors was applied. The hexacopter in particular is GPS controlled and operates within predefined areas at given altitudes (from 5 to 10 m. Different scenarios of photogrammetrically weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. First experiences with microcopter showed a high potential for site-specific weed control. Images analyses with regards to recognition of weed patches can be used to adapt herbicide applications to varying weed occurrence across a field.

  2. Delivery of Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  3. A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles

    Science.gov (United States)

    2013-09-01

    Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)

  4. Pipeline monitoring with unmanned aerial vehicles

    Science.gov (United States)

    Kochetkova, L. I.

    2018-05-01

    Pipeline leakage during transportation of combustible substances leads to explosion and fire thus causing death of people and destruction of production and accommodation facilities. Continuous pipeline monitoring allows identifying leaks in due time and quickly taking measures for their elimination. The paper describes the solution of identification of pipeline leakage using unmanned aerial vehicles. It is recommended to apply the spectral analysis with input RGB signal to identify pipeline damages. The application of multi-zone digital images allows defining potential spill of oil hydrocarbons as well as possible soil pollution. The method of multi-temporal digital images within the visible region makes it possible to define changes in soil morphology for its subsequent analysis. The given solution is cost efficient and reliable thus allowing reducing timing and labor resources in comparison with other methods of pipeline monitoring.

  5. A survey of hybrid Unmanned Aerial Vehicles

    Science.gov (United States)

    Saeed, Adnan S.; Younes, Ahmad Bani; Cai, Chenxiao; Cai, Guowei

    2018-04-01

    This article presents a comprehensive overview on the recent advances of miniature hybrid Unmanned Aerial Vehicles (UAVs). For now, two conventional types, i.e., fixed-wing UAV and Vertical Takeoff and Landing (VTOL) UAV, dominate the miniature UAVs. Each type has its own inherent limitations on flexibility, payload, flight range, cruising speed, takeoff and landing requirements and endurance. Enhanced popularity and interest are recently gained by the newer type, named hybrid UAV, that integrates the beneficial features of both conventional ones. In this survey paper, a systematic categorization method for the hybrid UAV's platform designs is introduced, first presenting the technical features and representative examples. Next, the hybrid UAV's flight dynamics model and flight control strategies are explained addressing several representative modeling and control work. In addition, key observations, existing challenges and conclusive remarks based on the conducted review are discussed accordingly.

  6. Robust obstacle detection for unmanned surface vehicles

    Science.gov (United States)

    Qin, Yueming; Zhang, Xiuzhi

    2018-03-01

    Obstacle detection is of essential importance for Unmanned Surface Vehicles (USV). Although some obstacles (e.g., ships, islands) can be detected by Radar, there are many other obstacles (e.g., floating pieces of woods, swimmers) which are difficult to be detected via Radar because these obstacles have low radar cross section. Therefore, detecting obstacle from images taken onboard is an effective supplement. In this paper, a robust vision-based obstacle detection method for USVs is developed. The proposed method employs the monocular image sequence captured by the camera on the USVs and detects obstacles on the sea surface from the image sequence. The experiment results show that the proposed scheme is efficient to fulfill the obstacle detection task.

  7. Mathematical modelling of unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Sarwar, S.; Rehman, S.U.

    2013-01-01

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  8. Measured Noise from Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  9. Unmanned Aerial Vehicles unique cost estimating requirements

    Science.gov (United States)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  10. Estimation and Prediction of Unmanned Aerial Vehicle Trajectories, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — There is serious concern about the introduction of Unmanned Aerial Vehicles (UAV) in the National Air Space (NAS) because of their potential to increase the risk of...

  11. Optimum Route Planning and Scheduling for Unmanned Aerial Vehicles

    National Research Council Canada - National Science Library

    Sonmezocak, Erkan; Kurt, Senol

    2008-01-01

    .... The route planning of UAVs is the most critical and challenging problem of wartime. This thesis will develop three algorithms to solve a model that produces executable routings in order to dispatch three Unmanned Aerial Vehicles (UAV...

  12. Fuzzy Logic Unmanned Air Vehicle Motion Planning

    Directory of Open Access Journals (Sweden)

    Chelsea Sabo

    2012-01-01

    Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.

  13. Robust adaptive control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  14. Optimal event handling by multiple unmanned aerial vehicles

    NARCIS (Netherlands)

    de Roo, Martijn; Frasca, Paolo; Carloni, Raffaella

    This paper proposes a control architecture for a fleet of unmanned aerial vehicles that is responsible for handling the events that take place in a given area. The architecture guarantees that each event is handled by the required number of vehicles in the shortest time, while the rest of the fleet

  15. Morphing hull implementation for unmanned underwater vehicles

    Science.gov (United States)

    Miller, Timothy F.; Gandhi, Farhan; Rufino, Russell J.

    2013-11-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations).

  16. Photogrammetric mapping using unmanned aerial vehicle

    Science.gov (United States)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  17. Morphing hull implementation for unmanned underwater vehicles

    International Nuclear Information System (INIS)

    Miller, Timothy F; Gandhi, Farhan; Rufino, Russell J

    2013-01-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations). (paper)

  18. Unmanned aerial vehicles (drones) to prevent drowning.

    Science.gov (United States)

    Seguin, Celia; Blaquière, Gilles; Loundou, Anderson; Michelet, Pierre; Markarian, Thibaut

    2018-06-01

    Drowning literature have highlighted the submersion time as the most powerful predictor in assessing the prognosis. Reducing the time taken to provide a flotation device and prevent submersion appears of paramount importance. Unmanned aerial vehicles (UAVs) can provide the location of the swimmer and a flotation device. The objective of this simulation study was to evaluate the efficiency of a UAV in providing a flotation device in different sea conditions, and to compare the times taken by rescue operations with and without a UAV (standard vs UAV intervention). Several comparisons were made using professional lifeguards acting as simulated victims. A specifically-shaped UAV was used to allow us to drop an inflatable life buoy into the water. During the summer of 2017, 28 tests were performed. UAV use was associated with a reduction of time it took to provide a flotation device to the simulated victim compared with standard rescue operations (p < 0.001 for all measurements) and the time was reduced even further in moderate (81 ± 39 vs 179 ± 78 s; p < 0.001) and rough sea conditions (99 ± 34 vs 198 ± 130 s; p < 0.001). The times taken for UAV to locate the simulated victim, identify them and drop the life buoy were not altered by the weather conditions. UAV can deliver a flotation device to a swimmer safely and quickly. The addition of a UAV in rescue operations could improve the quality and speed of first aid while keeping lifeguards away from dangerous sea conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Tracking Unmanned Aerial Vehicle CTU FTS - Application of equipment

    Directory of Open Access Journals (Sweden)

    David Hůlek

    2015-10-01

    Full Text Available Article which is about the Tracking Unmanned Aerial Vehicle continues in the description of the project development dealing with the utilization of the UAV (unmanned aerial vehicle. Documentation of the project progresses builds on the previous article. In that article the selection of observation and transmission equipment was summarized. In the article, the reader learns about an installation of the equipment on the UAV (helicopter, about an interconnection of the equipment to create complete and functional system, about testing of the UAV, about the solutions of the problems which came into being during testing and about protection of the equipment against unfavourable effects. The location of equipment on the unmanned vehicle was chosen after a considering of several parameters. These parameters are preservation of the functionality or an influence to the balance. To find out how the added equipment affect the centre of gravity of the UAV the tabular method of the centre of gravity calculation was used. The results of the existing work on the project are location and attaching of the equipment to the unmanned vehicle, balance of the unmanned vehicle, solutions of the problems coming into being during the testing and design of the equipment protection against unfavourable effects.

  20. Unmanned Ground Vehicle Tactical Behaviors Technology Assessment

    National Research Council Canada - National Science Library

    Childers, Marshal A; Bodt, Barry A; Hill, Susan G; Camden, Richard; Dean, Robert M; Dodson, William F; Sutton, Lyle G; Sapronov, Leonid

    2009-01-01

    During 4-14 February 2008, the U.S. Army Research Laboratory and General Dynamics Robotic Systems conducted an unmanned systems tactical behaviors technology assessment at three training areas of Ft. Indiantown Gap, PA...

  1. Detail design of empennage of an unmanned aerial vehicle

    Science.gov (United States)

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  2. Learning Mobility: Adaptive Control Algorithms for the Novel Unmanned Ground Vehicle (NUGV)

    National Research Council Canada - National Science Library

    Blackburn, Mike

    2003-01-01

    Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles, This paper contains a description of our approach to develop control algorithms for the Novel Unmanned Ground Vehicle (NUGV...

  3. Piecewise affine control for fast unmanned ground vehicles

    OpenAIRE

    Benine Neto , André; Grand , Christophe

    2012-01-01

    International audience; Unmanned ground vehicles (UGV) may experience skidding when moving at high speeds, and therefore have its safety jeopardized. For this reason the nonlinear dynamics of lateral tire forces must be taken into account into the design of steering controllers for autonomous vehicles. This paper presents the design of a state feedback piecewise affine controller applied to an UGV to coordinate the steering and torque distribution inputs in order to reduce vehicle skidding on...

  4. A Review of the Characteristics of Modern Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Hristov Georgi Valentinov

    2016-06-01

    Full Text Available The main aim of this article is to present the modern unmanned aerial vehicles (UAVs and the possibilities for real-time remote monitoring of flight parameters and payload data. In the introduction section of the paper we briefly present the characteristics of the UAVs and which are their major application areas. Later, the main parameters and the various data types for remote control and monitoring of the unmanned aerial vehicles are presented and discussed. The paper continues with the methods and the technologies for transmission of these parameters and then presents a general hardware model for data transmission and a software model of a communication system suitable for UAVs.

  5. Unmanned Aerial Vehicle (UAV) Photogrammetry Produces ...

    African Journals Online (AJOL)

    Marinus Boon

    Department of Geography, Environmental Management and Energy Studies, University of ... The technique also only requires a few control measurements and the ... The number of Unmanned Aerial Systems (UAS) referenced in the 2013 ... model aircraft airfield east of the R25 road, just south of the M6 intersection, up until ...

  6. Diagnosis of airspeed measurement faults for unmanned aerial vehicles

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2014-01-01

    Airspeed sensor faults are common causes for incidents with unmanned aerial vehicles with pitot tube clogging or icing being the most common causes. Timely diagnosis of such faults or other artifacts in signals from airspeed sensing systems could potentially prevent crashes. This paper employs...

  7. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  8. Challenges of Integrating Unmanned Aerial Vehicles In Civil Application

    International Nuclear Information System (INIS)

    Eid, B M; Albatsh, F; Faris, W F; Chebil, J

    2013-01-01

    Unmanned Aerial Vehicle (UAV) has evolved rapidly over the past decade. There have been an increased number of studies aiming at improving UAV and in its use for different civil applications. This paper highlights the fundamentals of UAV system and examines the challenges related with the major components such as motors, drives, power systems, communication systems and image processing tools and equipment

  9. Distributed sensing and actuation over bluetooth for unmanned air vehicles

    OpenAIRE

    Afonso, José A.; Coelho, Ezequiel T.; Carvalhal, Paulo; Ferreira, Manuel João Oliveira; Santos, Cristina; Silva, Luís F.; Almeida, Heitor

    2006-01-01

    A short range wireless network platform, based on Bluetooth technology and on a Round Robin scheduling is presented. The objective is to build an application independent platform, to support a distributed sensing and actuation control system, which will be used in an Unmanned Aerial Vehicle (UAV). This platform provides the advantages of wireless communications while assuring low weight, small energy consumption and reliable communications.

  10. UNMANNED AERIAL VEHICLE USE FOR WOOD CHIPS PILE VOLUME ESTIMATION

    Directory of Open Access Journals (Sweden)

    M. Mokroš

    2016-06-01

    Full Text Available The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000. We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993. We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  11. A usage-centered evaluation methodology for unmanned ground vehicles

    NARCIS (Netherlands)

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of

  12. Augmenting camera images for operators of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Veltman, J.A.; Oving, A.B.

    2003-01-01

    The manual control of the camera of an unmanned aerial vehicle (UAV) can be difficult due to several factors such as 1) time delays between steering input and changes of the monitor content, 2) low update rates of the camera images and 3) lack of situation awareness due to the remote position of the

  13. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, A.Q.L.; Fumagalli, M.; Stramigioli, S.; Carloni, R.

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  14. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed

  15. Evaluating the accuracy of vehicle tracking data obtained from Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Giuseppe Guido

    2016-10-01

    Full Text Available This paper presents a methodology for tracking moving vehicles that integrates Unmanned Aerial Vehicles with video processing techniques. The authors investigated the usefulness of Unmanned Aerial Vehicles to capture reliable individual vehicle data by using GPS technology as a benchmark. A video processing algorithm for vehicles trajectory acquisition is introduced. The algorithm is based on OpenCV libraries. In order to assess the accuracy of the proposed video processing algorithm an instrumented vehicle was equipped with a high precision GPS. The video capture experiments were performed in two case studies. From the field, about 24,000 positioning data were acquired for the analysis. The results of these experiments highlight the versatility of the Unmanned Aerial Vehicles technology combined with video processing technique in monitoring real traffic data.

  16. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  17. Mathematical Modelling of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Saeed Sarwar

    2013-04-01

    Full Text Available UAVs (Unmanned Arial Vehicleis UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard autopilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an autopilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design autopilot for UAV

  18. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    Science.gov (United States)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those

  19. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  20. A new electronic control system for unmanned underwater vehicles

    OpenAIRE

    Molina Molina, J.C.; Guerrero González, A.; Gilabert, J.

    2015-01-01

    In this paper a new electronic control system for unmanned underwater vehicles is presented. This control system is characterized by a distribution in control over two network of type CANBus and Ethernet. This new electronic control system integrates functionalities of AUVs, as the automatic execution of preprogrammed trajectories. The control system also integrates an acoustic positioning system based on USBL. The information of relative positioning is sent through specific...

  1. Unmanned air vehicles - real time intelligence without the risk

    OpenAIRE

    Miller, James Bryan.

    1988-01-01

    Unmanned Air Vehicles (UAVs) are capable of supporting the officer in tactical command (OTC) by gathering intelligence in real- or near real-time. UAVs now under development will be able to collect high-resolution imagery, and thus provide the OTC with the option of gathering tactical intelligence without using manned reconnaissance platforms. This thesis asserts that UAVs should be used to supplement existing intelligence sensors, particularly in those cases where current sources are too amb...

  2. A concept of unmanned aerial vehicles in amphibious operations

    OpenAIRE

    Collins, Kipp A.

    1993-01-01

    Approved for public release; distribution is unlimited. The purpose of this thesis was to perform a conceptual study of using Unmanned Aerial Vehicles (UAVs) in amphibious operations. It focused on the command relations, tasking and critical problems in UAV amphibious operations. This thesis investigated the question of whether using UAVs at sea is a feasible complement to current amphibious operational doctrine and, if so, then what expense is incurred to assets on which it is embarked an...

  3. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    OpenAIRE

    González_Espasandín, Oscar; Leo Mena, Teresa de Jesus; Navarro Arevalo, Emilio

    2013-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order t...

  4. An intelligent navigation system for an unmanned surface vehicle

    OpenAIRE

    Xu , Tao

    2007-01-01

    Merged with duplicate record 10026.1/2768 on 27.03.2017 by CS (TIS) A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-S...

  5. Fuzzy-4D/RCS for Unmanned Aerial Vehicles

    OpenAIRE

    Olivares Mendez, Miguel Angel; Campoy, Pascual; Mondragon, Ivan F.; Martinez, Carol

    2010-01-01

    Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and hierarchy levels of the architecture, and the adaptation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance provides an improvement in the functionality of the system based on the uses of the Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its...

  6. Search and Pursuit with Unmanned Aerial Vehicles in Road Networks

    Science.gov (United States)

    2013-11-01

    landmark tracking, Andersen and Taylor [7] show that with a planar ground assumption, a homography-based visual odometry algorithm can be combined with...7] Evan D. Andersen and Clark N. Taylor. Improving MAV pose estimation using visual information. In IEEE International Conference on Intelligent...patrol and surveillance missions using multiple unmanned air vehicles. In IEEE Confer- ence on Decision and Control, 2004. [53] Arthur S. Goldstein

  7. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    Science.gov (United States)

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot,” Mechatronics ... Embedded Control Systems ], Control Engineering, 91–116, Birkhuser Boston (2005). [12] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H...Modeling and Simulation of an Unmanned Ground Vehicle Power System John Brodericka∗, Jack Hartnerb, Dawn Tilburya, and Ella Atkinsa aThe University

  8. Routing Unmanned Vehicles in GPS-Denied Environments

    OpenAIRE

    Sundar, Kaarthik; Misra, Sohum; Rathinam, Sivakumar; Sharma, Rajnikant

    2017-01-01

    Most of the routing algorithms for unmanned vehicles, that arise in data gathering and monitoring applications in the literature, rely on the Global Positioning System (GPS) information for localization. However, disruption of GPS signals either intentionally or unintentionally could potentially render these algorithms not applicable. In this article, we present a novel method to address this difficulty by combining methods from cooperative localization and routing. In particular, the article...

  9. Classification of robotic battery service systems for unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Ngo Tien

    2018-01-01

    Full Text Available Existing examples of prototypes of ground-based robotic platforms used as a landing site for unmanned aerial vehicles are considered. In some cases, they are equipped with a maintenance mechanism for the power supply module. The main requirements for robotic multi-copter battery maintenance systems depending on operating conditions, required processing speed, operator experience and other parameters are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicles on the platform and approach to servicing battery. The existing prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint work of the platform and unmanned aerial vehicles during the landing and maintenance of the battery. The classification of robotic systems for servicing the power supply of multi-copter batteries criteria is presented using the following: the type of basing, the method of navigation during landing, the shape of the landing pad, the method of restoring the power supply module. The proposed algorithmic model of the operation of battery power maintenance system of the multi-copter on ground-based robotic platform during solving the target agrarian problem is described. Wireless methods of battery recovery are most promising, so further development and prototyping of a wireless charging station for multi-copter batteries will be developed.

  10. UNMANNED AIR VEHICLE STABILIZATION BASED ON NEURAL NETWORK REGULATOR

    Directory of Open Access Journals (Sweden)

    S. S. Andropov

    2016-09-01

    Full Text Available A problem of stabilizing for the multirotor unmanned aerial vehicle in an environment with external disturbances is researched. A classic proportional-integral-derivative controller is analyzed, its flaws are outlined: inability to respond to changing of external conditions and the need for manual adjustment of coefficients. The paper presents an adaptive adjustment method for coefficients of the proportional-integral-derivative controller based on neural networks. A neural network structure, its input and output data are described. Neural networks with three layers are used to create an adaptive stabilization system for the multirotor unmanned aerial vehicle. Training of the networks is done with the back propagation method. Each neural network produces regulator coefficients for each angle of stabilization as its output. A method for network training is explained. Several graphs of transition process on different stages of learning, including processes with external disturbances, are presented. It is shown that the system meets stabilization requirements with sufficient number of iterations. Described adjustment method for coefficients can be used in remote control of unmanned aerial vehicles, operating in the changing environment.

  11. Test bed for applications of heterogeneous unmanned vehicles

    Directory of Open Access Journals (Sweden)

    Filiberto Muñoz Palacios

    2017-01-01

    Full Text Available This article addresses the development and implementation of a test bed for applications of heterogeneous unmanned vehicle systems. The test bed consists of unmanned aerial vehicles (Parrot AR.Drones versions 1 or 2, Parrot SA, Paris, France, and Bebop Drones 1.0 and 2.0, Parrot SA, Paris, France, ground vehicles (WowWee Rovio, WowWee Group Limited, Hong Kong, China, and the motion capture systems VICON and OptiTrack. Such test bed allows the user to choose between two different options of development environments, to perform aerial and ground vehicles applications. On the one hand, it is possible to select an environment based on the VICON system and LabVIEW (National Instruments or robotics operating system platforms, which make use the Parrot AR.Drone software development kit or the Bebop_autonomy Driver to communicate with the unmanned vehicles. On the other hand, it is possible to employ a platform that uses the OptiTrack system and that allows users to develop their own applications, replacing AR.Drone’s original firmware with original code. We have developed four experimental setups to illustrate the use of the Parrot software development kit, the Bebop Driver (AutonomyLab, Simon Fraser University, British Columbia, Canada, and the original firmware replacement for performing a strategy that involves both ground and aerial vehicle tracking. Finally, in order to illustrate the effectiveness of the developed test bed for the implementation of advanced controllers, we present experimental results of the implementation of three consensus algorithms: static, adaptive, and neural network, in order to accomplish that a team of multiagents systems move together to track a target.

  12. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  13. Scaling Flight Tests of Unmanned Air Vehicles

    Science.gov (United States)

    2006-09-01

    wind tunnel experiments, the wind tunnel remains one of the most widely used, useful tools in the field of aerodynamics. Other Scaled Vehicles and...propensity of automobiles. In other research carried out at the University of Delft, Netherlands, the project DAVINCI was developed for

  14. Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco García-Córdova

    2013-04-01

    Full Text Available In this paper, an intelligent navigation system for an unmanned underwater vehicle powered by renewable energy and designed for shadow water inspection in missions of a long duration is proposed. The system is composed of an underwater vehicle, which tows a surface vehicle. The surface vehicle is a small boat with photovoltaic panels, a methanol fuel cell and communication equipment, which provides energy and communication to the underwater vehicle. The underwater vehicle has sensors to monitor the underwater environment such as sidescan sonar and a video camera in a flexible configuration and sensors to measure the physical and chemical parameters of water quality on predefined paths for long distances. The underwater vehicle implements a biologically inspired neural architecture for autonomous intelligent navigation. Navigation is carried out by integrating a kinematic adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro- controller. The autonomous underwater vehicle is capable of operating during long periods of observation and monitoring. This autonomous vehicle is a good tool for observing large areas of sea, since it operates for long periods of time due to the contribution of renewable energy. It correlates all sensor data for time and geodetic position. This vehicle has been used for monitoring the Mar Menor lagoon.

  15. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    OpenAIRE

    Sergey V. Cherkasov; Anvar M. Farkhutdinov; Dmitriy P. Rykovanov; Arbi A. Shaipov

    2018-01-01

    The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic) with the Khankala geothermal plant operating at differe...

  16. Graduate Education for Unmanned Vehicles and Undersea Warfare: NPS Teaching, Research and Partnership Strategies

    OpenAIRE

    Brutzman, Don

    2005-01-01

    Panel Discussion, NDIA conference, Unmanned Maritime Vehicle (UMV)Test & Evaluation Conference

Held in Conjunction with 
Autonomous Underwater Vehicle (AUV) Fest 2005

“Accelerating Deployment of Unmanned Maritime Vehicles Through Advancements in Test & Evaluation”

Keyport, WA 14-16 June 2005

  17. Intelligent Terrain Analysis and Tactical Support System (ITATSS) for Unmanned Ground Vehicles

    National Research Council Canada - National Science Library

    Jones, Randolph M; Arkin, Ron; Sidki, Nahid

    2005-01-01

    ...). The system enable unmanned combat and support vehicles to achieve significant new levels of autonomy, mobility, rapid response, coordination and effectiveness, while simultaneously enriching human...

  18. Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-Objective Genetic Programming

    National Research Council Canada - National Science Library

    Barlow, Gregory J

    2004-01-01

    Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications, including search and rescue, surveillance, and electronic warfare, but almost all UAVs are controlled remotely by humans...

  19. Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation

    Science.gov (United States)

    Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob

    2013-05-01

    The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.

  20. Optimization of an Intelligent Controller for an Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    M. Fauzi Nor Shah

    2011-08-01

    Full Text Available Underwater environment poses a difficult challenge for autonomous underwater navigation. A standard problem of underwater vehicles is to maintain it position at a certain depth in order to perform desired operations. An effective controller is required for this purpose and hence the design of a depth controller for an unmanned underwater vehicle is described in this paper. The control algorithm is simulated by using the marine guidance navigation and control simulator. The project shows a radial basis function metamodel can be used to tune the scaling factors of a fuzzy logic controller. By using offline optimization approach, a comparison between genetic algorithm and metamodeling has been done to minimize the integral square error between the set point and the measured depth of the underwater vehicle. The results showed that it is possible to obtain a reasonably good error using metamodeling approach in much a shorter time compared to the genetic algorithm approach.

  1. An advanced unmanned vehicle for remote applications

    International Nuclear Information System (INIS)

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot's current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia's Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board

  2. UNMANNED AERIAL VEHICLES IN THE NAVY: ITS BENEFITS

    Directory of Open Access Journals (Sweden)

    GONÇALO CASTANHEIRA ROSA

    2016-06-01

    Full Text Available Military investment in UAV research, systems, and applied technologies is increasing, and potential uses for UAVs in civil and military operations are in development. These developments, along with growing scientific interest in UAVs, are fueling commercial interest in the unmanned market. The growing enthusiasm for UAVs is not unfounded. The vehicles offer a unique range of features, most notably ultra-long endurance and high-risk mission acceptance, which cannot be reasonably performed by manned aircraft. Coupled with advances in automation and sensor technologies, and the potential for costs savings, it is understandable that interest in and demand for UAVs is on the rise. Organizations like the Navy have all the benefits to accompany the technological evolution that every day surprises and surpasses us. An introduction or technological evolution that this kind of organizations has already begun to implement is the autonomous vehicles as a mean to an end. This paper describes and lists the advantages of the introduction of Unmanned Aerial Vehicles in an organization like the navy and also the missions that such robots can perform and optimize.

  3. An advanced unmanned vehicle for remote applications

    Energy Technology Data Exchange (ETDEWEB)

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  4. Safe Control for Spiral Recovery of Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chang-Jian Ru

    2014-01-01

    Full Text Available With unmanned aerial vehicles (UAVs widely used in both military and civilian fields, many events affecting their safe flying have emerged. That UAV’s entering into the spiral is such a typical safety issue. To solve this safety problem, a novel recovery control approach is proposed. First, the factors of spiral are analyzed. Then, based on control scheduling of state variables and nonlinear dynamic inversion control laws, the spiral recovery controller is designed to accomplish guidance and control of spiral recovery. Finally, the simulation results have illustrated that the proposed control method can ensure the UAV autonomous recovery from spiral effectively.

  5. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    Science.gov (United States)

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  6. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Science.gov (United States)

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  7. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Directory of Open Access Journals (Sweden)

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  8. Use of Unmanned Aerial Assault Vehicles (UAAV) as an Asymmetric Factor

    OpenAIRE

    Eker, Alper Alpaslan; Sallar, Eray; Turan, Yasin

    2014-01-01

    In the 21st century, unmanned systems (especially unmanned aerial vehicles) will play a dominant role in the operational fields. Thanks to the technological developments witnessed in many fields, the use of unmanned aerial vehicles for military purposes is becoming easier. Looking at the operations carried out over the last 25 years, it can be seen that most were conducted in residential areas, where and techniques, tactics and equipment with asymmetric effects will make significant differenc...

  9. The availability of unmanned air vehicles: a post-case study

    NARCIS (Netherlands)

    Smith, M.A.J.; Dekker, R.; Kos, J.; Hontelez, J.A.M.

    2001-01-01

    An Unmanned Air Vehicle (UAV) is an unmanned, remotely controlled, small air vehicle. It has an important role in antisurface warfare. This implies over-the-horizon detection, classification, targeting and battle damage assessment. To perform these tasks several UAVs are needed to assist or

  10. The development of ground unmanned vehicles, driver assistance systems and components according to patent publications

    Science.gov (United States)

    Saykin, A. M.; Tuktakiev, G. S.; Zhuravlev, A. V.; Zaitseva, E. P.

    2018-02-01

    The paper contains the analysis of the main trends in the patenting of ground unmanned vehicles, driver assistance systems (ADAS) and unmanned vehicle components abroad during the period from 2010 to 2016. The conclusion was made that the intensity of their patenting abroad increased.

  11. Unmanned Aerial Vehicles: Progress Toward Meeting High Altitude Endurance Aircraft Price Goals

    National Research Council Canada - National Science Library

    1998-01-01

    ...) High Altitude Endurance (HAE) Unmanned Aerial Vehicle (UAV) program to determine whether the average flyaway cost for the Global Hawk and DarkStar HAE alr vehicles will be within DOD's cost goal...

  12. Synthesis of the unmanned aerial vehicle remote control augmentation system

    International Nuclear Information System (INIS)

    Tomczyk, Andrzej

    2014-01-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system

  13. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  14. Use of unmanned aerial vehicles for medical product transport.

    Science.gov (United States)

    Thiels, Cornelius A; Aho, Johnathon M; Zietlow, Scott P; Jenkins, Donald H

    2015-01-01

    Advances in technology and decreasing costs have led to an increased use of unmanned aerial vehicles (UAVs) by the military and civilian sectors. The use of UAVs in commerce is restricted by US Federal Aviation Administration (FAA) regulations, but the FAA is drafting new regulations that are expected to expand commercial applications. Currently, the transportation of medical goods in times of critical need is limited to wheeled motor vehicles and manned aircraft, options that can be costly and slow. This article explores the demand for, feasibility of, and risks associated with the use of UAVs to deliver medical products, including blood derivatives and pharmaceuticals, to hospitals, mass casualty scenes, and offshore vessels in times of critical demand. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  15. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    Science.gov (United States)

    Munguia, Rodrigo; Urzua, Sarquis; Grau, Antoni

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  16. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguia

    Full Text Available In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  17. Cooperative conflict detection and resolution of civil unmanned aerial vehicles in metropolis

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2016-06-01

    Full Text Available Unmanned air vehicles have recently attracted attention of many researchers because of their potential civil applications. A systematic integration of unmanned air vehicles in non-segregated airspace is required that allows safe operation of unmanned air vehicles along with other manned aircrafts. One of the critical issues is conflict detection and resolution. This article proposes to solve unmanned air vehicles’ conflict detection and resolution problem in metropolis airspace. First, the structure of metropolis airspace in the coming future is studied, and the airspace conflict problem between different unmanned air vehicles is analyzed by velocity obstacle theory. Second, a conflict detection and resolution framework in metropolis is proposed, and factors that have influences on conflict-free solutions are discussed. Third, the multi-unmanned air vehicle conflict resolution problem is formalized as a nonlinear optimization problem with the aim of minimizing overall conflict resolution consumption. The safe separation constraint is further discussed to improve the computation efficiency. When the speeds of conflict-involved unmanned air vehicles are equal, the nonlinear safe separation constraint is transformed into linear constraints. The problem is solved by mixed integer convex programming. When unmanned air vehicles are with unequal speeds, we propose to solve the nonlinear optimization problem by stochastic parallel gradient descent–based method. Our approaches are demonstrated in computational examples.

  18. Applicability of Unmanned Aerial Vehicles in Research on Aeolian Processes

    Science.gov (United States)

    Algimantas, Česnulevičius; Artūras, Bautrėnas; Linas, Bevainis; Donatas, Ovodas; Kęstutis, Papšys

    2018-02-01

    Surface dynamics and instabilities are characteristic of aeolian formation. The method of surface comparison is regarded as the most appropriate one for evaluation of the intensity of aeolian processes and the amount of transported sand. The data for surface comparison can be collected by topographic survey measurements and using unmanned aerial vehicles. Time cost for relief microform fixation and measurement executing topographic survey are very high. The method of unmanned aircraft aerial photographs fixation also encounters difficulties because there are no stable clear objects and contours that enable to link aerial photographs, to determine the boundaries of captured territory and to ensure the accuracy of surface measurements. Creation of stationary anchor points is irrational due to intense sand accumulation and deflation in different climate seasons. In September 2015 and in April 2016 the combined methodology was applied for evaluation of intensity of aeolian processes in the Curonian Spit. Temporary signs (marks) were installed on the surface, coordinates of the marks were fixed using GPS and then flight of unmanned aircraft was conducted. The fixed coordinates of marks ensure the accuracy of measuring aerial imagery and the ability to calculate the possible corrections. This method was used to track and measure very small (micro-rank) relief forms (5-10 cm height and 10-20 cm length). Using this method morphometric indicators of micro-terraces caused by sand dunes pressure to gytia layer were measured in a non-contact way. An additional advantage of the method is the ability to accurately link the repeated measurements. The comparison of 3D terrain models showed sand deflation and accumulation areas and quantitative changes in the terrain very clearly.

  19. Visual Appearance-Based Unmanned Vehicle Sequential Localization

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available Localizationis of vital importance for an unmanned vehicle to drive on the road. Most of the existing algorithms are based on laser range finders, inertial equipment, artificial landmarks, distributing sensors or global positioning system(GPS information. Currently, the problem of localization with vision information is most concerned. However, vision-based localization techniquesare still unavailable for practical applications. In this paper, we present a vision-based sequential probability localization method. This method uses the surface information of the roadside to locate the vehicle, especially in the situation where GPS information is unavailable. It is composed of two step, first, in a recording stage, we construct a ground truthmap with the appearance of the roadside environment. Then in an on-line stage, we use a sequential matching approach to localize the vehicle. In the experiment, we use two independent cameras to observe the environment, one is left-orientated and the other is right. SIFT features and Daisy features are used to represent for the visual appearance of the environment. The experiment results show that the proposed method could locate the vehicle in a complicated, large environment with high reliability.

  20. ROLE OF UNMANNED AERIAL VEHICLES IN PRECISION FARMING

    Directory of Open Access Journals (Sweden)

    Genadiy Yun

    2017-03-01

    Full Text Available Purpose: By 2050, world population will exceed 9 billion people. According to some projections to feed the world's population, the agricultural sector must increase production by 70%. The number of resources suitable for use in agriculture - land, water, energy - will decline. Here the farmers have to rely primarily on support of new technologies that not only increase production with limited resources, but also improve its effectiveness. Increased yields in crop production - a strategic task for Ukraine. Discussion: The object of research is the comparative analysis of the market of production and export of wheat in leading countries of the world is carried out. As well as advanced direction of crop capacity increasing in agriculture with help of Unmanned Aviation System is considered. Results: Practice shows that rural aircraft exceeds the performance processing ground equipment several times. It allows you to quickly carry out crops and their processing by pesticides, toxic chemicals, to make fertilizer, to monitor. The use of modern unmanned aerial vehicles will extend the benefits of small aircraft.

  1. Pembangunan Sistem Penentuan Posisi dan Navigasi Berbasiskan Sistem Unmanned Surface Vehicle (USV) untuk Survei Batimetri

    OpenAIRE

    Ratih C, Ni Made Rai; Suwardhi, Deni

    2014-01-01

    Unmanned Surface Vehicle (USV) refers to any vehicle that operates on the surface of the water without a crew. Nowadays, not only for military purpose, many of civilian purposes was also taken in considerations Operating the ordinary hydrographic vessel need the wider horizontal and vertical space. USV is more capable for charting the very shallow and narrow waters. This research is intended to build the positioning and navigation system based on Unmanned Surface Vehicle System as the startin...

  2. Reducing environmental damage through the use of unmanned aerial vehicles as the best available technology

    Science.gov (United States)

    Fedulova, E. A.; Akulov, A. O.; Rada, A. O.; Alabina, T. A.; Savina, Ju Ju

    2018-01-01

    The article examines the possibilities of using unmanned aerial vehicles as the best available technologies in the field of agriculture and mining. The object of the study is the use of unmanned aerial vehicles as the best available technology. The main areas of application of this technology are identified: agro technical operations, aerial photography of mining operations. The technology of unmanned aerial vehicles is compared with the technologies of ground agricultural machinery. The research methodology includes an expert evaluation of the unmanned aerial vehicle technology belonging to the class of the best available technologies by the criteria: the level of environmental impact, resource saving, the use of low-waste, non-waste processes, the existence of at least two objects, economic efficiency. Expert evaluations were processed using the apparatus of fuzzy sets, which make it possible to construct membership functions. This allowed us to prove that the technology of unmanned aerial vehicles belongs to a fuzzy set of the best available technologies. The results of the research show that the use of unmanned aerial vehicles provides a saving of resources, especially non-renewable combustible minerals, reduces emissions and discharges of pollutants into the atmosphere, and also reduces soil erosion. Unmanned aerial vehicles should be included in the national directories of the best available technologies for the mining industry and agriculture.

  3. Use of unmanned aerial vehicles for efficient beach litter monitoring

    KAUST Repository

    Martin, Cecilia

    2018-05-05

    A global beach litter assessment is challenged by use of low-efficiency methodologies and incomparable protocols that impede data integration and acquisition at a national scale. The implementation of an objective, reproducible and efficient approach is therefore required. Here we show the application of a remote sensing based methodology using a test beach located on the Saudi Arabian Red Sea coastline. Litter was recorded via image acquisition from an Unmanned Aerial Vehicle, while an automatic processing of the high volume of imagery was developed through machine learning, employed for debris detection and classification in three categories. Application of the method resulted in an almost 40 times faster beach coverage when compared to a standard visual-census approach. While the machine learning tool faced some challenges in correctly detecting objects of interest, first classification results are promising and motivate efforts to further develop the technique and implement it at much larger scales.

  4. Artificial guide stars for adaptive optics using unmanned aerial vehicles

    Science.gov (United States)

    Basden, A. G.; Brown, Anthony M.; Chadwick, P. M.; Clark, P.; Massey, R.

    2018-06-01

    Astronomical adaptive optics (AO) systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference. Here, we introduce a technique to overcome this problem by using rotary unmanned aerial vehicles (UAVs) as a platform from which to produce artificial guide stars. We describe the concept that relies on the UAV being able to measure its precise relative position. We investigate the AO performance improvements that can be achieved, which in the cases presented here can improve the Strehl ratio by a factor of at least 2 for a 8 m class telescope. We also discuss improvements to this technique, which is relevant to both astronomical and solar AO systems.

  5. Obstacle Avoidance for Unmanned Undersea Vehicle in Unknown Unstructured Environment

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2013-01-01

    Full Text Available To avoid obstacle in the unknown environment for unmanned undersea vehicle (UUV, an obstacle avoiding system based on improved vector field histogram (VFH is designed. Forward looking sonar is used to detect the environment, and the divisional sonar modal is applied to deal with the measure uncertainty. To adapt to the VFH, rolling occupancy grids are used for the map building, and high accuracy details of local environment are obtained. The threshold is adaptively adjusted by the statistic of obstacles to solve the problem that VFH is sensitive to threshold. To improve the environment adaptability, the hybrid-behaviors strategy is proposed, which selects the optimal avoidance command according to the motion status and environment character. The simulation shows that UUV could avoid the obstacles fast and escape from the U shape obstacles.

  6. Detection of unmanned aerial vehicles using a visible camera system.

    Science.gov (United States)

    Hu, Shuowen; Goldman, Geoffrey H; Borel-Donohue, Christoph C

    2017-01-20

    Unmanned aerial vehicles (UAVs) flown by adversaries are an emerging asymmetric threat to homeland security and the military. To help address this threat, we developed and tested a computationally efficient UAV detection algorithm consisting of horizon finding, motion feature extraction, blob analysis, and coherence analysis. We compare the performance of this algorithm against two variants, one using the difference image intensity as the motion features and another using higher-order moments. The proposed algorithm and its variants are tested using field test data of a group 3 UAV acquired with a panoramic video camera in the visible spectrum. The performance of the algorithms was evaluated using receiver operating characteristic curves. The results show that the proposed approach had the best performance compared to the two algorithmic variants.

  7. UNMANNED AIRCRAFT VEHICLE (UAV IN THE ROMANIAN AIRSPACE. AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2014-04-01

    Full Text Available For the last decade the unmanned aircraft vehicle (UAV field has evolved in terms of the sub-branches established in the aerospace industry. At national level the UAV market is still in its infancy but acknowledges an upward trend in the implementation and use of UAVs in civilian and military missions. The achievements of the past decade confirms that Romanian specialists are able to conceive, design and build UAVs at a technological and operational level comparable to the one achieved by large international producers creating the prerequisites of developing a sub-sector for the national aeronautic industry. The current article aims at providing an overview of all activities related to the conception, manufacturing, testing, improving, operating UAVs as these activities evolved within the national airspace filed with brief references to the missions and legislation in this area.

  8. Mission control of multiple unmanned aerial vehicles: a workload analysis.

    Science.gov (United States)

    Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon

    2005-01-01

    With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.

  9. FUZZY-GENETIC CONTROL OF QUADROTOR UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    Attila Nemes

    2016-03-01

    Full Text Available This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the equations of motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation results of the proposed new quadrotor dynamic model identification method are promising.

  10. A Novel Extreme Learning Control Framework of Unmanned Surface Vehicles.

    Science.gov (United States)

    Wang, Ning; Sun, Jing-Chao; Er, Meng Joo; Liu, Yan-Cheng

    2016-05-01

    In this paper, an extreme learning control (ELC) framework using the single-hidden-layer feedforward network (SLFN) with random hidden nodes for tracking an unmanned surface vehicle suffering from unknown dynamics and external disturbances is proposed. By combining tracking errors with derivatives, an error surface and transformed states are defined to encapsulate unknown dynamics and disturbances into a lumped vector field of transformed states. The lumped nonlinearity is further identified accurately by an extreme-learning-machine-based SLFN approximator which does not require a priori system knowledge nor tuning input weights. Only output weights of the SLFN need to be updated by adaptive projection-based laws derived from the Lyapunov approach. Moreover, an error compensator is incorporated to suppress approximation residuals, and thereby contributing to the robustness and global asymptotic stability of the closed-loop ELC system. Simulation studies and comprehensive comparisons demonstrate that the ELC framework achieves high accuracy in both tracking and approximation.

  11. Straight-Line Target Tracking for Unmanned Surface Vehicles

    Directory of Open Access Journals (Sweden)

    Morten Breivik

    2008-10-01

    Full Text Available This paper considers the subject of straight-line target tracking for unmanned surface vehicles (USVs. Target-tracking represents motion control scenarios where no information about the target behavior is known in advance, i.e., the path that the target traverses is not defined apriori. Specifically, this work presents the design of a motion control system which enables an underactuated USV to track a target that moves in a straight line at high speed. The motion control system employs a guidance principle originally developed for interceptor missiles, as well as a novel velocity controller inspired by maneuverability and agility concepts found in fighter aircraft literature. The performance of the suggested design is illustrated through full-scale USV experiments in the Trondheimsfjord.

  12. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  13. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).

    Science.gov (United States)

    Zhang, Jinshui; Basso, Bruno; Price, Richard F; Putman, Gregory; Shuai, Guanyuan

    2018-01-01

    Distance between rows and plants are essential parameters that affect the final grain yield in row crops. This paper presents the results of research intended to develop a novel method to quantify the distance between maize plants at field scale using an Unmanned Aerial Vehicle (UAV). Using this method, we can recognize maize plants as objects and calculate the distance between plants. We initially developed our method by training an algorithm in an indoor facility with plastic corn plants. Then, the method was scaled up and tested in a farmer's field with maize plant spacing that exhibited natural variation. The results of this study demonstrate that it is possible to precisely quantify the distance between maize plants. We found that accuracy of the measurement of the distance between maize plants depended on the height above ground level at which UAV imagery was taken. This study provides an innovative approach to quantify plant-to-plant variability and, thereby final crop yield estimates.

  14. Flight envelope protection system for unmanned aerial vehicles

    KAUST Repository

    Claudel, Christian G.

    2016-04-28

    Systems and methods to protect the flight envelope in both manual flight and flight by a commercial autopilot are provided. A system can comprise: an inertial measurement unit (IMU); a computing device in data communication with the IMU; an application executable by the computing device comprising: logic that estimates an angle of attack; a slip angle; and a speed of an unmanned aerial vehicle (UAV) based at least in part on data received from the UAV. A method can comprise estimating, via a computing device, flight data of a UAV based at least in part on data received from an IMU; comparing the estimated flight data with measured flight data; and triggering an error indication in response to a determination that the measured flight data exceeds a predefined deviation of the estimated flight data. The estimated speed can comprise an estimated airspeed, vertical speed and/or ground velocity.

  15. Small catchments DEM creation using Unmanned Aerial Vehicles

    Science.gov (United States)

    Gafurov, A. M.

    2018-01-01

    Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.

  16. Recent advances in research on unmanned aerial vehicles

    CERN Document Server

    Wang, Le; Yin, George

    2013-01-01

    A team of launched and coordinated Unmanned aerial vehicles (UAVs), requires advanced technologies in sensing, communication, computing, and control to improve their intelligence and robustness towards autonomous operations. To enhance reliability, robustness, and mission capability of a team of UAVs, a system-oriented and holistic approach is desirable in which all components and subsystems are considered in terms of their roles and impact on the entire system.  This volume aims to summarize the recent progress, identify challenges and opportunities, and develop new methodologies and systems on coordinated UAV control. A group of experts working in this area have contributed to this volume in several related aspects of autonomous control of networked UAVs. Their papers introduce new control methodologies, algorithms, and systems that address several important issues in developing intelligent, autonomous or semi-autonomous, networked systems for the next generation of UAVs. The papers share a common focus on...

  17. A new robust control for minirotorcraft unmanned aerial vehicles.

    Science.gov (United States)

    Mokhtari, M Rida; Cherki, Brahim

    2015-05-01

    This paper presents a new robust control based on finite-time Lyapunov stability controller and proved with backstepping method for the position and the attitude of a small rotorcraft unmanned aerial vehicle subjected to bounded uncertainties and disturbances. The dynamical motion equations are obtained by the Newton-Euler formalism. The proposed controller combines the advantage of the backstepping approach with finite-time convergence techniques to generate a control laws to guarantee the faster convergence of the state variables to their desired values in short time and compensate for the bounded disturbances. A formal proof of the closed-loop stability and finite-time convergence of tracking errors is derived using the Lyapunov function technique. Simulation results are presented to corroborate the effectiveness and the robustness of the proposed control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Use of unmanned aerial vehicles for efficient beach litter monitoring

    KAUST Repository

    Martin, Cecilia; Parkes, Stephen; Zhang, Qiannan; Zhang, Xiangliang; McCabe, Matthew; Duarte, Carlos M.

    2018-01-01

    A global beach litter assessment is challenged by use of low-efficiency methodologies and incomparable protocols that impede data integration and acquisition at a national scale. The implementation of an objective, reproducible and efficient approach is therefore required. Here we show the application of a remote sensing based methodology using a test beach located on the Saudi Arabian Red Sea coastline. Litter was recorded via image acquisition from an Unmanned Aerial Vehicle, while an automatic processing of the high volume of imagery was developed through machine learning, employed for debris detection and classification in three categories. Application of the method resulted in an almost 40 times faster beach coverage when compared to a standard visual-census approach. While the machine learning tool faced some challenges in correctly detecting objects of interest, first classification results are promising and motivate efforts to further develop the technique and implement it at much larger scales.

  19. INTEGRATING UNMANNED AIRCRAFT VEHICLES IN THE ROMANIAN NATIONAL AIRSPACE

    Directory of Open Access Journals (Sweden)

    Sorana Alina Catinca POP

    2015-07-01

    Full Text Available The use of unmanned aerial vehicles in the Romanian civil airspace brings us back to the 1920's, when the first aircraft started to fly over the Romanian sky. Little did the legislators at that time know how to create the proper legal framework for the use of such machines so that all aspects related to their use be covered, as well as identify all potential risks and effects. Nowadays, UAVs are the new aircraft and it is a challenge for the legislators to properly identify the legal framework so that the safety and security of civil aviation are not affected. The paper will address the challenges the regulator faces in the integration of the UAVs in the Romanian civil airspace, developments and issues raised by the current regulation, as well as aspects related to the national regulations expected to enter into force at the end of 2015, beginning of 2016.

  20. Concept development of control system for perspective unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Koryanov Vsevolod V.

    2018-01-01

    Full Text Available Presented actual aspects of the development of the control system of unmanned aerial vehicles (UAVs in the example of perspective. Because the current and future UAV oriented to implementation of a wide range of tasks, taking into account the use of several types of payload, in this paper discusses the general principles of construction of onboard control complex, in turn, a hardware implementation of the automatic control system has been implemented in the microcontroller Arduino platform and the Raspberry Pi. In addition, in the paper presents the most common and promising way to ensure the smooth and reliable communication of the command post with the UAV as well as to the ways of parry considered and abnormal situations.

  1. Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine.

    Science.gov (United States)

    Bhatt, Kunj; Pourmand, Ali; Sikka, Neal

    2018-02-28

    Advances in technology have revolutionized the medical field and changed the way healthcare is delivered. Unmanned aerial vehicles (UAVs) are the next wave of technological advancements that have the potential to make a huge splash in clinical medicine. UAVs, originally developed for military use, are making their way into the public and private sector. Because they can be flown autonomously and can reach almost any geographical location, the significance of UAVs are becoming increasingly apparent in the medical field. We conducted a comprehensive review of the English language literature via the PubMed and Google Scholar databases using search terms "unmanned aerial vehicles," "UAVs," and "drone." Preference was given to clinical trials and review articles that addressed the keywords and clinical medicine. Potential applications of UAVs in medicine are broad. Based on articles identified, we grouped UAV application in medicine into three categories: (1) Prehospital Emergency Care; (2) Expediting Laboratory Diagnostic Testing; and (3) Surveillance. Currently, UAVs have been shown to deliver vaccines, automated external defibrillators, and hematological products. In addition, they are also being studied in the identification of mosquito habitats as well as drowning victims at beaches as a public health surveillance modality. These preliminary studies shine light on the possibility that UAVs may help to increase access to healthcare for patients who may be otherwise restricted from proper care due to cost, distance, or infrastructure. As with any emerging technology and due to the highly regulated healthcare environment, the safety and effectiveness of this technology need to be thoroughly discussed. Despite the many questions that need to be answered, the application of drones in medicine appears to be promising and can both increase the quality and accessibility of healthcare.

  2. Unmanned Aerial Vehicle (UAV) data analysis for fertilization dose assessment

    Science.gov (United States)

    Kavvadias, Antonis; Psomiadis, Emmanouil; Chanioti, Maroulio; Tsitouras, Alexandros; Toulios, Leonidas; Dercas, Nicholas

    2017-10-01

    The growth rate monitoring of crops throughout their biological cycle is very important as it contributes to the achievement of a uniformly optimum production, a proper harvest planning, and reliable yield estimation. Fertilizer application often dramatically increases crop yields, but it is necessary to find out which is the ideal amount that has to be applied in the field. Remote sensing collects spatially dense information that may contribute to, or provide feedback about, fertilization management decisions. There is a potential goal to accurately predict the amount of fertilizer needed so as to attain an ideal crop yield without excessive use of fertilizers cause financial loss and negative environmental impacts. The comparison of the reflectance values at different wavelengths, utilizing suitable vegetation indices, is commonly used to determine plant vigor and growth. Unmanned Aerial Vehicles (UAVs) have several advantages; because they can be deployed quickly and repeatedly, they are flexible regarding flying height and timing of missions, and they can obtain very high-resolution imagery. In an experimental crop field in Eleftherio Larissa, Greece, different dose of pre-plant and in-season fertilization was applied in 27 plots. A total of 102 aerial photos in two flights were taken using an Unmanned Aerial Vehicle based on the scheduled fertilization. Α correlation of experimental fertilization with the change of vegetation indices values and with the increase of the vegetation cover rate during those days was made. The results of the analysis provide useful information regarding the vigor and crop growth rate performance of various doses of fertilization.

  3. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Science.gov (United States)

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  4. Vision-Based SLAM System for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-03-01

    Full Text Available The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs. The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i an orientation sensor (AHRS; (ii a position sensor (GPS; and (iii a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  5. Vision-Based SLAM System for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-03-15

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  6. Integrating Pavement Crack Detection and Analysis Using Autonomous Unmanned Aerial Vehicle Imagery

    Science.gov (United States)

    2015-03-27

    INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS UNMANNED AERIAL VEHICLE...protection in the United States. AFIT-ENV-MS-15-M-195 INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS UNMANNED AERIAL...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENV-MS-15-M-195 INTEGRATING PAVEMENT CRACK DETECTION AND ANALYSIS USING AUTONOMOUS

  7. Unmanned Aerial ad Hoc Networks: Simulation-Based Evaluation of Entity Mobility Models’ Impact on Routing Performance

    Directory of Open Access Journals (Sweden)

    Jean-Daniel Medjo Me Biomo

    2015-06-01

    Full Text Available An unmanned aerial ad hoc network (UAANET is a special type of mobile ad hoc network (MANET. For these networks, researchers rely mostly on simulations to evaluate their proposed networking protocols. Hence, it is of great importance that the simulation environment of a UAANET replicates as much as possible the reality of UAVs. One major component of that environment is the movement pattern of the UAVs. This means that the mobility model used in simulations has to be thoroughly understood in terms of its impact on the performance of the network. In this paper, we investigate how mobility models affect the performance of UAANET in simulations in order to come up with conclusions/recommendations that provide a benchmark for future UAANET simulations. To that end, we first propose a few metrics to evaluate the mobility models. Then, we present five random entity mobility models that allow nodes to move almost freely and independently from one another and evaluate four carefully-chosen MANET/UAANET routing protocols: ad hoc on-demand distance vector (AODV, optimized link state routing (OLSR, reactive-geographic hybrid routing (RGR and geographic routing protocol (GRP. In addition, flooding is also evaluated. The results show a wide variation of the protocol performance over different mobility models. These performance differences can be explained by the mobility model characteristics, and we discuss these effects. The results of our analysis show that: (i the enhanced Gauss–Markov (EGM mobility model is best suited for UAANET; (ii OLSR, a table-driven proactive routing protocol, and GRP, a position-based geographic protocol, are the protocols most sensitive to the change of mobility models; (iii RGR, a reactive-geographic hybrid routing protocol, is best suited for UAANET.

  8. Autonomous, Safe Take-Off and Landing Operations for Unmanned Aerial Vehicles in the National Airspace, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned aerial systems (UAS) have the potential to significantly impact modern society. While the technology for unmanned air vehicles operating day in and day out...

  9. Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors

    Directory of Open Access Journals (Sweden)

    Zoran Benić

    2016-01-01

    Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.

  10. Development Of Translational Motion Of Unmanned Aerial Vehicle Using MATLAB

    Directory of Open Access Journals (Sweden)

    Thwe Thwe Htoo

    2015-08-01

    Full Text Available This research work describes the translational motion analysis of unmanned aerial vehicle UAV. Since the center of mass of the receiver is timevarying the equations are written in a reference frame that is geometrically fixed in the aircraft. Due to the fact that aerial vehicle simulation and control deal with the position and orientation of the UAV the equations of motion are derived in terms of the translational and rotational position and velocity with respect to the aircraft location. The formation relative motion control is a challenging problem due to the coupled translational and rotational dynamics. As the translational vector depends on the current attitude and its angular velocity and some of the attitude constraints also couple the position and attitude of the spacecraft it makes the formation control problem high dimensional. This work develops UAV stability conditions including translational vector maneuverability condition and included angle condition between the translational and the rotational motion of UAV system and then presents two methods to calculate the UAV attitude. Both of the two methods need first design the optimal trajectory of the translational vector and then use geometric and nonlinear programming methods to calculate the target trajectory. The validity of the proposed approach is demonstrated in a UAV by using MATLAB. The performance of the translational motion control is evaluated by the simulated results.

  11. Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles Symposium. Technical Evaluation Report

    National Research Council Canada - National Science Library

    Decuypere, Roland; Selegan, David

    2007-01-01

    ...) of the Research and Technology Organization (RTO) of NATO organized a joint symposium on Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles which met from 14-18 May 2007 in Florence Italy...

  12. Conceptual Approach to Utilisation of the Unmanned Aerial Vehicles in Diverse Activities

    Directory of Open Access Journals (Sweden)

    Jelena Ćosić Lesičar

    2017-06-01

    Full Text Available This paper considers current situation and development of software for group of mobile agents applicable on group of unmanned aerial vehicles. Generally, unmanned aerial vehicles are used for transfer of information, mass and energy and their group work enhances their success rate in comparison with the success rate of the use of a single unmanned aerial vehicle. Despite the constant daily use, their potential is realized only in a small portion. It is argued that software development is the natural further step in achieving considerably larger portion of realizations of their potential of groups of unmanned aerial vehicles. Starting requirements that such software must fulfill are rudimentariness of the code, openness regarding number of group members and closeness regarding information exchange. Prospective directions of development of that software are analyzed.

  13. Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    National Research Council Canada - National Science Library

    Corner, Joshua

    2004-01-01

    .... Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost...

  14. Analysis of the Vertical Takeoff and Landing Unmanned Aerial Vehicle (VTUAV) in Small Unit Urban Operations

    National Research Council Canada - National Science Library

    Cason, Roman

    2004-01-01

    ...) to replace the aging Pioneer Unmanned Aerial Vehicle (UAV) system. This thesis examines the critical elements this platform must possess to effectively support small units operating in urban environments...

  15. A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles

    NARCIS (Netherlands)

    Suomalainen, J.M.; Anders, N.S.; Iqbal, S.; Roerink, G.J.; Franke, G.J.; Wenting, P.F.M.; Hünniger, D.; Bartholomeus, H.; Becker, R.; Kooistra, L.

    2014-01-01

    During the last years commercial hyperspectral imaging sensors have been miniaturized and their performance has been demonstrated on Unmanned Aerial Vehicles (UAV). However currently the commercial hyperspectral systems still require minimum payload capacity of approximately 3 kg, forcing usage of

  16. The Rise of the Unmanned Aerial Vehicle and its Effect on Manned Tactical Aviation

    National Research Council Canada - National Science Library

    Meger, James P

    2006-01-01

    Unmanned aerial vehicles (UAVs) are not new concepts. Their history dates back to the Civil War with hot air balloons and has evolved into a crucial combat tool for commanders in the modern battlespace...

  17. AERIAL TERRAIN MAPPING USING UNMANNED AERIAL VEHICLE APPROACH

    Directory of Open Access Journals (Sweden)

    K. N. Tahar

    2012-08-01

    Full Text Available This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root

  18. State-of-the-Art System Solutions for Unmanned Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    A. E. Yilmaz

    2009-12-01

    Full Text Available Unmanned Underwater Vehicles (UUVs have gained popularity for the last decades, especially for the purpose of not risking human life in dangerous operations. On the other hand, underwater environment introduces numerous challenges in navigation, control and communication of such vehicles. Certainly, this fact makes the development of these vehicles more interesting and engineering-wise more attractive. In this paper, we first revisit the existing technology and methodology for the solution of aforementioned problems, then we try to come up with a system solution of a generic unmanned underwater vehicles.

  19. Unmanned air vehicle (UAV) ultra-persitence research

    Energy Technology Data Exchange (ETDEWEB)

    Dron, S. B.

    2012-03-01

    Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were

  20. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    Science.gov (United States)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  1. Unmanned aerial vehicles in construction and worker safety.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Branche, Christine M

    2018-01-01

    Applications of unmanned aerial vehicles (UAVs) for military, recreational, public, and commercial uses have expanded significantly in recent years. In the construction industry, UAVs are used primarily for monitoring of construction workflow and job site logistics, inspecting construction sites to assess structural integrity, and for maintenance assessments. As is the case with other emerging technologies, occupational safety assessments of UAVs lag behind technological advancements. UAVs may create new workplace hazards that need to be evaluated and managed to ensure their safe operation around human workers. At the same time, UAVs can perform dangerous tasks, thereby improving workplace safety. This paper describes the four major uses of UAVs, including their use in construction, the potential risks of their use to workers, approaches for risk mitigation, and the important role that safety and health professionals can play in ensuring safe approaches to the their use in the workplace. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. Using Unmanned Aerial Vehicles (UAVs) to Modeling Tornado Impacts

    Science.gov (United States)

    Wagner, M.; Doe, R. K.

    2017-12-01

    Using Unmanned Aerial Vehicles (UAVs) to assess storm damage is a useful research tool. Benefits include their ability to access remote or impassable areas post-storm, identify unknown damages and assist with more detailed site investigations and rescue efforts. Technological advancement of UAVs mean that they can capture high resolution images often at an affordable price. These images can be used to create 3D environments to better interpret and delineate damages from large areas that would have been difficult in ground surveys. This research presents the results of a rapid response site investigation of the 29 April 2017 Canton, Texas, USA, tornado using low cost UAVs. This was a multiple, high impact tornado event measuring EF4 at maximum. Rural farmland was chosen as a challenging location to test both equipment and methodology. Such locations provide multiple impacts at a variety of scales including structural and vegetation damage and even animal fatalities. The 3D impact models allow for a more comprehensive study prior to clean-up. The results show previously unseen damages and better quantify damage impacts at the local level. 3D digital track swaths were created allowing for a more accurate track width determination. These results demonstrate how effective the use of low cost UAVs can be for rapid response storm damage assessments, the high quality of data they can achieve, and how they can help us better visualize tornado site investigations.

  3. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  4. Unmanned aerial vehicle trajectory planning with direct methods

    Science.gov (United States)

    Geiger, Brian

    A real-time method for trajectory optimization to maximize surveillance time of a fixed or moving ground target by one or more unmanned aerial vehicles (UAVs) is presented. The method accounts for performance limits of the aircraft, intrinsic properties of the camera, and external disturbances such as wind. Direct collocation with nonlinear programming is used to implement the method in simulation and onboard the Penn State/Applied Research Lab's testbed UAV. Flight test results compare well with simulation. Both stationary targets and moving targets, such as a low flying UAV, were successfully tracked in flight test. In addition, a new method using a neural network approximation is presented that removes the need for collocation and numerical derivative calculation. Neural networks are used to approximate the objective and dynamics functions in the optimization problem which allows for reduced computation requirements. The approximation reduces the size of the resulting nonlinear programming problem compared to direct collocation or pseudospectral methods. This method is shown to be faster than direct collocation and psuedospectral methods using numerical or automatic derivative techniques. The neural network approximation is also shown to be faster than analytical derivatives but by a lesser factor. Comparative results are presented showing similar accuracy for all methods. The method is modular and enables application to problems of the same class without network retraining.

  5. Radar-based collision avoidance for unmanned surface vehicles

    Science.gov (United States)

    Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing

    2016-12-01

    Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.

  6. Thermal soaring flight of birds and unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Akos, Zsuzsa; Nagy, Mate; Vicsek, Tamas; Leven, Severin

    2010-01-01

    Thermal soaring saves much energy, but flying large distances in this form represents a great challenge for birds, people and unmanned aerial vehicles (UAVs). The solution is to make use of the so-called thermals, which are localized, warmer regions in the atmosphere moving upward with a speed exceeding the descent rate of birds and planes. Saving energy by exploiting the environment more efficiently is an important possibility for autonomous UAVs as well. Successful control strategies have been developed recently for UAVs in simulations and in real applications. This paper first presents an overview of our knowledge of the soaring flight and strategy of birds, followed by a discussion of control strategies that have been developed for soaring UAVs both in simulations and applications on real platforms. To improve the accuracy of the simulation of thermal exploitation strategies we propose a method to take into account the effect of turbulence. Finally, we propose a new GPS-independent control strategy for exploiting thermal updrafts.

  7. The unmanned aerial vehicles in international trade and their regulation

    Directory of Open Access Journals (Sweden)

    Iveta Cerna

    2016-09-01

    Full Text Available Objective to review the current situation in production and distribution of unmanned aerial vehicles further ndash UAVs in developed countries as well as the legal regulation issues. Methods abstractlogic summarizing and observation comparative analysis. Results The analysis of international trade in UAVs revealed the leading countries dominating the market Israel the USA and Canada. The leading importers are India UK and France. China and Russian Federation are important producers but are just marginally involved in international trade having rather protectionist trade policies. The characters of national regulatory frameworks vary significantly from country to country while the Czech Republic belongs to the rather liberal group of EU members. Scientific novelty So far the journal publications in regard of UAVs have addressed uniquely technical issues and economic issues have been unattended. This paper clarifies the terminology mess analyses trade policy issues trade and production statistics and regulatory concerns linked to this steeply growing segment that is subject to doubleuse items regulations. Practical value Given a lack of relevant publications focused on international trade in UAVs in particular the paper provides a complex overview of current state of play in terms of this promising yet very controversial subject.

  8. A Shape Memory Alloy Application for Compact Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Salvatore Ameduri

    2016-05-01

    Full Text Available Shape memory alloys materials, SMA, offer several advantages that designers can rely on such as the possibility of transmitting large forces and deformations, compactness, and the intrinsic capability to absorb loads. Their use as monolithic actuators, moreover, can lead to potential simplifications of the system, through a reduction of number of parts and the removal of many free play gaps among mechanics. For these reasons, technological aerospace research is focusing on this kind of technology more and more, even though fatigue life, performance degradation, and other issues are still open. In the work at hand, landing gear for unmanned aerial vehicles, UAV, is presented, integrated with shape memory alloys springs as actuation devices. A conceptual prototype has been realized to verify the system ability in satisfying specs, in terms of deployment and retraction capability. Starting from the proposed device working principle and the main design parameters identification, the design phase is faced, setting those parameters to meet weight, deployment angle, energy consumption, and available room requirements. Then, system modeling and performance prediction is performed and finally a correlation between numerical and experimental results is presented.

  9. Partial camera automation in an unmanned air vehicle.

    Science.gov (United States)

    Korteling, J E; van der Borg, W

    1997-03-01

    The present study focused on an intelligent, semiautonomous, interface for a camera operator of a simulated unmanned air vehicle (UAV). This interface used system "knowledge" concerning UAV motion in order to assist a camera operator in tracking an object moving through the landscape below. The semiautomated system compensated for the translations of the UAV relative to the earth. This compensation was accompanied by the appropriate joystick movements ensuring tactile (haptic) feedback of these system interventions. The operator had to superimpose self-initiated joystick manipulations over these system-initiated joystick motions in order to track the motion of a target (a driving truck) relative to the terrain. Tracking data showed that subjects performed substantially better with the active system. Apparently, the subjects had no difficulty in maintaining control, i.e., "following" the active stick while superimposing self-initiated control movements over the system-interventions. Furthermore, tracking performance with an active interface was clearly superior relative to the passive system. The magnitude of this effect was equal to the effect of update-frequency (2-5 Hz) of the monitor image. The benefits of update frequency enhancement and semiautomated tracking were the greatest under difficult steering conditions. Mental workload scores indicated that, for the difficult tracking-dynamics condition, both semiautomation and update frequency increase resulted in less experienced mental effort. For the easier dynamics this effect was only seen for update frequency.

  10. An Improved SIFT Algorithm for Unmanned Aerial Vehicle Imagery

    International Nuclear Information System (INIS)

    Li, J M; Yan, D M; Wang, G; Zhang, L

    2014-01-01

    The Unmanned Aerial Vehicle (UAV) platform has the benefits of low cost and convenience compared with satellites. Recently, UAVs have shown a wide range of applications such as land use change, mineral resources management and local topographic mapping. Because of the instability of the UAV air gesture, an image matching method is necessary to match different images of an object or scene. Scale Invariant Feature Transform (SIFT) features are invariant to image scaling, rotation and translation. However, the main drawback of a SIFT algorithm is its significant memory consumption and low computational speed, particularly in the case of high-resolution imagery. In this study, in order to overcome these drawbacks, we have analysed the construction of the scale-space in the SIFT algorithm and selected new parameters to construct the SIFT scale-space to improve the memory consumption and computational speed for the processing of UAV imagery. Here, we propose a restriction on the number of octaves and levels for Gaussian image pyramids. Our experiment shows that the proposed algorithm effectively reduces memory consumption and significantly improves the operational efficiency of the feature point extraction and matching under the premise of maintaining the precision of the extracted feature points

  11. Crack identification for rigid pavements using unmanned aerial vehicles

    Science.gov (United States)

    Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker

    2017-09-01

    Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.

  12. Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV dengan Tiga Rotor

    Directory of Open Access Journals (Sweden)

    Darmawan Rasyid Hadi Saputra

    2013-03-01

    Full Text Available Unmanned Aerial Vehicle atau yang biasa dikenal dengan istilah UAV  merupakan sebuah sistem penerbangan/ pesawat tanpa pilot yang berada di dalam pesawat tersebut. UAV dapat dikendalikan dengan menggunakan remote dari jarak jauh, diprogram dengan perintah tertentu, atau bahkan dengan sistem pengendalian otomatis yang lebih kompleks. Aplikasi dari teknologi UAV pun beragam mulai dari tugas militer hingga pengamatan udara. Dalam penelitian ini, sebuah UAV akan dikembangkan dengan tiga buah rotor dan satu buah motor servo di bagian belakang UAV. Perancangan model menggunakan software CATIA dengan batasan dimensi (panjang × lebar maksimum 75 × 75 cm dan massa < 2 kg. Analisis struktur rangka dilakukan untuk menguji kekuatan rangka ketika terbang dan membawa beban, dengan menggunakan metode elemen hingga dan kriteria kegagalan Von-Misses. Dalam proses pengerjaan, rancangan dari CATIA dan analisis yang telah dilakukan dalam perancangan tersebut akan digunakan. Hasil yang didapat berupa UAV yang memiliki struktur rangka dengan defleksi maksimum 3,67 mm pada rangka tengah yang berbahan acrylic. Dalam pengujian di lapangan, UAV dapat melakukan gerak roll, pitch, dan yaw yang dikendalikan melalui remote control. Waktu operasi maksimum yang dapat dilakukan adalah selama 7 menit 43 detik.

  13. Volumetric calculation using low cost unmanned aerial vehicle (UAV) approach

    Science.gov (United States)

    Rahman, A. A. Ab; Maulud, K. N. Abdul; Mohd, F. A.; Jaafar, O.; Tahar, K. N.

    2017-12-01

    Unmanned Aerial Vehicles (UAV) technology has evolved dramatically in the 21st century. It is used by both military and general public for recreational purposes and mapping work. Operating cost for UAV is much cheaper compared to that of normal aircraft and it does not require a large work space. The UAV systems have similar functions with the LIDAR and satellite images technologies. These systems require a huge cost, labour and time consumption to produce elevation and dimension data. Measurement of difficult objects such as water tank can also be done by using UAV. The purpose of this paper is to show the capability of UAV to compute the volume of water tank based on a different number of images and control points. The results were compared with the actual volume of the tank to validate the measurement. In this study, the image acquisition was done using Phantom 3 Professional, which is a low cost UAV. The analysis in this study is based on different volume computations using two and four control points with variety set of UAV images. The results show that more images will provide a better quality measurement. With 95 images and four GCP, the error percentage to the actual volume is about 5%. Four controls are enough to get good results but more images are needed, estimated about 115 until 220 images. All in all, it can be concluded that the low cost UAV has a potential to be used for volume of water and dimension measurement.

  14. Fast mission reliability prediction for Unmanned Aerial Vehicles

    International Nuclear Information System (INIS)

    Andrews, J.D.; Poole, J.; Chen, W.H.

    2013-01-01

    There is currently a significant interest in the use of autonomous vehicles in many industrial sectors. One such example is the ever increasing use of Unmanned Aerial Vehicles (UAVs), particularly in military operations. This enables dangerous missions to be accomplished without risk to a pilot. UAVs also have potential civil applications which would require their certification and the demonstration that they are able to respond safety to any potential circumstances. The aircraft would therefore need to be capable of responding safely to the occurrence of component failures, the emergence of threats such as other aircraft in the neighboring airspace, and changing weather conditions. The likelihood that an aircraft will successfully complete any mission can be predicted using phased mission analysis techniques. The predicted mission unreliability can be updated in response to changing circumstances. In the event that the likelihood of mission failure becomes too high then changes have to be made to the mission plan. If these calculations could be carried out fast enough then the quantification procedure could be used to establish an acceptable response to any new conditions. With a view to using the methodology in the context described above, this paper investigates ways in which phased mission analysis can be improved to reduce the calculation time. The methodology improves the processing capability for a UAV phased mission analysis by taking into account the specific characteristics of the fault tree structures which provide the causes of phase failure for a UAV mission. It also carries out as much of the quantification as possible in advance of the mission plan being formulated

  15. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  16. SIMPLIFIED MATHEMATICAL MODEL OF SMALL SIZED UNMANNED AIRCRAFT VEHICLE LAYOUT

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Strong reduction of new aircraft design period using new technology based on artificial intelligence is the key problem mentioned in forecasts of leading aerospace industry research centers. This article covers the approach to devel- opment of quick aerodynamic design methods based on artificial intelligence neural system. The problem is being solved for the classical scheme of small sized unmanned aircraft vehicle (UAV. The principal parts of the method are the mathe- matical model of layout, layout generator of this type of aircraft is built on aircraft neural networks, automatic selection module for cleaning variety of layouts generated in automatic mode, robust direct computational fluid dynamics method, aerodynamic characteristics approximators on artificial neural networks.Methods based on artificial neural networks have intermediate position between computational fluid dynamics methods or experiments and simplified engineering approaches. The use of ANN for estimating aerodynamic characteris-tics put limitations on input data. For this task the layout must be presented as a vector with dimension not exceeding sev-eral hundred. Vector components must include all main parameters conventionally used for layouts description and com- pletely replicate the most important aerodynamics and structural properties.The first stage of the work is presented in the paper. Simplified mathematical model of small sized UAV was developed. To estimate the range of geometrical parameters of layouts the review of existing vehicle was done. The result of the work is the algorithm and computer software for generating the layouts based on ANN technolo-gy. 10000 samples were generated and the dataset containig geometrical and aerodynamic characteristics of layoutwas created.

  17. Flight simulation program for high altitude long endurance unmanned vehicle; Kokodo mujinki no hiko simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hashidate, M. [National Aerospace Laboratory, Tokyo (Japan)

    1995-11-01

    An altitude of about 20 km has the atmospheric density too dilute for common aircraft, and the air resistance too great for satellites. Attention has been drawn in recent years on a high-altitude long-endurance unmanned vehicle that flies at this altitude for a long period of time to serve as a wave relaying base and perform traffic control. Therefore, a development was made on a flight simulation program to evaluate and discuss the guidance and control laws for the high-altitude unmanned vehicle. Equations of motion were derived for three-dimensional six freedom and three-dimensional three freedom. Aerodynamic characteristics of an unmanned vehicle having a Rectenna wing were estimated, and formulation was made according to the past research results on data of winds that the unmanned vehicle is anticipated to encounter at an altitude of 20 km. Noticing the inside of a horizontal plane, a proposal was given on a guidance law that follows a given path. A flight simulation was carried out to have attained a prospect that the unmanned vehicle may be enclosed in a limited space even if the vehicle is encountered with a relatively strong wind. 18 refs., 20 figs., 1 tab.

  18. Teleoperated Visual Inspection and Surveillance with Unmanned Ground and Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Viatcheslav Tretyakov

    2008-11-01

    Full Text Available This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV and an Unmanned Aerial Vehicles (UAV. The paper focuses on three topics of the inspection with the combined UGV and UAV: (A teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C the architecture and hardware of the UAV

  19. Tracking of a Fluorescent Dye in a Freshwater Lake with an Unmanned Surface Vehicle and an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Craig Powers

    2018-01-01

    Full Text Available Recent catastrophic events in our oceans, including the spill of toxic oil from the explosion of the Deepwater Horizon drilling rig and the rapid dispersion of radioactive particulates from the meltdown of the Fukushima Daiichi nuclear plant, underscore the need for new tools and technologies to rapidly respond to hazardous agents. Our understanding of the movement and aerosolization of hazardous agents from natural aquatic systems can be expanded upon and used in prevention and tracking. New technologies with coordinated unmanned robotic systems could lead to faster identification and mitigation of hazardous agents in lakes, rivers, and oceans. In this study, we released a fluorescent dye (fluorescein into a freshwater lake from an anchored floating platform. A fluorometer (fluorescence sensor was mounted underneath an unmanned surface vehicle (USV, unmanned boat and was used to detect and track the released dye in situ in real-time. An unmanned aircraft system (UAS was used to visualize the dye and direct the USV to sample different areas of the dye plume. Image processing tools were used to map concentration profiles of the dye plume from aerial images acquired from the UAS, and these were associated with concentration measurements collected from the sensors onboard the USV. The results of this project have the potential to transform monitoring strategies for hazardous agents, enabling timely and accurate exposure assessment and response in affected areas. Fast response is essential in reacting to the introduction of hazardous agents, in order to quickly predict and contain their spread.

  20. Bilateral teleoperation of underactuated unmanned aerial vehicles: The virtual slave concept

    NARCIS (Netherlands)

    Mersha, A.Y.; Stramigioli, Stefano; Carloni, Raffaella

    In this paper, we present haptic teleoperation of underactuated unmanned aerial vehicles by providing a multidimensional generalization of the virtual slave concept. The proposed control architecture is composed of high-level and low-level controllers. The high-level controller commands the vehicle

  1. Effects of Hearing Protection Device Attenuation on Unmanned Aerial Vehicle (UAV) Audio Signatures

    Science.gov (United States)

    2016-03-01

    UAV ) Audio Signatures by Melissa Bezandry, Adrienne Raglin, and John Noble Approved for public release; distribution...Research Laboratory Effects of Hearing Protection Device Attenuation on Unmanned Aerial Vehicle ( UAV ) Audio Signatures by Melissa Bezandry...Aerial Vehicle ( UAV ) Audio Signatures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Melissa Bezandry

  2. Kinetic scrolling-based position mapping for haptic teleoperation of unmanned aerial vehicles

    NARCIS (Netherlands)

    Ruesch, A.; Mersha, A.Y.; Stramigioli, Stefano; Carloni, Raffaella

    In this paper, we present a haptic teleoperation control algorithm for unmanned aerial vehicles, applying a kinetic scrolling-based position mapping. The proposed algorithm overcomes the master workspace limitations and enables to teleoperate the aerial vehicle in unbounded workspace in a fast and

  3. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  4. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  5. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Geis, Jack; Arnold, Jack H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  6. Capabilities of unmanned aircraft vehicles for low altitude weed detection

    Science.gov (United States)

    Pflanz, Michael; Nordmeyer, Henning

    2014-05-01

    Sustainable crop production and food security require a consumer and environmental safe plant protection. It is recently known, that precise weed monitoring approaches could help apply pesticides corresponding to field variability. In this regard the site-specific weed management may contribute to an application of herbicides with higher ecologically aware and economical savings. First attempts of precision agriculture date back to the 1980's. Since that time, remote sensing from satellites or manned aircrafts have been investigated and used in agricultural practice, but are currently inadequate for the separation of weeds in an early growth stage from cultivated plants. In contrast, low-cost image capturing at low altitude from unmanned aircraft vehicles (UAV) provides higher spatial resolution and almost real-time processing. Particularly, rotary-wing aircrafts are suitable for precise path or stationary flight. This minimises motion blur and provides better image overlapping for stitching and mapping procedures. Through improved image analyses and the recent increase in the availability of microcontrollers and powerful batteries for UAVs, it can be expected that the spatial mapping of weeds will be enhanced in the future. A six rotors microcopter was equipped with a modified RGB camera taking images from agricultural fields. The hexacopter operates within predefined pathways at adjusted altitudes (from 5 to 10 m) by using GPS navigation. Different scenarios of optical weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. Our experiences showed high capabilities for site-specific weed control. Image analyses with regard to recognition of weed patches can be used to adapt herbicide application to varying weed occurrence across a field.

  7. WETLAND ASSESSMENT USING UNMANNED AERIAL VEHICLE (UAV PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    M. A. Boon

    2016-06-01

    Full Text Available The use of Unmanned Arial Vehicle (UAV photogrammetry is a valuable tool to enhance our understanding of wetlands. Accurate planning derived from this technological advancement allows for more effective management and conservation of wetland areas. This paper presents results of a study that aimed at investigating the use of UAV photogrammetry as a tool to enhance the assessment of wetland ecosystems. The UAV images were collected during a single flight within 2½ hours over a 100 ha area at the Kameelzynkraal farm, Gauteng Province, South Africa. An AKS Y-6 MKII multi-rotor UAV and a digital camera on a motion compensated gimbal mount were utilised for the survey. Twenty ground control points (GCPs were surveyed using a Trimble GPS to achieve geometrical precision and georeferencing accuracy. Structure-from-Motion (SfM computer vision techniques were used to derive ultra-high resolution point clouds, orthophotos and 3D models from the multi-view photos. The geometric accuracy of the data based on the 20 GCP’s were 0.018 m for the overall, 0.0025 m for the vertical root mean squared error (RMSE and an over all root mean square reprojection error of 0.18 pixel. The UAV products were then edited and subsequently analysed, interpreted and key attributes extracted using a selection of tools/ software applications to enhance the wetland assessment. The results exceeded our expectations and provided a valuable and accurate enhancement to the wetland delineation, classification and health assessment which even with detailed field studies would have been difficult to achieve.

  8. Semi-autonomous unmanned ground vehicle control system

    Science.gov (United States)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  9. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    Directory of Open Access Journals (Sweden)

    Sergey V. Cherkasov

    2018-06-01

    Full Text Available The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic with the Khankala geothermal plant operating at different regimes: during the first survey – with, and the second – without reinjection of used geothermal fluid. Unmanned aerial vehicle Geoscan 201 equipped with digital (Sony DSX-RX1 and thermal imaging (Thermoframe-MX-TTX cameras was used. Besides different images of the geothermal plant obtained by the surveys, 13 thermal anomalies have been identified. Analysis of the shape and temperature facilitated determination of their different sources: fire, heating systems, etc., which was confirmed by a ground reconnaissance. Results of the study demonstrate a high potential of unmanned aerial vehicle based thermal imagery use for environmental and technological monitoring of geothermal fields under operation.

  10. Unmanned Aerial Vehicles: Background and Issues for Congress

    National Research Council Canada - National Science Library

    Geer, Harlan; Bolkcom, Christopher

    2005-01-01

    .... Furthermore, the military effectiveness of UAVs in recent conflicts such as Iraq (1990) and Kosovo (1999) opened the eyes of many to both the advantages and disadvantages provided by unmanned aircraft...

  11. Information Exchange Architecture for Integrating Unmanned Vehicles into Maritime Missions

    National Research Council Canada - National Science Library

    Woolsey, Aaron

    2004-01-01

    .... The focus of this study is to analyze the structure of information flow for unmanned systems and suggest an exchange architecture to successfully inform and build decision maker understanding based...

  12. Structural design and fabrication techniques of composite unmanned aerial vehicles

    Science.gov (United States)

    Hunt, Daniel Stephen

    Popularity of unmanned aerial vehicles has grown substantially in recent years both in the private sector, as well as for government functions. This growth can be attributed largely to the increased performance of the technology that controls these vehicles, as well as decreasing cost and size of this technology. What is sometimes forgotten though, is that the research and advancement of the airframes themselves are equally as important as what is done with them. With current computer-aided design programs, the limits of design optimization can be pushed further than ever before, resulting in lighter and faster airframes that can achieve longer endurances, higher altitudes, and more complex missions. However, realization of a paper design is still limited by the physical restrictions of the real world and the structural constraints associated with it. The purpose of this paper is to not only step through current design and manufacturing processes of composite UAVs at Oklahoma State University, but to also focus on composite spars, utilizing and relating both calculated and empirical data. Most of the experience gained for this thesis was from the Cessna Longitude project. The Longitude is a 1/8 scale, flying demonstrator Oklahoma State University constructed for Cessna. For the project, Cessna required dynamic flight data for their design process in order to make their 2017 release date. Oklahoma State University was privileged enough to assist Cessna with the mission of supporting the validation of design of their largest business jet to date. This paper will detail the steps of the fabrication process used in construction of the Longitude, as well as several other projects, beginning with structural design, machining, molding, skin layup, and ending with final assembly. Also, attention will be paid specifically towards spar design and testing in effort to ease the design phase. This document is intended to act not only as a further development of current

  13. An Opportunistic Routing for Data Forwarding Based on Vehicle Mobility Association in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    2017-11-01

    Full Text Available Vehicular ad hoc networks (VANETs have emerged as a new powerful technology for data transmission between vehicles. Efficient data transmission accompanied with low data delay plays an important role in selecting the ideal data forwarding path in VANETs. This paper proposes a new opportunity routing protocol for data forwarding based on vehicle mobility association (OVMA. With assistance from the vehicle mobility association, data can be forwarded without passing through many extra intermediate nodes. Besides, each vehicle carries the only replica information to record its associated vehicle information, so the routing decision can adapt to the vehicle densities. Simulation results show that the OVMA protocol can extend the network lifetime, improve the performance of data delivery ratio, and reduce the data delay and routing overhead when compared to the other well-known routing protocols.

  14. Tracking Controller Design for Diving Behavior of an Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Tseng

    2013-01-01

    Full Text Available The study has investigated the almost disturbance decoupling problem of nonlinear uncertain control systems via the fuzzy feedback linearization approach. The significant dedication of this paper is to organize a control algorithm such that the closed-loop system is active for given initial condition and bounded tracking trajectory with the input-to-state stability and almost disturbance decoupling performance. This study presents a feedback linearization controller for diving control of an unmanned underwater vehicle. Unmanned underwater vehicle proposes difficult control subject due to its nonlinear dynamics, uncertain models, and the existence of disturbances that are difficult to measure. In general, while investigating the diving dynamics of an unmanned underwater vehicle, the pitch angle is always assumed to be small. This assumption is a strong restricting constraint in many interesting practical applications and will be relaxed in this study.

  15. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Rango, A.; Laliberte, A.; Winters, C.; Maxwell, C.; Steele, C.

    2008-12-01

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial photographic, multispectral and hyperspectral radiometric, LIDAR, and radar data. The characteristics of several small UAVs less than 55lbs (25kg)) along with some payload instruments will be reviewed. Common types of remote sensing coverage available from a small, limited-payload UAV are video and hyperspatial, digital photography. From evaluation of these simple types of remote sensing data, we conclude that UAVs can play an important role in measuring and monitoring vegetation health and structure of the vegetation/soil complex in rangelands. If we fly our MLB Bat-3 at an altitude of 700ft (213m), we can obtain a digital photographic resolution of 6cm. The digital images acquired cover an area of approximately 29,350sq m. Video imaging is usually only useful for monitoring the flight path of the UAV in real time. In our experiments with the 6cm resolution data, we have been able to measure vegetation patch size, crown width, gap sizes between vegetation, percent vegetation and bare soil cover, and type of vegetation. The UAV system is also being tested to acquire height of the vegetation canopy using shadow measurements and a digital elevation model obtained with stereo images. Evaluation of combining the UAV digital photography with LIDAR data of the Jornada Experimental Range in south central New Mexico is ongoing. The use of UAVs is increasing and is becoming a very promising tool for vegetation assessment and change, but there are several operational components to flying UAVs that users need to consider. These include cost, a whole set of, as yet, undefined regulations regarding flying in the National Air Space(NAS), procedures to gain approval for flying in the NAS

  16. Comparison of Small Unmanned Aerial Vehicles Performance Using Image Processing

    Directory of Open Access Journals (Sweden)

    Esteban Cano

    2017-01-01

    Full Text Available Precision agriculture is a farm management technology that involves sensing and then responding to the observed variability in the field. Remote sensing is one of the tools of precision agriculture. The emergence of small unmanned aerial vehicles (sUAV have paved the way to accessible remote sensing tools for farmers. This paper describes the development of an image processing approach to compare two popular off-the-shelf sUAVs: 3DR Iris+ and DJI Phantom 2. Both units are equipped with a camera gimbal attached with a GoPro camera. The comparison of the two sUAV involves a hovering test and a rectilinear motion test. In the hovering test, the sUAV was allowed to hover over a known object and images were taken every quarter of a second for two minutes. For the image processing evaluation, the position of the object in the images was measured and this was used to assess the stability of the sUAV while hovering. In the rectilinear test, the sUAV was allowed to follow a straight path and images of a lined track were acquired. The lines on the images were then measured on how accurate the sUAV followed the path. The hovering test results show that the 3DR Iris+ had a maximum position deviation of 0.64 m (0.126 m root mean square RMS displacement while the DJI Phantom 2 had a maximum deviation of 0.79 m (0.150 m RMS displacement. In the rectilinear motion test, the maximum displacement for the 3DR Iris+ and the DJI phantom 2 were 0.85 m (0.134 m RMS displacement and 0.73 m (0.372 m RMS displacement. These results demonstrated that the two sUAVs performed well in both the hovering test and the rectilinear motion test and thus demonstrated that both sUAVs can be used for civilian applications such as agricultural monitoring. The results also showed that the developed image processing approach can be used to evaluate performance of a sUAV and has the potential to be used as another feedback control parameter for autonomous navigation.

  17. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    Friederike Gnädinger

    2017-05-01

    Full Text Available Precision phenotyping, especially the use of image analysis, allows researchers to gain information on plant properties and plant health. Aerial image detection with unmanned aerial vehicles (UAVs provides new opportunities in precision farming and precision phenotyping. Precision farming has created a critical need for spatial data on plant density. The plant number reflects not only the final field emergence but also allows a more precise assessment of the final yield parameters. The aim of this work is to advance UAV use and image analysis as a possible high-throughput phenotyping technique. In this study, four different maize cultivars were planted in plots with different seeding systems (in rows and equidistantly spaced and different nitrogen fertilization levels (applied at 50, 150 and 250 kg N/ha. The experimental field, encompassing 96 plots, was overflown at a 50-m height with an octocopter equipped with a 10-megapixel camera taking a picture every 5 s. Images were recorded between BBCH 13–15 (it is a scale to identify the phenological development stage of a plant which is here the 3- to 5-leaves development stage when the color of young leaves differs from older leaves. Close correlations up to R2 = 0.89 were found between in situ and image-based counted plants adapting a decorrelation stretch contrast enhancement procedure, which enhanced color differences in the images. On average, the error between visually and digitally counted plants was ≤5%. Ground cover, as determined by analyzing green pixels, ranged between 76% and 83% at these stages. However, the correlation between ground cover and digitally counted plants was very low. The presence of weeds and blurry effects on the images represent possible errors in counting plants. In conclusion, the final field emergence of maize can rapidly be assessed and allows more precise assessment of the final yield parameters. The use of UAVs and image processing has the potential to

  18. Using Unmanned Aerial Vehicles for monitoring glacial moulins

    Science.gov (United States)

    Santagata, Tommaso

    2016-04-01

    The exploration of cavities on glaciers has always represented a fascinating activity that attracts scientists and researchers since many decades. Several explorations performed by speleologists and scientists since 1985 on the Gorner Gletscher (Mount Rosa group, SW Switzerland) have allowed to survey more than 40 endoglacial caves and some marginal tunnels of this glacier, which is the most interesting in the Alps for its supraglacial and englacial pseudo-karst forms. In recent years, the study of these caves has led to the distinction of two morphological and genetic types: marginal tunnels, that generally forms at the contact between ice and lateral moraine, and swallow holes (moulins) which are vertical shafts where a supraglacial stream sinks into the ice. During the first International glacier-caving camp organized in October 2014 as part of the project "Inside the glaciers" which had the main objective to explore the cavities of this glacier and to study the cryo-karstic processes that lead to the formation of deep shafts, an unmanned aerial vehicle (UAV) equipped with camera and GPS system was used for the first time to perform photogrammetric surveys on three different areas. This technique allowed to derive detailed 3D models with very high resolution and accuracy of the entrance of the main moulins and other interesting parts of this glacier. Thanks to the acquisition of geo-referenced images and post-processing the acquired data (i.e. motion corrections), with the realized 3D point clouds and mesh models it was possible to obtain geo-referenced ortophoto and digital surface models which have been used to calculate contour lines and calculate the difference of position of the same moulins detected during the last years expeditions. Moreover, the data acquired have allowed to perform other different type of surface analysis and obtain an excellent photographic database that will surely be useful for further comparisons in future, proving the importance of

  19. Plotting the Flight Envelope of an Unmanned Aircraft System Air Vehicle

    Directory of Open Access Journals (Sweden)

    Glīzde Nikolajs

    2017-08-01

    Full Text Available The research is focused on the development of an Unmanned Aircraft System. One of the design process steps in the preliminary design phase is the calculation of the flight envelope for the Unmanned Aircraft System air vehicle. The results obtained will be used in the further design process. A flight envelope determines the minimum requirements for the object in Certification Specifications. The present situation does not impose any Certification Specification requirements for the class of the Unmanned Aircraft System under the development of the general European Union trend defined in the road map for the implementation of the Unmanned Aircraft System. However, operation in common European Aerospace imposes the necessity for regulations for micro class systems as well.

  20. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  1. Unmanned aerial vehicles (UAVs for surveying marine fauna: a dugong case study.

    Directory of Open Access Journals (Sweden)

    Amanda Hodgson

    Full Text Available Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98% were subjectively classed as 'certain' (unmistakably dugongs. Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  2. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    Science.gov (United States)

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  3. Preliminary analysis of the forest health state based on multispectral images acquired by Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Czapski Paweł

    2015-09-01

    Full Text Available The main purpose of this publication is to present the current progress of the work associated with the use of a lightweight unmanned platforms for various environmental studies. Current development in information technology, electronics and sensors miniaturisation allows mounting multispectral cameras and scanners on unmanned aerial vehicle (UAV that could only be used on board aircraft and satellites. Remote Sensing Division in the Institute of Aviation carries out innovative researches using multisensory platform and lightweight unmanned vehicle to evaluate the health state of forests in Wielkopolska province. In this paper, applicability of multispectral images analysis acquired several times during the growing season from low altitude (up to 800m is presented. We present remote sensing indicators computed by our software and common methods for assessing state of trees health. The correctness of applied methods is verified using analysis of satellite scenes acquired by Landsat 8 OLI instrument (Operational Land Imager.

  4. Fast reconstruction of an unmanned engineering vehicle and its application to carrying rocket

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2014-04-01

    Full Text Available Engineering vehicle is widely used as a huge moving platform for transporting heavy goods. However, traditional human operations have a great influence on the steady movement of the vehicle. In this Letter, a fast reconstruction process of an unmanned engineering vehicle is carried out. By adding a higher-level controller and two two-dimensional laser scanners on the moving platform, the vehicle could perceive the surrounding environment and locate its pose according to extended Kalman filter. Then, a closed-loop control system is formed by communicating with the on-board lower-level controller. To verify the performance of automatic control system, the unmanned vehicle is automatically navigated when carrying a rocket towards a launcher in a launch site. The experimental results show that the vehicle could align with the launcher smoothly and safely within a small lateral deviation of 1 cm. This fast reconstruction presents an efficient way of rebuilding low-cost unmanned special vehicles and other automatic moving platforms.

  5. U.S. Navy Employment Options for Unmanned Surface Vehicles (USVs)

    Science.gov (United States)

    2013-01-01

    the Navy had cleared in compliance with the Paris Peace Accords. The second condition under which minefield proofing is conducted is when there is...www.gdrs.com/about/profile/pdfs/UDTPacific2006_4A3_.pdf Bertram, Volker, “Unmanned Surface Vehicles: A Survey,” Brest , France: ENSIETA, 2008. As of

  6. Unmanned aerial vehicles: The next big thing? The benefits and detriments of military and commercial UAVs

    OpenAIRE

    Hassan, L.

    2014-01-01

    With law enforcement agencies around the world investing in Unmanned Aerial Vehicles (UAVs, also known as drones) and small commercial drone ventures popping up like weeds, the debate on the morality of drone usage has intensified in the recent months. What are the advantages of UAVs? Are they worth the disadvantages?

  7. Unmanned aerial vehicles : The next big thing? The benefits and detriments of military and commercial UAVs

    NARCIS (Netherlands)

    Hassan, L.

    2014-01-01

    With law enforcement agencies around the world investing in Unmanned Aerial Vehicles (UAVs, also known as drones) and small commercial drone ventures popping up like weeds, the debate on the morality of drone usage has intensified in the recent months. What are the advantages of UAVs? Are they worth

  8. Conflict detection and resolution system architecture for unmanned aerial vehicles in civil airspace

    NARCIS (Netherlands)

    Jenie, Y.I.; van Kampen, E.J.; Ellerbroek, J.; Hoekstra, J.M.

    2015-01-01

    A novel architecture for a general Unmanned Aerial Vehicle (UAV) Conflict Detection and Resolution (CD&R) system, in the context of their integration into the civilian airspace, is proposed in this paper. The architecture consists of layers of safety approaches ,each representing a combination of

  9. Taxonomy of Conflict Detection and Resolution Approaches for Unmanned Aerial Vehicle in an Integrated Airspace

    NARCIS (Netherlands)

    Jenie, Y.I.; van Kampen, E.; Ellerbroek, J.; Hoekstra, J.M.

    2016-01-01

    This paper proposes a taxonomy of Conflict Detection and Resolution (CD&R) approaches for Unmanned Aerial Vehicles (UAV) operation in an integrated airspace. Possible approaches for UAVs are surveyed and broken down based on their types of surveillance, coordination, maneuver, and autonomy. The

  10. Mapping reflectance anisotropy of a potato canopy using aerial images acquired with an unmanned aerial vehicle

    NARCIS (Netherlands)

    Roosjen, Peter; Suomalainen, Juha; Bartholomeus, Harm; Kooistra, Lammert; Clevers, Jan

    2017-01-01

    Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs) are affected by this because of their relatively large field of view (FOV) and thus large

  11. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  12. Adaptive Fuzzy Output Regulation for Formation Control of Unmanned Surface Vehicles

    DEFF Research Database (Denmark)

    Li, Shaobao; Er, Meng Joo; Wang, Ning

    2017-01-01

    In this paper, the formation control problem of unmanned surface vehicles (USVs) is investigated. Unlike the classical formation control problem where the reference signal is required to be second-order differentiable with respect to time, we consider a more general autonomous dynamic system...

  13. Multi-rate path-following control for unmanned air vehicles

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Silvestre, C.J.; Cunha, R.

    2008-01-01

    A methodology is provided to tackle the path-following integrated guidance and control problem for unmanned air vehicles with measured outputs available at different rates. The path-following problem is addressed by defining a suitable non-linear path dependent error space to express the vehicle’s

  14. STRUCTURE FROM MOTION (SfM) PROCESSING FOR UNMANNED AERIAL VEHICLE (UAV)

    KAUST Repository

    Smith, Neil G.

    2016-04-07

    A method of imaging an area using an unmanned aerial vehicle (UAV) collects a plurality of images from a sensor mounted to the UAV. The plurality of images are processed to detect regions that require additional imaging and an updated flight plan and sensor gimbal position plan is created to capture portions of the area identified as requiring additional imaging.

  15. STRUCTURE FROM MOTION (SfM) PROCESSING FOR UNMANNED AERIAL VEHICLE (UAV)

    KAUST Repository

    Smith, Neil G.; Shalaby, Mohamed; Passone, Luca

    2016-01-01

    A method of imaging an area using an unmanned aerial vehicle (UAV) collects a plurality of images from a sensor mounted to the UAV. The plurality of images are processed to detect regions that require additional imaging and an updated flight plan and sensor gimbal position plan is created to capture portions of the area identified as requiring additional imaging.

  16. Autonomous Conflict Detection and Resolution for Unmanned Aerial Vehicles : On integration into the Airspace System

    NARCIS (Netherlands)

    Jenie, Y.I.

    2017-01-01

    In the last decade, the commercial values of Unmanned Aerial Vehicles (UAV), defined as devices that are capable of sustainable flights in the atmosphere that do not require to have a human (pilot) on-board, become widely recognized thanks to the advancement of technology in materials, sensors,

  17. Scheduling System for Multiple Unmanned Aerial Vehicles in Indoor Environments Using the CSP Approach

    DEFF Research Database (Denmark)

    Park, Youngsoo; Khosiawan, Yohanes; Moon, Ilkyeong

    2016-01-01

    In recent years there has been an increased demand in use of multiple unmanned aerial vehicles (UAVs) for surveillance and material handling tasks in indoor environments. However, only a limited number of studies have been reported on UAV scheduling in an indoor 3D environment. This paper present...

  18. Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle

    DEFF Research Database (Denmark)

    Hermann, Dan; Galeazzi, Roberto; Andersen, Jens Christian

    2015-01-01

    This paper describes an obstacle detection system for a high-speed and agile unmanned surface vehicle (USV), running at speeds up to 30 m/s. The aim is a real-time and high performance obstacle detection system using both radar and vision technologies to detect obstacles within a range of 175 m. ...... performance using sensor fusion of radar and computer vision....

  19. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NARCIS (Netherlands)

    Kraaijenbrink, P.D.A.; Immerzeel, W.W.; de Jong, S.M.; Shea, Joseph M.; Pellicciotti, Francesca; Meijer, Sander W.; Shresta, A.B.

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed

  20. Unmanned Aerial Vehicles (UAVs): a new tool in counterterrorism operations?

    Science.gov (United States)

    Dörtbudak, Mehmet F.

    2015-05-01

    Terrorism is not a new phenomenon to the world, yet it remains difficult to define and counter. Countering terrorism requires several measures that must be taken simultaneously; however, counterterrorism strategies of many countries mostly depend on military measures. In the aftermath of the 2001 terrorist attack on the Twin Towers of the World Trade Center, the United States (U.S.) has started and led the campaign of Global War on Terrorism. They have invaded Afghanistan and Iraq and have encountered insurgencies run by terrorist organizations, such as al-Qaeda and its affiliates. The U.S. made the utilization of Air and Space Power very intensively during these operations. In order to implement operations; Intelligence, Surveillance, and Reconnaissance (ISR) assets were used to collect the necessary information. Before the successful insertion of a small number of U.S. Special Operation Force (SOF) teams into Afghanistan, the U.S. Air Force attacked al-Qaeda and Taliban's targets such as infrastructure, airfields, ground forces, command-control facilities etc. As soon as the U.S. troops got on the ground and started to marshal to Kabul, the Air Force supported them by attacking jointly determined targets. The Air Force continued to carry out the missions and played a significant role to achieve the objective of operation during all the time. This is not the only example of utilization of Air and Space Power in counterterrorism and counterinsurgency operations. All around the world, many countries have also made the utilization of Air Power in different missions ranging from ISR to attacking. Thinking that terrorism has a psychological dimension and losing a pilot during operations may result in decreasing the population support to operations, Unmanned Aerial Vehicles (UAVs) started to be used by practitioners and took priority over other assets. Although UAVs have been on the theatre for a long time used for ISR mission in conventional conflicts, with the advent

  1. LOW COST SURVEYING USING AN UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    M. Pérez

    2013-08-01

    Full Text Available Traditional manned airborne surveys are usually expensive and the resolution of the acquired images is often limited. The main advantage of Unmanned Aerial Vehicle (UAV system acting as a photogrammetric sensor platform over more traditional manned airborne system is the high flexibility that allows image acquisition from unconventional viewpoints, the low cost in comparison with classical aerial photogrammetry and the high resolution images obtained. Nowadays there is a necessity for surveying small areas and in these cases, it is not economical the use of normal large format aerial or metric cameras to acquire aerial photos, therefore, the use of UAV platforms can be very suitable. Also the large availability of digital cameras has strongly enhanced the capabilities of UAVs. The use of digital non metric cameras together with the UAV could be used for multiple applications such as aerial surveys, GIS, wildfire mapping, stability of landslides, crop monitoring, etc. The aim of this work was to develop a low cost and accurate methodology in the production of orthophotos and Digital Elevation Models (DEM. The study was conducted in the province of Almeria, south of Spain. The photogrammetric flight had an altitude of 50 m over ground, covering an area of 5.000 m2 approximately. The UAV used in this work was the md4-200, which is an electronic battery powered quadrocopter UAV developed by Microdrones GmbH, Germany. It had on-board a Pextax Optio A40 digital non metric camera with 12 Megapixels. It features a 3x optical zoom lens with a focal range covering angles of view equivalent to those of 37–111 mm lens in 35 mm format. The quadrocopter can be programmed to follow a route defined by several waypoints and actions and it has the ability for vertical take off and landing. Proper flight geometry during image acquisition is essential in order to minimize the number of photographs, avoid areas without a good coverage and make the overlaps

  2. Motion coordination for VTOL unmanned aerial vehicles attitude synchronisation and formation control

    CERN Document Server

    Abdessameud, Abdelkader

    2013-01-01

    Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents  a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and  restrictions on the interconnection  topology  between the aerial vehicles in the team  are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers an...

  3. PARAMETRIC ANALYSIS OF LONGITUDINAL STABILITY UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    Ievgen Udartsev

    2013-10-01

    Full Text Available 1024x768 We consider the aerodynamic characteristics of unmanned aircraft container type, which were obtained in a wind tunnel and refined amended by soot blowing elements propeller system and the influence of the earth's surface. The estimation of longitudinal static stability and its dependence on altitude, damping, coordinates of center of gravity, shoulder horizontal tail, wings rejection of mechanization. The variation of these parameters enables to optimize balancing system with minimal losses. Normal 0 false false false

  4. AN AUTONOMOUS GPS-DENIED UNMANNED VEHICLE PLATFORM BASED ON BINOCULAR VISION FOR PLANETARY EXPLORATION

    Directory of Open Access Journals (Sweden)

    M. Qin

    2018-04-01

    Full Text Available Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching based VO (Visual Odometry software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  5. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    Science.gov (United States)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  6. Homeland Security: Unmanned Aerial Vehicles and Border Surveillance

    Science.gov (United States)

    2010-07-08

    outfit the Predator B with a synthetic aperture radar (SAR) system17 and a moving target indicator (MTI) radar. Adding SAR and MTI to the Predator B’s...Predator Squadrons,” Inside the Air Force, June 7, 2002. 17 For more information about Synthetic Aperture Radar, see http://www.sandia.gov/radar...contributed to the seizing of more than 22,000 pounds of marijuana and the apprehension of 5,000 illegal immigrants,” others disagree.24 “Unmanned aircraft

  7. Vehicle Assisted Data Delievery Technique To Control Data Dissemination In Vehicular AD - HOC Networks Vanets

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2015-08-01

    Full Text Available Abstract Multi-hop data delivery through vehicular ad hoc networks is complicated by the fact that vehicular networks are highly mobile and frequently disconnected. To address this issue the idea of helper node is opted where a moving vehicles carries the packet until a new vehicle moves into its vicinity and forwards the packet. Different from existing helper node solution use of the predicable vehicle mobility is made which is limited by the traffic pattern and the road layout. Based on the existing traffic pattern a vehicle can find the next road to forward packet a vehicle can find the next road to forward the packet to reduce the delay. Several vehicle-assisted date delievery VADD protocol is proposed to forward the packet to the best road with the road with the lowest data delivery delay. Experiment results are used to evaluate the proposed solutions. Results show that the proposed VADD protocol outperform existing solution in terms of packet delivery ratio data packet delay and protocol overhead. Among the proposed VADD protocols the Hybrid probe HVADD protocol has much better performance. In this Solution the helper node technique is provider with which the helper node will contain destination node path and the path in routine table continuously changes with the help of helper node technique.

  8. A Survey of Missions for Unmanned Undersea Vehicles

    Science.gov (United States)

    2009-01-01

    commands (much like wire-guided tor- pedoes ) have become possible. We regard this vehicle variety as a type of ROV. This study treats both AUVs and...energy offered by new technologies, power and energy are still an issue for tor- pedo -like AUVs. A survey of AUV developers conducted in the spring of...neutral buoyancy is also needed for vehicle recovery. For AUVs launched from tor- pedo tubes in particular, vehicle recovery can occur only when the

  9. Intelligence-Based Multi-Resolution 3D Visual Modeling, Registration And Obstacle Avoidance Capabilities For Unmanned Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — As one of NASA's key motivation, the use of truly autonomous unmanned vehicles (UV) has been hampered by lack of sophisticated and resource efficient obstacle...

  10. When Computers Fly, It Has to Be Right: Using SPARK for Flight Control of Small Unmanned Aerial Vehicles

    National Research Council Canada - National Science Library

    Sward, Ricky E; Gerken, Mark; Casey, Dan

    2006-01-01

    .... For safety critical software programs such as Unmanned Aerial Vehicle flight control software, the risk of software failure demands high assurance that the software will perform its intended function...

  11. Vegetation Versus Man-Made Object Detection from Imagery for Unmanned Vehicles in Off-Road Environments

    Science.gov (United States)

    2013-05-01

    saliency, natural scene statistics 1. INTRODUCTION Research into the area of autonomous navigation for unmanned ground vehicles (UGV) has accelerated in...recent years. This is partly due to the success of programs such as the DARPA Grand Challenge1 and the dream of driverless cars ,2 but is also due to the...NOTES 14. ABSTRACT There have been several major advances in autonomous navigation for unmanned ground vehicles in controlled urban environments in

  12. Optimisation of Lagrangian Flash Flood Microsensors Dropped by Unmanned Aerial Vehicle

    KAUST Repository

    Abdulaal, Mohammed

    2014-05-01

    Abstract Physical Sciences and Engineering Division Mechanical Engineering Department Master of Science Optimisation of Lagrangian Flash Flood Microsensors Dropped by Unmanned Aerial Vehicle by Mohammed Abdulaal Floods are the most common natural disasters, causing thousands of casualties every year in the world. In particular, ash ood events are particularly deadly because of the short timescales on which they occur. Classical sensing solutions such as xed wireless sensor networks or satellite imagery are either too expensive or too inaccurate. Nevertheless, Unmanned Aerial Vehicles equipped with mobile microsensors could be capable of sensing ash oods in real time for a low overall cost, saving lives and greatly improving the e ciency of the emergency response. Using ood simulation data, we show that this system could be used to detect ash oods. We also present an ongoing implementation of this system using 3D printed sensors and sensor delivery systems on a UAV testbed as well as some preliminary results.

  13. State estimation and control for low-cost unmanned aerial vehicles

    CERN Document Server

    Hajiyev, Chingiz; Yenal Vural, Sıtkı

    2015-01-01

    This book discusses state estimation and control procedures for a low-cost unmanned aerial vehicle (UAV). The authors consider the use of robust adaptive Kalman filter algorithms and demonstrate their advantages over the optimal Kalman filter in the context of the difficult and varied environments in which UAVs may be employed. Fault detection and isolation (FDI) and data fusion for UAV air-data systems are also investigated, and control algorithms, including the classical, optimal, and fuzzy controllers, are given for the UAV. The performance of different control methods is investigated and the results compared. State Estimation and Control of Low-Cost Unmanned Aerial Vehicles covers all the important issues for designing a guidance, navigation and control (GNC) system of a low-cost UAV. It proposes significant new approaches that can be exploited by GNC system designers in the future and also reviews the current literature. The state estimation, control and FDI methods are illustrated by examples and MATLAB...

  14. Near Space Hypersonic Unmanned Aerial Vehicle Dynamic Surface Backstepping Control Design

    Directory of Open Access Journals (Sweden)

    Jinyong YU

    2014-07-01

    Full Text Available Compared with traditional aircraft, the near space hypersonic unmanned aerial vehicle control system design must deal with the extra prominent dynamics characters, which are differ from the traditional aircrafts control system design. A new robust adaptive control design method is proposed for one hypersonic unmanned aerial vehicle (HSUAV uncertain MIMO nonaffine block control system by using multilayer neural networks, feedback linearization technology, and dynamic surface backstepping. Multilayer neural networks are used to compensate the influence from the uncertain, which designs the robust terms to solve the problem from approach error. Adaptive backstepping is adopted designed to ensure control law, the dynamic surface control strategy to eliminate “the explosion of terms” by introducing a series of first order filters to obtain the differentiation of the virtual control inputs. Finally, nonlinear six-degree-of-freedom (6-DOF numerical simulation results for a HSUAV model are presented to demonstrate the effectiveness of the proposed method.

  15. Decentralized cooperative unmanned aerial vehicles conflict resolution by neural network-based tree search method

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2016-09-01

    Full Text Available In this article, a tree search algorithm is proposed to find the near optimal conflict avoidance solutions for unmanned aerial vehicles. In the dynamic environment, the unmodeled elements, such as wind, would make UAVs deviate from nominal traces. It brings about difficulties for conflict detection and resolution. The back propagation neural networks are utilized to approximate the unmodeled dynamics of the environment. To satisfy the online planning requirement, the search length of the tree search algorithm would be limited. Therefore, the algorithm may not be able to reach the goal states in search process. The midterm reward function for assessing each node is devised, with consideration given to two factors, namely, the safe separation requirement and the mission of each unmanned aerial vehicle. The simulation examples and the comparisons with previous approaches are provided to illustrate the smooth and convincing behaviours of the proposed algorithm.

  16. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  17. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    OpenAIRE

    Ma, Yong; Zhao, Yujiao; Diao, Jiantao; Gan, Langxiong; Bi, Huaxiong; Zhao, Jingming

    2016-01-01

    To achieve the wind sail-assisted function of the unmanned surface vehicle (USV), this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS) and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A) algorithm and present ...

  18. Autonomous Conflict Detection and Resolution for Unmanned Aerial Vehicles: On integration into the Airspace System

    OpenAIRE

    Jenie, Y.I.

    2017-01-01

    In the last decade, the commercial values of Unmanned Aerial Vehicles (UAV), defined as devices that are capable of sustainable flights in the atmosphere that do not require to have a human (pilot) on-board, become widely recognized thanks to the advancement of technology in materials, sensors, computation, and telemetry. As UAVs are becoming cheaper and more user-friendly, many companies are motivated to incorporate them in their everyday business, such as for delivery services, journalisms,...

  19. Increasing the Endurance and Payload Capacity of Unmanned Vehicles with Thin-Film Photovoltaics

    Science.gov (United States)

    2014-06-01

    unmanned aerial vehicles (UAV) can be significantly extended using thin film photovoltaic cells. The different power requirements of the RQ-11B...43  Figure 33.  A load test of the MPPT /boost controller to confirm the functionality of the power circuit equipment...36  Table 7.  The resistance of the surface mounted resistors used for voltage partitioning in the MPPT /boost controller

  20. Station-keeping control of an unmanned surface vehicle exposed to current and wind disturbances

    OpenAIRE

    Sarda, Edoardo I.; Qu, Huajin; Bertaska, Ivan R.; von Ellenrieder, Karl D.

    2017-01-01

    Field trials of a 4 meter long, 180 kilogram, unmanned surface vehicle (USV) have been conducted to evaluate the performance of station-keeping heading and position controllers in an outdoor marine environment disturbed by wind and current. The USV has a twin hull configuration and a custom-designed propulsion system, which consists of two azimuthing thrusters, one for each hull. Nonlinear proportional derivative, backstepping and sliding mode feedback controllers were tested in winds of abou...

  1. Exploration of the Use of Unmanned Aerial Vehicles along with Other Assets to Enhance Border Protection

    Science.gov (United States)

    2009-06-01

    Border Initiative SUAV Small Unmanned Aerial Vehicle SAR Synthetic Aperture Radar TTPs Tactics, Techniques, And Procedures TRVS Trailer Remote...2008). 4 3. Overview of Illegal Activities According to the CBP, 178,770 pounds of cocaine, 2,178 pounds of heroin, 2,471,931 pounds of marijuana ...Raytheon Company Web Site) Another component of Predator B is the high- resolution Lynx Synthetic Aperture Radar (SAR). In their study, Tsunoda, et

  2. Development of a highly maneuverable unmanned underwater vehicle on the basis of quad-copter dynamics

    Science.gov (United States)

    Amin, Osman Md; Karim, Md. Arshadul; Saad, Abdullah His

    2017-12-01

    At present, research on unmanned underwater vehicle (UUV) has become a significant & familiar topic for researchers from various engineering fields. UUV is of mainly two types - AUV (Autonomous Underwater vehicle) & ROV (Remotely Operated Vehicle). There exist a significant number of published research papers on UUV, where very few researchers emphasize on the ease of maneuvering and control of UUV. Maneuvering is important for underwater vehicle in avoiding obstacles, installing underwater piping system, searching undersea resources, underwater mine disposal operations, oceanographic surveys etc. A team from Dept. of Naval Architecture & Marine Engineering of MIST has taken a project to design a highly maneuverable unmanned underwater vehicle on the basis of quad-copter dynamics. The main objective of the research is to develop a control system for UUV which would be able to maneuver the vehicle in six DOF (Degrees of Freedom) with great ease. For this purpose we are not only focusing on controllability but also designing an efficient hull with minimal drag force & optimized propeller using CFD technique. Motors were selected on the basis of the simulated thrust generated by propellers in ANSYS Fluent software module. Settings for control parameters to carry out different types of maneuvering such as hovering, spiral, one point rotation about its centroid, gliding, rolling, drifting and zigzag motions were explained in short at the end.

  3. Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Erdal Kayacan

    2017-01-01

    Full Text Available A learning control strategy is preferred for the control and guidance of a fixed-wing unmanned aerial vehicle to deal with lack of modeling and flight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural network (FNN is used in parallel with a conventional P (proportional controller. Among the learning algorithms in the literature, a derivative-free one, sliding mode control (SMC theory-based learning algorithm, is preferred as it has been proved to be computationally efficient in real-time applications. Its proven robustness and finite time converging nature make the learning algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned aerial vehicles (UAVs. The parameter update rules and stability conditions of the learning are derived, and the proof of the stability of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions. The simulation results show the efficiency of the proposed control algorithm, especially in real-time control systems because of its computational efficiency.

  4. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  5. Autonomous Planning and Replanning for Mine-Sweeping Unmanned Underwater Vehicles

    Science.gov (United States)

    Gaines, Daniel M.

    2010-01-01

    This software generates high-quality plans for carrying out mine-sweeping activities under resource constraints. The autonomous planning and replanning system for unmanned underwater vehicles (UUVs) takes as input a set of prioritized mine-sweep regions, and a specification of available UUV resources including available battery energy, data storage, and time available for accomplishing the mission. Mine-sweep areas vary in location, size of area to be swept, and importance of the region. The planner also works with a model of the UUV, as well as a model of the power consumption of the vehicle when idle and when moving.

  6. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.

    Science.gov (United States)

    Oppold, P; Rupp, M; Mouloua, M; Hancock, P A; Martin, J

    2012-01-01

    Unmanned (UAVs, UCAVs, and UGVs) systems still have major human factors and ergonomic challenges related to the effective design of their control interface systems, crucial to their efficient operation, maintenance, and safety. Unmanned system interfaces with a human centered approach promote intuitive interfaces that are easier to learn, and reduce human errors and other cognitive ergonomic issues with interface design. Automation has shifted workload from physical to cognitive, thus control interfaces for unmanned systems need to reduce mental workload on the operators and facilitate the interaction between vehicle and operator. Two-handed video game controllers provide wide usability within the overall population, prior exposure for new operators, and a variety of interface complexity levels to match the complexity level of the task and reduce cognitive load. This paper categorizes and provides taxonomy for 121 haptic interfaces from the entertainment industry that can be utilized as control interfaces for unmanned systems. Five categories of controllers were based on the complexity of the buttons, control pads, joysticks, and switches on the controller. This allows the selection of the level of complexity needed for a specific task without creating an entirely new design or utilizing an overly complex design.

  7. Design of an Active Bumper with a Series Elastic Actuator for Pedestrian Protection of Small Unmanned Vehicles

    Science.gov (United States)

    Terumasa, Narukawa; Tomoki, Tsuge; Hiroshi, Yamamoto; Takahiro, Suzuki

    2016-09-01

    When autonomous unmanned vehicles are operated on sidewalks, the vehicles must have high safety standards such as avoiding injury when they come in contact with pedestrians. In this study, we established a design for preventing serious injury when such collisions occur. We designed an active bumper with a series elastic actuator, with the goal of avoiding serious injury to a pedestrian in a collision with a small unmanned vehicle. The series elastic actuator comprised an elastic element in series with a table driven by a ball screw and servo motor. The active bumper was used to control the contact force between a vehicle and a pedestrian. The optimal force for minimizing the deflection of the object of the collision was derived, and the actuator controlled to apply this optimal force. Numerical simulations showed that the active bumper was successful in improving the collision safety of small unmanned vehicles.

  8. Intelligent Autonomy for Unmanned Surface and Underwater Vehicles

    Science.gov (United States)

    Huntsberger, Terry; Woodward, Gail

    2011-01-01

    As the Autonomous Underwater Vehicle (AUV) and Autonomous Surface Vehicle (ASV) platforms mature in endurance and reliability, a natural evolution will occur towards longer, more remote autonomous missions. This evolution will require the development of key capabilities that allow these robotic systems to perform a high level of on-board decisionmaking, which would otherwise be performed by humanoperators. With more decision making capabilities, less a priori knowledge of the area of operations would be required, as these systems would be able to sense and adapt to changing environmental conditions, such as unknown topography, currents, obstructions, bays, harbors, islands, and river channels. Existing vehicle sensors would be dual-use; that is they would be utilized for the primary mission, which may be mapping or hydrographic reconnaissance; as well as for autonomous hazard avoidance, route planning, and bathymetric-based navigation. This paper describes a tightly integrated instantiation of an autonomous agent called CARACaS (Control Architecture for Robotic Agent Command and Sensing) developed at JPL (Jet Propulsion Laboratory) that was designed to address many of the issues for survivable ASV/AUV control and to provide adaptive mission capabilities. The results of some on-water tests with US Navy technology test platforms are also presented.

  9. A simple approach to a vision-guided unmanned vehicle

    Science.gov (United States)

    Archibald, Christopher; Millar, Evan; Anderson, Jon D.; Archibald, James K.; Lee, Dah-Jye

    2005-10-01

    This paper describes the design and implementation of a vision-guided autonomous vehicle that represented BYU in the 2005 Intelligent Ground Vehicle Competition (IGVC), in which autonomous vehicles navigate a course marked with white lines while avoiding obstacles consisting of orange construction barrels, white buckets and potholes. Our project began in the context of a senior capstone course in which multi-disciplinary teams of five students were responsible for the design, construction, and programming of their own robots. Each team received a computer motherboard, a camera, and a small budget for the purchase of additional hardware, including a chassis and motors. The resource constraints resulted in a simple vision-based design that processes the sequence of images from the single camera to determine motor controls. Color segmentation separates white and orange from each image, and then the segmented image is examined using a 10x10 grid system, effectively creating a low resolution picture for each of the two colors. Depending on its position, each filled grid square influences the selection of an appropriate turn magnitude. Motor commands determined from the white and orange images are then combined to yield the final motion command for video frame. We describe the complete algorithm and the robot hardware and we present results that show the overall effectiveness of our control approach.

  10. A Time-Slotted On-Demand Routing Protocol for Mobile Ad Hoc Unmanned Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hope Forsmann; Robert Hiromoto; John Svoboda

    2007-04-01

    The popularity of UAVs has increased dramatically because of their successful deployment in military operations, their ability to preserve human life, and the continual improvements in wireless communication that serves to increase their capabilities. We believe the usefulness of UAVs would be dramatically increased if formation flight were added to the list of capabilities. Currently, sustained formation flight with a cluster of UAVs has only been achieved with two nodes by the Multi-UAV Testbed at the Massachusetts Institute of Technology. (Park, 2004) Formation flight is a complex operation requiring the ability to adjust the flight patterns on the fly and correct for wind gusts, terrain, and differences in node equipment. All of which increases the amount of inner node communication. Since one of the problems with MANET communication is network congestion, we believe a first step towards formation flight can be made through improved inner node communication. We have investigated current communication routing protocols and developed an altered hybrid routing protocol in order to provide communication with less network congestion.

  11. Development of a Geospatial Data-Sharing Method for Unmanned Vehicles Based on the Joint Architecture for Unmanned Systems (JAUS)

    Science.gov (United States)

    2005-08-01

    the Office of the Secretary of Defense chartered the Joint Architecture for Unmanned Ground Systems ( JAUGS ) Working Group to address these concerns...The JAUGS Working Group was tasked with developing an initial standard for interoperable unmanned ground systems. In 2002, the charter of the... JAUGS Working Group was 1 2 modified such that their efforts would extend to all unmanned systems, not only ground systems. The standard was

  12. Design Multi-Sides System Unmanned Surface Vehicle (USV) Rocket

    Science.gov (United States)

    Syam, Rafiudin; Sutresman, Onny; Mappaita, Abdullah; Amiruddin; Wiranata, Ardi

    2018-02-01

    This study aims to design and test USV multislide forms. This system is excellent for maneuvering on the x-y-z coordinates. The disadvantage of a single side USV is that it is very difficult to maneuver to achieve very dynamic targets. While for multi sides system easily maneuvered though x-y-z coordinates. In addition to security defense purposes, multi-side system is also good for maritime intelligence, surveillance. In this case, electric deducted fan with Multi-Side system so that the vehicle can still operate even in reverse condition. Multipleside USV experiments have done with good results. In a USV study designed to use two propulsions.

  13. Unmanned Surface Sea Vehicle Power System Design and Modeling

    Science.gov (United States)

    2005-11-29

    Singh, C.J. Fennie , Jr., A.J. Salkind, and D.E. Reisner, "A Fuzzy Logic Methodology to Determine State-of-Charge (SOC) in Electric and Hybrid Vehicle...Systems", 16th IEEE Photovoltaic same length of 10 meters. Specialists Conference, pp. 513-518, 1982. [5] Pritpal Singh, Craig J. Fennie , Jr., Alvin J...34Estimation of Battery Charge in Photovoltaic Systems", 16th IEEE Photovoltaic Specialists Conference, pp. 513-518, 1982. [5] Pritpal Singh, Craig J. Fennie , Jr

  14. MODELLING OF DECISION MAKING OF UNMANNED AERIAL VEHICLE'S OPERATOR IN EMERGENCY SITUATIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: lack of recommendation action algorithm of UAV operator in emergency situations; decomposition of the process of decision making (DM by UAV’s Operator in emergency situations; development of the structure of distributed decision support system (DDSS for remotely piloted aircraft; development of a database of local decision support system (DSS operators Remotely Piloted Aircraft Systems (RPAS; working-out of models DM by UAV’s Operator. Methods: Algoritm of actions of UAV operator by Wald criterion, Laplace criterion, Hurwitz criterion. Results: The program "UAV_AS" that gives to UAV operator recommendations on how to act in case of emergency. Discussion: The article deals with the problem of Unmanned Aerial Vehicles (UAV flights for decision of different tasks in emergency situation. Based on statistical data it was analyzing the types of emergencies for unmanned aircraft. Defined sequence of actions UAV operator and in case of emergencies.

  15. Team Cooperation in a Network of Multi-Vehicle Unmanned Systems Synthesis of Consensus Algorithms

    CERN Document Server

    Semsar-Kazerooni, Elham

    2013-01-01

    Team Cooperation in a Network of Multi-Vehicle Unmanned Systems develops a framework for modeling and control of a network of multi-agent unmanned systems in a cooperative manner and with consideration of non-ideal and practical considerations. The main focus of this book is the development of “synthesis-based” algorithms rather than on conventional “analysis-based” approaches to the team cooperation, specifically the team consensus problems. The authors provide a set of modified “design-based” consensus algorithms whose optimality is verified through introduction of performance indices. This book also: Provides synthesis-based methodology for team cooperation Introduces a consensus-protocol optimized performance index  Offers comparisons for use of proper indices in measuring team performance Analyzes and predicts  performance of  previously designed consensus algorithms Analyses and predicts team behavior in the presence of non-ideal considerations such as actuator anomalies and faults as wel...

  16. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

    Directory of Open Access Journals (Sweden)

    Huiyan Chen

    2013-07-01

    Full Text Available To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC areas, such as roads with lanes, and loose constraint (LC areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.

  17. Piezoelectric composite morphing control surfaces for unmanned aerial vehicles

    Science.gov (United States)

    Ohanian, Osgar J., III; Karni, Etan D.; Olien, Chris C.; Gustafson, Eric A.; Kochersberger, Kevin B.; Gelhausen, Paul A.; Brown, Bridget L.

    2011-04-01

    The authors have explored the use of morphing control surfaces to replace traditional servo-actuated control surfaces in UAV applications. The morphing actuation is accomplished using Macro Fiber Composite (MFC) piezoelectric actuators in a bimorph configuration to deflect the aft section of a control surface cross section. The resulting camber change produces forces and moments for vehicle control. The flexible piezoelectric actuators are damage tolerant and provide excellent bandwidth. The large amplitude morphing deflections attained in bench-top experiments demonstrate the potential for excellent control authority. Aerodynamic performance calculations using experimentally measured morphed geometries indicate changes in sectional lift coefficients that are superior to a servo-actuated hinged flap airfoil. This morphing flight control actuation technology could eliminate the need for servos and mechanical linkages in small UAVs and thereby increase reliability and reduce drag.

  18. Biologically inspired collision avoidance system for unmanned vehicles

    Science.gov (United States)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  19. Smart vehicle monitoring and assistance using cloud computing in vehicular Ad Hoc networks

    Directory of Open Access Journals (Sweden)

    Yash Agarwal

    2018-03-01

    Full Text Available The increasing number of on road vehicles has become a major cause for congestion, accidents and pollution. Intelligent Transportation Systems (ITS might be the key to achieve solutions that help in reducing these problems significantly. The connected vehicular networks stream is a rapidly growing field for research and development of various real-time applications. In this paper, novel techniques have been proposed to serve the speed based lane changing, collision avoidance and time of arrival (TOA based localization in Vehicular Ad Hoc Networks (VANETs. As GPS requires clear line-of-sight for accurate services of positioning and localization applications, we designed a Time of Arrival (ToA based algorithm for areas where strong GPS signals are unavailable. Collision avoidance using automatic braking and camera-based surveillance are a few other applications that we addressed. The feasibility and the viability of the algorithms were demonstrated through simulations in Simulation of Urban Mobility (SUMO and Network Simulator-2 (NS-2. We prototyped a working hardware and tested it on actual vehicles to assess the effectiveness of the proposed system. We designed a mobile app interface for the on-board unit for smart, efficient and remote traffic monitoring. The integrated VANET Cloud Computing architecture acts as the platform for the proposed applications.

  20. METHODOLOGY AND RESULTS OF THE MAIN TECHNICAL OF PARAMETERS OF THE MANEUVERABLE UNMANNED AERIAL VEHICLE JUSTIFICATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The recent experience of creating an unmanned combat aerial vehicle indicates that the main problems do not con- cern the development of an unmanned fighter as an aerial vehicle. The greatest challenge lies in creating the algorithms, data sensors, control hardware, communications hardware, etc. necessary for utilization of an unmanned aerial vehicle (UAV. In this context it is important to highlight the problem of replacing the pilot as a sensor and a flight operator on board of the UAV. This problem can be partially solved by introducing remote control, but there are some flight stages where it can only be executed under a fully independent control and data support due to various reasons, such as tight time, short duration, lack of robust communication, etc. These stages include combat deployment (surface attack or air attack which make the highest demands on the fighter's design, that is why the promising UAV are currently considered to be "as autonomous as possible". It is obvious that the efficiency of an autonomous UAV will be determined mostly by the effec- tiveness of its automated control algorithms, and this dependence will increase together with the level of UAV autonomy. On the other hand, the optimal control algorithms can only be synthesized based on the control object characteristics. It means the development of UAV external design and the synthesis of its control algorithms should occur simultaneously and interdependently. This article presents the content and gives an example of the use of the method of maneuverable UAV external design, the distinctive feature of which lies in the interdependent processes of UAV external design develop- ing and the synthesizing of its automated control algorithms.

  1. FORMATION ALGORITHM OF DYNAMIC TURN FOR UNMANNED AERIAL VEHICLES ON APPROACH

    Directory of Open Access Journals (Sweden)

    Igor A. Chekhov

    2017-01-01

    Full Text Available Great interest in using unmanned aerial vehicles has recently been shown, both from economic entities, and from national security, defense and law enforcement agencies. However, for using UAV for the civil purposes there is now a number of problems which are connected with the use of airspace and without solving them it is impossible to use the UAV fully. It should be noted that the level of flight safety, both for regular aircraft, and for the UAV, has the primary value. It is necessary to use modern methods of data processing and to have an opportunity to quickly and effectively control the current flight safety level. For this purpose the fullest information on the current movement of aircraft and unmanned aerial vehicles, and also on the structure of the used airspace has to be used. The problem of procedures and maneuvers development that resolve potential traffic conflict including the UAV, is extremely important for air traffic safety especially in the vicinity of the destination or landing aerodrome. The possibility of creation of an algorithm of dynamic turn formation and the choice of a trajectory on approach of unmanned aerial vehicles is considered in this article. The technology of automatic dependent surveillance broadcast was used when collecting statistical data. Implementation of the landing algorithm is executed based on the criteria of ensuring efficiency and flight safety. The developed software provides the use only of open data on the aircraft movement in terminal airspace. The suggested algorithm can be adapted for air traffic management of the UAV in any selected airspace.

  2. Enabling unmanned capabilities in the tactical wheeled vehicle fleet of the future

    Science.gov (United States)

    Zych, Noah

    2012-06-01

    From transporting troops and weapons systems to supplying beans, bullets, and Band-Aids to front-line warfighters, tactical wheeled vehicles serve as the materiel backbone anywhere there are boots on the ground. Drawing from the U.S. Army's Tactical Wheeled Vehicle Strategy and the Marine Corps Vision & Strategy 2025 reports, one may conclude that the services have modest expectations for the introduction of large unmanned ground systems into operational roles in the next 15 years. However, the Department of Defense has already invested considerably in the research and development of full-size UGVs-and commanders deployed in both Iraq and Afghanistan have advocated the urgent fielding of early incarnations of this technology, believing it could make a difference on their battlefields today. For military UGVs to evolve from mere tactical advantages into strategic assets with developed doctrine, they must become as trustworthy as a well-trained warfighter in performing their assigned task. Starting with the Marine Corps' ongoing Cargo Unmanned Ground Vehicle program as a baseline, and informed by feedback from previously deployed subject matter experts, this paper examines the gaps which presently exist in UGVs from a mission-capable perspective. It then considers viable near-term technical solutions to meet today's functional requirements, as well as long-term development strategies to enable truly robust performance. With future conflicts expected to be characterized by increasingly complex operational environments and a broad spectrum of rapidly adapting threats, one of the largest challenges for unmanned ground systems will be the ability to exhibit agility in unpredictable circumstances.

  3. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle

    Directory of Open Access Journals (Sweden)

    Miroslaw Gerigk

    2015-12-01

    Full Text Available In the paper the aim of an interdisciplinary research is presented. The research method is introduced. An object the unmanned autonomous maritime vehicle is briefly described. The key research problem concerns a combined model of the vehicle motion including the loads of lift and hydrodynamic nature. The model takes into account the gravity and displacement forces, resistance and thrust forces, lift and other hydrodynamic forces. One of the major research tasks is to precisely predict the position of the vehicle. To do that an integrated model of acquiring, analyzing and processing the signals is necessary. The processed signals may then be used for the precise steering of the vehicle. The vehicle should be equipped with a stabilization system. Some information on an integrated steering, positioning and stabilization system of the vehicle is briefly presented in the paper. Such the system enables to obtain a fully autonomous vehicle. Some information on the propulsion and underwater energy supply systems are presented in the paper, too.

  4. USAGE OF UNMANNED AERIAL VEHICLES IN GENERAL AVIATION: CURRENT SITUATION AND PROSPECTS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article aims at analyzing the current and future trends in usage of Unmanned Aerial Vehicles (UAV in gen- eral aviation (branches of economy. The main goal of the analysis is to determine the branches of economy, in which the usage of UAVs would be the most beneficial in the near- to mid-term future. The main requirements and restrictions of usage of the aircraft in general aviation were used as a basis for determining the types of operations, in which the usage of UAVs will be the most rational and effective. The effectiveness evaluation was based on the developed method, involving evaluation of the following factors such as: advantages of usage of manned aircraft, advantages of usage of unmanned air- craft, problems associated with the usage of manned aircraft, problems associated with the usage of unmanned aircraft. After evaluation of the mentioned aspects above the safety, operational productivity and ecological indicators were evaluat- ed. These qualitative assessments allowed identifying the branches of economy, where the usage of UAVs could potentially be the most advantageous. The article also discusses the possible strategies of UAVs development for general aviation. The so-called “mixed” strategy of UAV development is identified as the best in the current situation. This strategy combines the conversion of the existing military UAVs with the purpose of fitting them in to civilian use with the parallel development of brand new UAVs, which would be designed for operation in branches of economy right from the beginning (from scratch.

  5. A Vision-Based Method for Autonomous Landing of a Rotor-Craft Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Z. Yuan

    2006-01-01

    Full Text Available This article introduces a real-time vision-based method for guided autonomous landing of a rotor-craft unmanned aerial vehicle. In the process of designing the pattern of landing target, we have fully considered how to make this easier for simplified identification and calibration. A linear algorithm was also applied using a three-dimensional structure estimation in real time. In addition, multiple-view vision technology is utilized to calibrate intrinsic parameters of camera online, so calibration prior to flight is unnecessary and the focus of camera can be changed freely in flight, thus upgrading the flexibility and practicality of the method.

  6. Use of Unmanned Aerial Vehicles by the Islamic State: Nature of the Threat

    Directory of Open Access Journals (Sweden)

    David Mrva

    2018-01-01

    Full Text Available The proliferation of Unmanned Aerial Vehicles (UAVs on the battlefield does not exclude terrorist actors. Recently, there is an evident increase in the number of incidents when the so-called Islamic State has used UAVs. This article tries to describe this relatively new phenomenon and present an overview of main types of the potential Islamic State’s UAV employment in Europe. Despite the fact, that the UAV use by terrorist actors will probably not have the strategic impact by itself, it constitutes a new challenge for state security agencies.

  7. Contingency Estimation of States for Unmanned Aerial Vehicle using a Spherical Simplex Unscented Filter

    DEFF Research Database (Denmark)

    Hahn, Tobias; Hansen, Søren; Blanke, Mogens

    2012-01-01

    Aiming at survival from contingency situations for unmanned aerial vehicles, a square root spherical simplex unscented Kalman filter is applied for state and parameter estimation and a rough model is used for state prediction when essential measurements are lost. Processing real flight data, rece...... efficient square root implementation of the filter algorithm. A case of loss of GPS signal demonstrates the use of the state estimates to obtain return of the UAV to close to it’s home base where safe recovery is possible....

  8. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    Science.gov (United States)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

  9. On Board Data Acquisition System with Intelligent Transducers for Unmanned Aerial Vehicles

    Science.gov (United States)

    Rochala, Zdzisław

    2012-02-01

    This report presents conclusions from research project no. ON50900363 conducted at the Mechatronics Department, Military University of Technology in the years 2007-2010. As the main object of the study involved the preparation of a concept and the implementation of an avionics data acquisition system intended for research during flight of unmanned aerial vehicles of the mini class, this article presents a design of an avionics system and describes equipment solutions of a distributed measurement system intended for data acquisition consisting of intelligent transducers. The data collected during a flight controlled by an operator confirmed proper operation of the individual components of the data acquisition system.

  10. Spectral broadening of acoustic tones generated by unmanned aerial vehicles in a turbulent atmosphere

    DEFF Research Database (Denmark)

    Ostashev, Vladimir E.; Wilson, D. K.; Finn, Anthony

    2016-01-01

    The acoustic spectrum emitted by unmanned aerial vehicles (UAVs) and other aircraft can be distorted by propagation through atmospheric turbulence. Since most UAVs are propeller-based, they generate a series of acoustic tones and harmonics. In this paper, spectral broadening of these tones due......, spectral broadening is calculated and analyzed for typical meteorological regimes of the atmospheric boundary layer and different flight trajectories of UAVs. Experimental results are presented and compared with theoretical predictions. Spectral broadening might also provide a means for remotely sensing...

  11. The Proliferation of Unmanned Aerial Vehicles: Terrorist Use, Capability, and Strategic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Ryan Jokl [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    There has been unparalleled proliferation and technological advancement of consumer unmanned aerial vehicles (UAVs) across the globe in the past several years. As witnessed over the course of insurgency tactics, it is difficult to restrict terrorists from using widely available technology they perceive as advantageous to their overall strategy. Through a review of the characteristics, consumer market landscape, tactics, and countertactics, as well as operational use of consumer-grade UAVs, this open-source report seeks to provide an introductory understanding of the terrorist-UAV landscape, as well as insights into present and future capabilities. The caveat is evaluating a developing technology haphazardly used by terrorists in asymmetric conflicts.

  12. A Survey on Open-Source Flight Control Platforms of Unmanned Aerial Vehicle

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Jin, Jie

    2017-01-01

    Recently, Unmanned Aerial Vehicle (UAV), so-called drones, have gotten a lot of attention in academic research and commercial applications due to their simple structure, ease of operations and low-cost hardware components. Flight controller, embedded electronics component, represents the core part...... of the drone. It aims at performing the main operations of the drone (e.g., autonomous control and navigation). There are various types of flight controllers and each of them has its own characteristics and features. This paper presents an extensive survey on the publicly available open-source flight...

  13. An Application of Computer Vision Systems to Solve the Problem of Unmanned Aerial Vehicle Control

    Directory of Open Access Journals (Sweden)

    Aksenov Alexey Y.

    2014-09-01

    Full Text Available The paper considers an approach for application of computer vision systems to solve the problem of unmanned aerial vehicle control. The processing of images obtained through onboard camera is required for absolute positioning of aerial platform (automatic landing and take-off, hovering etc. used image processing on-board camera. The proposed method combines the advantages of existing systems and gives the ability to perform hovering over a given point, the exact take-off and landing. The limitations of implemented methods are determined and the algorithm is proposed to combine them in order to improve the efficiency.

  14. Unified Approach of Unmanned Surface Vehicle Navigation in Presence of Waves

    Directory of Open Access Journals (Sweden)

    Oren Gal

    2011-01-01

    Full Text Available Most of the present work for unmanned surface vehicle (USV navigation does not take into account environmental disturbances such as ocean waves, winds, and currents. In some scenarios, waves should be treated as special case of dynamic obstacle and can be critical to USV’s safety. For the first time, this paper presents unique concept facing this challenge by combining ocean waves' formulation with the probabilistic velocity obstacle (PVO method for autonomous navigation. A simple navigation algorithm is presented in order to apply the method of USV’s navigation in presence of waves. A planner simulation dealing with waves and obstacles avoidance is introduced.

  15. Vibration survey of internal combustion engines for use on unmanned air vehicles

    International Nuclear Information System (INIS)

    Duanis, B.

    1998-01-01

    This paper describes the method, the procedure and data results of engine vibration test which is carried out on engines for use on unmanned air vehicles. The paper focuses on the testing of rotating propulsion systems powered by an internal combustion engine which is composed of main rotating components such as the alternator, gearbox, propeller , dampers and couplings. Three measurement methods for measuring torsional and lateral vibrations are presented: a. Gear tooth pulse signal. b. Shaft Strain Gage. c. Laser Displacement Sensors The paper also presents data from tests which were performed using each method and discusses the applications, the advantages and disadvantages of each method

  16. Dynamic Surface Adaptive Robust Control of Unmanned Marine Vehicles with Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Pengchao Zhang

    2018-01-01

    Full Text Available This paper presents a dynamic surface adaptive robust control method with disturbance observer for unmanned marine vehicles (UMV. It uses adaptive law to estimate and compensate the disturbance observer error. Dynamic surface is introduced to solve the “differential explosion” caused by the virtual control derivation in traditional backstepping method. The final controlled system is proved to be globally uniformly bounded based on Lyapunov stability theory. Simulation results illustrate the effectiveness of the proposed controller, which can realize the three-dimensional trajectory tracking for UMV with the systematic uncertainty and time-varying disturbances.

  17. Control techniques of tilt rotor unmanned aerial vehicle systems: A review

    Directory of Open Access Journals (Sweden)

    Zhong Liu

    2017-02-01

    Full Text Available The tilt rotor unmanned aerial vehicle (TRUAV exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV’s high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.

  18. An adaptable, low cost test-bed for unmanned vehicle systems research

    Science.gov (United States)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  19. Optimization of the choice of unmanned aerial vehicles used to monitor the implementation of selected construction projects

    Science.gov (United States)

    Skorupka, Dariusz; Duchaczek, Artur; Waniewska, Agnieszka; Kowacka, Magdalena

    2017-07-01

    Due to their properties unmanned aerial vehicles have huge number of possibilities for application in construction engineering. The nature and extent of construction works performedmakes the decision to purchase the right equipment significant for the possibility for its further use while monitoring the implementation of these works. Technical factors, such as the accuracy and quality of the applied measurement instruments are especially important when monitoring the realization of construction projects. The paper presents the optimization of the choice of unmanned aerial vehicles using the Bellinger method. The decision-making analysis takes into account criteria that are particularly crucial by virtue of the range of monitoring of ongoing construction works.

  20. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  1. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.

  2. The effective use of unmanned aerial vehicles for local law enforcement

    Science.gov (United States)

    Gasque, Leighton

    This qualitative study was done to interview local law enforcement in Murfreesboro, Tennessee to determine if unmanned aerial vehicles could increase the safety of policy officers. Many police officers face dangerous scenarios on a daily basis; however, officers must also perform non-criminal related responsibilities that could put them in hazardous situations. UAVs have multiple capabilities that can decrease the number of hazards in an emergency situation whether it is environmental, traffic related, criminal activity, or investigations. Officers were interviewed to find whether or not unmanned aerial vehicles (UAV) could be useful manpower on the police force. The study was also used to find whether or not officers foresee UAVs being used in law enforcement. The study revealed that UAVs could be used to add useful manpower to law enforcement based on the capabilities a UAV may have. Police officers cannot confirm whether or not they would be able to use a UAV until further research is conducted to examine the relation of costs to usage.

  3. PERANCANGAN SISTEM TRANSFER DAYA NIRKABEL UNTUK UNMANNED AERIAL VEHICLE (UAV MICRO JENIS QUADCOPTER

    Directory of Open Access Journals (Sweden)

    Setyawan Wahyu Pratomo

    2016-11-01

    Full Text Available Dalam Unmanned Aerial Vehicle ( UAV jenis Quadcopter, sumber catu daya berupa baterai yang hanya mampu bekerja 10-15 menit di udara merupakan permasalahan tersendiri bagi performa Quadcopter. Sedangkan perfomansi dari Quadcopter pada ketinggian yang susah dijangkau, diharapkan peran operator yang selama ini harus mengkoneksikan secara manual kabel charging ke baterai bisa digantikan oleh sistem secara otomatis ketika baterai akan habis. Untuk itu dalam paper ini membahas suatu perancangan sistem transfer daya nirkabel untuk Quadcopter mengisi ulang baterai tanpa bantuan operator dan tidak harus dilakukan pendaratan di atas tanah. Proses isi ulang ( charging baterai bisa dilakukan di atas gedung maupun di landasan yang telah terpasang transfer daya nirkabel. Tujuannya adalah meningkatkan performansi kerja Quadcopter di udara sesuai dengan kegunaanya. Dari perancangan sistem transfer daya nirkabel untuk Unmanned Aerial Vehicle ( UAV jenis Quadcopter mengisi ulang ( charging baterai, diperoleh hasil efisiensi transfer daya terbaik sebesar 62,24% dengan jarak efektif 10 cm. Frekuensi sistem transfer daya nirkabel diperoleh dari rangkaian Colpitss Oscillator sebesar 333,1 KHz dengan menerapkan prinsip induksi elektromagnetik.

  4. ACQUISION OF GEOMETRICAL DATA OF SMALL RIVERS WITH AN UNMANNED WATER VEHICLE

    Directory of Open Access Journals (Sweden)

    H. Sardemann

    2018-05-01

    Full Text Available Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub- catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle based point clouds are fused.

  5. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  6. Unmanned Aerial Vehicles for Photogrammetry: Analysis of Orthophoto Images over the Territory of Lithuania

    Directory of Open Access Journals (Sweden)

    J. Suziedelyte Visockiene

    2016-01-01

    Full Text Available It has been recently observed that aircrafts tend to be replaced by light, simple structure unmanned aerial vehicles (UAV or mini unmanned aerial vehicles (MUAV with the purpose of updating the field of aerial photogrammetry. The built-in digital photo camera takes images of the Earth’s surface. To satisfy the photogrammetric requirements of the photographic images, it is necessary to carry out the terrestrial project planning of the flight path before the flight, to select the appropriate flying height, the time for acquiring images, the speed of the UAV, and other parameters. The paper presents the results of project calculations concerning the UAV flights and the analysis of the terrestrial images acquired during the field-testing flights. The experience carried out so far in the Lithuanian landscape is shown. The taken images have been processed by PhotoMod photogrammetric system. The paper presents the results of calculation of the project values of the UAV flights taking the images by digital camera Canon S100 and the analysis of the possibilities of the UAV orthophoto images’ mode.

  7. A Framework for Diagnosis of Critical Faults in Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens; Adrian, Jens

    2014-01-01

    , and based on a large number of data logged during flights, diagnostic methods are employed to diagnose faults and the performance of these fault detectors are evaluated against light data. The paper demonstrates a significant potential for reducing the risk of unplanned loss of remotely piloted vehicles......Unmanned Aerial Vehicles (UAVs) need a large degree of tolerance towards faults. If not diagnosed and handled in time, many types of faults can have catastrophic consequences if they occur during flight. Prognosis of faults is also valuable and so is the ability to distinguish the severity...... of the different faults in terms of both consequences and the frequency with which they appear. In this paper flight data from a fleet of UAVs is analysed with respect to certain faults and their frequency of appearance. Data is taken from a group of UAV's of the same type but with small differences in weight...

  8. Parameter Estimation and Verification of Unmanned Air Cushion Vehicle (UACV System

    Directory of Open Access Journals (Sweden)

    Ab Rashid Mohd Zamzuri

    2017-01-01

    Full Text Available This project is mainly about the dynamic modelling and parameter estimation of Unmanned Air Cushion Vehicle (UACV. The purpose of developing mathematical model of the Unmanned Air Cushion Vehicle (UACV is due to its under actuated nonlinearities where it has less input compared to the output required. This system able to maneuver over land, water and other surfaces either at certain speed or maintain at a stationary position. In order to model the UACV, the system is set to have two propellers which are responsible to lift the vehicle by forcing high pressure air under the system. The air inflates the “skirt” under the vehicle, causing it to rise above the surface while another two propellers are used to steer the UACV forward. UACV system can be considered as under actuated since it possess fewer controller inputs that its degree of freedom. The system’s motions are defined by the six degrees of freedom which are; heaved, sway and surge. Another three components are rotational motions which can be elaborated as roll, pitch and yaw. The problem related to UACV is normally related to obtaining accurate parameters of the system to be included into the mathematical model of the system. This is due to the body inertia of the system during the static and moving condition. Besides, the air that flows into the UACV skirt to create the cushion causes imbalance and will affect the system stability and controllability. In this research, UACV need to be mathematically modelled using Euler-Lagrange method. Then, parameters of the system can be obtained through direct calculation and Solidworks software. The parameters acquired are compared and verified using simulation and experimental studies.

  9. High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles

    Science.gov (United States)

    Ventura Diaz, Patricia; Yoon, Seokkwan

    2018-01-01

    High-fidelity Computational Fluid Dynamics (CFD) simulations have been carried out for several multi-rotor Unmanned Aerial Vehicles (UAVs). Three vehicles have been studied: the classic quadcopter DJI Phantom 3, an unconventional quadcopter specialized for forward flight, the SUI Endurance, and an innovative concept for Urban Air Mobility (UAM), the Elytron 4S UAV. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. The DJI Phantom 3 is simulated with different rotors and with both a simplified airframe and the real airframe including landing gear and a camera. The effects of weather are studied for the DJI Phantom 3 quadcopter in hover. The SUI En- durance original design is compared in forward flight to a new configuration conceived by the authors, the hybrid configuration, which gives a large improvement in forward thrust. The Elytron 4S UAV is simulated in helicopter mode and in airplane mode. Understanding the complex flows in multi-rotor vehicles will help design quieter, safer, and more efficient future drones and UAM vehicles.

  10. Bird's-Eye View of Sampling Sites: Using Unmanned Aerial Vehicles to Make Chemistry Fieldwork Videos

    Science.gov (United States)

    Fung, Fun Man; Watts, Simon Francis

    2017-01-01

    Drones, unmanned aerial vehicles (UAVs), usually helicopters or airplanes, are commonly used for warfare, aerial surveillance, and recreation. In recent years, drones have become more accessible to the public as a platform for photography. In this report, we explore the use of drones as a new technological filming tool to enhance student learning…

  11. Use of an unmanned aerial vehicle-mounted video camera to assess feeding behavior of Raramuri Criollo cows

    Science.gov (United States)

    We determined the feasibility of using unmanned aerial vehicle (UAV) video monitoring to predict intake of discrete food items of rangeland-raised Raramuri Criollo non-nursing beef cows. Thirty-five cows were released into a 405-m2 rectangular dry lot, either in pairs (pilot tests) or individually (...

  12. Real-Time Implementation of an Asynchronous Vision-Based Target Tracking System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    2007-06-01

    Chin Khoon Quek. “Vision Based Control and Target Range Estimation for Small Unmanned Aerial Vehicle.” Master’s Thesis, Naval Postgraduate School...December 2005. [6] Kwee Chye Yap. “Incorporating Target Mensuration System for Target Motion Estimation Along a Road Using Asynchronous Filter

  13. SMA-Based System for Environmental Sensors Released from an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellone

    2017-01-01

    Full Text Available In the work at hand, a shape memory alloy (SMA-based system is presented. The system, conceived for releasing environmental sensors from ground or small unmanned aerial vehicles, UAV (often named UAS, unmanned aerial system, is made of a door, integrated into the bottom of the fuselage, a device distributor, operated by a couple of antagonistic SMA springs, and a kinematic chain, to synchronize the deployment operation with the system movement. On the basis of the specifications (weight, available space, energy supply, sensors size, etc., the system design was addressed. After having identified the main system characteristics, a representative mock-up was manufactured, featuring the bottom part of the reference fuselage. Functionality tests were performed to prove the system capability to release the sensors; a detailed characterization was finally carried out, mainly finalized at correlating the kinematic chain displacement with the SMA spring temperature and the supplied electrical power. A comparison between theoretical predictions and experimental outcomes showed good agreement.

  14. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility

    Science.gov (United States)

    Martin, P. G.; Kwong, S.; Smith, N. T.; Yamashiki, Y.; Payton, O. D.; Russell-Pavier, F. S.; Fardoulis, J. S.; Richards, D. A.; Scott, T. B.

    2016-10-01

    Following the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years.

  15. Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom

    Directory of Open Access Journals (Sweden)

    Xiao-xu Du

    2014-03-01

    Full Text Available The accurate research on the hydrodynamics of unmanned underwater vehicle (UUV, which moves close to the sea bottom, has a great significance for its maneuverability. The structured grid of the computational models with different distances to the sea bottom and attack angles is generated by Ansys ICEM, and the flow field near the sea bottom is simulated using CFX. The characteristics of the drag, lift, pitching moment influenced by the distance to sea bottom and the attack angle are studied. The result shows that the drag coefficient increases with the decrease of distance, while it increases with the increase of attack angle. There exists attraction force when UUV moves close to the sea bottom, and the attraction force increases with the decrease in distance. The lift coefficient increases with the increase in attack angle. The absolute value of the pitching moment coefficient increases with the decrease in distance and the increase in attack angle.

  16. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo; Jakobsen, Jakob; Olesen, Daniel Haugård

    2017-01-01

    The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts...... complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turn-around time, using flexible payload design. This study focused on categorizing and testing sensors......, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric...

  17. Wide-Baseline Stereo-Based Obstacle Mapping for Unmanned Surface Vehicles

    Science.gov (United States)

    Mou, Xiaozheng; Wang, Han

    2018-01-01

    This paper proposes a wide-baseline stereo-based static obstacle mapping approach for unmanned surface vehicles (USVs). The proposed approach eliminates the complicated calibration work and the bulky rig in our previous binocular stereo system, and raises the ranging ability from 500 to 1000 m with a even larger baseline obtained from the motion of USVs. Integrating a monocular camera with GPS and compass information in this proposed system, the world locations of the detected static obstacles are reconstructed while the USV is traveling, and an obstacle map is then built. To achieve more accurate and robust performance, multiple pairs of frames are leveraged to synthesize the final reconstruction results in a weighting model. Experimental results based on our own dataset demonstrate the high efficiency of our system. To the best of our knowledge, we are the first to address the task of wide-baseline stereo-based obstacle mapping in a maritime environment. PMID:29617293

  18. Wing configuration on Wind Tunnel Testing of an Unmanned Aircraft Vehicle

    Science.gov (United States)

    Daryanto, Yanto; Purwono, Joko; Subagyo

    2018-04-01

    Control surface of an Unmanned Aircraft Vehicle (UAV) consists of flap, aileron, spoiler, rudder, and elevator. Every control surface has its own special functionality. Some particular configurations in the flight mission often depend on the wing configuration. Configuration wing within flap deflection for takeoff setting deflection of flap 20° but during landing deflection of flap set on the value 40°. The aim of this research is to get the ultimate CLmax for take-off flap deflection setting. It is shown from Wind Tunnel Testing result that the 20° flap deflection gives optimum CLmax with moderate drag coefficient. The results of Wind Tunnel Testing representing by graphic plots show good performance as well as the stability of UAV.

  19. Nonlinear Dynamic Modeling of a Fixed-Wing Unmanned Aerial Vehicle: a Case Study of Wulung

    Directory of Open Access Journals (Sweden)

    Fadjar Rahino Triputra

    2015-07-01

    Full Text Available Developing a nonlinear adaptive control system for a fixed-wing unmanned aerial vehicle (UAV requires a mathematical representation of the system dynamics analytically as a set of differential equations in the form of a strict-feedback systems. This paper presents a method for modeling a nonlinear flight dynamics of the fixed-wing UAV of BPPT Wulung in any conditions of the flight altitude and airspeed for the first step into designing a nonlinear adaptive controller. The model was formed into 10-DOF differential equations in the form of strict-feedback systems which separates the terms of elevator, aileron, rudder and throttle from the model. The model simulation results show the behavior of the flight dynamics of the Wulung UAV and also prove the compliance with the actual flight test results.

  20. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2016-01-01

    Full Text Available To achieve the wind sail-assisted function of the unmanned surface vehicle (USV, this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A algorithm and present the realization flow for each subsystem of the SUICS. By using the test boat, the design and implementation of the SUICS are fulfilled systematically. Experiments verify the performance and effectiveness of our SUICS. The SUICS enhances the intelligent utility of sustainable wind energy for the sail-assisted USV significantly and plays a vital role in shipping energy-saving emission reduction requirements issued by International Maritime Organization (IMO.

  1. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    Science.gov (United States)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  2. An arm wearable haptic interface for impact sensing on unmanned aerial vehicles

    Science.gov (United States)

    Choi, Yunshil; Hong, Seung-Chan; Lee, Jung-Ryul

    2017-04-01

    In this paper, an impact monitoring system using fiber Bragg grating (FBG) sensors and vibro-haptic actuators has been introduced. The system is suggested for structural health monitoring (SHM) for unmanned aerial vehicles (UAVs), by making a decision with human-robot interaction. The system is composed with two major subsystems; an on-board system equipped on UAV and an arm-wearable interface for ground pilot. The on-board system acquires impact-induced wavelength changes and performs localization process, which was developed based on arrival time calculation. The arm-wearable interface helps ground pilots to make decision about impact location themselves by stimulating their tactile-sense with motor vibration.

  3. SPAD array based TOF SoC design for unmanned vehicle

    Science.gov (United States)

    Pan, An; Xu, Yuan; Xie, Gang; Huang, Zhiyu; Zheng, Yanghao; Shi, Weiwei

    2018-03-01

    As for the requirement of unmanned-vehicle mobile Lidar system, this paper presents a SoC design based on pulsed TOF depth image sensor. This SoC has a detection range of 300m and detecting resolution of 1.5cm. Pixels are made of SPAD. Meanwhile, SoC adopts a structure of multi-pixel sharing TDC, which significantly reduces chip area and improve the fill factor of light-sensing surface area. SoC integrates a TCSPC module to achieve the functionality of receiving each photon, measuring photon flight time and processing depth information in one chip. The SOC is designed in the SMIC 0.13μm CIS CMOS technology

  4. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    Science.gov (United States)

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Measurement of greenhouse gases in UAE by using Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    Abou-Elnour, Ali; Odeh, Mohamed; Abdelrhman, Mohammed; Balkis, Ahmed; Amira, Abdelraouf

    2017-04-01

    In the present work, a reliable and low cost system has been designed and implemented to measure greenhouse gases (GHG) in United Arab Emirates (UAE) by using unmanned aerial vehicle (UAV). A set of accurate gas, temperature, pressure, humidity sensors are integrated together with a wireless communication system on a microcontroller based platform to continuously measure the required data. The system instantaneously sends the measured data to a center monitoring unit via the wireless communication system. In addition, the proposed system has the features that all measurements are recorded directly in a storage device to allow effective monitoring in regions with weak or no wireless coverage. The obtained data will be used in all further sophisticated calculations for environmental research and monitoring purposes.

  6. NPP post-accident monitoring system based on unmanned aircraft vehicle:concept, design principles

    International Nuclear Information System (INIS)

    Sachenko, A.A.; Kochan, V.V.; Kharchenko, V.S.; Yanovskij, M.Eh.; Yastrebenetskij, M.A.; Fesenko, G.V.

    2016-01-01

    The paper presents a concept of designing the post-accident system for monitoring the equipment and territory of nuclear power plant after a severe accident based on unmanned aircraft vehicle (UAVs). Wired power and communications networks are found out as the most vulnerable ones during the accident monitoring, and informativity, reliability and veracity are recognized as system basic parameters. It is proposed to equip measurement and control modules with backup wireless communication channels and deploy the repeaters network based on UAVs to ensure the informativity. Modules possess the backup power battery, and repeaters appear in the appropriate places after the accident to provide the survivability. Moreover, an optimization of UAVs' location is proposed according to the minimum energy consumption criterion. To ensure the veracity, it is expected to design the noise-immune protocol for message exchange and archiving and self-diagnostics of all system components

  7. A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Adrian Carrio

    2017-01-01

    Full Text Available Deep learning is recently showing outstanding results for solving a wide variety of robotic tasks in the areas of perception, planning, localization, and control. Its excellent capabilities for learning representations from the complex data acquired in real environments make it extremely suitable for many kinds of autonomous robotic applications. In parallel, Unmanned Aerial Vehicles (UAVs are currently being extensively applied for several types of civilian tasks in applications going from security, surveillance, and disaster rescue to parcel delivery or warehouse management. In this paper, a thorough review has been performed on recent reported uses and applications of deep learning for UAVs, including the most relevant developments as well as their performances and limitations. In addition, a detailed explanation of the main deep learning techniques is provided. We conclude with a description of the main challenges for the application of deep learning for UAV-based solutions.

  8. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Gheorghe Polizu, no. 1, PC 011061, Sector 1, Bucharest (Romania); Chelaru, Adrian, E-mail: achelaru@incas.ro [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Sector 6, Bucharest (Romania)

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  9. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    International Nuclear Information System (INIS)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-01-01

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed

  10. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner-loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion-based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD-UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion-based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD-UAV is carried out, the results of which show the superiority of the information fusion-based control strategy when compared to the single-loop design method. We also show that the ATD technique improves the anti-disturbance capacity of the UAV.

  11. Adaptive compensation control for attitude adjustment of quad-rotor unmanned aerial vehicle.

    Science.gov (United States)

    Song, Zhankui; Sun, Kaibiao

    2017-07-01

    A compensation control strategy based on adaptive back-stepping technique is presented to address the problem of attitude adjustment for a quad-rotor unmanned aerial vehicle (QR- UAV) with inertia parameter uncertainties, the limited airflow disturbance and the partial loss of rotation speed effectiveness. In the design process of control system, adaptive estimation technique is introduced into the closed loop system in order to compensate the lumped disturbance term. More specifically, the designed controller utilizes "prescribed performance bounds" method, and therefore guarantees the transient performance of tracking errors, even in the presence of the lumped disturbance. Adaptive compensation algorithms under the proposed closed loop system structure are derived in the sense of Lyapunov stability analysis such that the attitude tracking error converge to a small neighborhood of equilibrium point. Finally, the simulation results demonstrate the effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Adaptive vision-based control of an unmanned aerial vehicle without linear velocity measurements.

    Science.gov (United States)

    Jabbari Asl, Hamed; Yoon, Jungwon

    2016-11-01

    In this paper, an image-based visual servo controller is designed for an unmanned aerial vehicle. The main objective is to use flow of image features as the velocity cue to compensate for the low quality of linear velocity information obtained from accelerometers. Nonlinear observers are designed to estimate this flow. The proposed controller is bounded, which can help to keep the target points in the field of view of the camera. The main advantages over the previous full dynamic observer-based methods are that, the controller is robust with respect to unknown image depth, and also no yaw information is required. The complete stability analysis is presented and asymptotic convergence of the error signals is guaranteed. Simulation results show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Research of Obstacle Recognition Technology in Cross-Country Environment for Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Yibing

    2014-01-01

    Full Text Available Being aimed at the obstacle recognition problem of unmanned ground vehicles in cross-country environment, this paper uses monocular vision sensor to realize the obstacle recognition of typical obstacles. Firstly, median filtering algorithm is applied during image preprocessing that can eliminate the noise. Secondly, image segmentation method based on the Fisher criterion function is used to segment the region of interest. Then, morphological method is used to process the segmented image, which is preparing for the subsequent analysis. The next step is to extract the color feature S, color feature a and edge feature “verticality” of image are extracted based on the HSI color space, the Lab color space, and two value images. Finally multifeature fusion algorithm based on Bayes classification theory is used for obstacle recognition. Test results show that the algorithm has good robustness and accuracy.

  14. Comparative Study of Wing Lift Distribution Analysis for High Altitude Long Endurance (HALE) Unmaned Aerial Vehicle

    Science.gov (United States)

    Silitonga, Faber Y.; Agoes Moelyadi, M.

    2018-04-01

    The development of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) has been emerged for both civil and military purposes. Its ability of operating in high altitude with long endurance is important in supporting maritime applications.Preliminary analysis of HALE UAV lift distribution of the wing presented to give decisive consideration for its early development. Ensuring that the generated lift is enough to compensate its own weight. Therotical approach using Pradtl’s non-linear lifting line theory will be compared with modern numerical approach using Computational Fluid Dynamics (CFD). Results of wing lift distribution calculated from both methods will be compared to study the reliability of it. HALE UAV ITB has high aspect ratio wing and will be analyze at cruise flight condition. The result indicates difference between Non-linear Lifting Line and CFD method.

  15. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    Science.gov (United States)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  16. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image

    Directory of Open Access Journals (Sweden)

    Xi Wenfei

    2017-07-01

    Full Text Available Feature point extraction technology has become a research hotspot in the photogrammetry and computer vision. The commonly used point feature extraction operators are SIFT operator, Forstner operator, Harris operator and Moravec operator, etc. With the high spatial resolution characteristics, UAV image is different from the traditional aviation image. Based on these characteristics of the unmanned aerial vehicle (UAV, this paper uses several operators referred above to extract feature points from the building images, grassland images, shrubbery images, and vegetable greenhouses images. Through the practical case analysis, the performance, advantages, disadvantages and adaptability of each algorithm are compared and analyzed by considering their speed and accuracy. Finally, the suggestions of how to adapt different algorithms in diverse environment are proposed.

  17. Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle

    Science.gov (United States)

    Malang, Yasir

    With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

  18. System modeling of an air-independent solid oxide fuel cell system for unmanned undersea vehicles

    Science.gov (United States)

    Burke, A. Alan; Carreiro, Louis G.

    To examine the feasibility of a solid oxide fuel cell (SOFC)-powered unmanned undersea vehicle (UUV), a system level analysis is presented that projects a possible integration of the SOFC stack, fuel steam reformer, fuel/oxidant storage and balance of plant components into a 21-in. diameter UUV platform. Heavy hydrocarbon fuel (dodecane) and liquid oxygen (LOX) are chosen as the preferred reactants. A maximum efficiency of 45% based on the lower heating value of dodecane was calculated for a system that provides 2.5 kW for 40 h. Heat sources and sinks have been coupled to show viable means of thermal management. The critical design issues involve proper recycling of exhaust steam from the fuel cell back into the reformer and effective use of the SOFC stack radiant heat for steam reformation of the hydrocarbon fuel.

  19. Acquisition of Bidirectional Reflectance Factor Dataset Using a Micro Unmanned Aerial Vehicle and a Consumer Camera

    Directory of Open Access Journals (Sweden)

    Jouni I. Peltoniemi

    2010-03-01

    Full Text Available This paper describes a method for retrieving the bidirectional reflectance factor (BRF of land-surface areas, using a small consumer camera on board an unmanned aerial vehicle (UAV and introducing an advanced calibration routine. Images with varying view directions were taken of snow cover using the UAV. The vignetting effect was corrected from the images, and reflectance factor images were calculated using a calibrated white target as a reference. After spatial registration of the images using a corresponding point method, the target surface was divided into a grid, and a BRF was generated for each grid element. Lastly a model was fitted to the BRF dataset for data interpretation. The retrieved BRF were compared to parallel ground measurements. Comparison showed similar BRF and reflectance factor characteristics, which suggests that accurate measurements can be taken with cheap consumer cameras, if enough attention is paid to calibration of the images.

  20. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    Science.gov (United States)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  1. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  2. Development of a prototype radiation surveillance equipment for a mid-sized unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Smolander, P.; Kurvinen, K.; Poellaenen, R.; Kettunen, M.; Lyytinen, J.

    2003-01-01

    A prototype radiation surveillance equipment has been developed to be used in a mid-sized Ranger unmanned aerial vehicle (UAV) acquired by the Finnish Defence Forces. A multi-detector assembly was designed for the acquisition of dose rate and radionuclide concentration in the release plume. Detector assembly includes a GM-tube based dose rate meter, an inorganic scintillator detector and a semiconductor detector operating at room temperature. A sampling unit was designed for the collection of an aerosol sample of the plume for a detailed analysis in a ground based laboratory. The measurement data from all three detectors and several environmental parameters are collected by the onboard data acquisition computer. Real-time data dissemination is implemented with a TETRA based radio network. Test flights have been carried out with target drones and a small manned airplane. The Northrop KD2R-5 target drones have been used to simulate the high-G launch and vibration environment of the Ranger aerial vehicle. Target drones have been used because their air vehicle classification allows small test packages to be installed without tedious air safety protocols. Stability and survivability of the detectors, GPS navigation and radio frequency communication have been studied with the target drone test flights. Ground station software was developed to visualise the measurement data and to track the position of the air vehicle on a digital map. Test flights with the small manned airplane have been used to study the operational aspects of the detectors with greater detail. The housing for the instruments has been designed and constructed based on the experiences gained with the test flights and the laboratory measurements. The housing satisfies the aviation authority standards. Special attention has been paid to the high modularity, quick installation and ease of use. (orig.)

  3. Development of a prototype radiation surveillance equipment for a mid-sized unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Smolander, P.; Kurvinen, K.; Poellaenen, R. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Kettunen, M. [Forces Research Institute of Technology, Lakiala (Finland); Lyytinen, J. [Helsinki University of Technology, Laboratory of Lightweight Structures, Otaniemi (Finland)

    2003-06-01

    A prototype radiation surveillance equipment has been developed to be used in a mid-sized Ranger unmanned aerial vehicle (UAV) acquired by the Finnish Defence Forces. A multi-detector assembly was designed for the acquisition of dose rate and radionuclide concentration in the release plume. Detector assembly includes a GM-tube based dose rate meter, an inorganic scintillator detector and a semiconductor detector operating at room temperature. A sampling unit was designed for the collection of an aerosol sample of the plume for a detailed analysis in a ground based laboratory. The measurement data from all three detectors and several environmental parameters are collected by the onboard data acquisition computer. Real-time data dissemination is implemented with a TETRA based radio network. Test flights have been carried out with target drones and a small manned airplane. The Northrop KD2R-5 target drones have been used to simulate the high-G launch and vibration environment of the Ranger aerial vehicle. Target drones have been used because their air vehicle classification allows small test packages to be installed without tedious air safety protocols. Stability and survivability of the detectors, GPS navigation and radio frequency communication have been studied with the target drone test flights. Ground station software was developed to visualise the measurement data and to track the position of the air vehicle on a digital map. Test flights with the small manned airplane have been used to study the operational aspects of the detectors with greater detail. The housing for the instruments has been designed and constructed based on the experiences gained with the test flights and the laboratory measurements. The housing satisfies the aviation authority standards. Special attention has been paid to the high modularity, quick installation and ease of use. (orig.)

  4. Cost and effectiveness analysis on unmanned aerial vehicle (UAV) use at border security

    Science.gov (United States)

    Yilmaz, Bahadır.

    2013-06-01

    Drones and Remotely Piloted Vehicles are types of Unmanned Aerial Vehicles. UAVs began to be used with the war of Vietnam, they had a great interest when Israel used them in Bekaa Valley Operations of 1982. UAVs have been used by different countries with different aims with the help of emerging technology and investments. In this article, in the context of areas of UAV usage in national security, benefits and disadvantages of UAVs are put forward. Particularly, it has been evaluated on the basis of cost-effectiveness by focusing the use of UAV in the border security. UAVs have been studied by taking cost analysis, procurement and operational costs into consideration. Analysis of effectiveness has been done with illegal passages of people and drugs from flight times of UAVs. Although the procurement cost of the medium-level UAVs is low, its operational costs are high. For this reason, the idea of less costly alternative systems have been revealed for the border security. As the costs are reduced to acceptable level involving national security and border security in future with high-technology products in their structure, it will continue to be used in an increasing proportion.

  5. A pose estimation method for unmanned ground vehicles in GPS denied environments

    Science.gov (United States)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  6. Employing Multiple Unmanned Aerial Vehicles for Co-Operative Path Planning

    Directory of Open Access Journals (Sweden)

    Durdana Habib

    2013-05-01

    Full Text Available Abstract In this paper, we work to develop a path planning solution for a group of Unmanned Aerial Vehicles (UAVs using a Mixed Integer Linear Programming (MILP approach. Co-operation among team members not only helps reduce mission time, it makes the execution more robust in dynamic environments. However, the problem becomes more challenging as it requires optimal resource allocation and is NP-hard. Since UAVs may be lost or may suffer significant damage during the course of the mission, plans may need to be modified in real-time as the mission proceeds. Therefore, multiple UAVs have a better chance of completing a mission in the face of failures. Such military operations can be treated as a variant of the Multiple Depot Vehicle Routing Problem (MDVRP. The proposed solution must be such that m UAVs start from multiple source locations to visit n targets and return to a set of destination locations such that (1 each target is visited exactly by one of the chosen UAVs (2 the total distance travelled by the group is minimized and (3 the number of targets that each UAV visits may not be less than K or greater than L.

  7. Modeling Human Steering Behavior During Path Following in Teleoperation of Unmanned Ground Vehicles.

    Science.gov (United States)

    Mirinejad, Hossein; Jayakumar, Paramsothy; Ersal, Tulga

    2018-04-01

    This paper presents a behavioral model representing the human steering performance in teleoperated unmanned ground vehicles (UGVs). Human steering performance in teleoperation is considerably different from the performance in regular onboard driving situations due to significant communication delays in teleoperation systems and limited information human teleoperators receive from the vehicle sensory system. Mathematical models capturing the teleoperation performance are a key to making the development and evaluation of teleoperated UGV technologies fully simulation based and thus more rapid and cost-effective. However, driver models developed for the typical onboard driving case do not readily address this need. To fill the gap, this paper adopts a cognitive model that was originally developed for a typical highway driving scenario and develops a tuning strategy that adjusts the model parameters in the absence of human data to reflect the effect of various latencies and UGV speeds on driver performance in a teleoperated path-following task. Based on data collected from a human subject test study, it is shown that the tuned model can predict both the trend of changes in driver performance for different driving conditions and the best steering performance of human subjects in all driving conditions considered. The proposed model with the tuning strategy has a satisfactory performance in predicting human steering behavior in the task of teleoperated path following of UGVs. The established model is a suited candidate to be used in place of human drivers for simulation-based studies of UGV mobility in teleoperation systems.

  8. An adaptive dual-optimal path-planning technique for unmanned air vehicles

    Directory of Open Access Journals (Sweden)

    Whitfield Clifford A.

    2016-01-01

    Full Text Available A multi-objective technique for unmanned air vehicle path-planning generation through task allocation has been developed. The dual-optimal path-planning technique generates real-time adaptive flight paths based on available flight windows and environmental influenced objectives. The environmentally-influenced flight condition determines the aircraft optimal orientation within a downstream virtual window of possible vehicle destinations that is based on the vehicle’s kinematics. The intermittent results are then pursued by a dynamic optimization technique to determine the flight path. This path-planning technique is a multi-objective optimization procedure consisting of two goals that do not require additional information to combine the conflicting objectives into a single-objective. The technique was applied to solar-regenerative high altitude long endurance flight which can benefit significantly from an adaptive real-time path-planning technique. The objectives were to determine the minimum power required flight paths while maintaining maximum solar power for continual surveillance over an area of interest (AOI. The simulated path generation technique prolonged the flight duration over a sustained turn loiter flight path by approximately 2 months for a year of flight. The potential for prolonged solar powered flight was consistent for all latitude locations, including 2 months of available flight at 60° latitude, where sustained turn flight was no longer capable.

  9. Unmanned Aerial Vehicle-Based Automobile License Plate Recognition System for Institutional Parking Lots

    Directory of Open Access Journals (Sweden)

    Julian Dasilva

    2017-10-01

    Full Text Available Unmanned aerial vehicles (UAVs, also known as drones have many applications and they are a current trend across many industries. They can be used for delivery, sports, surveillance, professional photography, cinematography, military combat, natural disaster assistance, security, and the list grows every day. Programming opens an avenue to automate many processes of daily life and with the drone as aerial programmable eyes, security and surveillance can become more efficient and cost effective. At Barry University, parking is becoming an issue as the number of people visiting the school greatly outnumbers the convenient parking locations. This has caused a multitude of hazards in parking lots due to people illegally parking, as well as unregistered vehicles parking in reserved areas. In this paper, we explain how automated drone surveillance is utilized to detect unauthorized parking at Barry University. The automated process is incorporated into Java application and completed in three steps: collecting visual data, processing data automatically, and sending automated responses and queues to the operator of the system.

  10. Human factors considerations for the integration of unmanned aerial vehicles in the National Airspace System : an analysis of reports submitted to the Aviation Safety Reporting System (ASRS)

    Science.gov (United States)

    2017-06-06

    Successful integration of Unmanned Aerial Vehicle (UAV) operations into the National Airspace System requires the identification and mitigation of operational risks. This report reviews human factors issues that have been identified in operational as...

  11. U.S. Unmanned Aerial Vehicles (UAVS) and Network Centric Warfare (NCW) impacts on combat aviation tactics from Gulf War I through 2007 Iraq

    OpenAIRE

    Oveyik, Kaan.; Kurkcu, Coskun

    2008-01-01

    Approved for public release; distribution is unlimited Unmanned, aerial vehicles (UAVs) are an increasingly important element of many modern militaries. Their success on battlefields in Afghanistan, Iraq, and around the globe has driven demand for a variety of types of unmanned vehicles. Their proven value consists in low risk and low cost, and their capabilities include persistent surveillance, tactical and combat reconnaissance, resilience, and dynamic re-tasking. This research evaluat...

  12. Overview of solutions and analysis of the ability to evaluate the performance parameters of unmanned aerial vehicles propulsion systems

    Directory of Open Access Journals (Sweden)

    Karpiński Dominik

    2017-01-01

    Full Text Available The aim of aircraft engines development is the propulsion which is characterized by high power-to-mass ratio. Therefore, the alternative solutions that provide the required power by the low weight propulsion are sought after. The main advantage of these solutions is improvement of environmental and economic properties. This paper presents the overview of solutions and studies conducted for the unmanned aerial vehicles propulsion. For the purposes of studies a test bench was prepared. Its enables the comparison of the propulsion operating parameters taking into account changes in the values of thrust and propulsion power. The summary includes a proposal to improve the environmental indicators of propulsion systems for unmanned aerial vehicles.

  13. Vision-Based Autonomous Landing of a Quadrotor on the Perturbed Deck of an Unmanned Surface Vehicle

    Directory of Open Access Journals (Sweden)

    Riccardo Polvara

    2018-04-01

    Full Text Available Autonomous landing on the deck of an unmanned surface vehicle (USV is still a major challenge for unmanned aerial vehicles (UAVs. In this paper, a fiducial marker is located on the platform so as to facilitate the task since it is possible to retrieve its six-degrees of freedom relative-pose in an easy way. To compensate interruption in the marker’s observations, an extended Kalman filter (EKF estimates the current USV’s position with reference to the last known position. Validation experiments have been performed in a simulated environment under various marine conditions. The results confirmed that the EKF provides estimates accurate enough to direct the UAV in proximity of the autonomous vessel such that the marker becomes visible again. Using only the odometry and the inertial measurements for the estimation, this method is found to be applicable even under adverse weather conditions in the absence of the global positioning system.

  14. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.

    Science.gov (United States)

    Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard

    2014-09-01

    Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.

  15. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    Science.gov (United States)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  16. The Role of Spatial Ability in the Relationship Between Video Game Experience and Route Effectiveness Among Unmanned Vehicle Operators

    Science.gov (United States)

    2008-12-01

    Effective route planning is essential to the successful operation of unmanned vehicles. Video game experience has been shown to affect route planning...and execution, but why video game experience helps has not been addressed. One answer may be that spatial skills, necessary for route planning and...mediates the relationship between video game experience and route planning. Results indicated that this mediated relationship existed for the UGV

  17. Systems engineering and integration of control centers in support of multiple programs. [ground control for STS payloads and unmanned vehicles

    Science.gov (United States)

    Miller, David N.

    1989-01-01

    The NASA Johnson Space Center's new Multiprogram Control Center (MPCC) addresses the control requirements of complex STS payloads as well as unmanned vehicles. An account is given of the relationship of the MPCC to the STS Mission Control Center, with a view to significant difficulties that may be encountered and solutions thus far devised for generic problems. Examples of MPCC workstation applications encompass telemetry decommutation, engineering unit conversion, data-base management, trajectory processing, and flight design.

  18. Trajectory Optimization for a Cruising Unmanned Aerial Vehicle Attacking a Target at Back Slope While Subjected to a Wind Gradient

    Directory of Open Access Journals (Sweden)

    Tieying Jiang

    2015-01-01

    Full Text Available The trajectory of a tubular launched cruising unmanned aerial vehicle is optimized using the modified direct collocation method for attacking a target at back slope under a wind gradient. A mathematical model of the cruising unmanned aerial vehicle is established based on its operational and motion features under a wind gradient to optimize the trajectory. The motion characteristics of  “altitude adjustment” and “suicide attack” are taken into full account under the combat circumstance of back slope time key targets. By introducing a discrete time function, the trajectory optimization is converted into a nonlinear programming problem and the SNPOT software is applied to solve for the optimal trajectory of the missile under different wind loads. The simulation results show that, for optimized trajectories, the average attack time decreased by up to 29.1% and the energy consumption is reduced by up to 25.9% under specified wind gradient conditions. A, ωdire, and Wmax have an influence on the flight trajectories of cruising unmanned aerial vehicle. This verifies that the application of modified direct collocation method is reasonable and feasible in an effort to achieve more efficient missile trajectories.

  19. Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles

    Science.gov (United States)

    Keller, James F.

    This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent

  20. Unmanned aerial vehicle (UAV) application to the structural health assessment of large civil engineering structures

    Science.gov (United States)

    Castiglioni, Carlo A.; Rabuffetti, Angelo S.; Chiarelli, Gian P.; Brambilla, Giovanni; Georgi, Julia

    2017-09-01

    This paper summarizes the experience gained in the structural assessment of an existing Thermal Power Plant (TPP) located near Pristina, focusing on the cooling tower and the flue gas stack, which are the main structures of the TPP. Scope of the work was the evaluation of the actual conditions of the structures and to identify the eventual repair measures in order to guarantee a safe and reliable operation of the TPP in view of the extension of its operational lifetime for the next 30 years. With this aim, a sequence of different activities was performed, like: a topographic survey to compare the actual geometrical configuration with the design one, an investigation of the material properties, an in depth visual inspection in order to detect any visible existing damage. Due to the very high elevations of the constructions and to the lack of appropriate structures aimed to their inspections and maintenance, this activity could not be performed without using Unmanned Aerial Vehicle (UAV). This resulted the safest, most economical and less time-consuming solution identified to map the surface damage in the reinforced concrete elements of these large structures including zones that could not be inspected because out of reach by other means.

  1. A Sea-Sky Line Detection Method for Unmanned Surface Vehicles Based on Gradient Saliency.

    Science.gov (United States)

    Wang, Bo; Su, Yumin; Wan, Lei

    2016-04-15

    Special features in real marine environments such as cloud clutter, sea glint and weather conditions always result in various kinds of interference in optical images, which make it very difficult for unmanned surface vehicles (USVs) to detect the sea-sky line (SSL) accurately. To solve this problem a saliency-based SSL detection method is proposed. Through the computation of gradient saliency the line features of SSL are enhanced effectively, while other interference factors are relatively suppressed, and line support regions are obtained by a region growing method on gradient orientation. The SSL identification is achieved according to region contrast, line segment length and orientation features, and optimal state estimation of SSL detection is implemented by introducing a cubature Kalman filter (CKF). In the end, the proposed method is tested on a benchmark dataset from the "XL" USV in a real marine environment, and the experimental results demonstrate that the proposed method is significantly superior to other state-of-the-art methods in terms of accuracy rate and real-time performance, and its accuracy and stability are effectively improved by the CKF.

  2. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Adam, Patrick; Leachman, Jacob

    2014-01-01

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate

  3. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  4. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

    Science.gov (United States)

    Gatziolis, Demetrios; Lienard, Jean F; Vogs, Andre; Strigul, Nikolay S

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

  5. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    Science.gov (United States)

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  6. Modeling and Robust Trajectory Tracking Control for a Novel Six-Rotor Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chengshun Yang

    2013-01-01

    Full Text Available Modeling and trajectory tracking control of a novel six-rotor unmanned aerial vehicle (UAV is concerned to solve problems such as smaller payload capacity and lack of both hardware redundancy and anticrosswind capability for quad-rotor. The mathematical modeling for the six-rotor UAV is developed on the basis of the Newton-Euler formalism, and a second-order sliding-mode disturbance observer (SOSMDO is proposed to reconstruct the disturbances of the rotational dynamics. In consideration of the under-actuated and strong coupling properties of the six-rotor UAV, a nested double loops trajectory tracking control strategy is adopted. In the outer loop, a position error PID controller is designed, of which the task is to compare the desired trajectory with real position of the six-rotor UAV and export the desired attitude angles to the inner loop. In the inner loop, a rapid-convergent nonlinear differentiator (RCND is proposed to calculate the derivatives of the virtual control signal, instead of using the analytical differentiation, to avoid “differential expansion” in the procedure of the attitude controller design. Finally, the validity and effectiveness of the proposed technique are demonstrated by the simulation results.

  7. Unmanned aerial vehicle-based structure from motion biomass inventory estimates

    Science.gov (United States)

    Bedell, Emily; Leslie, Monique; Fankhauser, Katie; Burnett, Jonathan; Wing, Michael G.; Thomas, Evan A.

    2017-04-01

    Riparian vegetation restoration efforts require cost-effective, accurate, and replicable impact assessments. We present a method to use an unmanned aerial vehicle (UAV) equipped with a GoPro digital camera to collect photogrammetric data of a 0.8-ha riparian restoration. A three-dimensional point cloud was created from the photos using "structure from motion" techniques. The point cloud was analyzed and compared to traditional, ground-based monitoring techniques. Ground-truth data were collected on 6.3% of the study site and averaged across the entire site to report stem heights in stems/ha in three height classes. The project site was divided into four analysis sections, one for derivation of parameters used in the UAV data analysis and the remaining three sections reserved for method validation. Comparing the ground-truth data to the UAV generated data produced an overall error of 21.6% and indicated an R2 value of 0.98. A Bland-Altman analysis indicated a 95% probability that the UAV stems/section result will be within 61 stems/section of the ground-truth data. The ground-truth data are reported with an 80% confidence interval of ±1032 stems/ha thus, the UAV was able to estimate stems well within this confidence interval.

  8. Method of transmission of dynamic multibit digital images from micro-unmanned aerial vehicles

    Science.gov (United States)

    Petrov, E. P.; Kharina, N. L.

    2018-01-01

    In connection with successful usage of nanotechnologies in remote sensing great attention is paid to the systems in micro-unmanned aerial vehicles (MUAVs) capable to provide high spatial resolution of dynamic multibit digital images (MDI). Limited energy resources on board the MUAV do not allow transferring a large amount of video information in the shortest possible time. It keeps back the broad development of MUAV. The search for methods to shorten the transmission time of dynamic MDIs from MUAV over the radio channel leads to the methods of MDI compression without computational operations onboard the MUAV. The known compression codecs of video information can not be applied because of the limited energy resources. In this paper we propose a method for reducing the transmission time of dynamic MDIs without computational operations and distortions onboard the MUAV. To develop the method a mathematical apparatus of the theory of conditional Markov processes with discrete arguments was used. On its basis a mathematical model for the transformation of the MDI represented by binary images (BI) in the MDI, consisting of groups of neighboring BIs (GBI) transmitted by multiphase (MP) signals, is constructed. The algorithm for multidimensional nonlinear filtering of MP signals is synthesized, realizing the statistical redundancy of the MDI to compensate for the noise stability losses caused by the use of MP signals.

  9. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    Science.gov (United States)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  10. Influencing Trust for Human-Automation Collaborative Scheduling of Multiple Unmanned Vehicles.

    Science.gov (United States)

    Clare, Andrew S; Cummings, Mary L; Repenning, Nelson P

    2015-11-01

    We examined the impact of priming on operator trust and system performance when supervising a decentralized network of heterogeneous unmanned vehicles (UVs). Advances in autonomy have enabled a future vision of single-operator control of multiple heterogeneous UVs. Real-time scheduling for multiple UVs in uncertain environments requires the computational ability of optimization algorithms combined with the judgment and adaptability of human supervisors. Because of system and environmental uncertainty, appropriate operator trust will be instrumental to maintain high system performance and prevent cognitive overload. Three groups of operators experienced different levels of trust priming prior to conducting simulated missions in an existing, multiple-UV simulation environment. Participants who play computer and video games frequently were found to have a higher propensity to overtrust automation. By priming gamers to lower their initial trust to a more appropriate level, system performance was improved by 10% as compared to gamers who were primed to have higher trust in the automation. Priming was successful at adjusting the operator's initial and dynamic trust in the automated scheduling algorithm, which had a substantial impact on system performance. These results have important implications for personnel selection and training for futuristic multi-UV systems under human supervision. Although gamers may bring valuable skills, they may also be potentially prone to automation bias. Priming during training and regular priming throughout missions may be one potential method for overcoming this propensity to overtrust automation. © 2015, Human Factors and Ergonomics Society.

  11. Control and navigation system for a fixed-wing unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Ruiyong Zhai

    2014-02-01

    Full Text Available This paper presents a flight control and navigation system for a fixed-wing unmanned aerial vehicle (UAV with low-cost micro-electro-mechanical system (MEMS sensors. The system is designed under the inner loop and outer loop strategy. The trajectory tracking navigation loop is the outer loop of the attitude loop, while the attitude control loop is the outer loop of the stabilization loop. The proportional-integral-derivative (PID control was adopted for stabilization and attitude control. The three-dimensional (3D trajectory tracking control of a UAV could be approximately divided into lateral control and longitudinal control. The longitudinal control employs traditional linear PID feedback to achieve the desired altitude of the UAV, while the lateral control uses a non-linear control method to complete the desired trajectory. The non-linear controller can automatically adapt to ground velocity change, which is usually caused by gust disturbance, thus the UAV has good wind resistance characteristics. Flight tests and survey missions were carried out with our self-developed delta fixed-wing UAV and MEMS-based autopilot to confirm the effectiveness and practicality of the proposed navigation method.

  12. Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Peng, Y.; Fang, S.; Liu, K.; Gong, Y.

    2017-12-01

    This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.

  13. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    Science.gov (United States)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  14. Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments

    Science.gov (United States)

    Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette

    2015-01-01

    We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.

  15. A Smart Irrigation Approach Aided by Monitoring Surface Soil Moisture using Unmanned Aerial Vehicles

    Science.gov (United States)

    Wienhold, K. J.; Li, D.; Fang, N. Z.

    2017-12-01

    Soil moisture is a critical component in the optimization of irrigation scheduling in water resources management. Unmanned Aerial Vehicles (UAV) equipped with multispectral sensors represent an emerging technology capable of detecting and estimating soil moisture for irrigation and crop management. This study demonstrates a method of using a UAV as an optical and thermal remote sensing platform combined with genetic programming to derive high-resolution, surface soil moisture (SSM) estimates. The objective is to evaluate the feasibility of spatially-variable irrigation management for a golf course (about 50 acres) in North Central Texas. Multispectral data is collected over the course of one month in the visible, near infrared and longwave infrared spectrums using a UAV capable of rapid and safe deployment for daily estimates. The accuracy of the model predictions is quantified using a time domain reflectometry (TDR) soil moisture sensor and a holdout validation test set. The model produces reasonable estimates for SSM with an average coefficient of correlation (r) = 0.87 and coefficient of determination of (R2) = 0.76. The study suggests that the derived SSM estimates be used to better inform irrigation scheduling decisions for lightly vegetated areas such as the turf or native roughs found on golf courses.

  16. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  17. Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission

    International Nuclear Information System (INIS)

    Şöhret, Yasin; Dinç, Ali; Karakoç, T. Hikmet

    2015-01-01

    In this study, an exergy analysis of a turbofan engine, being the main power unit of an UAV (unmanned aerial vehicle) over the course of a surveillance mission flight, is presented. In this framework, an engine model is firstly developed, based upon engine design parameters and conditions using a genuine code. Next, the exergy analysis is performed according to thermodynamic laws. At the end of the study, the combustion chamber is identified as the most irreversible component of the engine, while the high pressure turbine and compressor are identified as the most efficient components throughout the flight. The minimum exergy efficiency is 58.24% for the combustion chamber at the end of the ingress flight phase, while the maximum exergy efficiency is found to be 99.09% for the high pressure turbine at the start of the ingress flight phase and landing loiter. The highest exergy destruction within the engine occurs at landing loiter, take-off and start of climb, with rates of 16998.768 kW, 16820.317 kW and 16564.378 kW respectively. - Highlights: • This study reveals the exergy parameters of a turbofan engine for an UAV. • Exergy analysis is conducted for a complete surveillance mission flight. • Variation of exergy parameters of engine components during the flight is presented. • The impact of the environment conditions on exergy parameters is proven.

  18. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  19. A hybrid system approach to airspeed, angle of attack and sideslip estimation in Unmanned Aerial Vehicles

    KAUST Repository

    Shaqura, Mohammad

    2015-06-01

    Fixed wing Unmanned Aerial Vehicles (UAVs) are an increasingly common sensing platform, owing to their key advantages: speed, endurance and ability to explore remote areas. While these platforms are highly efficient, they cannot easily be equipped with air data sensors commonly found on their larger scale manned counterparts. Indeed, such sensors are bulky, expensive and severely reduce the payload capability of the UAVs. In consequence, UAV controllers (humans or autopilots) have little information on the actual mode of operation of the wing (normal, stalled, spin) which can cause catastrophic losses of control when flying in turbulent weather conditions. In this article, we propose a real-time air parameter estimation scheme that can run on commercial, low power autopilots in real-time. The computational method is based on a hybrid decomposition of the modes of operation of the UAV. A Bayesian approach is considered for estimation, in which the estimated airspeed, angle of attack and sideslip are described statistically. An implementation on a UAV is presented, and the performance and computational efficiency of this method are validated using hardware in the loop (HIL) simulation and experimental flight data and compared with classical Extended Kalman Filter estimation. Our benchmark tests shows that this method is faster than EKF by up to two orders of magnitude. © 2015 IEEE.

  20. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Kuo-Lung Huang

    2015-07-01

    Full Text Available The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  1. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.

    Science.gov (United States)

    Huang, Huasheng; Deng, Jizhong; Lan, Yubin; Yang, Aqing; Deng, Xiaoling; Zhang, Lei

    2018-01-01

    Appropriate Site Specific Weed Management (SSWM) is crucial to ensure the crop yields. Within SSWM of large-scale area, remote sensing is a key technology to provide accurate weed distribution information. Compared with satellite and piloted aircraft remote sensing, unmanned aerial vehicle (UAV) is capable of capturing high spatial resolution imagery, which will provide more detailed information for weed mapping. The objective of this paper is to generate an accurate weed cover map based on UAV imagery. The UAV RGB imagery was collected in 2017 October over the rice field located in South China. The Fully Convolutional Network (FCN) method was proposed for weed mapping of the collected imagery. Transfer learning was used to improve generalization capability, and skip architecture was applied to increase the prediction accuracy. After that, the performance of FCN architecture was compared with Patch_based CNN algorithm and Pixel_based CNN method. Experimental results showed that our FCN method outperformed others, both in terms of accuracy and efficiency. The overall accuracy of the FCN approach was up to 0.935 and the accuracy for weed recognition was 0.883, which means that this algorithm is capable of generating accurate weed cover maps for the evaluated UAV imagery.

  2. Mapping of a river using close range photogrammetry technique and unmanned aerial vehicle system

    International Nuclear Information System (INIS)

    Room, M H M; Ahmad, A

    2014-01-01

    Photogrammetry is a technique that can be used to record the information of any feature without direct contact. Nowadays, a combination of photogrammetry and Unmanned Aerial Vehicle (UAV) systems is widely used for various applications, especially for large scale mapping. UAV systems offer several advantages in terms of cost and image resolution compared to terrestrial photogrammetry and remote sensing system. Therefore, a combination of photogrammetry and UAV created a new term which is UAV photogrammetry. The aim of this study is to investigate the ability of a UAV system to map a river at very close distance. A digital camera is attached to the Hexacopter UAV and it is flown at 2 m above the ground surface to produce aerial photos. Then, the aerial photos are processed to create two photogrammetric products as output. These are mosaicked orthophoto and digital image. Both products are assessed (RSME). The RSME of X and Y coordinates are ±0.009 m and ±0.033 m respectively. As a conclusion, photogrammetry and the UAV system offer a reliable accuracy for mapping a river model and advantages in term of cost-efficient, high ground resolution and rapid data acquisition

  3. Mapping of Rill Erosion of Arable Soils Based on Unmanned Aerial Vehicles Survey

    Science.gov (United States)

    Kashtanov, A. N.; Vernyuk, Yu. I.; Savin, I. Yu.; Shchepot'ev, V. V.; Dokukin, P. A.; Sharychev, D. V.; Li, K. A.

    2018-04-01

    Possibilities of using data obtained from unmanned aerial vehicles for detection and mapping of rill erosion on arable lands are analyzed. Identification and mapping of rill erosion was performed on a key plot with a predominance of arable gray forest soils (Greyzemic Phaeozems) under winter wheat in Tula oblast. This plot was surveyed from different heights and in different periods to determine the reliability of identification of rill erosion on the basis of automated procedures in a GIS. It was found that, despite changes in the pattern of rills during the warm season, only one survey during this season is sufficient for adequate assessment of the area of eroded soils. According to our data, the most reliable identification of rill erosion is based on the aerial survey from the height of 50 m above the soil surface. When the height of the flight is more than 200 m, erosional rills virtually escape identification. The efficiency of identification depends on the type of crops, their status, and time of the survey. The surveys of bare soil surface in periods with maximum possible interval from the previous rain or snowmelt season are most efficient. The results of our study can be used in the systems of remote sensing monitoring of erosional processes on arable fields. Application of multiand hyperspectral cameras can improve the efficiency of monitoring.

  4. Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles

    Science.gov (United States)

    Ha, Jin Gwan; Moon, Hyeonjoon; Kwak, Jin Tae; Hassan, Syed Ibrahim; Dang, Minh; Lee, O. New; Park, Han Yong

    2017-10-01

    Recently, unmanned aerial vehicles (UAVs) have gained much attention. In particular, there is a growing interest in utilizing UAVs for agricultural applications such as crop monitoring and management. We propose a computerized system that is capable of detecting Fusarium wilt of radish with high accuracy. The system adopts computer vision and machine learning techniques, including deep learning, to process the images captured by UAVs at low altitudes and to identify the infected radish. The whole radish field is first segmented into three distinctive regions (radish, bare ground, and mulching film) via a softmax classifier and K-means clustering. Then, the identified radish regions are further classified into healthy radish and Fusarium wilt of radish using a deep convolutional neural network (CNN). In identifying radish, bare ground, and mulching film from a radish field, we achieved an accuracy of ≥97.4%. In detecting Fusarium wilt of radish, the CNN obtained an accuracy of 93.3%. It also outperformed the standard machine learning algorithm, obtaining 82.9% accuracy. Therefore, UAVs equipped with computational techniques are promising tools for improving the quality and efficiency of agriculture today.

  5. Autonomous Wireless Self-Charging for Multi-Rotor Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Ali Bin Junaid

    2017-06-01

    Full Text Available Rotary-wing unmanned aerial vehicles (UAVs have the ability to operate in confined spaces and to hover over point of interest, but they have limited flight time and endurance. Conventional contact-based charging system for UAVs has been used, but it requires high landing accuracy for proper docking. Instead of the conventional system, autonomous wireless battery charging system for UAVs in outdoor conditions is proposed in this paper. UAVs can be wirelessly charged using the proposed charging system, regardless of yaw angle between UAVs and wireless charging pad, which can further reduce their control complexity for autonomous landing. The increased overall mission time eventually relaxes the limitations on payload and flight time. In this paper, a cost effective automatic recharging solution for UAVs in outdoor environments is proposed using wireless power transfer (WPT. This research proposes a global positioning system (GPS and vision-based closed-loop target detection and a tracking system for precise landing of quadcopters in outdoor environments. The system uses the onboard camera to detect the shape, color and position of the defined target in image frame. Based on the offset of the target from the center of the image frame, control commands are generated to track and maintain the center position. Commercially available AR.Drone. was used to demonstrate the proposed concept which is equppied with bottom camera and GPS. Experiments and analyses showed good performance, and about 75% average WPT efficiency was achieved in this research.

  6. Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident

    International Nuclear Information System (INIS)

    Martin, P.G.; Payton, O.D.; Fardoulis, J.S.; Richards, D.A.; Yamashiki, Y.; Scott, T.B.

    2016-01-01

    On the 12th of March 2011, The Great Tōhoku Earthquake occurred 70 km off the eastern coast of Japan, generating a large 14 m high tsunami. The ensuing catalogue of events over the succeeding 12 d resulted in the release of considerable quantities of radioactive material into the environment. Important to the large-scale remediation of the affected areas is the accurate and high spatial resolution characterisation of contamination, including the verification of decontaminated areas. To enable this, a low altitude unmanned aerial vehicle equipped with a lightweight gamma-spectrometer and height normalisation system was used to produce sub-meter resolution maps of contamination. This system provided a valuable method to examine both contaminated and remediated areas rapidly, whilst greatly reducing the dose received by the operator, typically in localities formerly inaccessible to ground-based survey methods. The characterisation of three sites within Fukushima Prefecture is presented; one remediated (and a site of much previous attention), one un-remediated and a third having been subjected to an alternative method to reduce emitted radiation dose. - Highlights: • Contamination near FDNPP was mapped with a UAV. • Effectiveness of remediation is observed. • Sub-meter resolution mapping is achieved. • Isotopic nature of radiation is determined.

  7. Improving a DSM Obtained by Unmanned Aerial Vehicles for Flood Modelling

    Science.gov (United States)

    Mourato, Sandra; Fernandez, Paulo; Pereira, Luísa; Moreira, Madalena

    2017-12-01

    According to the EU flood risks directive, flood hazard map must be used to assess the flood risk. These maps can be developed with hydraulic modelling tools using a Digital Surface Runoff Model (DSRM). During the last decade, important evolutions of the spatial data processing has been developed which will certainly improve the hydraulic models results. Currently, images acquired with Red/Green/Blue (RGB) camera transported by Unmanned Aerial Vehicles (UAV) are seen as a good alternative data sources to represent the terrain surface with a high level of resolution and precision. The question is if the digital surface model obtain with this data is adequate enough for a good representation of the hydraulics flood characteristics. For this purpose, the hydraulic model HEC-RAS was run with 4 different DSRM for an 8.5 km reach of the Lis River in Portugal. The computational performance of the 4 modelling implementations is evaluated. Two hydrometric stations water level records were used as boundary conditions of the hydraulic model. The records from a third hydrometric station were used to validate the optimal DSRM. The HEC-RAS results had the best performance during the validation step were the ones where the DSRM with integration of the two altimetry data sources.

  8. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Ingham, John C. (Inventor); Laughter, Sean A. (Inventor); Kuhn, III, Theodore R. (Inventor); Adams, James K. (Inventor); Babel, III, Walter C. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  9. Unmanned Aerial Vehicles (UAVs and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    Directory of Open Access Journals (Sweden)

    Luis F. Gonzalez

    2016-01-01

    Full Text Available Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV, artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  10. Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Zhihui Xing

    2013-01-01

    Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.

  11. Metadata-Assisted Global Motion Estimation for Medium-Altitude Unmanned Aerial Vehicle Video Applications

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2015-09-01

    Full Text Available Global motion estimation (GME is a key technology in unmanned aerial vehicle remote sensing (UAVRS. However, when a UAV’s motion and behavior change significantly or the image information is not rich, traditional image-based methods for GME often perform poorly. Introducing bottom metadata can improve precision in a large-scale motion condition and reduce the dependence on unreliable image information. GME is divided into coarse and residual GME through coordinate transformation and based on the study hypotheses. In coarse GME, an auxiliary image is built to convert image matching from a wide baseline condition to a narrow baseline one. In residual GME, a novel information and contrast feature detection algorithm is proposed for big-block matching to maximize the use of reliable image information and ensure that the contents of interest are well estimated. Additionally, an image motion monitor is designed to select the appropriate processing strategy by monitoring the motion scales of translation, rotation, and zoom. A medium-altitude UAV is employed to collect three types of large-scale motion datasets. Peak signal to noise ratio (PSNR and motion scale are computed. This study’s result is encouraging and applicable to other medium- or high-altitude UAVs with a similar system structure.

  12. Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Hyungchul Yoon

    2017-09-01

    Full Text Available Computer vision techniques have been employed to characterize dynamic properties of structures, as well as to capture structural motion for system identification purposes. All of these methods leverage image-processing techniques using a stationary camera. This requirement makes finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges, buildings, etc. are often difficult to access, being constructed over rivers, roads, or other obstacles. This paper seeks to use video from Unmanned Aerial Vehicles (UAVs to address this problem. As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue of the camera itself moving; thus, the displacements of the structure obtained by processing UAV video are relative to the UAV camera. Some efforts have been reported to compensate for the camera motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a new method for structural system identification using the UAV video directly. Several challenges are addressed, including: (1 estimation of an appropriate scale factor; and (2 compensation for the rolling shutter effect. Experimental validation is carried out to validate the proposed approach. The experimental results demonstrate the efficacy and significant potential of the proposed approach.

  13. Vibration control of a camera mount system for an unmanned aerial vehicle using piezostack actuators

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Bok; Han, Young-Min

    2011-01-01

    This work proposes an active mount for the camera systems of unmanned aerial vehicles (UAV) in order to control unwanted vibrations. An active actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is directly connected to the inertial mass. After evaluating the actuating force of the actuator, it is combined with the rubber element of the mount, whose natural frequency is determined based on the measured vibration characteristics of UAV. Based on the governing equations of motion of the active camera mount, a robust sliding mode controller (SMC) is then formulated with consideration of parameter uncertainties and hysteresis behavior of the actuator. Subsequently, vibration control performances of the proposed active mount are experimentally evaluated in the time and frequency domains. In addition, a full camera mount system of UAVs that is supported by four active mounts is considered and its vibration control performance is evaluated in the frequency domain using a hardware-in-the-loop simulation (HILS) method

  14. Drift Correction of Lightweight Microbolometer Thermal Sensors On-Board Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Mesas-Carrascosa

    2018-04-01

    Full Text Available The development of lightweight sensors compatible with mini unmanned aerial vehicles (UAVs has expanded the agronomical applications of remote sensing. Of particular interest in this paper are thermal sensors based on lightweight microbolometer technology. These are mainly used to assess crop water stress with thermal images where an accuracy greater than 1 °C is necessary. However, these sensors lack precise temperature control, resulting in thermal drift during image acquisition that requires correction. Currently, there are several strategies to manage thermal drift effect. However, these strategies reduce useful flight time over crops due to the additional in-flight calibration operations. This study presents a drift correction methodology for microbolometer sensors based on redundant information from multiple overlapping images. An empirical study was performed in an orchard of high-density hedgerow olive trees with flights at different times of the day. Six mathematical drift correction models were developed and assessed to explain and correct drift effect on thermal images. Using the proposed methodology, the resulting thermally corrected orthomosaics yielded a rate of error lower than 1° C compared to those where no drift correction was applied.

  15. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    Science.gov (United States)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  16. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    Science.gov (United States)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  17. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2018-03-01

    Full Text Available To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  18. Effective Waterline Detection of Unmanned Surface Vehicles Based on Optical Images

    Directory of Open Access Journals (Sweden)

    Yangjie Wei

    2016-09-01

    Full Text Available Real-time and accurate detection of the sailing or water area will help realize unmanned surface vehicle (USV systems. Although there are some methods for using optical images in USV-oriented environmental modeling, both the robustness and precision of these published waterline detection methods are comparatively low for a real USV system moving in a complicated environment. This paper proposes an efficient waterline detection method based on structure extraction and texture analysis with respect to optical images and presents a practical application to a USV system for validation. First, the basic principles of local binary patterns (LBPs and gray level co-occurrence matrix (GLCM were analyzed, and their advantages were integrated to calculate the texture information of river images. Then, structure extraction was introduced to preprocess the original river images so that the textures resulting from USV motion, wind, and illumination are removed. In the practical application, the waterlines of many images captured by the USV system moving along an inland river were detected with the proposed method, and the results were compared with those of edge detection and super pixel segmentation. The experimental results showed that the proposed algorithm is effective and robust. The average error of the proposed method was 1.84 pixels, and the mean square deviation was 4.57 pixels.

  19. Topographic data acquisition in tsunami-prone coastal area using Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    Marfai, M. A.; Sunarto; Khakim, N.; Cahyadi, A.; Rosaji, F. S. C.; Fatchurohman, H.; Wibowo, Y. A.

    2018-04-01

    The southern coastal area of Java Island is one of the nine seismic gaps prone to tsunamis. The entire coastline in one of the regencies, Gunungkidul, is exposed to the subduction zone in the Indian Ocean. Also, the growing tourism industries in the regency increase its vulnerability, which places most of its areas at high risk of tsunamis. The same case applies to Kukup, i.e., one of the most well-known beaches in Gunungkidul. Structurally shaped cliffs that surround it experience intensive wave erosion process, but it has very minimum access for evacuation routes. Since tsunami modeling is a very advanced analysis, it requires an accurate topographic data. Therefore, the research aimed to generate the topographic data of Kukup Beach as the baseline in tsunami risk reduction analysis and disaster management. It used aerial photograph data, which was acquired using Unmanned Aerial Vehicle (UAV). The results showed that the aerial photographs captured by drone had accurate elevation and spatial resolution. Therefore, they are applicable for tsunami modeling and disaster management.

  20. Object Based Building Extraction and Building Period Estimation from Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Comert, Resul; Kaplan, Onur

    2018-04-01

    The aim of this study is to examine whether it is possible to estimate the building periods with respect to the building heights in the urban scale seismic performance assessment studies by using the building height retrieved from the unmanned aerial vehicle (UAV) data. For this purpose, a small area, which includes eight residential reinforced concrete buildings, was selected in Eskisehir (Turkey) city center. In this paper, the possibilities of obtaining the building heights that are used in the estimation of building periods from UAV based data, have been investigated. The investigations were carried out in 3 stages; (i) Building boundary extraction with Object Based Image Analysis (OBIA), (ii) height calculation for buildings of interest from nDSM and accuracy assessment with the terrestrial survey. (iii) Estimation of building period using height information. The average difference between the periods estimated according to the heights obtained from field measurements and from the UAV data is 2.86 % and the maximum difference is 13.2 %. Results of this study have shown that the building heights retrieved from the UAV data can be used in the building period estimation in the urban scale vulnerability assessments.

  1. Employing unmanned aerial vehicle to monitor the health condition of wind turbines

    Science.gov (United States)

    Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2018-04-01

    Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.

  2. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.

    Science.gov (United States)

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-19

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass ( R ² = 0.340, root-mean-square error (RMSE) = 81.89 g·m -2 , and relative error of 14.1%). The improvement of multiple regressions to the R ² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (lidar returns.

  3. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-11-01

    Full Text Available In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV, this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment.

  4. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    Science.gov (United States)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  5. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.

    Science.gov (United States)

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-09-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  6. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    Science.gov (United States)

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  7. A Sea-Sky Line Detection Method for Unmanned Surface Vehicles Based on Gradient Saliency

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2016-04-01

    Full Text Available Special features in real marine environments such as cloud clutter, sea glint and weather conditions always result in various kinds of interference in optical images, which make it very difficult for unmanned surface vehicles (USVs to detect the sea-sky line (SSL accurately. To solve this problem a saliency-based SSL detection method is proposed. Through the computation of gradient saliency the line features of SSL are enhanced effectively, while other interference factors are relatively suppressed, and line support regions are obtained by a region growing method on gradient orientation. The SSL identification is achieved according to region contrast, line segment length and orientation features, and optimal state estimation of SSL detection is implemented by introducing a cubature Kalman filter (CKF. In the end, the proposed method is tested on a benchmark dataset from the “XL” USV in a real marine environment, and the experimental results demonstrate that the proposed method is significantly superior to other state-of-the-art methods in terms of accuracy rate and real-time performance, and its accuracy and stability are effectively improved by the CKF.

  8. DETERMINING GEOMETRIC PARAMETERS OF AGRICULTURAL TREES FROM LASER SCANNING DATA OBTAINED WITH UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    E. Hadas

    2018-05-01

    Full Text Available The estimation of dendrometric parameters has become an important issue for agriculture planning and for the efficient management of orchards. Airborne Laser Scanning (ALS data is widely used in forestry and many algorithms for automatic estimation of dendrometric parameters of individual forest trees were developed. Unfortunately, due to significant differences between forest and fruit trees, some contradictions exist against adopting the achievements of forestry science to agricultural studies indiscriminately. In this study we present the methodology to identify individual trees in apple orchard and estimate heights of individual trees, using high-density LiDAR data (3200 points/m2 obtained with Unmanned Aerial Vehicle (UAV equipped with Velodyne HDL32-E sensor. The processing strategy combines the alpha-shape algorithm, principal component analysis (PCA and detection of local minima. The alpha-shape algorithm is used to separate tree rows. In order to separate trees in a single row, we detect local minima on the canopy profile and slice polygons from alpha-shape results. We successfully separated 92 % of trees in the test area. 6 % of trees in orchard were not separated from each other and 2 % were sliced into two polygons. The RMSE of tree heights determined from the point clouds compared to field measurements was equal to 0.09 m, and the correlation coefficient was equal to 0.96. The results confirm the usefulness of LiDAR data from UAV platform in orchard inventory.

  9. Determining Geometric Parameters of Agricultural Trees from Laser Scanning Data Obtained with Unmanned Aerial Vehicle

    Science.gov (United States)

    Hadas, E.; Jozkow, G.; Walicka, A.; Borkowski, A.

    2018-05-01

    The estimation of dendrometric parameters has become an important issue for agriculture planning and for the efficient management of orchards. Airborne Laser Scanning (ALS) data is widely used in forestry and many algorithms for automatic estimation of dendrometric parameters of individual forest trees were developed. Unfortunately, due to significant differences between forest and fruit trees, some contradictions exist against adopting the achievements of forestry science to agricultural studies indiscriminately. In this study we present the methodology to identify individual trees in apple orchard and estimate heights of individual trees, using high-density LiDAR data (3200 points/m2) obtained with Unmanned Aerial Vehicle (UAV) equipped with Velodyne HDL32-E sensor. The processing strategy combines the alpha-shape algorithm, principal component analysis (PCA) and detection of local minima. The alpha-shape algorithm is used to separate tree rows. In order to separate trees in a single row, we detect local minima on the canopy profile and slice polygons from alpha-shape results. We successfully separated 92 % of trees in the test area. 6 % of trees in orchard were not separated from each other and 2 % were sliced into two polygons. The RMSE of tree heights determined from the point clouds compared to field measurements was equal to 0.09 m, and the correlation coefficient was equal to 0.96. The results confirm the usefulness of LiDAR data from UAV platform in orchard inventory.

  10. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

    Science.gov (United States)

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-08-12

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.

  11. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    2016-12-01

    Full Text Available In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1 the real-time zoom lens distortion correction method; (2 a recursive least squares (RLS filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.

  12. Mapping of traditional settlements by unmanned airborne vehicles towards architectural restoration

    Science.gov (United States)

    Partsinevelos, Panagiotis; Skoutelis, Nikolaos; Tripolitsiotis, Achilleas; Tsatsarounos, Stelios; Tsitonaki, Anna; Zervos, Panagiotis

    2015-06-01

    Conservation and restoration of traditional settlements are amongst the actions that international directives proclaim in order to protect our cultural heritage. Towards this end, a mandatory base step in all archaeological and historical practices includes the surveying and mapping of the study area. Often, new, unexplored or abandoned settlements are considered, where dense vegetation, damaged structures and ruins, incorporation of newer structures and renovation characteristics make the precise surveying procedure a labor intensive and time consuming procedure. Unmanned airborne vehicles (UAVs) have been effectively incorporated into several cultural heritage projects mainly for mapping archeological sites. However, the majority of relevant publications lack of quantitative evaluation of their results and when such a validation is provided it is rather a procedural error estimation readily available from the software used, without independent ground truth verification. In this study, a low-cost custom-built hexacopter prototype was employed to deliver accurate mapping of the traditional settlement of Kamariotis in east Crete, Greece. The case of Kamariotis settlement included highly dense urban structures with continuous building forms, curved walls and missing terraces, while wild vegetation made classic geodetic surveying unfeasible. The resulting maps were qualitatively compared against the ones derived using Google Earth and the Greek Cadastral Orthophoto Viewing platforms to evaluate their applicability for architectural mapping. Moreover, the overall precision of the photogrammetric procedure was compared against geodetic surveying.

  13. Development of Design Methodology for a Small Solar-Powered Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Parvathy Rajendran

    2018-01-01

    Full Text Available Existing mathematical design models for small solar-powered electric unmanned aerial vehicles (UAVs only focus on mass, performance, and aerodynamic analyses. Presently, UAV designs have low endurance. The current study aims to improve the shortcomings of existing UAV design models. Three new design aspects (i.e., electric propulsion, sensitivity, and trend analysis, three improved design properties (i.e., mass, aerodynamics, and mission profile, and a design feature (i.e., solar irradiance are incorporated to enhance the existing small solar UAV design model. A design validation experiment established that the use of the proposed mathematical design model may at least improve power consumption-to-take-off mass ratio by 25% than that of previously designed UAVs. UAVs powered by solar (solar and battery and nonsolar (battery-only energy were also compared, showing that nonsolar UAVs can generally carry more payloads at a particular time and place than solar UAVs with sufficient endurance requirement. The investigation also identified that the payload results in the highest effect on the maximum take-off weight, followed by the battery, structure, and propulsion weight with the three new design aspects (i.e., electric propulsion, sensitivity, and trend analysis for sizing consideration to optimize UAV designs.

  14. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    Science.gov (United States)

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2016-01-14

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  15. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    Science.gov (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  16. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    Science.gov (United States)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  17. Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles

    Science.gov (United States)

    Knox, Lenora A.

    The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.

  18. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew

    2016-10-25

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  19. Design Of An Aerodynamic Measurement System For Unmanned Aerial Vehicle Airfoils

    Directory of Open Access Journals (Sweden)

    L. Velázquez-Araque

    2012-10-01

    Full Text Available This paper presents the design and validation of a measurement system for aerodynamic characteristics of unmanned aerial vehicles. An aerodynamic balance was designed in order to measure the lift, drag forces and pitching moment for different airfoils. During the design process, several aspects were analyzed in order to produce an efficient design, for instance the range of changes of the angle of attack with and a small increment and the versatility of being adapted to different type of airfoils, since it is a wire balance it was aligned and calibrated as well. Wind tunnel tests of a two dimensional NACA four digits family airfoil and four different modifications of this airfoil were performed to validate the aerodynamic measurement system. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, four different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack experimentally for the situation where the engine of the aerial vehicle is turned off, called the no blowing condition, by means of wind tunnel tests. The experiments were performed in a closed circuit wind tunnel with an open test section. Finally, results of the wind tunnel tests were compared with numerical results obtained by means of computational fluid dynamics as well as with other experimental references and found to be in good agreement.

  20. Auditory decision aiding in supervisory control of multiple unmanned aerial vehicles.

    Science.gov (United States)

    Donmez, Birsen; Cummings, M L; Graham, Hudson D

    2009-10-01

    This article is an investigation of the effectiveness of sonifications, which are continuous auditory alerts mapped to the state of a monitored task, in supporting unmanned aerial vehicle (UAV) supervisory control. UAV supervisory control requires monitoring a UAV across multiple tasks (e.g., course maintenance) via a predominantly visual display, which currently is supported with discrete auditory alerts. Sonification has been shown to enhance monitoring performance in domains such as anesthesiology by allowing an operator to immediately determine an entity's (e.g., patient) current and projected states, and is a promising alternative to discrete alerts in UAV control. However, minimal research compares sonification to discrete alerts, and no research assesses the effectiveness of sonification for monitoring multiple entities (e.g., multiple UAVs). The authors conducted an experiment with 39 military personnel, using a simulated setup. Participants controlled single and multiple UAVs and received sonifications or discrete alerts based on UAV course deviations and late target arrivals. Regardless of the number of UAVs supervised, the course deviation sonification resulted in reactions to course deviations that were 1.9 s faster, a 19% enhancement, compared with discrete alerts. However, course deviation sonifications interfered with the effectiveness of discrete late arrival alerts in general and with operator responses to late arrivals when supervising multiple vehicles. Sonifications can outperform discrete alerts when designed to aid operators to predict future states of monitored tasks. However, sonifications may mask other auditory alerts and interfere with other monitoring tasks that require divided attention. This research has implications for supervisory control display design.

  1. Implementation of an unmanned aerial vehicle for new generation Peterbilt trucks

    Science.gov (United States)

    Srinivasan K, Venkatesh

    As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.

  2. Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Fatih Gökçe

    2015-09-01

    Full Text Available Detection and distance estimation of micro unmanned aerial vehicles (mUAVs is crucial for (i the detection of intruder mUAVs in protected environments; (ii sense and avoid purposes on mUAVs or on other aerial vehicles and (iii multi-mUAV control scenarios, such as environmental monitoring, surveillance and exploration. In this article, we evaluate vision algorithms as alternatives for detection and distance estimation of mUAVs, since other sensing modalities entail certain limitations on the environment or on the distance. For this purpose, we test Haar-like features, histogram of gradients (HOG and local binary patterns (LBP using cascades of boosted classifiers. Cascaded boosted classifiers allow fast processing by performing detection tests at multiple stages, where only candidates passing earlier simple stages are processed at the preceding more complex stages. We also integrate a distance estimation method with our system utilizing geometric cues with support vector regressors. We evaluated each method on indoor and outdoor videos that are collected in a systematic way and also on videos having motion blur. Our experiments show that, using boosted cascaded classifiers with LBP, near real-time detection and distance estimation of mUAVs are possible in about 60 ms indoors (1032 × 778 resolution and 150 ms outdoors (1280 × 720 resolution per frame, with a detection rate of 0.96 F-score. However, the cascaded classifiers using Haar-like features lead to better distance estimation since they can position the bounding boxes on mUAVs more accurately. On the other hand, our time analysis yields that the cascaded classifiers using HOG train and run faster than the other algorithms.

  3. The Design of the Longitudinal Autopilot for the LSU-05 Unmanned Aerial Surveillance Vehicle

    Science.gov (United States)

    Fajar, Muhammad; Arifianto, Ony

    2018-04-01

    Longitudinal autopilot design for the LAPAN Surveillance Vehicle LSU-05 will be described in this paper. The LSU-05 is the most recent Unmanned Aerial Vehicle (UAV) project of the Aeronautics Technology Center (Pusat Teknologi Penerbangan – Pustekbang), LAPAN. This UAV is expected to be able to carry 30 kg of payload, four surveillance purposes. The longitudinal autopilot described in this paper consists of four modes, those are Pitch damper, Pitch Attitude Hold, Altitude Hold, and Speed Hold. The Autopilot of the UAV will be designed at four operating speeds, namely 15 m/s, 20 m/s, 25 m/s, and 30 m/. The Athena Vortex Lattice software is used to generate the aerodynamic model of the LSU-05. Non-linear longitudinal aircraft dynamics model is then developed in MATLAB/SIMULINK environment. Linearization of the non-linear model is performed using the linearization tool of SIMULINK. The controller is designed, based on the linear model of the aircraft in the state space form. A Proportional-Integral-Derivative (PID) controller structure is chosen, using root locus method to determine mainly the proportional (P) gain. Integral (I) and derivative (D) gain will only be used if the proportional gain can not achieve the desired target or if an overshoot / undershoot reduction is required. The overshoot/undershoot should not exceed 5% and settling time is less than 20 seconds. The controller designed is simulated using MATLAB and SIMULINK. Preliminary analysis of the controller performance shows that the controller can be used to stabilize the aircraft and to automatize the speed and altitude control throughout the considered speed range.

  4. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research.

    Directory of Open Access Journals (Sweden)

    Yeyin Shi

    Full Text Available Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1-the summer 2015 and winter 2016 growing seasons-of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project's goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both

  5. Challenges in Unmanned Aerial Vehicle Photogrammetry for Archaeological Mapping at High Elevations

    Science.gov (United States)

    Adams, J. A.; Wernke, S.

    2015-12-01

    Unmanned Aerial Vehicles (UAVs), especially multi-rotor vehicles, are becoming ubiquitous and their appeal for generating photogrammetry-based maps has grown. The options are many and costs have plummeted in last five years; however, many challenges persist with their deployment. We mapped the archaeological site Maw­chu Llacta, a settlement in the southern highlands of Peru (Figure 1). Mawchu Llacta is a planned colonial town built over a major Inka-era center in the high-elevation grasslands at ~4,000m asl. The "general resettlement of Indians" was a massive forced resettlement program, for which very little local-level documentation exists. Mawachu Llacta's excellently preserved architecture includes >500 buildings and hundreds of walls spread across ~13h posed significant mapping challenges. Many environmental factors impact UAV deployment. The air pressure at 4,100 m asl is dramatically lower than at sea level. The dry season diurnal temperature differentials can vary from 7°C to 22°C daily. High and hot conditions frequently occur from late morning to early afternoon. Reaching Mawchu Llacta requires hiking 4km with 400m of vertical gain over steep and rocky terrain. There is also no on-site power or secure storage. Thus, the UAV must be packable. FAA regulations govern US UAV deployments, but regulations were less stringent in Peru. However, ITAR exemptions and Peruvian customs requirements were required. The Peruvian government has established an importation and approval process that entails leaving the UAV at customs, while obtaining the necessary government approvals, both of which can be problematic. We have deployed the Aurora Flight Sciences Skate fixed wing ßUAV, an in-house fixed wing UAV based on the Skywalker X-5 flying wing, and a tethered 9 m3 capacity latex meteorological weather balloon. Development of an autonomous blimp/balloon has been ruled-out. A 3DR Solo is being assessed for excavation mapping.

  6. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  7. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Yalong Ma

    2016-03-01

    Full Text Available Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs, more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG and Discrete Cosine Transform (DCT features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  8. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

    Science.gov (United States)

    Ernest, Nicholas D.

    Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging

  9. Performance modeling of unmanned aerial vehicles with on-board energy harvesting

    Science.gov (United States)

    Anton, Steven R.; Inman, Daniel J.

    2011-03-01

    The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition

  10. Optimal Path Planning and Control of Quadrotor Unmanned Aerial Vehicle for Area Coverage

    Science.gov (United States)

    Fan, Jiankun

    An Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot on board. Its flight is controlled either autonomously by computers onboard the vehicle, or remotely by a pilot on the ground, or by another vehicle. In recent years, UAVs have been used more commonly than prior years. The example includes areo-camera where a high speed camera was attached to a UAV which can be used as an airborne camera to obtain aerial video. It also could be used for detecting events on ground for tasks such as surveillance and monitoring which is a common task during wars. Similarly UAVs can be used for relaying communication signal during scenarios when regular communication infrastructure is destroyed. The objective of this thesis is motivated from such civilian operations such as search and rescue or wildfire detection and monitoring. One scenario is that of search and rescue where UAV's objective is to geo-locate a person in a given area. The task is carried out with the help of a camera whose live feed is provided to search and rescue personnel. For this objective, the UAV needs to carry out scanning of the entire area in the shortest time. The aim of this thesis to develop algorithms to enable a UAV to scan an area in optimal time, a problem referred to as "Coverage Control" in literature. The thesis focuses on a special kind of UAVs called "quadrotor" that is propelled with the help of four rotors. The overall objective of this thesis is achieved via solving two problems. The first problem is to develop a dynamic control model of quadrtor. In this thesis, a proportional-integral-derivative controller (PID) based feedback control system is developed and implemented on MATLAB's Simulink. The PID controller helps track any given trajectory. The second problem is to design a trajectory that will fulfill the mission. The planed trajectory should make sure the quadrotor will scan the whole area without missing any part to make sure that the quadrotor will find the lost

  11. Control and design of multiple unmanned air vehicles for persistent surveillance

    Science.gov (United States)

    Nigam, Nikhil

    Control of multiple autonomous aircraft for search and exploration, is a topic of current research interest for applications such as weather monitoring, geographical surveys, search and rescue, tactical reconnaissance, and extra-terrestrial exploration, and the need to distribute sensing is driven by considerations of efficiency, reliability, cost and scalability. Hence, this problem has been extensively studied in the fields of controls and artificial intelligence. The task of persistent surveillance is different from a coverage/exploration problem, in that all areas need to be continuously searched, minimizing the time between visitations to each region in the target space. This distinction does not allow a straightforward application of most exploration techniques to the problem, although ideas from these methods can still be used. The use of aerial vehicles is motivated by their ability to cover larger spaces and their relative insensitivity to terrain. However, the dynamics of Unmanned Air Vehicles (UAVs) adds complexity to the control problem. Most of the work in the literature decouples the vehicle dynamics and control policies, but their interaction is particularly interesting for a surveillance mission. Stochastic environments and UAV failures further enrich the problem by requiring the control policies to be robust, and this aspect is particularly important for hardware implementations. For a persistent mission, it becomes imperative to consider the range/endurance constraints of the vehicles. The coupling of the control policy with the endurance constraints of the vehicles is an aspect that has not been sufficiently explored. Design of UAVs for desirable mission performance is also an issue of considerable significance. The use of a single monolithic optimization for such a problem has practical limitations, and decomposition-based design is a potential alternative. In this research high-level control policies are devised, that are scalable, reliable

  12. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Guijun Yang

    2017-06-01

    Full Text Available Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI, chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.

  13. Remote Estimation of Vegetation Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data

    Directory of Open Access Journals (Sweden)

    Shenghui Fang

    2016-05-01

    Full Text Available This study developed an approach for remote estimation of Vegetation Fraction (VF and Flower Fraction (FF in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. The results showed that the Visible Atmospherically Resistant Index (VARIgreen worked most accurately for estimating VF in flower-free samples with an Root Mean Square Error (RMSE of 3.56%, while the Enhanced Vegetation Index (EVI2 was the best in flower-containing samples with an RMSE of 5.65%. Based on reflectance in green and NIR bands, a technique was developed to identify whether a sample contained flowers and then to choose automatically the appropriate algorithm for its VF estimation. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate FF in oilseed rape. No significant correlation was observed between VI and FF when soil was visible in the sensor’s field of view. Reflectance at 550 nm worked well for FF estimation with coefficient of determination (R2 above 0.6. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with RMSE below 6%.

  14. Technologies for low-bandwidth high-latency unmanned ground vehicle control

    Science.gov (United States)

    Pace, Teresa; Cogan, Ken; Hunt, Lee; Restine, Paul

    2014-05-01

    Automation technology has evolved at a rapid pace in recent years; however, many real-world problems require contextual understanding, problem solving, and other forms of higher-order thinking that extends beyond the capabilities of robots for the foreseeable future. This limits the complexity of automation which can be supplied to modern unmanned ground robots (UGV) and necessitates human-in-the-loop monitoring and control for some portions of missions. In order for the human operator to make decisions and provide tasking during key portions of the mission, existing solutions first derive significant information from a potentially dense reconstruction of the scene utilizing LIDAR, video, and other onboard sensors. A dense reconstruction contains too much data for real-time transmission over a modern wireless data link, so the robot electronics must first condense the scene representation prior to transmission. The control station receives this condensed scene representations and provides visual information to the human operator; the human operator then provides tele-operation commands in real-time to the robot. This paper discusses approaches to dense scene reduction of the data required to transmit to a human-in-the loop as well as the challenges associated with them. In addition, the complex and unstructured nature of real-world environments increases the need for tele-operation. Furthermore, many environments reduce the bandwidth and increase the latency of the link. Ultimately, worsening conditions will cause the tele-operation control process to break down, rendering the robot ineffective. In a worst-case scenario, extreme conditions causing a complete loss-of-communications could result in mission failure and loss of the vehicle.

  15. Prospective use of unmanned aerial vehicles for military medical evacuation in future conflicts.

    Science.gov (United States)

    Handford, Charles; Reeves, F; Parker, P

    2018-03-09

    In order to continue to deliver outstanding medical care on the battlefield, the UK Defence Medical Services must continue to adapt, overcome and actively embrace change. One potential area is the rapid proliferation and sophistication of automated and remote systems such as unmanned aerial vehicles (UAVs). UAVs are already used to deliver blood to remote military locations in Afghanistan and defibrillators to those that need them in the USA and Sweden. An area of future opportunity would be to facilitate rapid evacuation of wounded personnel from high intensity, high threat, remote and austere areas directly to specialist care. Such a capability would reduce threat to human life while allowing rapid extraction of casualties from high risk or inaccessible environments straight back to Role 3 care, all of which in these situations is either not possible or carries too much risk using conventional aerial assets. The article aims to highlight a potential future capability, stimulate debate and reflection, all of which is essential for innovation and future organisational development. The potential uses and benefits of UAVs are highlighted including both the challenges and rewards of utilising UAVs for casualty evacuation. Key benefits are reduced risk to human life, cost, ability to insert into areas conventional aircraft cannot and the rapidity of transfer. Challenges are likely to be airspace management, decisions on appropriate level of care to deliver during transit and ultimately user acceptability. The article also highlights that in order to maximise our ability to exploit new technologies, all arms and trades within the military must be involved in collective research and development. Furthermore, sensible corroboration with private companies will further enhance our ability to acquire products that best serve our needs. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use

  16. Investigation of Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle

    Science.gov (United States)

    Yang, S.; Talbot, R. W.; Frish, M. B.; Golston, L.; Aubut, N. F.; Zondlo, M. A.

    2017-12-01

    The U.S is now the world's largest natural gas producer, of which methane (CH4) is the main component. About 2% of the CH4 is lost through fugitive leaks. This research is under the DOE Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR) program of ARPA-E. Our sentry measurement system is composed of four state-of-the-art technologies centered around the RMLDTM (Remote Methane Leak Detector). An open path RMLDTM measures column-integrated CH4 concentration that incorporates fluctuations in the vertical CH4 distribution. Based on Backscatter Tunable Diode Laser Absorption Spectroscopy and Small Unmanned Aerial Vehicles, the sentry system can autonomously, consistently and cost-effectively monitor and quantify CH4 leakage from sites associated with natural gas production. This system provides an advanced capability in detecting leaks at hard-to-access sites (e.g., wellheads) compared to traditional manual methods. Automated leak detecting and reporting algorithms combined with wireless data link implement real-time leak information reporting. Early data were gathered to set up and test the prototype system, and to optimize the leak localization and calculation strategies. The flight pattern is based on a raster scan which can generate interpolated CH4 concentration maps. The localization and quantification algorithms can be derived from the plume images combined with wind vectors. Currently, the accuracy of localization algorithm can reach 2 m and the calculation algorithm has a factor of 2 accuracy. This study places particular emphasis on flux quantification. The data collected at Colorado and Houston test fields were processed, and the correlation between flux and other parameters analyzed. Higher wind speeds and lower wind variation are preferred to optimize flux estimation. Eventually, this system will supply an enhanced detection capability to significantly reduce fugitive CH4 emissions in the natural gas industry.

  17. Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images Acquired with an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Peter P. J. Roosjen

    2017-04-01

    Full Text Available Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs are affected by this because of their relatively large field of view (FOV and thus large range of viewing angles. In this study, we investigated the magnitude of reflectance anisotropy effects in the 500–900 nm range, captured by a frame camera mounted on a UAV during a standard mapping flight. After orthorectification and georeferencing of the images collected by the camera, we calculated the viewing geometry of all observations of each georeferenced ground pixel, forming a dataset with multi-angular observations. We performed UAV flights on two days during the summer of 2016 over an experimental potato field where different zones in the field received different nitrogen fertilization treatments. These fertilization levels caused variation in potato plant growth and thereby differences in structural properties such as leaf area index (LAI and canopy cover. We fitted the Rahman–Pinty–Verstraete (RPV model through the multi-angular observations of each ground pixel to quantify, interpret, and visualize the anisotropy patterns in our study area. The Θ parameter of the RPV model, which controls the proportion of forward and backward scattering, showed strong correlation with canopy cover, where in general an increase in canopy cover resulted in a reduction of backward scattering intensity, indicating that reflectance anisotropy contains information on canopy structure. In this paper, we demonstrated that anisotropy data can be extracted from measurements using a frame camera, collected during a typical UAV mapping flight. Future research will focus on how to use the anisotropy signal as a source of information for estimation of physical vegetation properties.

  18. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    Science.gov (United States)

    Aurell, J.; Mitchell, W.; Chirayath, V.; Jonsson, J.; Tabor, D.; Gullett, B.

    2017-10-01

    An emission sensor/sampler system was coupled to a National Aeronautics and Space Administration (NASA) hexacopter unmanned aerial vehicle (UAV) to characterize gases and particles in the plumes emitted from open burning of military ordnance. The UAV/sampler was tested at two field sites with test and sampling flights spanning over 16 h of flight time. The battery-operated UAV was remotely maneuvered into the plumes at distances from the pilot of over 600 m and at altitudes of up to 122 m above ground level. While the flight duration could be affected by sampler payload (3.2-4.6 kg) and meteorological conditions, the 57 sampling flights, ranging from 4 to 12 min, were typically terminated when the plume concentrations of CO2 were diluted to near ambient levels. Two sensor/sampler systems, termed ;Kolibri,; were variously configured to measure particulate matter, metals, chloride, perchlorate, volatile organic compounds, chlorinated dioxins/furans, and nitrogen-based organics for determination of emission factors. Gas sensors were selected based on their applicable concentration range, light weight, freedom from interferents, and response/recovery times. Samplers were designed, constructed, and operated based on U.S. Environmental Protection Agency (EPA) methods and quality control criteria. Results show agreement with published emission factors and good reproducibility (e.g., 26% relative standard deviation for PM2.5). The UAV/Kolibri represents a significant advance in multipollutant emission characterization capabilities for open area sources, safely and effectively making measurements heretofore deemed too hazardous for personnel or beyond the reach of land-based samplers.

  19. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian

    2017-07-18

    Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  20. Annual low-cost monitoring of a coastal site in Greece by an unmanned aerial vehicle

    Science.gov (United States)

    Hoffmeister, Dirk; Bareth, Georg

    2016-04-01

    Coastal areas are under permanent change and are also the result of past processes. These processes are for example sediment transport, accumulation and erosion by normal and extreme waves (storms or tsunamis). As about 23% of the World's population lives within a 100 km distance of coasts, knowledge about coastal processes is important, in particular for possible changes in the nearby future. The past devastating tsunami events demonstrated profoundly the high vulnerability of coastal areas. In order to estimate the different effects, coastal monitoring approaches are of interest. Several different methods exist in order to determine changes in the sedimentary budget and coastline configuration. In order to estimate constant annual changes, we have applied terrestrial laser scanning (TLS) in an annual monitoring approach (2009-2011). In 2014, we changed to an approach based on dense imaging and structure-from-motion, applying an unmanned aerial vehicle (UAV) in order to conduct an annual monitoring of a coastal site in western Greece. Therefore, a GoPro Hero 3+ and a Canon PowerShot S110 mounted on a DJI-Phantom 2 were used. All surveys were conducted in a manually structured image acquisition with a huge overlap. Ground control points (GCP) were measured by tachymetric surveying. This successful approach was repeated again in 2015 with the Canon camera. The measurements of 2014 were controlled by an additional TLS survey, which revealed the high accuracy and more suitable coverage for the UAV-based data. Likewise, the large picture datasets were artificially reduced in order to estimate the most efficient number of images for dense point cloud processing. In addition, also the number of GCPs was decreased for one dataset. Overall, high-resolution digital elevation models with a ground resolution of 10 mm and an equal accuracy were achieved with this low-cost equipment. The data reveals the slight changes on this selected site.

  1. Autonomous soaring and surveillance in wind fields with an unmanned aerial vehicle

    Science.gov (United States)

    Gao, Chen

    Small unmanned aerial vehicles (UAVs) play an active role in developing a low-cost, low-altitude autonomous aerial surveillance platform. The success of the applications needs to address the challenge of limited on-board power plant that limits the endurance performance in surveillance mission. This thesis studies the mechanics of soaring flight, observed in nature where birds utilize various wind patterns to stay airborne without flapping their wings, and investigates its application to small UAVs in their surveillance missions. In a proposed integrated framework of soaring and surveillance, a bird-mimicking soaring maneuver extracts energy from surrounding wind environment that improves surveillance performance in terms of flight endurance, while the surveillance task not only covers the target area, but also detects energy sources within the area to allow for potential soaring flight. The interaction of soaring and surveillance further enables novel energy based, coverage optimal path planning. Two soaring and associated surveillance strategies are explored. In a so-called static soaring surveillance, the UAV identifies spatially-distributed thermal updrafts for soaring, while incremental surveillance is achieved through gliding flight to visit concentric expanding regions. A Gaussian-process-regression-based algorithm is developed to achieve computationally-efficient and smooth updraft estimation. In a so-called dynamic soaring surveillance, the UAV performs one cycle of dynamic soaring to harvest energy from the horizontal wind gradient to complete one surveillance task by visiting from one target to the next one. A Dubins-path-based trajectory planning approach is proposed to maximize wind energy extraction and ensure smooth transition between surveillance tasks. Finally, a nonlinear trajectory tracking controller is designed for a full six-degree-of-freedom nonlinear UAV dynamics model and extensive simulations are carried to demonstrate the effectiveness of

  2. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Ahmad Audi

    2017-07-01

    Full Text Available Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique camera, which has an IMU (Inertial Measurement Unit sensor and an SoC (System on Chip/FPGA (Field-Programmable Gate Array. To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

  3. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  4. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches).

  5. The Potential of Unmanned Aerial Vehicle for Large Scale Mapping of Coastal Area

    International Nuclear Information System (INIS)

    Darwin, N; Ahmad, A; Zainon, O

    2014-01-01

    Many countries in the tropical region are covered with cloud for most of the time, hence, it is difficult to get clear images especially from high resolution satellite imagery. Aerial photogrammetry can be used but most of the time the cloud problem still exists. Today, this problem could be solved using a system known as unmanned aerial vehicle (UAV) where the aerial images can be acquired at low altitude and the system can fly under the cloud. The UAV system could be used in various applications including mapping coastal area. The UAV system is equipped with an autopilot system and automatic method known as autonomous flying that can be utilized for data acquisition. To achieve high resolution imagery, a compact digital camera of high resolution was used to acquire the aerial images at an altitude. In this study, the UAV system was employed to acquire aerial images of a coastal simulation model at low altitude. From the aerial images, photogrammetric image processing was executed to produce photogrammetric outputs such a digital elevation model (DEM), contour line and orthophoto. In this study, ground control point (GCP) and check point (CP) were established using conventional ground surveying method (i.e total station). The GCP is used for exterior orientation in photogrammetric processes and CP for accuracy assessment based on Root Mean Square Error (RMSE). From this study, it was found that the UAV system can be used for large scale mapping of coastal simulation model with accuracy at millimeter level. It is anticipated that the same system could be used for large scale mapping of real coastal area and produces good accuracy. Finally, the UAV system has great potential to be used for various applications that require accurate results or products at limited time and less man power

  6. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle

    International Nuclear Information System (INIS)

    Udin, W S; Ahmad, A

    2014-01-01

    Photogrammetry is the earliest technique used to collect data for topographic mapping. The recent development in aerial photogrammetry is the used of large format digital aerial camera for producing topographic map. The aerial photograph can be in the form of metric or non-metric imagery. The cost of mapping using aerial photogrammetry is very expensive. In certain application, there is a need to map small area with limited budget. Due to the development of technology, small format aerial photogrammetry technology has been introduced and offers many advantages. Currently, digital map can be extracted from digital aerial imagery of small format camera mounted on light weight platform such as unmanned aerial vehicle (UAV). This study utilizes UAV system for large scale stream mapping. The first objective of this study is to investigate the use of light weight rotary-wing UAV for stream mapping based on different flying height. Aerial photograph were acquired at 60% forward lap and 30% sidelap specifications. Ground control points and check points were established using Total Station technique. The digital camera attached to the UAV was calibrated and the recovered camera calibration parameters were then used in the digital images processing. The second objective is to determine the accuracy of the photogrammetric output. In this study, the photogrammetric output such as stereomodel in three dimensional (3D), contour lines, digital elevation model (DEM) and orthophoto were produced from a small stream of 200m long and 10m width. The research output is evaluated for planimetry and vertical accuracy using root mean square error (RMSE). Based on the finding, sub-meter accuracy is achieved and the RMSE value decreases as the flying height increases. The difference is relatively small. Finally, this study shows that UAV is very useful platform for obtaining aerial photograph and subsequently used for photogrammetric mapping and other applications

  7. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.

    Science.gov (United States)

    van Andel, Alexander C; Wich, Serge A; Boesch, Christophe; Koh, Lian Pin; Robbins, Martha M; Kelly, Joseph; Kuehl, Hjalmar S

    2015-10-01

    Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest.

  8. THE GENERATION OF BUILDING FLOOR PLANS USING PORTABLE AND UNMANNED AERIAL VEHICLE MAPPING SYSTEMS

    Directory of Open Access Journals (Sweden)

    G. J. Tsai

    2016-06-01

    Full Text Available Indoor navigation or positioning systems have been widely developed for Location-Based Services (LBS applications and they come along with a keen demand of indoor floor plans for displaying results even improving the positioning performance. Generally, the floor plans produced by robot mapping focus on perceiving the environment to avoid obstacles and using the feature landmarks to update the robot position in the relative coordinate frame. These maps are not accurate enough to incorporate to the indoor positioning system. This study aims at developing Indoor Mobile Mapping System (Indoor MMS and concentrates on generating the highly accurate floor plans based on the robot mapping technique using the portable, robot and Unmanned Aerial Vehicles (UAV platform. The proposed portable mapping system prototype can be used in the chest package and the handheld approach. In order to evaluate and correct the generated floor plans from robot mapping techniques, this study builds the testing and calibration field using the outdoor control survey method implemented in the indoor environments. Based on control points and check points from control survey, this study presents the map rectification method that uses the affine transformation to solve the scale and deformation problems and also transfer the local coordinate system into world standard coordinate system. The preliminary results illustrate that the final version of the building floor plan reach 1 meter absolute positioning accuracy using the proposed mapping systems that combines with the novel map rectification approach proposed. These maps are well geo-referenced with world coordinate system thus it can be applied for future seamless navigation applications including indoor and outdoor scenarios.

  9. Using small unmanned aerial vehicle for instream habitat evaluation and modelling

    Science.gov (United States)

    Astegiano, Luca; Vezza, Paolo; Comoglio, Claudio; Lingua, Andrea; Spairani, Michele

    2015-04-01

    Recent advances in digital image collection and processing have led to the increased use of unmanned aerial vehicles (UAV) for river research and management. In this paper, we assess the capabilities of a small UAV to characterize physical habitat for fish in three river stretches of North-Western Italy. The main aim of the study was identifying the advantages and challenges of this technology for environmental river management, in the context of the increasing river exploitation for hydropower production. The UAV used to acquire overlapping images was a small quadcopter with a two different high-resolution (non-metric) cameras (Nikon J1™ and Go-Pro Hero 3 Black Edition™). The quadcopter was preprogrammed to fly set waypoints using a small tablet PC. With the acquired imagery, we constructed a 5-cm resolution orthomosaic image and a digital surface model (DSM). The two products were used to map the distribution of aquatic and riparian habitat features, i.e., wetted area, morphological unit distributions, bathymetry, water surface gradient, substrates and grain sizes, shelters and cover for fish. The study assessed the quality of collected data and used such information to identify key reach-scale metrics and important aspects of fluvial morphology and aquatic habitat. The potential and limitations of using UAV for physical habitat survey were evaluated and the collected data were used to initialize and run common habitat simulation tools (MesoHABSIM). Several advantages of using UAV-based imagery were found, including low cost procedures, high resolution and efficiency in data collection. However, some challenges were identified for bathymetry extraction (vegetation obstructions, white waters, turbidity) and grain size assessment (preprocessing of data and automatic object detection). The application domain and possible limitation for instream habitat mapping were defined and will be used as a reference for future studies. Ongoing activities include the

  10. Automated Snow Extent Mapping Based on Orthophoto Images from Unmanned Aerial Vehicles

    Science.gov (United States)

    Niedzielski, Tomasz; Spallek, Waldemar; Witek-Kasprzak, Matylda

    2018-04-01

    The paper presents the application of the k-means clustering in the process of automated snow extent mapping using orthophoto images generated using the Structure-from-Motion (SfM) algorithm from oblique aerial photographs taken by unmanned aerial vehicle (UAV). A simple classification approach has been implemented to discriminate between snow-free and snow-covered terrain. The procedure uses the k-means clustering and classifies orthophoto images based on the three-dimensional space of red-green-blue (RGB) or near-infrared-red-green (NIRRG) or near-infrared-green-blue (NIRGB) bands. To test the method, several field experiments have been carried out, both in situations when snow cover was continuous and when it was patchy. The experiments have been conducted using three fixed-wing UAVs (swinglet CAM by senseFly, eBee by senseFly, and Birdie by FlyTech UAV) on 10/04/2015, 23/03/2016, and 16/03/2017 within three test sites in the Izerskie Mountains in southwestern Poland. The resulting snow extent maps, produced automatically using the classification method, have been validated against real snow extents delineated through a visual analysis and interpretation offered by human analysts. For the simplest classification setup, which assumes two classes in the k-means clustering, the extent of snow patches was estimated accurately, with areal underestimation of 4.6% (RGB) and overestimation of 5.5% (NIRGB). For continuous snow cover with sparse discontinuities at places where trees or bushes protruded from snow, the agreement between automatically produced snow extent maps and observations was better, i.e. 1.5% (underestimation with RGB) and 0.7-0.9% (overestimation, either with RGB or with NIRRG). Shadows on snow were found to be mainly responsible for the misclassification.

  11. Using Unmanned Aerial Vehicles (UAV to Quantify Spatial Gap Patterns in Forests

    Directory of Open Access Journals (Sweden)

    Stephan Getzin

    2014-07-01

    Full Text Available Gap distributions in forests reflect the spatial impact of man-made tree harvesting or naturally-induced patterns of tree death being caused by windthrow, inter-tree competition, disease or senescence. Gap sizes can vary from large (>100 m2 to small (<10 m2, and they may have contrasting spatial patterns, such as being aggregated or regularly distributed. However, very small gaps cannot easily be recorded with conventional aerial or satellite images, which calls for new and cost-effective methodologies of forest monitoring. Here, we used an unmanned aerial vehicle (UAV and very high-resolution images to record the gaps in 10 temperate managed and unmanaged forests in two regions of Germany. All gaps were extracted for 1-ha study plots and subsequently analyzed with spatially-explicit statistics, such as the conventional pair correlation function (PCF, the polygon-based PCF and the mark correlation function. Gap-size frequency was dominated by small gaps of an area <5 m2, which were particularly frequent in unmanaged forests. We found that gap distances showed a variety of patterns. However, the polygon-based PCF was a better descriptor of patterns than the conventional PCF, because it showed randomness or aggregation for cases when the conventional PCF showed small-scale regularity; albeit, the latter was only a mathematical artifact. The mark correlation function revealed that gap areas were in half of the cases negatively correlated and in the other half independent. Negative size correlations may likely be the result of single-tree harvesting or of repeated gap formation, which both lead to nearby small gaps. Here, we emphasize the usefulness of UAV to record forest gaps of a very small size. These small gaps may originate from repeated gap-creating disturbances, and their spatial patterns should be monitored with spatially-explicit statistics at recurring intervals in order to further insights into forest dynamics.

  12. A PRECISE POSITION AND ATTITUDE DETERMINATION SYSTEM FOR LIGHTWEIGHT UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    C. Eling

    2013-08-01

    Full Text Available In many unmanned aerial vehicle (UAV applications a direct georeferencing is required. The reason can be that the UAV flies autonomous and must be navigated precisely, or that the UAV performs a remote sensing operation, where the position of the camera has to be known at the moment of the recording. In our application, a project called Mapping on Demand, we are motivated by both of these reasons. The goal of this project is to develop a lightweight autonomously flying UAV that is able to identify and measure inaccessible three-dimensional objects by use of visual information. Due to payload and space limitations, precise position and attitude determination of micro- and mini-sized UAVs is very challenging. The limitations do not only affect the onboard computing capacity, but they are also noticeable when choosing the georeferencing sensors. In this article, we will present a new developed onboard direct georeferencing system which is real-time capable, applicable for lightweight UAVs and provides very precise results (position accuracy σ σ < 0.5 deg. In this system GPS, inertial sensors, magnetic field sensors, a barometer as well as stereo video cameras are used as georeferencing sensors. We will describe the hardware development and will go into details of the implemented software. In this context especially the RTK-GPS software and the concept of the attitude determination by use of inertial sensors, magnetic field sensors as well as an onboard GPS baseline will be highlighted. Finally, results of first field tests as well as an outlook on further developments will conclude this contribution.

  13. Configuration and specifications of an Unmanned Aerial Vehicle (UAV for early site specific weed management.

    Directory of Open Access Journals (Sweden)

    Jorge Torres-Sánchez

    Full Text Available A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV. This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM. Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1 mission planning, 2 UAV flight and image acquisition, and 3 image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index, mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches.

  14. Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    M. T. Perks

    2016-10-01

    Full Text Available Unmanned aerial vehicles (UAVs have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomena may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilizing the Kande–Lucas–Tomasi (KLT algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 to 0.13 m. The application of this approach to assess the hydraulic conditions present in the Alyth Burn, Scotland, during a 1 : 200 year flash flood resulted in the generation of an average 4.2 at a rate of 508 measurements s−1. Analysis of these vectors provides a rare insight into the complexity of channel–overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low, with a spatial average across the area of ±0.15 m s−1. Little difference is observed in the uncertainty attached to out-of-bank velocities (±0.15 m s−1, and within-channel velocities (±0.16 m s−1, illustrating the consistency of the approach.

  15. Development of a Data Acquisition System for Unmanned Aerial Vehicle (UAV) System Identification

    Science.gov (United States)

    Lear, Donald Joseph

    Aircraft system identification techniques are developed for fixed wing Unmanned Aerial Vehicles (UAV). The use of a designed flight experiment with measured system inputs/outputs can be used to derive aircraft stability derivatives. This project set out to develop a methodology to support an experiment to model pitch damping in the longitudinal short-period mode of a UAV. A Central Composite Response Surface Design was formed using angle of attack and power levels as factors to test for the pitching moment coefficient response induced by a multistep pitching maneuver. Selecting a high-quality data acquisition platform was critical to the success of the project. This system was designed to support fixed wing research through the addition of a custom air data vane capable of measuring angle of attack and sideslip, as well as an airspeed sensor. A Pixhawk autopilot system serves as the core and modification of the device firmware allowed for the integration of custom sensors and custom RC channels dedicated to performing system identification maneuvers. Tests were performed on all existing Pixhawk sensors to validate stated uncertainty values. The air data system was calibrated in a low speed wind tunnel and dynamic performance was verified. The assembled system was then installed in a commercially available UAV known as an Air Titan FPV in order to test the Pixhawk's automated flight maneuvers and determine the final performance of each sensor. Flight testing showed all the critical sensors produced acceptable data for further research. The Air Titan FPV airframe was found to be very flexible and did not lend itself well to accurate measurement of inertial properties. This realization prohibited the construction of the required math models for longitudinal dynamics. It is recommended that future projects using the developed methods choose an aircraft with a more rigid airframe.

  16. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    Science.gov (United States)

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  17. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty.

    Directory of Open Access Journals (Sweden)

    Xiaoting Ji

    Full Text Available This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL. A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications.

  18. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  19. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles R [Los Alamos National Laboratory; Gobbato, Maurizio [UCSD; Conte, Joel [UCSD; Kosmatke, John [UCSD; Oliver, Joseph A [UCSD

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  20. A generic approach for photogrammetric survey using a six-rotor unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Tahar, K N; Mohd, W M N W; Ahmad, A; Akib, W A A W M

    2014-01-01

    This paper discusses a rapid production of slope mapping using multi-rotor unmanned aerial vehicle (UAV). The objective of this study is to determine the accuracy of the photogrammetric results based on novel method of multi-rotor UAV images as well as to analyze the slope error distribution that are obtained from the UAV images. This study only concentrates on multi-rotor UAV which also known as Hexacopter. An operator can control the speed of multi-rotor UAV during flight mission. Several ground control points and checkpoints were established using Real Time Kinematic Global Positioning System (RTK- GPS) at the slope area. Ground control points were used in exterior orientation during image processing in sequence to transform image coordinates into local coordinate system. Checkpoints were established at the slope area for accuracy assessment. A digital camera, Sony NEX-5N was used for image acquisition of slope area from UAV platforms. The digital camera was mounted vertically at the bottom of UAV and captured the images at an altitude. All acquired images went through photogrammetric processing including interior orientation, exterior orientation and bundle adjustment using photogrammetric software. Photogrammetric results such as digital elevation model, and digital orthophoto including slope map were assessed. UAV is able to acquire data within short period of time with low budget compared to the previous methods such as satellite images and airborne laser scanner. Analysis on slope analysis and error distribution analysis are discussed in this paper to determine the quality of slope map in the area of interest. In summary, multi-rotor UAV is suited in slope mapping studies

  1. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery

    Science.gov (United States)

    Gao, Junfeng; Liao, Wenzhi; Nuyttens, David; Lootens, Peter; Vangeyte, Jürgen; Pižurica, Aleksandra; He, Yong; Pieters, Jan G.

    2018-05-01

    The developments in the use of unmanned aerial vehicles (UAVs) and advanced imaging sensors provide new opportunities for ultra-high resolution (e.g., less than a 10 cm ground sampling distance (GSD)) crop field monitoring and mapping in precision agriculture applications. In this study, we developed a strategy for inter- and intra-row weed detection in early season maize fields from aerial visual imagery. More specifically, the Hough transform algorithm (HT) was applied to the orthomosaicked images for inter-row weed detection. A semi-automatic Object-Based Image Analysis (OBIA) procedure was developed with Random Forests (RF) combined with feature selection techniques to classify soil, weeds and maize. Furthermore, the two binary weed masks generated from HT and OBIA were fused for accurate binary weed image. The developed RF classifier was evaluated by 5-fold cross validation, and it obtained an overall accuracy of 0.945, and Kappa value of 0.912. Finally, the relationship of detected weeds and their ground truth densities was quantified by a fitted linear model with a coefficient of determination of 0.895 and a root mean square error of 0.026. Besides, the importance of input features was evaluated, and it was found that the ratio of vegetation length and width was the most significant feature for the classification model. Overall, our approach can yield a satisfactory weed map, and we expect that the obtained accurate and timely weed map from UAV imagery will be applicable to realize site-specific weed management (SSWM) in early season crop fields for reducing spraying non-selective herbicides and costs.

  2. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    Science.gov (United States)

    Hasvold, Øistein; Johansen, Kjell Håvard; Mollestad, Ole; Forseth, Sissel; Størkersen, Nils

    In 1993, The Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on an UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m.

  3. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

    Directory of Open Access Journals (Sweden)

    Demetrios Gatziolis

    Full Text Available Detailed, precise, three-dimensional (3D representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs, light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

  4. Reliable communication stack for flexible probe vehicle data collection in vehicular ad hoc networks

    DEFF Research Database (Denmark)

    Paulin, Thomas

    Traffic congestions caused by high vehicular densities are an ever increasing problem for both personal and professional transportation, resulting in significant losses each year. While expanding the road infrastructure often offers a short term solution, more intelligent approaches are necessary...... the communication resource a single access point can provide for delay tolerant applications. 2) We improve the information exchange between road-side units and vehicles by identifying communication characteristics of the road-side unit and use them to determine the optimal location at which the information...... exchange should occur. 3) We extend the coverage range of the road-side units through vehicle to vehicle communication by modifying an existing routing algorithm, improving both delivery rate and communication overhead. Applying the proposed methodologies on the collection of probe data provides...

  5. Multi-Agent Management System (MAMS) for Air-Launched, Unmanned Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this work is to design, implement, and demonstrate a guidance and mission planning toolbox for air-launched, unmanned systems, such as guided...

  6. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Science.gov (United States)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  7. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    Science.gov (United States)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  8. Drones at the Beach - Surf Zone Monitoring Using Rotary Wing Unmanned Aerial Vehicles

    Science.gov (United States)

    Rynne, P.; Brouwer, R.; de Schipper, M. A.; Graham, F.; Reniers, A.; MacMahan, J. H.

    2014-12-01

    We investigate the potential of rotary wing Unmanned Aerial Vehicles (UAVs) to monitor the surf zone. In recent years, the arrival of lightweight, high-capacity batteries, low-power electronics and compact high-definition cameras has driven the development of commercially available UAVs for hobbyists. Moreover, the low operation costs have increased their potential for scientific research as these UAVs are extremely flexible surveying platforms. The UAVs can fly for ~12 min with a mean loiter radius of 1 - 3.5 m and a mean loiter error of 0.75 - 4.5 m, depending on the environmental conditions, flying style, battery type and vehicle type. Our experiments using multiple, alternating UAVs show that it is possible to have near continuous imagery data with similar Fields Of View. The images obtained from the UAVs (Fig. 1a), and in combination with surveyed Ground Control Points (GCPs) (Fig. 1b, red squares and white circles), can be geo-rectified (Fig. 1c) to pixel resolution between 0.01 - 1 m and a reprojection error, i.e. the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the geo-rectified image, of O(1 m). These geo-rectified images provide data on a variety of coastal aspects, such as beach width (Wb(x,t)), surf zone width (Wsf(x,t)), wave breaking location (rectangle B), beach usage (circle C) and location of dune vegegation (rectangle D), amongst others. Additionally, the possibility to have consecutive, high frequency (up to 2 Hz) rectified images makes the UAVs a great data instrument for spatially and temporally variable systems, such as the surf zone. Our first observations with the UAVs reveal the potential to quickly obtain surf zone and beach characteristics in response to storms or for day to day beach information, as well as the scientific pursuits of surf zone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants/dye. A selection of findings from

  9. Unmanned Aerial Vehicle Photography: Exploring the Medieval City of Merv, on the Silk Roads of Central Asia

    Directory of Open Access Journals (Sweden)

    Tim Williams

    2012-12-01

    Full Text Available The Ancient Merv Project is a collaboration between the Turkmenistan Ministry of Culture, the Ancient Merv State Park and the UCL Institute of Archaeology. It aims to research, protect and conserve the remains of one of the great historic cities of the Silk Roads. This paper explores a new survey of the Islamic city using an Unmanned Aerial Vehicle to take comprehensive and systematic vertical photographs to assist in the analysis of the medieval cityscape. The background to the research and the application of the technology are presented, together with our initial conclusions.

  10. THE METHOD OF FORMING A RATIONAL ASPECT OF THE ONBOARD COMPLEX OF RADAR DEFENSE UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    A. B. Guseynov

    2017-01-01

    Full Text Available The urgency of the problem of increasing the efficiency by reducing the visibility of aircraft and installing radio interference on the radio-electronic systems of the air defense complex is substantiated. The main characteristics of the on-board electronic radio protection system of an unmanned aerial vehicle are determined. When designing a low-visibility aircraft, it is advisable to simultaneously solve three-level tasks – the formation of a technical task for the design of aircraft, technical proposals and design sketches. In solving the problems of the first level, operational-tactical, flight-technical characteristics of the aircraft are analyzed and requirements for indicators of visibility are justified, the second one – a matrix of alternative design solutions is formed and rational structural solutions for the airborne complex and aircraft appearance as a whole are determined, the third one determines optimal design -Ballistic, geometric design parameters of technical solutions and aircraft in general. The statement of the problem is formulated in the article. A block diagram of the analysis of design solutions for the placement of an active noise station on board an unmanned aerial vehicle and optimization of their parameters based on a complex "cost-effectiveness" criterion is given. At the same time, it is necessary to take into account the influence of alternative technical solutions on low visibility and their design parameters on geometric, aerodynamic, energy, ballistic, thermal characteristics, mass, cost, indicators of visibility and combat effectiveness. The structural and logical scheme for solving the problem for a given technical assignment for the design of an unmanned aerial vehicle includes the following steps: the formation of the initial information and the development of a "support" version of the aircraft structure; formation of a morphological matrix of design decisions on aircraft; compatibility assessment

  11. Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements

    Science.gov (United States)

    Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Wang, Zhan-Yong

    2018-01-01

    A lightweight unmanned aerial vehicle (UAV) was outfitted with miniaturized sensors to investigate the vertical distribution patterns and sources of fine aerosol particles (PM2.5) within the 1 000 m lower troposphere. A total of 16 UAV flights were conducted in the Yangtze River Delta (YRD) region, China, from the summer to winter in 2014. The associated ground-level measurements from two environmental monitoring stations were also used for background analysis. The results show that ground-level PM2.5 concentrations demonstrated a decreasing trend from Feb. to Jul. and an increasing trend from Aug. to Jan. (the following year). Higher PM2.5 concentrations during the day were mainly observed in the morning (Local Time, LT 05-09) in the spring and summer. However, higher PM2.5 concentrations occurred mainly in the late afternoon and evening (LT 16-20) in the autumn and winter, excluding severe haze pollution days when higher PM2.5 concentrations were also observed during the morning periods. Lower tropospheric PM2.5 concentrations exhibited similar diurnal vertical distribution patterns from the summer to winter. The PM2.5 concentrations decreased with height in the morning, with significantly large vertical gradients from the summer to winter. By contrast, the aerosol particles were well mixed with PM2.5 concentrations of lower than 35 μg ṡm-3 in the early afternoon (LT 12-16) due to sufficient expansions of the planetary boundary layer. The mean vertical PM2.5 concentrations within the 1 000 m lower troposphere in the morning were much larger in the winter (∼87.5 μg ṡm-3) than in the summer and autumn (∼20 μg ṡm-3). However, subtle differences of ∼11 μg ṡm-3 in the mean vertical PM2.5 concentrations were observed in the early afternoon from the summer to winter. The vertical distribution patterns of black carbon and its relationships with PM2.5 indicated that the lower tropospheric aerosol particles might be mainly derived from fossil

  12. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

    Science.gov (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.

    2017-06-01

    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  13. Monitoring Spatial Variability and Temporal Dynamics of Phragmites Using Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Viktor R. Tóth

    2018-06-01

    Full Text Available Littoral zones of freshwater lakes are exposed to environmental impacts from both terrestrial and aquatic sides, while substantial anthropogenic pressure also affects the high spatial, and temporal variability of the ecotone. In this study, the possibility of monitoring seasonal and spatial changes in reed (Phragmites australis stands using an unmanned aerial vehicle (UAV based remote sensing technique was examined. Stands in eutrophic and mesotrophic parts of Lake Balaton including not deteriorating (stable and deteriorating (die-back patches, were tracked throughout the growing season using a UAV equipped with a Normalized Difference Vegetation Index (NDVI camera. Photophysiological parameters of P. australis were also measured with amplitude modulated fluorescence. Parameters characterizing the dynamics of seasonal changes in NDVI data were used for phenological comparison of eutrophic and mesotrophic, stable and die-back, terrestrial and aquatic, mowed and not-mowed patches of reed. It was shown that stable Phragmites plants from the eutrophic part of the lake reached specific phenological stages up to 3.5 days earlier than plants from the mesotrophic part of the lake. The phenological changes correlated with trophic (total and nitrate-nitrite nitrogen and physical (organic C and clay content properties of the sediment, while only minor relationships with air and water temperature were found. Phenological differences between the stable and die-back stands were even more pronounced, with ~34% higher rates of NDVI increase in stable than die-back patches, while the period of NDVI increase was 16 days longer. Aquatic and terrestrial parts of reed stands showed no phenological differences, although intermediate areas (shallow water parts of stands were found to be less vigorous. Winter mowing of dried Phragmites sped up sprouting and growth of reed in the spring. This study showed that remote sensing-derived photophysiological and phenological

  14. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    Science.gov (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  15. Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle

    Science.gov (United States)

    Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.

    2016-12-01

    Debris-covered glacier tongues cover about 12% of the glacier surface in high mountain Asia and much of the melt water is generated from those glaciers. A thin layer of supraglacial debris enhances ice melt by lowering the albedo, while thicker debris insulates the ice and reduces melt. Data on debris thickness is therefore an important input for energy balance modelling of these glaciers. Thermal infrared remote sensing can be used to estimate the debris thickness by using an inverse relation between debris surface temperature and thickness. To date this has only been performed using coarse spaceborne thermal imagery, which cannot reveal small scale variation in debris thickness and its influence on the heterogeneous melt patterns on debris-covered glaciers. We deployed an unmanned aerial vehicle mounted with a thermal infrared sensor over the debris-covered Lirung Glacier in Nepal three times in May 2016 to reveal the spatial and temporal variability of surface temperature in high detail. The UAV survey matched a Landsat 8 overpass to be able to make a comparison with spaceborne thermal imagery. The UAV-acquired data is processed using Structure from Motion photogrammetry and georeferenced using DGPS-measured ground control points. Different surface types were distinguished by using data acquired by an additional optical UAV survey in order to correct for differences in surface emissivity. In situ temperature measurements and incoming solar radiation data are used to calibrate the temperature calculations. Debris thicknesses derived are validated by thickness measurements of a ground penetrating radar. Preliminary analysis reveals a spatially highly heterogeneous pattern of surface temperature over Lirung Glacier with a range in temperature of over 40 K. At dawn the debris is relatively cold and its temperature is influenced strongly by the ice underneath. Exposed to the high solar radiation at the high altitude the debris layer heats up very rapidly as sunrise

  16. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  17. Intra- and interspecific variation in tropical tree and liana phenology derived from Unmanned Aerial Vehicle images

    Science.gov (United States)

    Bohlman, S.; Park, J.; Muller-Landau, H. C.; Rifai, S. W.; Dandois, J. P.

    2017-12-01

    Phenology is a critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical tree and liana phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. Spectral, texture, and image information was extracted from the UAV images for individual tree crowns, which was then used as inputs for a machine learning algorithm to predict percent leaf and branch cover. We obtained the species identities of 2000 crowns in the images via field mapping. The objectives of this study are to (1) determined if machine learning algorithms, applied to UAV images, can effectively quantify changes in leaf cover, which we term "deciduousness; (2) determine how liana cover effects deciduousness and (3) test how well UAV-derived deciduousness patterns match satellite-derived temporal patterns. Machine learning algorithms trained on a variety of image parameters could effectively determine leaf cover, despite variation in lighting and viewing angles. Crowns with higher liana cover have less overall deciduousness (tree + liana together) than crowns with lower liana cover. Individual crown deciduousness, summed over all crowns measured in the 50-ha plot, showed a similar seasonal pattern as MODIS EVI composited over 10 years. However

  18. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest.

    Science.gov (United States)

    Claesson, A; Fredman, D; Svensson, L; Ringh, M; Hollenberg, J; Nordberg, P; Rosenqvist, M; Djarv, T; Österberg, S; Lennartsson, J; Ban, Y

    2016-10-12

    The use of an automated external defibrillator (AED) prior to EMS arrival can increase 30-day survival in out-of-hospital cardiac arrest (OHCA) significantly. Drones or unmanned aerial vehicles (UAV) can fly with high velocity and potentially transport devices such as AEDs to the site of OHCAs. The aim of this explorative study was to investigate the feasibility of a drone system in decreasing response time and delivering an AED. Data of Global Positioning System (GPS) coordinates from historical OHCA in Stockholm County was used in a model using a Geographic Information System (GIS) to find suitable placements and visualize response times for the use of an AED equipped drone. Two different geographical models, urban and rural, were calculated using a multi-criteria evaluation (MCE) model. Test-flights with an AED were performed on these locations in rural areas. In total, based on 3,165 retrospective OHCAs in Stockholm County between 2006-2013, twenty locations were identified for the potential placement of a drone. In a GIS-simulated model of urban OHCA, the drone arrived before EMS in 32 % of cases, and the mean amount of time saved was 1.5 min. In rural OHCA the drone arrived before EMS in 93 % of cases with a mean amount of time saved of 19 min. In these rural locations during (n = 13) test flights, latch-release of the AED from low altitude (3-4 m) or landing the drone on flat ground were the safest ways to deliver an AED to the bystander and were superior to parachute release. The difference in response time for EMS between urban and rural areas is substantial, as is the possible amount of time saved using this UAV-system. However, yet another technical device needs to fit into the chain of survival. We know nothing of how productive or even counterproductive this system might be in clinical reality. To use drones in rural areas to deliver an AED in OHCA may be safe and feasible. Suitable placement of drone systems can be designed by using GIS models

  19. Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

    Directory of Open Access Journals (Sweden)

    Seong-Keon Lee

    2011-09-01

    Full Text Available This paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM test for the spheroid-type Unmanned Underwater Vehicle (UUV was compared with a theoretical calculation and Computational Fluid Dynamics (CFD analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy.

  20. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    Science.gov (United States)

    An emission sensor/sampler system was coupled to a NASA hexacopter unmanned aerial system (UAS) to characterize gases and particles in the plume emitted from open burning of military ordnance. The UAS/sampler was tested at two field sites resulting in 33 flights at Radford, VA a...

  1. ENHANCING THE STABILITY OF UNMANNED GROUND SPORT UTILITY VEHICLES THROUGH COORDINATED CONTROL UNDER MU-SPLIT AND GUST OF WIND

    Directory of Open Access Journals (Sweden)

    FITRI YAKUB

    2016-10-01

    Full Text Available This study describes a comparative study of steering and yaw moment control manoeuvres in model predictive control (MPC and linear quadratic control approaches for path following unmanned vehicles for different control manoeuvres: two-wheel steering, four-wheel steering, and direct yaw moment control. We then propose MPC with a proportional-integral (PI controller for the coordination of active front steering (AFS and active braking system, which particularly highlights direct yaw moment control (DYC manoeuvres. Based on the known trajectory, we tested a vehicle at middle forward speed with the disturbance consideration of the road surface adhesion and the wind for a double lane change scenario in order to follow the desired trajectory as close as possible, minimizing tracking errors, and enhancing vehicle stability and drivability. We compared two different controllers; i MPC with PI of an AFS and, ii MPC with PI for coordination of AFS and DYC. The operation of the proposed integrated control is demonstrated in a Matlab simulation environment by manoeuvring the vehicle along the desired trajectory. Simulation results showed that the proposed method had yielded better tracking performances, and were able to enhance the vehicle’s stability at a given speed even under road surface coefficient and wind.

  2. A critical evaluation of the use of an inexpensive camera mounted on a recreational unmanned aerial vehicle as a tool for landslide research

    Czech Academy of Sciences Publication Activity Database

    Balek, Jan; Blahůt, Jan

    2017-01-01

    Roč. 14, č. 3 (2017), s. 1217-1224 ISSN 1612-510X R&D Projects: GA MŠk(CZ) LM2015079 Institutional support: RVO:67985891 Keywords : aerial photogrammetry * surface characterisation * 3D models * unmanned aerial vehicles * landslide monitoring Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 3.657, year: 2016

  3. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    Science.gov (United States)

    Unmanned aerial vehicles (UAVs) represent a powerful new tool for agriculture. Currently, UAVs are used almost exclusively as crop reconnaissance devices (“eyes in the sky”), not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Lu...

  4. Assessment of a landfill methane emission screening method using an unmanned aerial vehicle mounted thermal infrared camera – A field study

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, A. G.; Larsen, J. E.

    2018-01-01

    An unmanned aerial vehicle (UAV)-mounted thermal infrared (TIR) camera’s ability to delineate landfill gas (LFG) emission hotspots was evaluated in a field test at two Danish landfills (Hedeland landfill and Audebo landfill). At both sites, a test area of 100 m2 was established and divided into a...

  5. Intercomparison of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring in organic potato production

    NARCIS (Netherlands)

    Domingues Franceschini, Marston; Bartholomeus, Harm; Apeldoorn, van Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-01-01

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions

  6. Quantifying the morphodynamics of river restoration schemes using Unmanned Aerial Vehicles (UAVs)

    Science.gov (United States)

    Williams, Richard; Byrne, Patrick; Gilles, Eric; Hart, John; Hoey, Trevor; Maniatis, George; Moir, Hamish; Reid, Helen; Ves, Nikolas

    2017-04-01

    River restoration schemes are particularly sensitive to morphological adjustment during the first set of high-flow events that they are subjected to. Quantifying elevation change associated with morphological adjustment can contribute to improved adaptive decision making to ensure river restoration scheme objectives are achieved. To date the relatively high cost, technical demands and challenging logistics associated with acquiring repeat, high-resolution topographic surveys has resulted in a significant barrier to monitoring the three-dimensional morphodynamics of river restoration schemes. The availability of low-cost, consumer grade Unmanned Aerial Vehicles that are capable of acquiring imagery for processing using Structure-from-Motion Multi-View Stereo (SfM MVS) photogrammetry has the potential to transform the survey the morphodynamics of river restoration schemes. Application guidance does, however, need to be developed to fully exploit the advances of UAV technology and SfM MVS processing techniques. In particular, there is a need to quantify the effect of the number and spatial distribution of ground targets on vertical error. This is particularly significant because vertical errors propagate when mapping morphological change, and thus determine the evidence that is available for decision making. This presentation presents results from a study that investigated how the number and spatial distribution of targets influenced vertical error, and then used the findings to determine survey protocols for a monitoring campaign that has quantified morphological change across a number of restoration schemes. At the Swindale river restoration scheme, Cumbria, England, 31 targets were distributed across a 700 m long reach and the centre of each target was surveyed using RTK-GPS. Using the targets as General Control Points (GCPs) or checkpoints, they were divided into three different spatial patterns (centre, edge and random) and used for processing images acquired

  7. Analysis of an Unmanned Aerial Vehicle Monitoring System for Resurveying of Shipping Routes

    Directory of Open Access Journals (Sweden)

    Urbahs Aleksandrs

    2016-12-01

    Full Text Available The paper gives brief description of the conventional and innovative hydrography survey methods and constraints connected with the realization. Proposed hydrographic survey system based on the use of Unmanned Aerial and Maritime systems provides functionality to conduct hydrographic measurements and environment monitoring. System can be easily adapted to fulfil marine safety and security operations, e.g. intrusion threat monitoring, hazardous pollutions monitoring and prevention operations, icing conditions monitoring.

  8. ON MODERN APPROACH TO AIRPLANE-TYPE UNMANNED AERIAL VEHICLES DESIGN WITH SHORT TAKEOFF AND LANDING

    OpenAIRE

    Oleg P. Minin

    2017-01-01

    This publication opens a series of review papers devoted to the current design problems of the next generation unmanned airplanes that are expected to appear in the period from 2025 to 2035. The series of papers considers airplanes with vertical take-off and landing, air launch of small satellites into the orbit, cargo transportation tasks, issues related to new aerodynamic forms, as well as hybrid, combined and distributed power units. The first paper of the cycle is devoted to the conceptua...

  9. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    Science.gov (United States)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  10. Autonomous urban reconnaissance ingress system (AURIS): providing a tactically relevant autonomous door-opening kit for unmanned ground vehicles

    Science.gov (United States)

    Shane, David J.; Rufo, Michael A.; Berkemeier, Matthew D.; Alberts, Joel A.

    2012-06-01

    The Autonomous Urban Reconnaissance Ingress System (AURIS™) addresses a significant limitation of current military and first responder robotics technology: the inability of reconnaissance robots to open doors. Leveraging user testing as a baseline, the program has derived specifications necessary for military personnel to open doors with fielded UGVs (Unmanned Ground Vehicles), and evaluates the technology's impact on operational mission areas: duration, timing, and user patience in developing a tactically relevant, safe, and effective system. Funding is provided through the US ARMY Tank Automotive Research, Development and Engineering Center (TARDEC) and the project represents a leap forward in perception, autonomy, robotic implements, and coordinated payload operation in UGVs. This paper describes high level details of specification generation, status of the last phase of development, an advanced view of the system autonomy capability, and a short look ahead towards the ongoing work on this compelling and important technology.

  11. THE USE OF MOBILE LASER SCANNING DATA AND UNMANNED AERIAL VEHICLE IMAGES FOR 3D MODEL RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2013-08-01

    Full Text Available The increasing availability in multiple data sources acquired by different sensor platforms has provided the great advantages for desired result achievement. This paper proposes the use of both mobile laser scanning (MLS data and Unmanned Aerial Vehicle (UAV images for 3D model reconstruction. Due to no available exterior orientation parameters for UAV images, the first task is to georeference these images to 3D points. In order to fast and accurate acquire 3D points which are also easy to be found the corresponding locations on UAV images, automated pole extraction from MLS was developed. After georeferencing UAV images, building roofs are acquired from those images and building walls are extracted from MLS data. The roofs and the walls are combined to achieve the complete building models.

  12. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    Science.gov (United States)

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  13. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    Science.gov (United States)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  14. Performance of an air sampler and a gamma-ray detector in a small unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Roy Poellaenen; Harri Toivonen; Kari Peraejaervi; Tero Karhunen; Petri Smolander; Tarja Ilander; Kimmo Rintala; Tuure Katajainen; Jarkko Niemelae; Marko Juusela; Timo Palos

    2009-01-01

    The performance of an air sampler and a small gamma-ray spectrometer was tested in an unmanned aerial vehicle (UAV) able to carry payload with mass up to 0.5 kg. Operation of the sampler was investigated with the aid of radon progeny normally present in outdoor air. Detection limits for several transuranium nuclides in air are of the order of 0.3 Bq m -3 assuming 0.5 h sampling time and 1 h counting time in direct alpha spectrometry. Unshielded 137 Cs and 60 Co point sources at the ground level were used to test the CsI spectrometer. Detection limits are approximately 1 GBq or larger depending on the flying altitude. (author)

  15. Modeling and Inverse Controller Design for an Unmanned Aerial Vehicle Based on the Self-Organizing Map

    Science.gov (United States)

    Cho, Jeongho; Principe, Jose C.; Erdogmus, Deniz; Motter, Mark A.

    2005-01-01

    The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.

  16. An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle path planning.

    Science.gov (United States)

    Li, Bai; Gong, Li-gang; Yang, Wen-lun

    2014-01-01

    Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  17. An Improved Artificial Bee Colony Algorithm Based on Balance-Evolution Strategy for Unmanned Combat Aerial Vehicle Path Planning

    Directory of Open Access Journals (Sweden)

    Bai Li

    2014-01-01

    Full Text Available Unmanned combat aerial vehicles (UCAVs have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC algorithm improved by a balance-evolution strategy (BES is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  18. Real-time approaches to the estimation of local wind velocity for a fixed-wing unmanned air vehicle

    International Nuclear Information System (INIS)

    Chan, W L; Lee, C S; Hsiao, F B

    2011-01-01

    Three real-time approaches to estimating local wind velocity for a fixed-wing unmanned air vehicle are presented in this study. All three methods work around the navigation equations with added wind components. The first approach calculates the local wind speed by substituting the ground speed and ascent rate data given by the Global Positioning System (GPS) into the navigation equations. The second and third approaches utilize the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), respectively. The results show that, despite the nonlinearity of the navigation equations, the EKF performance is proven to be on a par with the UKF. A time-varying noise estimation method based on the Wiener filter is also discussed. Results are compared with the average wind speed measured on the ground. All three approaches are proven to be reliable with stated advantages and disadvantages

  19. Navy Requirements for Controlling Multiple Off-Board Robots Using the Autonomous Unmanned Vehicle Workbench

    National Research Council Canada - National Science Library

    Monroe, Dennis W

    2007-01-01

    ... after a mission. This thesis examines a variety of strategic authoritative plans for autonomous vehicles to determine functional mission requirements that autonomous vehicles are expected to be performing in the near future...

  20. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.

    Science.gov (United States)

    Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis

    2017-01-01

    The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z -value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values ( H 2 > 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable ( H 2 > 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed.

  1. An Energy Dense-AI-NaBH4-PEMFC Based Power Generator for Unmanned Undersea Vehicles

    Science.gov (United States)

    2016-03-01

    From- To) 03/01/2016 Final 01/28/2013-12/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER An Energy-Dense AI-NaBH4- PEMFC Based Power Generator for...combination of polymer electrolyte membrane fuel cell ( PEMFC ) with a compact hydrogen generator util izing AI-NaBH4 composite fuel. The conditions...ANSI Std. Z39.18 FLORIDA SOLAR ENERGY CENTER. Crl’nrmg EnPrgy lnrll’pendrnr£’ An Energy-Dense Al-NaBH4- PEMFC Based Power Generator for Unmanned

  2. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    Science.gov (United States)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  3. System identification of a small low-cost unmanned aerial vehicle using flight data from low-cost sensors

    Science.gov (United States)

    Hoffer, Nathan Von

    Remote sensing has traditionally been done with satellites and manned aircraft. While. these methods can yield useful scientificc data, satellites and manned aircraft have limitations in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial vehicles (UAVs) provide greater possibilities for personal scientic research than traditional remote sensing platforms. Precision aerial data requires an accurate vehicle dynamics model for controller development, robust flight characteristics, and fault tolerance. One method of developing a model is system identification (system ID). In this thesis system ID of a small low-cost fixed-wing T-tail UAV is conducted. The linerized longitudinal equations of motion are derived from first principles. Foundations of Recursive Least Squares (RLS) are presented along with RLS with an Error Filtering Online Learning scheme (EFOL). Sensors, data collection, data consistency checking, and data processing are described. Batch least squares (BLS) and BLS with EFOL are used to identify aerodynamic coecoefficients of the UAV. Results of these two methods with flight data are discussed.

  4. Remote collection of microorganisms at two depths in a freshwater lake using an unmanned surface vehicle (USV

    Directory of Open Access Journals (Sweden)

    Craig Powers

    2018-01-01

    Full Text Available Microorganisms are ubiquitous in freshwater aquatic environments, but little is known about their abundance, diversity, and transport. We designed and deployed a remote-operated water-sampling system onboard an unmanned surface vehicle (USV, a remote-controlled boat to collect and characterize microbes in a freshwater lake in Virginia, USA. The USV collected water samples simultaneously at 5 and 50 cm below the surface of the water at three separate locations over three days in October, 2016. These samples were plated on a non-selective medium (TSA and on a medium selective for the genus Pseudomonas (KBC to estimate concentrations of culturable bacteria in the lake. Mean concentrations ranged from 134 to 407 CFU/mL for microbes cultured on TSA, and from 2 to 8 CFU/mL for microbes cultured on KBC. There was a significant difference in the concentration of microbes cultured on KBC across three sampling locations in the lake (P = 0.027, suggesting an uneven distribution of Pseudomonas across the locations sampled. There was also a significant difference in concentrations of microbes cultured on TSA across the three sampling days (P = 0.038, demonstrating daily fluctuations in concentrations of culturable bacteria. There was no significant difference in concentrations of microbes cultured on TSA (P = 0.707 and KBC (P = 0.641 across the two depths sampled, suggesting microorganisms were well-mixed between 5 and 50 cm below the surface of the water. About 1 percent (7/720 of the colonies recovered across all four sampling missions were ice nucleation active (ice+ at temperatures warmer than −10 °C. Our work extends traditional manned observations of aquatic environments to unmanned systems, and highlights the potential for USVs to understand the distribution and diversity of microbes within and above freshwater aquatic environments.

  5. Autonomous Cargo Transport System for an Unmanned Aerial Vehicle, using Visual Servoing

    Directory of Open Access Journals (Sweden)

    Noah Kuntz

    2009-12-01

    Full Text Available This paper presents the design and testing of a system for autonomous tracking, pickup, and delivery of cargo via an unmanned helicopter. The tracking system uses a visual servoing algorithm and is tested using open loop velocity control of a six degree of freedom gantry system with a camera mounted via a pan-tilt unit on the end effecter. The pickup system uses vision to direct the camera pan tilt unit to track the target, and uses a hook attached to a second pan tilt unit to pick up the cargo. The ability of the pickup system to hook a target is tested by mounting it on the Systems Integrated Sensor Test Rig gantry system while recorded helicopter velocities are played back by the test rig.

  6. High clearance phenotyping systems for season-long measurement of corn, sorghum and other row crops to complement unmanned aerial vehicle systems

    Science.gov (United States)

    Murray, Seth C.; Knox, Leighton; Hartley, Brandon; Méndez-Dorado, Mario A.; Richardson, Grant; Thomasson, J. Alex; Shi, Yeyin; Rajan, Nithya; Neely, Haly; Bagavathiannan, Muthukumar; Dong, Xuejun; Rooney, William L.

    2016-05-01

    The next generation of plant breeding progress requires accurately estimating plant growth and development parameters to be made over routine intervals within large field experiments. Hand measurements are laborious and time consuming and the most promising tools under development are sensors carried by ground vehicles or unmanned aerial vehicles, with each specific vehicle having unique limitations. Previously available ground vehicles have primarily been restricted to monitoring shorter crops or early growth in corn and sorghum, since plants taller than a meter could be damaged by a tractor or spray rig passing over them. Here we have designed two and already constructed one of these self-propelled ground vehicles with adjustable heights that can clear mature corn and sorghum without damage (over three meters of clearance), which will work for shorter row crops as well. In addition to regular RGB image capture, sensor suites are incorporated to estimate plant height, vegetation indices, canopy temperature and photosynthetically active solar radiation, all referenced using RTK GPS to individual plots. These ground vehicles will be useful to validate data collected from unmanned aerial vehicles and support hand measurements taken on plots.

  7. Autonomous terrain characterization and modelling for dynamic control of unmanned vehicles

    Science.gov (United States)

    Talukder, A.; Manduchi, R.; Castano, R.; Owens, K.; Matthies, L.; Castano, A.; Hogg, R.

    2002-01-01

    This end-to-end obstacle negotiation system is envisioned to be useful in optimized path planning and vehicle navigation in terrain conditions cluttered with vegetation, bushes, rocks, etc. Results on natural terrain with various natural materials are presented.

  8. PECASE: Multi-Spectral Photon Detection in Polymer/Nanoparticle Composites-Toward IR Photodectors and Solar Cells Applicable to Unmanned Vehicles

    Science.gov (United States)

    2016-03-31

    on Organic Solar Cells The maximum amount of surfactant that can be included in the AIR-MAPLE target and still yield photovoltaic function was...in Polymer/Nanoparticle Composites-Toward IR Photodectors and Solar Cells Applicable to Sb. GRANT NUMBER Unmanned Vehicles N00014-1 0-1-0481 Sc...photodetectors and solar cells deposited by RIR-MAPLE, and developing a simulation tool for optoelectronic device performance that accounts for RIR

  9. The System Design of a Global Communications System for Military and Commercial use Utilizing High Altitude Unmanned Aerial Vehicles (UAVs) and Terrestrial Local Multipoint Distribution Service (LMDS) Sites

    OpenAIRE

    Banks, Bradley

    2000-01-01

    This thesis proposes the design of the UAV-LMDS communication system for military and commercial use. The UAV-LMDS system is a digital, wireless communication system that provides service using unmanned aerial vehicles (UAVs) flying at 60,000 ft. acting as communication hubs. This thesis provides background information on UAV-LMDS system elements, a financial analysis, theory, link budgets, system component design and implementation issues. To begin the design, we develop link budgets t...

  10. Developpement of an original aerial-based inventory method: first steps towards the use of mini Unmanned Areal Vehicle in elephant inventory

    OpenAIRE

    Lisein, Jonathan; Vermeulen, Cédric; Bouché, Philippe; Lejeune, Philippe

    2012-01-01

    This research aims at developping a new methodology for counting large mammals by means of an unmanned aerial vehicle. Test flights have been performed in the game ranch of Nazinga (Burkina Faso) during the month of february 2012. Aerial images shows that elephant detection is quite feasible. The systems still requires a lot of improvements in order to be able to cover bigger surfaces for a given pixels resolution. Nevertheless, this method seems very promissing and could advantageously repla...

  11. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    Science.gov (United States)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid

  12. A Simple Aerial Photogrammetric Mapping System Overview and Image Acquisition Using Unmanned Aerial Vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    Wenang Anurogo

    2017-06-01

    Full Text Available Aerial photogrammetry is one of the Alternative technologies for more detailed data, real time, fast and cheaper. Nowadays, many photogrammetric mapping methods have used UAV / unmanned drones or drones to retrieve and record data from an object in the earth. The application of drones in the field of geospatial science today is in great demand because of its relatively easy operation and relatively affordable cost compared to satellite systems especially high - resolution satellite imagery.  This research aims to determine the stage or overview of data retrieval process with DJI Phantom 4 (multi - rotor quad - copter drone with processing using third party software. This research also produces 2 - dimensional high resolution image data on the research area. Utilization of third party software (Agisoft PhotoScan making it easier to acquire and process aerial photogrammetric data. The results of aerial photogrammetric recording with a flying altitude of 70 meters obtained high resolution images with a spatial resolution of 2 inches / pixels.

  13. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Science.gov (United States)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  14. ON MODERN APPROACH TO AIRPLANE-TYPE UNMANNED AERIAL VEHICLES DESIGN WITH SHORT TAKEOFF AND LANDING

    Directory of Open Access Journals (Sweden)

    Oleg P. Minin

    2017-11-01

    Full Text Available This publication opens a series of review papers devoted to the current design problems of the next generation unmanned airplanes that are expected to appear in the period from 2025 to 2035. The series of papers considers airplanes with vertical take-off and landing, air launch of small satellites into the orbit, cargo transportation tasks, issues related to new aerodynamic forms, as well as hybrid, combined and distributed power units. The first paper of the cycle is devoted to the conceptual aerodynamic design of the airplanes with a short take-off and landing, and with technical and economic characteristics on cruise flight conditions no worse than for traditional airplane based on aerodrome with long airstrip. We consider traditional linear methods for aerodynamic scheme analysis and weight analysis, as well. The main relationships and references to the works enabling the parametric analysis of the aerodynamic configuration are given. It is concluded that one of the most promising areas in the field of airplanes with a short take-off and landing is the development of aerodynamic circuits constructed as a "flying wing" of small aspect ratio and large structural height.

  15. Autonomous, Safe Take-Off and Landing Operations for Unmanned Aerial Vehicles in the National Airspace, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned aerial systems (UAS's) and in particular intelligent, autonomous rotorcraft and fixed-wing aircraft have the potential to significantly impact modern...

  16. Design and Development of the Engine Unit for a Twin-Rotor Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    G. Avanzini

    2005-01-01

    Full Text Available Advanced computer-aided technologies played a crucial role in the design of an unconventional Uninhabited Aerial Vehicle (UAV, developed at the Turin Technical University and the University of Rome “La Sapienza”. The engine unit of the vehicle is made of a complex system of three two stroke piston engines coupled with two counter-rotating three-bladed rotors, controlled by rotary PWM servos. The focus of the present paper lies on the enabling technologies exploited in the framework of activities aimed at designing a suitable and reliable engine system, capable of performing the complex tasks required for operating the proposed rotorcraft. The synergic use of advanced computational tools for estimating the aerodynamic performance of the vehicle, solid modeling for mechanical components design, and rapid prototyping techniques for control system logic synthesis and implementation will be presented. 

  17. Utilising scripting language for unmanned and automated guided vehicles operating within row crops

    DEFF Research Database (Denmark)

    Jørgensen, R. N.; Nørremark, M.; Sørensen, C.G.

    2008-01-01

    A flexible high-level control language is an important element in the ongoing task of introducing automated guided vehicles (AGV) to new application domains. A new application domain is row crops, where small AGV's will perform weed control around individual crop plants. This paper defines...... is described here as the ‘supervisory field coverage monitor’ (SFCM), which acts to coordinate the behaviours. The applicability of this modified SMR-CL has been successfully demonstrated using a vehicle test in a specially designed artificial row crop field. The analysis of the operational performance...

  18. Target tracking control and semi-physical simulation of Qball-X4 quad-rotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-01-01

    Full Text Available In this article, a set of integrated ground target tracking flight system has been proposed based on the Qball-X4 quad-rotor unmanned aerial vehicle hardware platform and the QuaRC software platform. Both of the hardware and software platforms are developed by Quanser Company, Canada. The proposed tracking and positioning algorithm could be divided into several stages. First, a tracker is developed based on an optical flow method to track the target; and then, in order to improve the reliability of tracking algorithm and also help in retrieving the lost target, a cascade target detector is developed; meanwhile, a model updated scheme aiming at some possible errors in tracking and detecting process is presented based on Positive-Negative (P-N learning system; at last, a monocular visual positioning system is designed based on the corresponding navigation message. In addition, the effectiveness of the proposed flight control system is verified by both simulation and hardware-in-loop system results in several tracking flight tests.

  19. Monitoring the Invasion of Spartina alterniflora Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China

    Directory of Open Access Journals (Sweden)

    Huawei Wan

    2014-01-01

    Full Text Available Spartina alterniflora was introduced to Beihai, Guangxi (China, for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR imagery from the unmanned aerial vehicle (UAV. The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population.

  20. Development of Hardware-in-the-Loop Simulation Based on Gazebo and Pixhawk for Unmanned Aerial Vehicles

    Science.gov (United States)

    Nguyen, Khoa Dang; Ha, Cheolkeun

    2018-04-01

    Hardware-in-the-loop simulation (HILS) is well known as an effective approach in the design of unmanned aerial vehicles (UAV) systems, enabling engineers to test the control algorithm on a hardware board with a UAV model on the software. Performance of HILS is determined by performances of the control algorithm, the developed model, and the signal transfer between the hardware and software. The result of HILS is degraded if any signal could not be transferred to the correct destination. Therefore, this paper aims to develop a middleware software to secure communications in HILS system for testing the operation of a quad-rotor UAV. In our HILS, the Gazebo software is used to generate a nonlinear six-degrees-of-freedom (6DOF) model, sensor model, and 3D visualization for the quad-rotor UAV. Meanwhile, the flight control algorithm is designed and implemented on the Pixhawk hardware. New middleware software, referred to as the control application software (CAS), is proposed to ensure the connection and data transfer between Gazebo and Pixhawk using the multithread structure in Qt Creator. The CAS provides a graphical user interface (GUI), allowing the user to monitor the status of packet transfer, and perform the flight control commands and the real-time tuning parameters for the quad-rotor UAV. Numerical implementations have been performed to prove the effectiveness of the middleware software CAS suggested in this paper.

  1. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

    Science.gov (United States)

    Li, Wenzhuo; Sun, Kaimin; Li, Deren; Bai, Ting

    2016-07-01

    Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of the UAV platform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark-bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information.

  2. Implementation of the Rauch-Tung-Striebel smoother for sensor compatibility correction of a fixed-wing unmanned air vehicle.

    Science.gov (United States)

    Chan, Woei-Leong; Hsiao, Fei-Bin

    2011-01-01

    This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly.

  3. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-02-11

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  4. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  5. Solid oxide fuel cell/gas turbine hybrid system analysis for high-altitude long-endurance unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, P.; Brandon, N.P. [Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Brett, D.J.L. [The Centre for CO{sub 2} Technology, University College London, London WC1E 7JE (United Kingdom)

    2008-12-15

    High-altitude long-endurance (HALE) unmanned aerial vehicles (UAVs) are ideally suited to provide surveillance, remote sensing and communication relay capabilities for both military and civilian applications. HALE UAVs typically cruise at an altitude between 15 km and 20 km, travelling at low speed and circling specific areas of interest. The work reported aims to investigate alternative power system architectures that enable an efficiency increase and consequent fuel consumption reduction to realise a one-week endurance target. Specifically, the application of a solid oxide fuel cell combined with a gas turbine is considered; with different system configurations modelled with a view to maximising overall efficiency. It is found that modularising the fuel cell capacity into a number of discrete stacks such that the fuel is distributed in parallel and air is fed in series results in an increased system efficiency compared with a single-stack design. An overall system efficiency of 66.3% (LHV) when operating on hydrogen is predicted for a three-stack system. (author)

  6. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  7. Monitoring of the Nirano Mud Volcanoes Regional Natural Reserve (North Italy using Unmanned Aerial Vehicles and Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Tommaso Santagata

    2017-09-01

    Full Text Available In the last years, measurement instruments and techniques for three-dimensional mapping as Terrestrial Laser Scanning (TLS and photogrammetry from Unmanned Aerial Vehicles (UAV are being increasingly used to monitor topographic changes on particular geological features such as volcanic areas. In addition, topographic instruments such as Total Station Theodolite (TST and GPS receivers can be used to obtain precise elevation and coordinate position data measuring fixed points both inside and outside the area interested by volcanic activity. In this study, the integration of these instruments has helped to obtain several types of data to monitor both the variations in heights of extrusive edifices within the mud volcano field of the Nirano Regional Natural Reserve (Northern Italy, as well as to study the mechanism of micro-fracturing and the evolution of mud flows and volcanic cones with very high accuracy by 3D point clouds surface analysis and digitization. The large amount of data detected were also analysed to derive morphological information about mud-cracks and surface roughness. This contribution is focused on methods and analysis performed using measurement instruments as TLS and UAV to study and monitoring the main volcanic complexes of the Nirano Natural Reserve as part of a research project, which also involves other studies addressing gases and acoustic measurements, mineralogical and paleontological analysis, organized by the University of Modena and Reggio Emilia in collaboration with the Municipality of Fiorano Modenese.

  8. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    Energy Technology Data Exchange (ETDEWEB)

    Hervas, Jaime Rubio; Tang, Hui [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 (Singapore); Reyhanoglu, Mahmut [Physical Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 (United States)

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  9. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants.

    Science.gov (United States)

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Pérez Porras, Fernando; Meroño-Larriva, José Emilio; García-Ferrer, Alfonso

    2017-06-08

    Concentrated solar power (CSP) plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC), which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV). The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses) and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary.

  10. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    International Nuclear Information System (INIS)

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-01-01

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example

  11. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  12. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  13. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Alexander Malaver

    2015-02-01

    Full Text Available Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs and Unmanned Aerial Vehicles (UAVs currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  14. Design of Fuzzy Enhanced Hierarchical Motion Stabilizing Controller of Unmanned Ground Vehicle in Three DimensionalSpace

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2011-12-01

    Full Text Available In this paper, stabilizing control of tracked unmanned ground vehicle in 3-D space was presented. Firstly, models of major modules of tracked UGV were established. Next, to reveal the mechanism of disturbances applied on the UGV, two kinds of representative disturbances (slope and general disturbances in yaw motion were discussed in depth. Consequently, an attempting PID method was employed to compensate the impacts of disturbances andsimulation results proved the validity for disturbance incited by slope force, but revealed the lack for general disturbance on yaw motion. Finally, a hierarchical fuzzy controller combined with PID controller was proposed. In lower level, there were two PID controllers to compensate the disturbance of slope force, and on top level, the fuzzy logic controller was employed to correct the yaw motion error based on the differences between the model and the real UGV, which was able to guide the UGV maintain on the stable state. Simulation results demonstrated the excellent effectiveness of the newly designed controller.

  15. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Kyle F. Flynn

    2014-12-01

    Full Text Available A passive method for remote sensing of the nuisance green algae Cladophora glomerata in rivers is presented using an unmanned aerial vehicle (UAV. Included are methods for UAV operation, lens distortion correction, image georeferencing, and spectral analysis to support algal cover mapping. Eighteen aerial photography missions were conducted over the summer of 2013 using an off-the-shelf UAV and three-band, wide-angle, red, green, and blue (RGB digital camera sensor. Images were post-processed, mosaicked, and georeferenced so automated classification and mapping could be completed. An adaptive cosine estimator (ACE and spectral angle mapper (SAM algorithm were used to complete the algal identification. Digital analysis of optical imagery correctly identified filamentous algae and background coverage 90% and 92% of the time, and tau coefficients were 0.82 and 0.84 for ACE and SAM, respectively. Thereafter, algal cover was characterized for a one-kilometer channel segment during each of the 18 UAV flights. Percent cover ranged from <5% to >50%, and increased immediately after vernal freshet, peaked in midsummer, and declined in the fall. Results indicate that optical remote sensing with UAV holds promise for completing spatially precise, and multi-temporal measurements of algae or submerged aquatic vegetation in shallow rivers with low turbidity and good optical transmission.

  16. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China

    Directory of Open Access Journals (Sweden)

    Quanlong Feng

    2015-03-01

    Full Text Available Flooding is a severe natural hazard, which poses a great threat to human life and property, especially in densely-populated urban areas. As one of the fastest developing fields in remote sensing applications, an unmanned aerial vehicle (UAV can provide high-resolution data with a great potential for fast and accurate detection of inundated areas under complex urban landscapes. In this research, optical imagery was acquired by a mini-UAV to monitor the serious urban waterlogging in Yuyao, China. Texture features derived from gray-level co-occurrence matrix were included to increase the separability of different ground objects. A Random Forest classifier, consisting of 200 decision trees, was used to extract flooded areas in the spectral-textural feature space. Confusion matrix was used to assess the accuracy of the proposed method. Results indicated the following: (1 Random Forest showed good performance in urban flood mapping with an overall accuracy of 87.3% and a Kappa coefficient of 0.746; (2 the inclusion of texture features improved classification accuracy significantly; (3 Random Forest outperformed maximum likelihood and artificial neural network, and showed a similar performance to support vector machine. The results demonstrate that UAV can provide an ideal platform for urban flood monitoring and the proposed method shows great capability for the accurate extraction of inundated areas.

  17. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Wei; Lv, Shengli; Guan, XiQi

    2017-09-01

    Carbon fiber composites and film materials can be effectively used in light aircraft structures, especially for solar unmanned aerial vehicles. The use of light materials can reduce the weight of the aircraft, but also can effectively improve the aircraft's strength and stiffness. The structure of the large aspect ratio solar energy UAV was analyzed in detail, taking Solar-impulse solar aircraft as an example. The solar energy UAV has a wing aspect ratio greater than 20, and the detailed digital model of the wing structure including beam, ribs and skin was built, also the Finite Element Method was applied to analyze the static and dynamic performance of the structure. The upper skin of the wing is covered with silicon solar cells, while the lower skin is light and transparent film. The single beam truss form of carbon fiber lightweight material is used in the wing structure. The wing beam is a box beam with rectangular cross sections. The box beam connected the front parts and after parts of the ribs together. The fuselage of the aircraft was built by space truss structure. According to the static and dynamic analysis with Finite Element method, it was found that the aircraft has a small wingtip deflection relative to the wingspan in the level flight state. The first natural frequency of the wing structure is pretty low, which is closed to the gust load.

  18. Accuracy and Optimal Altitude for Physical Habitat Assessment (PHA of Stream Environments Using Unmanned Aerial Vehicles (UAV

    Directory of Open Access Journals (Sweden)

    Ângela Maria Klein Hentz

    2018-05-01

    Full Text Available Physical Habitat Assessments (PHA are useful to characterize and monitor stream and river habitat conditions, but can be costly and time-consuming. Alternative methods for data collection are getting attention, such as Unmanned Aerial Vehicles (UAV. The objective of this work was to evaluate the accuracy of UAV-based remote sensing techniques relative to ground-based PHA measurements, and to determine the influence of flight altitude on those accuracies. A UAV quadcopter equipped with an RGB camera was flown at the altitudes of 30.5 m, 61.0 m, 91.5 m and 122.0 m, and the metrics wetted width (Ww, bankfull width (Wbf and distance to water (Dw were compared to field PHA. The UAV-PHA method generated similar values to observed PHA values, but underestimated distance to water, and overestimated wetted width. Bankfull width provided the largest RMSE (25–28%. No systematic error patterns were observed considering the different flight altitudes, and results indicated that all flight altitudes investigated can be reliably used for PHA measurements. However, UAV flight at 61 m provided the most accurate results (CI = 0.05 considering all metrics. All UAV parameters over all altitudes showed significant correlation with observed PHA data, validating the use of UAV-based remote sensing for PHA.

  19. Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV Technology for Weed Seedling Detection as Affected by Sensor Resolution

    Directory of Open Access Journals (Sweden)

    José M. Peña

    2015-03-01

    Full Text Available In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera, spatial (flight altitude and temporal (the date of the study resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2, when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%. At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.

  20. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

    Science.gov (United States)

    Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca

    2015-03-06

    In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.