WorldWideScience

Sample records for ho-1 protein levels

  1. 50 Hz electric field effects on protein carbonyl (PCO), heme oxygenase-1 (HO-1) and hydroxyproline levels

    Ozgur, Elcin; Goknur, Guler; Seyhan, Nesrin

    2008-01-01

    Full text: Non-ionizing electromagnetic field (EMF) radiation sources, such as power lines and other Extremely Low Frequency (ELF) sources have become one of the most ubiquitous components of the spectrum of the human environment, and the possibility that they may have hazardous effects on human health is a major a public concern. Although it is well documented that EMFs have biological effects, the degree to which these exposures constitute a human health hazard is not clear yet. Today relation between production of oxidative stress resulted by reactive oxygen species and electrical stimulus, also the protective effects of antioxidant treatments are mentioned in many researches. In this study, it was aimed to determine both oxidation of proteins and protein collagen levels under 50 Hz 12 kV/m vertical Electric (E) Field exposure and the N-Acetylcysteine (NAC) administration which is a well-known antioxidant. To this end, protein carbonyl levels (PCO) as bio-markers of oxidative stress and Heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme analyzed to figure out the protein oxidation. Hydroxyproline level, a major component of the protein collagen was measured in order to express the level of collagen in lung tissue. Guinea pigs, weighted 250-300 g, were used in the study. A total forty male guinea pigs were randomly divided into four groups which are composed of 10 guinea pigs each for groups: 1) Group I (Sham); 2) Group II (NAC-administrated group); 3) Group III (E Field Exposure group); 4) Group IV (NAC administrated + E Field exposed group). One week exposure period for 8 hours per daily was conducted for each exposure groups (Group III, Group IV ). The electric field exposure period was from 9 a.m. to 5 p.m. After the last exposure day, the guinea pigs were anesthetized by the injection of ketamine and xylazine. The guinea pigs were killed by decapitation. Statistical analyses were carried out using SPSS software (SPSS 11.5 for windows

  2. HO-1 Upregulation Attenuates Adipocyte Dysfunction, Obesity, and Isoprostane Levels in Mice Fed High Fructose Diets

    Zeid Khitan

    2014-01-01

    Full Text Available Background. Fructose metabolism is an unregulated metabolic pathway and excessive fructose consumption is known to activate ROS. HO-1 is a potent antioxidant gene that plays a key role in decreasing ROS and isoprostanes. We examined whether the fructose-mediated increase in adipocyte dysfunction involves an increase in isoprostanes and that pharmacological induction of HO-1 would decrease both isoprostane levels and adipogenesis. Methods and Results. We examined the effect of fructose, on adipogenesis in human MSCs in the presence and absence of CoPP, an inducer of HO-1. Fructose increased adipogenesis and the number of large lipid droplets while decreasing the number of small lipid droplets (P<0.05. Levels of heme and isoprostane in fructose treated MSC-derived adipocytes were increased. CoPP reversed these effects and markedly increased HO-1 and the Wnt signaling pathway. The high fructose diet increased heme levels in adipose tissue and increased circulating isoprostane levels (P<0.05 versus control. Fructose diets decreased HO-1 and adiponectin levels in adipose tissue. Induction of HO-1 by CoPP decreased isoprostane synthesis (P<0.05 versus fructose. Conclusion. Fructose treatment resulted in increased isoprostane production and adipocyte dysfunction, which was reversed by the increased expression of HO-1.

  3. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  4. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    Chen, Huaqun; Wang, Lijuan; Gong, Tao; Yu, Yang; Zhu, Chunhua; Li, Fen; Wang, Li; Li, Chaojun

    2010-01-01

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1 deficient mouse embryo fibroblasts (Egr-1 -/- MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.

  5. Relationship of Heme Oxygenase-1 (HO-1 Level with Onset and Severity in Normotensive Pregnancy and Severe Preeclampsia

    John Johannes Wantania

    2016-08-01

    Full Text Available Background: Preeclampsia still becomes a major problem in pregnancies. Various evidences showed that heme oxygenase-1 (HO-1 is very important in pregnancy. This study aims to understand the relationship of heme oxygenase-1 level with onset and severity in normotensive pregnancy and severe preeclampsia. Methods: This is a cross sectional analytic comparative study, the subjects consisted of 26 patients with normotensive pregnancies and 26 patients with severe preeclampsia. Blood samples from women with < 34 / ≥ 34 weeks’ normotensive pregnancies and women with severe preeclampsia were taken. HO-1 ELISA kit used to quantitate heme oxygenase-1 level in samples. Results: The level of heme oxygenase-1 in normotensive pregnant women < 34 weeks lower than severe preeclampsia pregnant women < 34 weeks (3.28 ± 0.46 ng/mL vs 4.20 ± 0.64 ng/mL, p=0.003, respectively. The median level of heme oxygenase-1 in normotensive pregnant women ≥ 34 weeks was 2.96 (2.41–4.39 ng/mL, while severe preeclampsia pregnant women ≥ 34 weeks was 3.52 (2.88–5.43 ng/mL, (p=0.040. The median level of heme oxygenase-1 in normotensive pregnant women was 3.04 (2.41–4.39 ng/mL, while severe preeclampsia pregnant women was 3.68 (2.88–5.67 ng/mL, (p=0.001. Conclusions: There is correlation between the incidence of severe preeclampsia with heme oxygenase-1 level in < 34 and ≥ 34 weeks of pregnancy. There is a significant difference between the level of heme oxygenase-1 in pregnant women with severe preeclampsia and in women with normotensive pregnancy. 

  6. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues.

    Zukor, Hillel; Song, Wei; Liberman, Adrienne; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2009-05-01

    Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro, (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.

  7. Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement.

    Zeng, Bin; Ren, Xiaofeng; Lin, Guosheng; Zhu, Chengang; Chen, Honglei; Yin, Jiechao; Jiang, Hong; Yang, Bo; Ding, Danhua

    2008-10-01

    The aim has been to determine whether the supernatants of mesenchymal stem cells (MSCs) transfected with adenovirus carrying human heme oxygenase-1 (hHO-1) gene protect cardiomyocytes from ischemic injury. We have found that hHO-1 infected MSCs (hHO-1-MSCs) increased expression of hHO-1 protein. Apoptosis of cultured hHO-1-MSCs exposed to hypoxia was suppressed. Several cytokines, including HGF, bFGF, TGF-beta, VEGF and IL-1beta, were produced by hHO-1-MSCs, some being significantly enhanced under hypoxia stimulation. Meanwhile, those cytokines reduced caspase-3 level and activity in cultured adult rat ventricular cardiomyocytes (ARVCs) exposed to hypoxia. Supernatants obtained from hHO-1-MSCs improved left ventricular function, limited myocardial infarct size, increased microvessel density, and inhibited apoptosis of cardiomyocytes in rat myocardial infarction. It can be concluded hHO-1-modified MSCs prevent myocardial cell injury via secretion of paracrine-acting mediators.

  8. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury.

    Duann, Pu; Lianos, Elias A

    2009-09-01

    Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-beta1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury.

  9. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  10. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway.

    Qing, Rui; Huang, Zezhi; Tang, Yufei; Xiang, Qingke; Yang, Fan

    2018-04-24

    The present study is to investigate the protective effect of cordycepin on inflammatory reactions in rats with acute lung injury (ALI) induced by lipopolysaccharide (LPS), as well as the underlying mechanism. Wistar rat model of ALI was induced by intravenous injection of LPS (30 mg/kg body weight). One hour later, intravenous injection of cordycepin (1, 10 or 30 mg/kg body weight) was administered. The wet-to-dry weight ratio of lung tissues and myeloperoxidase activity in the lung tissues were measured. The contents of nitrite and nitrate were measured by reduction method, while chemiluminescence was used to determine the content of superoxide. Quantitative real-time polymerase chain reaction and Western blotting were used to determine the expression of mRNA and protein, respectively. Colorimetry was performed to determine the enzymatic activity of heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 was identified by Western blotting. The plasma contents of cytokines were measured by enzyme-linked immunosorbent assay. Cordycepin enhanced the expression and enzymatic activity of HO-1 in ALI rats, and activated Nrf2 by inducing the translocation of Nrf2 from cytoplasm to nucleus. In addition, cordycepin regulated the secretion of TNF-α, IL-6 and IL-10 via HO-1, and suppressed inflammation in lung tissues of ALI rats by inducing the expression of HO-1. HO-1 played important roles in the down-regulation of superoxide levels in lung tissues by cordycepin, and HO-1 expression induced by cordycepin affected nitrite and nitrate concentrations in plasma and iNOS protein expression in lung tissues. Cordycepin showed protective effect on injuries in lung tissues. The present study demonstrates that cordycepin alleviates inflammation induced by LPS via the activation of Nrf2 and up-regulation of HO-1 expression. Copyright © 2018. Published by Elsevier B.V.

  11. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase-1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation.

    Wang, Shuai; Hannafon, Bethany N; Wolf, Roman F; Zhou, Jundong; Avery, Jori E; Wu, Jinchang; Lind, Stuart E; Ding, Wei-Qun

    2014-05-01

    The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

    Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto

    2013-10-01

    The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.

    Jung, Tae Woo; Kim, Hyung-Chun; Abd El-Aty, A M; Jeong, Ji Hoon

    2017-06-01

    Several studies have shown that protectins, which are ω-3 fatty acid-derived proresolution mediators, may improve insulin resistance. Recently, protectin DX (PDX) was documented to attenuate insulin resistance by stimulating IL-6 expression in skeletal muscle, thereby regulating hepatic gluconeogenesis. These findings made us investigate the direct effects of PDX on hepatic glucose metabolism in the context of diabetes. In the current study, we show that PDX regulates hepatic gluconeogenesis in a manner distinct from its indirect glucoregulatory activity via IL-6. We found that PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation, thereby inducing heme oxygenase 1 (HO-1) expression. This induction blocked hepatic gluconeogenesis by suppressing endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. These effects were significantly dampened by silencing AMPK or HO-1 expression with small interfering RNA (siRNA). We also demonstrated that administration of PDX to high fat diet (HFD)-fed mice resulted in increased hepatic AMPK phosphorylation and HO-1 expression, whereas hepatic ER stress was substantially attenuated. Furthermore, PDX treatment suppressed the expression of gluconeogenic genes, thereby decreasing blood glucose levels in HFD-fed mice. In conclusion, our findings suggest that PDX inhibits hepatic gluconeogenesis via AMPK-HO-1-dependent suppression of ER stress. Thus, PDX may be an effective therapeutic target for the treatment of insulin resistance and type 2 diabetes through the regulation of hepatic gluconeogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  15. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  16. Genipin inhibits TNF-α-induced vascular smooth muscle cell proliferation and migration via induction of HO-1.

    Fengrong Jiang

    Full Text Available Vascular smooth muscle cell (VSMC proliferation and migration triggered by inflammatory stimuli contributes importantly to the pathogenesis of atherosclerosis and restenosis. On the other hand, genipin, an aglycon of geniposide, exhibits diverse pharmacological functions such as antitumor and anti-inflammatory effects. The protective effects of genipin on the cardiovascular system have also been reported. However, the molecular mechanism involved remains unknown. This study aimed to elucidate the precise function of genipin in VSMCs, focusing particularly on the role of heme oxygenase-1 (HO-1, a potent anti-inflammatory enzyme. We found that pretreatment of genipin induced HO-1 mRNA and protein levels, as well as its activity in VSMCs. Genipin inhibited TNF-α-induced VSMC proliferation and migration in a dose-dependent manner. At the molecular level, genipin prevented ERK/MAPK and Akt phosphorylation while left p38 MAPK and JNK unchanged. Genipin also blocked the increase of ROS generation induced by TNF-α. More importantly, the specific HO-1 siRNA partially abolished the beneficial effects of genipin on VSMCs. These results suggest that genipin may serve as a novel drug in the treatment of these pathologies by inducing HO-1 expression/activity and subsequently decreasing VSMC proliferation and migration.

  17. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  18. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function.

    Liu, Xiaoli; Pachori, Alok S; Ward, Christopher A; Davis, J Paul; Gnecchi, Massimiliano; Kong, Deling; Zhang, Lunan; Murduck, Jared; Yet, Shaw-Fang; Perrella, Mark A; Pratt, Richard E; Dzau, Victor J; Melo, Luis G

    2006-02-01

    We reported previously that predelivery of the anti-oxidant gene heme oxygenase-1 (HO-1) to the heart by adeno associated virus (AAV) markedly reduces injury after acute myocardial infarction (MI). However, the effect of HO-1 gene delivery on postinfarction recovery has not been investigated. In the current study, we assessed the effect of HO-1 gene delivery on post-MI left ventricle (LV) remodeling and function using echocardiographic imaging and histomorphometric approaches. Two groups of Sprague-Dawley rats were injected with 4 x 10(11) particles of AAV-LacZ (control) or AAV-hHO-1 in the LV wall. Eight wk after gene transfer, the animals were subjected to 30 min of ischemia by ligation of left anterior descending artery (LAD) followed by reperfusion. Echocardiographic measurements were obtained in a blinded fashion prior and at 1.5 and 3 months after I/R. Ejection fraction (EF) was reduced by 13% and 40% in the HO-1 and LacZ groups, respectively at 1.5 months after MI. Three months after MI, EF recovered fully in the HO-1, but only partially in the LacZ-treated animals. Post-MI LV dimensions were markedly increased and the anterior wall was markedly thinned in the LacZ-treated animals compared with the HO-1-treated animals. Significant myocardial scarring and fibrosis were observed in the LacZ-group in association with elevated levels of interstitial collagen I and III and MMP-2 activity. Post-MI myofibroblast accumulation was reduced in the HO-1-treated animals, and retroviral overexpression of HO-1 reduced proliferation of isolated cardiac fibroblasts. Our data indicate that rAAV-HO-1 gene transfer markedly reduces fibrosis and ventricular remodeling and restores LV function and chamber dimensions after myocardial infarction.

  19. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Kusunoki, Chisato, E-mail: yosizaki@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Nishio, Yoshihiko [Division of Diabetes, Metabolism and Endocrinology, Department of Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kashiwagi, Atsunori; Maegawa, Hiroshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  20. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Kusunoki, Chisato; Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-01

    Highlights: ► Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. ► EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. ► Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. ► Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H 2 O 2 -induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  1. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    Park, Sun Young; Kim, Ji-Hee [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Lee, Sang Joon [Department of Microbiology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Kim, YoungHee, E-mail: yheekim@pusan.ac.kr [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of)

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  2. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-01-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E 2 (PGE 2 ), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates phosphorylation

  3. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  4. Embryotoxicity Caused by DON-Induced Oxidative Stress Mediated by Nrf2/HO-1 Pathway

    Miao Yu

    2017-06-01

    Full Text Available Deoxynivalenol (DON belongs to the type B group of trichothecenes family, which is composed of sesquiterpenoid metabolites produced by Fusarium and other fungi in grain. DON may cause various toxicities, such as cytotoxicity, immunotoxicity, genotoxicity as well as teratogenicity and carcinogenicity. In the present study, we focus on a hypothesis that DON alters the expressions of Nrf2/HO-1 pathway by inducing embryotoxicity in C57BL/6 mouse (5.0, 2.5, 1.0, and 0 mg/kg/day and BeWo cell lines (0 and 50 nM; 3 h, 12 h and 24 h. Our results indicate that DON treatment in mice during pregnancy leads to ROS accumulation in the placenta, which results in embryotoxicity. At the same time Nrf2/HO-1 pathway is up-regulated by ROS to protect placenta cells from oxidative damage. In DON-treated BeWo cells, the level of ROS has time–effect and dose–effect relationships with HO-1 expression. Moderate increase in HO-1 protects the cell from oxidative damage, while excessive increase in HO-1 aggravates the oxidative damage, which is called in some studies the “threshold effect”. Therefore, oxidative stress may be the critical molecular mechanism for DON-induced embryotoxicity. Besides, Nrf2/HO-1 pathway accompanied by the “threshold effect” also plays an important role against DON-induced oxidative damage in this process.

  5. Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages.

    Jianshen Chai

    Full Text Available Macrophages are key responders of inflammation and are closely related with oxidative stress. Activated macrophages can enhance oxygen depletion, which causes an overproduction of reactive oxygen species (ROS and leads to further excessive inflammatory response and tissue damage. Agmatine, an endogenous metabolite of L-arginine, has recently been shown to have neuroprotective effects based on its antioxidant properties. However, the antioxidant effects of agmatine in peripheral tissues and cells, especially macrophages, remain unclear. In this study we explored the role of agmatine in mediating antioxidant effects in RAW 264.7 cells and studied its antioxidant mechanism. Our data demonstrate that agmatine is an activator of Nrf2 signaling that markedly enhances Nrf2 nuclear translocation, increases nuclear Nrf2 protein level, up-regulates the expression of the Nrf2 downstream effector HO-1, and attenuates ROS generation induced by Lipopolysaccharide (LPS. We further demonstrated that the agmatine-induced activation of Nrf2 is likely through the PI3K/Akt pathway. LY294002, a specific PI3K/Akt inhibitor, abolished agmatine-induced HO-1 up-regulation and ROS suppression significantly. Inhibiting HO-1 pathway significantly attenuated the antioxidant effect of agmatine which the products of HO-1 enzymatic activity contributed to. Furthermore, the common membrane receptors of agmatine were evaluated, revealing that α2-adrenoceptor, I1-imidazoline receptor or I2-imidazoline receptor are not required by the antioxidant properties of agmatine. Taken together, our findings revealed that agmatine has antioxidant activity against LPS-induced ROS accumulation in RAW 264.7 cells involving HO-1 expression induced by Nrf2 via PI3K/Akt pathway activation.

  6. Edaravone Improves Septic Cardiac Function by Inducing an HIF-1α/HO-1 Pathway

    Chao He

    2018-01-01

    Full Text Available Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF- 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO- 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp. before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg, after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction.

  7. Role and molecular mechanism of HO-1-mediated NF-κB modulation in fibrosis progression of nonalcoholic steatohepatitis

    NAN Yuemin

    2013-05-01

    Full Text Available ObjectiveTo investigate the potential effects and molecular mechanisms of heme oxygenase-1 (HO-1-mediated modulation of nuclear factor-kappa B (NF-κB, and its downstream activation of intercellular adhesion molecule 1 (ICAM-1 and platelet derived growth factor (PDGF, in fibrosis progression of non-alcoholic steatohepatitis (NASH using the methionine and choline deficient (MCD mouse model of NASH. Methods Forty C57BL/6J male mice (18-20 g were randomly divided into four groups (n=10 each: NASH model group, administered the MCD diet; HO-1 agonist group, administered the MCD diet with intraperitoneal (ip injections of hemin (30 μmol/kg every other day; HO-1 inhibitor group, administered the MCD diet with ip injections of zinc protoporphyrin (ZnPP-IX; 20 μmol/kg every other day; and control group, administered a methionine and choline sufficient (MCS diet, without agonist nor inhibitor injections. After eight weeks, the mice were sacrificed and resected liver tissues used to assess successful model establishment by histological analysis (hematoxylin-eosin and Masson staining and the differential mRNA expression of HO-1, NF-κB, ICAM-1, and PDGF by real-time quantitative PCR (GAPDH normalized and protein expression of HO-1 and PDGF by western blotting ( β-actin normalized. Significance of an intergroup difference was assessed by single-factor analysis of variance test, and the Student-Newman-Keuls test was used for pairwise comparisons. ResultsThe NASH model group showed the appropriate histologic features of hepatic steatosis, necroinflammation and fibrogenesis, while the control group showed normal lobular architecture. In addition, the NASH model group showed significantly higher expression of HO-1, NF-κB, ICAM-1 and PDGF mRNA (all P<0.05, and concomitant increases in HO-1 and PDGF protein. The group treated with HO-1 agonist showed significant down-regulation of the NASH-induced NF-κB, ICAM-1 and PDGF expressions, while the opposite

  8. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6

    Chen, Y.-C.; Chow, J.-M.; Lin, C.-W.; Wu, C.-Y.; Shen, S.-C.

    2006-01-01

    In the present study, we examined the protective mechanism of baicalein (BE) and its glycoside, baicalin (BI), on hydrogen-peroxide (H 2 O 2 )-induced cell death in rat glioma C6 cells. Results of the MTT assay, LDH release assay, and morphological observation showed that H 2 O 2 addition reduced the viability of C6 cells, and this was prevented by the addition of BE but not BI. Incubation of C6 cells with BE significantly decreased the intracellular peroxide level induced by H 2 O 2 according to flow cytometric analysis using DCHF-DA as a fluorescent substrate. Suppression of H 2 O 2 -induced apoptotic events including DNA ladders, hypodiploid cells, and activation of caspases 3, 8, and, 9 by BE but not BI was identified in C6 cells. The cytotoxicity and phosphorylation of ERK proteins induced by H 2 O 2 were blocked by the ERK inhibitor PD98059. Catalase addition prevented H 2 O 2 -induced ROS production, ERKs protein phosphorylation, and cell death, and BE dose-dependently inhibited H 2 O 2 -induced ERK protein phosphorylation in C6 cells. These data suggest that ROS-scavenging activity is involved in BE prevention of H 2 O 2 -induced cell death via blocking ERKs activation. Additionally, BE but not BI induced heat shock protein 32 (HSP32; HO-1) protein expression in both time- and dose-dependent manners, but not heme oxygenase 2 (HO-2), heat shock protein 70 (HSP70), or heat shock protein 90 (HSP90) protein expression. In the absence of H 2 O 2 , BE induces ERKs protein phosphorylation, and HO-1 protein expression induced by BE was blocked by the addition of cycloheximide, actinomycin D, and the ERK inhibitor PD98059. The addition of the HO inhibitor ZnPP inhibited the protective effect of BE against H 2 O 2 -induced cytotoxicity in C6 cells according to the MTT assay and apoptotic morphology under microscopic observation, accompanied by blocking the ROS-scavenging activity of BE in C6 cells. However, BE treatment was unable to protect C6 cells from C2-ceramide

  9. Glaucocalyxin B Alleviates Lipopolysaccharide-Induced Parkinson’s Disease by Inhibiting TLR/NF-κB and Activating Nrf2/HO-1 Pathway

    Wei Xu

    2017-12-01

    Full Text Available Background/Aims: Parkinson’s disease (PD is a common neurodegenerative disease in the old population, characterized by dopaminergic neuron loss, inflammation and oxidative stress injury in the substantia nigra. Glaucocalyxin B (GLB, an ent-kauranoid diterpenoid isolated from Rabdosia japonica, has anti-inflammation and anti-tumor effects. However, its effects on PD remain unclear. Methods: PD was introduced in rats via injection of lipopolysaccharide (LPS into cerebral corpus striatum, and GLB was given intracerebroventricularly to these rats. Their walking, climbing and sensory states were detected by Stepping, Whisker and Cylinder Tests. The expression of tyrosine hydroxylase (TH, glial fibrillary acidic protein (GFAP, CD11b and ionized calcium binding adaptor molecule (IBA-1 were detected by immunohischemical staining. The levels of a series of inflammatory factors, oxidative stress-related factors and apoptosis-related factors were measured by real-time PCR, immunoblotting and ELISA. In addition, Toll-like receptor (TLR/nuclear factor kappa B (NF-κB and nuclear factor erythroid 2-related factor 2 (Nrf2/heme oxygenase (HO-1 pathways were investigated to illustrate the underlying mechanism. In vitro, microglial cells exposed to LPS were treated with GLB. Results: The injection of LPS caused walking, climbing and sensory disturbances in rats, induced inflammation, oxidative stress response and apoptosis, and activated TLR/NF-κB and Nrf2/ HO-1 pathways in the cerebral tissue. GLB administration attenuated LPS-induced alterations. The TLR/NF-κB pathway was deactivated and Nrf2/HO-1 was activated after application of GLB. In vitro, cytotoxic effects induced by the conditioned medium derived from microglial cells exposed to LPS in PC12 cells were attenuated by GLB. Conclusion: GLB suppresses LPS-induced PD symptoms by modification of TLR/NF-κB and Nrf2/HO-1 pathways in vivo and in vitro.

  10. 3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps"

    Lemieux Bruno

    2010-12-01

    Full Text Available Abstract Background In cancer cells the three-dimensional (3D telomere organization of interphase nuclei into a telomeric disk is heavily distorted and aggregates are found. In Hodgkin's lymphoma quantitative FISH (3D Q-FISH reveals a major impact of nuclear telomere dynamics during the transition form mononuclear Hodgkin (H to diagnostic multinuclear Reed-Sternberg (RS cells. In vitro and in vivo formation of RS-cells is associated with the increase of very short telomeres including "t-stumps", telomere loss, telomeric aggregate formation and the generation of "ghost nuclei". Results Here we analyze the 3D telomere dynamics by Q-FISH in the novel Hodgkin cell line U-HO1 and its non-receptor protein-tyrosine phosphatase N1 (PTPN1 stable transfectant U-HO1-PTPN1, derived from a primary refractory Hodgkin's lymphoma. Both cell lines show equally high telomerase activity but U-HO1-PTPN differs from U-HO1 by a three times longer doubling time, low STAT5A expression, accumulation of RS-cells (p As expected, multinuclear U-HO1-RS-cells and multinuclear U-HO1-PTPN1-RS-cells differ from their mononuclear H-precursors by their nuclear volume (p Conclusion Abundant RS-cells without additional very short telomeres including "t-stumps", high rate of apoptosis, but low STAT5A expression, are hallmarks of the U-HO1-PTPN1 cell line. These characteristics are independent of telomerase activity. Thus, PTPN1 induced dephosphorylation of STAT5 with consecutive lack of Akt/PKB activation and cellular arrest in G2, promoting induction of apoptosis, appears as a possible pathogenetic mechanism deserving further experimental investigation.

  11. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  12. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE 2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1

  13. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Chien, Peter Tzu-Yu [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Lin, Chih-Chung; Hsiao, Li-Der [Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan (China)

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO

  14. HO-1 inhibits IL-13-induced goblet cell hyperplasia associated with CLCA1 suppression in normal human bronchial epithelial cells.

    Mishina, Kei; Shinkai, Masaharu; Shimokawaji, Tadasuke; Nagashima, Akimichi; Hashimoto, Yusuke; Inoue, Yoriko; Inayama, Yoshiaki; Rubin, Bruce K; Ishigatsubo, Yoshiaki; Kaneko, Takeshi

    2015-12-01

    Mucus hypersecretion and goblet cell hyperplasia are common features that characterize asthma. IL-13 increases mucin (MUC) 5AC, the major component of airway mucus, in airway epithelial cells. According to the literature, IL-13 receptor activation leads to STAT6 activation and consequent induction of chloride channel accessory 1 (CLCA1) gene expression, associated with the induction of MUC5AC. Heme oxygenase-1 (HO-1) is an enzyme that catalyzes oxidation of heme to biliverdin, and has anti-inflammatory and anti-oxidant properties. We examined the effects of HO-1 on mucin production and goblet cell hyperplasia induced by IL-13. Moreover, we assessed the cell signaling intermediates that appear to be responsible for mucin production. Normal human bronchial epithelial (NHBE) cells were grown at air liquid interface (ALI) in the presence or absence of IL-13 and hemin, a HO-1 inducer, for 14 days. Protein concentration was analyzed using ELISA, and mRNA expression was examined by real-time PCR. Histochemical analysis was performed using HE staining, andWestern blotting was performed to evaluate signaling transduction pathway. Hemin (4 μM) significantly increased HO-1 protein expression (p b 0.01) and HO-1 mRNA expression (p b 0.001). IL-13 significantly increased goblet cells, MUC5AC protein secretion (p b 0.01) and MUC5AC mRNA (p b 0.001), and these were decreased by hemin by way of HO-1. Tin protoporphyrin (SnPP)-IX, a HO-1 inhibitor, blocked the effect of hemin restoring MUC5AC protein secretion (p b 0.05) and goblet cell hyperplasia. Hemin decreased the expression of CLCA1 mRNA (p b 0.05) and it was reversed by SnPP-IX, but could not suppress IL-13-induced phosphorylation of STAT6 or SAM pointed domain-containing ETS transcription factor (SPDEF) and Forkhead box A2 (FOXA2) mRNA expression. In summary, HO-1 overexpression suppressed IL-13-induced goblet cell hyperplasia and MUC5AC production, and involvement of CLCA1 in the mechanism was suggested.

  15. Edaravone attenuates hippocampal damage in an infant mouse model of pneumococcal meningitis by reducing HMGB1 and iNOS expression via the Nrf2/HO-1 pathway.

    Li, Zheng; Ma, Qian-Qian; Yan, Yan; Xu, Feng-Dan; Zhang, Xiao-Ying; Zhou, Wei-Qin; Feng, Zhi-Chun

    2016-09-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a free radical scavenger that has shown potent antioxidant, anti-inflammatory and neuroprotective effects in variety of disease models. In this study, we investigated whether edaravone produced neuroprotective actions in an infant mouse model of pneumococcal meningitis. C57BL/6 mice were infected on postnatal d 11 by intracisternal injection of a certain inoculum of Streptococcus pneumoniae. The mice received intracisternal injection of 10 μL of saline containing edaravone (3 mg/kg) once a day for 7 d. The severity of pneumococcal meningitis was assessed with a clinical score. In mice with severe meningitis, the survival rate from the time of infection to d 8 after infection was analyzed using Kaplan-Meier curves. In mice with mild meningitis, the CSF inflammation and cytokine levels in the hippocampus were analyzed d 7 after infection, and the clinical neurological deficit score was evaluated using a neurological scoring system d 14 after infection. The nuclear factor (erythroid-derived 2)-like 2 knockout (Nrf2 KO) mice and heme oxygenase-1 knockout (HO-1 KO) mice were used to confirm the involvement of Nrf2/HO-1 pathway in the neuroprotective actions of edaravone. In mice with severe meningitis, edaravone treatment significantly increased the survival rate (76.4%) compared with the meningitis model group (32.2%). In mice with mild meningitis, edaravone treatment significantly decreased the number of leukocytes and TNF- levels in CSF, as well as the neuronal apoptosis and protein levels of HMGB1 and iNOS in the hippocampus, but did not affect the high levels of IL-10 and IL-6 in the hippocampus. Moreover, edaravone treatment significantly improved the neurological function of mice with mild meningitis. In Nrf2 KO or HO-1 KO mice with the meningitis, edaravone treatment was no longer effective in improving the survival rate of the mice with severe meningitis (20.2% and 53.6%, respectively), nor it affected the

  16. Glutaredoxin 1 (GRX1) inhibits oxidative stress and apoptosis of chondrocytes by regulating CREB/HO-1 in osteoarthritis.

    Sun, Jie; Wei, Xuelei; Lu, Yandong; Cui, Meng; Li, Fangguo; Lu, Jie; Liu, Yunjiao; Zhang, Xi

    2017-10-01

    GRX1 (glutaredoxin1), a sulfhydryl disulfide oxidoreductase, is involved in many cellular processes, including anti-oxidation, anti-apoptosis, and regulation of cell differentiation. However, the role of GRX1 in the oxidative stress and apoptosis of osteoarthritis chondrocytes remains unclear, prompting the current study. Protein and mRNA expressions were measured by Western blot and RT-qPCR. Oxidative stress was detected by the measurement of MDA and SOD contents. Cells apoptosis were detected by Annexin V-FITC/PI and caspase-3 activity assays. We found that the mRNA and protein expressions of GRX1 were significantly down-regulated in osteoarthritis tissues and cells. GRX1 overexpression increased the mRNA and protein expression of CREB and HO-1. Meanwhile, GRX1 overexpression inhibited oxidative stress and apoptosis in osteoarthritis chondrocytes. Furthermore, we found that GRX1 overexpression regulated HO-1 by increasing CREB, and that HO-1 regulated oxidative stress and apoptosis in osteoarthritis chondrocytes. Thus, GRX1 overexpression constrains oxidative stress and apoptosis in osteoarthritis chondrocytes by regulating CREB/HO-1, providing a novel insight into the molecular mechanism and potential treatment of osteoarthritis. Copyright © 2017. Published by Elsevier Ltd.

  17. Potential Ameliorative Effects of Qing Ye Dan Against Cadmium Induced Prostatic Deficits via Regulating Nrf-2/HO-1 and TGF-β1/Smad Pathways.

    Du, Lifen; Lei, Yongfang; Chen, Jinglou; Song, Hongping; Wu, Xinying

    2017-01-01

    Cadmium (Cd) is an environmental pollutant with reproductive toxicity. Swertia mileensis is used in Chinese medicine for the treatment of prostatic deficits and named as Qing Ye Dan (QYD). This study was undertaken to investigate the potential protective effects of QYD against Cd-induced prostatic deficits. Rat model of prostatic deficits was induced by 0.2 mg/kg/d CdCl2 subcutaneous injection for 15 days. The prostatic oxidative stress was evaluated by detecting the levels of malondialdehyde, nitric oxide, reduced/ oxidized glutathione, total sulfhydryl groups and enzymatic antioxidant status. The prostatic inflammation was estimated by testing the levels of pro-inflammatory cytokines. The levels of epithelial-mesenchymal transition (EMT) markers E-cadherin, fibronectin, vimentin and α-smooth muscle actin were measured by qPCR analysis. Additionally, the prostatic expressions of transforming growth factor-β1 (TGF-β1), type I TGF-β receptor (TGF-βRI), Smad2, phosphorylation-Smad2 (p-Smad2), Smad3, p-Smad3, Smad7, nuclear related factor-2 (Nrf-2), heme oxygenase-1 (HO-1), B-cell CLL/lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax) were measured by western blot assay. It was found that QYD ameliorated the Cd-induced prostatic oxidative stress and inflammation, attenuated prostatic EMT, inhibited the TGF-β1/Smad pathway, increased Bcl-2/Bax ratio and enhanced the activity of Nrf-2/HO-1 pathway. These results showed that QYD could ameliorate Cd-induced prostatic deficits via modulating Nrf-2/HO-1 and TGF-β1/Smad pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Huang, Zhangjian [Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009 (China); Li, Ping [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Li, Jia [National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203 (China); Zhang, Luyong [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Saavedra, Juan M. [Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States); Liao, Hong, E-mail: liaohong56@hotmail.com [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Pang, Tao, E-mail: tpang@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2015-12-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  19. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi; Huang, Zhangjian; Li, Ping; Li, Jia; Zhang, Luyong; Saavedra, Juan M.; Liao, Hong; Pang, Tao

    2015-01-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  20. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    Pecorelli, Alessandra; Bocci, Velio; Acquaviva, Alessandra; Belmonte, Giuseppe; Gardi, Concetta; Virgili, Fabio; Ciccoli, Lucia; Valacchi, Giuseppe

    2013-01-01

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O 3 per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H 2 O 2 ) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H 2 O 2 are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment

  1. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    Pecorelli, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Child Neuropsychiatry Unit, University Hospital, AOUS, Siena (Italy); Bocci, Velio [Department of Physiology, University of Siena (Italy); Acquaviva, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Belmonte, Giuseppe [Department of Biomedical Sciences, University of Siena (Italy); Gardi, Concetta [Department of Molecular and Developmental Medicine, University of Siena (Italy); Virgili, Fabio [INRAN, Rome (Italy); Ciccoli, Lucia [Department of Molecular and Developmental Medicine, University of Siena (Italy); Valacchi, Giuseppe, E-mail: giuseppe.valacchi@unife.it [Department of Life Sciences and Biotechnology, University of Ferrara (Italy); Department of Food and Nutrition, Kyung Hee University, Seoul (Korea, Republic of)

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  2. Heat Shock Proteins and Mitogen-activated Protein Kinases in Steatotic Livers Undergoing Ischemia-Reperfusion: Some Answers

    Massip-Salcedo, Marta; Casillas-Ramirez, Araní; Franco-Gou, Rosah; Bartrons, Ramón; Ben Mosbah, Ismail; Serafin, Anna; Roselló-Catafau, Joan; Peralta, Carmen

    2006-01-01

    Ischemic preconditioning protects steatotic livers against ischemia-reperfusion (I/R) injury, but just how this is achieved is poorly understood. Here, I/R or preconditioning plus I/R was induced in steatotic and nonsteatotic livers followed by investigating the effect of pharmacological treatments that modulate heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs). MAPKs, HSPs, protein kinase C, and transaminase levels were measured after reperfusion. We report that preconditioning increased HSP72 and heme-oxygenase-1 (HO-1) at 6 and 24 hours of reperfusion, respectively. Unlike nonsteatotic livers, steatotic livers benefited from HSP72 activators (geranylgeranylacetone) throughout reperfusion. This protection seemed attributable to HO-1 induction. In steatotic livers, preconditioning and geranylgeranylacetone treatment (which are responsible for HO-1 induction) increased protein kinase C activity. HO-1 activators (cobalt(III) protoporphyrin IX) protected both liver types. Preconditioning reduced p38 MAPK and c-Jun N-terminal kinase (JNK), resulting in HSP72 induction though HO-1 remained unmodified. Like HSP72, both p38 and JNK appeared not to be crucial in preconditioning, and inhibitors of p38 (SB203580) and JNK (SP600125) were less effective against hepatic injury than HO-1 activators. These results provide new data regarding the mechanisms of preconditioning and may pave the way to the development of new pharmacological strategies in liver surgery. PMID:16651615

  3. Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina after Ischemia-Reperfusion-Induced Damage

    Chang, Raymond Chuen-Chung; So, Kwok-Fai; Brecha, Nicholas C.; Pu, Mingliang

    2014-01-01

    Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression. PMID:24400114

  4. Intermittent hypoxia simulating obstructive sleep apnea causes pulmonary inflammation and activates the Nrf2/HO-1 pathway.

    Wang, Yeying; Chai, Yanling; He, Xiaojie; Ai, Li; Sun, Xia; Huang, Yiling; Li, Yongxia

    2017-10-01

    Obstructive sleep apnea (OSA) is a disorder with high morbidity in adults. OSA damages multiple organs and tissues, including the cardiovascular and cerebrovascular systems, the metabolism system, the lungs, liver and heart. OSA-induced damage is earliest and greatest to the pulmonary tissue. The present study established a rat OSA model of differing severity by inducing intermittent hypoxia with different concentrations of O 2 and it was determined that OSA caused a severe oxidative stress response and pulmonary inflammation in a dose-dependent manner. OSA increased serum levels of C-reactive protein and 8-isoprostane and elevated the expression of malondialdehyde, tumor necrosis factor α, interleukin (IL)-1β and IL-6 in the pulmonary tissue. Furthermore, the expression of two important antioxidants, superoxide dismutase and glutathione, was downregulated following intermittent hypoxia. By contrast, levels of cylooxygenase 2 and inducible nitric oxide synthase, which are crucial in the antioxidative response, increased. In addition, OSA activates the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (OH)-1 antioxidative signaling pathway. Finally, all increases and decreases in levels of inflammatory and antioxidative substances were dependent on oxygen concentrations. Therefore, the present study demonstrated that OSA, simulated by intermittent hypoxia, caused an oxidative stress response and pulmonary inflammation, and activated the canonical antioxidative Nrf2/HO-1 signaling pathway in a dose-dependent manner. These results may facilitate the development of clinical therapies to treat pulmonary diseases caused by OSA.

  5. [hHO-1 structure prediction and its mutant construct, expression, purification and activity analysis].

    Xia, Zhen Wei; Cui, Wen Jun; Zhou, Wen Pu; Zhang, Xue Hong; Shen, Qing Xiang; Li, Yun Zhu; Yu, Shan Chang

    2004-10-01

    Human Heme Oxygenase-1 (hHO-1) is the rate-limiting enzyme in the catabolism reaction of heme, which directly regulates the concentration of bilirubin in human body. The mutant structure was simulated by Swiss-pdbviewer procedure, which showed that the structure of active pocket was changed distinctly after Ala25 substituted for His25 in active domain, but the mutated enzyme still binded with heme. On the basis of the results, the expression vectors, pBHO-1 and pBHO-1(M), were constructed, induced by IPTG and expressed in E. coli DH5alpha strain. The expression products were purified with 30%-60% saturation (NH4)2SO4 and Q-Sepharose Fast Flow column chromatography. The concentration of hHO-1 in 30%-60% saturation (NH4)2SO4 components and in fractions through twice column chromatography was 3.6-fold and 30-fold higher than that in initial product, respectively. The activity of wild hHO-1 (whHO-1) and mutant hHO-1 (deltahHO-1) showed that the activity of deltahHO-1 was reduced 91.21% compared with that of whHO-1. The study shows that His25 is of importance for the mechanism of hHO-1, and provides the possibility for effectively regulating the activity to exert biological function.

  6. Preconditioning with Gua Lou Gui Zhi decoction enhances H2O2-induced Nrf2/HO-1 activation in PC12 cells

    MAO, JINGJIE; LI, ZUANFANG; LIN, RUHUI; ZHU, XIAOQIN; LIN, JIUMAO; PENG, JUN; CHEN, LIDIAN

    2015-01-01

    Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be

  7. Selenolate complexes of CYP101 and the heme-bound hHO-1/H25A proximal cavity mutant.

    Jiang, Yongying; Ortiz de Montellano, Paul R

    2008-05-05

    Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.

  8. Extratumoral Heme Oxygenase-1 (HO-1 Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth.

    Sofia Halin Bergström

    Full Text Available Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1. To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.

  9. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet.

    Komal Sodhi

    Full Text Available Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD, obesity and cardiovascular disease (CVD. Heme Oxygenase-1 (HO-1 is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1 belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05. Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05. Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose. These beneficial effects of CoPP were reversed by SnMP.Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates

  10. The effects of lead exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells.

    Yang, Meiyuan; Li, Yaobin; Wang, Ying; Cheng, Nuo; Zhang, Yi; Pang, Shimin; Shen, Qiwei; Zhao, Lijuan; Li, Guilin; Zhu, Gaochun

    2018-05-15

    Lead (Pb) is an environmental neurotoxic metal. Chronic exposure to Pb causes deficits of learning and memory in children and spatial learning deficits in developing rats. In this study we investigated the effects of Pb exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells. The animals were randomly divided to three groups: control group; low lead exposure group; high lead exposure group; PC12 cells were divided into 3 groups: 0 μM (control group), 1 μM and 100 μM Pb acetate. The results showed that Pb levels in blood and brain of Pb exposed groups were significantly higher than that of the control group (p < 0.05). The expression of HMGB1 and HO-1 were increased in Pb exposed groups than that of the control group (p < 0.05). Moreover, we found that the up-regulation of HO-1 in Pb exposure environment inhibited the expression of HMGB1. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Sulforaphane protects rodent retinas against ischemia-reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway.

    Hong Pan

    Full Text Available Retinal ischemia-reperfusion (I/R injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF, which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2-mediated induction of heme oxygenase-1 (HO-1. This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p. injected with SF (12.5 mg/kg or vehicle (corn oil once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II (ZnPP, 30 mg/kg, i.p. treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL, and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.

  12. Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling.

    Mittal, Smriti P K; Khole, Swati; Jagadish, Nidhi; Ghosh, Debjani; Gadgil, Vijay; Sinkar, Vilas; Ghaskadbi, Saroj S

    2016-11-01

    Andrographolide, principle constituent of Andrographis paniculata Nees is used in traditional medicine in Southeast Asia and is known to exhibit various biological activities. Its antioxidant activity is due to its ability to activate one of the antioxidant enzymes, heme oxygenase-1 (HO-1) which is regulated transcriptionally through Nrf-2. However, molecular mechanism underlying activation of Nrf-2/HO-1 has not yet been clearly understood. Protective effect of andrographolide against H2O2 induced cell death, reactive oxygen species and lipid peroxidation was observed in HepG2 cells. Ability of andrographolide to modulate G-protein coupled receptor (GPCR) mediated signalling was determined using in silico docking and gene expression was analyzed by qRT-PCR, confocal microscopy and western blot analysis. We clearly show that andrographolide via adenosine A2A receptor signalling leads to activation of p38 MAP kinase, resulting in upregulation of Nrf-2, its translocation to nucleus and activation of HO-1. Additionally, it activates adenylate cyclase resulting in cAMP formation which in turn activates protein kinase A leading to inhibition of GSK-3β by phosphorylation. Inactivated GSK-3β leads to retention of Nrf-2 in the nucleus leading to sustained expression of HO-1 by binding to its antioxidant response element (ARE). Thus, andrographolide probably by binding to adenosine A2a receptor activates Nrf-2 transcription and also inhibits its exclusion from the nucleus by inactivating GSK-3β, together resulting in activation of HO-1. We speculate that andrographolide can be used as a therapeutic drug to combat oxidative stress implicated in pathogenesis of various diseases such as diabetes, osteoporosis, neurodegenerative diseases etc. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways.

    Yu, Jian-Bo; Shi, Jia; Zhang, Yuan; Gong, Li-Rong; Dong, Shu-An; Cao, Xin-Shun; Wu, Li-Li; Wu, Li-Na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.

  14. Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway

    Quanchao Sun

    2017-01-01

    Full Text Available Lung ischemia/reperfusion (I/R injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway.

  15. AN ELISA ASSAY FOR HEME OXYGENASE (HO-1)

    An ELISA assay for heme oxygenase (HO-l ) Abstract A double antibody capture ELISA for the HO-l protein has been developed to separately quantitate HO-I protein. The use of 2.5% NP40 detergent greatly assists in freeing HO-l protein from membranes and/or other cel...

  16. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs.

    Kim, Geon A; Lee, Eun Mi; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Hwang, Jong Ik; Alam, Zahid; Ahn, Curie; Lee, Byeong Chun

    2017-08-01

    As an alternative source of organs for transplantation into humans, attention has been directed to pigs due to their similarities in biological features and organ size. However, severe immune rejection has prevented successful xenotransplantation using pig organs and tissues. To overcome immune rejection, recently developed genetic engineering systems such as TALEN coupled with somatic cell nuclear transfer (SCNT) to make embryos could be used to produce pigs compatible with xenotransplantation. We used the TALEN system to target the non-Gal antigen cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene in pigs that is naturally deleted in humans. Gal-deleted cells expressing both soluble human tumor necrosis factor receptor I IgG 1 -Fc (shTNFRI-Fc) and human hemagglutinin -tagged-human heme oxygenase-1 (hHO-1) were transfected with a TALEN target for CMAH. Cells lacking CMAH were negatively selected using N-glyconeuraminic acid (Neu5Gc)/magnetic beads and the level of Neu5Gc expression of isolated cells were analyzed by FACS and DNA sequencing. Cloned embryos using 3 different genetically modified cell clones were respectively transferred into 3 recipients, with 55.6% (5/9) becoming pregnant and three cloned pigs were produced. Successful genetic disruption of the CMAH gene was confirmed by sequencing, showing lack of expression of CMAH in tail-derived fibroblasts of the cloned piglets. Besides decreased expression of Neu5Gc in piglets produced by SCNT, antibody-mediated complement-dependent cytotoxicity assays and natural antibody binding for examining immuno-reactivity of the quadruple gene modified pigs derived from endothelial cells and fibroblasts were reduced significantly compared to those of wild type animals. We conclude that by combining the TALEN system and transgenic cells, targeting of multiple genes could be useful for generating organs for xenotransplantation. We produced miniature pigs with quadruple modified genes CMAHKO/GTKO/shTNFRI-Fc/hHO

  17. Casein Glycomacropeptide Hydrolysates Exert Cytoprotective Effect against Cellular Oxidative Stress by Up-Regulating HO-1 Expression in HepG2 Cells

    Tiange Li

    2017-01-01

    Full Text Available Oxidative stress is considered as an important mediator in the progression of metabolic disorders. The objective of this study was to investigate the potential hepatoprotective effects and mechanisms of bovine casein glycomacropeptide hydrolysates (GHP on hydrogen peroxide (H2O2-induced oxidative damage in HepG2 cells. Results showed that GHP significantly blocked H2O2-induced intracellular reactive oxygen species (ROS generation and cell viability reduction in a dose-dependent manner. Further, GHP concentration-dependently induced heme oxygenase-1 (HO-1 expression and increased nuclear factor-erythroid 2-related factor 2 (Nrf2 nuclear translocation. Moreover, pretreatment of GHP increased the activation of p38 mitogen-activated protein kinase (p38 MAPK and extracellular signal-regulated protein kinase 1/2 (ERK1/2, which were shown to contribute to Nrf2-mediated HO-1 expression. Taken together, GHP protected HepG2 cells from oxidative stress by activation of Nrf2 and HO-1 via p38 MAPK and ERK1/2 signaling pathways. Our findings indicate that bovine casein glycomacropeptide hydrolysates might be a potential ingredient in the treatment of oxidative stress-related disorders and further studies are needed to investigate the protective effects in vivo.

  18. Peracetylated hydroxytyrosol, a new hydroxytyrosol derivate, attenuates LPS-induced inflammatory response in murine peritoneal macrophages via regulation of non-canonical inflammasome, Nrf2/HO1 and JAK/STAT signaling pathways.

    Montoya, Tatiana; Aparicio-Soto, Marina; Castejón, María Luisa; Rosillo, María Ángeles; Sánchez-Hidalgo, Marina; Begines, Paloma; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina

    2018-03-18

    The present study was designed to investigate the anti-inflammatory effects of a new derivative of hydroxytyrosol (HTy), peracetylated hydroxytyrosol (Per-HTy), compared with its parent, HTy, on lipopolysaccharide (LPS)-stimulated murine macrophages as well as potential signaling pathways involved. In particular, we attempted to characterize the role of the inflammasome underlying Per-HTy possible anti-inflammatory effects. Isolated murine peritoneal macrophages were treated with HTy or its derivative in the presence or absence of LPS (5 μg/ml) for 18 h. Cell viability was determined using sulforhodamine B (SRB) assay. Nitric oxide (NO) production was analyzed by Griess method. Production of pro-inflammatory cytokines was evaluated by enzyme-linked immunosorbent assay (ELISA) and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (STAT3), haem oxigenase 1 (HO1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and mitogen-activated protein kinases (MAPKs) activation was determined by Western blot. Per-HTy significantly reduced the levels of NO and pro-inflammatory cytokines as well as both COX-2 and iNOS expressions. Furthermore, Per-HTy treatment inhibited STAT3 and increased Nrf2 and HO1 protein levels in murine macrophages exposed to LPS. In addition, Per-HTy anti-inflammatory activity was related with an inhibition of non-canonical nucleotide binding domain (NOD)-like receptor (NLRP3) inflammasome pathways by decreasing pro-inflammatory interleukin (IL)-1β and IL-18 cytokine levels as consequence of regulation of cleaved caspase-11 enzyme. These results support that this new HTy derivative may offer a new promising nutraceutical therapeutic strategy in the management of inflammatory-related pathologies. Copyright © 2018. Published by Elsevier Inc.

  19. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response.

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun; Oh, Won Keun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata , and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (A β ) 42 -induced microglial activation related to Nrf2 and nuclear factor κ B (NF- κ B)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular A β 42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1 β , prostaglandin (PG)E 2 , and nitric oxide (NO) because of artificial phagocytic A β 42 . It decreased pNF- κ B accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits A β 42 -overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  20. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    Ji Yeon Seo

    2017-01-01

    Full Text Available Therapeutic approach of Alzheimer’s disease (AD has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1/nuclear factor (erythroid-derived 2-like 2 (Nrf2-mediated heme oxygenase (HO-1-inducing effects and the inhibitory activity of amyloid beta (Aβ42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL-6, IL-1β, prostaglandin (PGE2, and nitric oxide (NO because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS and cyclooxygenase II (COX-II in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  1. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  2. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise.

    Cai, Ming; Wang, Hong; Li, Jing-Jing; Zhang, Yun-Li; Xin, Lei; Li, Feng; Lou, Shu-Jie

    2016-10-01

    High fat diet (HFD)-induced obesity has been shown to reduce the levels of neuronal plasticity-related proteins, specifically brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN), in the hippocampus. However, the underlying mechanisms are not fully clear. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating gene expression and protein production by affecting stress signaling pathways and ER functions of protein folding and post-translational modification in peripheral tissues of obese rodent models. Additionally, HFD that is associated with hyperglycemia could induce hippocampal ERS, thus impairing insulin signaling and cognitive health in HFD mice. One goal of this study was to determine whether hyperglycemia and hyperlipidemia could cause hippocampal ERS in HFD-induced obese SD rats, and explore the potential mechanisms of ERS regulating hippocampal BDNF and SYN proteins production. Additionally, although regular aerobic exercise could reduce central inflammation and elevate hippocampal BDNF and SYN levels in obese rats, the regulated mechanisms are poorly understood. Nrf2-HO-1 pathways play roles in anti-ERS, anti-inflammation and anti-apoptosis in peripheral tissues. Therefore, the other goal of this study was to determine whether aerobic exercise could activate Nrf2-HO-1 in hippocampus to alleviate obesity-induced hippocampal ERS, which would lead to increased BDNF and SYN levels. Male SD rats were fed on HFD for 8weeks to establish the obese model. Then, 8weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that HFD-induced obesity caused hyperglycemia and hyperlipidemia, and significantly promoted hippocampal glucose transporter 3 (GLUT3) and fatty acid transport protein 1 (FATP1) protein expression. These results were associated with the activation of hippocampal ERS and ERS-mediated apoptosis. At the same time, we found that excessive hippocampal ERS not only

  3. Neutron diffraction studies of Ho1-xYxNi2B2C compounds

    Chang, L.J.; Tomy, C.V.; Paul, D.M.K.

    1996-01-01

    Neutron diffraction measurements have been carried out to investigate the nature of magnetic ordering in Ho(1-x)Y(x)Ni(2)B(2)C (x = 0, 0.1 and 0.2) compounds. HoNi(2)B(2)C shows a complex type of magnetic ordering below the superconducting transition, with a commensurate antiferromagnetic ordering...

  4. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  5. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang; He, Zehong; Wang, Xiuei; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn

    2017-04-01

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.

  6. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling.

    Yang, Wenjun; Huang, Jinfeng; Xiao, Bang; Liu, Yan; Zhu, Yiqing; Wang, Fang; Sun, Shuhan

    2017-01-01

    The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Heme oxygenase-1 (HO-1 expression in prostate cancer cells modulates the oxidative response in bone cells.

    Mercedes Ferrando

    Full Text Available Prostate cancer (PCa is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1 counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs, we demonstrated that HO-1 pharmacological induction (hemin treatment abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1 cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis.

  8. Induction of HO-1 in tissue macrophages and monocytes in fatal falciparum malaria and sepsis

    Liomba N

    2003-11-01

    Full Text Available Abstract Background As well as being inducible by haem, haemoxygenase -1 (HO-1 is also induced by interleukin-10 and an anti-inflammatory prostaglandin, 15d PGJ2, the carbon monoxide thus produced mediating the anti-inflammatory effects of these molecules. The cellular distribution of HO-1, by immunohistochemistry, in brain, lung and liver in fatal falciparum malaria, and in sepsis, is reported. Methods Wax sections were stained, at a 1:1000 dilution of primary antibody, for HO-1 in tissues collected during paediatric autopsies in Blantyre, Malawi. These comprised 37 acutely ill comatose patients, 32 of whom were diagnosed clinically as cerebral malaria and the other 5 as bacterial diseases with coma. Another 3 died unexpectedly from an alert state. Other control tissues were from Australian adults. Results Apart from its presence in splenic red pulp macrophages and microhaemorrhages, staining for HO-1 was confined to intravascular monocytes and certain tissue macrophages. Of the 32 clinically diagnosed cerebral malaria cases, 11 (category A cases had negligible histological change in the brain and absence of or scanty intravascular sequestration of parasitized erythrocytes. Of these 11 cases, eight proved at autopsy to have other pathological changes as well, and none of these eight showed HO-1 staining within the brain apart from isolated moderate staining in one case. Two of the three without another pathological diagnosis showed moderate staining of scattered monocytes in brain vessels. Six of these 11 (category A cases exhibited strong lung staining, and the Kupffer cells of nine of them were intensely stained. Of the seven (category B cases with no histological changes in the brain, but appreciable sequestered parasitised erythrocytes present, one was without staining, and the other six showed strongly staining, rare or scattered monocytes in cerebral vessels. All six lung sections not obscured by neutrophils showed strong staining of

  9. Quantitation of secretory protein levels by radioimmunoassay

    Klein, J.L.; Dawson, J.R.

    1978-01-01

    A radioimmunoassay was designed for the detection of secretory protein, a component of secretory immunoglobulin A, in human serum. The assay uses free secretory protein isolated from human colostrum, and antisera raised in rabbits to be purified antigen. The mean level of secretory protein in the control group was 2.34+-0.41 μg/ml (mean+-S.E.M.). The level in cord blood was slightly lower (0.74+-0.26 μg/ml), while the level in patients with ovarian carcinoma was significantly increased (12.67+-1.43 μg/ml). Pregnant women have increasingly secretory protein levels with increasing length of gestation (5.86+-2.02, 11.55+-1.30 and 17.00+-1.16 μg/ml for the first, second and third trimesters, respectively. (Auth.)

  10. The Cytoprotective Effects of E-α-(4-Methoxyphenyl-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC--A Novel and Non-Cytotoxic HO-1 Inducer.

    Kai B Kaufmann

    Full Text Available Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1, is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2'-hydroxychalcone, calythropsin and 2'-hydroxy-3,4,4'-trimethoxychalcone prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264

  11. Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells.

    Lin, Hung-Chih; Su, Shih-Li; Lu, Chia-Yang; Lin, Ai-Hsuan; Lin, Wan-Chun; Liu, Chin-San; Yang, Ya-Chen; Wang, Hsiu-Miao; Lii, Chong-Kuei; Chen, Haw-Wen

    2017-03-01

    Andrographolide, the main bioactive component of the medicinal plant Andrographis paniculata, has been shown to possess potent anti-inflammatory activity. Endothelin 1 (ET-1), a potent vasoconstrictor peptide produced by vascular endothelial cells, displays proinflammatory property. Hypoxia-inducible factor 1α (HIF-1α), the regulatory member of the transcription factor heterodimer HIF-1α/β, is one of the most important molecules that responds to hypoxia. Changes in cellular HIF-1α protein level are the result of altered gene transcription and protein stability, with the latter being dependent on prolyl hydroxylases (PHDs). In this study, inhibition of pro-inflammatory ET-1 expression and changes of HIF-1α gene transcription and protein stability under hypoxia by andrographolide in EA.hy926 endothelial-like cells were investigated. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2. We found that hypoxia stimulated the production of reactive oxygen species (ROS), the expression of HIF-1α mRNA and protein, and the expression and secretion of ET-1. These effects, however, were attenuated by co-exposure to andrographolide, bilirubin, and RuCO. Silencing Nrf2 and heme oxygenase 1 (HO-1) reversed the inhibitory effects of andrographolide on hypxoia-induced HIF-1α mRNA and protein expression. Moreover, andrographolide increased the expression of prolyl hydroxylases (PHD) 2/3, which hydroxylate HIF-1α and promotes HIF-1α proteasome degradation, with an increase in HIF-1α hydroxylation was noted under hypoxia. Inhibition of p38 MAPK abrogated the hypoxia-induced increases in HIF-1α mRNA and protein expression as well as ET-1 mRNA expression and secretion. Taken together, these results suggest that andrographolide suppresses hypoxia-induced pro-inflammatory ET-1 expression by activating Nrf2/HO-1, inhibiting p38 MAPK signaling, and promoting PHD2/3 expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 918-930, 2017. © 2016 Wiley

  12. MAT, a Novel Polyherbal Aphrodisiac Formulation, Enhances Sexual Function and Nrf2/HO-1 Pathway While Reducing Oxidative Damage in Male Rats

    Kazim Sahin

    2018-01-01

    Full Text Available Mucuna pruriens, Ashwagandha, and Tribulus terrestris are known as the enhancers for sexual health, functional activities, vitality, and longevity. These herbs had been widely used in the Ayurveda medicine as aphrodisiacs through the ages, and their efficacy was also verified separately in our previous publication. Therefore, the aim of this study was to determine the effects of Mucuna, Ashwagandha, and Tribulus complexes on sexual function in rats. Twenty-eight male rats allocated to four groups as follows: (i negative control (C; (ii positive control or sildenafil citrate treated group (5 mg/kg (S; (iii MAT1 (combination of 10 mg Mucuna (M + 10 mg Ashwagandha (A + 10 mg Tribulus (T/kg BW; (iv MAT 2 (20 mg Mucuna + 20 mg Ashwagandha + 20 mg Tribulus/kg BW. There was no significant difference found between the MAT1 and MAT2 groups while they showed significantly increased testosterone, follicle-stimulating hormone (FSH, and luteinizing hormone (LH levels when compared to the negative control. Significant increases in Nrf2/HO1 levels and decreases in NF-κB were detected in MAT groups similar to the decrease in serum and testis malondialdehyde (MDA levels as compared to both controls. The sperm motility, count, and rate also significantly improved in both MAT groups, while ALT, AST, creatinine, ALP, and urea levels did not change in any of the groups. Oral consumption of MATs combination in male rats resulted in inhibition of NF-κB and MDA and also increased sex hormones with Nrf2-mediated HO-1 induction. MAT combinations may improve sexual functions by increasing levels of sexual hormones and regulation of NF-κB and Nrf2/HO-1 signaling pathways.

  13. MAT, a Novel Polyherbal Aphrodisiac Formulation, Enhances Sexual Function and Nrf2/HO-1 Pathway While Reducing Oxidative Damage in Male Rats

    Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Akdemir, Fatih; Yilmaz, Ismet

    2018-01-01

    Mucuna pruriens, Ashwagandha, and Tribulus terrestris are known as the enhancers for sexual health, functional activities, vitality, and longevity. These herbs had been widely used in the Ayurveda medicine as aphrodisiacs through the ages, and their efficacy was also verified separately in our previous publication. Therefore, the aim of this study was to determine the effects of Mucuna, Ashwagandha, and Tribulus complexes on sexual function in rats. Twenty-eight male rats allocated to four groups as follows: (i) negative control (C); (ii) positive control or sildenafil citrate treated group (5 mg/kg) (S); (iii) MAT1 (combination of 10 mg Mucuna (M) + 10 mg Ashwagandha (A) + 10 mg Tribulus (T)/kg BW); (iv) MAT 2 (20 mg Mucuna + 20 mg Ashwagandha + 20 mg Tribulus/kg BW). There was no significant difference found between the MAT1 and MAT2 groups while they showed significantly increased testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels when compared to the negative control. Significant increases in Nrf2/HO1 levels and decreases in NF-κB were detected in MAT groups similar to the decrease in serum and testis malondialdehyde (MDA) levels as compared to both controls. The sperm motility, count, and rate also significantly improved in both MAT groups, while ALT, AST, creatinine, ALP, and urea levels did not change in any of the groups. Oral consumption of MATs combination in male rats resulted in inhibition of NF-κB and MDA and also increased sex hormones with Nrf2-mediated HO-1 induction. MAT combinations may improve sexual functions by increasing levels of sexual hormones and regulation of NF-κB and Nrf2/HO-1 signaling pathways. PMID:29853975

  14. hHO-1 combined with GATA-4 transduction promotes myocardial transdifferentiation and anti- apoptosis of rat mesenchymal stem cells

    Ning-bo DENG

    2017-06-01

    Full Text Available Objectives To explore if the rat bone marrow mesenchymal stem cells (BMSCs modified by human heme oxygenase 1 (hHO-1 gene combined with GATA-4 gene may promote the ability of anti-apoptosis and myocardial transdifferentiation in vitro in hypoxia ischemic environment. Methods The rat BMSCs were isolated and cultured by whole bone marrow adherence and identified in vitro, and then were transfected with recombinant adenovirus; Western blotting was used to determinate the optimal time of gene expression; the genetically modified BMSCs were taken to hypoxia serum-free conditions simulating ischemia hypoxia microenvironment in vivo; CCK-8 kit and trypan blue staining were performed to detect the 12, 24, 48 and 72h survival rates in hypoxia ischemia respectively; flow cytometry was used to detect the apoptosis of BMSCs in hypoxia ischemia for 24h. The cardiomyocyte-specific cardiac troponin I (cTnI was detected by Western blotting and cellular immunofluorescence. Results The 12, 24, 48 and 72h survival rates were higher in hHO-1+GATA-4 group cultured in ischemia and hypoxia condition than in hHO-1 group (P<0.05 and GATA-4 group (P<0.05. After 24h cultivation in ischemia hypoxia condition, the apoptotic rates were lower in hHO-1+GATA-4 group than in hHO-1 group (P<0.05 and GATA-4 group (P<0.05. No significant difference existed in cTnI expressions between GATA-4 group and hHO-1+GATA-4 group. Conclusion Compared with transfection of hHO-1 or GATA-4 single gene, hHO-1 combined with GATA-4 transduction can significantly increase the survival rate of BMSCs in hypoxia ischemic condition, but myocardial transdifferentiation does not increase significantly. DOI: 10.11855/j.issn.0577-7402.2017.04.08

  15. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages.

    Xu, Xiaolong; Guo, Yuhong; Zhao, Jingxia; He, Shasha; Wang, Yan; Lin, Yan; Wang, Ning; Liu, Qingquan

    2017-09-01

    Current data have shown that punicalagin (PUN), an ellagitannin isolated from pomegranate, possesses anti-inflammatory and anti-oxidant properties; however, its direct targets have not yet been reported. This is the first report that PTP1B serves as a direct target of PUN, with IC 50 value of 1.04μM. Results from NPOI further showed that the K on and K off of PUN-PTP1B complex were 3.38e2M -1 s -1 and 4.13e-3s -1 , respectively. The active site Arg24 of PTP1B was identified as a key binding site of PUN by computation simulation and point mutation. Moreover, inhibition of PTP1B by PUN promoted an M2c-like macrophage polarization and enhanced anti-inflammatory cytokines expression, including IL-10 and M-CSF. Based on gene expression profile, we elucidated that PUN treatment significantly up-regulated 275 genes and down-regulated 1059 genes. M1-like macrophage marker genes, such as Tlr4, Irf1/2, Hmgb1, and Stat1 were down-regulated, while M2 marker genes, including Tmem171, Gpr35, Csf1, Il1rn, Cebpb, Fos, Vegfα, Slc11a1, and Bhlhe40 were up-regulated in PUN-treated macrophages. Hmox-1, a gene encoding HO-1 protein, was preferentially expressed with 16-fold change. Inhibition of HO-1 obviously restored PUN-induced M2 polarization and IL-10 secretion. In addition, phosphorylation of both Akt and STAT3 contributed to PUN-induced HO-1 expression. This study provided new insights into the mechanisms of PUN-mediated anti-inflammatory and anti-oxidant activities and provided new therapeutic strategies for inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. IN VITRO STUDIES ON HEME OXYGENASE-1 AND P24 ANTIGEN HIV-1 LEVEL AFTERHYPERBARIC OXYGEN TREATMENTOFHIV-1 INFECTED ON PERIPHERAL BLOOD MONONUCLEAR CELLS (PBMCS).

    Budiarti, Retno; Kuntaman; Nasronudin; Suryokusumo; Khairunisa, Siti Qamariyah

    2018-01-01

    Heme oxygenase-1 (HO-1) is a protein secreted by immune cells as a part of immune response mechanism.HO-1 can be induced by variety agents that causingoxidative stress, such as exposure to 100% oxygenat2,4 ATA pressure.It plays a vital role in maintaining cellular homeostasis.This study was conducted to identify the effect of hyperbaric oxygen exposure in cultured ofPBMCthat infected by HIV-1. Primary culture of PBMCs were isolated from 16 healthy volunteers and HIV-1 infected MT4 cell line by co-culture. The PBMCs were aliquoted into two wells as control group and treatment group. The 16 samples of HIV-1 infected PBMCwere exposed to oxygen at 2,4 ATA in animal hyperbaric chamber forthree times in 30 minutes periods with 5 minutes spacing period, that called 1 session.The Treatment done on 5 sessions within 5 days. 16 samples of HIV-1 infected PMBCs that have no hyperbaric treatment became control group.The supernatant were measured the HO-1 production by ELISA andmRNA expression of HO-1 by real time PCR and the number ofantigen p24 HIV-1by ELISA. The result showed that there was no increasing of HO-1 at both mRNA level and protein level, there was a decreasing number of antigen p24 HIV-1 at the treatment group. In addition, hyperbaric exposure could not increase the expression of HO-1, more over the viral replication might be reduced by other mechanism. Hyperbaric oxygen could increases cellular adaptive response of PBMCs infected HIV-1 through increased expression of proteins that can inhibit HIV viralreplication.

  17. Soybean-Derived Phytoalexins Improve Cognitive Function through Activation of Nrf2/HO-1 Signaling Pathway

    Ji Yeon Seo

    2018-01-01

    Full Text Available As soy-derived glyceollins are known to induce antioxidant enzymes in various types of cells and tissues, we hypothesized that the compounds could protect neurons from damage due to reactive oxygen species (ROS. In order to examine the neuroprotective effect of glyceollins, primary cortical neurons collected from mice and mouse hippocampal HT22 cells were challenged with glutamate. Glyceollins attenuated glutamate-induced cytotoxicity in primary cortical neuron isolated from mice carrying wild-type nuclear factor (erythroid-derived 2-like 2 (Nrf2, but the compounds were ineffective in those isolated from Nrf2 knockout mice, suggesting the involvement of the Nrf2 signaling pathway in glyceollin-mediated neuroprotection. Furthermore, the inhibition of heme oxygenase-1 (HO-1, a major downstream enzyme of Nrf2, abolished the suppressive effect of glyceollins against glutamate-induced ROS production and cytotoxicity, confirming that activation of HO-1 by glyceollins is responsible for the neuroprotection. To examine whether glyceollins also improve cognitive ability, mice pretreated with glyceollins were challenged with scopolamine and subjected to behavioral tests. Glyceollins attenuated scopolamine-induced cognitive impairment of mice, but failed to enhance memory in Nrf2 knockout mice, suggesting that the memory-enhancing effect is also mediated by the Nrf2 signaling pathway. Overall, glyceollins showed neuroprotection against glutamate-induced damage, and attenuated scopolamine-induced memory deficits in an Nrf2-dependent manner.

  18. Antioxidant and Antifibrotic Effect of a Herbal Formulation In Vitro and in the Experimental Andropause via Nrf2/HO-1 Signaling Pathway

    Woong Jin Bae

    2017-01-01

    Full Text Available The Korean herbal formulation Ojayeonjonghwan is used for improving late-onset hypogonadism (LOH symptoms such as erectile dysfunction (ED. A previous research suggested that a modified Ojayeonjonghwan (KH-204 could be used as an alternative to the treatment for ED. The pharmacological effects were examined in different conditions, including in vitro and in vivo. We measured the survival rate of TM3 Leydig cells under the oxidative stress condition. The s.c. injection of leuprorelin was used to induce androgen deprivation. We measured serum testosterone levels, oxidative stress, and apoptosis. The results of the treatment by KH-204 (1 preserved TM3 cells from oxidative stress by improving the expression of nuclear factor erythroid 2-related factor 2 (Nrf2/heme oxygenase-1 (HO-1; (2 lowered the expression of transforming growth factor-beta (TGF-β 1/SMAD; (3 increased the average of serum testosterone in androgen-deprived male rats; (4 kept the activation of spermatogenesis; (5 upgraded the contents of 8-hydroxy-20-deoxyguanosine (8-OHdG and degraded the contents of superoxide dismutase (SOD; and (6 reduced apoptosis. We studied that KH-204 improved testicular dysfunction in LOH. It is likely, at least in part, to degrade oxidative stress through the Nrf2/HO-1 pathway. These findings may offer credible evidences for the use of new alternative therapies to treat LOH.

  19. Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin

    Hyosang Kim

    2017-01-01

    Full Text Available Endoplasmic reticulum (ER stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1 hemeoxygenase-1 (HO-1/thioredoxin pathway. Renal tubular cells, tunicamycin (TM-induced ER stress, and unilateral ureteral obstruction (UUO mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78 and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α, through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor. Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition.

  20. Spatiotemporal expression of heme oxygenase-1 detected by in vivo bioluminescence after hepatic ischemia in HO-1/luc mice

    Su, Huawei; van Dam, Gooitzen M.; Buis, Carlijn I.; Visser, Dorien S.; Hesselink, Jan Willem; Schuurs, Theo A.; Leuvenink, Henri G. D.; Contag, Christopher H.; Porte, Robert J.

    Upregulation of heme oxygenase-1 (HO-1) has been proposed as a critical mechanism protecting against cellular stress during liver transplantation, providing a potential target for new therapeutic interventions. We investigated the feasibility of in vivo bioluminescence imaging (BLI) to noninvasively

  1. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression

    Zhu Wei; Xu Jing; Ge Yangyang

    2014-01-01

    Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant and free radical scavenger that may have therapeutic applications for the treatment of many disorders. Radiation therapy is widely used for the treatment of various types of cancers; however, radiation-induced skin injury remains a serious concern. EGCG has not yet been reported as protecting skin cells against ionizing radiation. In the present study, we investigated whether EGCG confers cytoprotection against ionizing radiation. We found that, compared with the control, pretreatment with EGCG significantly enhanced the viability of human skin cells that were irradiated with X-rays, and decreased apoptosis induced by X-ray irradiation. Mito-Tracker assay showed that EGCG suppressed the damage to mitochondria induced by ionizing radiation via upregulation of SOD2. Reactive oxygen species (ROS) in HaCaT cells were significantly reduced when pretreated with EGCG before irradiation. Radiation-induced γH2AX foci, which are representative of DNA double-strand breaks, were decreased by pretreatment with EGCG. Furthermore, EGCG induced the expression of the cytoprotective molecule heme oxygenase-1 (HO-1) in a dose-dependent manner via transcriptional activation. HO-1 knockdown or treatment with the HO-1 inhibitor tin protoporphyrin (SnPPIX) reversed the protective role of EGCG, indicating an important role for HO-1. These results suggest that EGCG offers a new strategy for protecting skin against ionizing radiation. (author)

  2. Antihepatocarcinoma Effect of Portulaca oleracea L. in Mice by PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB Pathway

    Guoyin, Zheng; Hao, Peng; Min, Li; Wei, Gu; Zhe, Chen

    2017-01-01

    The purpose of the present study was to evaluate the pharmacological effects of Portulaca oleracea L. (Purslane) (PL) on N-nitrosodiethylamine- (NDEA-) induced hepatocellular carcinomas (HCC) and explore its potential mechanism. Mice were randomly assigned to four groups: control group, NDEA group, NDEA + Purslane (100 mg/kg) group, and NDEA + Purslane (200 mg/kg) group. The animal of each group was given NDEA (100 ppm) in drinking water. 1 h later, Purslane dissolved in PBS was intragastrically administered for continuous seven days. The results showed that Purslane reduced the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in liver and serum. Purslane also reduced the contents of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), and methane dicarboxylic aldehyde (MDA) and restored the activity of superoxygen dehydrogenises (SOD) in serum. Purslane could obviously attenuate the hepatic pathological alteration. Furthermore, treatment with Purslane effectively inhibited the phosphorylations of phosphatidylinositol 3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), nuclear factor-kappa B (NF-κB), and inhibitor of NF-κBα (IκBα) and upregulated the expressions of NF-E2-related factor 2 (Nrf2) and heme oxygenase- (HO-) 1. In conclusion, our research suggested that Purslane exhibited protective effects on NDEA-induced hepatocellular carcinomas by anti-inflammatory and antioxidative properties via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway. PMID:28659990

  3. Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway.

    Wan, Peixing; Su, Wenru; Zhang, Yingying; Li, Zhidong; Deng, Caibin; Zhuo, Yehong

    2017-09-15

    Acute glaucoma is one of the leading causes of irreversible vision impairment characterized by the rapid elevation of intraocular pressure (IOP) and consequent retinal ganglion cell (RGC) death. Oxidative stress and neuroinflammation have been considered critical for the pathogenesis of RGC death in acute glaucoma. Trimetazidine (TMZ), an anti-ischemic drug, possesses antioxidative and anti-inflammatory properties, contributing to its therapeutic potential in tissue damage. However, the role of TMZ in acute glaucoma and the underlying molecular mechanisms remain elusive. Here, we report that treatment with TMZ significantly attenuated retinal damage and RGC death in mice with acute glaucoma, with a significant decrease in reactive oxygen species (ROS) and inflammatory cytokine production in the retina. Furthermore, TMZ treatment directly decreased ROS production and rebalanced the intracellular redox state, thus contributing to the survival of RGCs in vitro TMZ treatment also reduced the production of inflammatory cytokines in vitro Mechanistically, the TMZ-mediated inhibition of apoptosis and inflammatory cytokine production in RGCs occurred via the regulation of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1/caspase-8 pathway. Moreover, the TMZ-mediated neuroprotection in acute glaucoma was abrogated when an HO-1 inhibitor, SnPP, was used. Our findings identify potential mechanisms of RGC apoptosis and propose a novel therapeutic agent, TMZ, which exerts a precise neuroprotective effect against acute glaucoma. © 2017 The Author(s).

  4. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.

  5. Protein C activity and antigen levels in childhood

    van Teunenbroek, A.; Peters, M.; Sturk, A.; Borm, J. J.; Breederveld, C.

    1990-01-01

    Hereditary protein C deficiency is an important risk factor for thrombosis. To enable its diagnosis shortly after birth, we determined reference values of protein C antigen and activity levels for the first 3 months of life. To establish an age-related range of protein C levels we also determined

  6. HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study.

    Jiang, Yibo; Chen, Lijuan; Tang, Yaoliang; Ma, Genshan; Shen, Chengxing; Qi, Chunmei; Zhu, Qi; Yao, Yuyu; Liu, Naifeng

    2010-05-01

    To determine the effect of intracoronary transfer of superparamagnetic iron oxide (SPIO) labeled heme oxygenase-1 (HO-1) overexpressed bone marrow stromal cells (BMSCs) in a porcine myocardial ischemia/reperfusion model. Cell apoptosis was assayed and supernatant cytokine concentrations were measured in BMSCs that underwent hypoxia/reoxygen in vitro. Female mini-swines that underwent 1 h LAD occlusion followed by 1 h reperfusion were randomly allocated to receive intracoronary saline (control), 1 x 10(7) SPIO-labeled BMSCs transfected with pcDNA3.1-Lacz plasmid (Lacz-BMSCs), pcDNA3.1-human HO-1 (HO-1-BMSCs), pcDNA3.1-hHO-1 pretreated with a HO inhibitor, tin protoporphyrin (SnPP, n = 10 each). MRI and postmortem histological analysis were made at 1 week or 3 months thereafter. Post hypoxia/reoxygen in vitro, apoptosis was significantly reduced, supernatant VEGF significantly increased while TNF-alpha and IL-6 significantly reduced in HO-1-BMSCs group compared with Lacz-BMSCs group (all p < 0.05). Myocardial expression of VEGF was significantly higher in HO-1-BMSCs than in Lacz-BMSCs group at 1 week post transplantation (all p < 0.05). Signal voids induced by the SPIO were detected in the peri-infarction region in all BMSC groups at 1 week but not at 3 months post transplantation and the extent of the hypointense signal was the highest in HO-1-BMSCs group, and histological analysis showed that signal voids represented cardiac macrophages that engulfed the SPIO-labeled BMSCs. Pretreatment with SnPP significantly attenuated the beneficial effects of HO-1-BMSCs. Transplantation of HO-1-overexpressed BMSCs significantly enhanced the beneficial effects of BMSCs on improving cardiac function in this model.

  7. Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1

    Karl F. Braun

    2011-01-01

    Full Text Available Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS. The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO- 1 and superoxide-dismutase- (SOD- 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.

  8. Effects of increasing dietary protein levels on growth, feed utilization ...

    Yomi

    2012-01-05

    Jan 5, 2012 ... The effect of different dietary protein levels on growth performance and on feed utilization of catfish. (Heterobranchus ... (Legendre, 1991) because of its taste, fast growth rate ..... diet containing 40% protein had high growth with low food intake and feed ... protein rate (45%) combined with a bad utilization of.

  9. Changes in Serum Proteins and Creatinine levels in HIV Infected ...

    This study examined the level of total serum proteins and globulins in HIV infected Nigerians. 64 patients with HIV infection and 10 apparently healthy subjects were recruited from 3 hospitals in Lagos Metropolis. They were examined for the presence of TB and malaria. Serum total protein, albumin and creatinine levels ...

  10. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  11. In vitro studies on heme oxygenase-1 and P24 antigen HIV-1 level ...

    Background: Heme oxygenase-1 (HO-1) is a protein secreted by immune cells as a part of immune response mechanism.HO-1 can be induced by variety agents that causingoxidative stress, such as exposure to 100% oxygenat2,4 ATA pressure.It plays a vital role in maintaining cellular homeostasis.This study was ...

  12. Prunella vulgaris Suppresses HG-Induced Vascular Inflammation via Nrf2/HO-1/eNOS Activation

    Ho Sub Lee

    2012-01-01

    Full Text Available Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV on high glucose (HG-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS. HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1, eNOS, and nuclear factor E2-related factor 2 (Nrf2, which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases.

  13. Dietary protein level and performance of growing Baladi kids.

    Abdelrahman, M M; Aljumaah, R S

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (Pkids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity.

  14. Production and characterization of soluble human TNFRI-Fc and human HO-1(HMOX1) transgenic pigs by using the F2A peptide.

    Park, Sol Ji; Cho, Bumrae; Koo, Ok Jae; Kim, Hwajung; Kang, Jung Taek; Hurh, Sunghoon; Kim, Su Jin; Yeom, Hye Jung; Moon, Joonho; Lee, Eun Mi; Choi, Ji Yei; Hong, Ju Ho; Jang, Goo; Hwang, Joing-Ik; Yang, Jaeseok; Lee, Byeong Chun; Ahn, Curie

    2014-06-01

    Generation of transgenic pigs for xenotransplantation is one of the most promising technologies for resolving organ shortages. Human heme oxygenase-1 (hHO-1/HMOX1) can protect transplanted organs by its strong anti-oxidative, anti-apoptotic, and anti-inflammatory effects. Soluble human TNFRI-Fc (shTNFRI-Fc) can inhibit the binding of human TNF-α (hTNF-α) to TNF receptors on porcine cells, and thereby, prevent hTNF-α-mediated inflammation and apoptosis. Herein, we successfully generated shTNFRI-Fc-F2A-HA-hHO-1 transgenic (TG) pigs expressing both shTNFRI-Fc and hemagglutinin-tagged-human heme oxygenase-1 (HA-hHO-1) by using an F2A self-cleaving peptide. shTNFRI-Fc and HA-hHO-1 transgenes containing the F2A peptide were constructed under the control of the CAG promoter. Transgene insertion and copy number in the genome of transgenic pigs was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Expressions of shTNFRI-Fc and HA-hHO-1 in TG pigs were confirmed using PCR, RT-PCR, western blot, ELISA, and immunohistochemistry. shTNFRI-Fc and HA-hHO-1 were expressed in various organs, including the heart, lung, and spleen. ELISA assays detected shTNFRI-Fc in the sera of TG pigs. For functional analysis, fibroblasts isolated from a shTNFRI-Fc-F2A-HA-hHO-1 TG pig (i.e., #14; 1 × 10(5) cells) were cultured with hTNF-α (20 ng/mL) and cycloheximide (10 μg/mL). The viability of shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was significantly higher than that of the wild type (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 24 h, 31.6 ± 3.2 vs. 60.4 ± 8.3 %, respectively; p hHO-1 TG pig fibroblasts was lower than that of the wild type pig fibroblasts (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 12 h, 812,452 ± 113,078 RLU vs. 88,240 ± 10,438 RLU, respectively; p hHO-1 TG pigs generated by the F2A self-cleaving peptide express both shTNFRI-Fc and HA-hHO-1 molecules, which provides protection against oxidative and inflammatory injury

  15. Effect Of Dietary Protein Levels On The Performance And Carcass ...

    Effect Of Dietary Protein Levels On The Performance And Carcass ... Nigerian Journal of Animal Production ... Response criteria such as weight gain and feed conversion ratio, among others, and carcass characteristics were measured.

  16. Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1.

    Aayadi, Hoda; Mittal, Smriti P K; Deshpande, Anjali; Gore, Makarand; Ghaskadbi, Saroj S

    2017-11-01

    Geraniin, a hydrolysable tannin, used in traditional medicine in Southeast Asia, is known to exhibit various biological activities. As an antioxidant it is known to up-regulate phase II enzyme Heme oxygenase-1 (HO-1). However its mechanism is not clearly understood. Nuclear factor erythroid-derived 2 related factor 2 (Nrf-2) is transcriptionally up-regulated by Extracellular signal-regulated kinase (ERK) 1/2 and retained in nucleus due to inactivated Glycogen synthase kinase 3 beta (GSK-3β). Geraniin additionally down-regulates expression of microRNA 217 and 377 (miR-217 and miR-377) which target HO-1 mRNA. Expression of BTB and CNC homolog 1 (BACH-1), another regulator of HO-1, is also down-regulated by up-regulating microRNA 98 (miR-98), a negative regulator of BACH-1. Thus, geraniin up-regulates HO-1 expression both through activating its positive regulator Nrf-2 and by down-regulating its negative regulator BACH-1. Up-regulation of HO-1 also confers protection to HepG2 cells from tertiary butyl hydroperoxide (TBH) induced cytotoxicity. [BMB Reports 2017; 50(11): 560-565].

  17. Protein Expression Analyses at the Single Cell Level

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  18. Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As+3- and MMA+3-induced apoptosis through inhibition of telomerase activity via JNK activation

    Shen, S.-C.; Yang, L.-Y.; Lin, H.-Y.; Wu, C.-Y.; Su, T.-H.; Chen, Y.-C.

    2008-01-01

    The effects of six arsenic compounds including As +3 , MMA +3 , DMA +3 , As +5 , MMA +5 , and DMA +5 on the viability of NIH3T3 cells were examined. As +3 and MMA +3 , but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As +3 and MMA +3 were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As +3 and MMA +3 treatments. An increase in the intracellular peroxide level was examined in As +3 - and MMA +3 -treated NIH3T3 cells, and As +3 - and MMA +3 -induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As +3 - and MMA +3 -induced cytotoxicity. Suppression of JNKs significantly inhibited As +3 - and MMA +3 -induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As +3 - and MMA +3 -induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As +3 or MMA +3 . These data provide the first evidence to indicate that apoptosis induced by As +3 and MMA +3 is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved

  19. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  20. Investigation of the connection between the quality of protein, protein level and endogenous N excretion

    Koehler, R.; Gebhardt, G.

    1979-01-01

    The influence of various protein qualities as well as of different levels of protein on the amount of endogenous N excretion, metabolic fecal nitrogen (MFN) and endogenous urinary N (EUN) was determined in growing albino rats. The test rations were labelled with admixtures of 15 N-DL-methionine and 15 N-DL-lysine, respectively, or contained feed protein enriched with 15 N. EUN and MFN and their sum (the N maintenance requirement) showed the influence of the respective protein source and its dependence on the protein level. The endogenous N excretions showed an opposite tendency to the N balance; for high-quality protein feedstuffs with a high N balance (e.g. dried eggs) they are lower than for protein sources of inferior quality, with a low N-balance only (e.g. wheat gluten). Presumably this interaction of retention and maintenance is due to the complementary effect of exogenous and endogenous amino acids in the N and amino acid pool, respectively. Provided that the N dose and the live weight of the animals are comparable, the N balance appears to be more suitable as parameter for the description of the protein quality and the calculation of the protein utilisation than N retention, as the sum of N balance and the values of MFN and EUN (depending on the feedstuffs and the N level). (author)

  1. Human serum protein and C-reactive protein levels among HIV ...

    Human serum protein and C-reactive protein levels were determined among HIV patients visiting St Camillus Hospital, Uromi, Edo State, Nigeria, between January to March, 2013. Fifty (50) HIV patients (20 males; 30 females) and 50 control subjects (24 males; 26 females) were enrolled for this study. The clinical status of ...

  2. Increased Plasma Levels of Heme Oxygenase-1 in Human Brucellosis.

    Chen, Zhe; Zhang, Yu-Xue; Fu, Dong-Wei; Gao, Qing-Feng; Ge, Feng-Xia; Liu, Wei-Hua

    2016-08-01

    Brucellosis is associated with inflammation and the oxidative stress response. Heme oxygenase-1 (HO-1) is a cytoprotective stress-responsive enzyme that has anti-inflammatory and anti-oxidant effects. Nevertheless, the role of HO-1 in human brucellosis has not yet been studied. The aim of this study was to examine the plasma levels of HO-1 in patients with brucellosis and to evaluate the ability of plasma HO-1 levels as an auxiliary diagnosis, a severity predictor, and a monitor for brucellosis treatments. A total of 75 patients with brucellosis were divided into the acute, subacute, chronic active, and chronic stable groups. An additional 20 volunteers were included as the healthy control group. The plasma HO-1 levels and other laboratory parameters were measured in all groups. Furthermore, the plasma levels of HO-1 in the acute group were compared before and after treatment. The plasma HO-1 levels were considerably increased in the acute (4.97 ± 3.55), subacute (4.98 ± 3.23), and chronic active groups (4.43 ± 3.00) with brucellosis compared to the healthy control group (1.03 ± 0.63) (p brucellosis (r = 0.707, p brucellosis status and may be used as a supplementary plasma marker for diagnosing brucellosis and monitoring its treatment.

  3. High-level transient expression of recombinant protein in lettuce.

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  4. Association of plasma protein C levels and coronary artery disease ...

    Several studies have shown the risk factor causes of coronary heart disease. In this study we tested the hypothesis that plasma protein C level might be used as a biomarker for coronary heart disease and myocardial infarction. The study included 60 men that were classified into 3 groups according to clinical examination; ...

  5. Serum protein and enzyme levels in rats following administration of ...

    The effects of caffeinated and non-caffeinated paracetamol administration, with or without vitamins A and E supplementation on the protein and enzyme levels in Wistar albino rats were investigated using cafeinated paracetamol and paracetamol as caffeinated and non-caffeinated paracetamol respectively, and water ...

  6. Effect Of Different Protein Levels on The Performance Of Growing ...

    T4 was superior to other treatments in terms of feed to gain ratio, efficiency of feed utilization and reproductive performance. Snails in T1 with 10% CP failed to lay eggs and had the least developed reproductive system. A diet of 15-20% C. P is therefore recommended for growing snails. Key words: Protein levels, snails, ...

  7. Interactive effect of dietary protein level and zilpaterol hydrochloride ...

    Bonsmara type steers were used to determine the effect of dietary zilpaterol hydrochloride (ZH) in combination with different dietary crude protein (CP) levels (100, 120 and 140 g CP/kg) on growth performance and meat quality. Treatment groups (T) consisted of 12 steers each. T1 – 100 g CP/kg + 0.15 mg ZH/kg live weight ...

  8. Effect Of Crude Protein Levels And Follicle Stimulation On Egg ...

    Two groups received 16% crude protein (CP) level diets and the other two groups, 32%. One each of the two groups received follicle stimulation, induced by administration of Clomifene citrate (1.5mg/kg) via cathetered 5ml syringe through the 10week experimental period, with feed and water offered ad libitum.

  9. Effect of dietary crude protein level on the performance and ...

    ویرایه

    2013-06-26

    Jun 26, 2013 ... The effects of increasing dietary levels of crude protein (CP) on growth, feed intake, feed efficiency and nutrient apparent ... matter intake (DMI) than the kids fed with 10.5, 12.8, .... Food and Agriculture Organization. Database ...

  10. The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide

    Lee, Wen-Ying [Department of Pathology, Chi-Mei Hospital, Tainan, Taiwan (China); Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Chen, Yen-Chou [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Shih, Chwen-Ming; Lin, Chun-Mao; Cheng, Chia-Hsiung; Chen, Ku-Chung [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Cheng-Wei, E-mail: cwlin@tmu.edu.tw [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-01-01

    Heme oxygenase (HO)-1 is an oxidative stress-response enzyme which catalyzes the degradation of heme into bilirubin, ferric ion, and carbon monoxide (CO). Induction of HO-1 was reported to have antitumor activity; the inhibitory mechanism, however, is still unclear. In the present study, we found that treatment with [Ru(CO){sub 3}Cl{sub 2}]{sub 2} (RuCO), a CO-releasing compound, reduced the growth of human MCF7 and MDA-MB-231 breast cancer cells. Analysis of growth-related proteins showed that treatment with RuCO down-regulated cyclinD1, CDK4, and hTERT protein expressions. Interestingly, RuCO treatment resulted in opposite effects on wild-type and mutant p53 proteins. These results were similar to those of cells treated with geldanamycin (a heat shock protein (HSP)90 inhibitor), suggesting that RuCO might affect HSP90 activity. Moreover, RuCO induced mutant p53 protein destabilization accompanied by promotion of ubiquitination and proteasome degradation. The induction of HO-1 by cobalt protoporphyrin IX (CoPP) showed consistent results, while the addition of tin protoporphyrin IX (SnPP), an HO-1 enzymatic inhibitor, diminished the RuCO-mediated effect. RuCO induction of HO-1 expression was reduced by a p38 mitogen-activated protein kinase inhibitor (SB203580). Additionally, treatment with a chemopreventive compound, curcumin, induced HO-1 expression accompanied with reduction of HSP90 client protein expression. The induction of HO-1 by curcumin inhibited 12-O-tetradecanoyl-13-acetate (TPA)-elicited matrix metalloproteinase-9 expression and tumor invasion. In conclusion, we provide novel evidence underlying HO-1's antitumor mechanism. CO, a byproduct of HO-1, suppresses HSP90 protein activity, and the induction of HO-1 may possess potential as a cancer therapeutic. - Highlights: • CO and HO-1 inhibited the growth of human breast cancer cells. • CO and HO-1 attenuated HSP90 and its client proteins expression. • CO induced mutant p53 protein

  11. The Cutoff Level for Urine Protein in Urine Immunofixation Electrophoresis.

    Ellidag, Hamit Yasar; Curek, Gulten; Eren, Esin; Aydin, Ozgur; Yilmaz, Necat

    2015-01-01

    Immunofixation electrophoresis (IFE) maintains its importance in diagnosing monoclonal gammopathies. In particular, urine IFE detects free light chains (FLC) in urine samples even at low concentrations and offers higher sensitivity compared to serum electrophoresis and serum IFE. The aim of the present study was to determine the place and significance of quantitative urinary protein measurement before IFE in interpreting the results of subsequent IFE and to determine the most appropriate protein concentrations for the appearance of bands. The records of a total of 600 patients, who underwent screening for Bence Jones proteinuria using IFE on 24-hour urine, were retrospectively reviewed. Urine IFE was performed using Helena SAS-I and SAS-I devices. The total protein concentration in the urine was quantitatively determined by the Pyrogallol red method, and the urine albumin level was determined using the immunoturbidimetric method. These analyses were measured on an Olympus/Beckmann AU5800. The evaluation of IFE results revealed that 311 patients had normal results, 108 patients had monoclonal bands, five patients had biclonal bands, 28 had polyclonal bands, and 148 patients had various degrees of proteinuria. ROC curves were created in order to determine the most appropriate urinary protein and albumin levels to observe bands in IFE. Accordingly, urine baseline protein level (mg/dL) showed the highest AUC value (cutoff value: 19.4 mg/dL, sensitivity: 92%, specificity: 98.2%, AUC: 0.972). The present study showed that quantitative protein measurement before IFE eliminated the disadvantages associated with the IFE method and its interpretation.

  12. Proteins in Complementary Food: What Is the Healthiest Level?

    О. K. Netrebenko

    2015-01-01

    Full Text Available Adequate protein consumption in infants is a heavily debated issue. First, it is related to the formation of a new scientific field — “Infant prerequisites of man’s wellness and illness,” which directly indicates that excessive intake of proteins during infancy has long-term consequences and greatly contributes to obesity and chronic infectious diseases in adults; second, it is related to new technologies, which improve the protein component of infant formulas and bring them at par with breast milk in terms of quality and quantity. High protein consumption is related to bottle feeding, because starter and further infant formulas are richer in protein than breast milk. Protein-rich menus trigger production of insulinogenic amino acids, insulin and the insulin-like growth factor (IGF-1. High IFTcombined with branched-chain amino acids (leucine, valine, isoleucine, threonine activates a set of signalling molecules (mTOR, which are responsible for integrating metabolic and immune response. Repeated activation of mTOR coupled with regular intake of high-protein infant formulas causes health issues in adulthood. Diseases like diabetes type 2, obesity, arterial hypertension, cancer (particularly prostatic cancer, are related to overactivation of the mTOR signalling molecule complex. Intensive consumption of milk in today’s world is the key mTOR activator contributing to an increased risk of lifestyle diseases and triggering the mechanism of their development. The progressing infant formula industry allows to cut protein levels in starter and further infant formulas down to 12 g/l and, respectively, lower the risk of non-infectious diseases in adulthood. 

  13. Genetic and environmental influences of surfactant protein D serum levels

    Sørensen, Grith Lykke; Hjelmborg, Jacob v. B.; Kyvik, Kirsten Ohm

    2006-01-01

    in the NH(2)-terminal region (Met11Thr) of the mature protein is significantly associated with the serum SP-D levels. A classic twin study was performed on a twin population including 1,476 self-reported healthy adults. The serum SP-D levels increased with male sex, age, and smoking status. The intraclass...... defining the constitutional serum level of SP-D and determine the magnitude of the genetic contribution to serum SP-D in the adult population. Recent studies have demonstrated that serum SP-D concentrations in children are genetically determined and that a single nucleotide polymorphism (SNP) located...

  14. Genetic and environmental influences of surfactant protein D serum levels

    Sorensen, G.L.; Hjelmborg, J.V.; Kyvik, K.O.

    2006-01-01

    defining the constitutional serum level of SP-D and determine the magnitude of the genetic contribution to serum SP-D in the adult population. Recent studies have demonstrated that serum SP-D concentrations in children are genetically determined and that a single nucleotide polymorphism (SNP) located...... in the NH(2)-terminal region (Met11Thr) of the mature protein is significantly associated with the serum SP-D levels. A classic twin study was performed on a twin population including 1,476 self-reported healthy adults. The serum SP-D levels increased with male sex, age, and smoking status. The intraclass...

  15. Total proteins and protein fractions levels in pregnant rats subjected to whole-body gamma irradiation

    Mansour, M.A.; Roushdy, H.M.; Mazhar, F.M.; Abu-Gabal, H.A.

    1986-01-01

    A total number of 180 mature rats (120 females and 60 males) weighing from 120-140 g were used to study the effect of two doses (2 and 4 Gy) whole-body gamma irradiation on the level of total protein and protein fractions in serum of pregnant rats during the period of organogenesis. It was found that the levels of total protein, albumin and gamma globulins significantly decreased according to the doses of exposure. The levels of alpha and beta globulins significantly increased more in the serum of rats exposed to 2 Gy than in rats exposed to 4 Gy. The level of A/G ratio significantly decreased more in the serum of rats exposed to 2Gy than in those exposed to 4 Gy

  16. Low copper and high manganese levels in prion protein plaques

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  17. Effect of feeding different dietary protein levels on reproductive ...

    A feeding trial was conducted to evaluate effects of feeding different dietary protein levels on reproductive biology of African mud catfish under hapa system. Catfish fingerlings (mean body weight (4.50± 0.01g) and total length (8.0±0.2cm) were randomly stocked at 20 fish per hapa (1m3). Five experimental diets with crude ...

  18. Tanshinol ameliorates CCl4-induced liver fibrosis in rats through the regulation of Nrf2/HO-1 and NF-κB/IκBα signaling pathway

    Wang R

    2018-05-01

    Full Text Available Rong Wang,* Jing Wang,* Fuxing Song, Shengnan Li, Yongfang Yuan Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Tanshinol, a water-soluble component isolated from Salvia miltiorrhiza Bunge, has a variety of biological activities involving anti-fibrotic effect. However, the exact role and the underlying mechanisms remain largely unclear. This study mainly focused on the anti-hepatic fibrotic activities and mechanisms of tanshinol on carbon tetrachloride (CCl4-induced liver fibrosis in rats via anti-oxidative and anti-inflammation pathways. The rats were divided into 4 groups as follows: control, model, tanshinol 20 mg/kg, and tanshinol 40 mg/kg. Except for the control group, CCl4 was used to induce liver fibrosis processing for 8 weeks, meanwhile rats in tanshinol groups were intraperitoneally injected with additional tanshinol. Control group simultaneously received the same volumes of olive oil and saline. The potentially protective effect and mechanisms of tanshinol on liver fibrosis in rats were evaluated. The serum levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin were obviously lower in the tanshinol treatment groups related to model group. Compared with the model group, the levels of hyaluronic acid, type IV collagen, Laminin (LN, and procollagen III peptide (PIIIP in serum were significantly decreased after tanshinol treatment. Furthermore, tanshinol could regulate Nrf2/HO-1 signaling pathway and increase the level of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px, and also decrease the level of malondialdehyde (MDA to against damage induced by oxidative stress. Simultaneously tanshinol could regulate nuclear factor kappa B signaling pathway to inhibit expression of inflammation factors, including transforming growth factor-β, tumor necrosis factor-α, Cox-2

  19. C-reactive protein levels in patients with aggressive periodontitis.

    Salzberg, Trang N; Overstreet, Benjamin T; Rogers, Jeffrey D; Califano, Joseph V; Best, Al M; Schenkein, Harvey A

    2006-06-01

    Sera from patients with periodontal infections contain elevated levels of C-reactive protein (CRP) compared to periodontally healthy individuals. Most studies to date have included patients with chronic periodontitis, and few investigators have studied CRP levels in subjects with aggressive periodontitis (AgP). The purpose of this study was to determine the relative levels of serum CRP in AgP patients and periodontally healthy subjects and to examine patients' characteristics that might account for intergroup differences. Serum samples were collected from 93 patients with generalized AgP (GAgP), from 97 patients with localized AgP (LAgP), and from 91 healthy controls (non-periodontitis [NP]). Periodontal examination consisted of plaque index, gingival index, probing depth, bleeding index, and attachment loss measurements. Current smoking was assessed by determination of serum cotinine levels by enzyme-linked immunosorbent assay (ELISA), and serum CRP levels were determined using a high-sensitivity ELISA assay. The three groups were significantly different from one another (P periodontal and demographic variables and current smoking, both mean probing depth and periodontal diagnosis remained correlated with CRP levels. Patients with AgP have statistically significant elevations in serum CRP levels compared to subjects without periodontitis. Elevated CRP in these subjects might represent a contribution of periodontal infections to systemic inflammation in relatively young individuals.

  20. C-Reactive Protein Levels in the Brugada Syndrome

    Aimé Bonny

    2011-01-01

    Full Text Available Background. Inflammation in the Brugada syndrome (BrS and its clinical implication have been little studied. Aims. To assess the level of inflammation in BrS patients. Methods. All studied BrS patients underwent blood samples drawn for C-reactive protein (CRP levels at admission, prior to any invasive intervention. Patients with a previous ICD placement were controlled to exclude those with a recent (<14 days shock. We divided subjects into symptomatic (syncope or aborted sudden death and asymptomatic groups. In a multivariable analysis, we adjusted for significant variables (age, CRP ≥ 2 mg/L. Results. Fifty-four subjects were studied (mean age 45 ± 13 years, 49 (91% male. Twenty (37% were symptomatic. Baseline characteristics were similar in both groups. Mean CRP level was 1,4 ± 0,9 mg/L in asymptomatic and 2,4 ± 1,4 mg/L in symptomatic groups (P = .003. In the multivariate model, CRP concentrations ≥ 2 mg/L remained an independent marker for being symptomatic (P = .018; 95% CI: 1.3 to 19.3. Conclusion. Inflammation seems to be more active in symptomatic BrS. C-reactive protein concentrations ≥ 2 mg/L might be associated with the previous symptoms in BrS. The value of inflammation as a risk factor of arrhythmic events in BrS needs to be studied.

  1. Differential expression patterns of Nqo1, AKR1B8 and Ho-1 in the liver and small intestine of C57BL/6 mice treated with sulforaphane

    Lin Luo

    2015-12-01

    Full Text Available This data article contains complementary figures and results related to the research article entitled “butylated hydroxyanisole induces distinct expression patterns of Nrf2 and detoxification enzymes in the liver and small intestine of C57BL/6 mice” (Luo et al., 2015 [1], which defined the basal and butylated hydroxyanisole (BHA-induced expression patterns of Phase II enzymes Nqo1, AKR1B8, and Ho-1 in the liver and small intestine of C57BL/6 mice. Sulforaphane [1-isothiocyanato-4-(methylsulfinylbutane] (SFN, a naturally occurring isothiocyanate derived from cruciferous vegetables, is a highly potent inducer of phase II cytoprotective enzymes. This dataset reports the histological changes of Nqo1, AKR1B8, and Ho-1 in wild-type (WT and Nrf2-/- mice induced by SFN. The mice were given a 25 mg/kg single oral dose of SFN for 24 h and 48 h. Immunohistochemistry revealed that, in the liver from WT mice, SFN increased Nqo1 staining in hepatocytes with slight higher staining in the pericentral region. The induction of AKR1B8 appeared mostly in hepatocytes in the periportal region. The basal and inducible Ho-1 was located predominately in Kupffer cells. In the small intestine from WT mice, the inducible expression of Nqo1 and AKR1B8 appeared more obvious in the villus than that in the crypt.

  2. Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway

    Xinyan Peng

    2018-01-01

    Full Text Available This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl4-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl4 exposure. At 24 h, curcumin-attenuated CCl4 induced elevated serum transaminase activities and histopathological damage in the mouse’s liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl4-induced oxidative stress, characterized by decreased malondialdehyde (MDA formations, and increased superoxide dismutase (SOD, catalase (CAT activities and glutathione (GSH content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl4-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01, and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2 and HO-1 mRNA (both p < 0.01 in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl4-induced acute liver injury. Given these outcomes, curcumin could protect against CCl4-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.

  3. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells.

    Dai, Chongshan; Li, Bin; Zhou, Yan; Li, Daowen; Zhang, Shen; Li, Hui; Xiao, Xilong; Tang, Shusheng

    2016-09-01

    The potential toxicity of quinocetone (QCT) has raised widely concern, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on QCT induced apoptosis and the underlying mechanism in human hepatocyte L02 cells. The results showed that QCT treatment significantly decreased the cell viability of L02 cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by curcumin pre-treatment at 1.25, 2.5 and 5 μM. Compared to the QCT alone group, curcumin pre-treatment significantly attenuated QCT induced oxidative stress, mitochondrial dysfunction and apoptosis. In addition, curcumin pretreatment markedly attenuated QCT-induced increase of iNOS activity and NO production in a dose-dependent manner. Meanwhile, curcumin pretreatment markedly down-regulated the expression of nuclear factor -kB (NF-kB) and iNOS mRNAs, but up-regulated the expressions of Nrf2 and HO-1 mRNAs, compared to the QCT alone group. Zinc protoporphyrin IX, a HO-1 inhibitor, markedly partly abolished the cytoprotective effect of curcumin against QCT-induced caspase activation, NF-kB mRNA expression. These results indicate that curcumin could effectively inhibit QCT induced apoptosis and inflammatory response in L02 cells, which may involve the activation of Nrf2/HO-1 and inhibition of NF-kB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels.

    Bostick, Brian; Aroor, Annayya R; Habibi, Javad; Durante, William; Ma, Lixin; DeMarco, Vincent G; Garro, Mona; Hayden, Melvin R; Booth, Frank W; Sowers, James R

    2017-01-01

    Obesity is a global epidemic with profound cardiovascular disease (CVD) complications. Obese women are particularly vulnerable to CVD, suffering higher rates of CVD compared to non-obese females. Diastolic dysfunction is the earliest manifestation of CVD in obese women but remains poorly understood with no evidence-based therapies. We have shown early diastolic dysfunction in obesity is associated with oxidative stress and myocardial fibrosis. Recent evidence suggests exercise may increase levels of the antioxidant heme oxygenase-1 (HO-1). Accordingly, we hypothesized that diastolic dysfunction in female mice consuming a western diet (WD) could be prevented by daily volitional exercise with reductions in oxidative stress, myocardial fibrosis and maintenance of myocardial HO-1 levels. Four-week-old female C57BL/6J mice were fed a high-fat/high-fructose WD for 16weeks (N=8) alongside control diet fed mice (N=8). A separate cohort of WD fed females was allowed a running wheel for the entire study (N=7). Cardiac function was assessed at 20weeks by high-resolution cardiac magnetic resonance imaging (MRI). Functional assessment was followed by immunohistochemistry, transmission electron microscopy (TEM) and Western blotting to identify pathologic mechanisms and assess HO-1 protein levels. There was no significant body weight decrease in exercising mice, normalized body weight 14.3g/mm, compared to sedentary mice, normalized body weight 13.6g/mm (p=0.38). Total body fat was also unchanged in exercising, fat mass of 6.6g, compared to sedentary mice, fat mass 7.4g (p=0.55). Exercise prevented diastolic dysfunction with a significant reduction in left ventricular relaxation time to 23.8ms for exercising group compared to 33.0ms in sedentary group (pstress and myocardial fibrosis with improved mitochondrial architecture. HO-1 protein levels were increased in the hearts of exercising mice compared to sedentary WD fed females. This study provides seminal evidence that exercise

  5. Levels of acute phase proteins remain stable after ischemic stroke

    Paik Myunghee C

    2006-10-01

    Full Text Available Abstract Background Inflammation and inflammatory biomarkers play an important role in atherosclerosis and cardiovascular disease. Little information is available, however, on time course of serum markers of inflammation after stroke. Methods First ischemic stroke patients ≥40 years old had levels of high-sensitivity C-reactive protein (hsCRP, serum amyloid A (SAA, and fibrinogen measured in plasma samples drawn at 1, 2, 3, 7, 14, 21 and 28 days after stroke. Levels were log-transformed as needed, and parametric and non-parametric statistical tests were used to test for evidence of a trend in levels over time. Levels of hsCRP and SAA were also compared with levels in a comparable population of stroke-free participants. Results Mean age of participants with repeated measures (n = 21 was 65.6 ± 11.6 years, and 13 (61.9% were men, and 15 (71.4% were Hispanic. Approximately 75% of patients (n = 15 had mild strokes (NIH Stroke Scale score 0–5. There was no evidence of a time trend in levels of hsCRP, SAA, or fibrinogen for any of the markers during the 28 days of follow-up. Mean log(hsCRP was 1.67 ± 1.07 mg/L (median hsCRP 6.48 mg/L among stroke participants and 1.00 ± 1.18 mg/L (median 2.82 mg/L in a group of 1176 randomly selected stroke-free participants from the same community (p = 0.0252. Conclusion Levels of hsCRP are higher in stroke patients than in stroke-free subjects. Levels of inflammatory biomarkers associated with atherosclerosis, including hsCRP, appear to be stable for at least 28 days after first ischemic stroke.

  6. Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on Fermentation

    Dinh Van Dung

    2014-06-01

    Full Text Available The effect of concentrate mixtures with crude protein (CP levels 10%, 13%, 16%, and 19% and diets with roughage to concentrate ratios 80:20, 60:40, 40:60, and 20:80 (w/w were determined on dry matter (DM and organic matter (OM digestibility, and fermentation metabolites using an in vitro fermentation technique. In vitro fermented attributes were measured after 4, 24, and 48 h of incubation respectively. The digestibility of DM and OM, and total volatile fatty acid (VFA increased whereas pH decreased with the increased amount of concentrate in the diet (p<0.001, however CP levels of concentrate did not have any influence on these attributes. Gas production reduced with increased CP levels, while it increased with increasing concentrate levels. Ammonia nitrogen (NH3-N concentration and microbial CP production increased significantly (p<0.05 by increasing CP levels and with increasing concentrate levels in diet as well, however, no significant difference was found between 16% and 19% CP levels. Therefore, 16% CP in concentrate and increasing proportion of concentrate up to 80% in diet all had improved digestibility of DM and organic matter, and higher microbial protein production, with improved fermentation characteristics.

  7. Cyclooxygenase-2 and hypoxia-regulated proteins are modulated by basic fibroblast growth factor in acute renal failure

    Sandra Villanueva

    2012-01-01

    Full Text Available Acute renal failure (ARF can be caused by injuries that induce tissue hypoxia, which in turn can trigger adaptive or inflammatory responses. We previously showed the participation of basic fibroblast growth factor (FGF-2 in renal repair. Based on this, the aim of this study was to analyze the effect of FGF-2 signaling pathway manipulation at hypoxia-induced protein levels, as well as in key proteins from the vasoactive systems of the kidney. We injected rat kidneys with FGF-2 recombinant protein (r-FGF or FGF-2 receptor antisense oligonucleotide (FGFR2-ASO after bilateral ischemia, and evaluated the presence of iNOS, EPO and HO-1, in representation of hypoxia-induced proteins, as well as COX-2, renin, kallikrein, and B2KR, in representation of the vasoactive systems of the kidney. A reduction in iNOS, HO-1, EPO, renin, kallikrein, B2KR, and in renal damage was observed in animals treated with r-FGF. The opposite effect was found with FGF-2 receptor down-regulation. In contrast, COX-2 protein levels were higher in kidneys treated with r-FGF and lower in those that received FGFR2-ASO, as compared to saline treated kidneys. These results suggest that the protective role of FGF-2 in the pathogenesis of ARF induced by I/R is a complex process, through which a differential regulation of metabolic pathways takes place.

  8. Honey bee protein atlas at organ-level resolution.

    Chan, Queenie W T; Chan, Man Yi; Logan, Michelle; Fang, Yuan; Higo, Heather; Foster, Leonard J

    2013-11-01

    Genome sequencing has provided us with gene lists but cannot tell us where and how their encoded products work together to support life. Complex organisms rely on differential expression of subsets of genes/proteins in organs and tissues, and, in concert, evolved to their present state as they function together to improve an organism's overall reproductive fitness. Proteomics studies of individual organs help us understand their basic functions, but this reductionist approach misses the larger context of the whole organism. This problem could be circumvented if all the organs in an organism were comprehensively studied by the same methodology and analyzed together. Using honey bees (Apis mellifera L.) as a model system, we report here an initial whole proteome of a complex organism, measuring 29 different organ/tissue types among the three honey bee castes: queen, drone, and worker. The data reveal that, e.g., workers have a heightened capacity to deal with environmental toxins and queens have a far more robust pheromone detection system than their nestmates. The data also suggest that workers altruistically sacrifice not only their own reproductive capacity but also their immune potential in favor of their queen. Finally, organ-level resolution of protein expression offers a systematic insight into how organs may have developed.

  9. Serum transferrin levels in children with protein-energy malnutrition

    Selime Aydoğdu

    2013-03-01

    Full Text Available Objective: Although the diagnosis of patients with severemalnutrition is easy, it is very difficult to recognize patientswith mild and moderate malnutrition. A variety of methodsattempts to develop for early diagnosis of these cases.In this study, we evaluated the serum transferrin and albuminlevels in children with mild, moderate and severeprotein-energy malnutrition (PEM.Materials and methods: Children admitted to our policlinic,aged between 3 and 25 months, 45 subjects withPEM and 39 healthy subjects (control group were evaluated.According to the Gomez, Waterlow and Kanawatisubjects with PEM were divided in 3 subgroups mild,moderate and severe PEM. Anthropometric measurementsand biochemical results of 4 groups were compared.Results: For albumin levels in mild to moderate PEMgroups, 37.7% sensitivity, and 28.5% specificity, positivepredictive value 54%; negative predictive value 16.6%was found. For severe PEM sensitivity, specificity, positivepredictive value and negative predictive value were71%, 62.5%, 45%, and 83.3% respectively.With respect to the levels of transferrin, a significant differencewas found between mild PEM-control and moderatePEM-control groups (p0.05.Conclusion: Our study results showed that albumin isa weak indicator in mild-moderate PEM. In these cases,serum transferrin level reduces before decreasing of albuminlevel, thus it may be an early sensitive finding thatcan be used as a sensitive parameter in the diagnosis ofearly stages of malnutrition.Key words: Protein energy malnutrition, children, albumin,transferrin

  10. the effect of dietary energy and protein levels on the composition

    Zannel

    Keywords: Breeding ostriches, nutrition, energy, protein, amino acids, egg ... Yolk is an important nutritional component of the avian egg because .... 3 (energy) x 3 (protein) factorial design with energy and protein levels featuring as main factors. ... No significant interactions were observed between energy and protein levels.

  11. Pinocembrin Suppresses H2O2-Induced Mitochondrial Dysfunction by a Mechanism Dependent on the Nrf2/HO-1 Axis in SH-SY5Y Cells.

    de Oliveira, Marcos Roberto; da Costa Ferreira, Gustavo; Brasil, Flávia Bittencourt; Peres, Alessandra

    2018-02-01

    Mitochondria are susceptible to redox impairment, which has been associated with neurodegeneration. These organelles are both a source and target of reactive species. In that context, there is increasing interest in finding natural compounds that modulate mitochondrial function and mitochondria-related signaling in order to prevent or to treat diseases involving mitochondrial impairment. Herein, we investigated whether and how pinocembrin (PB) would prevent mitochondrial dysfunction elicited by the exposure of human neuroblastoma SH-SY5Y cells to hydrogen peroxide (H 2 O 2 ). PB (25 μM) was administrated for 4 h before H 2 O 2 treatment (300 μM for 24 h). PB prevented H 2 O 2 -induced loss of cell viability mitochondrial depolarization in SH-SY5Y cells. PB also attenuated redox impairment in mitochondrial membranes. The production of superoxide anion radical (O 2 -• ) and nitric oxide (NO • ) was alleviated by PB in cells exposed to H 2 O 2 . PB suppressed the H 2 O 2 -induced inhibition of the tricarboxylic acid (TCA) cycle enzymes aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase. Furthermore, PB induced anti-inflammatory effects by abolishing the H 2 O 2 -dependent activation of the nuclear factor-κB (NF-κB) and upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). The PB-induced antioxidant and anti-inflammatory effects are dependent on the heme oxygenate-1 (HO-1) enzyme and on the activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), since HO-1 inhibition (with 0.5 μM ZnPP IX) or Nrf2 silencing (with small interfering RNA (siRNA)) abolished the effects of PB. Overall, PB afforded cytoprotection by the Nrf2/HO-1 axis in H 2 O 2 -treated SH-SY5Y cells.

  12. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    Po-Sheng Yang

    2015-01-01

    Full Text Available Antrodia camphorata (A. camphorata is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO rats. A selective occlusion of the middle cerebral artery (MCA with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day alone or combined with aspirin (5 mg/kg/day. To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS, haem oxygenase-1 (HO-1, and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P<0.001, iNOS (P<0.001, and Bax (P<0.01 in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day. Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P<0.01. Moreover, treatment of A. camphorata significantly (P<0.05 reduced fenton reaction-induced hydroxyl radical (OH• formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals.

  13. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L

    2014-03-07

    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  14. Gene-specific correlation of RNA and protein levels in human cells and tissues

    Edfors, Fredrik; Danielsson, Frida; Hallström, Björn M.

    2016-01-01

    An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring...... to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP...

  15. Interactive effect of dietary protein level and zilpaterol hydrochloride ...

    p2492989

    feedlot performance and meat quality of steers ... result of decreased protein degradation and increased protein synthesis (Fiems, ... sheep as well as data from some BAA trials provide evidence to associate ... The perception is that meat is now ... Table 1 Dietary treatments of steers with a mean live weight of 278 ± 20 kg ...

  16. Effect of graded levels and sources of protein on scrotal ...

    Iso caloric rations (10.50 MJ/kg DM ME) were formulated using non-conventional protein source (maize offal and dry layer litter) to contain 12.11% CP, 14.96% CP, and 17.94% CP and fed to groups A, B and C respectively. Another ration was formulated using conventional protein source (maize, wheat bran, groundnut ...

  17. Exploring Sequence Characteristics Related to High- Level Production of Secreted Proteins in Aspergillus niger

    Van den Berg, B.A.; Reinders, M.J.T.; Hulsman, M.; Wu, L.; Pel, H.J.; Roubos, J.A.; De Ridder, D.

    2012-01-01

    Protein sequence features are explored in relation to the production of over-expressed extracellular proteins by fungi. Knowledge on features influencing protein production and secretion could be employed to improve enzyme production levels in industrial bioprocesses via protein engineering. A large

  18. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  19. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits

    Jimenez-Sainz, MC; Murga, C; Kavelaars, A; Jurado-Pueyo, M; Krakstad, BF; Heijnen, CJ; Mayor, F; Aragay, AM

    The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells

  20. Zinc finger protein 521 overexpression increased transcript levels of ...

    2016-02-12

    Feb 12, 2016 ... Zinc finger protein 521 is highly expressed in brain, neural stem cells and early progenitors of the human .... Membranes were blocked for 1 h with 10% skim milk and ..... fat-like development of white fat and thermogenesis.

  1. Serum total proteins and creatinine levels in experimental gambian ...

    Attempt was therefore made to evaluate the effect of two strains of Trypanosoma brucei gambiense on total proteins and other serum biochemical parameters using vervet monkeys as a model. The outcome of both strains in vervet monkeys was traumatic as the monkeys died from infection 12 – 15 weeks post infection while ...

  2. Plasma protein carbonyl levels and breast cancer risk

    Rössner ml., Pavel; Terry, M. B.; Gammon, M. D.; Agrawal, M.; Zhang, F. F.; Ferris, J.S.; Teitelbaum, S. L.; Eng, S. M.; Gaudet, M. M.; Neugut, A. I.; Santella, R. M.

    2007-01-01

    Roč. 11, č. 5 (2007), s. 1138-1148 ISSN 1582-1838 Institutional research plan: CEZ:AV0Z50390512 Keywords : oxidative stress * protein carbonyl * breast cancer Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 6.807, year: 2007

  3. Serum total protein, albumin and globulin levels in Trypanosoma ...

    The effect of orally administered Scoparia dulcis on Trypanosoma brucei-induced changes in serum total protein, albumin and globulin were investigated in rabbits over a period of twenty eight days. Results obtained show that infection resulted in hyperproteinaemia, hyperglobulinaemia and hypoalbuminaemia. However ...

  4. Blood profiling of proteins and steroids during weight maintenance with manipulation of dietary protein level and glycaemic index

    Wang, Ping; Holst, Claus; Astrup, Arne

    2012-01-01

    ) blood biomarkers of dietary protein and GI levels during the weight-maintenance phase. Blood samples were collected at baseline, after 8 weeks of low-energy diet-induced weight loss and after a 6-month dietary intervention period from female continued weight losers (n 48) and weight regainers (n 48......), evenly selected from four dietary groups that varied in protein and GI levels. The blood concentrations of twenty-nine proteins and three steroid hormones were measured. The changes in analytes during weight maintenance largely correlated negatively with the changes during weight loss, with some...

  5. Effect of Dietary Protein Level on the Expression of Proteins in the Gastrointestinal Tract of Young Pigs.

    Ma, Xianyong; Tian, Zhimei; Deng, Dun; Cui, Yiyan; Qiu, Yueqin

    2018-05-02

    The objective of this research is to investigate the effect of protein level on proteins expression in the gastrointestinal tract of young pigs. Eighteen piglets (Duroc × Landrace × Yorkshire) were weaned at 28 days of age and randomly assigned to three diets with 20%, 17%, and 14% CP level, and four essential amino acids, Lys, Met, Thr, and Trp, in three diets met the requirements of weaned piglets. The experimental period lasted 45 days. Compared with the control (20% CP level), the average daily feed intake, the average daily gain, and gain feed ratio of the 17% CP group did not decrease ( P > 0.05), but those of 14% CP group decreased ( P protein digestion and absorption, lipid or carbon digestion and absorption, etc. were up-regulated in 17% CP group, while most of them were down-regulated in 14% CP group. Amino acids metabolism of gastric, pancreatic secretion of duodenum or steroid hormone biosynthesis of jejunum was down-regulated in the 17% CP group, but the lipid metabolism was up-regulated in the 14% CP group. Six proteins were selected for identification by Western-blot, and their changes had the same trend as the proteomics results. The protein level decreased from 20% to 17%, the growth performance was not affected, while the nutrient digestion and absorption or the immune function were improved, which implied that 17% protein level maybe benefit for nutrients absorption of pigs.

  6. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead

    Cabell, Leigh; Ferguson, Charles; Luginbill, Deana; Kern, Marcey; Weingart, Adam; Audesirk, Gerald

    2004-01-01

    We examined the effects of exposure to inorganic lead (Pb 2+ ) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb 2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 μM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb 2+ exposure (100 nM to 100 μM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb 2+ exposure (100 nM to 10 μM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb 2+ at concentrations up to 100 μM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb 2+ and many other stresses, including heat, nitric oxide, H 2 O 2 , and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb 2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb 2+ induces HO-1 synthesis in astrocytes

  7. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  8. Effect of the level of dietary protein on the utilization of alpha-ketoisocaproate for protein synthesis

    Kang, C.W.; Tungsanga, K.; Walser, M.

    1986-04-01

    The efficiency of alpha-ketoisocaproate (KIC) as a dietary substitute for leucine in rats on varying protein intake was estimated by an isotopic method, previously shown to yield the same results as comparative growth experiments. /sup 14/C-KIC and /sup 3/H-leucine are injected orally. Six hours later the ratio, R, of /sup 14/C//sup 3/H in isolated proteins, divided by the same ratio in the injectate is measured. This ratio has been shown to be approximately equal to nutritional efficiency of KIC relative to leucine. As dietary protein increased from 6.3% to 48.3%, whole body protein R decreased from 0.515 +/- 0.045 to 0.299 +/- 0.016. Variations with protein intake were noted in R of protein isolated from individual organs. The magnitude of R in these organs varied two-fold, in the following sequence: brain greater than heart greater than or equal to skeletal muscle greater than or equal to salivary gland greater than or equal to kidney greater than liver. Whole body protein R could be confidently predicted (r2 = 0.992) from R in the protein of kidney and muscle. Thus, the nutritional efficiency of KIC as a dietary substitute for leucine in individual organs as well as in the whole animal is strongly dependent on the level of protein intake.

  9. Effect of the level of dietary protein on the utilization of alpha-ketoisocaproate for protein synthesis

    Kang, C.W.; Tungsanga, K.; Walser, M.

    1986-01-01

    The efficiency of alpha-ketoisocaproate (KIC) as a dietary substitute for leucine in rats on varying protein intake was estimated by an isotopic method, previously shown to yield the same results as comparative growth experiments. 14 C-KIC and 3 H-leucine are injected orally. Six hours later the ratio, R, of 14 C/ 3 H in isolated proteins, divided by the same ratio in the injectate is measured. This ratio has been shown to be approximately equal to nutritional efficiency of KIC relative to leucine. As dietary protein increased from 6.3% to 48.3%, whole body protein R decreased from 0.515 +/- 0.045 to 0.299 +/- 0.016. Variations with protein intake were noted in R of protein isolated from individual organs. The magnitude of R in these organs varied two-fold, in the following sequence: brain greater than heart greater than or equal to skeletal muscle greater than or equal to salivary gland greater than or equal to kidney greater than liver. Whole body protein R could be confidently predicted (r2 = 0.992) from R in the protein of kidney and muscle. Thus, the nutritional efficiency of KIC as a dietary substitute for leucine in individual organs as well as in the whole animal is strongly dependent on the level of protein intake

  10. Heritability and genetic basis of protein level variation in an outbred population.

    Parts, Leopold; Liu, Yi-Chun; Tekkedil, Manu M; Steinmetz, Lars M; Caudy, Amy A; Fraser, Andrew G; Boone, Charles; Andrews, Brenda J; Rosebrock, Adam P

    2014-08-01

    The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but explained >50% of the variance in the population's average protein abundance for half of the GFP fusions tested. To map trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of the genome combined. We present evidence for both shared and independent genetic control of transcript and protein abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance. © 2014 Parts et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Predicting protein folding pathways at the mesoscopic level based on native interactions between secondary structure elements

    Sze Sing-Hoi

    2008-07-01

    Full Text Available Abstract Background Since experimental determination of protein folding pathways remains difficult, computational techniques are often used to simulate protein folding. Most current techniques to predict protein folding pathways are computationally intensive and are suitable only for small proteins. Results By assuming that the native structure of a protein is known and representing each intermediate conformation as a collection of fully folded structures in which each of them contains a set of interacting secondary structure elements, we show that it is possible to significantly reduce the conformation space while still being able to predict the most energetically favorable folding pathway of large proteins with hundreds of residues at the mesoscopic level, including the pig muscle phosphoglycerate kinase with 416 residues. The model is detailed enough to distinguish between different folding pathways of structurally very similar proteins, including the streptococcal protein G and the peptostreptococcal protein L. The model is also able to recognize the differences between the folding pathways of protein G and its two structurally similar variants NuG1 and NuG2, which are even harder to distinguish. We show that this strategy can produce accurate predictions on many other proteins with experimentally determined intermediate folding states. Conclusion Our technique is efficient enough to predict folding pathways for both large and small proteins at the mesoscopic level. Such a strategy is often the only feasible choice for large proteins. A software program implementing this strategy (SSFold is available at http://faculty.cs.tamu.edu/shsze/ssfold.

  12. Effects of dietary protein level on growth, health and physiological parameters in growing-furring mink

    Damgaard, Birthe Marie; Larsen, Peter F.; Clausen, Tove

    2012-01-01

    The aim of the study was to investigate the effects of the dietary protein level and the feeding strategy on growth, health and physiological blood and liver parameters in growing-furring male mink. Effects of dietary protein levels ranging from 22% of metabolizable energy (MEp) to experimental p...

  13. Effect of nonsteroidal antiinflammatory drugs on the C-reactive protein level in rheumatoid arthritis

    Tarp, Simon; Bartels, Else M.; Bliddal, Henning

    2012-01-01

    To evaluate the effects of oral nonsteroidal antiinflammatory drugs (NSAIDs) on C-reactive protein (CRP) levels in rheumatoid arthritis (RA) patients, with a prespecified focus on the different NSAIDs.......To evaluate the effects of oral nonsteroidal antiinflammatory drugs (NSAIDs) on C-reactive protein (CRP) levels in rheumatoid arthritis (RA) patients, with a prespecified focus on the different NSAIDs....

  14. Effect of dietary protein and energy levels on the growth ...

    Dr. A.O. Ani

    While there were significant interactions (P< 0.05) between TBNO and enzyme levels on DM, ... ingredients like soya bean meal, groundnut meal, etc vis- à-vis their acute ... bacterial infection and sulfaquinoxaline drugs against coccidioses.

  15. Respon Pertumbuhan Ayam Lokal Pedaging terhadap Suplementasi Protein Isolasi Biji-bijian (PIB dan Perbedaan Level Protein Ransum

    M. Aman Yaman

    2009-10-01

    Full Text Available The response of local meat chicken growth to supplementation of isolated grain protein and the difference in ration protein level ABSTRACT. A research which aims to determine the response of local meat chicken growth of protein supplementation with Isolation Grains Protein (IGB and the difference in ration protein level has been conducted in the Laboratory of Experimental Farm, Animal Husbandry Department, Faculty of Agriculture, Syiah Kuala University-Darussalam, Banda Aceh for 90 days. This study used a completely randomized design factorial with 2 factors, consisting of factors namely male gender (JJ and female (JB and the ration is a combination of factors and levels IGB in the ration, ie: treatment A: 17% protein and 0.4% IGB; treatment B 19% protein and 0.6% IGB and treatment C 21% protein and 0.8% IGB. Each combination consisted of 4 replications and each replication consists of 5 chickens. Parameters observed in the study were weight gain, achievement of final weight, consumption, conversion and efficiency of ration. DOC used a derivative result of selection of local meat chicken which are in the process of selection. Data acquired and processed by ANOVA. The results showed that supplementation of IGB and ration protein level difference was significantly effect (P <0.01 on weight gain, final weight, rate of consumption, conversion efficiency of rations and rations, but there is no interaction effect between sex and ration factors . The highest weight gain obtained in the male local chicken achieved by feeding a ration B (93.23 grams, while the hen rations achieved by providing treatment C (63.86 grams / week. The highest final body weight of male chicken on treatment B (1491.5 gram/90 days and hens in treatment C (1061.5 gram/90 days. However, the highest ration consumption in both male and female local chickens obtained from the ration A. Feed conversion value and the best feed efficiency obtained in treatment B for the treatment of

  16. COPS5 (Jab1) protein increases β site processing of amyloid precursor protein and amyloid β peptide generation by stabilizing RanBP9 protein levels.

    Wang, Hongjie; Dey, Debleena; Carrera, Ivan; Minond, Dmitriy; Bianchi, Elisabetta; Xu, Shaohua; Lakshmana, Madepalli K

    2013-09-13

    Increased processing of amyloid precursor protein (APP) and accumulation of neurotoxic amyloid β peptide (Aβ) in the brain is central to the pathogenesis of Alzheimer's disease (AD). Therefore, the identification of molecules that regulate Aβ generation is crucial for future therapeutic approaches for AD. We demonstrated previously that RanBP9 regulates Aβ generation in a number of cell lines and primary neuronal cultures by forming tripartite protein complexes with APP, low-density lipoprotein-related protein, and BACE1, consequently leading to increased amyloid plaque burden in the brain. RanBP9 is a scaffold protein that exists and functions in multiprotein complexes. To identify other proteins that may bind RanBP9 and regulate Aβ levels, we used a two-hybrid analysis against a human brain cDNA library and identified COPS5 as a novel RanBP9-interacting protein. This interaction was confirmed by coimmunoprecipitation experiments in both neuronal and non-neuronal cells and mouse brain. Colocalization of COPS5 and RanBP9 in the same subcellular compartments further supported the interaction of both proteins. Furthermore, like RanBP9, COPS5 robustly increased Aβ generation, followed by increased soluble APP-β (sAPP-β) and decreased soluble-APP-α (sAPP-α) levels. Most importantly, down-regulation of COPS5 by siRNAs reduced Aβ generation, implying that endogenous COPS5 regulates Aβ generation. Finally, COPS5 levels were increased significantly in AD brains and APΔE9 transgenic mice, and overexpression of COPS5 strongly increased RanBP9 protein levels by increasing its half-life. Taken together, these results suggest that COPS5 increases Aβ generation by increasing RanBP9 levels. Thus, COPS5 is a novel RanBP9-binding protein that increases APP processing and Aβ generation by stabilizing RanBP9 protein levels.

  17. Multidrug resistance-associated protein-1 (MRP1 genetic variants, MRP1 protein levels and severity of COPD

    Rutgers Bea

    2010-05-01

    Full Text Available Abstract Background Multidrug resistance-associated protein-1 (MRP1 protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD. We have previously shown that single nucleotide polymorphisms (SNPs in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients. Methods Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621 in MRP1 were genotyped in 110 COPD patients. The effects of MRP1 SNPs were analyzed using linear regression models. Results One SNP, rs212093 was significantly associated with a higher FEV1 level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV1 level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies. Conclusions This is the first study linking MRP1 SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of MRP1 SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.

  18. Protein Secondary Structures (α-helix and β-sheet) at a Cellular Level and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    Yu, P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the α-helix and β-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of β-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution (∼10 μm). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of α-helixes and β-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of α-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the

  19. GLUCOSE AND TOTAL PROTEIN LEVEL IN LABORATORY RATS UNDER CONDITIONS OF SHORT-TERM FASTING

    Damir Suljević

    2013-09-01

    Full Text Available Glucose level (UV enzymatic method and total protein level (Biuret method were measured in the blood samples of the rats exposed to short-term starvation. We found a statistically significant increase in the glucose level in experimental animals during starvation, which is also evident in males and females in the experimental group (p <0.05, while decrease in the total protein level was not statistically significant. During starvation, more significant weight loss was observed in females compared to males.Key words: glucose, total protein, serum, Rattus

  20. Effect of dietary crude protein level on the performance and ...

    ویرایه

    2013-06-26

    Jun 26, 2013 ... kids who were 86 ± 3 days old with live weight of 9 ± 03 kg were used in a completely randomized design. ... matter intake (DMI) than the kids fed with 10.5, 12.8, .... black goats fed with 18% CP level with 20, 16 and 14%.

  1. Sublethal Effects of Diesel on Total Protein Levels and Cholesterol ...

    Michael Horsfall

    were handpicked at the Eagle Cement area of the New Calabar River and subjected to different levels ... groups when compared to the control in both the muscle and the viscera of the periwinkle. ... In Nigeria, oil industry operations are both offshore and onshore. ... This acts as a means of assessing the hazard or potential ...

  2. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Shifts in renin-angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice.

    Qian, Xiaobing; Lin, Leilei; Zong, Yao; Yuan, Yongguang; Dong, Yanmin; Fu, Yue; Shao, Wanwen; Li, Yujie; Gao, Qianying

    2018-03-01

    This study aimed to analyse shifts in renin-angiotensin system (RAS) components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa (LC) region in streptozotocin (STZ)-induced diabetic mice. Six months after diabetes induction, the retinal vessels of male C57BL/6 J mice were observed by colour photography, fundus fluorescein angiography (FFA), and immunofluorescent staining following incubation with CD31. Immunofluorescence for glial fibrillary acidic protein (GFAP), alpha-smooth muscle actin (α-SMA),and NG2 was also performed. Angiotensin-converting enzyme 1 (ACE1), angiotensin II type I receptor (AT1R), renin, hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and haeme oxygenase 1 (HO-1) expression levels were confirmed by immunohistochemical and western blotting analyses. Compared with control mice, diabetic mice had significantly higher blood glucose concentrations (p diabetic mice; however, immunostaining of whole-mount retinas revealed an increased number of retinal vessels. Furthermore, histopathological staining showed significant reduction in the whole retinal thickness. GFAP expression was slightly higher, whereas fewer NG2 + pericytes were observed in diabetic mice than in control mice. ACE1, AT1R, renin, HIF-1α, VEGF, VEGFR2, and HO-1 expression were up-regulated in the LC of the STZ-induced diabetic mice. Collectively, ACE 1, AT1R, HIF-1α, VEGF, VEGFR2, and HO-1 activation in the LC region in diabetic mice may be involved in diabetes via the RAS and induction of angiogenesis and oxidative stress.

  4. Influence of protein level and supplemental methionine in practical rations for young endangered masked bobwhite quail

    Serafin, J.A.

    1982-01-01

    A study was conducted to examine the protein requirement of young endangered masked Bobwhite quail (Colinus virginianus ridgwayi). Five practical starting rations containing 24 to 32% protein were fed alone and supplemented with methionine for 5 weeks. Supplemental methionine significantly improved growth of quail fed diets containing 24 and 26% protein. Increasing the protein level improved growth of quail fed unsupplemented diets but did not do so when diets contained supplemental methionine. A methionine-supplemented ration containing 24% protein appeared adequate for supporting rapid growth of masked Bobwhite quail.

  5. The effect of serum magnesium levels and serum endothelin-1 levels on bone mineral density in protein energy malnutrition.

    Ozturk, C F; Karakelleoglu, C; Orbak, Z; Yildiz, L

    2012-06-01

    An inadequate and imbalanced intake of protein and energy results in protein-energy malnutrition (PEM). It is known that bone mineral density and serum magnesium levels are low in malnourished children. However, the roles of serum magnesium and endothelin-1 (ET-1) levels in the pathophysiology of bone mineralization are obscure. Thus, the relationships between serum magnesium and ET-1 levels and the changes in bone mineral density were investigated in this study. There was a total of 32 subjects, 25 of them had PEM and seven were controls. While mean serum ET-1 levels of the children with kwashiorkor and marasmus showed no statistically significant difference, mean serum ET-1 levels of both groups were significantly higher than that of the control group. Serum magnesium levels were lower than normal value in 9 (36%) of 25 malnourished children. Malnourished children included in this study were divided into two subgroups according to their serum magnesium levels. While mean serum ET-1 levels in the group with low magnesium levels were significantly higher than that of the group with normal magnesium levels (p malnutrition. Our study suggested that lower magnesium levels and higher ET-1 levels might be important factors in changes of bone mineral density in malnutrition. We recommend that the malnourished patients, especially with hypomagnesaemia, should be treated with magnesium early.

  6. Synergistic Control of Kinetochore Protein Levels by Psh1 and Ubr2.

    Eva Herrero

    2016-02-01

    Full Text Available The accurate segregation of chromosomes during cell division is achieved by attachment of chromosomes to the mitotic spindle via the kinetochore, a large multi-protein complex that assembles on centromeres. The budding yeast kinetochore comprises more than 60 different proteins. Although the structure and function of many of these proteins has been investigated, we have little understanding of the steady state regulation of kinetochores. The primary model of kinetochore homeostasis suggests that kinetochores assemble hierarchically from the centromeric DNA via the inclusion of a centromere-specific histone into chromatin. We tested this model by trying to perturb kinetochore protein levels by overexpressing an outer kinetochore gene, MTW1. This increase in protein failed to change protein recruitment, consistent with the hierarchical assembly model. However, we find that deletion of Psh1, a key ubiquitin ligase that is known to restrict inner kinetochore protein loading, does not increase levels of outer kinetochore proteins, thus breaking the normal kinetochore stoichiometry. This perturbation leads to chromosome segregation defects, which can be partially suppressed by mutation of Ubr2, a second ubiquitin ligase that normally restricts protein levels at the outer kinetochore. Together these data show that Psh1 and Ubr2 synergistically control the amount of proteins at the kinetochore.

  7. Association between protein C levels and mortality in patients with advanced prostate, lung and pancreatic cancer.

    Wilts, I T; Hutten, B A; Meijers, J C M; Spek, C A; Büller, H R; Kamphuisen, P W

    2017-06-01

    Procoagulant factors promote cancer progression and metastasis. Protein C is involved in hemostasis, inflammation and signal transduction, and has a protective effect on the endothelial barrier. In mice, administration of activated protein C reduced experimental metastasis. We assessed the association between protein C and mortality in patients with three types of cancer. The study population consisted of patients with advanced prostate, non-small cell lung or pancreatic cancer, who participated in the INPACT trial (NCT00312013). The trial evaluated the addition of nadroparin to chemotherapy in patients with advanced malignancy. Patients were divided into tertiles based on protein C at baseline. The association between protein C levels and mortality was evaluated with Cox proportional hazard models. We analysed 477 patients (protein C tertiles: C level was 107% (IQR 92-129). In the lowest tertile, 75 patients per 100 patient-years died, as compared to 60 and 54 in the middle and high tertile, respectively. Lower levels of protein C were associated with increased mortality (in tertiles: HR for trend 1.18, 95%CI 1.02-1.36, adjusted for age, sex and nadroparin use; as a continuous variable: HR 1.004, 95%CI 1.00-1.008, p=0.07). Protein C seems inversely associated with mortality in patients with advanced prostate, lung and pancreatic cancer. Further research should validate protein C as a biomarker for mortality, and explore the effects of protein C on progression of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Protein levels and colony development of Africanized and European honey bees fed natural and artificial diets.

    Morais, M M; Turcatto, A P; Pereira, R A; Francoy, T M; Guidugli-Lazzarini, K R; Gonçalves, L S; de Almeida, J M V; Ellis, J D; De Jong, D

    2013-12-19

    Pollen substitute diets are a valuable resource for maintaining strong and health honey bee colonies. Specific diets may be useful in one region or country and inadequate or economically unviable in others. We compared two artificial protein diets that had been formulated from locally-available ingredients in Brazil with bee bread and a non-protein sucrose diet. Groups of 100 newly-emerged, adult workers of Africanized honey bees in Brazil and European honey bees in the USA were confined in small cages and fed on one of four diets for seven days. The artificial diets included a high protein diet made of soy milk powder and albumin, and a lower protein level diet consisting of soy milk powder, brewer's yeast and rice bran. The initial protein levels in newly emerged bees were approximately 18-21 µg/µL hemolymph. After feeding on the diets for seven days, the protein levels in the hemolymph were similar among the protein diet groups (~37-49 µg/µL after seven days), although Africanized bees acquired higher protein levels, increasing 145 and 100% on diets D1 and D2, respectively, versus 83 and 60% in the European bees. All the protein diets resulted in significantly higher levels of protein than sucrose solution alone. In the field, the two pollen substitute diets were tested during periods of low pollen availability in the field in two regions of Brazil. Food consumption, population development, colony weight, and honey production were evaluated to determine the impact of the diets on colony strength parameters. The colonies fed artificial diets had a significant improvement in all parameters, while control colonies dwindled during the dearth period. We conclude that these two artificial protein diets have good potential as pollen substitutes during dearth periods and that Africanized bees more efficiently utilize artificial protein diets than do European honey bees.

  9. Development, Characterization, and Optimization of Protein Level in Date Bars Using Response Surface Methodology

    Muhammad Nadeem

    2012-01-01

    Full Text Available This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM. Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD with 2 variables and 3 levels for each variable. Date bars were then analyzed for nutritional profile. Proximate composition revealed that addition of whey protein concentrate and vetch protein isolates improved the nutritional profile of date bars. Protein level, texture, and taste were considerably improved by incorporating 6.05% whey protein concentrate and 4.35% vetch protein isolates in date bar without affecting any sensory characteristics during storage. Response surface methodology was observed as an economical and effective tool to optimize the ingredient level and to discriminate the interactive effects of independent variables.

  10. human serum protein and c-reactive protein levels among hiv ...

    2016-09-30

    Sep 30, 2016 ... inflammation used to monitor HIV infection (Pepys and Hirschfield, 2003; Baker et al., 2010; Funderburg et al., 2010;. Neuhaus et ... from microbial infections, the CRP concentration can rise up to 300mg/L in 12-24 hours (Le Carrer et al., 1995; Vaishnavi,. 1996 ..... (pentaxins) and serum amyloid A protein.

  11. Animal Protein intake and the Effect of age on the level of Protein ...

    Some of the items such as eggs, milk and poultry meat were not consumed in reasonable quantities due to poor economic situation of the family. The results suggested that except for the fathers, other groups such as mothers and children were consuming animal protein below the quantity required by them. JARD Vol.

  12. Multi-level learning: improving the prediction of protein, domain and residue interactions by allowing information flow between levels

    McDermott Drew

    2009-08-01

    Full Text Available Abstract Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1 Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2 Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3 Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up

  13. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins.

    Karmakar, Shilpita; Saha, Sutapa; Banerjee, Debasis; Chakrabarti, Abhijit

    2015-01-01

    Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Less is More: Membrane Protein Digestion Beyond Urea–Trypsin Solution for Next-level Proteomics*

    Zhang, Xi

    2015-01-01

    The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea–trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting—not destroying—structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics. PMID:26081834

  15. Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host.

    Kim, Mina; Jin, Yerin; An, Hyun-Joo; Kim, Jaehan

    2017-07-28

    The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N -acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

  16. Genetic regulation ofmethylation and IL1RL1-a protein levels in asthma

    Dijk, F Nicole; Xu, Chengjian; Melén, Erik; Carsin, Anne-Elie; Kumar, Asish; Nolte, Ilja M; Gruzieva, Olena; Pershagen, Goran; Grotenboer, Neomi S; Savenije, Olga E M; Antó, Josep Maria; Lavi, Iris; Dobaño, Carlota; Bousquet, Jean; van der Vlies, Pieter; van der Valk, Ralf J P; de Jongste, Johan C; Nawijn, Martijn C; Guerra, Stefano; Postma, Dirkje S; Koppelman, Gerard H

    2018-01-01

    Interleukin-1 receptor-like 1 (IL1RL1) is an important asthma gene. (Epi)genetic regulation ofIL1RL1protein expression has not been established. We assessed the association betweenIL1RL1single nucleotide polymorphisms (SNPs),IL1RL1methylation and serum IL1RL1-a protein levels, and aimed to identify

  17. Effect of different protein levels on the growth performance of African ...

    There were no significant differences (P.0.05) among treatments in initial body weight, protein efficiency ratio, average shell weight, average visceral weight, average edible weight and feed cost per kg weight gain. The results obtained in this study show that dietary protein level of about 22% is adequate for the growth of ...

  18. Modulation of GDP-fucose level for generating proteins with reduced rate of fucosylation (WO2010141855).

    Taupin, Philippe

    2011-09-01

    The application (WO2010141855) is in the field of glycobiology, and involves the control of the rate of fucosylation of proteins by exogenous factors. It aims at controlling the rate of protein fucosylation with inhibitors (drugs or nucleic acid antagonists) of enzymes involved in the synthesis of GDP-fucose. Mammalian cell lines were cultured in the presence of inhibitors, for example, siRNA. The rates of GDP-fucose in cells and during protein fucosylation were characterized. The level of protein fucosylation decreases rapidly in response to a decrease in GDP-fucose level. The relationship between the rate of fucosylation of proteins and the level of GDP-fucose in a cell is non-linear. Reduction in the rate of protein fucosylation can be achieved with a minimal reduction of the level of GDP-fucose in cells. The paradigm may be used to synthesize proteins and antibodies, with a reduced rate of fucosylation. The application claims that the use of drugs or nucleic acid antagonists that inhibit the enzymes involved in GDP-fucose biosynthesis optimizes the level of GDP-fucose present in cells, and reduces the rate of fucosylation of glycoproteins.

  19. Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA–Protein Interactions at the Single-Molecule Level

    Huijun Xue

    2017-10-01

    Full Text Available Much of our knowledge in conventional biochemistry has derived from bulk assays. However, many stochastic processes and transient intermediates are hidden when averaged over the ensemble. The powerful technique of single-molecule fluorescence microscopy has made great contributions to the understanding of life processes that are inaccessible when using traditional approaches. In single-molecule studies, quantum dots (Qdots have several unique advantages over other fluorescent probes, such as high brightness, extremely high photostability, and large Stokes shift, thus allowing long-time observation and improved signal-to-noise ratios. So far, however, there is no convenient way to label proteins purified from budding yeast with Qdots. Based on BirA–Avi and biotin–streptavidin systems, we have established a simple method to acquire a Qdot-labeled protein and visualize its interaction with DNA using total internal reflection fluorescence microscopy. For proof-of-concept, we chose replication protein A (RPA and origin recognition complex (ORC as the proteins of interest. Proteins were purified from budding yeast with high biotinylation efficiency and rapidly labeled with streptavidin-coated Qdots. Interactions between proteins and DNA were observed successfully at the single-molecule level.

  20. Nitrogen balance study in young Nigerian adult males using four levels of protein intake.

    Atinmo, T; Mbofung, C M; Egun, G; Osotimehin, B

    1988-11-01

    1. The present study was carried out to estimate precisely, via the nitrogen balance technique, the protein requirement of Nigerians (earlier estimated via the obligatory N method) using graded levels of protein intake. 2. Fifteen medical students of the University of Ibadan who volunteered to participate in the study were given graded levels of protein (0.3, 0.45, 0.6 and 0.75 g/kg body-weight per d) derived from foods similar to those usually consumed by the subjects. 3. Each subject was given each of the dietary protein levels for a period of 10 d. Subjects were divided into two groups and the feeding pattern followed a criss-cross design with one group starting with the highest level of protein intake (0.3 g). Mean energy intake during each of the eleven experimental periods was maintained at 0.2 MJ/kg per d. After an initial 5 d adaptation period in each experimental period, 24 h urine and faecal samples were collected in marked containers for five consecutive days for N determination. 4. Mean N balance during consumption of the four protein levels (0.30, 0.45, 0.6 and 0.75 g/kg) were -11.02 (SD 8.07), -9.90 (SD 6.64), +9.70 (SD 4.15) and +5.13 (SD 4.62) respectively. Using regression analysis, the mean daily N requirement was estimated at 110.25 mg N/kg body-weight (0.69 g protein/kg body-weight). Estimates of allowances for individual variations to cover 97.5% of the population adjusted this value to 0.75 g protein/kg body-weight. Net protein utilization for the diet at maintenance level was estimated at 57.5.

  1. Protein intake and stress levels in nurses and housewives of Pakistan

    Wattoo, Feroza Hamid; Memon, Muhammad Saleh; Memon, Allah Nawaz; Wattoo, Muhammad Hamid Sarwar; Asad, Muhammad Javaid; Siddique, Farzana

    2011-01-01

    Stress has many biological effects on human daily life. In the present study, dietary protein intake was correlated with the investigated stress levels of nurses and housewives of the targeted urban population. Age group ranged from 30 to 45 years and both the groups belonged to middle socioeconomic status. After calculations of environmental, psychological and physiological stresses, it was observed that the levels of stress in housewives were significantly higher than those of nurses. Recommended dietary allowances, RDA and actual protein intakes, API were also compared in both the groups. The found protein intake was less in housewives as compared to that of nurses. PMID:23961140

  2. Protein level affects the relative lysine requirement of growing rainbow trout (Oncorhynchus mykiss) fry.

    Bodin, Noelie; Govaerts, Bernadette; Abboudi, Tarik; Detavernier, Christel; De Saeger, Sarah; Larondelle, Yvan; Rollin, Xavier

    2009-07-01

    The effect of two digestible protein levels (310 and 469 g/kg DM) on the relative lysine (Lys; g Lys/kg DM or g Lys/100 g protein) and the absolute Lys (g Lys intake/kg 0.75 per d) requirements was studied in rainbow trout fry using a dose-response trial. At each protein level, sixteen isoenergetic (22-23 MJ digestible energy/kg DM) diets were tested, involving a full range (2-70 g/kg DM) of sixteen Lys levels. Each diet was given to one group of sixty rainbow trout fry (mean initial body weight 0.78 g) reared at 15 degrees C for 31 feeding d. The Lys requirements were estimated based on the relationships between weight, protein, and Lys gains (g/kg 0.75 per d) and Lys concentration (g/kg DM or g/100 g protein) or Lys intake (g/kg 0.75 per d), using the broken-line model (BLM) and the non-linear four-parameter saturation kinetics model (SKM-4). Both the model and the response criterion chosen markedly impacted the relative Lys requirement. The relative Lys requirement for Lys gain of rainbow trout estimated with the BLM (and SKM-4 at 90 % of the maximum response) increased from 16.8 (19.6) g/kg DM at a low protein level to 23.4 (24.5) g/kg DM at a high protein level. However, the dietary protein content affected neither the absolute Lys requirement nor the relative Lys requirement expressed as g Lys/100 g protein nor the Lys requirement for maintenance (21 mg Lys/kg 0.75 per d).

  3. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans.

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W; Grubert, Fabian; Candille, Sophie I; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L; Tang, Hua; Ricci, Emiliano; Snyder, Michael P

    2015-11-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy--many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. © 2015 Cenik et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Rice bran protein hydrolysates attenuate diabetic nephropathy in diabetic animal model.

    Boonloh, Kampeebhorn; Lee, Eun Soo; Kim, Hong Min; Kwon, Mi Hye; Kim, You Mi; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Thawornchinsombut, Supawan; Lee, Eun Young; Kukongviriyapan, Veerapol; Chung, Choon Hee

    2018-03-01

    Diabetic nephropathy (DN) is an important microvascular complication of uncontrolled diabetes. The features of DN include albuminuria, extracellular matrix alterations, and progressive renal insufficiency. Rice bran protein hydrolysates (RBPs) have been reported to have antihyperglycemic, lipid-lowering, and anti-inflammatory effects in diabetic rats. Our study was to investigate the renoprotective effects of RBP in diabetic animals and mesangial cultured cells. Eight-week-old male db/m and db/db mice were orally treated with tap water or RBP (100 or 500 mg/kg/day) for 8 weeks. At the end of the experiment, diabetic nephropathy in kidney tissues was investigated for histological, ultrastructural, and clinical chemistry changes, and biomarkers of angiogenesis, fibrosis, inflammation, and antioxidant in kidney were analyzed by Western blotting. Protection against proangiogenic proteins and induction of cytoprotection by RBP in cultured mesangial cells was evaluated. RBP treatment improved insulin sensitivity, decreased elevated fasting serum glucose levels, and improved serum lipid levels and urinary albumin/creatinine ratios in diabetic mice. RBP ameliorated the decreases in podocyte slit pore numbers, thickening of glomerular basement membranes, and mesangial matrix expansion and suppressed elevation of MCP-1, ICAM-1, HIF-1α, VEGF, TGF-β, p-Smad2/3, and type IV collagen expression. Moreover, RBP restored suppressed antioxidant Nrf2 and HO-1 expression. In cultured mesangial cells, RBP inhibited high glucose-induced angiogenic protein expression and induced the expression of Nrf2 and HO-1. RBP attenuates the progression of diabetic nephropathy and restored renal function by suppressing the expression of proangiogenic and profibrotic proteins, inhibiting proinflammatory mediators, and restoring the antioxidant and cytoprotective system.

  5. Heightened systemic levels of neutrophil and eosinophil granular proteins in pulmonary tuberculosis and reversal following treatment.

    Moideen, Kadar; Kumar, Nathella Pavan; Nair, Dina; Banurekha, Vaithilingam V; Bethunaickan, Ramalingam; Babu, Subash

    2018-04-09

    Granulocytes are activated during tuberculosis (TB) infection and act as immune effector cells and granulocyte responses are implicated in TB pathogenesis. Plasma levels of neutrophil and eosinophil granular proteins provide an indirect measure of degranulation. In this study, we wanted to examine the levels of neutrophil and eosinophil granular proteins in individuals with pulmonary tuberculosis (PTB) and to compare them with the levels in latent TB (LTB) individuals. Hence, we measured the plasma levels of myeloperoxidase (MPO), neutrophil elastase, and proteinase-3; major basic protein (MBP), eosinophil derived neurotoxin (EDN), eosinophil cationic protein (ECP) and eosinophil peroxidase (EPX) in these individuals. Finally, we also measured the levels of all of these parameters in PTB individuals following anti-tuberculosis (ATT) treatment. Our data reveal that PTB individuals are characterized by significantly higher plasma levels of MPO, elastase, human proteinase 3 as well as MBP and EDN in comparison to LTB individuals. Our data also reveal that ATT resulted in reversal of all of these changes, indicating an association with TB disease. Finally, our data show that the systemic levels of MPO and proteinase-3 can significantly discriminate PTB from LTB individuals. Thus, our data suggest that neutrophil and eosinophil granular proteins could play a potential role in the innate immune response and therefore, the pathogenesis of pulmonary TB. Copyright © 2018 American Society for Microbiology.

  6. Changes in human parotid salivary protein and sialic acid levels during pregnancy.

    D'Alessandro, S; Curbelo, H M; Tumilasci, O R; Tessler, J A; Houssay, A B

    1989-01-01

    Saliva was collected with a Carlson-Crittenden device, under citric acid stimulation, in 107 pregnant women, 9 puerperal and 7 non-pregnant controls. No significant changes were found in salivary flow rate, pH and amylase levels. The total protein levels were decreased during pregnancy and the puerperium. The sialic acid levels decreased gradually but markedly during pregnancy, returning to normal levels in the puerperium. These changes in parotid saliva may be related to the hormonal changes of pregnancy.

  7. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-01-01

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells

  8. Fasting Lipoprotein Lipase Protein Levels Can Predict a Postmeal Increment of Triglyceride Levels in Fasting Normohypertriglyceridemic Subjects.

    Tsuzaki, Kokoro; Kotani, Kazuhiko; Yamada, Kazunori; Sakane, Naoki

    2016-09-01

    Although a postprandial increment in triglyceride (TG) levels is considered to be a risk factor for atherogenesis, tests (e.g., fat load) to assess postprandial changes in TG levels cannot be easily applied to clinical practice. Therefore, fasting markers that predict postprandial TG states are needed to be developed. One current candidate is lipoprotein lipase (LPL) protein, a molecule that hydrides TGs. This study investigated whether fasting LPL levels could predict postprandial TG levels. A total of 17 subjects (11 men, 6 women, mean age 52 ± 11 years) with normotriglyceridemia during fasting underwent the meal test. Several fasting parameters, including LPL, were measured for the area under the curve of postprandial TGs (AUC-TG). The subjects' mean fasting TG level was 1.30 mmol/l, and their mean LPL level was 41.6 ng/ml. The subjects' TG levels increased after loading (they peaked after two postprandial hours). Stepwise multiple regression analysis demonstrated that fasting TG levels were a predictor of the AUC-TG. In addition, fasting LPL mass levels were found to be a predictor of the AUC-TG (β = 0.65, P fasting TG levels. Fasting LPL levels may be useful to predict postprandial TG increment in this population. © 2015 Wiley Periodicals, Inc.

  9. Performance of juvenile mojarra supplied with feed containing varying levels of crude protein

    Ricardo Henrique Bastos de Souza

    2016-04-01

    Full Text Available ABSTRACT The growth of the Brazilian aquaculture has stimulated the development of the productive chain of native species, including marine environment. The objective of this study was to evaluate the growth performance of juvenile mojarra fish (Diapterus rhombeus fed diets containing different concentrations of crude protein (32, 36, 40 and 44 g 100 g-1. The 80 juvenile mojarra (7.2±1.5 g were kept in 16 circular tanks (150 L. The study design used was completely randomized with four treatments and four repetitions. The fish were fed four times a day. At the end of the experiment (60 days the final weight, feed intake, weight gain (WG, feed:gain ratio (FGR, protein efficiency rate (PER, energy efficiency rate, specific growth, survival rate and, body composition were evaluated. It was verified significant effect of protein level on the WG, with the best value at the level of 38.20 g 100 g-1 of crude protein. For FGR, the best estimated value occurred with 38.06 g 100 g-1 of crude protein, similar to that reported for the PER (38.91 g 100 g-1. The other performance parameters and body composition were not influenced by crude protein levels. Diet crude protein concentrations between 38.06 and 38.91 g 100 g-1 provide the best performance indices for juvenile mojarra.

  10. Exploring sequence characteristics related to high-level production of secreted proteins in Aspergillus niger.

    Bastiaan A van den Berg

    Full Text Available Protein sequence features are explored in relation to the production of over-expressed extracellular proteins by fungi. Knowledge on features influencing protein production and secretion could be employed to improve enzyme production levels in industrial bioprocesses via protein engineering. A large set, over 600 homologous and nearly 2,000 heterologous fungal genes, were overexpressed in Aspergillus niger using a standardized expression cassette and scored for high versus no production. Subsequently, sequence-based machine learning techniques were applied for identifying relevant DNA and protein sequence features. The amino-acid composition of the protein sequence was found to be most predictive and interpretation revealed that, for both homologous and heterologous gene expression, the same features are important: tyrosine and asparagine composition was found to have a positive correlation with high-level production, whereas for unsuccessful production, contributions were found for methionine and lysine composition. The predictor is available online at http://bioinformatics.tudelft.nl/hipsec. Subsequent work aims at validating these findings by protein engineering as a method for increasing expression levels per gene copy.

  11. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames.

    Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T

    2017-01-01

    A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.

  12. Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution

    Howard, Rebecca J.; Slesinger, Paul A.; Davies, Daryl L.; Das, Joydip; Trudell, James R.; Harris, R. Adron

    2011-01-01

    Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmit-ter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a “molecular lubricant” for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol. PMID:21676006

  13. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins.

    Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S

    2015-12-01

    Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.

  14. Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae

    Julian Zubek

    2015-07-01

    Full Text Available Accurate identification of protein–protein interactions (PPI is the key step in understanding proteins’ biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein–protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein–protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC. Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent.

  15. Level of C - reactive protein as an indicator for prognosis of premature uterine contractions.

    Najat Nakishbandy, Bayar M; Barawi, Sabat A M

    2014-01-01

    high concentrations of maternal C-reactive protein have been associated with adverse pregnancy outcome, and premature uterine contraction may be predicted by elevated levels of C-reactive protein. This may ultimately be simple and cost-effective enough to introduce as a low-risk screening program. an observational case control study was performed from May 1st, 2010 to December 1st, 2010 at Maternity Teaching Hospital-Erbil/ Kurdistan Region/ Iraq. The sample size was (200) cases. Hundred of them were presented with premature uterine contractions at 24(+0)-36(+6) weeks. The other hundred were control group at same gestational ages. The level of C-reactive protein was determined in both groups and both groups were followed till delivery. (93) out of (100) women with premature uterine contractions had elevated level of C-Reactive protein and 91% delivered prematurely while in the control group only (9) out of (100) women had elevated level of C-reactive protein and only 8% of them delivered preterm. Differences were statistically highly significant. C-reactive protein can be used as a biomarker in prediction of premature delivery when it is associated with premature uterine contractions. As well it can be used as a screening test to detect cases that are at risk of premature delivery.

  16. Implicación de las vías Nrf2/HO-1 y NADPH oxidasa en los modelos experimentales de artritis y osteoporosis postmenópausicas.

    Ibáñez Torres, Lidia

    2012-01-01

    Hemos puesto a punto y caracterizado el modelo de artritis postmenopáusica mediante ovariectomía (OVX) y artritis inducida por colágeno (CIA). Además, hemos estudiado la influencia de la vía HO-1 en este modelo animal mediante la administración de tin protoporfirina IX (SnPP) (inhibidor reversible de HO-1) y de CORM-3 (molécula liberadora de CO), así como la influencia de la vía NADPH oxidasa mediante el empleo de ratones con una modificación genética en Ncf1 de manera que no producen especie...

  17. Harmful effect of protein difficiency on lipids, glucose, insulin and estradiol levels in female albino rats

    El-Mahdy, A.A.; El-Sherbiny, E.M.; Bayomi, M.M.

    2005-01-01

    The present study was undertaken to investigate the harmful effect of protein deficient diet on some biochemical activities in serum of female rats. Protein malnutrition is a well known socioeconomic problem in different parts of the world. Many studies were investigated on the biological parameters following protein malnutrition in human and experimental animals. Forty albino female rats were divided into 3 groups. The first group (10 rats) fed 18% protein diet and served as normal control and the other two groups, each contains 15 rats, fed 5% protein for 21 and 45 days, respectively, and served as malnourished groups. The results showed significant decrease in total body weight, serum glucose, insulin and estradiol levels in the third group as well as decrease in the total cholesterol, HDL-cholesterol, LDL-cholesterol and VLDL-cholesterol and triglycerides concentrations that compared to normal control rats

  18. Protein Consumption and the Elderly: What Is the Optimal Level of Intake?

    Jamie I. Baum

    2016-06-01

    Full Text Available Maintaining independence, quality of life, and health is crucial for elderly adults. One of the major threats to living independently is the loss of muscle mass, strength, and function that progressively occurs with aging, known as sarcopenia. Several studies have identified protein (especially the essential amino acids as a key nutrient for muscle health in elderly adults. Elderly adults are less responsive to the anabolic stimulus of low doses of amino acid intake compared to younger individuals. However, this lack of responsiveness in elderly adults can be overcome with higher levels of protein (or essential amino acid consumption. The requirement for a larger dose of protein to generate responses in elderly adults similar to the responses in younger adults provides the support for a beneficial effect of increased protein in older populations. The purpose of this review is to present the current evidence related to dietary protein intake and muscle health in elderly adults.

  19. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  20. Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level.

    Fischer, Jana; Kleinau, Gunnar; Rutz, Claudia; Zwanziger, Denise; Khajavi, Noushafarin; Müller, Anne; Rehders, Maren; Brix, Klaudia; Worth, Catherine L; Führer, Dagmar; Krude, Heiko; Wiesner, Burkhard; Schülein, Ralf; Biebermann, Heike

    2018-06-01

    G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of G q/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.

  1. Protein synthesis levels are increased in a subset of individuals with Fragile X syndrome

    Jacquemont, Sébastien; Pacini, Laura; Jønch, Aia E

    2018-01-01

    architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical...... severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS...... and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those...

  2. Do infants with cow's milk protein allergy have inadequate levels of vitamin D?

    Silva, Cristiane M; Silva, Silvia A da; Antunes, Margarida M de C; Silva, Gisélia Alves Pontes da; Sarinho, Emanuel Sávio Cavalcanti; Brandt, Katia G

    To verify whether infants with cow's milk protein allergy have inadequate vitamin D levels. This cross-sectional study included 120 children aged 2 years or younger, one group with cow's milk protein allergy and a control group. The children were recruited at the pediatric gastroenterology, allergology, and pediatric outpatient clinics of a university hospital in the Northeast of Brazil. A questionnaire was administered to the caregiver and blood samples were collected for vitamin D quantification. Vitamin D levels <30ng/mL were considered inadequate. Vitamin D level was expressed as mean and standard deviation, and the frequency of the degrees of sufficiency and other variables, as proportions. Infants with cow's milk protein allergy had lower mean vitamin D levels (30.93 vs.35.29ng/mL; p=0.041) and higher deficiency frequency (20.3% vs.8.2; p=0.049) than the healthy controls. Exclusively or predominantly breastfed infants with cow's milk protein allergy had higher frequency of inadequate vitamin D levels (p=0.002). Regardless of sun exposure time, the groups had similar frequencies of inadequate vitamin D levels (p=0.972). Lower vitamin D levels were found in infants with CMPA, especially those who were exclusively or predominantly breastfed, making these infants a possible risk group for vitamin D deficiency. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  3. Do infants with cow's milk protein allergy have inadequate levels of vitamin D?

    Cristiane M. Silva

    Full Text Available Abstract Objective: To verify whether infants with cow's milk protein allergy have inadequate vitamin D levels. Methods: This cross-sectional study included 120 children aged 2 years or younger, one group with cow's milk protein allergy and a control group. The children were recruited at the pediatric gastroenterology, allergology, and pediatric outpatient clinics of a university hospital in the Northeast of Brazil. A questionnaire was administered to the caregiver and blood samples were collected for vitamin D quantification. Vitamin D levels <30 ng/mL were considered inadequate. Vitamin D level was expressed as mean and standard deviation, and the frequency of the degrees of sufficiency and other variables, as proportions. Results: Infants with cow's milk protein allergy had lower mean vitamin D levels (30.93 vs.35.29 ng/mL; p = 0.041 and higher deficiency frequency (20.3% vs.8.2; p = 0.049 than the healthy controls. Exclusively or predominantly breastfed infants with cow's milk protein allergy had higher frequency of inadequate vitamin D levels (p = 0.002. Regardless of sun exposure time, the groups had similar frequencies of inadequate vitamin D levels (p = 0.972. Conclusions: Lower vitamin D levels were found in infants with CMPA, especially those who were exclusively or predominantly breastfed, making these infants a possible risk group for vitamin D deficiency.

  4. Less is More: Membrane Protein Digestion Beyond Urea-Trypsin Solution for Next-level Proteomics.

    Zhang, Xi

    2015-09-01

    The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea-trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting-not destroying-structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  6. Investigation of the molecular level interactions between mucins and food proteins: Spectroscopic, tribological and rheological studies

    Celebioglu, Hilal Yilmaz; Chronakis, Ioannis S.; Lee, Seunghwan; Guðjónsdóttir, María

    2017-01-01

    The thesis investigated the structure and molecular-level interaction of β-lactoglobulin (BLG) and mucins, representing major components of the dairy products and saliva/digestion systems, respectively. Mucins are long glycoprotein molecules responsible for the gel nature of the mucous layer covers epithelial surfaces throughout the body. A literature review of the interactions of different mucin types and saliva mucins with several food proteins and food protein emulsions, as well as their f...

  7. Urea metabolism in buffalo calves fed on rations containing two levels of crude protein

    Verma, D.N.; Singh, U.B.; Lal, M.; Varma, A.; Ranjhan, S.K.

    1974-01-01

    Urea entry rates into the body pools of Murrah Buffalo calves have been estimated using a single injection isotope dilution technique using 14 C-urea. The animals were fed two levels of crude proteins, namely, 13 percent lower and 19 percent higher than N.R.C. recommendations. Results show that the recycling of urea is significantly better in animals given low crude protein contents. (M.G.B.)

  8. Effects of dietary protein levels on length-weight relationships and ...

    Feeding trial involving different protein levels on length–weight relationships and condition factor of Clarias gariepinus was conducted in floating hapa system. Fingerlings (average weight, 4.50± 0.01g and average length, 8.0±0.2 cm) were randomly stocked at 20 fish/1m3. Five diets with crude protein: 40.0, 42.5, 45.0, 47.5 ...

  9. Interaction betwen Lead and Bone Protein to Affect Bone Calcium Level Using UV-Vis Spectroscopy

    Noor, Z.; Azharuddin, A.; Aflanie, I.; Kania, N.; Suhartono, E.

    2018-05-01

    This present study aim to evaluate the interactions between lead (Pb) and with bone protein by UV-Vis approach. In addition, this prsent study also aim to investigate the effect of Pb on bone calcium (Ca) level. The present study was a true experimental study design to examine the impact of Pb exposure in bone of male rats (Rattus novergicus). The study involved 5 groups, P1 was the control group, while the other (P2-P5) were the case group with exposure of Pb in different concentration within 4 weeks. At the end of the exposure, the interaction between Pb and protein was determined using UV-Vis spectrophotometric method, and the Ca level was determined using permanganometric method. The results shows that that there is an interaction between Pb and bone protein. The result also shows that the value of the binding constant of Protein-Pb is 32.71. It means Pb have an high affinity to bind with bone protein, which promote a further reaction to induced the release of bone Ca from the bone protein. In conclusion, this present study found an obvious relationship between Pb and bone protein which promote a further reaction to increase the releasing of bone calcium.

  10. Denaturing high-performance liquid chromatography mutation analysis in patients with reduced Protein S levels

    Bathum, Lise; Münster, Anna-Marie; Nybo, Mads

    2008-01-01

    diagnosis and risk estimation. The aim was to design a high-throughput genetic analysis based on denaturing high-performance liquid chromatography to identify sequence variations in the gene coding for Protein S. PATIENTS: In total, 55 patients referred to the Section of Thrombosis and Haemostasis, Odense......BACKGROUND: Patients with congenital Protein S deficiency have increased risk of venous thromboembolism. However, Protein S levels show large intra-individual variation and the biochemical assays have low accuracy and a high interlaboratory variability. Genetic analysis might aid in a more precise......, giving a precise diagnosis and subsequently a better risk estimation....

  11. Serum eosinophil cationic protein levels can be useful for predicting acute exacerbation of asthma

    Mitsuhiro Kamimura

    1998-01-01

    Full Text Available We report on a case in which five consecutive exacerbations of asthma were monitored by following serum eosinophil cationic protein (ECP levels. The serum ECP level correlated well with each exacerbation and tended to increase even before the exacerbations of asthma became apparent. This case shows that serum levels of ECP can be useful markers of disease activity and may also be predictive markers for acute exacerbation.

  12. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  13. Ground level environmental protein concentrations in various ecuadorian environments: potential uses of aerosolized protein for ecological research

    Staton, Sarah J.R.; Woodward, Andrea; Castillo, Josemar A.; Swing, Kelly; Hayes, Mark A.

    2014-01-01

    Large quantities of free protein in the environment and other bioaerosols are ubiquitous throughout terrestrial ground level environments and may be integrative indicators of ecosystem status. Samples of ground level bioaerosols were collected from various ecosystems throughout Ecuador, including pristine humid tropical forest (pristine), highly altered secondary humid tropical forest (highly altered), secondary transitional very humid forest (regrowth transitional), and suburban dry montane deforested (suburban deforested). The results explored the sensitivity of localized aerosol protein concentrations to spatial and temporal variations within ecosystems, and their value for assessing environmental change. Ecosystem specific variations in environmental protein concentrations were observed: pristine 0.32 ± 0.09 μg/m3, highly altered 0.07 ± 0.05 μg/m3, regrowth transitional 0.17 ± 0.06 μg/m3, and suburban deforested 0.09 ± 0.04 μg/m3. Additionally, comparisons of intra-environmental differences in seasonal/daily weather (dry season 0.08 ± 0.03 μg/m3 and wet season 0.10 ± 0.04 μg/m3), environmental fragmentation (buffered 0.19 ± 0.06 μg/m3 and edge 0.15 ± 0.06 μg/m3), and sampling height (ground level 0.32 ± 0.09 μg/m3 and 10 m 0.24 ± 0.04 μg/m3) demonstrated the sensitivity of protein concentrations to environmental conditions. Local protein concentrations in altered environments correlated well with satellite-based spectral indices describing vegetation productivity: normalized difference vegetation index (NDVI) (r2 = 0.801), net primary production (NPP) (r2 = 0.827), leaf area index (LAI) (r2 = 0.410). Moreover, protein concentrations distinguished the pristine site, which was not differentiated in spectral indices, potentially due to spectral saturation typical of highly vegetated environments. Bioaerosol concentrations represent an inexpensive method to increase understanding of environmental changes, especially in densely vegetated

  14. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, V Venkata

    2018-03-28

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Despite of producing high protein titers, various cellular and process level bottlenecks hinders the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Noise genetics: inferring protein function by correlating phenotype with protein levels and localization in individual human cells.

    Shlomit Farkash-Amar

    2014-03-01

    Full Text Available To understand gene function, genetic analysis uses large perturbations such as gene deletion, knockdown or over-expression. Large perturbations have drawbacks: they move the cell far from its normal working point, and can thus be masked by off-target effects or compensation by other genes. Here, we offer a complementary approach, called noise genetics. We use natural cell-cell variations in protein level and localization, and correlate them to the natural variations of the phenotype of the same cells. Observing these variations is made possible by recent advances in dynamic proteomics that allow measuring proteins over time in individual living cells. Using motility of human cancer cells as a model system, and time-lapse microscopy on 566 fluorescently tagged proteins, we found 74 candidate motility genes whose level or localization strongly correlate with motility in individual cells. We recovered 30 known motility genes, and validated several novel ones by mild knockdown experiments. Noise genetics can complement standard genetics for a variety of phenotypes.

  16. The Common Inhalational Anesthetic Sevoflurane Induces Apoptosis and Increases β-Amyloid Protein Levels

    Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D.; Xia, Weiming; Marcantonio, Edward R.; Culley, Deborah J.; Crosby, Gregory; Tanzi, Rudolph E.; Xie, Zhongcong

    2009-01-01

    Objective: To assess the effects of sevoflurane, the most commonly used inhalation anesthetic, on apoptosis and β-amyloid protein (Aβ) levels in vitro and in vivo. Subjects: Naive mice, H4 human neuroglioma cells, and H4 human neuroglioma cells stably transfected to express full-length amyloid precursor protein. Interventions: Human H4 neuroglioma cells stably transfected to express full-length amyloid precursor protein were exposed to 4.1% sevoflurane for 6 hours. Mice received 2.5% sevoflurane for 2 hours. Caspase-3 activation, apoptosis, and Aβ levels were assessed. Results: Sevoflurane induced apoptosis and elevated levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in vitro and in vivo. The caspase inhibitor Z-VAD decreased the effects of sevoflurane on apoptosis and Aβ. Sevoflurane-induced caspase-3 activation was attenuated by the γ-secretase inhibitor L-685,458 and was potentiated by Aβ. These results suggest that sevoflurane induces caspase activation which, in turn, enhances β-site amyloid precursor protein–cleaving enzyme and Aβ levels. Increased Aβ levels then induce further rounds of apoptosis. Conclusions: These results suggest that inhalational anesthetic sevoflurane may promote Alzheimer disease neuropathogenesis. If confirmed in human subjects, it may be prudent to caution against the use of sevoflurane as an anesthetic, especially in those suspected of possessing excessive levels of cerebral Aβ. PMID:19433662

  17. Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer.

    Norris, Alixanna M; Woodruff, R D; D'Agostino, Ralph B; Clodfelter, Jill E; Scarpinato, Karin Drotschmann

    2007-02-01

    Defects in mismatch repair (MMR) proteins have been identified in various types of cancer. However, an association with prostate cancer has been controversial. Defective MMR results in genome instability with detrimental consequences that significantly contribute to tumorigenesis. This study determined alterations in key MMR protein levels in prostate cancer with the goal to identify prognostic markers. Prostatectomy samples were immunohistochemically stained and the relative presence or absence of key proteins MSH2, MLH1, and PMS2 determined. Cancer tissue of distinct grades was compared with the normal surrounding tissue. Microsatellite instability (MSI) in altered tissues was determined according to NCI guidelines. In contrast to reports that associate a lack of individual MMR proteins with tumorigenesis, a significant increase in PMS2 levels was identified in PIN lesions and prostate cancer tissue. This elevation in PMS2 was independent of changes in levels in its heterodimeric partner, MLH1. Prostate tumors with elevated levels of PMS2 were genetically unstable, which was corrected by MLH1 co-elevation. This is the first documentation of detrimental consequences associated with the increase in a MMR protein in human cancer. This study recognizes PMS2 elevation as a prognostic marker in pre-neoplastic and prostate cancer lesions. This result has significant implications for future diagnostic and treatment measures. (c) 2006 Wiley-Liss, Inc.

  18. In vitro effect of dietary protein level and nondigestible oligosaccharides on feline fecal microbiota.

    Pinna, C; Stefanelli, C; Biagi, G

    2014-12-01

    The aim of the present study was to evaluate in vitro the effect of some prebiotic substances and 2 dietary protein levels on the composition and activity of feline fecal microbiota. Two in vitro studies were conducted. First, 6 nondigestible oligosaccharides were studied; treatments were control diet (CTRL), gluconic acid (GA), carrot fiber (CF), fructooligosaccharides (FOS), galactooligosaccharides (GOS), lactitol (LAC), and pectins from citrus fruit (PEC). Substrates were added to feline fecal cultures at 2 g/L for 24 h incubation. Compared with the CTRL, ammonia had been reduced (Pmicrobiota and that high dietary protein levels in a cat's diet can have negative effects on the animal intestinal environment.

  19. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The effects of maternal total protein, albumin and hemoglobin levels on birth weight

    Berna Haliloglu

    2007-12-01

    Full Text Available OBJECTIVE: The present study was designed to investigate the influence of third trimester maternal total protein, albumin, hemoglobin levels on birth weight.\tMATERIAL-METHOD: Between January 2005 and July 2005, 750 pregnant women applied for delivery at Zeynep Kamil Women’s and Children Education and Research Hospital at 37-40 week’s gestation were examined. Maternal total protein, albumin and hemoglobin levels were measured. Data included maternal age, gravidity, parity, gestational age, birth weight, gender, presence of iron supplementation and its duration.\tRESULTS: The birth weight was significantly higher in anemic and hypoproteinemic groups compared those with normal levels. After adjusting for counfounding factors, significance of both findings lost. The cases received iron supplementation had infants with higher birth weight, however, it was not statistically significant (p: 0.055. A significant positive relation was observed between birth weight and maternal age, gravidity, parity and gestational age. No relation found between maternal total protein, albumin, hemoglobin levels and birth weight.\tCONCLUSION: The last trimester maternal total protein, albumin, hemoglobin levels seem not to be a determining factor on infant's birth weight.

  1. Investigation of the molecular level interactions between mucins and food proteins: Spectroscopic, tribological and rheological studies

    Celebioglu, Hilal Yilmaz

    The thesis investigated the structure and molecular-level interaction of β-lactoglobulin (BLG) and mucins, representing major components of the dairy products and saliva/digestion systems, respectively. Mucins are long glycoprotein molecules responsible for the gel nature of the mucous layer covers...... epithelial surfaces throughout the body. A literature review of the interactions of different mucin types and saliva mucins with several food proteins and food protein emulsions, as well as their functional properties related to the food oral processing is presented at the first chapter of the thesis (Paper...... V). Most of the studies suggest an electrostatic attraction between positively charged food proteins with negatively charged moieties of mucins (mainly on glycosylated region of mucins). The structural changes occurring during the interaction between BLG, the major whey protein, and bovine...

  2. Effect of voluntary exercise and dietary protein levels on incorporation of 14C-leucine into protein by mice liver slices in vitro

    Yashiro, Masanori; Kimura, Shuichi

    1983-01-01

    The effect of voluntary exercise on incorporation of 14 C-leucine into protein by mice liver slices in vitro were examined with mice fed 4 %, 6 % and 20 % protein diets. The incorporation of 14 C-leucine increased as dietary protein levels decreased and was significantly higher in liver slices of exercise groups than in slices of non-exercise groups. (author)

  3. Effects of dietary protein level on nutrients digestibility and reproductive performance of female mink (Neovison vison during gestation

    Qingkui Jiang

    2015-06-01

    Full Text Available The objective of this study was to determine whether nutrient digestibility and reproductive performance of pregnant mink (Neovison vison were affected by different dietary protein levels. One hundred and twenty female mink were randomly assigned to four groups, receiving diets of fresh material with different protein levels. The dietary protein levels, expressed as percentage of dry matter (DM, were 32, 36, 40 and 44% respectively. These values corresponded to average 320, 360, 400 and 440 g protein/kg DM, respectively. Results were as follows. All of crude protein digestibility, nitrogen (N intake, N retention increased along with dietary protein level increasing. Low protein level (32% significantly reduced the above indicators (P < 0.05. DM digestibility and ether extract digestibility were not affected by dietary protein level. Results of mated females, barren females, kids per litter, live born kids per mated female, birth survival rate, and birth weight showed that mink achieved optimal reproductive performance when dietary protein level was 36%. In conclusion, dietary protein was anticipated to significantly influence some nutrients' utilization. Adopting the appropriate dietary protein level allow better reproduction performance. The most preferable reproductive performance was achieved when diet contained 275.5 g digestible protein per kg DM for female mink in gestation.

  4. Isolation of basal membrane proteins from BeWo cells and their expression in placentas from fetal growth-restricted pregnancies.

    Oh, Soo-Young; Hwang, Jae Ryoung; Lee, Yoonna; Choi, Suk-Joo; Kim, Jung-Sun; Kim, Jong-Hwa; Sadovsky, Yoel; Roh, Cheong-Rae

    2016-03-01

    The syncytiotrophoblast, a key barrier between the mother and fetus, is a polarized epithelium composed of a microvillus and basal membrane (BM). We sought to characterize BM proteins of BeWo cells in relation to hypoxia and to investigate their expression in placentas from pregnancies complicated by fetal growth restriction (FGR). We isolated the BM fraction of BeWo cells by the cationic colloidal silica method and identified proteins enriched in this fraction by mass spectrometry. We evaluated the effect of hypoxia on the expression and intracellular localization of identified proteins and compared their expression in BM fractions of FGR placentas to those from normal pregnancies. We identified BM proteins from BeWo cells. Among BM proteins, we further characterized heme oxygenase-1 (HO-1), voltage-dependent anion channel-1 (VDAC1), and ribophorin II (RPN2), based on their relevance to placental biology. Hypoxia enhanced the localization of these proteins to the BM of BeWo cells. HO-1, VDAC1, and RPN2 were selectively expressed in the human placental BM fraction. C-terminally truncated HO-1 was identified in placental BM fractions, and its BM expression was significantly reduced in FGR placentas than in normal placentas. Interestingly, a truncated HO-1 construct was predominantly localized in the BM in response to hypoxia and co-localized with VDAC1 in BeWo cells. Hypoxia increased the BM localization of HO-1, VDAC1, and RPN2 proteins. FGR significantly reduced the expression of truncated HO-1, which was surmised to co-localize with VDAC1 in hypoxic BeWo cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of nutritional supplementation on periodontal parameters, carotenoid antioxidant levels, and serum C-reactive protein.

    Harpenau, Lisa A; Cheema, Abida T; Zingale, Joseph A; Chambers, David W; Lundergan, William P

    2011-05-01

    Few studies have focused on the role of nutrition in periodontal disease. The purpose of this trial was to determine the effect of a nutritional supplement on gingival inflammation, bleeding, probing depth, clinical attachment level, carotenoid antioxidant level, and C-reactive protein. The test supplement, consisting of a standard multivitamin formula, as well as several phytonutrients associated with antiinflammatory/antioxidant effects, provided modest benefits in reducing inflammation; however, further studies with larger populations and longer intervention are warranted.

  6. Effects of energy and protein levels on growth and nutrient utilization ...

    Effects of energy and protein levels on growth and nutrient utilization of weaned rabbits. ML Egbo, TA Adegbola, EO Oyawoye, MM Abubakar. Abstract. No Abstract. Animal Production Research Advances Vol. 3 (4) 2007: pp. 306-310. http://dx.doi.org/10.4314/apra.v3i4.36411 · AJOL African Journals Online. HOW TO USE ...

  7. Levels of ABA, its precursors and dehydrin-like proteins during ...

    2Department of Molecular Biology and Biotechnology, University of Dar es Salaam,. P.O Box 35179, Dar ... to combat stress. Levels of ABA and proteins that cross reacted with an anti – dehydrin ...... Cambridge, Melbourne). Wang, X.-Q., Ullah ...

  8. Systemic Glucose Level Changes with a Carbohydrate-Restricted and Higher Protein Diet Combined with Exercise

    Bowden, Rodney G.; Lanning, Beth A.; Doyle, Eva I.; Slonaker, Becky; Johnston, Holly M.; Scanes, Georgene

    2007-01-01

    Objective: The authors' purpose in this study was to compare the effects of macronutrient intake on systemic glucose levels in previously sedentary participants who followed 1 of 4 diets that were either higher protein or high carbohydrate, while initiating an exercise program. Participants and Methods: The authors randomly assigned 94 sedentary…

  9. Altered protein and iron levels of patients with active tuberculosis in ...

    Backgound: Tuberculosis as a state of chronic inflammation impacts on haematologic functions of the body. Objectives: This study aimed at assessing iron parameters and serum protein levels of ninety tuberculosis patients aged fifteen to sixty years, enrolled from Dr Lawrence Henshaw Memorial Hospital, Calabar, Nigeria.

  10. CSF Neurofilament Proteins Levels are Elevated in Sporadic Creutzfeldt-Jakob Disease

    van Eijk, Jeroen J. J.; van Everbroeck, Bart; Abdo, W. Farid; Kremer, Berry P. H.; Verbeek, Marcel M.

    2010-01-01

    In this study we investigated the cerebrospinal fluid (CSF) levels of neurofilament light (NFL) and heavy chain (NFHp35), total tau (t-tau), and glial fibrillary acidic protein (GFAP) to detect disease specific profiles in sporadic Creutzfeldt Jakob disease (sCJD) patients and Alzheimer's disease

  11. Modeling of DNA and Protein Organization Levels with Cn3D Software

    Stasinakis, Panagiotis K.; Nicolaou, Despoina

    2017-01-01

    The molecular structure of living organisms and the complex interactions amongst its components are the basis for the diversity observed at the macroscopic level. Proteins and nucleic acids are some of the major molecular components, and play a key role in several biological functions, such as those of development and evolution. This article…

  12. Plasma levels of C-Reactive Protein and Fibrinogen in Pulmonary ...

    In this study, we determined the changes in plasma C- reactive protein (C-RP) and Fibrinogen levels in Drug sensitive Tuberculosis (DSTB) patients at diagnosis, Multi drug resistant tuberculosis (MDRTB) patients at diagnosis and during chemotherapy. Twenty-four (24) patients MDRTB patients and 24 newly diagnosed ...

  13. Protein C and antithrombin levels in patients with sickle cell anemia ...

    Background: Alterations in the components of hemostasis, namely platelet function, the procoagulant, anticoagulant, and the fibrinolytic systems, are observed in sickle cell anemia (SCA) and are in favor of a procoagulant phenotype. Therefore, study of protein C and antithrombin (AT) levels in patients with SCA in steady ...

  14. Flour sodium dodecyl sulfate (SDS)-extractable protein level as a cookie flour quality indicator.

    Pareyt, Bram; Bruneel, Charlotte; Brijs, Kristof; Goesaert, Hans; Delcour, Jan A

    2010-01-13

    Flour characteristics of laboratory-milled flour fractions of two wheat cultivars were related to their cookie-baking performance. Cultivar (cv.) Albatros wheat milling yielded fractions with lower damaged starch (DS) and arabinoxylan levels and higher sodium dodecyl sulfate-extractable protein (SDSEP) levels than did cv. Meunier wheat milling. During baking, cv. Albatros flour doughs spread faster and set later than their cv. Meunier counterparts and, hence, resulted in larger cookie diameters. DS levels negatively affected spread rate during both cv. Albatros (R2=0.68) and cv. Meunier (R2=0.51) cookie baking. SDSEP levels also influenced cookie quality. The use of flour heat-treated to reduce its SDSEP levels to different degrees led to reduction of the set time (R2=0.90). It was deduced that larger gluten polymer sizes limit dough spread time during baking and that, apart from DS level, the SDSEP level is an indicator for cookie flour quality.

  15. Comparison of C-reactive protein and high-sensitivity C-reactive protein levels in patients on hemodialysis

    Imed Helal

    2012-01-01

    Full Text Available Chronic inflammation is highly prevalent in patients on hemodialysis (HD, as evidenced by increased levels of C-reactive protein (CRP. We compared CRP to high-sensitivity C-reactive protein (hs-CRP to determine whether it has any clinical implications and prognostic significance in terms of mortality. CRP was measured using a standard immunoturbidometric assay on the COBAS; INTEGRA system and hs-CRP was measured using the Dade Behring on the Konelab Nephelometer in 50 patients on HD. CRP (≥6 mg/L and hs-CRP (≥3 mg/L levels were elevated in 30% and 54% of the patients, respectively. A significant correlation was noted between hs-CRP and CRP levels (r = 0.98, P <0.001. Deming regression analysis showed that the slope was near one (r = 0.90; 0.83-0.94 and that the intercept was small. Multivariate regression confirmed that age above 40 years (RR = 3.69, P = 0.027 and duration on HD greater than five years (RR = 3.71, P = 0.028 remained significant independent predictors of serum hs-CRP. Thirteen patients died during follow-up (26%. Multivariate Cox regression demonstrated that hs-CRP (RR = 1.062, P = 0.03 and CRP levels (RR = 1.057, P = 0.009 and age (RR = 1.078, P = 0.001 were the most powerful predictors of mortality. The CRP standard assay presents a reasonable alternative to the hs-CRP assay in patients on HD. The advantages of the CRP standard assay are its online and real-time availability as well as lower costs, particularly in developing countries.

  16. Endostatin gene variation and protein levels in breast cancer susceptibility and severity

    Balasubramanian, Sabapathy P; Cross, Simon S; Globe, Jenny; Cox, Angela; Brown, Nicola J; Reed, Malcolm W

    2007-01-01

    Endostatin is a potent endogenous anti-angiogenic agent which inhibits tumour growth. A non-synonymous coding polymorphism in the Endostatin gene is thought to affect Endostatin activity. We aimed to determine the role of this Endostatin polymorphism in breast cancer pathogenesis and any influence on serum Endostatin levels in healthy volunteers. Endostatin protein expression on a breast cancer micro array was also studied to determine any relationship to genotype and to breast cancer prognosis. The 4349G > A (coding non-synonymous) polymorphism in exon 42 of the Endostatin gene was genotyped in approximately 846 breast cancer cases and 707 appropriate controls. In a separate healthy cohort of 57 individuals, in addition to genotyping, serum Endostatin levels were measured using enzyme linked immunosorbant assay (ELISA). A semi-quantitative assessment of Endostatin protein expression on immunostained tissue micro arrays (TMA) constructed from breast cancer samples of patients with genotype data was performed. The rare allele (A) was significantly associated with invasive breast cancers compared to non-invasive tumours (p = 0.03), but there was no association with tumour grade, nodal status, vascular invasion or overall survival. There was no association with breast cancer susceptibility. Serum Endostatin levels and Endostatin protein expression on the tissue micro array were not associated with genotype. The Endostatin 4349A allele is associated with invasive breast cancer. The Endostatin 4349G > A polymorphism however does not appear to be associated with breast cancer susceptibility or severity in invasive disease. By studying circulating levels and tumour Endostatin protein expression, we have shown that any influence of this polymorphism is unlikely to be through an effect on the levels of protein produced

  17. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels.

    Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T

    2017-09-19

    A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Levels of digestible protein to surubim (Pseudoplatystoma sp. reared in net cages

    Claucia Aparecida Honorato

    2014-10-01

    Full Text Available The Pseudoplatystoma sp. is species of carnivorous fish that require special attention in the diet offered. This work had the objective to determine the digestible protein requirement of juvenile the Pseudoplatystoma sp. reared in net cages. The test consisted of four isoenergetic diets (2606.69 ± 39.16 kcal kg-1 of digestible energy containing increasing levels of digestible protein (23, 24, 26 and 28%PD provided to juveniles of surubim (157.35±11.23g for five months. The parameters of growth, fillet composition, metabolic liver enzymes and morphometry of the intestine and liver were analyzed in completely randomized design with four treatments and four replicates. An increase of protein in the diet provided better weight gain. The metabolic liver enzymes increased in fish fed 24PD. The histopathological changes were not observed in the liver of the fish. The bowel histology showed adaptation to increased protein in the diet until the 26 level PD. juveniles of Pseudoplatystoma sp. Were demanding in digestible protein, showing the best results of production performance and nutrient use efficiency with the diet containing 28%PD.

  19. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins.

    Verthelyi, Daniela; Wang, Vivian

    2010-12-22

    Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs) that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS) and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st) dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  20. Protein logic: a statistical mechanical study of signal integration at the single-molecule level.

    de Ronde, Wiet; Rein ten Wolde, Pieter; Mugler, Andrew

    2012-09-05

    Information processing and decision-making is based upon logic operations, which in cellular networks has been well characterized at the level of transcription. In recent years, however, both experimentalists and theorists have begun to appreciate that cellular decision-making can also be performed at the level of a single protein, giving rise to the notion of protein logic. Here we systematically explore protein logic using a well-known statistical mechanical model. As an example system, we focus on receptors that bind either one or two ligands, and their associated dimers. Notably, we find that a single heterodimer can realize any of the 16 possible logic gates, including the XOR gate, by variation of biochemical parameters. We then introduce what to our knowledge is a novel idea: that a set of receptors with fixed parameters can encode functionally unique logic gates simply by forming different dimeric combinations. An exhaustive search reveals that the simplest set of receptors (two single-ligand receptors and one double-ligand receptor) can realize several different groups of three unique gates, a result for which the parametric analysis of single receptors and dimers provides a clear interpretation. Both results underscore the surprising functional freedom readily available to cells at the single-protein level. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Trace levels of innate immune response modulating impurities (IIRMIs synergize to break tolerance to therapeutic proteins.

    Daniela Verthelyi

    Full Text Available Therapeutic proteins such as monoclonal antibodies, replacement enzymes and toxins have significantly improved the therapeutic options for multiple diseases, including cancer and inflammatory diseases as well as enzyme deficiencies and inborn errors of metabolism. However, immune responses to these products are frequent and can seriously impact their safety and efficacy. Of the many factors that can impact protein immunogenicity, this study focuses on the role of innate immune response modulating impurities (IIRMIs that could be present despite product purification and whether these impurities can synergize to facilitate an immunogenic response to therapeutic proteins. Using lipopolysaccharide (LPS and CpG ODN as IIRMIs we showed that trace levels of these impurities synergized to induce IgM, IFNγ, TNFα and IL-6 expression. In vivo, trace levels of these impurities synergized to increase antigen-specific IgG antibodies to ovalbumin. Further, whereas mice treated with human erythropoietin showed a transient increase in hematocrit, those that received human erythropoietin containing low levels of IIRMIs had reduced response to erythropoietin after the 1(st dose and developed long-lasting anemia following subsequent doses. This suggests that the presence of IIRMIs facilitated a breach in tolerance to the endogenous mouse erythropoietin. Overall, these studies indicate that the risk of enhancing immunogenicity should be considered when establishing acceptance limits of IIRMIs for therapeutic proteins.

  2. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  3. Anti-carbamylated Protein Antibody Levels Correlate with Anti-Sa (Citrullinated Vimentin) Antibody Levels in Rheumatoid Arthritis.

    Challener, Gregory J; Jones, Jonathan D; Pelzek, Adam J; Hamilton, B JoNell; Boire, Gilles; de Brum-Fernandes, Artur José; Masetto, Ariel; Carrier, Nathalie; Ménard, Henri A; Silverman, Gregg J; Rigby, William F C

    2016-02-01

    The presence of anticitrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) indicates a breach in immune tolerance. Recent studies indicate that this breach extends to homocitrullination of lysines with the formation of anti-carbamylated protein (anti-CarP) antibodies. We analyzed the clinical and serologic relationships of anti-CarP in 2 RA cohorts. Circulating levels of immunoglobulin G anti-CarP antibodies were determined by ELISA in established (Dartmouth-Hitchcock Medical Center) and early (Sherbrooke University Hospital Center) cohorts and evaluated for anticyclic citrullinated peptide antibodies (anti-CCP), specific ACPA, and rheumatoid factor (RF) levels using the Student t test and correlation analysis. We identified elevated anti-CarP antibodies titers in 47.0% of seropositive patients (Dartmouth, n = 164), with relationships to anti-CCP (p < 0.0001) and IgM-RF (p = 0.001). Similarly, 38.2% of seropositive patients from the Sherbrooke cohort (n = 171) had elevated anti-CarP antibodies; titers correlated to anti-CCP (p = 0.01) but not IgM-RF (p = 0.09). A strong correlation with anti-Sa was observed: 47.9% anti-Sa+ patients were anti-CarP antibodies+ versus only 25.4% anti-Sa- in the Sherbrooke cohort (p = 0.0002), and 62.6% anti-Sa+ patients versus 26.9% anti-Sa- were anti-CarP antibodies+ in Dartmouth (p < 0.0001). We found a more variable response for reactivity to citrullinated fibrinogen or to citrullinated peptides from fibrinogen and α enolase. In 2 North American RA cohorts, we observed a high prevalence of anti-CarP antibody positivity. We also describe a surprising and unexpected association of anti-CarP with anti-Sa antibodies that could not be explained by cross-reactivity. Further, considerable heterogeneity exists between anti-CarP reactivity and other citrullinated peptide reactivity, raising the question of how the pathogenesis of antibody responses for carbamylated proteins and citrullinated proteins may be linked in vivo.

  4. Evaluation of C-Reactive Protein Level in Patients with Pain Form of Temporomandibular Joint Dysfunction

    Malgorzata Pihut

    2018-01-01

    Full Text Available Temporomandibular joint dysfunction is a functional disorder concerned with the abnormal functioning of the muscles of the stomatognathic system and temporomandibular joints involved in the dynamic movements of the jaw and surrounding structures. The aim of the study was to compare the level of C-reactive protein in patients with pain and painless forms of temporomandibular joint dysfunction. Materials and methods. The study group consisted of 72 patients who reported to the prosthetic treatment because of temporomandibular joint dysfunction. The study group included 36 patients with pain form of dysfunction, and the control group included 36 patients with painless form of disorder. Each patient underwent specialized examination of functional disorders in order to diagnose the type of dysfunction and was commissioned to carry out a study of the blood test concerned with evaluation of the C-reactive protein (CRP level in the same analytical laboratory. The results of the investigation were subjected to statistical analysis. The research obtained approval from the Ethics Committee of the Jagiellonian University (KBET/125/L/2013. Level of Evidence for primary research was established as type V. Results. The mean values of C-reactive protein levels in both groups were in the normal range and did not differ statistically significantly, which indicates the fact that the pain form of the temporomandibular joint disorders is not associated with inflammation of the soft tissues of the joint. Conclusion. Painful form of the temporomandibular joint dysfunctions is not connected with the inflammation of joints.

  5. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels.

    Anedda, Andrea; Rial, Eduardo; González-Barroso, M Mar

    2008-10-01

    Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and beta-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.

  6. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar.

    Sousa, Daniele O B; Carvalho, Ana F U; Oliveira, José Tadeu A; Farias, Davi F; Castelar, Ivan; Oliveira, Henrique P; Vasconcelos, Ilka M

    2015-07-22

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed.

  7. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  8. Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae.

    Masser, Anna E; Kandasamy, Ganapathi; Kaimal, Jayasankar Mohanakrishnan; Andréasson, Claes

    2016-05-01

    Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon-optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half-lives of 40 and 5 min, respectively. The commercial substrate Nano-Glo® is compatible with detection of yNluc bioluminescence in yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd.

  9. Infrared analyzers for breast milk analysis: fat levels can influence the accuracy of protein measurements.

    Kwan, Celia; Fusch, Gerhard; Bahonjic, Aldin; Rochow, Niels; Fusch, Christoph

    2017-10-26

    Currently, there is a growing interest in lacto-engineering in the neonatal intensive care unit, using infrared milk analyzers to rapidly measure the macronutrient content in breast milk before processing and feeding it to preterm infants. However, there is an overlap in the spectral information of different macronutrients, so they can potentially impact the robustness of the measurement. In this study, we investigate whether the measurement of protein is dependent on the levels of fat present while using an infrared milk analyzer. Breast milk samples (n=25) were measured for fat and protein content before and after being completely defatted by centrifugation, using chemical reference methods and near-infrared milk analyzer (Unity SpectraStar) with two different calibration algorithms provided by the manufacturer (released 2009 and 2015). While the protein content remained unchanged, as measured by elemental analysis, measurements by infrared milk analyzer show a difference in protein measurements dependent on fat content; high fat content can lead to falsely high protein content. This difference is less pronounced when measured using the more recent calibration algorithm. Milk analyzer users must be cautious of their devices' measurements, especially if they are changing the matrix of breast milk using more advanced lacto-engineering.

  10. Effect of nonsurgical periodontal treatment on C-reactive protein levels in maintenance hemodialysis patients.

    Yazdi, Farin Kiany; Karimi, Noozhan; Rasouli, Manoochehr; Roozbeh, Jamshid

    2013-01-01

    C-reactive protein (CRP) has been implicated as a possible mediator of the association between periodontitis and several systemic diseases. This study evaluated the impact of nonsurgical periodontal treatment on the serum levels of CRP in chronic kidney disease (CKD) patients on hemodialysis. A total of 77 CKD patients on hemodialysis were included in this study. At baseline, periodontal examination was assessed for all the patients, and chronic periodontitis was defined through clinical attachment level and probing pocket depth, according to the American Association of Periodontology. Nonsurgical periodontal treatment was performed and serum levels of CRP were evaluated at baseline and 8 weeks after periodontal treatment. Periodontal treatment resulted in significant reductions in CRP levels (p periodontitis. Periodontitis is an important source of systemic inflammation in CKD patients. Nonsurgical periodontal treatment can effectively reduce the serum level of CRP in these patients.

  11. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  12. Intake of Mung Bean Protein Isolate Reduces Plasma Triglyceride Level in Rats

    Nobuhiko Tachibana

    2013-09-01

    Full Text Available ABSTRACTBackground: Mung bean is well known as a starch source, but the physiological effects of mung bean protein have received little attention. In this study, we isolated mung bean protein from de-starched mung bean solutions, and investigated its influence on lipid metabolism. Objective: The aim of this study is to clarify the influence of the lipid metabolism by consumption of mung bean protein isolate (MPIMethods: Diets containing either mung bean protein isolate (MPI or casein were fed to normal rats for 28 days.Results: Both groups ate the same amount of food, but the plasma triglyceride level, relative liver weight and liver lipid contents (cholesterol and triglyceride pool in the MPI group were significantly lower than in the casein group. In the MPI group, the expression of sterol regulatory-element binding factor 1 (SREBF1 mRNA in the liver was significantly different when compared with the casein group. The significantly lower levels of insulin and free fatty acids in the MPI-fed rats may be due to the regulation of genes related to lipid metabolism in the liver.Conclusions: These results suggest that MPI may improve the plasma lipid profile by normalizing insulin sensitivity.Keywords: mung bean, Vigna radiata L., 8S globulin, triglyceride, β-conglycinin, 7S globulin, insulin sensitivity, SREBF1

  13. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets....... The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg......, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver funtion were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended...

  14. Serum levels of carbonylated and nitrosylated proteins in mobbing victims with workplace adjustment disorders.

    Di Rosa, A E; Gangemi, S; Cristani, M; Fenga, C; Saitta, S; Abenavoli, E; Imbesi, S; Speciale, A; Minciullo, P L; Spatari, G; Abbate, S; Saija, A; Cimino, F

    2009-12-01

    Today the most important problem in the work place is psychological abuse, which may affect the health because of high levels of stress and anxiety. There is evidence that most psychiatric disorders are associated with increased oxidative stress but nothing is reported about the presence of oxidative stress in mobbing victims. This study has been carried out in a group of 19 patients affected by workplace mobbing-due adjustment disorders, in comparison with 38 healthy subjects, to evaluate whether oxidative stress may be induced by mobbing. Serum levels of protein carbonyl groups and of nitrosylated proteins, biological markers of oxidative stress conditions, were higher than those measured in healthy subjects. These findings may contribute to a better understanding of the redox homeostasis dysregulation occurring in victims of workplace mobbing.

  15. Factors Influencing the Measurement of Plasma/Serum Surfactant Protein D Levels by ELISA

    Bratcher, Preston E.; Gaggar, Amit

    2014-01-01

    BACKGROUND: Extensive variations in human surfactant protein D (SP-D) levels in circulation as measured by ELISA exist in the published literature. In order to determine the source of these variations, factors influencing the measurement by ELISA were explored. MATERIALS AND METHODS: Peripheral blood from healthy individuals was collected into various vacutainers during the same blood draw. Recombinant SP-D was diluted into different matrices and used for a standard curve. Samples were analyz...

  16. Effect of physical training on glucose transporter protein and mRNA levels in rat adipocytes

    Stallknecht, B; Andersen, P H; Vinten, J

    1993-01-01

    Physical training increases insulin-stimulated glucose transport and the number of glucose transporters in adipocytes measured by cytochalasin B binding. In the present study we used immunoblotting to measure the abundance of two glucose transporters (GLUT-4, GLUT-1) in white adipocytes from....../or intrinsic activity). GLUT-1 protein and mRNA levels/adipocyte volume did not change with age or training....

  17. Supplementation of suckling beef calves with different levels of crude protein on tropical pasture.

    Lopes, Sidnei Antonio; Paulino, Mário Fonseca; Detmann, Edenio; de Campos Valadares Filho, Sebastião; Valente, Eriton Egídio Lisboa; Barros, Lívia Vieira; Cardenas, Javier Enrique Garces; Almeida, Daniel Mageste; Martins, Leandro Soares; Silva, Aline Gomes

    2014-02-01

    The effects of supplementation with different levels of crude protein on performance, intake and nutrient digestibility and efficiency of microbial protein synthesis in suckling beef calves on pasture were assessed. Fifty-five calves, with an average age of 100 days and an initial average body weight of 110 ± 7.5 kg and their respective dams, were used. The experimental design was completely randomised with five treatments and 11 replications. The experimental treatments for calves were as follows: control = calves received only mineral mixture; supplementation levels = calves received supplement containing 8, 19, 30 or 41% of crude protein (CP, at a rate of 0.5% of body weight (BW)). The cows received only mineral mixture ad libitum. Supplemented calves had higher (P calves. There was no difference in total dry matter (DM) intake (P > 0.1). However, intake of dry matter forage (DMF) presented cubic profiles (P calves on creep feeding. The intake of supplements with CP levels between 8 and 30% partially replaces of the pasture ingested by calves and increases the digestibility of the diet.

  18. Effect of protein levels in rations on the immune response and body weight in fowl

    El-Abiad, N.M.F.

    1991-01-01

    The present study was carried out at animal experimental station at nuclear research centre. Enshas. Radioimmunological and biochemical assays were performed in laboratories of radioimmunology and biochemistry unite of atomic energy authority. It was planned investigate the effect of using different dietary protein levels on the antibody formation on female and male hubbard chicks. The study was also aimed to point out the effect of both dietary protein levels and thyroglobulin immunization on growth measurements and some metabolic blood parameters in relation to induced thyroid immunity to provide some insights on the autoimmune diseases in fowl. A total of 300 one - dau old Hubbard chicks (150 females and 150 males ) were used. Birds were reared on starter diet during the first two weeks of age then randomly classified into 3 groups of 50 of each sex; representing three nutritional diets applied up to the end of the experimental period that lasted 14 weeks. Low (14,44%), medium (18.41%) and high (22.11%) levels of protein in diet were fed to female and male chicks of the first, second and third group, respectively. All diets were formulated to be of equal energy and to cover the nutritional requirements recommended by NRC, (1984)

  19. Chemotherapeutic treatment reduces circulating levels of surfactant protein-D in children with acute lymphoblastic leukemia

    Rathe, Mathias; Sorensen, Grith L; Skov Wehner, Peder

    2017-01-01

    with acute lymphoblastic leukemia (ALL). PROCEDURE: In a prospective study, 43 children receiving treatment for ALL were monitored for mucosal toxicity from diagnosis through the induction phase of treatment. Serial blood draws were taken to determine the levels of SP-D, interleukin-6 (IL-6), C......BACKGROUND: Surfactant protein D (SP-D) is a host defense molecule of the innate immune system that enhances pathogen clearance and modulates inflammatory responses. We hypothesized that circulating SP-D levels are associated with chemotherapy-induced mucositis and infectious morbidity in children...

  20. Serum levels of C-reactive protein in adolescents with periodontitis

    López, Rodrigo; Baelum, Vibeke; Hedegaard, Chris Juul

    2011-01-01

    Background: The results of several cross-sectional studies suggested a relationship between periodontitis and higher serum levels of C-reactive protein (CRP). Most of these studies were restricted to adult study groups with severe periodontal inflammation, and the potential effects of confounding...... ng/ml (31 to 183 ng/ml), respectively (P = 0.8). Conclusions: Serum levels of CRP were not significantly higher among subjects with periodontitis than among controls. However, a statistically significant positive association between percentages of sites with bleeding on probing and log...

  1. Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Juvenile Far Eastern Catfish

    Kyoung-Duck Kim

    2012-03-01

    Full Text Available A 3×2 factorial experiment was conducted to determine the effects of dietary protein and lipid levels on the growth and body composition of juvenile far eastern catfish. Six diets were formulated to contain three levels of protein (20%, 30% and 40% and two levels of lipid (9% and 17%. Triplicate groups of fish (initial body weight of 7.6 g were hand-fed to apparent satiation for 66 days. Final mean weight was improved with increasing dietary protein and lipid levels, and the highest final mean weight was observed in fish fed the 40/17 (% protein/% lipid diet. No significant difference was observed in final mean weight for fish fed between 30/17 diet and 40/9 diet. Feed efficiency of fish fed the diets containing over 30% protein levels with 9% and 17% lipid levels were significantly higher than those of fish fed the 20% protein levels. Feed efficiency of fish fed the 30/17 diet was not significantly different from that of fish fed the 40/9 diet or 40/17 diet. Feed efficiency and protein efficiency ratio of fish fed the 20% protein diets with 17% lipid level were significantly higher than those of fish fed 9% lipid diet. Daily feed intake of fish tended to decrease with increasing dietary protein and lipid levels. Moisture content of whole body in fish fed the 9% lipid diets was significantly higher than that of fish fed the 17% lipid diets at the same protein level, but the opposite trends were found for crude lipid content. Significant effects of dietary lipid were observed for most fatty acids, according to their relative values in the diets. The results of this study suggest that the protein requirement for maximum growth of juvenile far eastern catfish may be higher than 40%, and an increase of dietary lipid level from 9% to 17% can improve growth and feed utilization.

  2. Lower Squalene Epoxidase and Higher Scavenger Receptor Class B Type 1 Protein Levels Are Involved in Reduced Serum Cholesterol Levels in Stroke-Prone Spontaneously Hypertensive Rats.

    Michihara, Akihiro; Mido, Mayuko; Matsuoka, Hiroshi; Mizutani, Yurika

    2015-01-01

    A lower serum cholesterol level was recently shown to be one of the causes of stroke in an epidemiological study. Spontaneously hypertensive rats stroke-prone (SHRSP) have lower serum cholesterol levels than normotensive Wistar-Kyoto rats (WKY). To elucidate the mechanisms responsible for the lower serum cholesterol levels in SHRSP, we determined whether the amounts of cholesterol biosynthetic enzymes or the receptor and transporter involved in cholesterol uptake and efflux in the liver were altered in SHRSP. When the mRNA levels of seven cholesterol biosynthetic enzymes were measured using real-time polymerase chain reaction (PCR), farnesyl pyrophosphate synthase and squalene epoxidase (SQE) levels in the liver of SHRSP were significantly lower than those in WKY. SQE protein levels were significantly reduced in tissues other than the brain of SHRSP. No significant differences were observed in low-density lipoprotein (LDL) receptor (uptake of serum LDL-cholesterol) or ATP-binding cassette transporter A1 (efflux of cholesterol from the liver/formation of high-density lipoprotein (HDL)) protein levels in the liver and testis between SHRSP and WKY, whereas scavenger receptor class B type 1 (SRB1: uptake of serum HDL-cholesterol) protein levels were higher in the livers of SHRSP. These results indicated that the lower protein levels of SQE and higher protein levels of SRB1 in the liver were involved in the reduced serum cholesterol levels in SHRSP.

  3. Serum heart type fatty acid binding protein levels are not changed in hyperthyroidism.

    Ozbek, Mustafa; Gungunes, Askin; Sahin, Mustafa; Ginis, Zeynep; Ucan, Bekir; Sayki, Muyesser; Tutal, Esra; Cakal, Erman; Kuşkonmaz, Serife M; Öztürk, Mehmet A; Delibasi, Tuncay

    2016-09-01

    Heart type fatty acid binding protein (H-FABP) is a small protein and released into the circulation when myocardial damage has occurred. Previous studies have demonstrated that H-FABP is closely associated with cardiac and some endocrinologic disorders including prediabetes, metabolic syndrome, and acromegaly. Hyperthyroism is a well-known disorder associated with cardiovascular diseases. We aimed to investigate the effect of hyperthyrodism on H-FABP levels. Forty six patients with hyperthyroidism with no known history of coronary artery disease and 40 healthy controls are involved in the study. Serum H-FABP levels are measured using sandwich enzyme-linked immunosorbent assay. There was no significant difference between serum H-FABP levels of patients with hyperthyroidism and controls (871±66 pg/mL, and 816±66 pg/mL, respectively P=0.56). There was no significant correlation between H-FABP, free triiodothyronine (fT3), free thyroxine (fT4), and thyroid stimulating hormone (TSH) levels in patients and controls. Serum H-FABP levels are not altered in patients with hyperthyroidism.

  4. Occupational exposure levels of bioaerosol components are associated with serum levels of the acute phase protein Serum Amyloid A in greenhouse workers

    Madsen, Anne Mette; Thilsing, Trine; Bælum, Jesper

    2016-01-01

    to elevated levels of bioaerosols. The objective of this study is to assess whether greenhouse workers personal exposure to bioaerosol components was associated with serum levels of the acute phase proteins Serum Amyloid A (SAA) and C-reactive protein (CRP). METHODS: SAA and CRP levels were determined......-glucan. RESULTS: Serum levels of SAA and CRP were not significantly different in greenhouse workers and a reference group, or on the two work days. In a mixed model, SAA levels were positively associated with endotoxin exposure levels (p = 0.0007). Results for fungi were not clear. CRP levels were positively...... associated with endotoxin exposures (p = 0.022). Furthermore, when workers were categorized into three groups based on SAA and CRP serum levels endotoxin exposure was highest in the group with the highest SAA levels and in the group with middle and highest CRP levels. SAA and CRP levels were elevated...

  5. Molecular mechanism and functional consequences of lansoprazole-mediated heme oxygenase-1 induction

    Schulz-Geske, Stephanie; Erdmann, Kati; Wong, Ronald J; Stevenson, David K; Schröder, Henning; Grosser, Nina

    2009-01-01

    AIM: To investigate the molecular mechanism and functional consequences of heme oxygenase-1 (HO-1) activation by lansoprazole in endothelial cells and macrophages. METHODS: Expression of HO-1 mRNA was analyzed by Northern blotting. Western blotting was used to determine the HO-1 and ferritin protein levels. NADPH-dependent reactive oxygen species (ROS) formation was measured with lucigenin-enhanced chemiluminescence. HO-1 promoter activity in mouse fibroblasts, stably transfected with a 15-kb HO-1 gene that drives expression of the reporter gene luciferase, was assessed using in vivo bioluminescence imaging. RESULTS: Lansoprazole increased HO-1 mRNA levels in endothelial cells and HO-1 protein levels in macrophages. In addition, lansoprazole-induced ferritin protein levels in both cell systems. Moreover, induction of the antioxidant proteins HO-1 and ferritin by lansoprazole was followed by a decrease in NADPH-mediated ROS formation. The radical scavenging properties of lansoprazole were diminished in the presence of the HO inhibitor, chromium mesoporphyrin IX. Induction of HO-1 gene expression by lansoprazole was not related to oxidative stress or to the activation of the mitogen-activated protein kinase pathway. However, the phosphatidylinositol 3-kinase inhibitor LY294002 showed a concentration-dependent inhibition of HO-1 mRNA and promoter activity. CONCLUSION: Activation of HO-1 and ferritin may account for the gastric protection of lansoprazole and is dependent on a pathway blocked by LY294002. PMID:19764090

  6. Evaluation of the C-reactive protein serum levels in periodontitis patients with or without atherosclerosis.

    Thakare, Kaustubh S; Deo, Vikas; Bhongade, Manohar L

    2010-01-01

    Several studies suggested an association between periodontal disease and cardiovascular disease (CVD). C- reactive protein is elevated in periodontitis patients and has been found to be a predictor of increased risk for cardiovascular disease. Since, CRP is known to play a role in pathogenesis of atherosclerosis, the present study was undertaken to evaluate the serum levels of CRP in periodontitis patients with or without atherosclerosis. A total of 45 patients, 15 chronic periodontitis patients with atherosclerosis (Group A), 15 chronic periodontitis patients with no history of any systemic disease (Group B), and 15 clinically healthy individuals with no history of periodontal or systemic disease (Group C) within age range of 30 to 55 years were selected for the study. PI, PBI, PPD, CAL and radiographic marginal alveolar bone level were assessed in all the three groups. CRP levels were assessed with 'Turbi-latex' kit using turbidimetric analysis. The mean CAL recorded was 4.9mm in group A, 4.6mm in group B and 1.9 mm in group C. The mean radiographic marginal bone level was 45 to 50% in group A, 45 to 50% in group B and 90 to 95% in group C. Mean serum C-reactive protein level was significantly higher in group A (8.9 mg/l), as compared to group B (4.9 mg/l) as well as group C (0.9 mg/l). Within the limits of this study it was concluded that periodontitis may add to the inflammatory burden of the individual and may result in increased risk of atherosclerosis based on serum C-reactive protein concentrations.

  7. Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins.

    Lanham, S A; Cagampang, F R; Oreffo, R O C

    2014-12-01

    Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.

  8. Heme oxygenase-1 regulates the progression of K/BxN serum transfer arthritis.

    Rita Brines

    Full Text Available Heme oxygenase-1 (HO-1 is induced in many cell types as a defense mechanism against stress. We have investigated the possible role of endogenous HO-1 in the effector phase of arthritis using the K/BxN serum transfer model of arthritis in HO-1 heterozygous and homozygous knock-out mice.Arthritis was induced in C57/Black-6 xFVB (HO-1(+/+, HO-1(+/- and HO-1(-/- mice by intraperitoneal injection of 150 µl serum from arthritic K/BxN mice at days 0 and 2. Blood was collected and animals were sacrificed at day 10. Histological analysis was performed in ankle sections. The levels of inflammatory mediators were measured in serum and paw homogenates by enzyme-linked immunosorbent assay or Multiplex technology. The incidence of arthritis was higher in HO-1(+/- and HO-1(-/- groups compared with HO-1(+/+. The inflammatory response was aggravated in HO-1(+/- mice as shown by arthritic score and the migration of inflammatory cells that could be related to the enhancement of CXCL-1 production. In addition, the HO-1(+/- group showed proteoglycan depletion significantly higher than HO-1(+/+ mice. Serum levels of matrix metalloproteinase-3, monocyte chemotactic protein-1, plasminogen activator inhibitor-1, E-selectin and intercellular adhesion molecule-1 were increased in arthritic HO-1(-/- mice, whereas vascular endothelial growth factor and some cytokines such as interferon-γ showed a reduction compared to HO-1(+/+ or HO-1(+/- mice. In addition, down-regulated gene expression of ferritin, glutathione S-reductase A1 and superoxide dismutase-2 was observed in the livers of arthritic HO-1(+/- animals.Endogenous HO-1 regulates the production of systemic and local inflammatory mediators and plays a protective role in K/BxN serum transfer arthritis.

  9. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory.

    Figueiredo, Luciana Silva; de Freitas, Betânia Souza; Garcia, Vanessa Athaíde; Dargél, Vinícius Ayub; Köbe, Luiza Machado; Kist, Luiza Wilges; Bogo, Maurício Reis; Schröder, Nadja

    2016-11-01

    Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th-14th day of postnatal life) on the expression of proteasome β-1, β-2, and β-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits β1 and β5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.

  10. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  11. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    Kanginakudru, Sriramana, E-mail: skangina@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); DeSmet, Marsha, E-mail: mdesmet@iupui.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Thomas, Yanique, E-mail: ysthomas@umail.iu.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States); Morgan, Iain M., E-mail: immorgan@vcu.edu [VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia (United States); Androphy, Elliot J., E-mail: eandro@iu.edu [Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2015-04-15

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication.

  12. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  13. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    Kanginakudru, Sriramana; DeSmet, Marsha; Thomas, Yanique; Morgan, Iain M.; Androphy, Elliot J.

    2015-01-01

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication

  14. Effect of dietary protein level on ewe milk yield and on air quality under different ventilation rates

    A. Sevi

    2010-01-01

    Full Text Available The efficiency of dietary N utilization for milk protein synthesis in dairy animals is quite low (15 to 35% (NRC, 1988; Tamminga, 1992, therefore farmers are driven to use high protein level diets for sustaining milk production in lactating animals. Previous experiments have demonstrated that an increase in the protein level of diet from 13 to 16% resulted in higher blood urea concentrations (Jaime and Purroy, 1995 and increased N excretion in urine in sheep (Gonzalez et al., 1984.

  15. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    Cavalcanti, M.B.; Fernandes, T.S.; Melo, J.A.; Neves, M.A.B.; Machado, C.G.F

    2005-01-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of peripheral blood from healthy individuals were irradiated with known doses. Lymphocytes were separated on ficoll gradient by centrifugation and re-suspended at 1x 10 6 /mL in RPMI medium enriched with fetal calf serum. Hence, lymphocytes were incubated in 5% CO 2 at 37 deg C prior to the methodology of flow cytometry, using intranuclear antigens for the quantification of p53. In this report, the methodology performed and the results obtained

  16. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    Cavalcanti, M.B.; Fernandes, T.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Amaral, A. [Universite Paris XII (UPXII) (France); Melo, J.A. [Centro de Radioterapia de Pernambuco (CERAPE), PE (Brazil); Neves, M.A.B.; Machado, C.G.F, E-mail: maribrayner@yahoo.com.br [Fundacao de Hematologia e Hemoterapia de Pernambuco, PE (Brazil)

    2005-07-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of peripheral blood from healthy individuals were irradiated with known doses. Lymphocytes were separated on ficoll gradient by centrifugation and re-suspended at 1x 10{sub 6}/mL in RPMI medium enriched with fetal calf serum. Hence, lymphocytes were incubated in 5% CO{sub 2} at 37 deg C prior to the methodology of flow cytometry, using intranuclear antigens for the quantification of p53. In this report, the methodology performed and the results

  17. Development of multigene expression signature maps at the protein level from digitized immunohistochemistry slides.

    Gregory J Metzger

    Full Text Available Molecular classification of diseases based on multigene expression signatures is increasingly used for diagnosis, prognosis, and prediction of response to therapy. Immunohistochemistry (IHC is an optimal method for validating expression signatures obtained using high-throughput genomics techniques since IHC allows a pathologist to examine gene expression at the protein level within the context of histologically interpretable tissue sections. Additionally, validated IHC assays may be readily implemented as clinical tests since IHC is performed on routinely processed clinical tissue samples. However, methods have not been available for automated n-gene expression profiling at the protein level using IHC data. We have developed methods to compute expression level maps (signature maps of multiple genes from IHC data digitized on a commercial whole slide imaging system. Areas of cancer for these expression level maps are defined by a pathologist on adjacent, co-registered H&E slides, allowing assessment of IHC statistics and heterogeneity within the diseased tissue. This novel way of representing multiple IHC assays as signature maps will allow the development of n-gene expression profiling databases in three dimensions throughout virtual whole organ reconstructions.

  18. Selective effects of whey protein concentrate on glutathione levels and apoptosis in rats with mammary tumors.

    Cheng, Shih-Hsuan; Tseng, Yang-Ming; Wu, Szu-Hsien; Tsai, Shih-Meng; Tsai, Li-Yu

    2017-09-01

    Glutathione (GSH) plays an important role in antioxidant defense and regulation of apoptosis. GSH deficiency is related to many diseases, including cancer, and increased GSH levels in cancer cells are associated with chemotherapy resistance because of resistance to apoptosis. In this study, we investigated the effects of whey protein concentrate (WPC), a precursor of GSH, in rats with mammary tumors induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). DMBA treatment results in cellular changes that mimic the initiation and promotion of carcinogenesis of breast tissue. We aimed to examine the possible preventive effects of diets containing whey protein on DMBA-induced mammary tumors in rats. The results indicate that WPC (0.334 g/kg) supplementation significantly increased the liver GSH levels by 92%, and were accompanied by low Bax/Bcl-2 ratio (from 5 to 3) and cleaved caspase-3/procaspase-3 ratio (from 2.4 to 1.2) in DMBA-treated rats. Furthermore, tumor GSH levels were decreased by 47% in WPC-supplemented rats, which resulted in increased Bax/Bcl-2 ratio (from 0.9 to 2) and cleaved caspase-3/procaspase-3 ratio (from 1.1 to 2.7). In conclusion, supplementation with WPC could selectively deplete tumor GSH levels and, therefore, WPC supplementation might be a promising strategy to overcome treatment resistance in cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    Sungback Cho

    2015-09-01

    Full Text Available This study was performed to investigate the effect of different levels of dietary crude protein (CP on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg fed diets containing three levels of dietary CP (20%, 17.5%, and 15% and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05 in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05 in CP 15% than in CP 20% group. There was a positive correlation (p<0.05 between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

  20. Plasma lactate, GH and GH-binding protein levels in exercise following BCAA supplementation in athletes.

    De Palo, E F; Gatti, R; Cappellin, E; Schiraldi, C; De Palo, C B; Spinella, P

    2001-01-01

    Branched chain amino acids (BCAA) stimulate protein synthesis, and growth hormone (GH) is a mediator in this process. A pre-exercise BCAA ingestion increases muscle BCAA uptake and use. Therefore after one month of chronic BCAA treatment (0.2 gkg(-1) of body weight), the effects of a pre-exercise oral supplementation of BCAA (9.64 g) on the plasma lactate (La) were examined in triathletes, before and after 60 min of physical exercise (75% of VO2 max). The plasma levels of GH (pGH) and of growth hormone binding protein (pGHBP) were also studied. The end-exercise La of each athlete was higher than basal. Furthermore, after the chronic BCAA treatment, these end-exercise levels were lower than before this treatment (8.6+/-0.8 mmol L(-1) after vs 12.8+/-1.0 mmol L(-1) before treatment; p BCAA chronic treatment, this end-exercise pGHBP was 738+/-85 pmol L(-1) before vs 1691+/-555 pmol L(-1) after. pGH/pGHBP ratio was unchanged in each athlete and between the groups, but a tendency to increase was observed at end-exercise. The lower La at the end of an intense muscular exercise may reflect an improvement of BCAA use, due to the BCAA chronic treatment. The chronic BCAA effects on pGH and pGHBP might suggest an improvement of muscle activity through protein synthesis.

  1. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  2. Ischemia - reperfusion induced changes in levels of ion transport proteins in gerbil brain

    Lehotsky, J.; Racay, P.; Kaplan, P.; Mezesova, V.; Raeymaekers, L.

    1998-01-01

    A quantitative Western blotting was used to asses the levels of ion transport proteins in gerbil brain in control and in animals after ischemic-reperfusion injury (IRI). The gene products of plasma membrane Ca 2+ pump (PMCA) were detected in the hippocampus, cerebral cortex and cerebellum. However, they showed a distinct distribution pattern. Inositol 1,4,5-triphosphate (Ins 3 ) receptor and reticular Ca 2+ pump are the most abundant in cerebellum and hippocampus. The IRI leads to a selective decrease in content of PMCA and InsP 3 receptor I isoforms. The levels of α 3 isoform of Na + pump and reticular proteins: Ca 2+ pump and calreticulin remained constant. InsP 3 receptor and organellar Ca 2+ (SERCA) are the most abundant in cerebellum and hippocampus. Ischemia and reperfusion up to 10 days leads to a signal decrease of PMCA immuno-signal. We suppose that alteration of number of ion transport proteins, can contribute to changes which participate or follow the delayed death of neurons in hippocampus. (authors)

  3. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  4. Effect of changes in dietary protein and oil levels on production parameters of female broiler chickens

    Farran, M.T.; Barbour, G.W.; Usayran, N.N.; Darwish, A.

    2013-01-01

    Two experiments, as factorial arrangement of treatments in a complete randomized design, were conducted to evaluate weight gain (WG), feed conversion (FC), and carcass characteristics of female broilers fed diets varying in crude protein (CP) and metabolisable energy (ME) levels with graded oil supplementation. In experiment 1, the CP level was 190 and 220 g/kg in the starter diets and reduced by 25 g/kg for each grower diet with ME of 12.1 and 12.6 MJ /kg and oil level of 0 and 40 g/kg. In the second experiment, the level of CP was 190, 210, and 230 g/kg in the starter diets and reduced by 30g/kg in each corresponding grower diet with an oil level of 0, 20, and 40 g /kg. The 190 g/kg dietary CP reduced WG of birds at market age in both experiments but increased the FC value only in trial 2 (P < 0.05). In addition, it reduced protein and moisture contents but increased fat level in ready to cook (RTC) carcasses (P<0.05). In experiment 2, however, birds fed the 210 g CP/kg diet had WG and FC at market age, and yield of abdominal fat, pectoralis major muscle and drum, in addition to RTC carcass moisture comparable to those fed the highest dietary CP level. Dietary oil supplementation at 40 g/kg improved (P<0.05) bird WG and FC in both trials. In conclusion, diets containing 40 g oil/kg with 210 - 180 g CP/kg (starter and grower, respectively) can be safely fed to broiler females. (author)

  5. Renal and urinary levels of endothelial protein C receptor correlate with acute renal allograft rejection.

    Lionel Lattenist

    Full Text Available The Endothelial Protein C Receptor (EPCR is expressed on leukocytes, on endothelium of large blood vessels and to a lesser extent on capillaries. Membrane bound EPCR plays an important role in the activation of protein C which has anticoagulant, anti-inflammatory and cytoprotective effects. After cleavage by a protease EPCR is also found as a soluble protein. Acute rejection of kidney allografts can be divided in T-cell-mediated rejection (TCMR and antibody-mediated (ABMR rejection. The latter is characterized by strong activation of coagulation. Currently no reliable non-invasive biomarkers are available to monitor rejection. Renal biopsies were available from 81 renal transplant patients (33 without rejection, 26 TCMR and 22 ABMR, we had access to mRNA material, matched plasma and urine samples for a portion of this cohort. Renal EPCR expression was assessed by RT-PCR and immunostaining. Plasma and urine sEPCR levels were measured by ELISA. ABMR patients showed higher levels of EPCR mRNA than TCMR patients. EPCR expression on glomeruli was significantly elevated in ABMR patients than in TCMR or control patients. In the peritubular capillaries EPCR expression was higher in ABMR patients than in control patients. EPCR expression was higher in tubules and arteries of rejection patients than in control patients. Plasma sEPCR levels did not differ. Urine sEPCR levels were more elevated in the ABMR group than in patients with TCMR or without rejection. ROC analysis demonstrated that urinary sEPCR is appropriate to discriminate between ABMR patients and TCMR or control patients. We conclude that urinary sEPCR could be a novel non-invasive biomarker of antibody mediated rejection in renal transplantation.

  6. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-07-01

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  7. Comparison Of Blood Proteins And Some Hormonal Levels In Pregnant And Non-Pregnant Cows

    TEAMA, F.E.

    2010-01-01

    The aim of this study is to determine the changes in serum protein and its fractions by using electrophoresis in Holstein cows during different months of pregnancy in comparison with non-pregnant cows and to determine hormonal levels including T4, T3 and progesterone hormones. The samples were taken from 40 pregnant cows during deferent months and 10 non-pregnant cows. Significant decrease in the levels of total protein, albumin and globulin were observed in the third and late month of pregnancy than in mid pregnancy where the values were 6.5, 3.1 and 3.4 g/dl for early months and 6.5, 3.2 and 3.3 g/dl for late month as compared to the non-pregnant cows. Significant increase in α-1globulin was observed during months of pregnancy by about 33.3%. The decrease in the levels of α-2, β and γ-globulins were recorded by about 10%, 45.3% and 21.6%, respectively. A marked decrease in T4 hormone (5.0 μg/dl) was observed in pregnant cows than in non-pregnant ones (7.1 μg/dl). Also, a decreasing T3 level (169 ng/dl) was recorded as compared to non-pregnant cows (221 ng/dl). High significant increase in progesterone level was recorded in the mid pregnancy until reached the maximum value (49.94 ng/ml) at the 7 th month of pregnancy then declined (2.42 ng/ml) at the late month of pregnancy. In conclusion, during pregnancy of Holstein dairy cows, a decline in protein fractions and thyroid hormonal levels were recorded during different months as compared to non- pregnant cows. The opposite trend was observed in progesterone levels. The increasing progesterone level at the mid pregnancy indicated its importance in the continuation of pregnancy and maintenance of fetus against maternal rejection.

  8. Detection of interferon alpha protein reveals differential levels and cellular sources in disease.

    Rodero, Mathieu P; Decalf, Jérémie; Bondet, Vincent; Hunt, David; Rice, Gillian I; Werneke, Scott; McGlasson, Sarah L; Alyanakian, Marie-Alexandra; Bader-Meunier, Brigitte; Barnerias, Christine; Bellon, Nathalia; Belot, Alexandre; Bodemer, Christine; Briggs, Tracy A; Desguerre, Isabelle; Frémond, Marie-Louise; Hully, Marie; van den Maagdenberg, Arn M J M; Melki, Isabelle; Meyts, Isabelle; Musset, Lucile; Pelzer, Nadine; Quartier, Pierre; Terwindt, Gisela M; Wardlaw, Joanna; Wiseman, Stewart; Rieux-Laucat, Frédéric; Rose, Yoann; Neven, Bénédicte; Hertel, Christina; Hayday, Adrian; Albert, Matthew L; Rozenberg, Flore; Crow, Yanick J; Duffy, Darragh

    2017-05-01

    Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation. © 2017 Rodero et al.

  9. Low level chemiluminescence measurement of the binding of 8-methoxypsoralen to proteins and lymphocytic surfaces

    Lange, B.

    1980-01-01

    Photochemotherapy with 8-methoxypsoralen (8-MOP) and longwave ultraviolet light is beneficial in such different disorders like psoriasis, lichen planus, and mykosis fungoides. In contrast to a widely accepted hypothesis 8-MOP does not solely bind to nucleic acid, but also to certain proteins. The mechanism of this binding as well as the precise binding area are unknown. Therefore the UV-provoked reactions of 8-MOP with a lipid mixture, a glucosaminoglycan solution, a protein solution, and lymphocyte suspensions, respectively were investigated using low level chemiluminescence (LLCL). It was found an 8-MOP concentration-dependent decrease of LLCL intensity in the lymphocyte suspensions (10 3 to 10 4 cells/μl). This effect is result of the diminution of the photoactive 8-MOP content of the solution. 8-MOP binds quickly and in the course of a free radical reaction to lymphocytic surfaces and coincidentally loses its potency to start LLCL-detectable free radical chain responses. (author)

  10. Inflammatory C-reactive protein and cytokine levels in asymptomatic people with chronic spinal cord injury.

    Frost, Frederick; Roach, Mary Jo; Kushner, Irving; Schreiber, Peter

    2005-02-01

    To determine the relation between serologic markers of information and clinical characteristics of people with chronic spinal cord injury (SCI). Cross-sectional study. Academic medical center SCI outpatient clinic. Convenience sample of 37 men with chronic SCI and 10 healthy control subjects. Not applicable. Serum levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and C-reactive protein (CRP). The following results achieved statistical significance at P less than .05. Asymptomatic chronic SCI patients differed from referent controls with respect to serum CRP levels but not IL-6 or TNF-alpha. In SCI patients, higher levels of CRP correlated negatively with hemoglobin and albumin levels. A longer time since injury correlated with lower TNF-alpha values, whereas higher TNF-alpha levels correlated with higher serum albumin. Pressure ulcers and indwelling urinary catheters were associated with higher mean levels of CRP but not of the cytokines TNF-alpha and IL-6. Intermittent urinary catheterization was associated with lower levels of CRP when compared with other methods of bladder management. Asymptomatic people with long-term SCI, especially those with indwelling urinary catheters, showed serologic evidence of a systemic inflammatory state. There was no evidence of an elevation in proinflammatory cytokines. Detection of an ongoing systemic inflammatory response in apparently healthy people with indwelling urinary catheters and small skin ulcers further supports the aggressive pursuit of catheter-free voiding options and pressure ulcer healing.

  11. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  12. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex

    Wichern, Franziska; Jensen, Majbrit M; Christensen, Ditte Z

    2017-01-01

    The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater...... degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during...... a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal...

  13. Carvacrol attenuates serum levels of total protein, phospholipase A2 and histamine in asthmatic guinea pig

    Mohammad Hossein Boskabady

    2016-11-01

    Full Text Available Objective: Pharmacological effects of carvacrol such as its anti-inflammatory activities have been shows. In this study the effects of carvacrol on serum levels of total protein (TP, phospholipase A2 (PLA2 and histamine in sensitized guinea pigs was evaluated. Materials and Methods: Sensitized guinea pigs were given drinking water alone (group S, drinking water containing three concentrations of carvacrol (40, 80 and 160 µg/ml or dexamethasone. Serum levels of TP, PLA2 and histamine were examined I all sensitized groups as well as a non-sensitized control group (n=6 for each group. Results: In sensitized animals, serum levels of TP, PLA2 and histamine were significantly increased compared to control animals (p

  14. Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers.

    Pina, D S; Valadares Filho, S C; Tedeschi, L O; Barbosa, A M; Valadares, R F D

    2009-03-01

    This experiment evaluated the effect of 2 levels of diet concentrate (20 and 40% of DM) and 2 levels of ruminally undegraded protein (RUP: 25 and 40% of CP) on nutrient intake, total and partial apparent nutrient digestibility, microbial protein synthesis, and ruminal and physiological variables. Eight Nellore heifers (233 +/- 14 kg of BW) fitted with ruminal, abomasal, and ileal cannulas were used. The animals were held in individual sheltered pens of approximately 15 m(2) and fed twice daily at 0800 and 1600 h for ad libitum intake. Heifers were allocated in two 4 x 4 Latin square designs, containing 8 heifers, 4 experimental periods, and 4 treatments in a 2 x 2 factorial arrangement. All statistical analyses were performed using PROC MIXED of SAS. Titanium dioxide (TiO(2)) and chromic oxide (Cr(2)O(3)) were used to estimate digesta fluxes and fecal excretion. Purine derivative (PD) excretion and abomasal purine bases were used to estimate the microbial N (MN) synthesis. No significant interaction (P > 0.10) between dietary levels of RUP and concentrate was observed. There was no effect of treatment (P = 0.24) on DMI. Both markers led to the same estimates of fecal, abomasal, and ileal DM fluxes, and digestibilities of DM and individual nutrients. Ruminal pH was affected by sampling time (P RUP, whereas a quadratic effect (P RUP. The higher level of dietary concentrate led to greater MN yield regardless of the level of RUP. The MN yield and the efficiency of microbial yield estimated from urinary PD excretion produced greater (P RUP and concentrate were observed for ruminal and digestive parameters. Neither RUP nor concentrate level affected DMI. Titanium dioxide showed to be similar to Cr(2)O(3) as an external marker to measure digestibility and nutrient fluxes in cattle.

  15. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  16. Serum Levels of Surfactant Proteins in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE.

    Andriana I Papaioannou

    Full Text Available Emphysema and idiopathic pulmonary fibrosis (IPF present either per se or coexist in combined pulmonary fibrosis and emphysema (CPFE. Serum surfactant proteins (SPs A, B, C and D levels may reflect lung damage. We evaluated serum SP levels in healthy controls, emphysema, IPF, and CPFE patients and their associations to disease severity and survival.122 consecutive patients (31 emphysema, 62 IPF, and 29 CPFE and 25 healthy controls underwent PFTs, ABG-measurements, 6MWT and chest HRCT. Serum levels of SPs were measured. Patients were followed-up for 1-year.SP-A and SP-D levels differed between groups (p = 0.006 and p<0.001 respectively. In post-hoc analysis, SP-A levels differed only between controls and CPFE (p<0.05 and CPFE and emphysema (p<0.05. SP-D differed between controls and IPF or CPFE (p<0.001 for both comparisons. In IPF SP-B correlated to pulmonary function while SP-A, correlated to the Composite Physiological Index (CPI. Controls current smokers had higher SP-A and SP-D levels compared to non-smokers (p = 0.026 and p = 0.023 respectively. SP-D levels were higher in CPFE patients with extended emphysema (p = 0.042. In patients with IPF, SP-B levels at the upper quartile of its range (≥26 ng/mL presented a weak association with reduced survival (p = 0.05.In conclusion, serum SP-A and SP-D levels were higher where fibrosis exists or coexists and related to disease severity, suggesting that serum SPs relate to alveolar damage in fibrotic lungs and may reflect either local overproduction or overleakage. The weak association between high levels of SP-B and survival needs further validation in clinical trials.

  17. Intrahepatic cholangiocarcinoma prognostic determination using pre-operative serum C-reactive protein levels

    Lin, Zi-Ying; Liang, Zhen-Xing; Zhuang, Pei-Lin; Chen, Jie-Wei; Cao, Yun; Yan, Li-Xu; Yun, Jing-Ping; Xie, Dan; Cai, Mu-Yan

    2016-01-01

    Serum C-reactive protein (CRP), an acute inflammatory response biomarker, has been recognized as an indicator of malignant disease progression. However, the prognostic significance of CRP levels collected before tumor removal in intrahepatic cholangiocarcinoma requires further investigation. We sampled the CRP levels in 140 patients with intrahepatic cholangiocarcinoma who underwent hepatectomies with regional lymphadenectomies between 2006 and 2013. A retrospective analysis of the clinicopathological data was performed. We focused on the impact of serum CRP on the patients’ cancer-specific survival and recurrence-free survival rates. High levels of preoperative serum CRP were significantly associated with well-established clinicopathologic features, including gender, advanced tumor stage, and elevated carcinoembryonic antigen and carbohydrate antigen 19-9 levels (P < 0.05). Univariate analysis demonstrated a significant association between high levels of serum CRP and adverse cancer-specific survival (P = 0.001) and recurrence-free survival (P < 0.001). In patients with stage I/II intrahepatic cholangiocarcinoma, the serum CRP level was a prognostic indicator for cancer-specific survival. In patients with stage I/II or stage III/IV, the serum CRP level was a prognostic indicator for recurrence-free survival (P < 0.05). Additionally, multivariate analysis identified serum CRP level in intrahepatic cholangiocarcinoma as an independent prognostic factor (P < 0.05). We confirmed a significant association of elevated pre-operative CRP levels with poor clinical outcomes for the tested patients with intrahepatic cholangiocarcinoma. Our results indicate that the serum CRP level may represent a useful factor for patient stratification in intrahepatic cholangiocarcinoma management

  18. Effect of Hypergravity on the Level of Heat Shock Proteins 70 and 90 in Pea Seedlings

    Kozeko, Liudmyla; Kordyum, Elizabeth

    2009-01-01

    Exposure to hypergravity induces significant changes in gene expression of plants which are indicative of stress conditions. A substantial part of the general stress response is up-regulation of heat shock proteins (Hsp) which function as molecular chaperones. The objective of this research was to test the possible changes in the Hsp70 and Hsp90 level in response to short-term hypergravity exposure. In this study 5-day-old etiolated pea seedlings were exposed to centrifuge-induced hypergravity (3-14 g) for 15 min and 1 h and a part of the seedlings was sampled at 1.5 and 24 h after the exposures. Western blot analysis showed time-dependent changes in Hsp70 and Hsp90 levels: an increase under hypergravity and a tendency towards recovery of the normal content during re-adaptation. The quantity and time of their expression was correlated with the g-force level. These data suggest that short-term hypergravity acts as a stress which could increase the risk of protein denaturation and aggregation. Molecular chaperons induced during the stress may have an essential role in counteracting this risk.

  19. Increasing levels of crude protein in multiple supplements for grazing beef heifers in rainy season

    Lívia Vieira de Barros

    2015-06-01

    Full Text Available The objective was to evaluate the effect of multiple supplements with differents levels of crude protein (CP or mineral supplements on the nutritional parameters and performance of beef heifers grazing Uruchloa decumbens in the rainy season. A complete random design was employed. The treatments were made up of increasing levels of CP in the multiple supplements and a control treatment (MM in which animals were offered only mineral mixture. Multiple supplements contained 17; 30; 43 and 56% of CP, for treatments CP17; CP30; CP43 and CP56, respectively. Average daily gain (ADG (g was 447.7; 554.6; 638.4; 587.9; 590.4, for treatments MM, CP17; CP30; CP43 and CP56, respectively. A quadratic effect of the levels of crude protein was found (p< 0.10 on ADG. A greater intake of dry matter (DM, organic matter (OM, CP, ether extract (EE, non-fibrous carbohydrates (NFC, total digestible nutrients (TDN, and digested dry matter (p< 0.10 was found in animals supplemented with multiple supplements. Multiple supplements increased the apparent digestibility coefficient of DM, CP, EE and NFC. Supply of multiple multiple supplements for heifers grazing in medium to high quality pastures in the rainy season improves the performance of the animals.

  20. Plasma levels of selenium-containing proteins in Inuit adults from Nunavik.

    Achouba, Adel; Dumas, Pierre; Ouellet, Nathalie; Lemire, Mélanie; Ayotte, Pierre

    2016-11-01

    Selenium (Se) is highly abundant in marine foods traditionally consumed by Inuit of Nunavik (Northern Quebec, Canada) and accordingly, their Se intake is among the highest in the world. However, little is known regarding the biological implications of this high Se status in this Arctic indigenous population. We used a method combining affinity chromatography and inductively coupled plasma-mass spectrometry with quantification by post-column isotope dilution to determine total Se levels and concentrations of Se-containing proteins in archived plasma samples of Inuit adults who participated to the 2004 Nunavik Inuit Health Survey (N = 852). Amounts of mercury (Hg) associated with Se-containing proteins were also quantified. Results show that glutathione peroxidase 3 (GPx3), selenoprotein P (SelP) and selenoalbumin (SeAlb) represented respectively 25%, 52% and 23% of total plasma Se concentrations. In addition, small amounts of Hg co-eluted with each Se-containing protein and up to 50% of plasma Hg was associated to SelP. Total plasma Se concentrations (median = 139 μg L− 1; interquartile range (IQR) = 22.7 μg L− 1) were markedly lower and less variable than whole blood Se concentration (median = 261 μg L− 1, IQR = 166 μg L− 1). A non linear relation was observed between whole blood Se and plasma Se levels, with plasma Se concentrations leveling off at approximately 200 μg L− 1, whereas 16% and 3% of individuals exhibited whole blood concentrations higher than 500 μg L− 1 and 1000 μg L− 1, respectively. In contrast, a linear relationship was previously reported in communities consuming Brazil nuts which are rich Se, mainly present as selenomethionine. This suggests that a different selenocompound, possibly selenoneine, is present in the Arctic marine food chain and accumulates in the blood cellular fraction of Inuit.

  1. Effects of secretagogues on ATP levels and protein carboxyl methylation in rat brain synaptosomes

    Bjorndahl, J.M.; Rutledge, C.O.

    1986-01-01

    The influence of various substances which are known to alter free intracellular calcium concentrations on protein carboxyl methyltransferase (PCM) activity was investigated in rat brain synaptosomes. The synaptosomes were labeled with L-[ 3 H]methionine and the 3 H-methyl esters of proteins were formed from the methyl donor S-[ 3 H]adenosyl-L-methionine ([ 3 H]AdoMet). The calcium ionophore A23187 and ouabain decreased PCM activity and the decrease produced by A23187 was antagonized by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and MnCl 2 . On the other hand, ruthenium red, an inhibitor of calcium uptake, stimulated PCM activity. These data suggest that PCM activity is inversely related to the free cytoplasmic calcium concentration. Veratridine, A23187 and elevated potassium ions decreased the levels of ATP and [ 3 H]AdoMet. The A23187-mediated decrease in ATP levels and the reduced [ 3 H]AdoMet formation was antagonized by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and MnCl 2 . Inhibition of metabolic activity of the synaptosomes by NaCN led to: decreased ATP levels; inhibition of [3H]AdoMet formation; and inhibition of PCM activity. These data suggest that the decrease in protein methylation produced by secretagogues is associated with an increase in the concentration of free intracellular calcium which results in a decrease in the metabolically active pool of ATP. This leads to a decreased rate of AdoMet formation, a cosubstrate for PCM and a resultant decrease in PCM activity

  2. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth.

    Mukhopadhyay, Archana; Hanold, Laura E; Thayele Purayil, Hamsa; Gisemba, Solomon A; Senadheera, Sanjeewa N; Aldrich, Jane V

    2017-08-03

    The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC 50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.

  3. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (Prelated AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed (P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in

  4. Pregnancy-associated plasma protein-a levels in individuals with and without coronary artery disease

    Khan, N.U.; Khan, F.A.; Khan, D.A.; Asim, N.

    2011-01-01

    Objective: To compare pregnancy-associated plasma protein-A (PAPP-A) levels in individuals with and without coronary artery disease (CAD). Study Design: Cross-sectional comparative study. Place and Duration of Study: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, in collaboration with Armed Forces Institute of Cardiology (AFIC), from September 2008 to March 2010. Methodology: One hundred and twenty five (125) individuals both male and female were included in the study. Blood for PAPP-A and lipid profile was collected, just before angiography. On the basis of angiography, the individuals were divided into those with and without CAD. PAPP-A was analyzed by using Diagnostic System Laboratories (DSL) Enzyme Linked Immunosorbent Assay (ELISA) kit and reading was taken by ELISA reader. Lipid profile was determined on automated analyzers Selectra-2 and Vitros 5.1. Results: Amongst the 125 individuals, 41 individuals were without CAD whereas 84 individuals were having CAD. Mean PAPP-A levels were 0.74 +- 0.35 mIU/L in those without CAD whereas mean PAPP-A levels in those with CAD were 1.35 +- 0.57 mIU/L. The difference between the two groups was statistically significant (p < 0.001). A PAPP-A cut off level of 0.85 mIU/L had a sensitivity and specificity of 78% and 70% respectively for diagnosing atherosclerotic CAD. Conclusion: PAPP-A is a potentially relevant marker of the presence and extent of coronary atherosclerosis as its levels are elevated in CAD as compared to individuals without CAD. Pregnancy-associated plasma protein-A. (author)

  5. Relationship between serum levels of oxidation and inflammatory factors in type 2 diabetic patients with retinopathy and its clinical significance

    Fang Xu

    2018-02-01

    Full Text Available AIM: To investigate the relationship between serum levels of oxidation and inflammatory factors in type 2 diabetic patients with retinopathy and its clinical significance. METHODS: Totally 54 cases of patients with diabetic retinopathy was selected as subjects, including 31 patients with diabetes and non-proliferative retinopathy(NPDR groupand 23 patients with diabetes and proliferative retinopathy(PDR group. Another 30 cases of diabetes patients without DR(DM groupand 30 normal people(NC groupwas selected as control. The level of fasting blood glucose(FPG, 2h postprandial blood glucose(2hPG, glycosylated hemoglobin(HbA1c, serum malondialdehyde(MDAand heme oxygenase -1(HO-1, tumor necrosis factor α(TNF-αand interleukin-6(IL-6and C reactive protein(CRPwas detected, and variance test detect the difference between 4 groups, and SNK-Q was used to multiple comparison. Pearson correlation analysis was used to compare the correlation between oxidation markers(MDA and Ho-1and the level of inflammatory factors(TNF-α, IL-6 and CRP. COX multivariate analysis was used to investigate the risk and protective factors of diabetic retinopathy. RESULTS: The levels of FPG, 2hPG, HbA1c, MDA, TNF-α, IL-6 and CRP in DM group, PDR group and NPDR group were significantly higher than that in NC group(PPPPPPPPCONCLUSION: Oxidative stress is closely related to the expression of inflammatory factors in serum of patients with diabetes mellitus, and is an important risk factor of DR, and related indicators can be used as markers for DR diagnosis.

  6. Growth Response of White Shrimp (Litopenaeus Vannamei) Reared in Low Salinity Medium, Fed Different Protein and Calcium Levels

    Kaligis, Erly

    2015-01-01

    The white shrimp (Litopenaeus vannamei) has been an important commercial shrimp species in Indonesia. This species is tolerance to low salinity therefore, it is important to develop its aquaculture. The purpose of this study was to study the effect of protein and calcium levels in diet on growth performance of the white shrimp post larvae. A factorial experiment at three levels of dietary protein (25, 35, 45%) and three levels of calcium (0, 2, 4%) with three replicates were used in this expe...

  7. Investigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in Spinal Muscular Atrophy.

    Ramirez, Agnese; Crisafulli, Sebastiano G; Rizzuti, Mafalda; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania; Nizzardo, Monica

    2018-01-06

    Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 ( SMN1 ) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by antisense oligonucleotides (ASOs), leading to production of full-length SMN protein. We have already demonstrated that a sequence of an ASO variant, Morpholino (MO), is particularly suitable because of its safety and efficacy profile and is both able to increase SMN levels and rescue the murine SMA phenotype. Here, we optimized this strategy by testing the efficacy of four new MO sequences targeting SMN2 . Two out of the four new MO sequences showed better efficacy in terms of SMN protein production both in SMA induced pluripotent stem cells (iPSCs) and SMAΔ7 mice. Further, the effect was enhanced when different MO sequences were administered in combination. Our data provide an important insight for MO-based treatment for SMA. Optimization of the target sequence and validation of a treatment based on a combination of different MO sequences could support further pre-clinical studies and the progression toward future clinical trials.

  8. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-01-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations

  9. Evaluation of behaviour in stabled draught horse foals fed diets with two protein levels.

    Sartori, C; Guzzo, N; Normando, S; Bailoni, L; Mantovani, R

    2017-01-01

    The present work is aimed at evaluating the behaviour of Italian Heavy Draught Horse (IHDH) foals reared in semi-covered stables and fed two isoenergetic total mixed rations with different dietary protein levels (13.2% and 10.6% of CP on dry matter). The study was prompted by the restrictions for nitrate emissions in farms of the European Nitrate Directive. One suggested solution is to reduce dietary protein while maintaining normal performance and welfare, but there is a lack of literature in studies of horses. The behaviours of 20 foals of 437±60 kg of BW, aged 379±37 days and stabled in four pens by sex (S) and diet (D) were video recorded and analysed to build a suitable ethogram including 18 behaviours in six categories: ingestion, resting, maintenance, movement, social activities, other. The percentage of the daily time spent in each behavioural category and single behaviours was analysed via a single traits GLM including S, D and their interaction. Daily activity was consistent with existing literature: foals spent about 33% of the day in ingestion activities and 41% in resting, whereas social interactions constituted 8% of the time and individual maintenance draught breeds for foals in both dietary groups, a result that suggests the maintenance of well-being after dietary protein reduction. This result, together with the findings of a companion study showing no changes in growth performances of foals, showed that a reduction of CP in foal diet is reconcilable with the maintenance of performance and welfare.

  10. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    Sampson, D.A.; Jansen, G.R.

    1985-01-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of [3- 3 H]phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary gland protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis

  11. Present perspectives on the automated classification of the G-protein coupled receptors (GPCRs) at the protein sequence level

    Davies, Matthew N; Gloriam, David E; Secker, Andrew

    2011-01-01

    The G-protein coupled receptors--or GPCRs--comprise simultaneously one of the largest and one of the most multi-functional protein families known to modern-day molecular bioscience. From a drug discovery and pharmaceutical industry perspective, the GPCRs constitute one of the most commercially an...

  12. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  13. The effect of protein-energy levels dietary on Kacang goats performances

    MuchJi Martawidjaja

    1999-10-01

    Full Text Available An experiment was done to evaluate the protein-energy requirement for growing Kacang goats. Twelve males and 18 female goats, seven to eight months old were used in this study and randomized into three treatment groups, with four and six animals each, and were kept in individual pens. The treatments used were: R1= Elephant grass (E.G. + concentrate C1 (21% CP; 3.9 Mcal GE/kg, R2 = E.G. + concentrate C2 (17% CP; 3.7 Mcal GE/kg, and R3 = E.G. + concentrate C3 (12% CP; 3.5 Mcal GE/kg, respectively. Fresh Elephant grass was offered in restricted, and concentrate was offered at 3% of body weight. The experiment was carried out for 12 weeks. Data were analysed by using factorial completely randomized design 2x3 (3 rations and 2 sexes. Parameters measured were: feed intake; average daily gain and feed conversion. The results indicated that among treatments there was no significant difference on dry matter (DM and gross energy (GE intake (P>0.05, but crude protein (CP intake of R1 was 23,6% higher than treatment R2; treatment R2 was 38.1% higher than R3 (P0.05, but treatment R1 was 36.9% and significantly higher than R3 (P0.05, but ration R1 was more efficient than R3 (P0.05. It was concluded that protein intake and average daily gain were increased, and feed conversion was more efficient as the crude protein-energy levels increased in the ration. Feed intake and average daily gain of male goats were higher and feed conversion was more efficient than the female goats.

  14. The Prognostic Value of C-Reactive Protein Serum Levels in Patients with Uterine Leiomyosarcoma.

    Richard Schwameis

    Full Text Available C-reactive protein (CRP has previously been shown to serve as a prognostic parameter in women with gynecologic malignancies. Due to the lack of valid prognostic markers for uterine leiomyosarcoma (ULMS this study set out to investigate the value of pre-treatment CRP serum levels as prognostic parameter.Data of women with ULMS were extracted from databases of three Austrian centres for gynaecologic oncology. Pre-treatment CRP serum levels were measured and correlated with clinico-pathological parameters. Univariate and multivariable survival analyses were performed.In total, 53 patients with ULMS were included into the analysis. Mean (SD CRP serum level was 3.46 mg/dL (3.96. Solely, an association between pre-treatment CRP serum levels and tumor size (p = 0.04 but no other clinic-pathologic parameter such as tumor stage (p = 0.16, or histological grade (p = 0.07, was observed. Univariate and multivariable survival analyses revealed that CRP serum levels (HR 2.7 [1.1-7.2], p = 0.037 and tumor stage (HR 6.1 [1.9-19.5], p = 0.002 were the only independent prognostic factors for overall survival (OS in patients with ULMS. Patients with high pre-treatment CRP serum levels showed impaired OS compared to women with low levels (5-year-OS rates: 22.6% and 52.3%, p = 0.007.High pre-treatment CRP serum levels were independently associated with impaired prognosis in women with ULMS and might serve as a prognostic parameter in these patients.

  15. Elevated urine levels of heparin-binding protein in children with urinary tract infection.

    Kjölvmark, Charlott; Akesson, Per; Linder, Adam

    2012-08-01

    Urinary tract infection (UTI) is a common infection diagnosis in children, and efficient diagnosis and treatment are important to avoid serious complications. In this study we investigated whether urinary levels of neutrophil-derived heparin-binding protein (HBP) can be used as a marker of UTI in children. These results were compared to those of dipstick analysis, interleukin-6 (IL-6) analysis in urine, and bacterial culturing. Seventy-eight children aged 0-18 years with fever and/or symptoms indicating UTI were enrolled in a prospective consecutive study. Urine samples were cultured and analyzed with dipstick, and concentrations of HBP and IL-6 were measured. Fifteen patients were classified as having UTI, 30 patients had fever but were diagnosed with a non-urinary tract infection, and 33 patients had neither UTI nor fever. Using a urine HBP (U-HBP) cut-off level of 32 ng/mL, the sensitivity and specificity for detecting UTI were 93.3 and 90.3 %, respectively. Receiver operating characteristic curves demonstrated that U-HBP levels were a higher specificity indicator of UTI than urine white blood cell counts or urine IL-6 levels; they also showed a higher sensitivity than the results of the urine nitrite test. All patients with significant growth of clinically relevant bacteria had elevated U-HBP levels. The results indicate that rapid analysis of U-HBP can provide helpful guidance in the management of children with suspected UTI.

  16. Stathmin protein level, a potential predictive marker for taxane treatment response in endometrial cancer.

    Henrica M J Werner

    Full Text Available Stathmin is a prognostic marker in many cancers, including endometrial cancer. Preclinical studies, predominantly in breast cancer, have suggested that stathmin may additionally be a predictive marker for response to paclitaxel. We first evaluated the response to paclitaxel in endometrial cancer cell lines before and after stathmin knock-down. Subsequently we investigated the clinical response to paclitaxel containing chemotherapy in metastatic endometrial cancer in relation to stathmin protein level in tumors. Stathmin level was also determined in metastatic lesions, analyzing changes in biomarker status on disease progression. Knock-down of stathmin improved sensitivity to paclitaxel in endometrial carcinoma cell lines with both naturally higher and lower sensitivity to paclitaxel. In clinical samples, high stathmin level was demonstrated to be associated with poor response to paclitaxel containing chemotherapy and to reduced disease specific survival only in patients treated with such combination. Stathmin level increased significantly from primary to metastatic lesions. This study suggests, supported by both preclinical and clinical data, that stathmin could be a predictive biomarker for response to paclitaxel treatment in endometrial cancer. Re-assessment of stathmin level in metastatic lesions prior to treatment start may be relevant. Also, validation in a randomized clinical trial will be important.

  17. C-reactive protein levels: a prognostic marker for patients with head and neck cancer?

    Kruse, Astrid L; Luebbers, Heinz T; Grätz, Klaus W

    2010-08-02

    Recent advances in understanding complex tumor interactions have led to the discovery of an association between inflammation and cancer, in particular for colon and lung cancer, but only a very few have dealt with oral cancer. Therefore, the aim of the current study was to investigate the significance of preoperative C-reactive protein (CRP) levels as a parameter for development of lymph node metastases or recurrence. In 278 patients with oral cancer, preoperative CRP levels were compared with development of recurrence and metastasis. In 27 patients from the normal CRP group, and in 21 patients from the elevated CRP group, local recurrence was observed. Concerning lymph node metastases, 37 patients were in the normal group and 9 patients in the elevated CRP group. No significant correlation could be found between elevated CRP levels and metastasis (p = 0.468) or recurrence (p = 0.137). Our findings do not appear to support a correlation between preoperative CRP levels and development of recurrence or metastases. In further studies, CRP levels in precancerous lesions and in Human Papilloma Virus (HPV) positive patients with oral squamous cell carcinoma (SCC) should be studied.

  18. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    Ping Zhou

    Full Text Available Dietary protein levels and cysteamine (CS supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP levels (14% or 10% and CS supplemental levels (0 or 700 mg/kg. The low-protein (LP diets (10% CP were supplemented with enough essential amino acids (EAA to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS (P<0.01 and plasma urea nitrogen (PUN (P<0.001, while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001 and lean percentage (P<0.05, and decreased the feed conversion ratio (P<0.05 and back fat (P<0.05. CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1 (P<0.001, and reduced the concentrations of leptin, SS, and PUN (P<0.001. Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001 and decreased mRNA abundance of Forkhead Box O (FOXO 4 (P<0.01 and muscle atrophy F-box (P<0.001 were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target of

  19. Elevated C-Reactive Protein Levels, Psychological Distress, and Depression in 73 131 Individuals

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Nielsen, Sune Fallgaard

    2013-01-01

    and depression. DESIGN We performed cross-sectional and prospective analyses of CRP levels in 4 clinically relevant categories using data from 2 general population studies. SETTING The Copenhagen General Population and the Copenhagen City Heart studies. PARTICIPANTS We examined 73 131 men and women aged 20......CONTEXT The pathogenesis of depression is not fully understood, but studies suggest that low-grade systemic inflammation contributes to the development of depression. OBJECTIVE To test whether elevated plasma levels of C-reactive protein (CRP) are associated with psychological distress...... to 100 years. MAIN OUTCOME MEASURES We ascertained psychological distress with 2 single-item self-reports and depression using self-reported antidepressant use, register-based prescription of antidepressants, and register-based hospitalization with depression. RESULTS In cross-sectional analyses...

  20. Increased CSF levels of phosphorylated neurofilament heavy protein following bout in amateur boxers.

    Sanna Neselius

    Full Text Available INTRODUCTION: Diagnosis of mild TBI is hampered by the lack of imaging or biochemical measurements for identifying or quantifying mild TBI in a clinical setting. We have previously shown increased biomarker levels of protein reflecting axonal (neurofilament light protein and tau and glial (GFAP and S-100B damage in cerebrospinal fluid (CSF after a boxing bout. The aims of this study were to find other biomarkers of mild TBI, which may help clinicians diagnose and monitor mild TBI, and to calculate the role of APOE ε4 allele genotype which has been associated with poor outcome after TBI. MATERIALS AND METHODS: Thirty amateur boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in a prospective cohort study. CSF and blood were collected at one occasion between 1 and 6 days after a bout, and after a rest period for at least 14 days (follow up. The controls were tested once. CSF levels of neurofilament heavy (pNFH, amyloid precursor proteins (sAPPα and sAPPβ, ApoE and ApoA1 were analyzed. In blood, plasma levels of Aβ42 and ApoE genotype were analyzed. RESULTS: CSF levels of pNFH were significantly increased between 1 and 6 days after boxing as compared with controls (p<0.001. The concentrations decreased at follow up but were still significantly increased compared to controls (p = 0.018. CSF pNFH concentrations correlated with NFL (r =  0.57 after bout and 0.64 at follow up, p<0.001. No significant change was found in the other biomarkers, as compared to controls. Boxers carrying the APOE ε4 allele had similar biomarker concentrations as non-carriers. CONCLUSIONS: Subconcussive repetitive trauma in amateur boxing causes a mild TBI that may be diagnosed by CSF analysis of pNFH, even without unconsciousness or concussion symptoms. Possession of the APOE ε4 allele was not found to influence biomarker levels after acute TBI.

  1. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  2. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors.

    Natalia González

    Full Text Available Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (reacquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.

  3. Protein- and tryptophan-restricted diets induce changes in rat gonadal hormone levels.

    Del Angel-Meza, A R.; Feria-Velasco, A; Ontiveros-Martínez, L; Gallardo, L; Gonzalez-Burgos, I; Beas-Zárate, C

    2001-04-01

    The release of gonadotrophic hormones starts at puberty and, along with the subsequent estral cyclicity, is subject to hormonal feedback systems and to the action of diverse neuroactive substances such as gamma amino butyric acid and catecholamines. This study shows the effect of the administration during 40 days of protein-restricted and corn-based (tryptophan- and lysine-deficient) diets on the serotonin concentration in medial hypothalamic fragments as well as in follicle-stimulating luteinizing hormones, 17-beta-estradiol and progesterone serum levels, and estral cyclicity in 60- and 100-day-old rats (young, mature, and in gestation). In young rats, a delay in vaginal aperture development, and a lengthening of the estral cycle to a continuous anestral state was observed, mainly in the group fed corn. This group showed a 25% decrease in the serotonin concentration compared with the protein-restricted group, which exhibited an increase of 9% over the control group. Luteinizing hormone levels decreased in 16% and 13%, whereas follicle-stimulating hormone increased in 13% and 5% in the young animals of restricted groups, respectively, compared with the control group. Serum progesterone levels decreased only in young restricted versus control animals, and no differences were seen among adult and gestational rats. Serum levels of 17-beta-estradiol in restricted animals showed different concentration patterns, mainly in the corn group, which was higher at the 20th gestational day, falling drastically postpartum. The results obtained in this study show serotonin to be a very important factor in the release of gonadotrophic hormones and the start of puberty.

  4. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  6. A biomolecular proportional integral controller based on feedback regulations of protein level and activity.

    Mairet, Francis

    2018-02-01

    Homeostasis is the capacity of living organisms to keep internal conditions regulated at a constant level, despite environmental fluctuations. Integral feedback control is known to play a key role in this behaviour. Here, I show that a feedback system involving transcriptional and post-translational regulations of the same executor protein acts as a proportional integral (PI) controller, leading to enhanced transient performances in comparison with a classical integral loop. Such a biomolecular controller-which I call a level and activity-PI controller (LA-PI)-is involved in the regulation of ammonium uptake by Escherichia coli through the transporter AmtB. The P II molecules, which reflect the nitrogen status of the cell, inhibit both the production of AmtB and its activity (via the NtrB-NtrC system and the formation of a complex with GlnK, respectively). Other examples of LA-PI controller include copper and zinc transporters, and the redox regulation in photosynthesis. This scheme has thus emerged through evolution in many biological systems, surely because of the benefits it offers in terms of performances (rapid and perfect adaptation) and economy (protein production according to needs).

  7. Geminivirus vectors for high-level expression of foreign proteins in plant cells.

    Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S

    2003-02-20

    Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.

  8. The influence of childhood protein energy malnutrition on serum ghrelin and leptin levels

    Mostafa, A.M.

    2007-01-01

    Protein-energy malnutrition (PEM) is a clinical problem caused by inadequate intake of one or more nutritional elements and remains as one of the most important health problems in developing countries. The aim of this study is to investigate the influence of PEM on ghrelin and leptin levels and to determine the relationships of ghrelin and leptin concentrations with anthropometric measurements in malnourished children. The study group consisted of 24 infants diagnosed as PEM. They were classified into marasmic group (10), kwashiorkor group (8) and marasmic kwashiorkor group (b). Ten healthy infants were enrolled as the control group. Serum ghrelin was evaluated by enzyme linked immuno absorbent assay (ELISA) while serum leptin was determined by radioimmunoassay (RIA). Patients with PEM established a significantly lower midarm circumference, skin fold thickness, (W/A) Z, (W/H) Z, BMI, total proteins, serum albumin, cholesterol and triglycerides compared with the age-matched control group. Markedly elevated mean serum ghrelin levels (448.7± 185.82, 293.83±155.02 and 354.1±90.1 vs 20.97± 8.61 pg/ml, p

  9. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  10. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Tauson Anne-Helene

    2007-11-01

    Full Text Available Abstract The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07 with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters.

  11. Association of Adipocyte Fatty Acid–Binding Protein (FABP4 Level with Obesity in Women

    Hussein Jasim AL-Harbi

    2017-02-01

    Full Text Available Adipocyte Fatty Acid–Binding Protein(FABP 4 is produced by mature adipocytes, cytoplasmic lipid protein carrier, 132 amino acid and secretion increases during adipogenesis. Chemerin is adipocytokine anewly discovered novel adipokine that regulates adipocyte metabolism and adipogenesis, is The aim of this study is to investigated the relationship of chemerin and FABP4 level with obesity and identifing the usefulness of waist circumference (WC, hip circumference , waist-to-hip ratio (WHR, body mass index (BMI,, and body fat percentage( BF% in screening obesity . Anthropometric data were collected for 180 healthy women with an age range 35-60 years, divided into four groups due to body mass index: normalweight (18.5-24.9 kg/m2, overweight (25-29.9 kg/m2 , obese (30-39.9 kg/m2 and morbid(≥ 40 kg/m2. The results revealed that FABP4 and Chemerin circulating concentration were significantly increased (P<0.01 in healthy morbid and obese adult women when compared with lean healthy (normal and over weight women also significant increase of A-FABP and Chemerin with the body mass index (BMI, waist hip ratio, hip circumference, waist circumference, and with BF percentage. According to these finding suggest that the circulating chemerin and A-FABP levels can be used as Prediction marker of overall fat mass and obesity in women.

  12. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  13. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression...... to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high...... levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  14. Locally Different Endothelial Nitric Oxide Synthase Protein Levels in Ascending Aortic Aneurysms of Bicuspid and Tricuspid Aortic Valve

    Salah A. Mohamed

    2012-01-01

    Full Text Available Aims. Dysregulated expression of the endothelial nitric oxide synthase (eNOS is observed in aortic aneurysms associated with bicuspid aortic valve (BAV. We determined eNOS protein levels in various areas in ascending aortic aneurysms. Methods and Results. Aneurysmal specimens were collected from 19 patients, 14 with BAV and 5 with tricuspid aortic valve (TAV. ENOS protein levels were measured in the outer curve (convexity, the opposite side (concavity, the distal and above the sinotubular junction (proximal aneurysm. Cultured aortic cells were treated with NO synthesis inhibitor L-NAME and the amounts of 35 apoptosis-related proteins were determined. In patients with BAV, eNOS levels were significantly lower in the proximal aorta than in the concavity and distal aorta. ENOS protein levels were also lower in the convexity than in the concavity. While the convexity and distal aorta showed similar eNOS protein levels in BAV and TAV patients, levels were higher in TAV proximal aorta. Inhibition of NO synthesis in aneurysmal aortic cells by L-NAME led to a cytosolic increase in the levels of mitochondrial serine protease HTRA2/Omi. Conclusion. ENOS protein levels were varied at different areas of the aneurysmal aorta. The dysregulation of nitric oxide can lead to an increase in proapoptotic HTRA2/Omi.

  15. Levels of protein hydroperoxides and carbonyl groups in guinea pigs native of high altitudes (Huancavelica, 3660 m)

    Huayta, Roxana; Zúñiga, Haydée; Esquerre, Cynthia; Hernández, Luz; Carranza, Elizabeth

    2014-01-01

    The influence of hypobaric hypoxia on protein oxidation in lungs, heart, liver, kidneys and testicles of high altitude native guinea pigs (Huancavelica, 3660 m) in comparison to sea level (Lima, 150 m) native guinea pigs was evaluated. The concentration of protein hydroperoxides (POOH) and carbonyl groups (GC) as markers of protein oxidation, as well as total thiols (TT) concentration, powerful reducing agents that act as live antioxidants were determined. The results showed low concentration...

  16. Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia.

    Rocco, Brad R; Lewis, David A; Fish, Kenneth N

    2016-06-15

    Convergent findings indicate that cortical gamma-aminobutyric acid (GABA)ergic circuitry is altered in schizophrenia. Postmortem studies have consistently found lower levels of glutamic acid decarboxylase 67 (GAD67) messenger RNA (mRNA) in the prefrontal cortex (PFC) of subjects with schizophrenia. At the cellular level, the density of GABA neurons with detectable levels of GAD67 mRNA is ~30% lower across cortical layers. Knowing how this transcript deficit translates to GAD67 protein levels in axonal boutons is important for understanding the impact it might have on GABA synthesis. In addition, because reductions in GAD67 expression before, but not after, the maturation of GABAergic boutons results in a lower density of GABAergic boutons in mouse cortical cultures, knowing if GABAergic bouton density is altered in schizophrenia would provide insight into the timing of the GAD67 deficit. PFC tissue sections from 20 matched pairs of schizophrenia and comparison subjects were immunolabeled for the vesicular GABA transporter (vGAT) and GAD67. vGAT+ bouton density did not differ between subject groups, consistent with findings that vGAT mRNA levels are unaltered in the illness and confirming that the number of cortical GABAergic boutons is not lower in schizophrenia. In contrast, in schizophrenia subjects, the proportion of vGAT+ boutons with detectable GAD67 levels (vGAT+/GAD67+ boutons) was 16% lower and mean GAD67 levels were 14% lower in the remaining vGAT+/GAD67+ boutons. Our findings suggest that GABA production is markedly reduced in a subset of boutons in the PFC of schizophrenia subjects and that this reduction likely occurs after the maturation of GABAergic boutons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Effects of dietary protein levels during rearing and dietary energy levels during lay on body composition and reproduction in broiler breeder females

    Emous, van R.A.; Kwakkel, R.P.; Krimpen, van M.M.; Hendriks, W.H.

    2015-01-01

    A study with a 2 × 3 × 2 factorial arrangement was conducted to determine the effects of 2 dietary protein levels (high = CPh and low = CPl) during rearing, 3 dietary energy levels (3,000, MEh1; 2,800, MEs1; and 2,600, MEl1, kcal/kg AMEn, respectively) during the first phase of lay, and 2 dietary

  18. Effects of different dietary protein levels during rearing and different dietary energy levels during lay on behaviour and feather cover in broiler breeder females

    Emous, Van Rick A.; Kwakkel, René; Krimpen, van Marinus; Hendriks, Wouter

    2015-01-01

    An experiment was conducted to determine the effects of different dietary protein levels during rearing and different dietary energy levels during lay on behaviour and feather cover in broiler breeder females. A 2×3×2 factorial arrangement of treatments was used. A total of 2880 Ross 308

  19. Changes in serum interleukin-6, C-reactive protein and thrombomodulin levels under periodontal ultrasonic debridement.

    Ushida, Yuka; Koshy, Geena; Kawashima, Yoko; Kiji, Makoto; Umeda, Makoto; Nitta, Hiroshi; Nagasawa, Toshiyuki; Ishikawa, Isao; Izumi, Yuichi

    2008-11-01

    This study aimed to compare the effect of single-visit full-mouth mechanical debridement (FMD) and quadrant-wise mechanical debridement (QMD) on the levels of serum interleukin (IL)-6, C-reactive protein (CRP) and soluble thrombomodulin. Thirty-six subjects with chronic periodontitis were randomly allocated to three groups: undergoing QMD, single-visit FMD with povidone iodine or with water. Serum IL-6 and soluble thrombomodulin were measured by enzyme-linked immunosorbent assay, and serum CRP was measured by the latex-enhanced nephelometric method. Serum IL-6 level increased significantly immediately after debridement in all the three groups, with this increase being greatest in the full-mouth groups. However, the increase in the full-mouth groups was not significantly higher than that of quadrant-wise group. In the quadrant-wise group, serum IL-6 level decreased significantly 1 month after debridement compared with baseline. Serum-soluble thrombomodulin decreased significantly in the full-mouth groups but not in the quadrant-wise group. Changes in CRP level were not significant at baseline or after debridement in all the three groups. FMD increased serum IL-6 and reduced serum-soluble thrombomodulin to a greater extent than QMD, suggesting that the former technique has stronger transient effects on systemic vascular endothelial functions than the latter.

  20. C-reactive protein level predicts mortality in COPD: a systematic review and meta-analysis

    Giovanni Leuzzi

    2017-02-01

    Full Text Available The prognostic role of baseline C-reactive protein (CRP in chronic obstructive pulmonary disease (COPD is controversial. In order to clarify this issue, we performed a systematic review and meta-analysis to assess the predictive effect of baseline CRP level in COPD patients. 15 eligible articles focusing on late mortality in COPD were included in our study. We performed a random-effects meta-analysis, and assessed heterogeneity and publication bias. We pooled hazard ratio (HR estimates and their 95% confidence intervals on mortality for the comparison between the study-specific highest category of CRP level versus the lowest category. In overall analysis, elevated baseline CRP levels were significantly associated with higher mortality (HR 1.53, 95% CI 1.32–1.77, I2=68.7%, p<0.001. Similar results were observed across subgroups. However, higher mortality risk was reported in studies using a cut-off value of 3 mg·L−1 (HR 1.61, 95% CI 1.12–2.30 and in those enrolling an Asiatic population (HR 3.51, 95% CI 1.69–7.31. Our analysis indicates that baseline high CRP level is significantly associated with higher late mortality in patients with COPD. Further prospective controlled studies are needed to confirm these data.

  1. Serum C-Reactive Protein Level as a Biomarker for Differentiation of Ischemic from Hemorrhagic Stroke

    Seyed Ali Roudbary

    2011-03-01

    Full Text Available Cerebrovascular accidents rank first in the frequency and importance among all neurological disease. Although a number of studies had shown increased level of the high sensitive C-reactive protein (hs-CRP in patients with ischemic stroke, the association of increased hs-CRP with various type of stroke especially the assessment hs-CRP level in ischemic and hemorrhagic stroke have not been investigated. In the present study, we assessed the concentration of hs-CRP in patients with documented ischemic and hemorrhagic stroke in the first 24 hours of the onset of symptoms. Thirty-two patients with Ischemic and hemorrhagic stroke were evaluated at neurology department of Poursina Hospital. The presence of baseline vascular risk factors, including hypertension, diabetes mellitus, hypercholesterolemia, obesity, and smoking, was determined. The blood samples were then collected and routine hematology and biochemistry tests were done. hs-CRP levels were determined using a highly sensitive immunonephelometric method. In this cross sectional study, the age of patient varied from 45-85 years (Mean 70.9  9.4. Serum level of hs-CRP in Ischemic patients were 18.92  11.28 and in hemorrhagic group was 2.65  1.7. This relationship was statistically significant (P<0.0001. It might be concluded that hs-CRP might be considered as a usefully adjunct method for the initial diagnosis of the type of stroke.

  2. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    Canuto, K S; Sergio, L P S; Mencalha, A L; Fonseca, A S; Paoli, F

    2016-01-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases. (paper)

  3. Levels of neopterin and C-reactive protein in pregnant women with fetal growth restriction.

    Erkenekli, K; Keskin, U; Uysal, B; Kurt, Y G; Sadir, S; Çayci, T; Ergün, A; Erkaya, S; Danişman, N; Uygur, D

    2015-04-01

    The aim of this study was to evaluate whether pregnant women with fetal growth restriction (FGR) have higher plasma neopterin and C-reactive protein (CRP) concentrations compared with those with uncomplicated pregnancy. A total of 34 pregnant women with FGR and 62 patients with uncomplicated pregnancy were included. Neopterin and CRP levels were measured at the time of diagnosis. The primary outcome of this study was to compare the neopterin and CRP levels in pregnant women with FGR and those with uncomplicated pregnancies. The secondary outcome of our study was to evaluate the correlation between fetal birth weight and maternal neopterin levels. The serum neopterin levels were significantly elevated in pregnant women with FGR (22.71 ± 7.70 vs 19.15 ± 8.32). However, CRP was not elevated in pregnant women with FGR (7.47 ± 7.59 vs 5.29 ± 3.58). These findings support the hypothesis that pregnancy with FGR is associated with a marked increase in macrophage activation and the natural immune system.

  4. Concentration of Proteins and Protein Fractions in Blood Plasma of Chickens Hatched from Eggs Irradiated with Low Level Gamma Rays

    Kraljevic, P.; Vilic, M.; Simpraga, M.; Matisic, D.; Miljanic, S.

    2011-01-01

    In literature there are many results which have shown that low dose radiation can stimulate many physiological processes of living organism. In our earlier paper it was shown that low dose of gamma radiation has a stimulative effect upon metabolic process in chickens hatched from eggs irradiated before incubation. This was proved by increase of body weight gain and body weight, as well as by increase of two enzymes activities in blood plasma (aspartate aminotransferase and alanine aminotransferase) which play an important role in protein metabolism. Therefore, an attempt was made to determine the effect of eggs irradiation by low dose gamma rays upon concentration of total proteins and protein fractions in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breed chickens were irradiated with a dose of 0.15 Gy gamma radiation (60Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups of chickens. Blood samples were taken from the right jugular vein on the 1 s t and 3 r d day, or from the wing vein on days 5 and 7 after hatching. The total proteins concentration in the blood plasma was determined by the biuret method using Boehringer Mannheim GmbH optimized kits. The protein fractions (albumin, α 1 -globulin, α 2 -globulin, β- and γ-globulins) were estimated electrophoretically on Cellogel strips. The total proteins concentration was significantly decreased in blood plasma of chickens hatched from irradiated eggs on days 3 (P t h day (P 2 -globulin was decreased on days 1 (P t h day of life. Obtained results indicate that low dose of gamma radiation has mostly inhibitory effect upon concentration of total proteins and protein fractions in the blood plasma of chickens hatched from irradiated eggs before incubation. (author)

  5. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-05-01

    Significant improvements in the prediction of protein residue-residue contacts are observed in the recent years. These contacts, predicted using a variety of coevolution-based and machine learning methods, are the key contributors to the recent progress in ab initio protein structure prediction, as demonstrated in the recent CASP experiments. Continuing the development of new methods to reliably predict contact maps is essential to further improve ab initio structure prediction. In this paper we discuss DNCON2, an improved protein contact map predictor based on two-level deep convolutional neural networks. It consists of six convolutional neural networks-the first five predict contacts at 6, 7.5, 8, 8.5 and 10 Å distance thresholds, and the last one uses these five predictions as additional features to predict final contact maps. On the free-modeling datasets in CASP10, 11 and 12 experiments, DNCON2 achieves mean precisions of 35, 50 and 53.4%, respectively, higher than 30.6% by MetaPSICOV on CASP10 dataset, 34% by MetaPSICOV on CASP11 dataset and 46.3% by Raptor-X on CASP12 dataset, when top L/5 long-range contacts are evaluated. We attribute the improved performance of DNCON2 to the inclusion of short- and medium-range contacts into training, two-level approach to prediction, use of the state-of-the-art optimization and activation functions, and a novel deep learning architecture that allows each filter in a convolutional layer to access all the input features of a protein of arbitrary length. The web server of DNCON2 is at http://sysbio.rnet.missouri.edu/dncon2/ where training and testing datasets as well as the predictions for CASP10, 11 and 12 free-modeling datasets can also be downloaded. Its source code is available at https://github.com/multicom-toolbox/DNCON2/. chengji@missouri.edu. Supplementary data are available at Bioinformatics online.

  6. Polymorphism in SFTPD gene affects assembly and constitutional serum levels of surfactant protein D in a Lebanese population

    Fakih, Dalia; Chamat, Soulaima; Medlej-Hashim, Myrna

    2014-01-01

    Surfactant protein D (SP-D), an oligomeric lung-derived lectin, has essential roles in innate immunity. It can be measured in serum. Previous studies have shown that constitutional SP-D serum levels and the protein degree of multimerization are genetically influenced. We aimed to establish the di...

  7. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata.

    de Brito Alves, José L; de Oliveira, Jéssica M D; Ferreira, Diorginis J S; Barros, Monique A de V; Nogueira, Viviane O; Alves, Débora S; Vidal, Hubert; Leandro, Carol G; Lagranha, Cláudia J; Pirola, Luciano; da Costa-Silva, João H

    2016-12-01

    Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (Pmedulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla. © 2016 John Wiley & Sons Australia, Ltd.

  8. Influence of casein as a percentage of true protein and protein level on color and texture of milks containing 1 and 2% fat.

    Misawa, Noriko; Barbano, David M; Drake, MaryAnne

    2016-07-01

    Combinations of fresh liquid microfiltration retentate of skim milk, ultrafiltered retentate and permeate produced from microfiltration permeate, cream, and dried lactose monohydrate were used to produce a matrix of 20 milks. The milks contained 5 levels of casein as a percentage of true protein of about 5, 25, 50, 75, and 80% and 4 levels of true protein of 3.0, 3.76, 4.34, and 5.0% with constant lactose percentage of 5%. The experiment was replicated twice and repeated for both 1 and 2% fat content. Hunter color measurements, relative viscosity, and fat globule size distribution were measured, and a trained panel documented appearance and texture attributes on all milks. Overall, casein as a percentage of true protein had stronger effects than level of true protein on Hunter L, a, b values, relative viscosity, and fat globule size when using fresh liquid micellar casein concentrates and milk serum protein concentrates produced by a combination of microfiltration and ultrafiltration. As casein as a percentage of true protein increased, the milks became more white (higher L value), less green (lower negative a value), and less yellow (lower b value). Relative viscosity increased and d(0.9) generally decreased with increasing casein as a percentage of true protein. Panelists perceived milks with increasing casein as a percentage of true protein as more white, more opaque, and less yellow. Panelists were able to detect increased throat cling and mouthcoating with increased casein as a percentage of true protein in 2% milks, even when differences in appearance among milks were masked. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Effects of Different Exercise Intensities with Isoenergetic Expenditures on C-Reactive Protein and Blood Lipid Levels

    Tsao, Te Hung; Yang, Chang Bin; Hsu, Chin Hsing

    2012-01-01

    We investigated the effects of different exercise intensities on C-reactive protein (CRP), and whether changes in CRP levels correlated with blood lipid levels. Ten men exercised at 25%, 65%, and 85% of their maximum oxygen consumption rates. Participants' blood was analyzed for CRP and blood lipid levels before and after the exercise sessions.…

  10. Influence of Protein and Energy Level in Finishing Diets for Feedlot Hair Lambs: Growth Performance, Dietary Energetics and Carcass Characteristics

    F. G. Ríos-Rincón

    2014-01-01

    Full Text Available Forty-eight Pelibuey×Katahdin male intact lambs (23.87±2.84 kg were used in an 84-d feeding trial, with six pens per treatment in a 2×2 factorial design arrangement. The aim of the study was to evaluate the interaction of two dietary energy levels (3.05 and 2.83 Mcal/kg ME and two dietary protein levels (17.5% and 14.5% on growth performance, dietary energetics and carcass traits. The dietary treatments used were: i High protein-high energy (HP-HE; ii High protein-low energy (HP-LE; iii Low protein-high energy (LP-HE, and iv Low protein-low energy (LP-LE. With a high-energy level, dry matter intake (DMI values were 6.1% lower in the low-protein diets, while with low-energy, the DMI values did not differ between the dietary protein levels. Energy levels did not influence the final weight and average daily gain (ADG, but resulted in lower DMI values and higher gain efficiencies. No effects of protein level were detected on growth performance. The observed dietary net energy (NE ratio and observed DMI were closer than expected in all treatments and were not affected by the different treatments. There was an interaction (p2.80 Mcal/kg ME. Providing a level of protein above 14.5% does not improves growth-performance, dietary energetics or carcass dressing percentage.

  11. Serum brain natriuretic peptide and C-reactive protein levels in adolescent with polycystic ovary syndrome.

    Deveer, Rüya; Engin-Üstün, Yaprak; Uysal, Sema; Su, Filiz Akın; Sarıaslan, Seval; Gülerman, Cavidan; Mollamahmutoğlu, Leyla

    2012-08-01

    Our primary aim was to investigate whether N-terminal pro-brain natriuretic peptide (NT-proBNP) increases in adolescent with polycystic ovary syndrome (PCOS) compared with healthy controls and secondary aim was to determine whether metabolic and hormonal differences exist between groups. In this cross-sectional study, 25 adolescent patients with PCOS and 25 normal ovulatory control not suffering from PCOS were involved in the study. Fasting serum NT-proBNP, C-reactive protein (CRP), homocystein, insulin levels and biochemical and hormonal parameters were measured. Serum NT-proBNP was not significantly different in PCOS subjects (0.62 ± 0.80 vs 1.12 ± 1.51 ng/mL, p = 0.154). The mean serum fasting insulin levels (22.64 ± 10.51 vs 13.32 ± 3.97 mIU/mL, p = 0.001) and Homeostasis Model Assessment Insulin-Resistance Index (HOMA-IR) levels (5.16 ± 1.81 vs 2.97 ± 0.89, p = 0.001) were significantly high in the study group. The median serum CRP levels were not significantly different between groups (1 [1-12] vs 1 [1-19] g/dL, p = 0.286). The present study demonstrated that the levels of BNP, CRP and homocystein were not different in PCOS subjects. Serum insulin levels and HOMA-IR were significantly higher in PCOS subjects. Possible serum markers for PCOS-related metabolic abnormalities and cardiovascular events, may not present in the adolescent years.

  12. MAP17 and SGLT1 protein expression levels as prognostic markers for cervical tumor patient survival.

    Marco Perez

    Full Text Available MAP17 is a membrane-associated protein that is overexpressed in human tumors. Because the expression of MAP17 increases reactive oxygen species (ROS generation through SGLT1 in cancer cells, in the present work, we investigated whether MAP17 and/or SGLT1 might be markers for the activity of treatments involving oxidative stress, such as cisplatin or radiotherapy. First, we confirmed transcriptional alterations in genes involved in the oxidative stress induced by MAP17 expression in HeLa cervical tumor cells and found that Hela cells expressing MAP17 were more sensitive to therapies that induce ROS than were parental cells. Furthermore, MAP17 increased glucose uptake through SGLT receptors. We then analyzed MAP17 and SGLT1 expression levels in cervical tumors treated with cisplatin plus radiotherapy and correlated the expression levels with patient survival. MAP17 and SGLT1 were expressed in approximately 70% and 50% of cervical tumors of different types, respectively, but they were not expressed in adenoma tumors. Furthermore, there was a significant correlation between MAP17 and SGLT1 expression levels. High levels of either MAP17 or SGLT1 correlated with improved patient survival after treatment. However, the patients with high levels of both MAP17 and SGLT1 survived through the end of this study. Therefore, the combination of high MAP17 and SGLT1 levels is a marker for good prognosis in patients with cervical tumors after cisplatin plus radiotherapy treatment. These results also suggest that the use of MAP17 and SGLT1 markers may identify patients who are likely to exhibit a better response to treatments that boost oxidative stress in other cancer types.

  13. High C-reactive protein levels are associated with depressive symptoms in schizophrenia.

    Faugere, M; Micoulaud-Franchi, J-A; Faget-Agius, C; Lançon, C; Cermolacce, M; Richieri, R

    2018-01-01

    Depressive symptoms are frequently associated with schizophrenia symptoms. C - Reactive protein (CRP), a marker of chronic inflammation, had been found elevated in patients with schizophrenia and in patients with depressive symptoms. However, the association between CRP level and depressive symptoms has been poorly investigated in patients with schizophrenia. The only study conducted found an association between high CRP levels and antidepressant consumption, but not with depressive symptoms investigated with the Calgary Depression Rating Scale for Schizophrenia (CDSS). The aim of this study was to evaluate CRP levels and depressive symptoms in patients with schizophrenia, and to determine whether high CRP levels are associated with depressive symptoms and/or antidepressant consumption, independently of potential confounding factors, especially tobacco-smoking and metabolic syndrome. Three hundred and seven patients with schizophrenia were enrolled in this study (mean age = 35.74 years, 69.1% male gender). Depressive symptoms was investigated with the CDSS. Patients were classified in two groups: normal CRP level (≤ 3.0mg/L) and high CRP level (> 3.0mg/L). Current medication was recorded. 124 subjects (40.4%) were classified in the high CRP level group. After adjusting for confounding factors, these patients were found to have higher CDSS scores than those with normal CRP levels in multivariate analyses (p = 0.035, OR = 1.067, 95% CI = 1.004-1.132). No significant association between CRP levels and antidepressants consumption was found. The size sample is relatively small. The cut-off point for high cardiovascular risk was used to define the two groups. CRP was the sole marker of inflammation in this study and was collected at only one time point. The design of this study is cross-sectional and there are no conclusions about the directionality of the association between depression and inflammation in schizophrenia. This study found an association between high

  14. Elevated Systemic Levels of Eosinophil, Neutrophil, and Mast Cell Granular Proteins in Strongyloides Stercoralis Infection that Diminish following Treatment.

    Rajamanickam, Anuradha; Munisankar, Saravanan; Bhootra, Yukthi; Dolla, Chandra Kumar; Nutman, Thomas B; Babu, Subash

    2018-01-01

    Infection with the helminth parasite Strongyloides stercoralis ( Ss ) is commonly clinically asymptomatic that is often accompanied by peripheral eosinophilia. Granulocytes are activated during helminth infection and can act as immune effector cells. Plasma levels of eosinophil and neutrophil granular proteins convey an indirect measure of granulocyte degranulation and are prominently augmented in numerous helminth-infected patients. In this study, we sought to examine the levels of eosinophil, neutrophil, and mast cell activation-associated granule proteins in asymptomatic Ss infection and to understand their kinetics following anthelmintic therapy. To this end, we measured the plasma levels of eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophil major basic protein, neutrophil elastase, myeloperoxidase, neutrophil proteinase-3, mast cell tryptase, leukotriene C4, and mast cell carboxypeptidase-A3 in individuals with asymptomatic Ss infection or without Ss infection [uninfected (UN)]. We also estimated the levels of all of these analytes in infected individuals following definitive treatment of Ss infection. We demonstrated that those infected individuals have significantly enhanced plasma levels of eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophil major basic protein, elastase, myeloperoxidase, mast cell tryptase, leukotriene C4, and carboxypeptidase-A3 compared to UN individuals. Following the treatment of Ss infection, each of these granulocyte-associated proteins drops significantly. Our data suggest that eosinophil, neutrophil, and mast cell activation may play a role in the response to Ss infection.

  15. Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer

    Allin, Kristine H; Nordestgaard, Børge G; Flyger, Henrik

    2011-01-01

    We examined whether plasma C-reactive protein (CRP) levels at the time of diagnosis of breast cancer are associated with overall survival, disease-free survival, death from breast cancer, and recurrence of breast cancer.......We examined whether plasma C-reactive protein (CRP) levels at the time of diagnosis of breast cancer are associated with overall survival, disease-free survival, death from breast cancer, and recurrence of breast cancer....

  16. The Influence of Tobacco Smoke on Protein and Metal Levels in the Serum of Women during Pregnancy.

    Marta Wrześniak

    Full Text Available Tobacco smoking by pregnant women has a negative effect on fetal development and increases pregnancy risk by changing the oxidative balance and microelements level. Smoking affects the concentration, structure and function of proteins, potentially leading to various negative effects on pregnancy outcomes.The influence of tobacco smoke on key protein fractions in smoking and non-smoking healthy pregnant women was determined by capillary electrophoresis (CE. Concentrations of the proteins α1-antitrypsin, α1-acid glycoprotein, α2-macroglobulin and transferrin were determined by ELISA tests. Total protein concentration was measured by the Biuret method. Smoking status was established by cotinine levels. Cadmium (Cd and Zinc (Zn concentrations were determined by flame atomic absorption spectrometry and the Zn/Cd ratio was calculated based on these numbers. Smoking women had a 3.7 times higher level of Cd than non-smoking women. Zn levels decreased during pregnancy for all women. The Zn/Cd ratio was three times lower in smoking women. The differences between the changes in the protein profile for smoking and non-smoking women were noted. Regarding proteins, α1-antitrypsin and α2-macroglobulin levels were lower in the non-smoking group than in the smoking group and correlated with Cd levels (r = -0.968, p = 0.032 for non-smokers; r = -0.835, p = 0.019 for smokers. Zn/Cd ratios correlated negatively with α1-, α2- and β-globulins.Exposure to tobacco smoke increases the concentration of Cd in the blood of pregnant women and may lead to an elevated risk of pregnancy disorders. During pregnancy alter concentrations of some proteins. The correlation of Cd with proteins suggests that it is one of the causes of protein aberrations.

  17. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication.

    Nina Peel

    2017-01-01

    Full Text Available In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle.

  18. Serum levels of C-reactive protein in adolescents with periodontitis.

    López, Rodrigo; Baelum, Vibeke; Hedegaard, Chris Juul; Bendtzen, Klaus

    2011-04-01

    The results of several cross-sectional studies suggested a relationship between periodontitis and higher serum levels of C-reactive protein (CRP). Most of these studies were restricted to adult study groups with severe periodontal inflammation, and the potential effects of confounding factors were frequently overlooked. A case-referent study comprised of 87 adolescent cases who presented with clinical attachment loss ≥3 mm recorded in ≥2 of 16 teeth and 73 controls who did not fulfill these criteria was nested in a fully enumerated adolescent population. Venous blood samples were obtained, and CRP levels were quantified, using a high-sensitive bead-based flow cytometric assay. The Mann-Whitney U test was used to assess overall differences between groups. The median serum CRP values for cases and controls were 64 ng/ml (interquartile range: 27 to 234 ng/ml) and 55 ng/ml (31 to 183 ng/ml), respectively (P = 0.8). Serum levels of CRP were not significantly higher among subjects with periodontitis than among controls. However, a statistically significant positive association between percentages of sites with bleeding on probing and log-transformed CRP values was observed.

  19. Cardiorespiratory fitness, pulmonary function and C-reactive protein levels in nonsmoking individuals with diabetes

    Francisco, C.O.; Catai, A.M.; Moura-Tonello, S.C.G.; Lopes, S.L.B.; Benze, B.G.; Del Vale, A.M.; Leal, A.M.O.

    2014-01-01

    The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3 vs 135.1±25.2, P=0.005), peak heart rate (HR peak : 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO 2peak : 24.2±3.2 vs 18.9±2.8, P<0.001), and anaerobic threshold (VO 2VT : 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels

  20. Cardiorespiratory fitness, pulmonary function and C-reactive protein levels in nonsmoking individuals with diabetes

    Francisco, C.O.; Catai, A.M.; Moura-Tonello, S.C.G. [Universidade Federal de São Carlos, Departamento de Fisioterapia, São Carlos, SP, Brasil, Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Lopes, S.L.B. [Universidade Federal de São Carlos, Departamento de Medicina, São Carlos, SP, Brasil, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Benze, B.G. [Universidade Federal de São Carlos, Departamento de Estatística, São Carlos, SP, Brasil, Departamento de Estatística, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Del Vale, A.M.; Leal, A.M.O. [Universidade Federal de São Carlos, Departamento de Medicina, São Carlos, SP, Brasil, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil)

    2014-04-15

    The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3 vs 135.1±25.2, P=0.005), peak heart rate (HR{sub peak}: 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO{sub 2peak}: 24.2±3.2 vs 18.9±2.8, P<0.001), and anaerobic threshold (VO{sub 2VT}: 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels.

  1. Increased serum levels of high mobility group box 1 protein in patients with autistic disorder.

    Emanuele, Enzo; Boso, Marianna; Brondino, Natascia; Pietra, Stefania; Barale, Francesco; Ucelli di Nemi, Stefania; Politi, Pierluigi

    2010-05-30

    High mobility group box 1 (HMGB1) is a highly conserved, ubiquitous protein that functions as an activator for inducing the immune response and can be released from neurons after glutamate excitotoxicity. The objective of the present study was to measure serum levels of HMGB1 in patients with autistic disorder and to study their relationship with clinical characteristics. We enrolled 22 adult patients with autistic disorder (mean age: 28.1+/-7.7 years) and 28 age- and gender-matched healthy controls (mean age: 28.7+/-8.1 years). Serum levels of HMGB1 were measured by enzyme-linked immunosorbent assay (ELISA). Compared with healthy subjects, serum levels of HMGB1 were significantly higher in patients with autistic disorder (10.8+/-2.6 ng/mL versus 5.6+/-2.5 ng/mL, respectively, Pautistic disorder. Increased HMGB1 may be a biological correlate of the impaired reciprocal social interactions in this neurodevelopmental disorder. Copyright 2010 Elsevier Inc. All rights reserved.

  2. C-reactive protein level and obesity as cardiovascular risk factors in polycystic ovary syndrome

    Eda Ülkü Uludağ

    2013-09-01

    Full Text Available Objective: To investigate the role of C-reactive protein(CRP level elevation and obesity for the increased cardiovasculardisease risk in polycystic ovary syndrome(PCOS.Methods: A hundred and nine patients with PCOS and 30age matched healthy volunteers with regular menstrualcycle are involved in the study. PCOS group is furthersubdivided into three subgroups according to the bodymass index (BMI. Subgroups included 54 with BMI30. Blood samplesfor glucose, insulin, uric acid, and CRP were collected inthe morning after overnight fasting (12 hours. Homeostasismodel assessment-insulin resistance (HOMA-IRwas calculated. Results: Fasting blood glucose, insulin,and HOMA-IR was significantly higher in PCOS group(p=0.02, p=0.01 and p=0.02. CRP level was higher insubgroup with BMI>30. High CRP level in PCOS wasfound to be independent from BMI (p30.When compared with the control group high insulin levelwas the only to be statistically significant in obese PCOSpatients (p=0.005. HOMA-IR was higher in PCOS subgroupwith BMI>30 when compared with controls and thePCOS subgroup with BMI<25 (p<0.001, p= 0.003.Conclusion: Obesity, hyperinsulinemia, and high CRPlevels are seemed to be related and potentiating eachother in PCOS. Struggling with obesity is one of the mostimportant issues for preventive medicine.Key words: PCOS, CRP, obesity, cardiovascular risk

  3. Long-term stability and circadian variation in circulating levels of surfactant protein D

    Hoegh, Silje Vermedal; Sorensen, Grith Lykke; Tornoe, Ida

    2010-01-01

    Surfactant protein D (SP-D) is an oligomeric calcium-dependent lectin with important roles in innate host defence against infectious microorganisms. Several studies have shown that patients with inflammatory lung disease have elevated levels of circulating SP-D, and serum SP-D has been suggested...... to be used as a biomarker for disease e.g. in COPD. We aimed to investigate the variation of circulating SP-D in healthy individuals in and between days for 6 months. In addition, we studied the SP-D response to a standardized physical exercise programme. SP-D was measured in serum using a 5-layered ELISA...... pre-exercise level of SP-D was 746 ng/ml (95% CI: 384-2035), and immediately after cessation of physical activity the median SP-D level was 767 ng/ml (95% CI: 367-1885) (P=0.248). Our findings underscore the importance of standardized blood sampling conditions in future studies on the potential role...

  4. Effects of oil sands effluent on cattail and clover: photosynthesis and the level of stress proteins

    Crowe, A.U.; Han, B.; Kermode, A.R.; Bendell-Young, L.I.; Plant, A.L. [Simon Fraser University, Burnaby (Canada). Dept. of Biological Sciences

    2001-07-01

    The oil sands industry located in northeastern Alberta, Canada, generates large volumes of effluent characterized by a high level of dissolved ions and naphthenic acids. The dikes used to store the effluent seep, creating wetlands which are subsequently invaded by obligate wetland flora such as cattail (Typha latifolia L.). The appearance of these wetlands prompted the oil sands industry to consider wetlands as part of their reclamation strategy. However, to ensure long-term viability of such wetlands, the response of the flora to the industrial effluent needed to be determined. To this end, apparent photosynthesis (APS), the level of ribulose-1,5-bisphosphate carboxylase (RuBisCo) large subunit, dehydrin-related polypeptides, and protein disulphide isomerase (PDI) were evaluated in cattail and alsike clover plants (Trifolium hybridum L.) exposed to the oil sands effluent. APS measured in plants impacted by oil sands effluent was significantly higher than that of plants in the non-impacted off-site location. Among the on-site locations, plants growing in the natural wetlands site had higher APS compared to all other sites. The level of RuBisCo was not increased in cattail or clover growing in effluent-contaminated sites indicating that enhanced photosynthesis was not due to greater levels of this enzyme. Dehydrin-related polypeptides were detected only in the roots of cattail and were absent in clover. The polypeptide profile was altered in cattail exposed to oil sands effluent indicating that they were responding to an osmotic stress. The level of PDI was unaffected in the leaves of cattail regardless of the nature of the effluent to which they were exposed. Overall, the data indicate that cattail and clover are adapted to the oil sands effluent, although further studies are needed to assess their long-term ability to survive in the presence of this anthropogenic stress. (Author)

  5. Protein Oxidation Levels After Different Corneal Collagen Cross-Linking Methods.

    Turkcu, Ummuhani Ozel; Yuksel, Nilay; Novruzlu, Sahin; Yalinbas, Duygu; Bilgihan, Ayse; Bilgihan, Kamil

    2016-03-01

    To evaluate advanced oxidation protein products (AOPP) levels, superoxide dismutase (SOD) enzyme activity, and total sulfhydryl (TSH) levels in rabbit corneas after different corneal collagen cross-linking (CXL) methods. Eighteen eyes of 9 adult New Zealand rabbits were divided into 3 groups of 6 eyes. The standard CXL group was continuously exposed to UV-A at a power setting of 3 mW/cm for 30 minutes. The accelerated CXL (A-CXL) group was continuously exposed to UV-A at a power setting of 30 mW/cm for 3 minutes. The pulse light-accelerated CXL (PLA-CXL) group received UV-A at a power setting of 30 mW/cm for 6 minutes of pulsed exposure (1 second on, 1 second off). Corneas were obtained after 1 hour of UV-A exposure, and 360-degree keratotomy was performed. SOD enzyme activity, AOPP, and TSH levels were measured in the corneal tissues. Compared with the standard CXL and A-CXL groups (133.2 ± 8.5 and 140.2 ± 6.2 μmol/mg, respectively), AOPP levels were found to be significantly increased in the PLA-CXL group (230.7 ± 30.2 μmol/mg) (P = 0.005 and 0.009, respectively). SOD enzyme activities and TSH levels did not differ between the groups (P = 0.167 and 0.187, respectively). CXL creates covalent bonds between collagen fibers because of reactive oxygen species. This means that more oxygen concentration during the CXL method will produce more reactive oxygen species and, thereby, AOPP. This means that in which CXL method occurs in more oxygen concentration that will produce more reactive oxygen species and thereby AOPP. This study demonstrated that PLA-CXL results in more AOPP formation than did standard CXL and A-CXL.

  6. Effect of dietary energy levels and phase feeding by protein levels on growth performance, blood profiles and carcass characteristics in growing-finishing pigs

    J. S. Hong

    2016-10-01

    Full Text Available Abstract Background Providing of insufficient nutrients limits the potential growth of pig, while feeding of excessive nutrients increases the economic loss and causes environment pollution. For these reasons, phase feeding had been introduced in swine farm for improving animal production. This experiment was conducted to evaluate the effects of dietary energy levels and phase feeding by protein levels on growth performance, blood profiles and carcass characteristics in growing-finishing pigs. Methods A total of 128 growing pigs ([Yorkshire × Landrace] × Duroc, averaging 26.62 ± 3.07 kg body weight, were assigned in a 2 × 4 factorial arrangement with 4 pigs per pen. The first factor was two dietary energy level (3,265 kcal of ME/kg or 3,365 kcal of ME/kg, and the second factor was four different levels of dietary protein by phase feeding (1growing(G-2finishing(F phases, 2G-2F phases, 2G-3F phases and 2G-3F phases with low CP requirement. Results In feeding trial, there was no significant difference in growth performance. The BUN concentration was decreased as dietary protein level decreased in 6 week and blood creatinine was increased in 13 week when pigs were fed diets with different dietary energy level. The digestibility of crude fat was improved as dietary energy levels increased and excretion of urinary nitrogen was reduced when low protein diet was provided. Chemical compositions of longissimus muscle were not affected by dietary treatments. In backfat thickness (P2 at 13 week, pigs fed high energy diet had thicker backfat thickness (P = 0.06 and pigs fed low protein diet showed the trend of backfat thinness reduction (P = 0.09. In addition, water holding capacity was decreased (P = 0.01 and cooking loss was increased (P = 0.07 as dietary protein level reduced. When pigs were fed high energy diet with low subdivision of phase feeding, days to 120 kg market weight was reached earlier compared to

  7. Association of canine obesity with reduced serum levels of C-reactive protein.

    Veiga, Angela P M; Price, Christopher A; de Oliveira, Simone T; Dos Santos, Andréa P; Campos, Rómulo; Barbosa, Patricia R; González, Félix H D

    2008-03-01

    The prevalence of obesity is increasing in dogs as well as in humans. C-reactive protein (CRP) is an important tool for the detection of inflammation and/or early tissue damage and is linked to obesity in humans. The objective of the present study was to determine if serum CRP levels are altered in obese dogs. Fifteen lean (control group) and 16 overweight (obese group) dogs were examined. Blood samples were collected under fasted conditions for serum determination of CRP, glucose, insulin, cholesterol, triglyceride, and fructosamine. Results indicated that obese dogs were insulin resistant because serum insulin and insulin/glucose ratios were higher than in lean dogs (P obese dogs than in controls (P obese group compared with the control group. Based on these results, it can be postulated that CRP production is inhibited by obesity and insulin resistance in dogs.

  8. Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation.

    Kauwe, John S K; Bailey, Matthew H; Ridge, Perry G; Perry, Rachel; Wadsworth, Mark E; Hoyt, Kaitlyn L; Staley, Lyndsay A; Karch, Celeste M; Harari, Oscar; Cruchaga, Carlos; Ainscough, Benjamin J; Bales, Kelly; Pickering, Eve H; Bertelsen, Sarah; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2014-10-01

    Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (pprocessing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.

  9. Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels.

    Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David

    2006-02-01

    The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.

  10. C-reactive protein levels in girls with lower urinary tract symptoms.

    Tarhan, H; Ekin, R G; Can, E; Cakmak, O; Yavascan, O; Mutlubas Ozsan, F; Helvaci, M; Zorlu, F

    2016-04-01

    Daytime lower urinary tract (LUT) conditions are identified as daytime incontinence problems for children in whom any cause of neuropathy and uropathy has been excluded. C-reactive protein (CRP) is a common marker of acute or chronic inflammation and infection. Increased CRP levels have been detected in the studies conducted on adults diagnosed with overactive bladders and interstitial cystitis. This study aimed to investigate the role of serum CRP levels in girls suffering from daytime LUT conditions. Out of the 752 patients who presented to the outpatient clinics with lower urinary tract symptoms, 709 were excluded due to: being boys, having previous urinary tract surgery, an active urinary tract infection, a neurological anomaly, a urinary system anomaly, having rheumatic disease, any chronic disease, any febrile infection over the past week, a history of constipation, and enuresis nocturna. Forty-three girls with LUT conditions and aged 8-10 years were included in the study as the patient group. Forty girls who attended the urology outpatient clinic without LUT conditions, or active urinary tract infections and any chronic disease requiring follow-up constituted the control group. Under the control of the parents, all subjects were asked to fill out 3-day voiding diaries. The voiding diaries identified frequency, urgency, urgency urinary incontinence, and functional bladder capacity data. All subjects also completed a dysfunctional voiding scoring system (DVSS). The serum CRP levels of all subjects were measured. There was a significant difference in serum CRP levels and DVSS between the patient group and the control group (P = 0.001, P = 0.001). The mean serum CRP levels showed a significant increase when frequency and urgency scores were ≥8, the urge incontinence score was ≥2 and the DVS score DVSS was ≥14 in the voiding diaries of the patient group (Table). Lower urinary tract dysfunction is defined as a condition involving abnormalities of filling and

  11. Hyperglycemia in Streptozotocin-Induced Diabetes Leads to Persistent Inflammation and Tissue Damage Following Uveitis Due to Reduced Levels of Ciliary Body Heme Oxygenase-1

    2006-01-01

    Full Text Available This study investigated the heme oxygenase-1 (HO-1 and the endotoxin-induced uveitis (EIU in diabetic streptozotocin (STZ-hyperglycemic rats. STZ-hyperglycemic rats had impaired levels of the enzyme HO-1 within the ciliary bodies if compared with the nondiabetic rats. STZ-hyperglycemic rats also predisposed the eye to produce high levels of both the cytokines IL-1 β and CXCL8. Subsequent EIU further and significantly P<.01 increased the cytokines production, an effect partly prevented by hemin treatment. Most importantly, hemin, an inducer of heme oxygenase expression and activity, recovered the huge number of infiltrated polymorphonuclear leukocytes PMN within the ciliary bodies associated with STZ-hyperglycemic state and EIU damage. Impairment of the stress-sensitive enzyme HO-1 in STZ-hyperglycemic rats increases and prolongs the inflammatory response to EIU.

  12. Overexpression of pucC improves the heterologous protein expression level in a Rhodobacter sphaeroides expression system.

    Cheng, L; Chen, G; Ding, G; Zhao, Z; Dong, T; Hu, Z

    2015-04-27

    The Rhodobacter sphaeroides system has been used to express membrane proteins. However, its low yield has substantially limited its application. In order to promote the protein expression capability of this system, the pucC gene, which plays a crucial role in assembling the R. sphaeroides light-harvesting 2 complex (LH2), was overexpressed. To build a pucC overexpression strain, a pucC overexpression vector was constructed and transformed into R. sphaeroides CQU68. The overexpression efficiency was evaluated by quantitative real-time polymerase chain reaction. A well-used reporter β-glucuronidase (GUS) was fusion-expressed with LH2 to evaluate the heterologous protein expression level. As a result, the cell culture and protein in the pucC overexpression strain showed much higher typical spectral absorption peaks at 800 and 850 nm compared with the non-overexpression strain, suggesting a higher expression level of LH2-GUS fusion protein in the pucC overexpression strain. This result was further confirmed by Western blot, which also showed a much higher level of heterologous protein expression in the pucC overexpression strain. We further compared GUS activity in pucC overexpression and non-overexpression strains, the results of which showed that GUS activity in the pucC overexpression strain was approximately ten-fold that in the non-overexpression strain. These results demonstrate that overexpressed pucC can promote heterologous protein expression levels in R. sphaeroides.

  13. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  14. Effect of constant digestible protein intake and varying digestible energy levels on energy and protein utilization in Nile tilapia

    Haidar, M.N.; Bleeker, S.; Heinsbroek, L.T.N.; Schrama, J.W.

    2018-01-01

    In literature, the variability in the estimated optimal digestible protein to digestible energy ratio (DP/DE) is high. The present study aimed to estimate the optimal DP/DE ratio in Nile tilapia (Oreochromis niloticus) using different criteria (performance, energy and nitrogen balances parameters).

  15. Urine heat shock protein 70 levels as a marker of urinary tract infection in children.

    Yilmaz, Alev; Yildirim, Zeynep Yuruk; Emre, Sevinc; Gedikbasi, Asuman; Yildirim, Tarik; Dirican, Ahmet; Ucar, Evren Onay

    2016-09-01

    Heat shock proteins (HSPs) are a multi-family group of proteins which are upregulated by the cell in response to exposure to hazardous (stress) factors, including infectious agents, to prevent changes in protein structure. The aim of our study was to assess whether urine levels of the 70-kDa family of HSPs (HSP70s) increase in children with urinary tract infection (UTI) and to determine the optimal urine (u) HSP70 cut-off level to predict UTI in children. Forty patients with symptomatic UTI (UTI group), 30 healthy children (control group), 21 asymptomatic patients with proven bacterial contamination in their urine culture (contamination group) and 30 patients with fever caused by other infections (non-UTI infection group) were enrolled in the study. Random urine samples were obtained for measurement of HSP70 and creatinine (Cr) from all groups. Urine was collected prior to the treatment of UTI at the time of presentation and after treatment. Urine HSP70 levels were measured by enzyme-linked immunosorbent analysis. A dimercaptosuccinic acid (DMSA) scan was performed at 5-7 days after presentation in UTI group to distinguish patients with acute pyelonephritis from those with cystitis; based on this scan, no patients had acute pyelonephritis. Patients were classified with pyelonephritis in the presence of all of the following signs: axillary fever of ≥39 °C, leukocytosis and positivity for C-reactive protein. The mean urine HSP70:Cr ratio (uHSP70/Cr) prior to treatment was significantly higher in the UTI group (449.86 ± 194.33 pg/mg) than in the control, contamination and non-UTI infection groups (39.93 ± 47.61, 32.43 ± 9.09 and 45.14 ± 19.76, respectively; p = 0.0001). Using a cut-off of 158 pg/mg uHSP70/Cr for the prediction of UTI, the sensitivity and specificity of the assay were 100 and 100 %, respectively (area under the time-concentration curve = 1). The uHSP70/Cr was highest in the patients with clinical pyelonephritis (p

  16. Comparison of Selected Protein Levels in Tumour and Surgical Margin in a Group of Patients with Oral Cavity Cancer.

    Strzelczyk, Joanna Katarzyna; Gołąbek, Karolina; Cuber, Piotr; Krakowczyk, Łukasz; Owczarek, Aleksander Jerzy; Fronczek, Martyna; Choręża, Piotr; Hudziec, Edyta; Ostrowska, Zofia

    2017-08-01

    Oral cavity cancer belongs to head-and-neck squamous cell carcinoma group. The purpose of the study was to assess the levels of certain proteins in a tumour and surgical margin in a group of patients with oral cavity cancer. The levels of DAPK1, MGMT, CDH1, SFRP1, SFRP2, RORA, TIMP3, p16, APC and RASSF1 proteins were measured by ELISA in tissue homogenates. The protein levels of DAPK1, MGMT, CDH1, SFRP2 and RASSF1 were significantly higher in tumour tissue than in the margin, contrary to TIMP3 which was lower in the tumour itself. DAPK1 level in the tumour was significantly higher in females than in males, the MGMT and p16 levels were lower in the tumours with lymph node metastasis (N1 + N2) than in N0 samples. The CDH1 expression was higher in a group with smoking habits, whereas TIMP3 was lower in this group. Changes in the levels of proteins in tumour and surgical margin may be either reflective of tumour occurrence and development, or they might be also responsible for the progress and reoccurrence of the disease. Levels of the studied proteins might be good prognostic factors; however, further studies are required.

  17. Serum C-reactive protein and thioredoxin levels in subjects with mildly reduced glomerular filtration rate

    Ishimura Eiji

    2010-04-01

    Full Text Available Abstract Background Chronic kidney disease (CKD is a newly recognized high-risk condition for cardiovascular disease (CVD, and previous studies reported the changes in inflammation and oxidative stress in advanced stages of CKD. We compared the levels of serum biomarkers for inflammation and oxidative stress between subjects with normal and mildly reduced glomerular filtration rate (GFR. Methods The subjects were 182 participants of a health check-up program including those with normal (≥ 90 mL/min/1.73 m2, N = 79 and mildly reduced eGFR (60-89 mL/min/1.73 m2, N = 103 which was calculated based on serum creatinine, age and sex. We excluded those with reduced eGFR 2. No one had proteinuria. We measured serum levels of C-reactive protein (CRP and thioredoxin (TRX as the markers of inflammation and oxidative stress, respectively. Results As compared with subjects with normal eGFR, those with mildly reduced eGFR had increased levels of both CRP and TRX. Also, eGFR was inversely correlated with these biomarkers. The associations of eGFR with these biomarkers remained significant after adjustment for age and sex. When adjustment was done for eight possible confounders, CRP showed significant association with systolic blood pressure, high density lipoprotein cholesterol (HDL-C and non-HDL-C, whereas TRX was associated with sex significantly, and with eGFR and systolic blood pressure at borderline significance. Conclusions We showed the increased levels of CRP and TRX in subjects with mildly reduced eGFR. The eGFR-CRP link and the eGFR-TRX link appeared to be mediated, at least partly, by the alterations in blood pressure and plasma lipids in these subjects.

  18. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis.

    Wilson, Fiona A; Suryawan, Agus; Orellana, Renán A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Gazzaneo, Maria C; Davis, Teresa A

    2008-10-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.

  19. [Level of selected antibacterial tear proteins in children with diabetes type 1].

    Moll, Agnieszka; Wyka, Krystyna; Młynarski, Wojciech; Niwald, Anna

    2011-01-01

    Antibacterial immunity in diabetes is impaired, which increases the risk of general and local infections. The aim of the study was to evaluate non-specific local antibacterial immunity based on lactoferrin and lysozyme concentration in tears in children with diabetes type 1. Children at the age of 10-18 years old were studied. Group 1. consisted of children without diabetes, group 2. included patients with new onset of diabetes and group 3. consisted of children with decade-long diabetes. Among all patients tears were collected from inferior coniunctival fornix with hematocrit glass capillaries in purpose to measure lactoferrin and lysozyme concentration. ELISA method was used in laboratory testing. Level of lactoferrin did not differ significantly among all groups. Concentration of lysozyme was statistically lower in group with decade-long diabetes (group 3.) compared to patients without diabetes. Mild correlation between lactoferrin and lysozyme levels was seen in individual patients in whole group of probands together. Diabetes type 1 in children is associated with significant changes in concentration of tear proteins, which contribute to antibacterial immunity.

  20. Immunological Roles of Elevated Plasma Levels of Matricellular Proteins in Japanese Patients with Pulmonary Tuberculosis

    Beata Shiratori

    2016-12-01

    Full Text Available Elevated matricellular proteins (MCPs, including osteopontin (OPN and galectin-9 (Gal-9, were observed in the plasma of patients with Manila-type tuberculosis (TB previously. Here, we quantified plasma OPN, Gal-9, and soluble CD44 (sCD44 by enzyme-linked immunosorbent assay (ELISA, and another 29 cytokines by Luminex assay in 36 patients with pulmonary TB, six subjects with latent tuberculosis (LTBI, and 19 healthy controls (HCs from Japan for a better understanding of the roles of MCPs in TB. All TB subjects showed positive results of enzyme-linked immunospot assays (ELISPOTs. Spoligotyping showed that 20 out of 36 Mycobacterium tuberculosis (MTB strains belong to the Beijing type. The levels of OPN, Gal-9, and sCD44 were higher in TB (positivity of 61.1%, 66.7%, and 63.9%, respectively than in the HCs. Positive correlations between OPN and Gal-9, between OPN and sCD44, and negative correlation between OPN and ESAT-6-ELISPOT response, between chest X-ray severity score of cavitary TB and ESAT-6-ELISPOT response were observed. Instead of OPN, Gal-9, and sCD44, cytokines G-CSF, GM-CSF, IFN-α, IFN-γ, IL-12p70, and IL-1RA levels were higher in Beijing MTB-infected patients. These findings suggest immunoregulatory, rather than inflammatory, effect of MCPs and can advance the understanding of the roles of MCPs in the context of TB pathology.

  1. Protein levels in Urine of Pregnant women in Rivers State, Nigeria ...

    DR. MIKE HORSFALL

    blood pressure and proteinuria. (Dennis and Hester, ... the absence of hypertension, oedema, renal infection or known .... (1951). Protein measurement with Folin – Phenol reagent. ... The effect of posture on urinary protein in non- pregnant ...

  2. Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid.

    Geary, Bethany; Magee, Kieran; Cash, Phillip; Young, Iain S; Whitfield, Phillip D; Doherty, Mary K

    2016-05-01

    The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Growth performance of sea bass fed increasing levels of pea-wheat protein in diets varying in fish meal quality

    E. Tibaldi

    2010-04-01

    Full Text Available A 11-week trial was carried out to compare the growth performance of sea bass (D. labrax fed six isonitrogenous isocaloric diets where protein from two fish meals of different nutritive value was replaced with graded levels (0, 50 or 75% of a mixture made up by a pea protein concentrate and wheat gluten. Fish meal quality did not affect (P>0.05 weight gain or feed efficiency in fish fed graded levels of plant protein in the diet. Feed intake decreased (P<0.05 as the level of plant protein was increased in the diet but this did not led to impaired growth or feed conversion rate. Protein efficiency and retention were equally improved (P<0.05 only with diets where a poor quality fish meal was substituted by protein rich-plant ingredients. Calculations based on the mass balance of nutrients of sea bass proven the inclusion of a mixture of highly purified plant-protein derivatives in complete diets for the sea bass, to be beneficial in reducing pollution load.

  4. RACK1 downregulates levels of the pro-apoptotic protein Fem1b in apoptosis-resistant colon cancer cells.

    Subauste, M Cecilia; Ventura-Holman, Tereza; Du, Liqin; Subauste, Jose S; Chan, Shing-Leng; Yu, Victor C; Maher, Joseph F

    2009-12-01

    Evasion of apoptosis plays an important role in colon cancer progression. Following loss of the Apc tumor suppressor gene in mice, the gene encoding Fem1b is upregulated early in neoplastic intestinal epithelium. Fem1b is a pro-apoptotic protein that interacts with Fas, TNFR1 and Apaf-1, and increased expression of Fem1b induces apoptosis of cancer cells. Fem1b is a homolog of FEM-1, a protein in Caenorhabditis elegans that is negatively regulated by ubiquitination and proteasomal degradation. To study Fem1b regulation in colon cancer progression, we used apoptotis-sensitive SW480 cells, derived from a primary colon cancer, and their isogenic, apoptosis-resistant counterparts SW620 cells, derived from a subsequent metastatic lesion in the same patient. Treatment with proteasome inhibitor increased Fem1b protein levels in SW620 cells, but not in SW480 cells. In SW620 cells we found that endogenous Fem1b co-immunoprecipitates in complexes with RACK1, a protein known to mediate ubiquitination and proteasomal degradation of other pro-apoptotic proteins and to be upregulated in colon cancer. Full-length Fem1b, or the N-terminal region of Fem1b, associated with RACK1 when co-expressed in HEK293T cells, and RACK1 stimulated ubiquitination of Fem1b. RACK1 overexpression in SW620 cells led to downregulation of Fem1b protein levels. Conversely, downregulation of RACK1 led to upregulation of Fem1b protein levels, associated with induction of apoptosis, and this apoptosis was inhibited by blocking Fem1b protein upregulation. In conclusion, RACK1 downregulates levels of the pro-apoptotic protein Fem1b in metastatic, apoptosis-resistant colon cancer cells, which may promote apoptosis-resistance during progression of colon cancer.

  5. Effect of protein, carbohydrate, lipid, and selenium levels on the performance, carcass yield, and blood changes in broilers

    FH Hada

    2013-12-01

    Full Text Available The objective of this study was to evaluate the performance, carcass and parts yield, and blood changes in broilers fed different protein, carbohydrate, and lipid levels. Birds were fed a commercial diet until seven days of age. On day 8, birds were distributed according to a completely randomized experimental design in a 4 x 2 factorial arrangement (control diet, low protein diet, low carbohydrate diet or low lipid diet vs. supplementation of 0 or 0.3ppm organic selenium with four replicates of 15 birds each. Broilers fed low protein presented lower body weight, feed intake, and worse feed conversion ratio on day 42, as well as lower carcass and breast yields, higher leg and abdominal fat yields, higher triglyceride and lower uric acid blood levels. Broilers fed the low carbohydrate diets presented low glucose levels on days 14 and 42.Creatine-kinase (CK levels increased as birds aged. The livability of broilers fed the low protein diets improved and of those fed low carbohydrate diets worsened with dietary selenium addition on days 35 and 42. Selenium supplementation increased glucose levels in 42-d-old broilers. Changes in dietary protein caused more impact on broiler performance compared with carbohydrates and lipids. Changes in macronutrients caused metabolic changes in broilers. Selenium affected broiler livability as measured on days 35 and 42, and glucose blood levels.

  6. Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank.

    Prlic, Andreas; Kalro, Tara; Bhattacharya, Roshni; Christie, Cole; Burley, Stephen K; Rose, Peter W

    2016-12-15

    The Protein Data Bank (PDB) now contains more than 120,000 three-dimensional (3D) structures of biological macromolecules. To allow an interpretation of how PDB data relates to other publicly available annotations, we developed a novel data integration platform that maps 3D structural information across various datasets. This integration bridges from the human genome across protein sequence to 3D structure space. We developed novel software solutions for data management and visualization, while incorporating new libraries for web-based visualization using SVG graphics. The new views are available from http://www.rcsb.org and software is available from https://github.com/rcsb/. andreas.prlic@rcsb.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-01-01

    Highlights: ► APPL1 regulates the protein level of EGFR in response to EGF stimulation. ► Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. ► Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  8. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Yingying Liu

    Full Text Available Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet- or higher/NRC (National Research Council-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I and longissimus dorsi muscle (LDM, type II were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05 gradually with increasing age. Bama mini-pigs had generally higher (P<0.05 muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05 than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K, and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05. There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05 the levels for mTOR and p70S6K in Bama mini-pigs, but

  9. Blood levels of glial fibrillary acidic protein (GFAP in patients with neurological diseases.

    Christoph A Mayer

    Full Text Available BACKGROUND AND PURPOSE: The brain-specific astroglial protein GFAP is a blood biomarker candidate indicative of intracerebral hemorrhage in patients with symptoms suspicious of acute stroke. Comparably little, however, is known about GFAP release in other neurological disorders. In order to identify potential "specificity gaps" of a future GFAP test used to diagnose intracerebral hemorrhage, we measured GFAP in the blood of a large and rather unselected collective of patients with neurological diseases. METHODS: Within a one-year period, we randomly selected in-patients of our university hospital for study inclusion. Patients with ischemic stroke, transient ischemic attack and intracerebral hemorrhage were excluded. Primary endpoint was the ICD-10 coded diagnosis reached at discharge. During hospital stay, blood was collected, and GFAP plasma levels were determined using an advanced prototype immunoassay at Roche Diagnostics. RESULTS: A total of 331 patients were included, covering a broad spectrum of neurological diseases. GFAP levels were low in the vast majority of patients, with 98.5% of cases lying below the cut-off that was previously defined for the differentiation of intracerebral hemorrhage and ischemic stroke. No diagnosis or group of diagnoses was identified that showed consistently increased GFAP values. No association with age and sex was found. CONCLUSION: Most acute and chronic neurological diseases, including typical stroke mimics, are not associated with detectable GFAP levels in the bloodstream. Our findings underline the hypothesis that rapid astroglial destruction as in acute intracerebral hemorrhage is mandatory for GFAP increase. A future GFAP blood test applied to identify patients with intracerebral hemorrhage is likely to have a high specificity.

  10. Pin1 and secondary hyperparathyroidism of chronic kidney disease: gene polymorphisms and protein levels.

    Zhao, Yu; Zhang, Li-Li; Ding, Fa-Xian; Cao, Ping; Qi, Yuan-Yuan; Wang, Jing

    2017-11-01

    Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is a key regulator of PTH mRNA stability. Secondary hyperparathyroidism (SHPT), which is characterized by elevated serum PTH levels, is a common complication of CKD. We investigated the possible associations between CKD with SHPT (CKD SHPT) and single-nucleotide polymorphisms of the Pin1 gene and compared the levels of the Pin1 protein in the CKD SHPT patients with those of the controls. The study group included 251 CKD SHPT patients and 61 controls. One putative functional SNP (single nucleotide polymorphism) in the Pin1 promoter (rs2233679C > T: c.-667C > T) is the main object. Genotyping was performed on purified DNA using polymerase chain reaction-restriction (PCR) and restriction fragment length polymorphisms (RFLP). The levels of Pin1 were measured in serum using an enzyme-linked immunosorbent assay. Genotyping showed that CT + TT in the Pin1 promoter was significantly more common in the CKD SHPT group than in the control group (p<.05). The correlation analysis demonstrated that a significant difference in the C to T transition in the Pin1 promoter contributed to CKD SHPT (χ 2 =12.47, p<.05; Odds ratios (OR) = 1.26, 95% confidence (CI) intervals =1.06-1.49). The multivariate logistic regression analysis reported that the OR and 95%CI were 12.693 and 2.029-75.819 (p<.05), respectively, in the Pin1 gene promoter -667T variant genotypes (CT + TT) after adjusting for other factors, and those values in Pin1 were 0.310 and 0.122-0.792 (p<.05). The -667T genetic variants in the Pin1 promoter contribute to an increased risk of CKD SHPT and may be biomarkers of susceptibility to CKD SHPT.

  11. Pregnancy-associated plasma protein A in human ovarian follicles and its association with intrafollicular hormone levels

    Bøtkjær, Jane Alrø; Jeppesen, Janni Vikkelsø; Wissing, Marie Louise

    2015-01-01

    To evaluate follicular fluid (FF) levels of pregnancy-associated plasma protein A (PAPP-A) in relation to levels of intrafollicular hormones. Furthermore, immunostaining of human follicles of varying diameters was studied for PAPP-A, antimüllerian hormone (AMH), and aromatase, and the biological...... activity of PAPP-A in FF was evaluated....

  12. Evidence that kidney function but not type 2 diabetes determines retinol-binding protein 4 serum levels

    Henze, Andrea; Frey, Simone K; Raila, Jens

    2008-01-01

    It has been suggested that retinol-binding protein 4 (RBP4) links adiposity, insulin resistance, and type 2 diabetes. However, circulating RBP4 levels are also affected by kidney function. Therefore, the aim of this study was to test whether RBP4 serum levels are primarily associated with kidney...... function or type 2 diabetes....

  13. Effects of dietary starch and protein levels on milk production and composition of dairy cows fed high concentrate diet

    Mustafa Güçlü Sucak

    2017-07-01

    Full Text Available Abstract Twenty eight Holstein cows (averaged 41±31.5 and 82±24 days in milk, and 30.4±3.49 and 29.0±2.22 kg/d milk yield were fed a high concentrate diet (70:30 concentrate to forage to examine effects on milk production and composition. The cows were randomly assigned to receive four dietary treatments according to a 2 x 2 factorial arrangement. Factors were starch (14% and 22% and protein (15% and 18%. Wheat straw was used as forage source. The study lasted 6 weeks. Dry matter intake was not affected (P> 0.05 by the dietary treatments in the study. Milk yield increased with increased dietary protein level (P< 0.01. Milk urea nitrogen concentrations were affected by dietary protein and starch levels, but there was no interaction effect. Nitrogen efficiency (Milk N/N intake was decreased by increasing in dietary protein level (P< 0.01. In conclusion, the cows fed total mixed ration (TMR containing low level of wheat straw responded better when dietary protein increased. But, efficiency of N use and N excretion to the environment were worsened. Key words: Dairy cattle, milk composition, protein, starch, wheat straw

  14. [Effect of starvation on blood protein levels in the population of Dobrinja (1992-1995)].

    Hasković, E

    2000-01-01

    In nutritional protein deficiency, numerous studies verified utilization of amino acids generated from tissue degradation in intensive protein synthesis. Unlike liver, muscle protein synthesis is extremely dependent on external supplies of essential amino acids. Prolonged nutritional protein deficiency results in decrease of body weight as well as total protein concentration, in particular in early days of starvation. In prolonged starvation during the war, significant decrease of body weight was registered in 70 subjects while their total protein concentration remained within the expected range and did not significantly differ the values recorded in the control group. Concentration of serum albumines in the control group was lower than the concentration recorded in the tested group, while the serum globulins concentration was higher in the control group. Although the difference in body weight between the tested and the control group was statistically significant, no significant difference in the concentration of total proteins, albumines and globulines was recorded.

  15. Effects of balanced dietary protein levels on egg production and egg quality parameters of individual commercial layers.

    Shim, M Y; Song, E; Billard, L; Aggrey, S E; Pesti, G M; Sodsee, P

    2013-10-01

    The effects of a series of balanced dietary protein levels on egg production and egg quality parameters of laying hens from 18 through 74 wk of age were investigated. One hundred forty-four pullets (Bovans) were randomly assigned to individual cages with separate feeders including 3 different protein level series of isocaloric diets. Diets were separated into 4 phases of 18-22, 23-32, 33-44, and 45-74 wk of age. The high protein (H) series contained 21.62, 19.05, 16.32, and 16.05% CP, respectively. Medium protein (M) and low protein (L) series were 2 and 4% lower in balanced dietary protein. The results clearly demonstrated that the balanced dietary protein level was a limiting factor for BW, ADFI, egg weight, hen day egg production (HDEP), and feed per kilogram of eggs. Feeding with the L series resulted in lower ADFI and HDEP (90.33% peak production) and more feed per kilogram of eggs compared with the H or M series (HDEP; 93.23 and 95.68% peak production, monthly basis). Egg weight responded in a linear manner to balanced dietary protein level (58.78, 55.94, and 52.73 g for H, M, and L, respectively). Feed intake of all hens, but especially those in the L series, increased considerably after wk 54 when the temperature of the house decreased due to winter conditions. Thus, hens fed the L series seemed particularly dependent on house temperature to maintain BW, ADFI, and HDEP. For egg quality parameters, percent yolk, Haugh units, and egg specific gravity were similar regardless of diets. Haugh units were found to be greatly affected by the variation of housing temperature (P = 0.025). Maximum performance cannot always be expected to lead to maximum profits. Contrary to the idea of a daily amino acid requirement for maximum performance, these results may be used to determine profit-maximizing levels of balanced dietary protein based on the cost of protein and returns from different possible protein levels that may be fed.

  16. Effects of dietary protein levels on growth performance and body composition of juvenile parrot fish, Oplegnathus fasciatus

    Kang-Woong Kim

    2016-07-01

    Full Text Available Abstract The present study was conducted to evaluate the effects of dietary protein levels on growth, biometrics, hematology and body composition in juvenile parrot fish Oplegnathus fasciatus. Fish averaging 7.1 ± 0.06 g (mean ± SD was randomly distributed into 15 net cages (each size: 60 × 40 × 90 cm, W × L × H as groups of 20 fish. Five isocaloric diets (16.7 kJ/g energy were formulated to contain crude protein levels (CP as 35 (CP35, 40 (CP40, 45 (CP45, 50 (CP50 and 60 % (CP60 in the diets. Fish were fed one of the experimental diets at apparent satiation twice a day in triplicate groups. At the end of 8-week feeding trial, weight gain (WG of fish fed with CP50 and CP60 diets were significantly higher than those of fish fed with CP35, CP40 and CP45 diets. Fish fed with CP45, CP50 and CP60 diets had higher feed efficiency (FE and specific growth rate (SGR than those of fish fed with CP35 and CP40 diets. Protein retention efficiency (PRE decreased with increase of dietary protein levels among fish fed with the experimental diets. Whole-body crude protein and lipid contents increased with the dietary protein level up to CP50 diet. In conclusion, analysis of variance (ANOVA revealed that the optimum dietary protein level could be 50 % for maximum growth of juvenile parrot fish, while the broken-line analysis of WG suggested that the level could be 48.5 %, in a diet containing 16.7 kJ/g energy.

  17. Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice

    Marie S. Ramsvik

    2013-11-01

    Full Text Available Background: Krill powder, consisting of both lipids and proteins, has been reported to modulate hepatic lipid catabolism in animals. Fish protein hydrolysate diets have also been reported to affect lipid metabolism and to elevate bile acid (BA level in plasma. BA interacts with a number of nuclear receptors and thus affects a variety of signaling pathways, including very low density lipoprotein (VLDL secretion. The aim of the present study was to investigate whether a krill protein hydrolysate (KPH could affect lipid and BA metabolism in mice. Method: C57BL/6 mice were fed a high-fat (21%, w/w diet containing 20% crude protein (w/w as casein (control group or KPH for 6 weeks. Lipids and fatty acid composition were measured from plasma, enzyme activity and gene expression were analyzed from liver samples, and BA was measured from plasma. Results: The effect of dietary treatment with KPH resulted in reduced levels of plasma triacylglycerols (TAG and non-esterified fatty acids (NEFAs. The KPH treated mice had also a marked increased plasma BA concentration. The increased plasma BA level was associated with induction of genes related to membrane canalicular exporter proteins (Abcc2, Abcb4 and to BA exporters to blood (Abcc3 and Abcc4. Of note, we observed a 2-fold increased nuclear farnesoid X receptor (Fxr mRNA levels in the liver of mice fed KPH. We also observed increased activity of the nuclear peroxiosme proliferator-activated receptor alpha (PPARα target gene carnitine plamitoyltransferase 2 (CPT-2. Conclusion: The KPH diet showed to influence lipid and BA metabolism in high-fat fed mice. Moreover, increased mitochondrial fatty acid oxidation and elevation of BA concentration may regulate the plasma level of TAGs and NEFAs.

  18. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  19. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Satoshi Sekiguchi

    Full Text Available Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV, is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis, liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25, which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-/MxCre((+/- mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor TNF-α and (interleukin IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  20. Protein requirement of young adult Nigerian females on habitual Nigerian diet at the usual level of energy intake.

    Egun, G N; Atinmo, T

    1993-09-01

    A short-term N balance study was conducted in twelve healthy female adults aged 21-32 years to determine their protein requirement. Four dietary protein levels (0.3, 0.4, 0.5 and 0.6 g protein/kg per d) were used. Energy intake of the subjects was kept constant at 0.18 MJ/kg per d. All subjects maintained their normal activity throughout the study period. N excretion was determined from the measurements of N in a total collection of urine, faeces, sweat and menstrual fluid for each dietary period. N balance during the four protein levels were -15.15 (SD 5.95), -5.53 (SD 6.71), +6.15 (SD 4.76) and +12.05 (SD 8.63) mg N/kg per d for 0.3, 0.4, 0.5 and 0.6 g protein/kg per d respectively. The calculated average N requirements from regression analysis was 76.0 (SD 3.37) mg N/kg per d (0.48 g protein/kg per d). The estimate of allowance for individual variation to cover the 97.5% population was 95 mg N/kg per d (0.6 g protein/kg per d). The net protein utilization (NPU) of the diet was 0.55. When compared with a similar study with men, there was a significant difference in the protein requirement between sexes. Thus, the unjustifiable sex difference in the protein allowance recommended by the Food and Agriculture Organization/World Health Organization/United Nations University (1985) Expert Consultation group must be reviewed.

  1. PPARγ activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    Mogilenko, Denis A.; Shavva, Vladimir S.; Dizhe, Ella B.; Orlov, Sergey V.; Perevozchikov, Andrej P.

    2010-01-01

    Research highlights: → PPARγ activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. → Treatment of HepG2 cells with PPARγ agonist GW1929 leads to dissociation of LXRβ from ABCA1-LXRβ complex. → Inhibition of protein kinases MEK1/2 abolishes PPARγ-mediated dissociation of LXRβ from ABCA1/LXRβ complex. → Activation of PPARγ leads to increasing of the level of LXRβ associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPARγ is known as activator of ABCA1 expression, but details of PPARγ-mediated regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPARγ activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXRβ binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPARγ agonist GW1929 leads to dissociation of LXRβ from ABCA1/LXRβ complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPARγ-mediated dissociation of LXRβ from ABCA1/LXRβ complex, but does not block PPARγ-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPARγ may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPARγ, LXRβ and MEK1/2 in regulation of ABCA1 mRNA and protein expression.

  2. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    Almeida, Luciana O.; Goto, Renata N. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Neto, Marinaldo P.C. [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Sousa, Lucas O. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Curti, Carlos [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Leopoldino, Andréia M., E-mail: andreiaml@usp.br [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.

  3. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.

  4. Proteome-Level Analysis of Metabolism- and Stress-Related Proteins during Seed Dormancy and Germination in Gnetum parvifolium.

    Chang, Ermei; Deng, Nan; Zhang, Jin; Liu, Jianfeng; Chen, Lanzhen; Zhao, Xiulian; Abbas, M; Jiang, Zeping; Shi, Shengqing

    2018-03-21

    Gnetum parvifolium is a rich source of materials for traditional medicines, food, and oil, but little is known about the mechanism underlying its seed dormancy and germination. In this study, we analyzed the proteome-level changes in its seeds during germination using isobaric tags for relative and absolute quantitation. In total, 1,040 differentially expressed proteins were identified, and cluster analysis revealed the distinct time points during which signal transduction and oxidation-reduction activity changed. Gene Ontology analysis showed that "carbohydrate metabolic process" and "response to oxidative stress" were the main enriched terms. Proteins associated with starch degradation and antioxidant enzymes were important for dormancy-release, while proteins associated with energy metabolism and protein synthesis were up-regulated during germination. Moreover, protein-interaction networks were mainly associated with heat-shock proteins. Furthermore, in accord with changes in the energy metabolism- and antioxidant-related proteins, indole-3-acetic acid, Peroxidase, and soluble sugar content increased, and the starch content decreased in almost all six stages of dormancy and germination analyzed (S1-S6). The activity of superoxide dismutase, abscisic acid, and malondialdehyde content increased in the dormancy stages (S1-S3) and then decreased in the germination stages (S4-S6). Our results provide new insights into G. parvifolium seed dormancy and germination at the proteome and physiological levels, with implications for improving seed propagation.

  5. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  6. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  7. C Reactive protein levels as a marker of coronary heart disease in middle aged individuals

    Haleem, N.; Marwat, Z.I.; Abbasi, S.; Tauqeer, S.

    2016-01-01

    Background: coronary heart disease is multifactorial inflammatory process which involves the accumulation of lipid macrophages and intimal plaques in smooth muscle cell in large and medium sized arteries. C reactive protein (CRP) which is an inflammatory marker is considered as global risk assessment for coronary heart disease. The objective of study is to determine the CRP level as risk marker in coronary heart disease in middle aged individuals. Methods: This cross sectional study was conducted in Hayatabad medical complex Peshawar and Rehman Medical Institute Peshawar. On the basis of predesigned questionnaire, 100 middle aged individuals of age 40-60 years and 50 normal subjects of same age were questioned by taking consent. Data was collected and analysed by SPSS-15. Results: It was founded that 74 percentage of patients have higher values of CRP and 4 percentage have high values of CRP in controls. The t-test applied at 95 percentage confidence interval with mean difference of 22.096+2.36 of CHD individuals and 1.288±1.70 of control group. P-value was 0.001 which is found to be significant. Conclusion: It was observed that CRP has higher association with CHD. (author)

  8. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation.

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N; Vainchenker, William; Solary, Eric; Giraudier, Stéphane

    2014-09-25

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. © 2014 by The American Society of Hematology.

  9. Leptin level in plasma of lactating buffaloes fed two diets with different energy and protein concentrations

    A. Parmeggiani

    2011-03-01

    Full Text Available Leptin, a protein mainly secreted from the white adipocytes, has been shown to contribute to the regulation of energy metabolism, feeding behaviour and whole body energy balance. Moreover, leptin gene activity and leptin secretion are correlated with body adiposity and changes in food intake. Furthermore, leptin could also modulate endocrine response to changes in nutritional status and/or tissue sensitivity to hormones (Houseknecht et al., 1998; Romsos, 1998. Several factors are known to influence plasma leptin in rodents and humans: particularly it increases by body fatness, insulin, glucocorticoids, estrogens and decreases by food deprivation (Saladin et al., 1995; Ahima et al., 1996; Shimizu et al., 1997. These ones and several other observations have led to the hypothesis that leptin is a signal arising from adipose tissue, linked to the level of fat reserves and/or the nutritional status. This signal directly influences the central nervous system and peripheral organs, resulting in a better adaptation of body metabolism and physiological functions to the availability of metabolic energy...........

  10. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia.

    Martin Kaczocha

    Full Text Available The endocannabinoid anandamide (AEA is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH. Fatty acid binding proteins (FABPs are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1 and peroxisome proliferator-activated receptor alpha (PPARα and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.

  11. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.

    Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-08-15

    Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. 2A and the auxin-based degron system facilitate control of protein levels in Plasmodium falciparum.

    Andrea Kreidenweiss

    Full Text Available Analysis of gene function in Plasmodium falciparum, the most important human malaria parasite, is restricted by the lack of robust and simple reverse genetic tools. Approaches to manipulate protein levels post-translationally are powerful tools to study protein-off effects especially in the haploid malaria parasite where genetic knockouts of essential genes are lethal. We investigated if the auxin-inducible degron system is functional in P. falciparum and found that degron-tagged yellow fluorescent protein levels were efficiently reduced upon addition of auxin which otherwise had no effect on parasite viability. The genetic components required in this conditional approach were co-expressed in P. falciparum by applying the small peptide 2A. 2A is a self-processing peptide from Foot-And-Mouth Disease virus that allows the whole conditional system to be accommodated on a single plasmid vector and ensures stoichiometric expression levels.

  13. Fishmeal with different levels of biogenic amines in Aquafeed: Comparison of feed protein quality, fish growth performance, and metabolism

    Jasour, Mohammad Sedigh; Wagner, Liane; Sundekilde, Ulrik Kræmer

    2018-01-01

    The current study investigated the effects of fishmeal quality (low (LB) and high (HB) levels of endogenous biogenic amines) and feed extrusion temperatures (100 and 130 °C) on protein oxidation indicators and amino acids racemization (AAR) in extruded fish feed. Furthermore, the study investigated......, secondary oxidation products, and racemized methionine correlated positively with a low content of biogenic amines, whereas the primary oxidation product, protein hydroperoxides, and in vivo AAs digestibility correlated positively with high content of biogenic amines. At an extrusion temperature of 100 °C......, the growth performance of the fish decreased when the content of biogenic amines increased. In contrast, at an extrusion temperature of 130 °C, the growth performance was unaffected by the level of biogenic amines. The latter could be a consequence of the higher level of protein oxidation of LB fishmeal...

  14. Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer

    Chen, Yi; Pirisi, Lucia; Creek, Kim E.

    2013-01-01

    We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cell proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer. - Highlights: • Ski oncoprotein levels increase during progression of HPV16-transformed cells. • Ski and phospho-Ski protein levels are cell cycle dependent. • Ski knock-down in HPV16-transformed keratinocytes inhibited cell proliferation. • Cervical cancer samples overexpress Ski

  15. Suitability of Yin Yang 1 transcript and protein levels for biomarker studies in B cell non-Hodgkin lymphoma.

    Arribas Arranz, Jéssica; Winter, Dalia Nilufar; Drexler, Hans Günter; Eberth, Sonja

    2018-01-01

    Yin Yang 1 (YY1) is a transcription factor that plays an important role during all stages of B cell differentiation. Several studies reported upregulation of YY1 in B cell derived lymphoma, indicating that it might act as an oncogene. Furthermore, aberrant YY1 expression has been associated with survival in some entities of B cell non-Hodgkin lymphoma (B-NHL), suggesting that YY1 could be a valuable biomarker in B-NHL. However, studies are controversial and methodologically disparate, partially because some studies are based on transcript levels while others rely on YY1 protein data. Therefore, we aimed to investigate the dependence of YY1 protein levels on YY1 transcription. A panel of human cell lines representing different B-NHL subtypes was used to test for the correlation of YY1 mRNA and protein levels which were determined by quantitative PCR and immunoblotting. To analyze YY1 mRNA and YY1 protein stability cells were treated with actinomycin-D and cycloheximide, respectively. siRNAs were transfected to knockdown YY1 . Kaplan-Meier survival analyses were performed with data from published patient cohorts. Pearson's correlation analyses were assessed and statistical power was examined by Student's t-test. In the analyzed panel of B-NHL cell lines YY1 transcript levels do not correlate with their cellular protein amounts. YY1 protein levels were unaffected by transient block of transcription or by targeting YY1 mRNA using siRNA. Additionally, global inhibition of translation up to 48 h did not alter protein levels of YY1, indicating that YY1 is a highly stable protein in B-NHL. Furthermore, in a retrospective analysis of two different B-NHL cohorts, YY1 transcript levels had no impact on patients' survival probabilities. Our results point out the necessity to focus on YY1 protein expression to understand the potential role of YY1 as an oncogene and to unravel its suitability as clinical biomarker in B-NHL.

  16. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers.

    Liu, Q W; Feng, J H; Chao, Z; Chen, Y; Wei, L M; Wang, F; Sun, R P; Zhang, M H

    2016-04-01

    This study was undertaken to investigate the effects of ambient temperature, crude protein levels and their interaction on performance and serum biochemical parameters of broiler chickens. A total of 216 Arbor Acre broiler chickens (108 males and 108 females) were used in a 2 × 3 factorial arrangement and randomly reared at two temperatures (normal temperature: 23 °C; daily cyclic high temperature: 28-32 °C) and fed on three diets with different crude protein levels (153.3, 183.3 or 213.3 g/kg, with constant essential amino acids) from 28 to 42 days of age. Daily cyclic high ambient temperature decreased final body weight, average daily weight gain, average daily feed intake and serum total protein contents (p chickens was interacted by daily cyclic high ambient temperature and dietary crude protein levels (p = 0.003). These results indicated that daily cyclic high ambient temperature had a great effect on performance and serum biochemical parameters in broiler chickens, whereas dietary crude protein levels affected them partially. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  17. Serum levels of advanced glycation endproducts and other markers of protein damage in early diabetic nephropathy in type 1 diabetes.

    Bruce A Perkins

    Full Text Available To determine the role of markers of plasma protein damage by glycation, oxidation and nitration in microalbuminuria onset or subsequent decline of glomerular filtration rate (termed "early GFR decline" in patients with type 1 diabetes.From the 1(st Joslin Kidney Study, we selected 30 patients with longstanding normoalbuminuria and 55 patients with new onset microalbuminuria. Patients with microalbuminuria had 8-12 years follow-up during which 33 had stable GFR and 22 early GFR decline. Mean baseline GFR(CYSTATIN C was similar between the three groups. Glycation, oxidation and nitration markers were measured in protein and ultrafiltrate at baseline by liquid chromatography-tandem mass spectrometry using the most reliable methods currently available.Though none were significantly different between patients with microalbuminuria with stable or early GFR decline, levels of 6 protein damage adduct residues of plasma protein and 4 related free adducts of plasma ultrafiltrate were significantly different in patients with microalbuminuria compared to normoalbuminuria controls. Three protein damage adduct residues were decreased and 3 increased in microalbuminuria while 3 free adducts were decreased and one increased in microalbuminuria. The most profound differences were of N-formylkynurenine (NFK protein adduct residue and N(ω-carboxymethylarginine (CMA free adduct in which levels were markedly lower in microalbuminuria (P<0.001 for both.Complex processes influence levels of plasma protein damage and related proteolysis product free adducts in type 1 diabetes and microalbuminuria. The effects observed point to the possibility that patients who have efficient mechanisms of disposal of damaged proteins might be at an increased risk of developing microalbuminuria but not early renal function decline. The findings support the concept that the mechanisms responsible for microalbuminuria may differ from the mechanisms involved in the initiation of early

  18. Effect of feeding different level of protein and energy in some minerals of the Nubian goats in the Sudan

    Elmansoury, Y.H.A.; Mahagoub, M.M.; Elbashir, H.M.

    2010-01-01

    Forty four adult female Nubian goats 2-4 years of age were divided into four equal groups of ten animals. Each group was offered a ration containing energy (E) and protein (P) at levels that were either high (H) or low (L). The groups were designated as high energy: high protein (HEHP), low energy: low protein (LELP), high energy: low protein (HELP) and low energy: low protein (LEHP) respectively. Blood samples from all goats were collected at weekly intervals for minerals analysis. Water and food were offered adlib. The instrumental neutron activation analysis (lNAA) was used for the determination of the concentration values for Co which were 0.0279±0.0l2, 0.0212±0.0l5, 0.0378±0.021, and 0.0284 ±0.0l5 and for Fe 25.705±0.002, 35.54±0.013, 24.75±0.03 and 45.75±0.023 whereas for Se 1.042±0.023, 0.9333±0.013, 0.8606 ±0.011 and 1.101025±0.012 for HEHP, LELP, HELP and LEHP respectively. It could be seen that Co reached the lowest with the low energy low protein ration. Fe although tended to decrease with the high energy low protein, it almost doubled with low energy high protein concentration in the diet. Se seemed not to be affected by the energy and protein levels in the diet.

  19. Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application

    Lee, Taek [Research Institute for Basic Science, Sogang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Chung, Yong-Ho; Yoon, Jinho [Department of Chemical and Biomolecular Engineering, Sogang University, Heukseok-dong, Dongjak-gu, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, Heukseok-dong, Dongjak-gu, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • We developed the fusion protein-based biofilm on the inorganic surface. • For making the fusion protein, the recombinant azurin and the myoglobin was conjugated by the native chemical ligation method. • The developed fusion protein shows unique electrochemical property. • The proposed fusion protein biofilm appears to be a good method for dual-level biomemory device. - Abstract: In the present study, a fusion protein-based biofilm composed of a recombinant azurin–myoglobin (Azu-Myo) has been developed and confirmed its original electrochemical property for dual-level biomemory device application. For this purpose, the azurin was modified with cysteine residues for direct immobilization and conjugation. Then, the recombinant azurin was conjugated with the myoglobin via a sulfo-SMCC bifunctional linker using the chemical ligation method (CLM). The SDS-PAGE and UV–vis spectroscopy were performed to examine the fusion protein conjugates. The prepared Azu-Myo fusion protein was self-assembled onto Au substrate for the biofilm fabrication. Then, the atomic force microscopy (AFM) was used to confirm the immobilization and the surface-enhanced Raman spectroscopy (SERS) was carried out to the surface analysis. Also, the cyclic voltammetry (CV) was carried out to observe an electrochemical property of fabricated biofilm. As a result, the two pair of redox potential values was obtained for dual-level biomemory device application. Then, the dual-level biomemory function was verified by the multi-potential chronoamperometry (MPCA). The results indicate a new fabrication method and material combination for advances in bioelectronic device development.

  20. Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application

    Lee, Taek; Chung, Yong-Ho; Yoon, Jinho; Min, Junhong; Choi, Jeong-Woo

    2014-01-01

    Graphical abstract: - Highlights: • We developed the fusion protein-based biofilm on the inorganic surface. • For making the fusion protein, the recombinant azurin and the myoglobin was conjugated by the native chemical ligation method. • The developed fusion protein shows unique electrochemical property. • The proposed fusion protein biofilm appears to be a good method for dual-level biomemory device. - Abstract: In the present study, a fusion protein-based biofilm composed of a recombinant azurin–myoglobin (Azu-Myo) has been developed and confirmed its original electrochemical property for dual-level biomemory device application. For this purpose, the azurin was modified with cysteine residues for direct immobilization and conjugation. Then, the recombinant azurin was conjugated with the myoglobin via a sulfo-SMCC bifunctional linker using the chemical ligation method (CLM). The SDS-PAGE and UV–vis spectroscopy were performed to examine the fusion protein conjugates. The prepared Azu-Myo fusion protein was self-assembled onto Au substrate for the biofilm fabrication. Then, the atomic force microscopy (AFM) was used to confirm the immobilization and the surface-enhanced Raman spectroscopy (SERS) was carried out to the surface analysis. Also, the cyclic voltammetry (CV) was carried out to observe an electrochemical property of fabricated biofilm. As a result, the two pair of redox potential values was obtained for dual-level biomemory device application. Then, the dual-level biomemory function was verified by the multi-potential chronoamperometry (MPCA). The results indicate a new fabrication method and material combination for advances in bioelectronic device development

  1. DBAC: A simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts

    2011-01-01

    Background A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot. Results We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods. Conclusions Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. PMID:21689480

  2. Bcl-2 protein level in blood of patients with acute myeloid leukaemia ...

    (AML), bcl-2 being an anti-apoptotic protein incriminated in cancer. ... resistant to apoptosis, defining this protein as a factor of bad prognosis in AML. Moreover, the determination ..... of the molecular mechanisms of physiological ... long term survival in breast cancer, Am. J. Pathol. ... Burkitt subtype at presentation, and is not.

  3. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    Samuel Hertig

    2016-06-01

    Full Text Available Molecular dynamics (MD simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.

  4. Blood profile of proteins and steroid hormones predicts weight change after weight loss with interactions of dietary protein level and glycemic index.

    Ping Wang

    2011-02-01

    Full Text Available Weight regain after weight loss is common. In the Diogenes dietary intervention study, high protein and low glycemic index (GI diet improved weight maintenance.To identify blood predictors for weight change after weight loss following the dietary intervention within the Diogenes study.Blood samples were collected at baseline and after 8-week low caloric diet-induced weight loss from 48 women who continued to lose weight and 48 women who regained weight during subsequent 6-month dietary intervention period with 4 diets varying in protein and GI levels. Thirty-one proteins and 3 steroid hormones were measured.Angiotensin I converting enzyme (ACE was the most important predictor. Its greater reduction during the 8-week weight loss was related to continued weight loss during the subsequent 6 months, identified by both Logistic Regression and Random Forests analyses. The prediction power of ACE was influenced by immunoproteins, particularly fibrinogen. Leptin, luteinizing hormone and some immunoproteins showed interactions with dietary protein level, while interleukin 8 showed interaction with GI level on the prediction of weight maintenance. A predictor panel of 15 variables enabled an optimal classification by Random Forests with an error rate of 24±1%. A logistic regression model with independent variables from 9 blood analytes had a prediction accuracy of 92%.A selected panel of blood proteins/steroids can predict the weight change after weight loss. ACE may play an important role in weight maintenance. The interactions of blood factors with dietary components are important for personalized dietary advice after weight loss.ClinicalTrials.gov NCT00390637.

  5. Nitrogen balance, microbial protein synthesis and blood metabolites in fattening of male Bali cattle fed ration with different protein levels in smallholder farms

    P. K. Tahuk

    2018-03-01

    Full Text Available Research was aimed to determine nitrogen balance, microbial protein synthesis, and blood metabolites of male Bali cattle fattening fed ration with different protein level in smallholder farms North Central Timor, Province of East Timor Tenggara, Indonesia. The cattle used were 18 heads aged 2 to 2.5 years with initial body weight of 229.86±12.46 kg. The cattle were randomly divided into three treatment groups. The T0 group was given feed the same as traditional fattening cattle practices by farmers,T1 group fed ration containing 12% crude protein (CP and 72% total digestible nutrients (TDN, andT2 group fedration containing 15% CP and 72%TDN. Cattle were fed individually for 90 days and drinkingwater ad libitum. The data were analyzedby analysis of variance.Results of research indicated the nitrogen balance, and blood urea nitrogen between T1 and T2 were relatively similar, but those were higher (P<0.05 than T0 . In contrast, microbial proteins synthesis, and blood glucose at 0, 4, and 6 hours before and after feeding were relatively similar between the groups. Blood glucose of T2 at 2 hours after intake were higher (P <0.05 than T0, but was not different with T1 . It can be concluded, that the fattening maleBali cattle fed ration containing 12% CP and 72% TDNimprovedthe nitrogen balance and blood metabolites, butit was no positive effect on the microbial proteins and N synthesis.

  6. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells.

    Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V

    2013-08-01

    Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.

  7. Evaluation of Serum Levels of Pregnancy Associated Plasma Protein-A, Tumor Necrosis Factor-alpha and Highly Sensitive C-Reactive Protein in Diabetic Children

    Abdel-Messeih, PH.L.; El-safie, A.I.; Said, A.I.

    2011-01-01

    Recent evidence favours the primary role of cellular auto immunity and its humoral mediators in the pathogenesis and follow up of children with type 1 diabetes mellitus (type 1 DM). The present study is carried out to investigate serum levels of pregnancy associated plasma protein-A (PAPP-A), tumor necrosis factor-alpha (TNF-alpha ) and highly sensitive C-reactive protein (hs-CRP) in children with type 1 DM. Potential role of body mass index (BMI) was evaluated. Circulating levels of TNF-alpha, PAPP-A and hs-CRP are significantly increased in children with type 1 DM as compared with healthy subjects suggesting activation of inflammatory immune response system. A significant negative correlation was obtained between TNF-alpha and BMI in diabetic patients. This is highly suggestive of the availability of these non invasive indices to help further examining type 1 DM pathophysiology and monitoring pharmacological interventions to interfere with disease development and progression.

  8. PROTEIN SYNTHESIS GAME’: UTILIZING GAME-BASED APPROACH FOR IMPROVING COMMUNICATIVE SKILLS IN A-LEVELS BIOLOGY CLASS

    Mohd Adlan Ramly

    2017-12-01

    Full Text Available This experimental paper seeks to elucidate the usage of the card game ‘Protein Synthesis Game’ as a student’s learning tool in studying the Biology topic of protein synthesis during an A-Level course. A total of 24 experimental students in 3 induced groups and 24 controlled students in controlled groups were involved in the experiment which began with a pretest on the topic of Protein Synthesis, followed by the experimentation, and ended with a post-test administered after the incubation period. Results indicate that students have better facilitative communicative engagement in learning protein synthesis when playing the game as compared to studying the topic from a book. The data suggests that such communicative engagement may lead to a successful meaningful learning on the students’ part.

  9. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism.

    Rodríguez, Andrea E; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio

    2016-01-01

    Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.

  10. Low-level lasers on microRNA and uncoupling protein 2 mRNA levels in human breast cancer cells

    Canuto, K. S.; Teixeira, A. F.; Rodrigues, J. A.; Paoli, F.; Nogueira, E. M.; Mencalha, A. L.; Fonseca, A. S.

    2017-06-01

    MicroRNA is short non-coding RNA and is a mediator of post-transcriptional regulation of gene expression. In addition, uncoupling proteins (UCPs) regulate thermogenesis, metabolic and energy balance, and decrease reactive oxygen species production. Both microRNA and UCP2 expression can be altered in cancer cells. At low power, laser wavelength, frequency, fluence and emission mode deternube photobiological responses, which are the basis of low-level laser therapy. There are few studies on miRNA and UCP mRNA levels after low-level laser exposure on cancer cells. In this work, we evaluate the micrRNA (mir-106b and mir-15a) and UCP2 mRNA levels in human breast cancer cells exposed to low-level lasers. MDA-MB-231 human breast cancer cells were exposed to low-level red and infrared lasers, total RNA was extracted for cDNA synthesis and mRNA levels by real time quantitative polymerase chain reaction were evaluated. Data show that mir-106b and mir-15a relative levels are not altered, but UCP2 mRNA relative levels are increased in MDA-MB-231 human breast cancer cells exposed to low-level red and infrared lasers at fluences used in therapeutic protocols.

  11. Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage

    2013-10-01

    against menadione -induced-oxidative stress, also induces HIF1a and this may explain their cytoprotective effect. KEY RESEARCH ACCOMPLISHMENTS: Due to...August 2010 - October 2011 : Compared CDDO-lm, CAPE, CAPA induced H0-1 mediated cytoprotection against menadione -induced-oxidative stress in HUVEC cells...Pharmaceutical Scientists (AAPS) 2013: Comparison of atmospheric oxygen versus physiological levels on cytotoxicity of menadione and cytoprotection by

  12. The effects of electromagnetic pulse on the protein levels of tight junction associated-proteins in the cerebral cortex, hippocampus, heart, lung, and testis of rats.

    Qiu, LianBo; Chen, Chen; Ding, GuiRong; Zhou, Yan; Zhang, MengYao

    2011-08-01

    To investigate changes in the expression of tight junction (TJ) proteins in the cerebral cortex, hippocampus, heart, lung, and testes of rats after exposure to electromagnetic pulse (EMP). Eighteen adult male Sprague-Dawley rats were divided into sham and exposure groups. The exposure groups received EMP at 200 kV/m for 200 pulses with a repetition rate of 1 Hz. The expression of TJ proteins (ZO-1, occludin, actin) in the several organs was examined by western blotting. ZO-1 levels in the cerebral cortex decreased 1 h and 3 h after EMP exposure compared with sham group (P<0.05). No significant difference was observed for occludin and actin. ZO-1 levels in the hippocampus increased 1 h and 3 h post-exposure (P<0.05), and occludin decreased after 3 h (P<0.05); however, actin was unaffected. ZO-1 levels in the heart increased 3 h post-exposure (P<0.05), occludin decreased 3 h post-exposure (P<0.05), and actin increased 1 h and 3 h post-exposure (P<0.05). ZO-1, occludin and actin levels in the lung decreased compared with those in the sham group (P<0.05). ZO-1 and occludin levels in the testes decreased 1 h and 3 h post-exposure (P<0.05), but actin showed no significant change. Exposure to EMP altered the expression levels of TJ proteins, particularly ZO-1, in the organs of adult male rats, which may induce changes in barrier structure and function. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  13. Impact of whey proteins on the systemic and local intestinal level of mice with diet induced obesity.

    Swiątecka, D; Złotkowska, D; Markiewicz, L H; Szyc, A M; Wróblewska, B

    2017-04-19

    Obesity is a serious public health problem and being multifactorial is difficult to tackle. Since the intestinal ecosystem's homeostasis is, at least partially, diet-dependent, its modulation may be triggered by food components that are designed to exert a modulatory action leading to a health-promoting effect. Milk whey proteins, are considered as such promising factors since they influence satiation as well as body weight and constitute the source of biologically active peptides which may modulate health status locally and systemically. This way, whey proteins are associated with obesity. Therefore, this paper is aimed at the estimation of the impact of whey proteins using a commercially available whey protein isolate on the physiological response of mice with diet-induced obesity. The physiological response was evaluated on the local-intestinal level, scrutinizing intestinal microbiota as one of the important factors in obesity and on the systemic level, analyzing the response of the organism. Whey proteins brought about the decrease of the fat mass with a simultaneous increase of the lean mass of animals with diet induced obesity, which is a promising, health-promoting effect. Whey proteins also proved to act beneficially helping restore the number of beneficial bifidobacteria in obese animals and decreasing the calorie intake and fat mass as well as the LDL level. Overall, supplementation of the high fat diet with whey proteins acted locally by restoration of the intestinal ecosystem, thus preventing dysbiosis and its effects and also acted systemically by strengthening the organism increasing the lean mass and thus hindering obesity-related detrimental effects.

  14. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring.

    Zheng, Benle; Wu, Zaifu; Xu, Baohua

    2014-01-01

    This study was conducted to investigate the effects of dietary protein levels on honey bee colonies, specifically the population growth, physiology, and longevity of honey bee workers during early spring. Diets containing four different levels of crude protein (25.0, 29.5, 34.0, or 38.5%) and pure pollen (control) were evaluated. Twenty-five colonies of honey bees with sister queens were used in the study. We compared the effects of the different bee diets by measuring population growth, emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland development, and survival. After 48 d, the cumulative number of workers produced by the colonies ranged from 22,420 to 29,519, providing a significant fit to a quadratic equation that predicts the maximum population growth when the diet contains 31.7% crude protein. Significantly greater emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland acini, and survival were observed in the colonies that were fed diets containing 34.0% crude protein compared with the other crude protein levels. Although higher emergent worker weight and survival were observed in the colonies that were fed the control diet, there were no significant differences between the control colonies and the colonies that were fed 34.0% crude protein. Based on these results, we concluded that a dietary crude protein content of 29.5-34.0% is recommended to maximize the reproduction rate of honey bee colonies in early spring. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  15. Comparison of serum leptin, glucose, total cholesterol and total protein levels in fertile and repeat breeder cows

    Saime Guzel

    2014-12-01

    Full Text Available In the present study we measured serum glucose, leptin, total cholesterol and total protein concentrations in repeat breeder cows and compared them with fertile cows. For this aim, 20 repeat breeder cows and 20 fertile cows were used as material. Repeat breeder cows were found to have lower levels of leptin and glucose as compared with fertile ones. No significant differences in total cholesterol and total protein levels were observed between the two groups. No significant correlation of leptin with glucose, total cholesterol and total protein was observed in fertile and repeat breeder cows. Low concentrations of glucose and leptin can have some effects on reproductive problems as repeat breeder and help to understand potential mechanisms impairing fertility in repeat breeder cows.

  16. Corvitin restores metallothionein and glial fibrillary acidic protein levels in rat brain affected by pituitrin-izadrin

    H. N. Shiyntum; O. O. Dovban; Y. P. Kovalchuk; T. Ya. Yaroshenko2; G. A. Ushakova1

    2017-01-01

    In this research, we investigated the effect of pituitrin-izadrin induced injury on the levels of metallothionein (MT) and soluble and filament forms of glial fibrillary acidic protein (GFAP) in the hippocampus, cerebellum, thalamus, and the cerebral cortex, and examined the effect of corvitin on the brain under the noted changes. Our results showed oppositely directed changes – a decrease in the level of MT and an increase in GFAP in the rat brain, with a tendency to astrogliosis development...

  17. Effects of Increasing Prepartum Dietary Protein Level Using Poultry by-Product Meal on Productive Performance and Health of Multiparous

    M Hossein Yazdi

    2011-12-01

    Full Text Available The aim of this study was to compare the effects of two levels of crude protein using poultry by-product meals (PBPM fed during late gestation on the performance, blood metabolites, and colostrum composition of Holstein dairy cows. Sixteen multiparous cows 26±6 d before expected calving were assigned randomly to two treatments containing 1 14% and 2 16% crude protein. The cow’s BCS was 3.56 ± 0.5 on average, at the beginning of the trial. Yields of milk, protein, lactose, fat, and SNF were not affected by prepartum dietary CP level. Colostrum composition (fat, CP and Total solids, blood metabolites (Ca, Glucose, Total protein, Albumin, Globulin and Urea N, and metabolic diseases incidence were not influenced by prepartum dietary CP level. There was no significant difference between treatments in body weight and BCS changes. As expected, blood urea N before calving was higher in the cows fed 16% CP diets. Serum cholesterol during prepartum and postpartum periods was significantly decreased as the CP increased in the diet. In general, although postpartum glucose level increased in cows which received 16% CP in the diet, it seems that no other obvious advantages over feeding the 14% CP diet are apparent. So feeding this last diet is recommended to close up cows.

  18. Changes in blood levels of proteinase inhibitors, pregnancy zone protein, steroid carriers and complement factors induced by oral contraceptives

    Nielsen, C H; Poulsen, H K; Teisner, B

    1993-01-01

    levels of antithrombin III (AT III), alpha 2-macroglobulin (alpha 2M) alpha 1-antitrypsin (alpha 1at), complement factors (factor B, C3, C4), pregnancy zone protein (PZP), corticosteroid binding globulin (CBG), sex hormone binding globulin (SHBG) and albumin were measured before treatment and during...

  19. Circulating fibroblast activation protein activity and antigen levels correlate strongly when measured in liver disease and coronary heart disease

    S.U. de Willige; Keane, F.M. (Fiona M.); Bowen, D.G. (David G.); J.J.M.C. Malfliet (Joyce); Zhang, H.E. (H. Emma); Maneck, B. (Bharvi); G. McCaughan (Geoff); F.W.G. Leebeek (Frank); D.C. Rijken (Dingeman); Gorrell, M.D. (Mark D.)

    2017-01-01

    textabstractBackground and aim: Circulating fibroblast activation protein (cFAP) is a constitutively active enzyme expressed by activated fibroblasts that has both dipeptidyl peptidase and endopeptidase activities. We aimed to assess the correlation between cFAP activity and antigen levels and to

  20. The influence of acute resistance exercise on cyclooxygenase-1 and -2 activity and protein levels in human skeletal muscle.

    Carroll, Chad C; O'Connor, Devin T; Steinmeyer, Robert; Del Mundo, Jonathon D; McMullan, David R; Whitt, Jamie A; Ramos, Jahir E; Gonzales, Rayna J

    2013-07-01

    This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.

  1. Increased levels of C-reactive protein and leukocyte count are poor predictors of anastomotic leakage following laparoscopic colorectal resection

    Pedersen, Torben; Roikjær, Ole; Jess, Per

    2012-01-01

    Laparoscopic procedure and fast-track regimen with short post-operative hospital stay are gaining ground in colorectal surgery. The aim of the present study was to determine whether the levels of C-reactive protein (CRP) and white blood cell counts (WBC) have a role as early predictors of post...

  2. Comparison between capillary, venous and arterial levels of protein S100B in patients with severe brain pathology

    Astrand, Ramona; Romner, Bertil; Reinstrup, Peter

    2012-01-01

    of the study was to investigate the relation between capillary, venous and arterial measurements of protein S100B, primarily by determining whether capillary S100B differ from venous and if capillary S100B can predict venous S100B levels, and secondarily, if arterial S100B samples can substitute venous samples...... in severely brain-injured patients....

  3. In patients with neovascular age-related macular degeneration, physical activity may influence C-reactive protein levels

    Subhi, Yousif; Singh, Amardeep; Falk, Mads Krüger

    2014-01-01

    Association of neovascular age-related macular degeneration (AMD) with C-reactive protein (CRP) was previously reported, indicating a relation to systemic low-grade inflammation. However, visual impairment limits physical activity, and physical activity modulates CRP levels. Here, we investigated...

  4. Comprehensive approach to study complement C4 in systemic lupus erythematosus: Gene polymorphisms, protein levels and functional activity

    Tsang-A-Sjoe, M. W. P.; Bultink, I. E. M.; Korswagen, L. A.; van der Horst, A. [=Anneke; Rensink, I.; de Boer, M.; Hamann, D.; Voskuyl, A. E.; Wouters, D.

    2017-01-01

    Genetic variation of the genes encoding complement component C4 is strongly associated with systemic lupus erythematosus (SLE), a chronic multi-organ auto-immune disease. This study examined C4 and its isotypes on a genetic, protein, and functional level in 140 SLE patients and 104 healthy controls.

  5. Metabolism of serine in growing rats and chicks at various dietary protein levels

    Tanaka, Hideyuki; Yamaguchi, Michio; Kametaka, Masao

    1976-01-01

    The metabolic fate of the carbon skeleton of L-serine-U- 14 C has been investigated, in vivo and in vitro, in growing rats and chicks fed the diets with various protein calories percents (C %) at 410 kcal of metabolizable energy. The incorporation of 14 C into body protein at 12 hr after the injection of serine- 14 C was about 49% of the injected dose in rats fed the 10 or 15 PC% diet, though the value was reduced in rats fed lower and higher protein diets. The 14 CO 2 production was smaller in rats fed the 10 and 15 PC% diet, and it showed an inverse pattern to that of the 14 C incorporation into body protein. Urinary excretion of 14 C was higher in rats fed 10 and higher PC% diets, whose growth rate and net body protein retention were maximum. In contrast to the case of rats, the incorporation of 14 C into body protein of chicks at 6 hr after the injection was rather reduced in the 15 PC% group. The proportion of 14 C excreted as uric acid was remarkably increased above the 10 PC% group, and about 19% of the injected dose was recovered in the 50 PC% group. The catabolic rate of serine in the liver slices of rats and chicks was increased by high protein diets. These results support the concept that the nutritional significance of metabolism of the carbon skeleton of serine in growing rats and chicks is different from each other, especially at high protein diets. (auth.)

  6. Effects of dietary protein level on growth and body composition of ...

    Heterobranchus longifilis fingerlings of mean weight 1.648 g were stocked in plastic aquaria of 0.049 m3 at a rate of 10 fish per aquarium. Fish were fed with diets containing 30, 35 and 40% protein in triplicate for 10 weeks using fish meal as the main protein source. Growth of H. longifilis was significantly different (P < 0.05) ...

  7. THE EFFECTS OF DIFFERENT LEVELS OF DIETARY PROTEIN AND LIPID ON THE GROWTH OF RED SNAPPER, Lutjanus sebae

    Nyoman Adiasmara Giri

    2009-06-01

    Full Text Available Red snapper, Lutjanus sebae is favored in mariculture activities because it has a relatively good market and price. Technology for big scale seed production of this species has been developed and is now adequate to supply seed for grow-out activities. However, the availability of artifical diets for L. sebae is still a major constraint for grow-out production. Data on optimum dietary protein and lipid requirements for this fish as a basic information in feed development is not available yet. The objective of the present study was to find out dietary protein and lipid requirements for juvenile of L. sebae. A 70-day feeding experiment was conducted in 24 fiberglass tanks, 200 L volume. Each tank was equipped with a flow-through water system. Twenty five hatchery-produced juveniles of L. sebae (43.1 g BW were randomly selected and stocked in each tank. The fish were fed with the experimental diets twice everyday at a level of 3% of biomass for the first 4 weeks, and then 2% of biomass afterward. Twelve experimental diets were prepared in form of dry pellet containing casein and fish meal as the main protein sources. Experimental diet had 4 levels of crude protein (32%, 37%, 42%, and 47% and each protein level consisted of 3 levels of lipid (7%, 12%, and 17%. The experiment employed factorial method with completely random design using 12 combination treatments and 2 replications for each treatment. Result of the experiment showed that there was no significant effect of dietary protein and lipid on growth, feed consumption, and feed efficiency of tested fish. Growth and feed efficiency of fish fed on diet containing 42% and 47% crude protein were significantly higher than that of fish fed on diet containing 32% and 37% crude protein. High lipid content in the diet (17% resulted in poor growth and poor feed efficiency. This data indicates that Lutjanus sebae has limited ability to utilize dietary lipid as an energy

  8. Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel.

    Sungeun Kim

    Full Text Available Proteins, widely studied as potential biomarkers, play important roles in numerous physiological functions and diseases. Genetic variation may modulate corresponding protein levels and point to the role of these variants in disease pathophysiology. Effects of individual single nucleotide polymorphisms (SNPs within a gene were analyzed for corresponding plasma protein levels using genome-wide association study (GWAS genotype data and proteomic panel data with 132 quality-controlled analytes from 521 Caucasian participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI cohort. Linear regression analysis detected 112 significant (Bonferroni threshold p=2.44×10(-5 associations between 27 analytes and 112 SNPs. 107 out of these 112 associations were tested in the Indiana Memory and Aging Study (IMAS cohort for replication and 50 associations were replicated at uncorrected p<0.05 in the same direction of effect as those in the ADNI. We identified multiple novel associations including the association of rs7517126 with plasma complement factor H-related protein 1 (CFHR1 level at p<1.46×10(-60, accounting for 40 percent of total variation of the protein level. We serendipitously found the association of rs6677604 with the same protein at p<9.29×10(-112. Although these two SNPs were not in the strong linkage disequilibrium, 61 percent of total variation of CFHR1 was accounted for by rs6677604 without additional variation by rs7517126 when both SNPs were tested together. 78 other SNP-protein associations in the ADNI sample exceeded genome-wide significance (5×10(-8. Our results confirmed previously identified gene-protein associations for interleukin-6 receptor, chemokine CC-4, angiotensin-converting enzyme, and angiotensinogen, although the direction of effect was reversed in some cases. This study is among the first analyses of gene-protein product relationships integrating multiplex-panel proteomics and targeted genes extracted from a GWAS

  9. The effect of varying protein levels on blood chemistry, food consumption, and behavior of captive seaducks

    Wells-Berlin, A. M.; Perry, M.C.; Olsen, Glenn H.

    2005-01-01

    The Chesapeake Bay is a primary wintering area for scoters and the long-tailed ducks (Clangia hyemalis) that migrate along the Atlantic Flyway. Recently, the Chesapeake Bay had undergone an ecosystem shift and little is known about how this is affecting the seaduck populations. We are determining what are the preferred food sources of the seaducks wintering on the Bay and analyzing the factors influencing prey selection whether it is prey composition, energy assimilated, prey availability, or a combination of any or all of these factors. We have established a captive colony of surf (Melanitta perspicillata) and white-winged scoters (Melanitta fusca) as well as long-tailed ducks at Patuxent Wildlife Research Center to allow us to examine these factors in a more controlled environment. This project contains a multitude of experiments and the resultant data will be compiled into a compartmental model on the feeding ecology of seaducks wintering on the Bay. The first experiment entailed feeding groups of each species (four ducks per pen of equal sex ratio, if possible, and four pens per species) three diets varying in percent protein levels from November to February. Each diet was randomly assigned to each pen and the amount of food consumed was recorded each day. New feed was given when all existing food was consumed. Behavioral trials and blood profiles were completed on all study birds to determine the effects of the varying diets. There were no significant differences in food consumption, blood chemistry, and behavior detected at the 5% level among the diets for all three species of interest. There was a seasonal effect determined based on the food consumption data for white-winged scoters, but not for surf scoters or long-tailed ducks. The blood profiles of the surf scoters were compared to blood profiles of wild surf scoters and a there was no difference detected at the 5% level. As a health check of the ducks an aspergillosis test was run on the blood obtained

  10. Plasma Monocyte Chemoattractant Protein-1 Level as a Predictor of the Severity of Community-Acquired Pneumonia

    Kok-Khun Yong

    2016-01-01

    Full Text Available Monocyte chemoattractant protein (MCP-1 increases in the serum of immunocompetent patients with community-acquired pneumonia (CAP. However, the correlation between the circulating level of MCP-1 and severity of CAP remains unclear. This study investigated differential changes in the plasma MCP-1 levels of patients with CAP before and after an antibiotic treatment and further analyzes the association between the CAP severity and MCP-1 levels. We measured the plasma MCP-1 levels of 137 patients with CAP and 74 healthy controls by using a commercial enzyme-linked immunosorbent assay. Upon initial hospitalization, Acute Physiology and Chronic Health Evaluation II (APACHE II; confusion, urea level, respiratory rate, blood pressure, and age of >64 years (CURB-65; and pneumonia severity index (PSI scores were determined for assessing the CAP severity in these patients. The antibiotic treatment reduced the number of white blood cells (WBCs and neutrophils as well as the level of C-reactive protein (CRP and MCP-1. The plasma MCP-1 level, but not the CRP level or WBC count, correlated with the CAP severity according to the PSI (r = 0.509, p < 0.001, CURB-65 (r = 0.468, p < 0.001, and APACHE II (r = 0.360, p < 0.001 scores. We concluded that MCP-1 levels act in the development of CAP and are involved in the severity of CAP.

  11. Growth and carcass production responses of EPMp broiler ducks to various levels of crude fiber and protein in the diet

    Maijon Purba

    2014-10-01

    Full Text Available Inclusion of crude fiber in diet is important for duck growth, but there is a limit in its use in order for the ducks to grow normally. The purpose of this study was to evaluate growth and carcass production responses of EPMp broiler ducks under different levels of crude fiber and protein in diets. Four hundreds and twenty day old ducklings were allocated into 7 treatments with 6 replications and each replication consisted of 10 ducks. The treatments were the factorial combinations of crude fiber content of 6 or 9% and protein content of 19, 21, or 23%; and BR-1 (starter diet as positive control. The variables observed were: feed intake, weekly body weight, and percentage of carcass production. The results showed that all variables observed were not significantly affected by CF content, but highly significantly affected by crude protein levels in diet. Protein content of 19 or 21% in diet resulted in a better performance for EPMp ducks. The inclusion of high CF in diet did not affect carcass percentage, except for reduced abdominal fat. The study implies that administration of high CF (6 or 9% with a protein content of 19 or 21% in the diet are still acceptable to EPMp ducks at 12 weeks.

  12. Physical and sensory characteristics of pellets elaborated with different levels of corn grits and whey protein concentrate

    Anderson Felicori Fernandes

    2016-04-01

    Full Text Available ABSTRACT Whey has proteins of high biological value, which has been used as an ingredient in the elaboration of yogurt, milk beverages and as protein concentrates. Food extrusion stands out as one of the most efficient cooking techniques, allowing a number of product types, from soluble flour to convenience products, such as snacks, which have high acceptability by the consumers. Products processed by extrusion, such as those expanded by frying (pellets, have high carbohydrate content, and its enrichment with protein can favor its nutritional aspect. This study aimed to use the whey protein concentrate (WPC in combination with corn grits in the preparation of pellets. Absolute density, density of expanded pellets, color, crispness index, and pellet sensory acceptance were determined. For the absolute density, contents from 5% to 17% produced denser non-expanded pellets. The higher the WPC content and the temperature of the extruder, the higher the density of the expanded pellets. The crispness index was not altered by the protein content and by the extruder temperature. In the sensory analysis, the preferred samples were the ones with lower WPC levels (5%. We concluded that higher WPC values in the pellets formulation increased their density, but did not alter color and texture, as well as small WPC levels did not affect the acceptance of snacks.

  13. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.

    Milkovska-Stamenova, Sanja; Hoffmann, Ralf

    2017-04-15

    Thermal treatment preserves the microbiological safety of milk, but also induces Maillard reactions modifying for example proteins. The purpose of this study was evaluating the influence of consumer behaviors (storage and heating) on protein glycation degrees in bovine milk products. Lactosylation and hexosylation sites were identified in ultra-high temperature (UHT), lactose-free pasteurized, and lactose-free UHT milk (ULF) and infant formula (IF) using tandem mass spectrometry (electron transfer dissociation). Overall, 303 lactosylated and 199 hexosylated peptides were identified corresponding to 170 lactosylation (31 proteins) and 117 hexosylation sites (25 proteins). In quantitative terms, storage increased lactosylation up to fourfold in UHT and IF and hexosylation up to elevenfold in ULF and threefold in IF. These levels increased additionally twofold when the stored samples were heated (40°C). In conclusion, storage and heating appear to influence protein glycation levels in milk at similar or even higher degrees than industrial processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Vascular endothelial growth factor and protein level in pleural effusion for differentiating malignant from benign pleural effusion.

    Wu, Da-Wei; Chang, Wei-An; Liu, Kuan-Ting; Yen, Meng-Chi; Kuo, Po-Lin

    2017-09-01

    Pleural effusion is associated with multiple benign and malignant conditions. Currently no biomarkers differentiate malignant pleural effusion (MPE) and benign pleural effusion (BPE) sensitively and specifically. The present study identified a novel combination of biomarkers in pleural effusion for differentiating MPE from BPE by enrolling 75 patients, 34 with BPE and 41 with MPE. The levels of lactate dehydrogenase, glucose, protein, and total cell, neutrophil, monocyte and lymphocyte counts in the pleural effusion were measured. The concentrations of interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-α, interferon γ, transforming growth factor-β1, colony stimulating factor 2, monocyte chemoattractant protein-1 and vascular endothelial growth factor (VEGF) were detected using cytometric bead arrays. Protein and VEGF levels differed significantly between patients with BPE and those with MPE. The optimal cutoff value of VEGF and protein was 214 pg/ml and 3.35 g/dl respectively, according to the receiver operating characteristic curve. A combination of VEGF >214 pg/ml and protein >3.35 g/dl in pleural effusion presented a sensitivity of 92.6% and an accuracy of 78.6% for MPE, but was not associated with a decreased survival rate. These results suggested that this novel combination strategy may provide useful biomarkers for predicting MPE and facilitating early diagnosis.

  15. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  16. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna.

    Meadows, Melissa G; Roudybush, Thomas E; McGraw, Kevin J

    2012-08-15

    Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent.

  17. A constitutive damage specific DNA-binding protein is synthesized at higher levels in UV-irradiated primate cells

    Hirschfeld, S.; Levine, A.S.; Ozato, K.; Protic, M.

    1990-01-01

    Using a DNA band shift assay, we have identified a DNA-binding protein complex in primate cells which is present constitutively and has a high affinity for UV-irradiated, double-stranded DNA. Cells pretreated with UV light, mitomycin C, or aphidicolin have higher levels of this damage-specific DNA-binding protein complex, suggesting that the signal for induction can either be damage to the DNA or interference with cellular DNA replication. Physiochemical modifications of the DNA and competition analysis with defined substrates suggest that the most probable target site for the damage-specific DNA-binding protein complex is a 6-4'-(pyrimidine-2'-one)-pyrimidine dimer: specific binding could not be detected with probes which contain -TT- cyclobutane dimers, and damage-specific DNA binding did not decrease after photoreactivation of UV-irradiated DNA. This damage-specific DNA-binding protein complex is the first such inducible protein complex identified in primate cells. Cells from patients with the sun-sensitive cancer-prone disease, xeroderma pigmentosum (group E), are lacking both the constitutive and the induced damage-specific DNA-binding activities. These findings suggest a possible role for this DNA-binding protein complex in lesion recognition and DNA repair of UV-light-induced photoproducts

  18. The Prognostic Role of NEDD9 and P38 Protein Expression Levels in Urinary Bladder Transitional Cell Carcinoma

    Ola A. Harb

    2017-01-01

    Full Text Available Background. The most common malignant tumor of the urinary bladder is transitional cell carcinoma (TCC. Neural precursor cell-expressed developmentally downregulated protein 9 (NEDD9 is found to be a cell adhesion mediator. P38 Mitogen-Activated Protein Kinase is a serine/threonine kinases member which can mediate carcinogenesis through intracellular signaling. Methods. To assess their prognostic role; NEDD9 and p38 protein were evaluated in sections from 50 paraffin blocks of TCC. Results. The high expressions of NEDD9 and p38 protein were significantly associated with grade, stage, distant metastasis (p<0.001, number of tumors, lymph node metastasis, and tumor size (p<0.001, 0.002; 0.018, <0.001; and 0.004, 0.007, respectively. High NEDD9 and p38 detection had a worse 3-year OS (p=0.041 and <0.001, respectively. By multivariate analysis the NEDD9 and p38 protein expression levels and various clinicopathological criteria including gender, grade, stage of the tumor, and regional lymph node involvement were independent prognostic parameters of TCC of the urinary bladder patients’ outcome. Conclusion. NEDD9 and p38 protein expressions were poor prognostic markers of TCC.

  19. In utero exposure to benzene increases embryonic c-Myb and Pim-1 protein levels in CD-1 mice

    Wan, Joanne; Winn, Louise M.

    2008-01-01

    Benzene is a known human leukemogen, but its role as an in utero leukemogen remains controversial. Epidemiological studies have correlated parental exposure to benzene with an increased incidence of childhood leukemias. We hypothesize that in utero exposure to benzene may cause leukemogenesis by affecting the embryonic c-Myb/Pim-1 signaling pathway and that this is mediated by oxidative stress. To investigate this hypothesis, pregnant CD-1 mice were treated with either 800 mg/kg of benzene or corn oil (i.p.) on days 10 and 11 of gestation and in some cases pretreated with 25 kU/kg of PEG-catalase. Phosphorylated and total embryonic c-Myb and Pim-1 protein levels were assessed using Western blotting and maternal and embryonic oxidative stress were assessed by measuring reduced to oxidized glutathione ratios. Our results show increased oxidative stress at 4 and 24 h after exposure, increased phosphorylated Pim-1 protein levels 4 h after benzene exposure, and increased Pim-1 levels at 24 and 48 h after benzene exposure. Embryonic c-Myb levels were elevated at 24 h after exposure. PEG-catalase pretreatment prevented benzene-mediated increases in embryonic c-Myb and Pim-1 protein levels, and benzene-induced oxida