WorldWideScience

Sample records for hmga1 promotes transformation

  1. RNA-Mediated Regulation of HMGA1 Function

    Directory of Open Access Journals (Sweden)

    Arndt G. Benecke

    2015-05-01

    Full Text Available The high mobility group protein A1 (HMGA1 is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.

  2. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Yang; Shen, Wanjing; Ma, Lili; Zhao, Ming; Zheng, Jiachen [Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211 (China); Bu, Shizhong, E-mail: bushizhong@nbu.edu.cn [Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211 (China); Hino, Shinjiro [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 (Japan); Nakao, Mitsuyoshi, E-mail: mnakao@gpo.kumamoto-u.ac.jp [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo (Japan)

    2016-04-15

    Adipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2 transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity. - Highlights: • Overexpression of HMGA2 has been implicated in obesity in mice and humans. • HMGA2 is required for adipocyte formation. • HMGA2 colocalizes with C/EBPβ and is required for C/EBPβ recruitment to Pparγ2 promoter. • HMGA2 and C/EBPβ cooperatively enhance the Pparγ2 promoter activity.

  3. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ

    International Nuclear Information System (INIS)

    Xi, Yang; Shen, Wanjing; Ma, Lili; Zhao, Ming; Zheng, Jiachen; Bu, Shizhong; Hino, Shinjiro; Nakao, Mitsuyoshi

    2016-01-01

    Adipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2 transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity. - Highlights: • Overexpression of HMGA2 has been implicated in obesity in mice and humans. • HMGA2 is required for adipocyte formation. • HMGA2 colocalizes with C/EBPβ and is required for C/EBPβ recruitment to Pparγ2 promoter. • HMGA2 and C/EBPβ cooperatively enhance the Pparγ2 promoter activity.

  4. Human Papilloma Virus-Dependent HMGA1 Expression Is a Relevant Step in Cervical Carcinogenesis1

    Science.gov (United States)

    Mellone, Massimiliano; Rinaldi, Christian; Massimi, Isabella; Petroni, Marialaura; Veschi, Veronica; Talora, Claudio; Truffa, Silvia; Stabile, Helena; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto; Giannini, Giuseppe

    2008-01-01

    HMGA1 is a member of a small family of architectural transcription factors involved in the coordinate assembly of multiprotein complexes referred to as enhanceosomes. In addition to their role in cell proliferation, differentiation, and development, high-mobility group proteins of the A type (HMGA) family members behave as transforming protoncogenes either in vitro or in animal models. Recent reports indicated that HMGA1 might counteract p53 pathway and provided an interesting hint on the mechanisms determining HMGA's transforming potential. HMGA1 expression is deregulated in a very large array of human tumors, including cervical cancer, but very limited information is available on the molecular mechanisms leading to HMGA1 deregulation in cancer cells. Here, we report that HMGA1 expression is sustained by human papilloma virus (HPV) E6/E7 proteins in cervical cancer, as demonstrated by either E6/E7 overexpression or by repression through RNA interference. Knocking down HMGA1 expression by means of RNA interference, we also showed that it is involved in cell proliferation and contributes to p53 inactivation in this type of neoplasia. Finally, we show that HMGA1 is necessary for the full expression of HPV18 E6 and E7 oncoproteins thus establishing a positive autoregulatory loop between HPV E6/E7 and HMGA1 expression. PMID:18670638

  5. Transcriptional regulation of the HMGA1 gene by octamer-binding proteins Oct-1 and Oct-2.

    Directory of Open Access Journals (Sweden)

    Eusebio Chiefari

    Full Text Available The High-Mobility Group AT-Hook 1 (HMGA1 protein is an architectural transcription factor that binds to AT-rich sequences in the promoter region of DNA and functions as a specific cofactor for gene activation. Previously, we demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR gene and an important downstream target of the INSR signaling cascade. Moreover, from a pathogenic point of view, overexpression of HMGA1 has been associated with human cancer, whereas functional variants of the HMGA1 gene have been recently linked to type 2 diabetes mellitus and metabolic syndrome. However, despite of this biological and pathological relevance, the mechanisms that control HMGA1 gene expression remain unknown. In this study, to define the molecular mechanism(s that regulate HMGA1 gene expression, the HMGA1 gene promoter was investigated by transient transfection of different cell lines, either before or after DNA and siRNA cotransfections. An octamer motif was identified as an important element of transcriptional regulation of this gene, the interaction of which with the octamer transcription factors Oct-1 and Oct-2 is crucial in modulating HMGA1 gene and protein expression. Additionally, we demonstrate that HMGA1 binds its own promoter and contributes to its transactivation by Oct-2 (but not Oct-1, supporting its role in an auto-regulatory circuit. Overall, our results provide insight into the transcriptional regulation of the HMGA1 gene, revealing a differential control exerted by both Oct-1 and Oct-2. Furthermore, they consistently support the hypothesis that a putative defect in Oct-1 and/or Oct-2, by affecting HMGA1 expression, may cause INSR dysfunction, leading to defects of the INSR signaling pathway.

  6. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the α 2 type XI collagen gene

    International Nuclear Information System (INIS)

    Kubo, Takahiro; Matsui, Yoshito; Goto, Tomohiro; Yukata, Kiminori; Yasui, Natsuo

    2006-01-01

    In a subset of human lipomas, a specific t (3; 12) chromosome translocation gives rise to HMGA2-LPP fusion protein, containing the amino (N)-terminal DNA binding domains of HMGA2 fused to the carboxyl (C)-terminal LIM domains of LPP. In addition to its role in adipogenesis, several observations suggest that HMGA2-LPP is linked to chondrogenesis. Here, we analyzed whether HMGA2-LPP promotes chondrogenic differentiation, a marker of which is transactivation of the α 2 type XI collagen gene (Col11a2). Real-time PCR analysis showed that HMGA2-LPP and COL11A2 were co-expressed. Luciferase assay demonstrated that either of HMGA2-LPP, wild-type HMGA2 or the N-terminal HMGA2 transactivated the Col11a2 promoter in HeLa cells, while the C-terminal LPP did not. RT-PCR analysis revealed that HMGA2-LPP transcripts in lipomas with the fusion were 591-fold of full-length HMGA2 transcripts in lipomas without the fusion. These results indicate that in vivo overexpression of HMGA2-LPP promotes chondrogenesis by upregulating cartilage-specific collagen gene expression through the N-terminal DNA binding domains

  7. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a

    International Nuclear Information System (INIS)

    Miranda, Tina Branscombe; Webb, Kristofor J.; Edberg, Dale D.; Reeves, Raymond; Clarke, Steven

    2005-01-01

    The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specifically methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation

  8. E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression

    Directory of Open Access Journals (Sweden)

    Fusco Alfredo

    2006-08-01

    Full Text Available Abstract The High Mobility Group protein HMGA2 is a nuclear architectural factor that plays a critical role in a wide range of biological processes including regulation of gene expression, embryogenesis and neoplastic transformation. Several studies are trying to identify the mechanisms by which HMGA2 protein is involved in each of these activities, and only recently some new significant insights are emerging from the study of transgenic and knock-out mice. Overexpression of HMGA2 gene leads to the onset of prolactin and GH-hormone induced pituitary adenomas in mice, suggesting a critical role of this protein in pituitary tumorigenesis. This was also confirmed in the human pathology by the finding that HMGA2 amplification and/or overexpression is present in human prolactinomas. This review focuses on recent data that explain the mechanism by which HMGA2 induces the development of pituitary adenomas in mice. This mechanism entails the activation of the E2F1 protein by the HMGA2-mediated displacement of HDAC1 from pRB protein.

  9. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells.

    Science.gov (United States)

    Colamaio, Marianna; Tosti, Nadia; Puca, Francesca; Mari, Alessia; Gattordo, Rosaria; Kuzay, Yalçın; Federico, Antonella; Pepe, Anna; Sarnataro, Daniela; Ragozzino, Elvira; Raia, Maddalena; Hirata, Hidenari; Gemei, Marica; Mimori, Koshi; Del Vecchio, Luigi; Battista, Sabrina; Fusco, Alfredo

    2016-10-01

    Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.

  10. [Expression and correlation of Fra-1 and HMGA1 in laryngeal squamous cell carcinoma].

    Science.gov (United States)

    Zhang, Y L; Song, X F; Duan, Y J; Zhao, R L

    2017-12-07

    Objective: To investigate the expressions of Fra -1 and HMGA 1 in laryngeal squamous cell carcinoma and their correlation . Methods: Immunohistochemistry and reverse transcription-polymer chain reaction (RT-PCR) were used to detect the expressions of HMGA 1 and Fra -1 in laryngeal squamous carcinoma tissues in 47 cases and para - carcinoma tissues in 21 cases ( the First Hospital of Shijiazhuang ). The relationship between the gene expressions in carcinoma tissues and clinopathological parameters such as pathological grade, clinical stage, lymph metastasis, age and anatomic site and the relevance of the two gene expressions were analyzed . SPSS 13.0 software was used to analyze the data . Results: The positive expression rates of Fra-1 and HMGA1 proteins in laryngeal squamous cancer tissue were 48.9% and 53.2%, which were respectively higher than the rates of 19.0% for Fra-1 (χ(2)=5.416, P 0.05). The expression of HMGA 1 gene was correlation with pathological grade, clinical stage, lymph metastasis and age (t values were -1.112, -1.065, -1.009 and -1.066, all P0.05). The expressions of Fra -1 and HMGA 1 gene were positively correlation (r=0.672, P<0.05). Conclusions: In laryngeal squamous cancer, Fra -1 and HMGA 1 are excessive expression, with a positive correlation between the expressions of both genes .

  11. [HMGA proteins and their genes as a potential neoplastic biomarkers].

    Science.gov (United States)

    Balcerczak, Ewa; Balcerczak, Mariusz; Mirowski, Marek

    2005-01-01

    HMGA proteins and their genes are described in this article. HMGA proteins reveal ability to bind DNA in AT-rich regions, which are characteristic for gene promoter sequences. This interaction lead to gene silencing or their overexpression. In normal tissue HMGA proteins level is low or even undetectable. During embriogenesis their level is increasing. High HMGA proteins level is characteristic for tumor phenotype of spontaneous and experimental malignant neoplasms. High HMGA proteins expression correlate with bad prognostic factors and with metastases formation. HMGA genes expression can be used as a marker of tumor progression. Present studies connected with tumor gene therapy based on HMGA proteins sythesis inhibition by the use of viral vectors containing gene encoding these proteins in antisence orientation, as well as a new potential anticancer drugs acting as crosslinkers between DNA and HMGA proteins suggest their usefulness as a targets in cancer therapy.

  12. Expression of a truncated Hmga1b gene induces gigantism, lipomatosis and B-cell lymphomas in mice.

    Science.gov (United States)

    Fedele, Monica; Visone, Rosa; De Martino, Ivana; Palmieri, Dario; Valentino, Teresa; Esposito, Francesco; Klein-Szanto, Andres; Arra, Claudio; Ciarmiello, Andrea; Croce, Carlo M; Fusco, Alfredo

    2011-02-01

    HMGA1 gene rearrangements have been frequently described in human lipomas. In vitro studies suggest that HMGA1 proteins have a negative role in the control of adipocyte cell growth, and that HMGA1 gene truncation acts in a dominant-negative fashion. Therefore, to define better the role of the HMGA1 alterations in the generation of human lipomas, we generated mice carrying an Hmga1b truncated (Hmga1b/T) gene. These mice develop a giant phenotype together with a drastic expansion of the retroperitoneal and subcutaneous white adipose tissue. We show that the activation of the E2F pathway likely accounts, at least in part, for this phenotype. Interestingly, the Hmga1b/T mice also develop B-cell lymphomas similar to that occurring in Hmga1-knockout mice, supporting a dominant-negative role of the Hmga1b/T mutant also in vivo. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. HMGA2 Inhibits Apoptosis through Interaction with ATR-CHK1 Signaling Complex in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Suchitra Natarajan

    2013-03-01

    Full Text Available The non-histone chromatin binding protein high mobility group AT-hook 2 (HMGA2 is expressed in stem cells and many cancer cells, including tumor initiating cells, but not translated in normal human somatic cells. The presence of HMGA2 is correlated with advanced neoplastic disease and poor prognosis for patients. We had previously demonstrated a role of HMGA2 in DNA repair pathways. In the present study, we employed different human tumor cell models with endogenous and exogenous expression of HMGA2 and show that upon DNA damage, the presence of HMGA2 caused an increased and sustained phosphorylation of the ataxia telangiectasia and Rad3-related kinase (ATR and its downstream target checkpoint kinase 1 (CHK1. The presence of activated pCHK1Ser296 coincided with prolonged G2/M block and increased tumor cell survival, which was enhanced further in the presence of HMGA2. Our study, thus, identifies a novel relationship between the ATR-CHK1 DNA damage response pathway and HMGA2, which may support the DNA repair function of HMGA2 in cancer cells. Furthermore, our data provide a rationale for the use of inhibitors to ATR or CHK1 and HMGA2 in the treatment of HMGA2-positive human cancer cells.

  14. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Science.gov (United States)

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  15. Roles of HMGA proteins in cancer: Expression, pathways, and redundancies

    Directory of Open Access Journals (Sweden)

    Giancotti V

    2016-10-01

    Full Text Available The expression of the High Mobility Group A (HMGA proteins, their participation in cancer signalling pathways, and their redundant functions have been reviewed in seven types of cancer: breast, colorectal, prostate, lung, ovarian, thyroid, and brain. The analysis of cell lines and tumours revealed an elevated level of their expression in all fully transformed cancer systems, which represents a step of the main cancer signalling pathways. In breast, colorectal, prostate, and lung cancers Wnt/β-catenin pathway is a master inducer of cell transformation in which are deeply involved HMG A1 and A2 proteins. On the other hand, IL-6/Stat3 pathway is responsible for cancer transformation in breast, lung, and prostate. The expression of HMGA1 in lung and ovarian cancers is due to an active PI3K/Akt pathway. The let-7 family of microRNA represses the expression of HMGA showing specificity by its different forms: the let-7b form is able to inhibit both proteins A1 and A2, the last also inhibited by a, c, d, and g forms. Moreover, both proteins are down-regulated by the repressor couple p53/microRNA-34a. The protein A1 and A2 participate to the Epithelial-Mesenchymal Transition cooperating with the three couples of factors Twist1/2, Snai1/2, and Zeb1/2. Through a combination of pathways, there is the simultaneous presence of high levels of both A1 and A2 together with the expression of other factors: a high co-operating efficiency is reached that supplies the tumour cells with properties of self-renewal, resistance, and invasiveness.

  16. The HMGA1 Pseudogene 7 Induces miR-483 and miR-675 Upregulation by Activating Egr1 through a ceRNA Mechanism

    Directory of Open Access Journals (Sweden)

    Marco De Martino

    2017-11-01

    Full Text Available Several studies have established that pseudogene mRNAs can work as competing endogenous RNAs and, when deregulated, play a key role in the onset of human neoplasias. Recently, we have isolated two HMGA1 pseudogenes, HMGA1P6 and HMGA1P7. These pseudogenes have a critical role in cancer progression, acting as micro RNA (miRNA sponges for HMGA1 and other cancer-related genes. HMGA1 pseudogenes were found overexpressed in several human carcinomas, and their expression levels positively correlate with an advanced cancer stage and a poor prognosis. In order to investigate the molecular alterations following HMGA1 pseudogene 7 overexpression, we carried out miRNA sequencing analysis on HMGA1P7 overexpressing mouse embryonic fibroblasts. Intriguingly, the most upregulated miRNAs were miR-483 and miR-675 that have been described as key regulators in cancer progression. Here, we report that HMGA1P7 upregulates miR-483 and miR-675 through a competing endogenous RNA mechanism with Egr1, a transcriptional factor that positively regulates miR-483 and miR-675 expression.

  17. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  18. In Pulmonary Arterial Hypertension, Reduced BMPR2 Promotes Endothelial-to-Mesenchymal Transition via HMGA1 and Its Target Slug

    NARCIS (Netherlands)

    Hopper, Rachel K.; Moonen, Jan-Renier A. J.; Diebold, Isabel; Cao, Aiqin; Rhodes, Christopher J.; Tojais, Nancy F.; Hennigs, Jan K.; Gu, Mingxia; Wang, Lingli; Rabinovitch, Marlene

    2016-01-01

    Background-We previously reported high-throughput RNA sequencing analyses that identified heightened expression of the chromatin architectural factor High Mobility Group AT-hook 1 (HMGA1) in pulmonary arterial endothelial cells (PAECs) from patients who had idiopathic pulmonary arterial hypertension

  19. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    International Nuclear Information System (INIS)

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential (ΔΨ m ). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression

  20. miR-625 suppresses cell proliferation and migration by targeting HMGA1 in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wen-bin; Zhong, Cai-neng; Luo, Xun-peng; Zhang, Ya-yuan; Zhang, Gui-ying [Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, Guangdong Province (China); Zhou, Dong-xian, E-mail: 1072241978@qq.com [Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, Guangdong Province (China); Liu, Li-ping, E-mail: leoliping@aliyun.com [Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People' s Hospital, Shenzhen, Guangdong Province (China)

    2016-02-19

    Dysregulation of microRNA contributes to the high incidence and mortality of breast cancer. Here, we show that miR-625 was frequently down-regulated in breast cancer. Decrease of miR-625 was closely associated with estrogen receptor (P = 0.004), human epidermal growth factor receptor 2 (P = 0.003) and clinical stage (P = 0.001). Kaplan–Meier and multivariate analyses indicated miR-625 as an independent factor for unfavorable prognosis (hazard ratio = 2.654, 95% confident interval: 1.300–5.382, P = 0.007). Re-expression of miR-625 impeded, whereas knockdown of miR-625 enhanced cell viabilities and migration abilities in breast cancer cells. HMGA1 was confirmed as a direct target of miR-625. The expressions of HMGA1 mRNA and protein were induced by miR-625 mimics, but reduced by miR-625 inhibitor. Re-introduction of HMGA1 in cells expressing miR-625 distinctly abrogated miR-625-mediated inhibition of cell growth. Taken together, our data demonstrate that miR-625 suppresses cell proliferation and migration by targeting HMGA1 and suggest miR-625 as a promising prognostic biomarker and a potential therapeutic target for breast cancer. - Highlights: • miR-625 expression was significantly decreased in breast cancer. • Decrease of miR-625 was associated with poor clinical outcomes and unfavorable overall survival. • miR-625 overexpression inhibits cell proliferation and migration in vitro. • miR-625 directly targets and suppresses the expression of HMGA1.

  1. Silencing of HMGA2 promotes apoptosis and inhibits migration and ...

    Indian Academy of Sciences (India)

    2016-04-05

    Apr 5, 2016 ... cancer PC3 and DU145 cells, and then the cellular biology changes after decreased the expression of HMGA2 was examined. ..... to heterodimeric complexes of TGF-β receptors, and then .... sis in bladder cancer. Cancer ...

  2. Dwarfism and Altered Craniofacial Development in Rabbits Is Caused by a 12.1 kb Deletion at the HMGA2 Locus.

    Science.gov (United States)

    Carneiro, Miguel; Hu, Dou; Archer, John; Feng, Chungang; Afonso, Sandra; Chen, Congying; Blanco-Aguiar, José A; Garreau, Hervé; Boucher, Samuel; Ferreira, Paula G; Ferrand, Nuno; Rubin, Carl-Johan; Andersson, Leif

    2017-02-01

    The dwarf phenotype characterizes the smallest of rabbit breeds and is governed largely by the effects of a single dwarfing allele with an incompletely dominant effect on growth. Dwarf rabbits typically weigh under 1 kg and have altered craniofacial morphology. The dwarf allele is recessive lethal and dwarf homozygotes die within a few days of birth. The dwarf phenotype is expressed in heterozygous individuals and rabbits from dwarf breeds homozygous for the wild-type allele are normal, although smaller when compared to other breeds. Here, we show that the dwarf allele constitutes a ∼12.1 kb deletion overlapping the promoter region and first three exons of the HMGA2 gene leading to inactivation of this gene. HMGA2 has been frequently associated with variation in body size across species. Homozygotes for null alleles are viable in mice but not in rabbits and probably not in humans. RNA-sequencing analysis of rabbit embryos showed that very few genes (4-29 genes) were differentially expressed among the three HMGA2/dwarf genotypes, suggesting that dwarfism and inviability in rabbits are caused by modest changes in gene expression. Our results show that HMGA2 is critical for normal expression of IGF2BP2, which encodes an RNA-binding protein. Finally, we report a catalog of regions of elevated genetic differentiation between dwarf and normal-size rabbits, including LCORL-NCAPG, STC2, HOXD cluster, and IGF2BP2 Levels and patterns of genetic diversity at the LCORL-NCAPG locus further suggest that small size in dwarf breeds was enhanced by crosses with wild rabbits. Overall, our results imply that small size in dwarf rabbits results from a large effect, loss-of-function (LOF) mutation in HMGA2 combined with polygenic selection. Copyright © 2017 by the Genetics Society of America.

  3. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  4. Recurrent rearrangements of the PLAG1 and HMGA2 genes in lacrimal gland pleomorphic adenoma and carcinoma ex pleomorphic adenoma

    DEFF Research Database (Denmark)

    Andreasen, Simon; von Holstein, Sarah L; Homøe, Preben

    2018-01-01

    PURPOSE: Lacrimal gland tumours constitute a wide spectrum of neoplastic lesions that are histologically similar to tumours of the salivary gland. In the salivary gland, pleomorphic adenoma (PA) is frequently characterized by recurrent chromosomal rearrangements of the PLAG1 and HMGA2 genes......, a genetic feature retained in carcinoma ex pleomorphic adenoma (ca-ex-PA) that makes it possible to distinguish ca-ex-PA from de novo carcinomas. However, whether PLAG1 and HMGA2 gene rearrangements are found in lacrimal gland PA and ca-ex-PA is not known. METHODS: Twenty-one lacrimal gland PAs and four ca......-ex-PAs were retrospectively reviewed and subjected to break-apart fluorescence in situ hybridization (FISH) for rearrangements of the PLAG1 gene. Cases without PLAG1 abnormalities were subjected to HMGA2 break-apart FISH. Immunohistochemical staining for PLAG1 and HMGA2 protein was performed and correlated...

  5. Down-Regulation of miR-129-5p and the let-7 Family in Neuroendocrine Tumors and Metastases Leads to Up-Regulation of Their Targets Egr1, G3bp1, Hmga2 and Bach1

    DEFF Research Database (Denmark)

    Dossing, Kristina B. V.; Binderup, Tina; Kaczkowski, Bogumil

    2014-01-01

    by miR-129-5p. let-7 overexpression inhibited growth of carcinoid cell lines, and let-7 inhibition increased protein content of the transcription factor BACH1 and its targets MMP1 and HMGA2, all known to promote bone metastases. Immunohistochemistry analysis revealed that let-7 targets are highly...

  6. MiR-142-3p Functions as a Potential Tumor Suppressor in Human Osteosarcoma by Targeting HMGA1

    Directory of Open Access Journals (Sweden)

    Guoxing Xu

    2014-04-01

    Full Text Available Background/Aims: Mounting evidence has shown that aberrant expression of miRNAs correlates with human cancers, and that miRNAs can function as tumor suppressors or oncogenes. Here, we investigated the role and mechanism of miR-142-3p in human osteosarcoma. Methods: We used quantitative real-time RT-PCR to measure the expression of miR-142-3p in human osteosarcoma cell lines and tissues. The roles of miR-142-3p in osteosarcoma development were studied using cultured HOS, MG63 and Saos-2 cells and tumor xenograft analyses in nude mice; their target genes were also investigated. Results: We found that miR-142-3p was significantly downregulated in osteosarcoma cell lines and clinical specimens. Overexpression of miR-142-3p suppressed osteosarcoma cell proliferation, migration and invasion, whereas miR-142-3p knockdown increased these parameters. The xenograft mouse model also revealed the suppressive effect of miR-142-3p on tumor growth. High mobility group AT-hook 1 (HMGA1 was identified as a target of miR-142-3p. Downregulation of HMGA1 induced effects on osteosarcoma cell lines similar to those induced by miR-142-3p. In contrast, restoration of HMGA1 abrogated the effects induced by miR-142-3p up-regulation. Conclusion: These results indicated that miR-142-3p may function as a tumor suppressor by targeting HMGA1 in osteosarcoma.

  7. Hmga2 regulates self-renewal of retinal progenitors.

    Science.gov (United States)

    Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal

    2014-11-01

    In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. © 2014. Published by The Company of Biologists Ltd.

  8. Stroma-regulated HMGA2 is an independent prognostic marker in PDAC and AAC

    DEFF Research Database (Denmark)

    Strell, Carina; Norberg, Karin Jessica; Mezheyeuski, Artur

    2017-01-01

    was more frequent in patients with PDAC than with AAC. The HMGA2 status in tumour cells significantly correlated with the abundance of PDGFRβ-defined stroma cells. In vivo co-injection of Panc-1 cancer cells with pancreatic stellate cells increased tumour growth in a manner associated with increased HMGA2...... expression. Furthermore, in vitro treatment of Panc-1 with conditioned media from PDGF-BB-activated stellate cells increased their ability to form tumour spheroids.Conclusions:This study identifies HMGA2 expression in tumour cells as an independent prognostic marker in PDAC and AAC. Correlative data analysis...

  9. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas.

    Science.gov (United States)

    Bianchini, Laurence; Birtwisle, Loïc; Saâda, Esma; Bazin, Audrey; Long, Elodie; Roussel, Jean-François; Michiels, Jean-François; Forest, Fabien; Dani, Christian; Myklebost, Ola; Birtwisle-Peyrottes, Isabelle; Pedeutour, Florence

    2013-06-01

    Most lipomas are characterized by translocations involving the HMGA2 gene in 12q14.3. These rearrangements lead to the fusion of HMGA2 with an ectopic sequence from the translocation chromosome partner. Only five fusion partners of HMGA2 have been identified in lipomas so far. The identification of novel fusion partners of HMGA2 is important not only for diagnosis in soft tissue tumors but also because these genes might have an oncogenic role in other tumors. We observed that t(1;12)(p32;q14) was the second most frequent translocation in our series of lipomas after t(3;12)(q28;q14.3). We detected overexpression of HMGA2 mRNA and protein in all t(1;12)(p32;q14) lipomas. We used a fluorescence in situ hybridization-based positional cloning strategy to characterize the 1p32 breakpoint. In 11 cases, we identified PPAP2B, a member of the lipid phosphate phosphatases family as the 1p32 target gene. Reverse transcription-polymerase chain reaction analysis followed by nucleotide sequencing of the fusion transcript indicated that HMGA2 3' untranslated region (3'UTR) fused with exon 6 of PPAP2B in one case. In other t(1;12) cases, the breakpoint was extragenic, located in the 3'region flanking PPAP2B 3'UTR. Moreover, in one case showing a t(1;6)(p32;p21) we observed a rearrangement of PPAP2B and HMGA1, which suggests that HMGA1 might also be a fusion partner for PPAP2B. Our results also revealed that adipocytic differentiation of human mesenchymal stem cells derived from adipose tissue was associated with a significant decrease in PPAP2B mRNA expression suggesting that PPAP2B might play a role in adipogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  10. IMP3 RNP Safe Houses Prevent miRNA-Directed HMGA2 mRNA Decay in Cancer and Development

    Directory of Open Access Journals (Sweden)

    Lars Jønson

    2014-04-01

    Full Text Available The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA. HMGA2 is regulated by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient embryos show dose-dependent Hmga2 mRNA downregulation. Finally, IMP3 ribonucleoproteins (RNPs contain other let-7 target mRNAs, including LIN28B, and a global gene set enrichment analysis demonstrates that miRNA-regulated transcripts in general are upregulated following IMP3 induction. We conclude that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression.

  11. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression.

    Directory of Open Access Journals (Sweden)

    Surabhi Dangi-Garimella

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2. We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs. Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.

  12. Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Di Fazio, Pietro, E-mail: difazio@med.uni-marburg.de [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Montalbano, Roberta [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Neureiter, Daniel; Alinger, Beate [Institute of Pathology, Paracelsus Private Medical University of Salzburg, Salzburg (Austria); Schmidt, Ansgar [Institute for Pathology, Philipps University of Marburg, Marburg (Germany); Merkel, Anna Lena; Quint, Karl; Ocker, Matthias [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany)

    2012-09-10

    Inhibitors of protein deacetylases represent a novel therapeutic option for cancer diseases due to their effects on transcriptional regulation by interfering with histones acetylation and on several other cellular pathways. Recently, their ability to modulate several transcription factors and, interestingly, also co-factors, which actively participate in formation and modulation of transcription complexes was shown. We here investigate whether HMGA2 (High Mobility Group AT-2 hook), a nuclear non-histone transcriptional co-factor with known oncogenic properties, can be influenced by the novel pan-deacetylase inhibitor panobinostat (LBH589) in human hepatocellular carcinoma models. Panobinostat strongly downregulated HMGA2 in HepG2 and Hep3B cells; this effect was mediated by transcriptional upregulation and promotion of the maturation of the tumorsuppressor miRNA hsa-let-7b, which could inhibit HMGA2 expression via RNA interference pathways. siRNA knockdown of HMGA2 or transfection of hsa-let-7b mimicking oligonucleotides confirmed the role of HMGA2 in regulating cell proliferation and apoptosis in liver cancer cell lines. Co-incubation with panobinostat showed an additive effect on inhibition of cell proliferation using an impedance-based real-time cell analyzer. Treatment of HepG2 xenografts with panobinostat also led to a downregulation of HMGA2 in vivo. These findings show that pan-deacetylase inhibitors also modulate other signaling pathways and networks than histone modifications to influence cell fate. -- Highlights: Black-Right-Pointing-Pointer Panobinostat for the treatment of liver cancer. Black-Right-Pointing-Pointer Panobinostat meddles with miRNAs-dependent transcriptional and translational control. Black-Right-Pointing-Pointer Tumorsuppressor miRNA hsa-let-7b upregulation. Black-Right-Pointing-Pointer HMGA2 is downregulated via RNA interference pathways mediated by hsa-let-7b. Black-Right-Pointing-Pointer Panobinostat determines inhibition of

  13. Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2.

    Directory of Open Access Journals (Sweden)

    Nina Winter

    Full Text Available BACKGROUND: HMGA2 is an architectonic transcription factor abundantly expressed during embryonic and fetal development and it is associated with the progression of malignant tumors. The protein harbours three basically charged DNA binding domains and an acidic protein binding C-terminal domain. DNA binding induces changes of DNA conformation and hence results in global overall change of gene expression patterns. Recently, using a PCR-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure two consensus sequences for HMGA2 binding have been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation chromatin immunoprecipitation (ChIP experiments and bioinformatic methods were used to analyze if these binding sequences can be verified on chromatin of living cells as well. CONCLUSION: After quantification of HMGA2 protein in different cell lines the colon cancer derived cell line HCT116 was chosen for further ChIP experiments because of its 3.4-fold higher HMGA2 protein level. 49 DNA fragments were obtained by ChIP. These fragments containing HMGA2 binding sites have been analyzed for their AT-content, location in the human genome and similarities to sequences generated by a SELEX study. The sequences show a significantly higher AT-content than the average of the human genome. The artificially generated SELEX sequences and short BLAST alignments (11 and 12 bp of the ChIP fragments from living cells show similarities in their organization. The flanking regions are AT-rich, whereas a lower conservation is present in the center of the sequences.

  14. High mobility group A1 protein modulates autophagy in cancer cells.

    Science.gov (United States)

    Conte, Andrea; Paladino, Simona; Bianco, Gaia; Fasano, Dominga; Gerlini, Raffaele; Tornincasa, Mara; Renna, Maurizio; Fusco, Alfredo; Tramontano, Donatella; Pierantoni, Giovanna Maria

    2017-11-01

    High Mobility Group A1 (HMGA1) is an architectural chromatin protein whose overexpression is a feature of malignant neoplasias with a causal role in cancer initiation and progression. HMGA1 promotes tumor growth by several mechanisms, including increase of cell proliferation and survival, impairment of DNA repair and induction of chromosome instability. Autophagy is a self-degradative process that, by providing energy sources and removing damaged organelles and misfolded proteins, allows cell survival under stress conditions. On the other hand, hyper-activated autophagy can lead to non-apoptotic programmed cell death. Autophagy deregulation is a common feature of cancer cells in which has a complex role, showing either an oncogenic or tumor suppressor activity, depending on cellular context and tumor stage. Here, we report that depletion of HMGA1 perturbs autophagy by different mechanisms. HMGA1-knockdown increases autophagosome formation by constraining the activity of the mTOR pathway, a major regulator of autophagy, and transcriptionally upregulating the autophagy-initiating kinase Unc-51-like kinase 1 (ULK1). Consistently, functional experiments demonstrate that HMGA1 binds ULK1 promoter region and negatively regulates its transcription. On the other hand, the increase in autophagosomes is not associated to a proportionate increase in their maturation. Overall, the effects of HMGA1 depletion on autophagy are associated to a decrease in cell proliferation and ultimately impact on cancer cells viability. Importantly, silencing of ULK1 prevents the effects of HMGA1-knockdown on cellular proliferation, viability and autophagic activity, highlighting how these effects are, at least in part, mediated by ULK1. Interestingly, this phenomenon is not restricted to skin cancer cells, as similar results have been observed also in HeLa cells silenced for HMGA1. Taken together, these results clearly indicate HMGA1 as a key regulator of the autophagic pathway in cancer cells

  15. The Diagnostic Usefulness of HMGA2, Survivin, CEACAM6, and SFN/14-3-3 δ in Follicular Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Min Hye Jang

    2015-03-01

    Full Text Available Background: Follicular thyroid carcinoma (FTC is the second most common thyroid malignancy and its differential diagnosis includes follicular adenoma (FA and adenomatous goiter (AG. Several ancillary markers have been suggested to aid in the diagnosis of FTC, but the successful use of these methods still needs to be validated. Methods: In the present study, we verified the immunoexpression of HMGA2, CEACAM6, survivin, and SFN/14-3-3 δ in lesions including 41 AGs, 72 FAs, and 79 FTCs. We evaluated their diagnostic usefulness, combined with galectin 3, Hector Battifora mesothelial 1 (HBME1, cytokeratin 19, and cyclin D1, in diagnosing FTC. Results: The expressions of HBME1 (65.8% and HMGA2 (55.7% were significantly higher in FTCs than in FAs and AGs (p<.001 and p=.005, respectively. HBME1 was the only marker that was more frequently expressed in FTCs than in FAs (p=.021 and it was more frequently expressed in follicular neoplasms than in AGs (p<.001. Among the novel markers, the combination of HMGA2 and HBME1 showed the highest sensitivity (72.2% and specificity (76.1% for diagnosing FTC. CEACAM6, survivin, and SFN/14-3-3 δ were barely expressed in most cases. Conclusions: Our present results show that only HMGA2 can be beneficial in differentiating FTC using the novel markers.

  16. IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development

    DEFF Research Database (Denmark)

    Jønson, Lars; Christiansen, Jan; Hansen, Thomas van Overeem

    2014-01-01

    by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient...... that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression....

  17. Let-7 microRNA and HMGA2 levels of expression are not inversely linked in adipocytic tumors: analysis of 56 lipomas and liposarcomas with molecular cytogenetic data.

    Science.gov (United States)

    Bianchini, Laurence; Saâda, Esma; Gjernes, Elisabet; Marty, Marion; Haudebourg, Juliette; Birtwisle-Peyrottes, Isabelle; Keslair, Frédérique; Chignon-Sicard, Bérangère; Chamorey, Emmanuel; Pedeutour, Florence

    2011-06-01

    The aim of our study was first to assess the role of HMGA2 expression in the pathogenesis of adipocytic tumors (AT) and, second, to seek a potential correlation between overexpression of HMGA2 and let-7 expression inhibition by analyzing a series of 56 benign and malignant AT with molecular cytogenetic data. We measured the levels of expression of HMGA2 mRNA and of eight members of the let-7 microRNA family using quantitative RT-PCR and expression of HMGA2 protein using immunohistochemistry. HMGA2 was highly overexpressed in 100% of well-differentiated/dedifferentiated liposarcomas (WDLPS/DDLPS), all with HMGA2 amplification, and 100% of lipomas with HMGA2 rearrangement. Overexpression of HMGA2 mRNA was detected in 76% of lipomas without HMGA2 rearrangement. HMGA2 protein expression was detected in 100% of lipomas with HMGA2 rearrangement and 48% of lipomas without HMGA2 rearrangement. We detected decreased expression levels of some let-7 members in a significant proportion of AT. Notably, let-7b and let-7g were inhibited in 61% of WDLPS/DDLPS. In lipomas, each type of let-7 was inhibited in approximately one-third of the cases. Although overexpression of both HMGA2 mRNA and protein in a majority of ordinary lipomas without HMGA2 structural rearrangement may have suggested a potential role for let-7 microRNAs, we did not observe a significant link with let-7 inhibition in such cases. Our results indicate that inhibition of let-7 microRNA expression may participate in the deregulation of HMGA2 in AT but that this inhibition is neither a prominent stimulator for HMGA2 overexpression nor a surrogate to genomic HMGA2 rearrangements. Copyright © 2011 Wiley-Liss, Inc.

  18. Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes involved in the double-strand break repair pathway predict glioblastoma survival.

    Science.gov (United States)

    Liu, Yanhong; Shete, Sanjay; Etzel, Carol J; Scheurer, Michael; Alexiou, George; Armstrong, Georgina; Tsavachidis, Spyros; Liang, Fu-Wen; Gilbert, Mark; Aldape, Ken; Armstrong, Terri; Houlston, Richard; Hosking, Fay; Robertson, Lindsay; Xiao, Yuanyuan; Wiencke, John; Wrensch, Margaret; Andersson, Ulrika; Melin, Beatrice S; Bondy, Melissa

    2010-05-10

    Glioblastoma (GBM) is the most common and aggressive type of glioma and has the poorest survival. However, a small percentage of patients with GBM survive well beyond the established median. Therefore, identifying the genetic variants that influence this small number of unusually long-term survivors may provide important insight into tumor biology and treatment. Among 590 patients with primary GBM, we evaluated associations of survival with the 100 top-ranking glioma susceptibility single nucleotide polymorphisms from our previous genome-wide association study using Cox regression models. We also compared differences in genetic variation between short-term survivors (STS; or= 36 months), and explored classification and regression tree analysis for survival data. We tested results using two independent series totaling 543 GBMs. We identified LIG4 rs7325927 and BTBD2 rs11670188 as predictors of STS in GBM and CCDC26 rs10464870 and rs891835, HMGA2 rs1563834, and RTEL1 rs2297440 as predictors of LTS. Further survival tree analysis revealed that patients >or= 50 years old with LIG4 rs7325927 (V) had the worst survival (median survival time, 1.2 years) and exhibited the highest risk of death (hazard ratio, 17.53; 95% CI, 4.27 to 71.97) compared with younger patients with combined RTEL1 rs2297440 (V) and HMGA2 rs1563834 (V) genotypes (median survival time, 7.8 years). Polymorphisms in the LIG4, BTBD2, HMGA2, and RTEL1 genes, which are involved in the double-strand break repair pathway, are associated with GBM survival.

  19. High mobility group A1 enhances tumorigenicity of human cholangiocarcinoma and confers resistance to therapy

    DEFF Research Database (Denmark)

    Quintavalle, Cristina; Burmeister, Katharina; Piscuoglio, Salvatore

    2017-01-01

    High mobility group A1 (HMGA1) protein has been described to play an important role in numerous types of human carcinoma. By the modulation of several target genes HMGA1 promotes proliferation and epithelial-mesenchymal transition of tumor cells. However, its role in cholangiocarcinoma (CCA) has...

  20. Lack of association of the HMGA1 IVS5-13insC variant with type 2 diabetes in an ethnically diverse hypertensive case control cohort

    Directory of Open Access Journals (Sweden)

    Karnes Jason H

    2013-01-01

    Full Text Available Abstract Background Recently, the high-mobility group A1 gene (HMGA1 variant IVS5-13insC has been associated with type 2 diabetes, but reported associations are inconsistent and data are lacking in Hispanic and African American populations. We sought to investigate the HMGA1-diabetes association and to characterize IVS5-13insC allele frequencies and linkage disequilibrium (LD in 3,070 Caucasian, Hispanic, and African American patients from the INternational VErapamil SR-Trandolapril STudy (INVEST. Methods INVEST was a randomized, multicenter trial comparing two antihypertensive treatment strategies in an ethnically diverse cohort of hypertensive, coronary artery disease patients. Controls, who were diabetes-free throughout the study, and type 2 diabetes cases, either prevalent or incident, were genotyped for IVS5-13insC using Taqman®, confirmed with Pyrosequencing and Sanger sequencing. For LD analysis, genotyping for eight additional HMGA1 single nucleotide polymorphisms (SNPs was performed using the Illumina® HumanCVD BeadChip. We used logistic regression to test association of the HMGA1 IVS5-13insC and diabetes, adjusted for age, gender, body mass index, and percentage European, African, and Native American ancestry. Results We observed IVS5-13insC minor allele frequencies consistent with previous literature in Caucasians and African Americans (0.03 in cases and 0.04 in controls for both race/ethnic groups, and higher frequencies in Hispanics (0.07 in cases and 0.07 in controls. The IVS5-13insC was not associated with type 2 diabetes overall (odds ratio 0.98 [0.76-1.26], p=0.88 or in any race/ethnic group. Pairwise LD (r2 of IVS5-13insC and rs9394200, a SNP previously used as a tag SNP for IVS5-13insC, was low (r2=0.47 in Caucasians, r2=0.25 in Hispanics, and r2=0.06 in African Americans. Furthermore, in silico analysis suggested a lack of functional consequences for the IVS5-13insC variant. Conclusions Our results suggest that IVS5-13ins

  1. Identification of target genes for wild type and truncated HMGA2 in mesenchymal stem-like cells

    DEFF Research Database (Denmark)

    Henriksen, Jørn Mølgaard; Stabell, Marianne; Meza-Zepeda, Leonardo A

    2010-01-01

    The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein.......The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein....

  2. Expression levels of HMGA2 and CD9 and its clinicopathological significances in the benign and malignant lesions of the gallbladder

    Directory of Open Access Journals (Sweden)

    Zou Qiong

    2012-05-01

    Full Text Available Abstract Background The objective of this study was to investigate CD9 and HMGA2 expression and its clinicopathological significance in benign and malignant lesion tissues of the gallbladder. Methods The resected specimens of 108 cases of gallbladder adenocarcinoma, 46 cases of adjacent tissue, 15 cases of polyps and 35 cases of chronic cholecystitis were made into conventional paraffin-embedded sections, using the method of EnVision immunohistochemistry to stain HMGA2 and CD9. Results HMGA2 expression of gallbladder adenocarcinoma was significantly higher than that of adenocarcinoma adjacent tissues (= 16.13, P P P P P P P P P P = 0.020, but the survival period of CD9 expression-positive cases was significantly higher than that of cases with CD9 expression-negative (P = 0.019. Cox multivariate regression analysis showed that the HMGA2 positive expression and/or CD9 negative expression was an important indicator reflecting the poor prognosis of gallbladder cancer. Conclusion The expression of HMGA2 and/or CD9 might be closely related to the carcinogenesis, clinical biological behaviors and prognosis of gallbladder adenocarcinoma.

  3. Prognostic value of HMGA2, P16, and HPV in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Loeschke, S.; Ohlmann, A. K.; Bräsen, Jan Hinrich

    2016-01-01

    Purpose Molecular markers are only occasionally used in diagnostics of oral squamous cell carcinoma (OSCC), even though they could influence decision making in individually designed cancer therapies. We analyzed the predictive value of the markers HPV, p16, and HMGA2 and the TNM classification...... in regard to survival and recurrence rates. Material and methods A total of 91 OSCC cases were included in this study, with a follow up of up to 131 months. HPV-DNA was present in 7 carcinomas. p16 was detected by immunohistochemical staining in 14 samples. HMGA2 expression was determined by real...

  4. Genes that cooperate with tumor promoters in transformation

    International Nuclear Information System (INIS)

    Colburn, N.H.; Smith, B.M.

    1988-01-01

    Tumor-promoting phorbol esters, like growth factors, elicit pleiotropic responses involving biochemical pathways that lead to different biological responses. Genetic variant cell lines that are resistant to mitogenic, differentiation, or transformation responses to tumor promoters have been valuable tools for understanding the molecular bases of these responses. Studies using the mouse epidermal JB6 cell lines that are sensitive or resistant to tumor promoter-induced transformation have yielded new understanding of genetic and signal transduction events involved in neoplastic transformation. The isolation and characterization of cloned mouse promotion sensitivity genes pro-1 and pro-2 is reviewed. A new activity of pro-1 has been identified: when transfected into human cancer prone basal cell nevus syndrome fibroblasts but not normal fibroblasts mouse pro-1 confers lifespan extension of these cells. Recently, we have found tat a pro-1 homolog from a library of nasopharyngeal carcinoma, but not the homolog from a normal human library, is activated for transferring promotion sensitivity. The many genetic variants for responses to tumor promoters have also proved valuable for signal transduction studies. JPB P- cells fail to show the 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced syntheses of two proteins of 15 and 16 kD seen in P+ cells. P-, P+, and TPA transformed cells show a progressive decrease in both basal and TPA-inducible levels of a protein kinase C substrate of 80 kD. P- cells are relatively resistant both to anchorage-independent transformation and to a protein band shift induced by the calcium analog lanthanum. It appears that one or more calcium-binding proteins and one or more pro genes may be critical determinants of tumor promoter-induced neoplastic transformation

  5. Promoting effect of bile acids on neoplastic transformation of x-irradiated 10T1/2 cells

    International Nuclear Information System (INIS)

    Han, A.; Hill, C.K.

    1984-01-01

    Experimental studies have raised a concern about a role of bile acids in colo-rectal carcinogenesis. Studies in vivo suggest that bile acids may act as tumor promoters. Using 10T1/2 mouse cells as a model system, the authors explored the effects of cholic and cheno-deoxycholic acid on x-ray-induced neoplastic transformation in these cells. Addition of either cheno-deoxycholic acid or cholic acid to 10T1/2 cells, 24 hours after exposure to x-rays (50kv) increases significantly the frequencies of transformation. The compounds were present in the medium throughout the entire postirradiation refeeding period. At the concentrations used (0.5μg/ml), neither acid was cytotoxic and did not have any effect on cell survival. The enhancement of radiation-induced transformation seems to be greater in the presence of cholic acid, as compared to the effect of cheno-deoxycholic acid. Increase in transformation was relatively greater after low compared to high doses of radiation. The effect of bile acids on transformation of 10T1/2 cells is similar to that of a known tumor promoter TPA. The authors' observations support the conclusion that promotional effect of bile acids is not because of their specific effect on colonic epithelium, but rather due to their general properties as tumor promoters

  6. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.

    Science.gov (United States)

    Cavazzana-Calvo, Marina; Payen, Emmanuel; Negre, Olivier; Wang, Gary; Hehir, Kathleen; Fusil, Floriane; Down, Julian; Denaro, Maria; Brady, Troy; Westerman, Karen; Cavallesco, Resy; Gillet-Legrand, Beatrix; Caccavelli, Laure; Sgarra, Riccardo; Maouche-Chrétien, Leila; Bernaudin, Françoise; Girot, Robert; Dorazio, Ronald; Mulder, Geert-Jan; Polack, Axel; Bank, Arthur; Soulier, Jean; Larghero, Jérôme; Kabbara, Nabil; Dalle, Bruno; Gourmel, Bernard; Socie, Gérard; Chrétien, Stany; Cartier, Nathalie; Aubourg, Patrick; Fischer, Alain; Cornetta, Kenneth; Galacteros, Frédéric; Beuzard, Yves; Gluckman, Eliane; Bushman, Frederick; Hacein-Bey-Abina, Salima; Leboulch, Philippe

    2010-09-16

    The β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound β(E)/β(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The β(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated β(E)-globin with partial instability. When this is compounded with a non-functional β(0) allele, a profound decrease in β-globin synthesis results, and approximately half of β(E)/β(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral β-globin gene transfer, an adult patient with severe β(E)/β(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded β-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.

  7. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    Science.gov (United States)

    Giladi, Nis David; Ziv-Av, Amotz; Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Ben-Asher, Hiba Waldman; deCarvalho, Ana; Mikkelsen, Tom; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM. PMID:26267319

  8. CXCR4/Let-7a Axis Regulates Metastasis and Chemoresistance of Pancreatic Cancer Cells Through Targeting HMGA2

    Directory of Open Access Journals (Sweden)

    Guangfa Xiao

    2017-09-01

    Full Text Available Background/Aims: Pancreatic cancer cells (PCC is one of the most risky cancers and gemcitabine (GEM is the standard first-line drug for treating PCC. The PCC will develop drug resistance to GEM after a period of treatment. However, the detailed molecular mechanism of pathogenesis and drug resistance remains unresolved. Methods: we employed qRT-PCR and western blot to examine the expression level of CXCR4, let-7a and HMGA2. In addition, we used MTT assay to detect cell proliferation and transwell assay to measure migration and invasiveness. The expression level of epithelial marker E-cadherin and mesenthymal marker N-cadherin was detected by western blot. The apoptosis was determined using annexin V-FITC/PI apoptosis detection kit by flow cytometry. Results: we first proved that CXCR4 negatively regulated let-7a in PCC. Next, let-7a was confirmed to play crucial role in tumorigenesis, metastasis and drug resistance of pancreatic cancer cells Bxpc-3 and Panc-1 in vitro and in vivo. Finally, we identified HMGA2 as important downsteam target of let-7a in PCC and overexpression of HMGA2 restores cell proliferation, metastasis and chemosensitivity of GEM inhibited by let-7a. Conlusion: Taken together, we show an important signaling pathway involved in pathogenesis and drug resistance of PCC, thereby providing deeper insight into molecular mechanism by which CXCR4/let-7a regulates tumorigenesis and drug resistance of PCC. These findings will help us develop new strategies for diagnosis and treatment of PCC.

  9. HTLV-1 tax stabilizes MCL-1 via TRAF6-dependent K63-linked polyubiquitination to promote cell survival and transformation.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2014-10-01

    Full Text Available The human T-cell leukemia virus type 1 (HTLV-1 Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation.

  10. HTLV-1 Tax Stabilizes MCL-1 via TRAF6-Dependent K63-Linked Polyubiquitination to Promote Cell Survival and Transformation

    Science.gov (United States)

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs) and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63)-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation. PMID:25340740

  11. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    International Nuclear Information System (INIS)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  12. The 12q14 microdeletion syndrome: six new cases confirming the role of HMGA2 in growth.

    LENUS (Irish Health Repository)

    Lynch, Sally Ann

    2011-05-01

    We report six patients with array deletions encompassing 12q14. Out of a total of 2538 array investigations carried out on children with developmental delay and dysmorphism in three diagnostic testing centres, six positive cases yielded a frequency of 1 in 423 for this deletion syndrome. The deleted region in each of the six cases overlaps significantly with previously reported cases with microdeletions of this region. The chromosomal range of the deletions extends from 12q13.3q15. In the current study, we report overlapping deletions of variable extent and size but primarily comprising chromosomal bands 12q13.3q14.1. Four of the six deletions were confirmed as de novo events. Two cases had deletions that included HMGA2, and both children had significant short stature. Neither case had osteopoikilosis despite both being deleted for LEMD3. Four cases had deletions that ended proximal to HMGA2 and all of these had much better growth. Five cases had congenital heart defects, including two with atrial septal defects, one each with pulmonary stenosis, sub-aortic stenosis and a patent ductus. Four cases had moderate delay, two had severe developmental delay and a further two had a diagnosis of autism. All six cases had significant speech delay with subtle facial dysmorphism.

  13. Isolation and characterization of portal branch ligation-stimulated Hmga2-positive bipotent hepatic progenitor cells

    International Nuclear Information System (INIS)

    Sakai, Hiroshi; Tagawa, Yoh-ichi; Tamai, Miho; Motoyama, Hiroaki; Ogawa, Shinichiro; Soeda, Junpei; Nakata, Takenari; Miyagawa, Shinichi

    2010-01-01

    Research highlights: → Hepatic progenitor cells were isolated from the portal branch-ligated liver of mice. → Portal branch ligation-stimulated hepatic progenitor cells (PBLHCs) express Hmga2. → PBLHCs have bidirectional differentiation capability in vitro. -- Abstract: Hepatic stem/progenitor cells are one of several cell sources that show promise for restoration of liver mass and function. Although hepatic progenitor cells (HPCs), including oval cells, are induced by administration of certain hepatotoxins in experimental animals, such a strategy would be inappropriate in a clinical setting. Here, we investigated the possibility of isolating HPCs in a portal branch-ligated liver model without administration of any chemical agents. A non-parenchymal cell fraction was prepared from the portal branch-ligated or non-ligated lobe, and seeded onto plates coated with laminin. Most of the cells died, but a small number were able to proliferate. These proliferating cells were cloned as portal branch ligation-stimulated hepatic cells (PBLHCs) by the limiting dilution method. The PBLHCs expressed cytokeratin19, albumin, and Hmga2. The PBLHCs exhibited metabolic functions such as detoxification of ammonium ions and synthesis of urea on Matrigel-coated plates in the presence of oncostatin M. In Matrigel mixed with type I collagen, the PBLHCs became rearranged into cystic and tubular structures. Immunohistochemical staining demonstrated the presence of Hmga2-positive cells around the interlobular bile ducts in the portal branch-ligated liver lobes. In conclusion, successful isolation of bipotent hepatic progenitor cell clones, PBLHCs, from the portal branch-ligated liver lobes of mice provides the possibility of future clinical application of portal vein ligation to induce hepatic progenitor cells.

  14. Gender-transformative health promotion for women: a framework for action.

    Science.gov (United States)

    Pederson, Ann; Greaves, Lorraine; Poole, Nancy

    2015-03-01

    Gender inequity is a pervasive global challenge to health equity. Health promotion, as a field, has paid only limited attention to gender inequity to date, but could be an active agent of change if gender equity became an explicit goal of health promotion research, policy and programmes. As an aspect of gendered health systems, health promotion interventions may maintain, exacerbate or reduce gender-related health inequities, depending upon the degree and quality of gender-responsiveness within the programme or policy. This article introduces a framework for gender-transformative health promotion that builds on understanding gender as a determinant of health and outlines a continuum of actions to address gender and health. Gender-transformative health promotion interventions could play a significant role in improving the lives of millions of girls and women worldwide. Gender-related principles of action are identified that extend the core principles of health promotion but reflect the significance of attending to gender in the development and use of evidence, engagement of stakeholders and selection of interventions. We illustrate the framework with examples from a range of women's health promotion activities, including cardiovascular disease prevention, tobacco control, and alcohol use. The literature suggests that gender-responsiveness will enhance the acceptance, relevance and effectiveness of health promotion interventions. By moving beyond responsiveness to transformation, gender-transformative health promotion could enhance both health and social outcomes for large numbers of women and men, girls and boys. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Phosphorylation of stress protein pp80 is related to promotion of transformation

    International Nuclear Information System (INIS)

    Smith, B.M.; Gindhart, T.D.; Hirano, K.; Colburn, N.H.

    1986-01-01

    The JB6 mouse epidermal cell system is an in vitro model of late stage promotion, and includes cell lines sensitive (P+) or resistant (P-) to phorbol ester-induced anchorage independent transformation, and transformed (T/sub x/) lines. Certain promoter-induced changes in phosphoproteins, identified by gel electrophoresis, are unique to cells of one phenotype, and occur only with specific promoters. An 80Kd protein is inversely correlated with phenotype: P- cells have a constitutively higher level (p 35 S-methionine. pp80 shares properties with the 80Kd heat stress protein: molecular weight relative abundance, and isoelectric point (4.5). Pharmacological analogs of calcium, the lanthanides, promote transformation of JB6 cells, but have no effect on phosphorylation of the 80Kd protein. If pp80 is on the promotion pathway, it is limited to a specific subset of transformation promoters

  16. Cellular transformation by radiation: induction, promotion, and inhibition

    International Nuclear Information System (INIS)

    Borek, C.

    1981-01-01

    Radiation oncogenesis induced in utero in hamsters is expressed at a lower frequency than that induced in vitro. Quantitative studies carried out on hamster embryo cells indicate that neutrons are more effective in their carcinogenic potential than x-rays but also more toxic, that splitting the dose of x-rays at low doses leads to enhanced transformation, but that at high doses protracted radiation has a sparing effect. At all dose ranges survival was increased by protracting the radiation dose, thus suggesting that different repair processes must be involved for survival and transformation. In our qualitative studies, once cells are transformed by radiation, they exhibit a wide range of structural and functional phenotypic changes, some of which are membrane-associated and are expressed within days after induction. Our current studies on nutritional and hormonal influences on radiation transformation indicate the following: Pyrolysate products from broiled protein foods act in synergism with radiation to produce transformation, whereas vitamin A analogs are powerful, preventive agents. Retinoids inhibit both x-ray-induced transformation and its promotion by TPA; these modifications (enhancement by TPA, inhibition by retinoids) are not reflected in sister chromatid exchanges, but are reflected in the level of membrane associated enzymes Na/K ATPase. Whereas retinoids modify late events (expression, promotion), we find that thyroid hormone plays a crucial role in the early phases of radiation and chemically induced transformation. Our recent success in transforming human skin fibroblasts will enable quantitative and qualitative studies of radiation carcinogenesis in a system relevant to man

  17. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean.

    Science.gov (United States)

    Li, Caifeng; Zhang, Haiyan; Wang, Xiurong; Liao, Hong

    2014-11-01

    Both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean. An efficient genetic transformation system is crucial for promoter analysis in plants. Agrobacterium-mediated transformation is the most popular method to produce transgenic hairy roots or plants. In the present study, first, we compared the two different Agrobacterium rhizogenes-mediated hairy root transformation methods using either constitutive CaMV35S or the promoters of root-preferential genes, GmEXPB2 and GmPAP21, in soybean, and found the efficiency of in vitro hairy root transformation was significantly higher than that of in vivo transformation. We compared Agrobacterium rhizogenes-mediated hairy root and Agrobacterium tumefaciens-mediated whole plant transformation systems. The results showed that low-phosphorous (P) inducible GmEXPB2 and GmPAP21 promoters could not induce the increased expression of the GUS reporter gene under low P stress in both in vivo and in vitro transgenic hairy roots. Conversely, GUS activity of GmPAP21 promoter was significantly higher at low P than high P in whole plant transformation. Therefore, both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean.

  18. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Directory of Open Access Journals (Sweden)

    Saikali Melody

    2012-07-01

    Full Text Available Abstract Background Sesquiterpene lactones (SL are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan isolated from Achillea falcata and salograviolide A (Sal A isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to

  19. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells.

    Science.gov (United States)

    Saikali, Melody; Ghantous, Akram; Halawi, Racha; Talhouk, Salma N; Saliba, Najat A; Darwiche, Nadine

    2012-07-09

    Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary

  20. Estudio estructural de la unión de ADN rico en adeninas y timinas con la proteína HMGA1a y con fármacos específicos de unión al surco estrecho del ADN

    OpenAIRE

    Millán Elías, Cinthia Raquel

    2013-01-01

    Las actividades relacionadas con el ADN como la transcripción, replicación, recombinación y reparación implican cambios en la estructura del ADN y en la organización de la cromatina. Estos cambios estructurales dependen de su interacción con proteínas. Las proteínas HMGA1 (High Mobility Group A1) son miembros de una superfamilia de proteínas de baja masa molecular, se encuentran en el núcleo de las células y modifican la conformación espacial del ADN. Actúan como factores de transcri...

  1. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function

    DEFF Research Database (Denmark)

    Mirastschijski, Ursula; Schnabel, Reinhild; Claes, Juliane

    2010-01-01

    applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-beta1 (TGF-beta1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined......, including myofibroblast formation, stromal cell proliferation, blood vessel formation, and epithelial wound coverage. Interestingly, BB-94 dramatically increased the level of latent and active MMP-9. The increased levels of active MMP-9 may eventually overcome the ability of BB-94 to inhibit this MMP...... and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-beta1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound...

  2. The effect of transformational leadership and job autonomy on promotive and prohibitive voice

    DEFF Research Database (Denmark)

    Svendsen, Mari; Unterrainer, Christine; Jønsson, Thomas Faurholt

    2018-01-01

    Although there is a vast amount of research on leadership and improvement-oriented voice behavior, the amount of cross-lagged research on leadership that also incorporates more challenging forms of voice is sparse. This paper reports on a two-wave study of white-collar workers in a Norwegian...... medical technology company, investigating the relationship among employees’ perceived transformational leadership behaviors, job autonomy, and promotive and prohibitive voice. Testing our results cross-lagged, we demonstrate that perceived transformational leadership is significantly related...... to prohibitive voice over time, whereas this effect worked in the opposite direction for promotive voice. We also explore the boundary conditions of transformational leadership, demonstrating that perceived job autonomy strengthens the effect of transformational leadership on prohibitive voice. Implications...

  3. A Professionalism Curricular Model to Promote Transformative Learning Among Residents.

    Science.gov (United States)

    Foshee, Cecile M; Mehdi, Ali; Bierer, S Beth; Traboulsi, Elias I; Isaacson, J Harry; Spencer, Abby; Calabrese, Cassandra; Burkey, Brian B

    2017-06-01

    Using the frameworks of transformational learning and situated learning theory, we developed a technology-enhanced professionalism curricular model to build a learning community aimed at promoting residents' self-reflection and self-awareness. The RAPR model had 4 components: (1) R ecognize : elicit awareness; (2) A ppreciate : question assumptions and take multiple perspectives; (3) P ractice : try new/changed perspectives; and (4) R eflect : articulate implications of transformed views on future actions. The authors explored the acceptability and practicality of the RAPR model in teaching professionalism in a residency setting, including how residents and faculty perceive the model, how well residents carry out the curricular activities, and whether these activities support transformational learning. A convenience sample of 52 postgraduate years 1 through 3 internal medicine residents participated in the 10-hour curriculum over 4 weeks. A constructivist approach guided the thematic analysis of residents' written reflections, which were a required curricular task. A total of 94% (49 of 52) of residents participated in 2 implementation periods (January and March 2015). Findings suggested that RAPR has the potential to foster professionalism transformation in 3 domains: (1) attitudinal, with participants reporting they viewed professionalism in a more positive light and felt more empathetic toward patients; (2) behavioral, with residents indicating their ability to listen to patients increased; and (3) cognitive, with residents indicating the discussions improved their ability to reflect, and this helped them create meaning from experiences. Our findings suggest that RAPR offers an acceptable and practical strategy to teach professionalism to residents.

  4. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  5. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus

    DEFF Research Database (Denmark)

    Launholt, Dorte; Merkle, Thomas; Houben, Andreas

    2006-01-01

    In plants, the chromatin-associated high mobility group (HMG) proteins occur in twosubfamilies termedHMGAandHMGB.The HMGAproteins are characterized by the presence of four AT-hookDNAbinding motifs, and theHMGBproteins contain anHMG boxDNAbinding domain. As architectural factors, theHMGproteins ap......In plants, the chromatin-associated high mobility group (HMG) proteins occur in twosubfamilies termedHMGAandHMGB.The HMGAproteins are characterized by the presence of four AT-hookDNAbinding motifs, and theHMGBproteins contain anHMG boxDNAbinding domain. As architectural factors, the...... of interphase nuclei, whereas none of the proteins associate with condensed mitotic chromosomes. HMGA is targeted to the nucleus by a monopartite nuclear localization signal, while efficient nuclear accumulation of HMGB1/5 requires large portions of the basic N-terminal part of the proteins. The acidic C...

  6. Carcinoma ex-pleomorphic adenoma derived from recurrent pleomorphic adenoma shows important difference by array CGH compared to recurrent pleomorphic adenoma without malignant transformation

    Directory of Open Access Journals (Sweden)

    Fernanda Viviane Mariano

    Full Text Available Abstract Introduction: A key step of cancer development is the progressive accumulation of genomic changes resulting in disruption of several biological mechanisms. Carcinoma ex-pleomorphic adenoma (CXPA is an aggressive neoplasm that arises from a pleomorphic adenoma. CXPA derived from a recurrent PA (RPA has been rarely reported, and the genomic changes associated with these tumors have not yet been studied. Objective: We analyzed CXPA from RPAs and RPAs without malignant transformation using array-comparative genomic hybridization (array-CGH to identify somatic copy number alterations and affected genes. Methods: DNA samples extracted from FFPE tumors were submitted to array-CGH investigation, and data was analyzed by Nexus Copy Number Discovery Edition v.7. Results: No somatic copy number alterations were found in RPAs without malignant transformation. As for CXPA from RPA, although genomic profiles were unique for each case, we detected some chromosomal regions that appear to be preferentially affected by copy number alterations. The first case of CXPA-RPA (frankly invasive myoepithelial carcinoma showed copy number alterations affecting 1p36.33p13, 5p and chromosomes 3 and 8. The second case of CXPA-RPA (frankly invasive epithelial-myoepithelial carcinoma showed several alterations at chromosomes 3, 8, and 16, with two amplifications at 8p12p11.21 and 12q14.3q21.2. The third case of CXPA-RPA (minimally invasive epithelial-myoepithelial carcinoma exhibited amplifications at 12q13.3q14.1, 12q14.3, and 12q15. Conclusion: The occurrence of gains at chromosomes 3 and 8 and genomic amplifications at 8p and 12q, mainly those encompassing the HMGA2, MDM2, WIF1, WHSC1L1, LIRG3, CDK4 in CXAP from RPA can be a significant promotional factor in malignant transformation.

  7. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    Science.gov (United States)

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  8. Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection.

    Science.gov (United States)

    Xiao, Ming; Wei, Dongbin; Yin, Junxia; Wei, Guohua; Du, Yuguo

    2013-10-15

    The UV-filter BP-4 (2-hydroxy-4-methoxybenzophenone-5-sulfonic acid) has been frequently observed in the environment, showing high potentials to invade drinking water, swimming water, or wastewater reclamation treatment systems. With the help of high performance liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy, 10 new products from free chlorine-promoted BP-4 disinfection have been disclosed and their possible transformation routes have been investigated. The first route is chlorine substitution of BP-4 and its transformation products, forming mono-, di-, and tri-chlorinated BP-4 analogs. The second is Baeyer-Villiger-Type oxidation, converting diphenyl ketone to phenyl ester derivatives. The third is ester hydrolysis, generating corresponding phenolic and benzoic products. The fourth is decarboxylation, replacing the carboxyl group by chloride in the benzoic-type intermediate. The fifth is desulfonation, degrading the sulfonic group through an alternative chlorine substitution on the benzene ring. Orthogonal experiments have been established to investigate the species transformed from BP-4 at different pH values and free available chlorine (FAC) dosages. The reaction pathways are strongly dependent on pH conditions, while an excessive amount of FAC eliminates BP-4 to the smaller molecules. The initial transformation of BP-4 in chlorination system follows pseudo-first-order kinetics, and its half-lives ranged from 7.48 s to 1.26 × 10(2) s. More importantly, we have observed that the FAC-treated BP-4 aqueous solution might increase the genotoxic potentials due to the generation of chlorinated disinfection by-products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone.

    Directory of Open Access Journals (Sweden)

    Rika Etchuuya

    Full Text Available Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain. In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5-10(-6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.

  10. Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression.

    Science.gov (United States)

    Chen, Yan; Huang, Shai; Wu, Bo; Fang, Jiankai; Zhu, Minsheng; Sun, Li; Zhang, Lifeng; Zhang, Yongsheng; Sun, Maomin; Guo, Lingling; Wang, Shouli

    2017-07-25

    Transforming growth factor-β1 is considered a key contributor to the progression of breast cancer. MicroRNAs are important factors in the development and progression of many malignancies. In the present study, upon studies of breast cancer cell lines and tissues, we showed that microRNA -196a-3p is decreased by transforming growth factor-β1 in breast cancer cells and associated with breast cancer progression. We identified neuropilin-2 as a target gene of microRNA -196a-3p and showed that it is regulated by transforming growth factor-β1. Moreover, transforming growth factor-β1-mediated inhibition of microRNA -196a-3p and activation of neuropilin-2were required for transforming growth factor-β1-induced migration and invasion of breast cancer cells. In addition, neuropilin-2 expression was suppressed in breast tumors, particularly in triple-negative breast cancers. Collectively, our findings strongly indicate that microRNA -196a-3p is a predictive biomarker of breast cancer metastasis and patient survival and a potential therapeutic target in metastatic breast cancer.

  11. Radiation-induced irreparable heritable changes in cells promoting their tumoral transformation

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vagabova, M.Eh.; Yurov, S.S.

    1988-01-01

    In experiments with model plant tumors (Kalanchoe-ti plasmid Agrobat. tumefaciens C-58D) it was shown that exposure of the recepient plant to low-level γ-radiation of Gy induced changes in cells that were not repaired over two months promoting tumoral transformations in them. Those changes were shown to persist in the offspring of the exposed somatic cells

  12. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function.

    Science.gov (United States)

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-02-07

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.

  13. Seismic data two-step recovery approach combining sparsity-promoting and hyperbolic Radon transform methods

    International Nuclear Information System (INIS)

    Wang, Hanchuang; Chen, Shengchang; Ren, Haoran; Liang, Donghui; Zhou, Huamin; She, Deping

    2015-01-01

    In current research of seismic data recovery problems, the sparsity-promoting method usually produces an insufficient recovery result at the locations of null traces. The HRT (hyperbolic Radon transform) method can be applied to problems of seismic data recovery with approximately hyperbolic events. Influenced by deviations of hyperbolic characteristics between real and ideal travel-time curves, some spurious events are usually introduced and the recovery effect of intermediate and far-offset traces is worse than that of near-offset traces. Sparsity-promoting recovery is primarily dependent on the sparsity of seismic data in the sparse transform domain (i.e. on the local waveform characteristics), whereas HRT recovery is severely affected by the global characteristics of the seismic events. Inspired by the above conclusion, a two-step recovery approach combining sparsity-promoting and time-invariant HRT methods is proposed, which is based on both local and global characteristics of the seismic data. Two implementation strategies are presented in detail, and the selection criteria of the relevant strategies is also discussed. Numerical examples of synthetic and real data verify that the new approach can achieve a better recovery effect by simultaneously overcoming the shortcomings of sparsity-promoting recovery and HRT recovery. (paper)

  14. HK2 Recruitment to Phospho-BAD Prevents Its Degradation, Promoting Warburg Glycolysis by Theileria-Transformed Leukocytes.

    Science.gov (United States)

    Haidar, Malak; Lombès, Anne; Bouillaud, Frédéric; Kennedy, Eileen J; Langsley, Gordon

    2017-03-10

    Theileria annulata infects bovine leukocytes, transforming them into invasive, cancer-like cells that cause the widespread disease called tropical theileriosis. We report that in Theileria-transformed leukocytes hexokinase-2 (HK2) binds to B cell lymphoma-2-associated death promoter (BAD) only when serine (S) 155 in BAD is phosphorylated. We show that HK2 recruitment to BAD is abolished by a cell-penetrating peptide that acts as a nonphosphorylatable BAD substrate that inhibits endogenous S155 phosphorylation, leading to complex dissociation and ubiquitination and degradation of HK2 by the proteasome. As HK2 is a critical enzyme involved in Warburg glycolysis, its loss forces Theileria-transformed macrophages to switch back to HK1-dependent oxidative glycolysis that down-regulates macrophage proliferation only when they are growing on glucose. When growing on galactose, degradation of HK2 has no effect on Theileria-infected leukocyte proliferation, because metabolism of this sugar is independent of hexokinases. Thus, targeted disruption of the phosphorylation-dependent HK2/BAD complex may represent a novel approach to control Theileria-transformed leukocyte proliferation.

  15. Increased sensitivity of transforming growth factor (TGF) beta 1 null cells to alkylating agents reveals a novel link between TGFbeta signaling and O(6)-methylguanine methyltransferase promoter hypermethylation.

    Science.gov (United States)

    Yamada, H; Vijayachandra, K; Penner, C; Glick, A

    2001-06-01

    Inactivation of the transforming growth factor beta (TGFbeta)-signaling pathway and gene silencing through hypermethylation of promoter CpG islands are two frequent alterations in human and experimental cancers. Here we report that nonneoplastic TGFbeta1-/- keratinocyte cell lines exhibit increased sensitivity to cell killing by alkylating agents, and this is due to lack of expression of the DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT). In TGFbeta1-/- but not TGFbeta1+/- cell lines, the CpG dinucleotides in the MGMT promoter are hypermethylated, as measured by restriction enzyme analysis and methylation specific polymerase chain reaction. In one unstable TGFbeta1+/- cell line, loss of the wild type TGFbeta1 allele correlates with the appearance of methylation in the MGMT promoter. Bisulfite sequencing shows that in the KO3 TGFbeta1-/- cell line nearly all of the 28 CpG sites in the MGMT promoter 475 base pairs upstream of the start site of transcription are methylated, whereas most are unmethylated in the H1 TGFbeta1+/- line. Treatment of the TGFbeta1-/- cell lines with 5-azacytidine causes reexpression of MGMT mRNA and demethylation of CpG islands in the promoter. Analysis of the time course of methylation using methylation-specific polymerase chain reaction shows a lack of methylation in primary TGFbeta1-/- keratinocytes and increasing methylation with passage number of immortalized clones. Subcloning of early passage clones reveals a remarkable heterogeneity and instability of the methylation state in the TGFbeta1-/- keratinocytes. Thus, the TGFbeta1-/- genotype does not directly regulate MGMT methylation but predisposes cells to immortalization-associated MGMT hypermethylation.

  16. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.

  17. Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line.

    Directory of Open Access Journals (Sweden)

    Lakshna Mahajan

    Full Text Available Surfactant protein D (SP-D, an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7, and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D induced G2/M phase cell cycle arrest, and dose and time-dependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2 showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SP-D in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host's immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and

  18. Construction of recombinant adenovirus with Egr-1 promoter and Smad7 cDNA and study of the Egr-1 promoter's biological activity

    International Nuclear Information System (INIS)

    Cai Xuwei; Fu Xiaolong; Yang Jian; Song Houyan

    2005-01-01

    Objective: To construct a recombinant replication-defective adenovirus containing Egr-1 promoter and Smad7 cDNA, then to evaluate the biological activity of Egr-1 promoter. Methods: Based on Adeno- X TM expression system, CMV promoter of the pShuttle vector was replaced by Egr-1 promoter, and the Smad7 cDNA was subcloned into the MCS(multiple cloning site) of pShuttle. The recombinant pShuttle was then sub-cloned into the Adeno-X TM genome, which was transformed into E. coli to get recombinant Adeno-X TM plasmid DNA. The recombinant adenovirus was packaged and amplified in the transfected HEK293 cells before it was purified and tested for viral titer. The fibroblasts (3T6 cells) infected by the recombinant adenovirus were irradiated , and the activity of Egr-1 promoter was quantitively determined by the amount of Smad7 protein expressed in the 3T6 cells using Western blot. Results: Identified by restriction endonuclease analysis and PCR, the recombinant adenovirus containing Egr-1 promoter and Smad7 cDNA was constructed successfully, with a viral titer of 1.0 x 10 11 TCID 50 /ml. The expressed amount of Smad7 protein varied at different dose levels and different time points post-irradiation in the 3T6 cells infected with the recombinant adenovirus. The amount of Smad7 protein increased along with the rising of the irradiation dose, and remained at a high expression level from 8 Gy to 15 Gy. The amount of Smad7 protein started to increase at 2 hours post-irradiation, and maintained a relatively high level for the next 5 hours before it descended, which was not observed in the control 3T6 cells. Conclusions: With the aid of Adeno-X TM expression system and molecular cloning techniques, construction of recombinant adenovirus could be quick and efficient. The recombined Egr-1 promoter has the activity of regulating the expression of downstream Smad7 cDNA. The increase in Smad7 expression under control of Egr-1 promoter induced by ionizing radiation is time- and dose

  19. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    International Nuclear Information System (INIS)

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-01-01

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation

  20. Direct Conversion of Human Umbilical Cord Blood into Induced Neural Stem Cells with SOX2 and HMGA2.

    Science.gov (United States)

    Kim, Jae-Jun; Shin, Ji-Hee; Yu, Kyung-Rok; Lee, Byung-Chul; Kang, Insung; Lee, Jin Young; Kim, Da-Hyun; Seo, Yoojin; Kim, Hyung-Sik; Choi, Soon Won; Kang, Kyung-Sun

    2017-11-30

    Recent advances have shown the direct reprogramming of mouse and human fibroblasts into induced neural stem cells (iNSCs) without passing through an intermediate pluripotent state. Thus, direct reprogramming strategy possibly provides a safe and homogeneous cellular platform. However, the applications of iNSCs for regenerative medicine are limited by the restricted availability of cell sources. Human umbilical cord blood (hUCB) cells hold great potential in that immunotyped hUCB units can be immediately obtained from public banks. Moreover, hUCB samples do not require invasive procedures during collection or an extensive culture period prior to reprogramming. We recently reported that somatic cells can be directly converted into iNSCs with high efficiency and a short turnaround time. Here, we describe the detailed method for the generation of iNSCs derived from hUCB (hUCB iNSCs) using the lineage-specific transcription factors SOX2 and HMGA2. The protocol for deriving iNSC-like colonies takes 1∼2 weeks and establishment of homogenous hUCB iNSCs takes additional 2 weeks. Established hUCB iNSCs are clonally expandable and multipotent producing neurons and glia. Our study provides an accessible method for generating hUCB iNSCs, contributing development of in vitro neuropathological model systems.

  1. Broadband Planar 5:1 Impedence Transformer

    Science.gov (United States)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  2. The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Madsen, P.L.; Johansen, Annette Helle; Hammer, Karin

    1999-01-01

    A functional analysis of open reading frame 4 (ORF4) and ORF5 from the temperate lactococcal phage TP901-1 was performed by mutant and deletion analysis combined with transcriptional studies of the early phage promoters p(R) and p(L). ORF4 (180 amino acids) was identified as a phage repressor...... necessary for repression of both promoters. Furthermore, the presence of ORF4 confers immunity of the host strain to TP901-1. ORF5 (72 amino acids) was found to be able to inhibit repression of the lytic promoter p(L) by ORF4. Upon transformation with a plasmid containing both ORF4 and ORF5...... and their cognate promoters, clonal variation is observed: in each transformant, either p(L) is open and p(R) is closed or vice versa. The repression is still dependent on ORF4, and the presence of ORF5 is needed for the clonal variation. Induction of a repressed p(L) fusion containing orf4 and orf5 was obtained...

  3. Transformational Leadership, Integrity, and Power

    Science.gov (United States)

    Harrison, Laura M.

    2011-01-01

    Transformational leadership enjoys widespread appeal among student affairs professionals. National Association of Student Personnel Administrators (NASPA) and American College Personnel Association (ACPA) conferences frequently feature speakers who promote transformational leadership's two primary tenets: (1) change is the central purpose of…

  4. Promoting energy-efficient products: GEF experience and lessons for market transformation in developing countries

    International Nuclear Information System (INIS)

    Birner, Sabrina; Martinot, Eric

    2005-01-01

    The Global Environment Facility (GEF) has allocated more than $90 million over the past 10 years to eight projects promoting energy-efficient products in developing and transition countries. We review the early experience from these projects and suggest lessons relevant to market transformation programs. Based on GEF project designs, we also propose a menu of generic supply-side and demand-side interventions useful for designing and analyzing market transformation programs. Experience suggests that institutional and policy changes, leading to sustained price reductions and higher market volumes, are important outcomes for market transformation; that market impacts can appear early in programs due to increased expectations and awareness; and that projects can have a catalytic effect. We recommend eight principles for designers of future projects but caution that no single approach guarantees success

  5. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation1

    Science.gov (United States)

    Cassinelli, Giuliana; Favini, Enrica; Degl'Innocenti, Debora; Salvi, Alessandro; De Petro, Giuseppina; Pierotti, Marco A; Zunino, Franco; Borrello, Maria Grazia; Lanzi, Cinzia

    2009-01-01

    Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC). We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F) devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs. PMID:19107227

  6. Promoting Transformational Leadership Through Air Force Culture

    Science.gov (United States)

    2013-03-01

    transformational leadership styles . Transformational leaders lead through social exchange, help followers grow, and empower their organization by aligning goals...Transformational leadership will truly allow the USAF to do more with less, as it improves productivity. This paper examines leadership styles and...analyzing and evaluating the effectiveness of various leadership styles , the transformational leadership theory is quickly becoming a choice approach.10

  7. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  8. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: dikomey@uke.de [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  9. Neurospora crassa glucose - repressible gene -1(Grg-1) promoter controls the expression of neurospora tyrosinase gene in a clock-controlled manner

    International Nuclear Information System (INIS)

    Tarawneh, A. K

    1997-01-01

    In this study sphareroplastes of white Neurospora crassa mutant auxotroph for aromatic am no acids a rom 9 q a-2 inv, was transformed by the pKF-Tyr7-wt DNA construct. This construct contains the promoter of neurospora crassa glucose-repressible gene-1 (G rg-1) usp stream of Neurospora tyrosinase gene. The co transformation of this mutant with pKF-Tyr-7-wt cincture's and the pKAL-1, a plasmid which contains the Neurospora q a-2+ gene transform it to photophor. The transform ant contains the tyrosinase gene which catalyzes the unique step in the synthesis of the black pigment melanin. The activity of the tyrosinase in this transform ant was followed by measuring the absorbance of the dark coloured pigment at 332 nm. The maximum of the tyrosinase activity was shown at 16.36 and 56 hours after the shift of the transformed mycelia from constant light (L L) to constant dark (Dd). The rate of the enzyme activity was changed according to ci radian cycle of 20 hours. This G rg 1/tyrosinase construct provides a good system to study to study the temporal control of gene expression and the interaction between the different environmental c uses that affects gene expression. (author). 20 refs., 4 figs

  10. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    Directory of Open Access Journals (Sweden)

    David Judah

    2010-11-01

    Full Text Available Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1 promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  11. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    Science.gov (United States)

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  12. The study on Egr-1 promoter which is radioactive promoter

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Guo Yang; Lv Zhonghong

    2006-01-01

    Radiogenetic therapy is a heated reaseach on oncotherapy. Early growth response gene-1 (Egr-1) gene promoter is a probably means in radiogenetic therapy. The article review studying on Egr-1 gene promoter and constructing regulating gene expressing system by radiation-inducible Egr-1 gene promoter. (authors)

  13. Influence of Al addition on phase transformation and thermal stability of nickel silicides on Si(0 0 1)

    International Nuclear Information System (INIS)

    Huang, Shih-Hsien; Twan, Sheng-Chen; Cheng, Shao-Liang; Lee, Tu; Hu, Jung-Chih; Chen, Lien-Tai; Lee, Sheng-Wei

    2014-01-01

    Highlights: ► The presence of Al slows down the Ni 2 Si–NiSi phase transformation but significantly promotes the NiSi 2−x Al x formation. ► The behavior of phase transformation strongly depends on the Al concentration of the initial Ni 1−x Al x alloys. ► The Ni 0.91 Al 0.09 /Si system exhibits remarkably improved thermal stability, even after high temperature annealing for 1000 s. ► The relationship between microstructures, electrical property, and thermal stability of Ni(Al) silicides is discussed. -- Abstract: The influence of Al addition on the phase transformation and thermal stability of Ni silicides on (0 0 1)Si has been systematically investigated. The presence of Al atoms is found to slow down the Ni 2 Si–NiSi phase transformation but significantly promote the NiSi 2−x Al x formation during annealing. The behavior of phase transformation strongly depends on the Al concentration of the initial Ni 1−x Al x alloys. Compared to the Ni 0.95 Pt 0.05 /Si and Ni 0.95 Al 0.05 /Si system, the Ni 0.91 Al 0.09 /Si sample exhibits remarkably enhanced thermal stability, even after high temperature annealing for 1000 s. The relationship between microstructures, electrical property, and thermal stability of Ni silicides is discussed to elucidate the role of Al during the Ni 1−x Al x alloy silicidation. This work demonstrated that thermally stable Ni 1−x Al x alloy silicides would be a promising candidate as source/drain (S/D) contacts in advanced complementary metal–oxide-semiconductor (CMOS) devices

  14. The inhibitory NKR-P1B:Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance

    DEFF Research Database (Denmark)

    Tanaka, M; Fine, Jason; Kirkham, Christina

    2018-01-01

    Natural killer (NK) cells express receptors specific for MHC class I (MHC-I) molecules involved in "missing-self" recognition of cancer and virus-infected cells. Here we elucidate the role of MHC-I-independent NKR-P1B:Clr-b interactions in the detection of oncogenic transformation by NK cells. Ras......-b protein, in turn promoting missing-self recognition via the NKR-P1B inhibitory receptor. Both Ras- and c-Myc-mediated Clr-b loss selectively augmented cytotoxicity of oncogene-transformed leukemia cells by NKR-P1B+ NK cells in vitro and enhanced rejection by WT mice in vivo. Interestingly, genetic...

  15. Promotion of TNF-α on malignant transformation of syrian hamster embryo cells irradiated with α-particles

    International Nuclear Information System (INIS)

    Zhu Maoxiang; Guo Renfeng; Yang Zhihua; GongYifen

    1999-01-01

    Objective: To illustrate the role of tumor necrosis factor-α (TNF-α) in radiation-induced cancer and regulatory mechanism of protein tyrosine phosphorylation. Methods: Taking Syrian hamster embryo cells exposed to 0.5 Gy α-particles as the target, an array of biological indicators such as cell growth curve, transformation frequency (TF), colony formation efficiency (CFE) and tumor formation in nude mice were observed, and the activities of protein tyrosine kinases and protein tyrosine phosphatases were measured. Results: Neither 0.5 Gy α-particle irradiation nor TNF-α alone could induce transformation of SHE cells morphologically, but the TF, CFE and levels of protein tyrosine phosphorylation were obviously increased in SHE cells treated with 600 U/ml TNF-α after exposure to 0.5 Gy α-particles, and malignant transformation was proved by tumorigenicity assays. Conclusion: TNF-α promotes significantly the transformation of SHE cells induced by α-particles, and protein tyrosine phosphorylation is probably involved in regulation of the process

  16. Beta1 integrin promotes but is not essential for metastasis of ras-myc transformed fibroblasts

    DEFF Research Database (Denmark)

    Brakebusch, C; Wennerberg, K; Krell, H W

    1999-01-01

    To investigate the role of beta1 integrin during tumor metastasis, we established a ras-myc transformed fibroblastoid cell line with a disrupted beta1 integrin gene on both alleles (GERM 11). Stable transfection of this cell line with an expression vector encoding beta1A integrin resulted in beta1A......, tumors induced by the high expressing clones 1A10 and 2F2 were markedly smaller, suggesting an inverse correlation of tumor growth and beta1 integrin expression. The metastasis potential of all three beta1 integrin-expressing GERM 11 sublines tested was significantly higher than that of the beta1......-deficient GERM 11 cells. GERM 116 tumors led in all animals to severe metastasis in lung and liver, while GERM 11 tumors induced only a few metastatic foci in the lung. Stroma of both tumors contained nidogen and high amounts of tenascin C, but only a few very low levels of fibronectin, laminin-1...

  17. Effects of protease inhibitors on radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.

    1981-01-01

    We have investigated the effects of three protease inhibitors, antipain, leupeptin, and soybean trypsin inhibitor, on the induction of oncogenic transformation in mouse C3H10T 1/2 cells by X-rays. The patterns of inhibition by the three protease inhibitors were different. Antipain was the most effective, having the ability to suppress completely radiation transformation as well as radiation transformation enhanced by the phorbol ester promoting agent 12-O-tetradecanoylphorbol-13-acetate. The fact that antipain could suppress transformation when present for only 1 day following irradiation suggests that an effect on a DNA repair process might be important in its action. Leupeptin was less effective than antipain in its inhibition of radiation transformation. Soybean trypsin inhibitor suppressed only the promotional effects of 12-O-tetradecanoylphorbol-13-acetate on transformation. Our results suggest that there may be more than one protease involved in carcinogenesis

  18. Transcription profiling of human MCF10A cells subjected to ionizing radiation and treatment with transforming growth factor beta-1

    Data.gov (United States)

    National Aeronautics and Space Administration — Transforming growth factor beta-1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis but it can switch to a tumor promoter during neoplastic...

  19. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Ping, Yu; Liu, Shasha [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); School of Life Sciences, Zhengzhou University, Zhengzhou 450000 (China); Shi, Xiaojuan; Li, Lifeng [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Liping [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Huang, Lan [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Zhang, Bin [Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou 450052, Henan, PR China (China); Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Sun, Yan [Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences (China); and others

    2015-08-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  20. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    International Nuclear Information System (INIS)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng; Ping, Yu; Liu, Shasha; Shi, Xiaojuan; Li, Lifeng; Wang, Liping; Huang, Lan; Zhang, Bin; Sun, Yan

    2015-01-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells

  1. The human luteinizing hormone receptor gene promoter: activation by Sp1 and Sp3 and inhibitory regulation.

    Science.gov (United States)

    Geng, Y; Tsai-Morris, C H; Zhang, Y; Dufau, M L

    1999-09-24

    To understand the transcriptional mechanism(s) of human LH receptor (LHR) gene expression, we have identified the dominant functional cis-elements that regulate the activity of the promoter domain (-1 to -176 bp from ATG). Mutagenesis demonstrated that the promoter activity was dependent on two Sp1 domains (-79 bp, -120 bp) in a transformed normal placental cell (PLC) and the choriocarcinoma JAR cell. Both elements interacted with endogenous Sp1 and Sp3 factors but not with Sp2 or Sp4. In Drosophila SL2 cells, the promoter was activated by either Sp1 or Sp3. An ERE half-site (EREhs) at -174 bp was inhibitory (by 100%), but was unresponsive to estradiol and did not bind the estrogen receptor or orphan receptors ERR1 and SF-1. The 5' upstream sequence (-177 to -2056 bp) inhibited promoter activity in PLC by 60%, but only minimally in JAR cells. Activation of the human LHR promoter through Sp1/3 factors is negatively regulated through EREhs and upstream sequences to exert control of gene expression. Copyright 1999 Academic Press.

  2. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Di [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Yuan, Yunsheng [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai (China); Chen, Li [Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou (China); Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Liu, Xin; Belani, Chandra [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Cheng, Hua, E-mail: hcheng@ihv.umaryland.edu [Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. - Highlights: • Niclosamide is a promising therapeutic candidate for adult T cell leukemia. • Niclosamide employs a novel mechanism through proteasomal degradation of Tax. • Niclosamide downregulates certain cellular pro-survival molecules.

  3. Modeling mechanical effects on promotion and retardation of martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Maalekian, Mehran, E-mail: mehran.maalekian@ubc.ca [Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, B.C. V61Z4 (Canada); Kozeschnik, Ernst [Christian Doppler Laboratory for ' Early Stages of Precipitation' , Institute of Materials Science and Technology, Vienna University of Technology (Austria)

    2011-01-25

    Research highlights: {yields} Compressive elastic stresses up to 250 MPa are applied in continuous cooling. {yields} Using the thermodynamic data and maximum value of the mechanical driving force the predicted increase in M{sub s} ({approx}0.1 K/MPa) is in agreement with experiment {yields} Austenite was deformed plastically at different temperatures (800 deg. C-1100 deg. C). {yields} High deformation temperature (i.e. 1100 deg. C) as well as low plastic strain (i.e. {epsilon}{sub ave} {approx} 30%) do not affect martensite transformation noticeably, whereas lower deformation temperature (e.g. 900 deg. C) and large plastic strain (i.e. {epsilon}{sub ave} {approx} 70%) retards martensite transformation. {yields} The theory of mechanical stabilization predicts the depression of M{sub s}. - Abstract: The influence of compressive stress and prior plastic deformation of austenite on the martensite transformation in a eutectoid steel is studied both experimentally and theoretically. It is demonstrated that martensite formation is assisted by stress but it is retarded when transformation occurs from deformed austenite. With the quantitative modeling of the problem based on the theory of displacive shear transformation, the explanation of the two opposite roles of mechanical treatment prior to or simultaneously to martensite transformation is presented.

  4. Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions

    International Nuclear Information System (INIS)

    Vogel, T.M.; McCarty, P.L.

    1987-01-01

    A common industrial solvent, 1,1,1-trichloroethane (TCA), is one of the most frequently found contaminants in ground water. The fate of TCA in ground water is complicated by the different possible abiotic and biotic transformations that it may undergo. Abiotic transformation of TCA can result in a mixture of 1,1-dichloro-ethylene (1,1-DCE) and acetic acid, as shown by others. This study confirms that TCA can be biotransformed by reductive dehalogenation to 1,1-dichloroethane (1,1-DCA) and chloroethane (CA) under methanogenic conditions. Also, reductive dehalogenation of 1,1-DCE to vinyl chloride (VC) is confirmed. This study demonstrates that these transformations can occur stoichiometrically. In addition, [ 14 C]TCA, [ 14 C]-1,1-DCA, [ 14 C]-1,1-DCE, [ 14 C]CA, and [ 14 C]VC were at least partially mineralized to 14 CO 2 under similar methanogenic conditions.23 references, 3 figures, 4 tables

  5. In silico Analysis of osr40c1 Promoter Sequence Isolated from Indica Variety Pokkali

    Directory of Open Access Journals (Sweden)

    W.S.I. de Silva

    2017-07-01

    Full Text Available The promoter region of a drought and abscisic acid (ABA inducible gene, osr40c1, was isolated from a salt-tolerant indica rice variety Pokkali, which is 670 bp upstream of the putative translation start codon. In silico promoter analysis of resulted sequence showed that at least 15 types of putative motifs were distributed within the sequence, including two types of common promoter elements, TATA and CAAT boxes. Additionally, several putative cis-acing regulatory elements which may be involved in regulation of osr40c1 expression under different conditions were found in the 5′-upstream region of osr40c1. These are ABA-responsive element, light-responsive elements (ATCT-motif, Box I, G-box, GT1-motif, Gap-box and Sp1, myeloblastosis oncogene response element (CCAAT-box, auxin responsive element (TGA-element, gibberellin-responsive element (GARE-motif and fungal-elicitor responsive elements (Box E and Box-W1. A putative regulatory element, required for endosperm-specific pattern of gene expression designated as Skn-1 motif, was also detected in the Pokkali osr40c1 promoter region. In conclusion, the bioinformatic analysis of osr40c1 promoter region isolated from indica rice variety Pokkali led to the identification of several important stress-responsive cis-acting regulatory elements, and therefore, the isolated promoter sequence could be employed in rice genetic transformation to mediate expression of abiotic stress induced genes.

  6. Let-7a is a direct EWS-FLI-1 target implicated in Ewing's sarcoma development.

    Directory of Open Access Journals (Sweden)

    Claudio De Vito

    Full Text Available Ewing's sarcoma family tumors (ESFT are the second most common bone malignancy in children and young adults, characterized by unique chromosomal translocations that in 85% of cases lead to expression of the EWS-FLI-1 fusion protein. EWS-FLI-1 functions as an aberrant transcription factor that can both induce and suppress members of its target gene repertoire. We have recently demonstrated that EWS-FLI-1 can alter microRNA (miRNA expression and that miRNA145 is a direct EWS-FLI-1 target whose suppression is implicated in ESFT development. Here, we use miRNA arrays to compare the global miRNA expression profile of human mesenchymal stem cells (MSC and ESFT cell lines, and show that ESFT display a distinct miRNA signature that includes induction of the oncogenic miRNA 17-92 cluster and repression of the tumor suppressor let-7 family. We demonstrate that direct repression of let-7a by EWS-FLI-1 participates in the tumorigenic potential of ESFT cells in vivo. The mechanism whereby let-7a expression regulates ESFT growth is shown to be mediated by its target gene HMGA2, as let-7a overexpression and HMGA2 repression both block ESFT cell tumorigenicity. Consistent with these observations, systemic delivery of synthetic let-7a into ESFT-bearing mice restored its expression in tumor cells, decreased HMGA2 expression levels and resulted in ESFT growth inhibition in vivo. Our observations provide evidence that deregulation of let-7a target gene expression participates in ESFT development and identify let-7a as promising new therapeutic target for one of the most aggressive pediatric malignancies.

  7. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells.

    Science.gov (United States)

    Liu, Yi; Luo, Fei; Wang, Bairu; Li, Huiqiao; Xu, Yuan; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Lu, Lu; Qin, Yu; Xiang, Quanyong; Liu, Qizhan

    2016-01-01

    Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    International Nuclear Information System (INIS)

    Appledorn, Daniel M; Dao, Kim-Hien T; O'Reilly, Sandra; Maher, Veronica M; McCormick, J Justin

    2010-01-01

    The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas transformed human cells, including their ability to form tumors in athymic

  9. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    Directory of Open Access Journals (Sweden)

    Dao Kim-Hien T

    2010-01-01

    Full Text Available Abstract Background The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Methods Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Results Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. Conclusion(s The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas

  10. Development of an Agrobacterium-Mediated Transformation Method and Evaluation of Two Exogenous Constitutive Promoters in Oleaginous Yeast Lipomyces starkeyi.

    Science.gov (United States)

    Lin, Xinping; Liu, Sasa; Bao, Ruiqi; Gao, Ning; Zhang, Sufang; Zhu, Rongqian; Zhao, Zongbao Kent

    2017-11-01

    Oleaginous yeast Lipomyces starkeyi, a promising strain of great biotechnical importance, is able to accumulate over 60% of its cell biomass as triacylglycerols (TAGs). It is promising to directly produce the derivatives of TAGs, such as long-chain fatty acid methyl esters and alkanes, in L. starkeyi. However, techniques for genetic modification of this oleaginous yeast are lacking, thus, further research is needed to develop genetic tools and functional elements. Here, we used two exogenous promoters (pGPD and pPGK) from oleaginous yeast Rhodosporidium toruloides to establish a simpler Agrobacterium-mediated transformation (AMT) method for L. starkeyi. Hygromycin-resistant transformants were obtained on antibiotic-contained plate. Mitotic stability test, genotype verification by PCR, and protein expression confirmation all demonstrated the success of this method. Furthermore, the strength of these two promoters was evaluated at the phenotypic level on a hygromycin-gradient plate and at the transcriptional level by real-time quantitative PCR. The PGK promoter strength was 2.2-fold as that of GPD promoter to initiate the expression of the hygromycin-resistance gene. This study provided an easy and efficient genetic manipulation method and elements of the oleaginous yeast L. starkeyi for constructing superior strains to produce advanced biofuels.

  11. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    Science.gov (United States)

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  12. Darboux transformations for the time-dependent nonhomogeneous Burgers equation in (1+1) dimensions

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; Manuel Carballo Jimenez, Juan

    2009-01-01

    We extend the formalism of nth order Darboux transformations to the time-dependent nonhomogeneous Burgers equation (NBE) in (1+1) dimensions. Similar to the Schroedinger case, our Darboux transformation retains the form of the NBE, while changing the nonhomogeneous term. The transformed solution of the NBE and the corresponding transformed nonhomogeneity are given in closed form. Furthermore, properties of the transformation are discussed and an application is given.

  13. Auxin synthesis gene tms1 driven by tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones.

    Science.gov (United States)

    Kolachevskaya, Oksana O; Sergeeva, Lidiya I; Floková, Kristyna; Getman, Irina A; Lomin, Sergey N; Alekseeva, Valeriya V; Rukavtsova, Elena B; Buryanov, Yaroslav I; Romanov, Georgy A

    2017-03-01

    Ectopic auxin overproduction in transgenic potato leads to enhanced productivity accompanied with concerted and occasional changes in hormonal status, and causing altered response of transformants to exogenous auxin or cytokinin. Previously, we generated potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 driven by tuber-specific patatin gene promoter (B33-promoter). Here, we studied the endogenous hormonal status and the response to exogenous phytohormones in tms1 transformants cultured in vitro. Adding indole-3-acetic acid (IAA) or kinetin to culture medium affected differently tuberization of tms1-transformed and control plants, depending also on sucrose content in the medium. Exogenous phytohormones ceased to stimulate the tuber initiation in transformants at high (5-8%) sucrose concentration, while in control plants the stimulation was observed in all experimental settings. Furthermore, exogenous auxin partly inhibited the tuber initiation, and exogenous cytokinin reduced the average tuber weight in most transformants at high sucrose content. The elevated auxin level in tubers of the transformants was accompanied with a decrease in content of cytokinin bases and their ribosides in tubers and most shoots. No concerted changes in contents of abscisic, jasmonic, salicylic acids and gibberellins in tubers were detected. The data on hormonal status indicated that the enhanced productivity of tms1 transformants was due to auxin and not mediated by other phytohormones. In addition, exogenous cytokinin was shown to upregulate the expression of genes encoding orthologs of auxin receptors. Overall, the results showed that tms1 expression and local increase in IAA level in transformants affect both the balance of endogenous cytokinins and the dynamics of tuberization in response to exogenous hormones (auxin, cytokinin), the latter reaction depending also on the carbohydrate supply. We introduce a basic model for the hormonal network

  14. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  15. Tax relieves transcriptional repression by promoting histone deacetylase 1 release from the human T-cell leukemia virus type 1 long terminal repeat.

    Science.gov (United States)

    Lu, Hanxin; Pise-Masison, Cynthia A; Linton, Rebecca; Park, Hyeon Ung; Schiltz, R Louis; Sartorelli, Vittorio; Brady, John N

    2004-07-01

    Expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by the viral transcriptional activator Tax. Tax activates viral transcription through interaction with the cellular transcription factor CREB and the coactivators CBP/p300. In this study, we have analyzed the role of histone deacetylase 1 (HDAC1) on HTLV-1 gene expression from an integrated template. First we show that trichostatin A, an HDAC inhibitor, enhances Tax expression in HTLV-1-transformed cells. Second, using a cell line containing a single-copy HTLV-1 long terminal repeat, we demonstrate that overexpression of HDAC1 represses Tax transactivation. Furthermore, a chromatin immunoprecipitation assay allowed us to analyze the interaction of transcription factors, coactivators, and HDACs with the basal and activated HTLV-1 promoter. We demonstrate that HDAC1 is associated with the inactive, but not the Tax-transactivated, HTLV-1 promoter. In vitro and in vivo glutathione S-transferase-Tax pull-down and coimmunoprecipitation experiments demonstrated that there is a direct physical association between Tax and HDAC1. Importantly, biotinylated chromatin pull-down assays demonstrated that Tax inhibits and/or dissociates the binding of HDAC1 to the HTLV-1 promoter. Our results provide evidence that Tax interacts directly with HDAC1 and regulates binding of the repressor to the HTLV-1 promoter.

  16. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA...

  17. Association of health professional leadership behaviors on health promotion practice beliefs.

    Science.gov (United States)

    Stone, Jacqueline D; Belcher, Harolyn M E; Attoh, Prince; D'Abundo, Michelle; Gong, Tao

    2017-04-01

    Leadership is a process by which an individual influences a group or individual to achieve a common goal, in this case health promotion for individuals with disabilities. (1) To examine the association between the transformational leadership behaviors of the Association of University Centers on Disabilities (AUCD) network professionals and their practice beliefs about health promotion activities, specifically cardiovascular fitness and healthy weight, for people with disabilities. (2) To determine if discipline and/or years of practice moderate the association between transformational leadership behaviors and practice beliefs regarding health promotion. There is a positive association between transformational leadership behaviors and health professionals practice beliefs regarding health promotion activities for persons with disabilities. A quantitative cross-sectional web-based survey design was used to determine the association between leadership behaviors and practices beliefs regarding health promotion for people with disabilities. The Multifactor Leadership Questionnaire and an adapted version of the Role of Health Promotion in Physical Therapy Survey were used to measure leadership and practice beliefs, respectively. Multiple regression analysis was applied to determine the association of leadership behaviors with health promotion practice beliefs variables. Transformational leadership behaviors of the AUCD network professionals were positively associated with health promotion practice beliefs about cardiovascular fitness for people with disabilities. Years post licensure and discipline did not moderate the association between transformational leadership and practice beliefs regarding health promotion. Transformational leadership may facilitate health professionals' health promotion practices for people with disabilities. Further research and training in leadership is needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  19. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants.

    Science.gov (United States)

    Hong, Jeum Kyu; Hwang, Byung Kook

    2009-01-01

    The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.

  20. Constitutively active transforming growth factor β receptor 1 in the mouse ovary promotes tumorigenesis

    Science.gov (United States)

    Gao, Yang; Vincent, David F.; Davis, Anna Jane; Sansom, Owen J.; Bartholin, Laurent; Li, Qinglei

    2016-01-01

    Despite the well-established tumor suppressive role of TGFβ proteins, depletion of key TGFβ signaling components in the mouse ovary does not induce a growth advantage. To define the role of TGFβ signaling in ovarian tumorigenesis, we created a mouse model expressing a constitutively active TGFβ receptor 1 (TGFBR1) in ovarian somatic cells using conditional gain-of-function approach. Remarkably, these mice developed ovarian sex cord-stromal tumors with complete penetrance, leading to reproductive failure and mortality. The tumors expressed multiple granulosa cell markers and caused elevated serum inhibin and estradiol levels, reminiscent of granulosa cell tumors. Consistent with the tumorigenic effect, overactivation of TGFBR1 altered tumor microenvironment by promoting angiogenesis and enhanced ovarian cell proliferation, accompanied by impaired cell differentiation and dysregulated expression of critical genes in ovarian function. By further exploiting complementary genetic models, we substantiated our finding that constitutively active TGFBR1 is a potent oncogenic switch in mouse granulosa cells. In summary, overactivation of TGFBR1 drives gonadal tumor development. The TGFBR1 constitutively active mouse model phenocopies a number of morphological, hormonal, and molecular features of human granulosa cell tumors and are potentially valuable for preclinical testing of targeted therapies to treat granulosa cell tumors, a class of poorly defined ovarian malignancies. PMID:27344183

  1. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation

    Directory of Open Access Journals (Sweden)

    Giuliana Cassinelli

    2009-01-01

    Full Text Available Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC. We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs.

  2. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    Science.gov (United States)

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  3. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells.

    Science.gov (United States)

    Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E

    1996-09-01

    Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.

  4. Structural transformation in monolayer materials: a 2D to 1D transformation.

    Science.gov (United States)

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.

  5. Solvent-dependent transformation of aflatoxin B1 in soil.

    Science.gov (United States)

    Starr, James M; Rushing, Blake R; Selim, Mustafa I

    2017-08-01

    To date, all studies of aflatoxin B 1 (AFB 1 ) transformation in soil or in purified mineral systems have identified aflatoxins B 2 (AFB 2 ) and G 2 (AFG 2 ) as the primary transformation products. However, identification in these studies was made using thin layer chromatography which has relatively low resolution, and these studies did not identify a viable mechanism by which such transformations would occur. Further, the use of methanol as the solvent delivery vehicle in these studies may have contributed to formation of artifactual transformation products. In this study, we investigated the role of the solvent vehicle in the transformation of AFB 1 in soil. To do this, we spiked soils with AFB 1 dissolved in water (93:7, water/methanol) or methanol and used HPLC-UV and HPLC-MS to identify the transformation products. Contrasting previous published reports, we did not detect AFB 2 or AFG 2 . In an aqueous-soil environment, we identified aflatoxin B 2a (AFB 2a ) as the single major transformation product. We propose that AFB 2a is formed from hydrolysis of AFB 1 with the soil acting as an acid catalyst. Alternatively, when methanol was used, we identified methoxy aflatoxin species likely formed via acid-catalyzed addition of methanol to AFB 1 . These results suggest that where soil moisture is adequate, AFB 1 is hydrolyzed to AFB 2a and that reactive organic solvents should be avoided when replicating natural conditions to study the fate of AFB 1 in soil.

  6. Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

    Directory of Open Access Journals (Sweden)

    Erh-Hsuin Lim

    2013-11-01

    Full Text Available BackgroundTo overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF into an electrospun poly(L-lactide scaffold.MethodsThe electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats.ResultsChemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen.ConclusionsWe have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

  7. Is VIP1 important for Agrobacterium-mediated transformation?

    Science.gov (United States)

    Shi, Yong; Lee, Lan-Ying; Gelvin, Stanton B

    2014-09-01

    Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Optimization of agrobacterium tumefaciens mediated transformation in eucalyptus camaldulensis

    International Nuclear Information System (INIS)

    Ahad, A.; Maqbool, A.; Malik, K.A.

    2014-01-01

    This study was conducted to optimize Agrobacterium tumefaciens mediated transformation for Eucalyptus camaldulensis. Transformation was done by using LBA4404 containing binary plasmid pGA482 with uidA (Gus) gene under CamV35S promoter and nptII gene under nos promoter. For optimization, different explants (Cotyledonary leaves, plantlet leaves and hypocotyls of young In vitro plants and calli) with and without preculture were infected with a range of optical densities (O.D.600nm=0.3-0.6). Effect of different concentrations of Acetosyringone, infection time and co-cultivation time on transformation efficiency was evaluated. Confirmation of transformation was done through GUS histochemical staining and through PCR. Callogenesis and regeneration was found fast on MS medium containing 0.5 mg/L NAA and 1.5 mg/L BAP. Highest transformation efficiency was obtained with bacterial suspension of O.D.600nm = 0.5 for non-precultured explants and O.D.600nm=0.3 for precultured explants. (author)

  9. 2-HG Inhibits Necroptosis by Stimulating DNMT1-Dependent Hypermethylation of the RIP3 Promoter

    Directory of Open Access Journals (Sweden)

    Zhentao Yang

    2017-05-01

    Full Text Available 2-hydroxyglutarate-(2-HG-mediated inhibition of TET2 activity influences DNA hypermethylation in cells harboring mutations of isocitrate dehydrogenases 1 and 2 (IDH1/2. Here, we show that 2-HG also regulates DNA methylation mediated by DNA methyltransferase 1 (DNMT1. DNMT1-dependent hypermethylation of the RIP3 promoter occurred in both IDH1 R132Q knockin mutant mouse embryonic fibroblast (MEFs and 2-HG-treated wild-type (WT MEFs. We found that 2-HG bound to DNMT1 and stimulated its association with the RIP3 promoter, inducing hypermethylation that reduces RIP3 protein and consequently impaired RIP3-dependent necroptosis. In human glioma samples, RIP3 protein levels correlated negatively with IDH1 R132H levels. Furthermore, ectopic expression of RIP3 in transformed IDH1-mutated MEFs inhibited the growth of tumors derived from these cells following transplantation into nude mice. Thus, our research sheds light on a mechanism of 2-HG-induced DNA hypermethylation and suggests that impaired necroptosis contributes to the tumorigenesis driven by IDH1/2 mutations.

  10. Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression.

    Science.gov (United States)

    Hung, Shun-Pei; Yang, Muh-Hwa; Tseng, Kuo-Fung; Lee, Oscar K

    2013-01-01

    In solid tumors, a decreased oxygen and nutrient supply creates a hypoxic microenvironment in the central region. This hypoxic condition induces molecular responses of normal and cancer cells in the local area, including angiogenesis, metabolic changes, and metastasis. In addition, other cells including mesenchymal stem cells (MSCs) have been reported to be recruited into the hypoxic area of solid tumors. In our previous study, we found that hypoxic condition induces the secretion of growth factors and cytokines in MSCs, and here we demonstrate that elevated secretion of transforming growth factor-β1 (TGF-β1) by MSCs under hypoxia promotes the growth, motility, and invasive ability of breast cancer cells. It was found that TGF-β1 promoter activity was regulated by hypoxia, and the major hypoxia-regulated element was located between bp -1030 to -666 in front of the TGF-β1 promoter region. In ChIP assay, the results revealed that HIF-1 was bound to the hypoxia response element (HRE) of TGF-β1 promoter. Collectively, the results indicate that hypoxia microenvironment can enhance cancer cell growth through the paracrine effects of the MSCs by driving their TGF-β1 gene expression and secretion. Therefore, extra caution has to be exercised when considering hypoxia pretreatment of MSCs before cell transplantation into patients for therapeutic purposes, particularly in patients susceptible to tumor growth.

  11. Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1 promoter and its regulation by Sp1

    Directory of Open Access Journals (Sweden)

    Botella Luisa M

    2010-06-01

    Full Text Available Abstract Background Activin receptor-like kinase 1 (ALK1 is a Transforming Growth Factor-β (TGF-β receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (ACVRL1 give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of ACVRL1. Here, we have studied the different origins of ACVRL1 transcription, we have analyzed in silico its 5'-proximal promoter sequence and we have characterized the role of Sp1 in the transcriptional regulation of ACVRL1. Results We have performed a 5'Rapid Amplification of cDNA Ends (5'RACE of ACVRL1 transcripts, finding two new transcriptional origins, upstream of the one previously described, that give rise to a new exon undiscovered to date. The 5'-proximal promoter region of ACVRL1 (-1,035/+210 was analyzed in silico, finding that it lacks TATA/CAAT boxes, but contains a remarkably high number of GC-rich Sp1 consensus sites. In cells lacking Sp1, ACVRL1 promoter reporters did not present any significant transcriptional activity, whereas increasing concentrations of Sp1 triggered a dose-dependent stimulation of its transcription. Moreover, silencing Sp1 in HEK293T cells resulted in a marked decrease of ACVRL1 transcriptional activity. Chromatin immunoprecipitation assays demonstrated multiple Sp1 binding sites along the proximal promoter region of ACVRL1 in endothelial cells. Furthermore, demethylation of CpG islands, led to an increase in ACVRL1 transcription, whereas in vitro hypermethylation resulted in the abolishment of Sp1-dependent transcriptional activation of ACVRL1. Conclusions Our results describe two new transcriptional start sites in ACVRL1 gene, and indicate that Sp1 is a key regulator of ACVRL1 transcription, providing new insights into

  12. Rplp1 bypasses replicative senescence and contributes to transformation

    Energy Technology Data Exchange (ETDEWEB)

    Artero-Castro, A. [Pathology Department, Fundacio Institut de Recerca Hospital Vall d' Hebron, Passeig Vall d' Hebron 119-129, 08035 Barcelona (Spain); Kondoh, H. [Department of Geriatric Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Fernandez-Marcos, P.J.; Serrano, M. [Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro St, Madrid 28029 (Spain); Ramon y Cajal, S. [Pathology Department, Fundacio Institut de Recerca Hospital Vall d' Hebron, Passeig Vall d' Hebron 119-129, 08035 Barcelona (Spain); LLeonart, M.E., E-mail: melleona@ir.vhebron.net [Pathology Department, Fundacio Institut de Recerca Hospital Vall d' Hebron, Passeig Vall d' Hebron 119-129, 08035 Barcelona (Spain)

    2009-05-01

    To determine whether genes expressed by embryonic stem cells have a proliferative effect in primary cells, primary mouse embryonic fibroblasts were infected with an ES cell cDNA library. This led to identification of the ribosomal protein, Rplp1, a member of the P group of ribosomal proteins, whose putative role for bypassing replicative senescence in MEFs was investigated. Our results show that Rplp1 produces a two-fold increase in the expression of an E2F1 promoter and upregulation of cyclin E in MEFs. Therefore, this study is the first to show that overexpression of a single ribosomal protein, Rplp1, is a cause and not a consequence of cell proliferation. In addition, co-expression of Rplp1 with mutant ras{sup Val12} contributed to transformation in NIH3T3 cells, as was evidenced by colony production in soft-agar assays. Moreover, the Rplp1 protein was upregulated in MEFs and NIH3T3 cells upon expression of a p53 dominant negative mutant gene designated p53R175H. Hence, mutation of p53 may facilitate immortalization in vitro by upregulating Rplp1. Lastly, Rplp1 mRNA was found to be upregulated in 16 of 26 human colon cancer biopsy specimens, a finding that may be of relevance to cancer research.

  13. Rplp1 bypasses replicative senescence and contributes to transformation

    International Nuclear Information System (INIS)

    Artero-Castro, A.; Kondoh, H.; Fernandez-Marcos, P.J.; Serrano, M.; Ramon y Cajal, S.; LLeonart, M.E.

    2009-01-01

    To determine whether genes expressed by embryonic stem cells have a proliferative effect in primary cells, primary mouse embryonic fibroblasts were infected with an ES cell cDNA library. This led to identification of the ribosomal protein, Rplp1, a member of the P group of ribosomal proteins, whose putative role for bypassing replicative senescence in MEFs was investigated. Our results show that Rplp1 produces a two-fold increase in the expression of an E2F1 promoter and upregulation of cyclin E in MEFs. Therefore, this study is the first to show that overexpression of a single ribosomal protein, Rplp1, is a cause and not a consequence of cell proliferation. In addition, co-expression of Rplp1 with mutant ras Val12 contributed to transformation in NIH3T3 cells, as was evidenced by colony production in soft-agar assays. Moreover, the Rplp1 protein was upregulated in MEFs and NIH3T3 cells upon expression of a p53 dominant negative mutant gene designated p53R175H. Hence, mutation of p53 may facilitate immortalization in vitro by upregulating Rplp1. Lastly, Rplp1 mRNA was found to be upregulated in 16 of 26 human colon cancer biopsy specimens, a finding that may be of relevance to cancer research.

  14. Role of free radicals in the initiation and promotion of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Troll, W.; Little, J.B.

    1984-01-01

    We have studied the effects of superoxide dismutase (SOD), catalase, Cu(II) (3,5-diisopropylsalicylate)2 (CuDIPS) and other copper compounds on radiation transformation in vitro using C3H 10T1/2 cells. When present only during irradiation, high concentrations of SOD in the medium enhanced transformation, while catalase, inactivated SOD (autoclaved), CuDIPS, cupric chloride and cuprous chloride inhibited the initiation phase of radiation transformation. SOD, catalase and CuDIPS did not affect the expression phase of radiation transformation. Suppression of the TPA enhancement of transformation by catalase was a highly significant effect, while the suppression by SOD was not of statistical significance. Our results suggest that hydrogen peroxide (H 2 O 2 ) may be important in the cellular damage leading to malignant transformation

  15. Role of free radicals in the initiation and promotion of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.; Troll, W.

    1984-01-01

    The effects of superoxide dismutase (SOD), catalase, Cu(II) (3,5-diisopropylsalicylate) 2 (CuDIPS) and other copper compounds on radiation transformation in vitro have been studied using C3H 10T1/2 cells. When present only during irradiation, high concentrations of SOD in the medium enhanced transformation, while catalase, inactivated SOD (autoclaved), CuDIPS, cupric chloride and cuprous chloride inhibited the initiation phase of radiation transformation. SOD, catalase and CuDIPS did not affect the expression phase of radiation transformation. Suppression of the TPA enhancement of transformation by catalase was a highly significant effect, while the suppression by SOD was not of statistical significance. These results suggest that hydrogen peroxide (H 2 O 2 ) may be important in the cellular damage leading to malignant transformation. (author)

  16. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1.

    Science.gov (United States)

    Treas, Justin; Tyagi, Tulika; Singh, Kamaleshwar P

    2013-11-01

    Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation. © 2013 Wiley Periodicals, Inc.

  17. A Baculovirus immediate-early gene, ie1, promoter drives efficient expression of a transgene in both Drosophila melanogaster and Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Mika Masumoto

    Full Text Available Many promoters have been used to drive expression of heterologous transgenes in insects. One major obstacle in the study of non-model insects is the dearth of useful promoters for analysis of gene function. Here, we investigated whether the promoter of the immediate-early gene, ie1, from the Bombyx mori nucleopolyhedrovirus (BmNPV could be used to drive efficient transgene expression in a wide variety of insects. We used a piggyBac-based vector with a 3xP3-DsRed transformation marker to generate a reporter construct; this construct was used to determine the expression patterns driven by the BmNPV ie1 promoter; we performed a detailed investigation of the promoter in transgene expression pattern in Drosophila melanogaster and in B. mori. Drosophila and Bombyx belong to different insect orders (Diptera and Lepidoptera, respectively; however, and to our surprise, ie1 promoter-driven expression was evident in several tissues (e.g., prothoracic gland, midgut, and tracheole in both insects. Furthermore, in both species, the ie1 promoter drove expression of the reporter gene from a relatively early embryonic stage, and strong ubiquitous ie1 promoter-driven expression continued throughout the larval, pupal, and adult stages by surface observation. Therefore, we suggest that the ie1 promoter can be used as an efficient expression driver in a diverse range of insect species.

  18. A phase-field study of the physical concepts of martensitic transformations in steels

    International Nuclear Information System (INIS)

    Yeddu, Hemantha Kumar; Borgenstam, Annika; Hedström, Peter; Ågren, John

    2012-01-01

    Highlights: ► Critical driving forces associated with martensitic transformation are estimated. ► Plastic relaxation rate affects the transformation and microstructure evolution. ► Low relaxation rate promotes multi-domained martensitic microstructure. ► High relaxation rate promotes growth of a single martensite domain. ► The model predicts the final habit plane of martensite to be (−2 1 1) γ . - Abstract: A 3D elastoplastic phase-field model is employed to study various driving forces associated with martensitic transformations, plastic deformation behavior as well as the habit plane concept. Usage of thermodynamic parameters corresponding to Fe–0.3%C alloy in conjunction with anisotropic physical parameters of steels as the simulation parameters have yielded the results in reasonable agreement with experimental observations. From the simulation results, it is concluded that there exist three critical driving forces that control the transformation and also that the plastic deformation behavior of the material greatly affects the transformation. The model predicts the initial habit plane of the first infinitesimal unit of martensite as (−1 1 1). The model also predicts that, as the transformation progresses, the above mentioned martensite domain rotates and finally orients along the new habit plane of (−2 1 1).

  19. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA

  20. Compound list: transforming growth factor beta 1 [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available transforming growth factor beta 1 TGFB1 00182 ftp://ftp.biosciencedbc.jp/archive/op...en-tggates/LATEST/Human/in_vitro/transforming_growth_factor_beta_1.Human.in_vitro.Liver.zip ...

  1. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences. SONG XUE. Articles written in Journal of Biosciences. Volume 41 Issue 2 June 2016 pp 229-236 Article. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells · Zhan Shi Ding Wu Run Tang Xiang Li Renfu Chen Song Xue Chengjing ...

  2. Optimization of agrobacterium tumefaciens mediated transformation in populus deltoides

    International Nuclear Information System (INIS)

    John, E.; Maqbool, A.; Malik, K.A.

    2014-01-01

    The objective of the study was to develop an efficient protocol for Populus deltoides transformation through Agrobacterium tumefaciens LBA4404. Agrobacterium strain harboring binary plasmid pGA482 with Gus (uidA) gene under CamV35S promoter and Neomycin phosphotransferase (nptII) gene under Nos promoter was used for the transformation. Nodal, internodal and leaf explants from 4-5 months In vitro and fieldgrown plants were used for the transformation. Transformation was done under different conditions including, preculture time, optical density, acetosyringone concentration, infection time and co-cultivation time. Confirmation of transformation was done through GUS histochemical staining. Highest transformation efficiency was observed in one week precultured leaf explants from field grown source on preculture medium containing 200 meu M acetosyringone. Precultured explants from In vitro source also gave good results for transformation but the callus formation was found to be slow in leaf explant. Calli from the both sources did not show any transformation when infected with O.D A600nm range from 0.3-0.8. Node and internode though showed less transformation rate but the callogenesis was found to be highest in node and internode explants on CIM 1. Leaf explants from field source also gave high callus induction on CIM 5. A. tumefaciens O.D A600nm 0.3-0.5 was found to be effective. Infection time of 1-2 hour and co-cultivation time of 1day in dark were found to be optimum for the transformation. 200mg/l of timentin was found the best to control the overgrowth of Agrobacterium.100mg/l Kanamycin in growth medium was found to sufficient for selection for transformants. Selected transformants were confirmed through PCR for the presence of transgene. The present protocol for P. deltoides was found to be efficient for genetic transformation and can be used to introduce novel traits in the P. deltoides. (author)

  3. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  4. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    International Nuclear Information System (INIS)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy

  5. Effects of Nereis diversicolor on the Transformation of 1-Methylpyrene and Pyrene

    DEFF Research Database (Denmark)

    Malmquist, Linus Mattias Valdemar; Christensen, Jan Henning; Selck, Henriette

    and quantitative analyses of metabolites and parent compounds in worm tissue, water, and sediment were performed. Transformation of 1-methylpyrene generated the benzylic hydroxylated phase I product, 1-pyrenecarboxylic acid that comprised 90% of the total metabolites of 1-methylpyrene, and was mainly found......Transformation of nonsubstituted and alkyl-substituted polycyclic aromatic hydrocarbons (PAHs) by the benthic invertebrate Nereis diversicolor was compared in this study. Pyrene and 1-methylpyrene were used as model compounds for nonsubstituted and alkyl-substituted PAHs, respectively. Qualitative...... as the most prominent metabolite. Transformation of 1-methylpyrene (21% transformed) was more than 3 times as efficient as pyrene transformation (5.6% transformed). Because crude oils contain larger amounts of C1−C4-substituted PAHs than nonsubstituted PAHs, the rapid and efficient transformation of sediment...

  6. Effects of Nereis diversicolor on the transformation of 1-Methylpyrene and Pyrene

    DEFF Research Database (Denmark)

    Malmquist, Linus Mattias Valdemar; Christensen, Jan H.; Selck, Henriette

    2013-01-01

    and quantitative analyses of metabolites and parent compounds in worm tissue, water, and sediment were performed. Transformation of 1-methylpyrene generated the benzylic hydroxylated phase I product, 1-pyrenecarboxylic acid that comprised 90% of the total metabolites of 1-methylpyrene, and was mainly found......Transformation of nonsubstituted and alkyl-substituted polycyclic aromatic hydrocarbons (PAHs) by the benthic invertebrate Nereis diversicolor was compared in this study. Pyrene and 1-methylpyrene were used as model compounds for nonsubstituted and alkyl-substituted PAHs, respectively. Qualitative...... as the most prominent metabolite. Transformation of 1-methylpyrene (21% transformed) was more than 3 times as efficient as pyrene transformation (5.6% transformed). Because crude oils contain larger amounts of C1−C4-substituted PAHs than nonsubstituted PAHs, the rapid and efficient transformation of sediment...

  7. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches

    Directory of Open Access Journals (Sweden)

    Marco Mineo

    2016-06-01

    Full Text Available Long non-coding RNAs (lncRNAs have an undefined role in the pathobiology of glioblastoma multiforme (GBM. These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2 as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context.

  8. Identification of Leaf Promoters for Use in Transgenic Wheat

    Directory of Open Access Journals (Sweden)

    Saqer S. Alotaibi

    2018-03-01

    Full Text Available Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase and the other fructose-1,6-bisphosphate aldolase (FBPA from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields.

  9. Fatty acid elongase 1 (FAE1) promoter as a candidate for genetic ...

    African Journals Online (AJOL)

    As an important cis-regulatory element, a promoter plays a key role in plant gene expression and regulation, and has been widely used in plant genetic engineering. The fatty acid elongase 1 (FAE1) promoter was isolated from Arabidopsis thaliana. Sequence analysis showed that the FAE1 promoter contains two Skn-1 ...

  10. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    International Nuclear Information System (INIS)

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  11. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus.

    Science.gov (United States)

    Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong

    2014-01-01

    Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells.

    Science.gov (United States)

    Perros, M; Deleu, L; Vanacker, J M; Kherrouche, Z; Spruyt, N; Faisst, S; Rommelaere, J

    1995-01-01

    The activity of the P4 promoter of the parvovirus minute virus of mice (prototype strain MVMp) is stimulated in ras-transformed FREJ4 cells compared with the parental FR3T3 line. This activation may participate in the oncolytic effect of parvoviruses, given that P4 drives a transcriptional unit encoding cytotoxic nonstructural proteins. Our results suggest that the higher transcriptional activity of promoter P4 in FREJ4 cells is mediated at least in part by upstream CRE elements. Accordingly, mutations in the CRE motifs impair P4 function more strongly in the FREJ4 derivative than in its FR3T3 parent. Further evidence that these elements contribute to hyperactivity of the P4 promoter in the ras transformant is the fact that they form distinct complexes with proteins from FREJ4 and FR3T3 cell extracts. This difference can be abolished by treating the FREJ4 cell extracts with cyclic AMP-dependent protein kinase (PKA) or treating original cultures with a PKA activator. These findings can be linked with two previously reported features of ras-transformed cells: the activation of a PKA-inhibited protein kinase cascade and the reduction of PKA-induced protein phosphorylation. In keeping with these facts, P4-directed gene expression can be up- or downmodulated in vivo by exposing cells to known inhibitors or activators of PKA, respectively. PMID:7636996

  13. Expression patterns of ERVWE1/Syncytin-1 and other placentally expressed human endogenous retroviruses along the malignant transformation process of hydatidiform moles.

    Science.gov (United States)

    Bolze, Pierre-Adrien; Patrier, Sophie; Cheynet, Valérie; Oriol, Guy; Massardier, Jérôme; Hajri, Touria; Guillotte, Michèle; Bossus, Marc; Sanlaville, Damien; Golfier, François; Mallet, François

    2016-03-01

    Up to 20% of hydatidiform moles are followed by malignant transformation in gestational trophoblastic neoplasia and require chemotherapy. Syncytin-1 is involved in human placental morphogenesis and is also expressed in various cancers. We assessed the predictive value of the expression of Syncytin-1 and its interactants in the malignant transformation process of hydatidiform moles. Syncytin-1 glycoprotein was localized by immunohistochemistry in hydatidiform moles, gestational trophoblastic neoplasia and control placentas. The transcription levels of its locus ERVWE1, its interaction partners (hASCT1, hASCT2, TLR4 and DC-SIGN) and two loci (ERVFRDE1 and ERV3) involved the expression of other placental envelopes were assessed by real-time PCR. Syncytin-1 glycoprotein was expressed in syncytiotrophoblast of hydatidiform moles with an apical enhancement when compared with normal placentas. Moles with further malignant transformation had a higher staining intensity of Syncytin-1 surface unit C-terminus but the transcription level of its locus ERVWE1 was not different from that of moles with further remission and normal placentas. hASCT1 and TLR4, showed lower transcription levels in complete moles when compared to normal placentas. ERVWE1, ERVFRDE1 and ERV3 transcription was down-regulated in hydatidiform moles and gestational trophoblastic neoplasia. Variations of Syncytin-1 protein localization and down-regulation of hASCT1 and TLR4 transcription are likely to reflect altered functions of Syncytin-1 in the premalignant context of complete moles. The reduced transcription in gestational trophoblastic diseases of ERVWE1, ERVFRDE1 and ERV3, which expression during normal pregnancy is differentially regulated by promoter region methylation, suggest a joint dysregulation mechanism in malignant context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2018-02-01

    Full Text Available Risk stratification using molecular features could potentially help distinguish indolent from aggressive prostate cancer (PCa. Mutations in isocitrate dehydrogenase (IDH acquire an abnormal enzymatic activity, resulting in the production of 2-hydroxyglutarate and alterations in cellular metabolism, histone modification, and DNA methylation. Mutant IDH1 has been identified in various human malignancies, and IDH1R132H constituted the vast majority of mutational events of IDH1. Most recent studies suggested that IDH1 mutations define a methylator subtype in PCa. However, the function of IDH1R132H in PCa development and progression is largely unknown. In this study, we showed that the prevalence of IDH1R132H in Chinese PCa patients is 0.6% (2/336. Of note, IDH1R132H-mutant PCa patients lacked other canonical genomic lesions (e.g., ERG rearrangement, PTEN deletion that are common in most other PCa patients. The in vitro experiment suggested that IDH1R132H can promote proliferation of benign prostate epithelial cell RWPE-1 when under the situation of low cytokine. It could also promote migration capacity of RWPE-1 cells. Mechanistically, IDH1R132H was an important regulator of insulin-like growth factor 1receptor (IGF1R by downregulating a set of microRNAs (miR-141-3p, miR-7-5p, miR-223-3p. These microRNAs were repressed by the alteration of epigenetic modification to decrease the enrichment of active marker H3K4me3 or to increase repressive marker H3K27me3 at their promoters. Collectively, we proposed a novel model for an IDH1R132H-microRNAs-IGF1R regulatory axis, which might provide insight into the function of IDH1R132H in PCa development.

  15. Building Health Promotion into the Job of Home Care Aides: Transformation of the Workplace Health Environment

    Directory of Open Access Journals (Sweden)

    Naoko Muramatsu

    2017-04-01

    Full Text Available Home care aides (HCAs, predominantly women, constitute one of the fastest growing occupations in the United States. HCAs work in clients’ homes that lack typical workplace resources and benefits. This mixed-methods study examined how HCAs’ work environment was transformed by a pilot workplace health promotion program that targeted clients as well as workers. The intervention started with training HCAs to deliver a gentle physical activity program to their older clients in a Medicaid-funded home care program. Older HCAs aged 50+ reported increased time doing the types of physical activity that they delivered to their clients (stretching or strengthening exercise (p = 0.027. Almost all (98% HCAs were satisfied with the program. These quantitative results were corroborated by qualitative data from open-ended survey questions and focus groups. HCAs described how they exercised with clients and how the psychosocial work environment changed with the program. Building physical activity into HCAs’ job is feasible and can effectively promote HCAs’ health, especially among older HCAs.

  16. Building Health Promotion into the Job of Home Care Aides: Transformation of the Workplace Health Environment.

    Science.gov (United States)

    Muramatsu, Naoko; Yin, Lijuan; Lin, Ting-Ti

    2017-04-05

    Home care aides (HCAs), predominantly women, constitute one of the fastest growing occupations in the United States. HCAs work in clients' homes that lack typical workplace resources and benefits. This mixed-methods study examined how HCAs' work environment was transformed by a pilot workplace health promotion program that targeted clients as well as workers. The intervention started with training HCAs to deliver a gentle physical activity program to their older clients in a Medicaid-funded home care program. Older HCAs aged 50+ reported increased time doing the types of physical activity that they delivered to their clients (stretching or strengthening exercise) ( p = 0.027). Almost all (98%) HCAs were satisfied with the program. These quantitative results were corroborated by qualitative data from open-ended survey questions and focus groups. HCAs described how they exercised with clients and how the psychosocial work environment changed with the program. Building physical activity into HCAs' job is feasible and can effectively promote HCAs' health, especially among older HCAs.

  17. Relationship between expression level of hygromycin B-resistant gene and Agrobacterium tumefaciens-mediated transformation efficiency in Beauveria bassiana JEF-007.

    Science.gov (United States)

    Nai, Y S; Lee, M R; Kim, S; Lee, S J; Kim, J C; Yang, Y T; Kim, J S

    2017-09-01

    Agrobacterium tumefaciens-mediated transformation (AtMT) is an effective method for generation of entomopathogenic Beauveria bassiana transformants. However, some strains grow on the selective medium containing hygromycin B (HygB), which reduces the selection efficiency of the putative transformants. In this work, a relationship between HygB resistance gene promoter and AtMT efficiency was investigated to improve the transformant selection. Ten B. bassiana isolates were grown on 800 μg ml -1 HygB medium, but only JEF-006, -007 and -013 showed susceptibility to the antibiotics. Particularly, JEF-007 showed the most dose-dependent susceptibility. Two different Ti-Plasmids, pCeg (gpdA promoter based) and pCambia-egfp (CaMV 35S promoter based), were constructed to evaluate the promoters on the expression of HygB resistance gene (hph) at 100, 150 and 200 μg ml -1 HygB medium. Eight days after the transformation, wild type, AtMT/pCeg and AtMT/pCambia-egfp colonies were observed on 100 μg ml -1 HygB, but significantly larger numbers of colonies were counted on AtMT/pCeg plates. At higher HygB concentration (150 μg ml -1 ), only AtMT/pCeg colonies were further observed, but very few colonies were observed on the wild type and AtMT/pCambia-egfp plates. Putative transformants were subjected to PCR, RT-PCR and qRT-PCR to investigate the T-DNA insertion rate and gene expression level. Consequently, >80% of colonies showed successful AtMT transformation, and the hph expression level in AtMT/pCeg colonies was higher than that of AtMT/pCambia-egfp colonies. In the HygB-susceptible B. bassianaJEF-007, gpdA promoter works better than CaMV 35S promoter in the expression of HygB resistance gene at 150 μg ml -1 HygB, consequently improving the selection efficiency of putative transformants. These results provide useful information for determining AtMT effectiveness in B. bassiana isolates, particularly antibiotic susceptibility and the role of promoters. © 2017 The

  18. Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-10-15

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 1 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  19. Ca2+ promoted the low transformation efficiency of plasmid DNA exposed to PAH contaminants.

    Directory of Open Access Journals (Sweden)

    Fuxing Kang

    Full Text Available The effects of interactions between genetic materials and polycyclic aromatic hydrocarbons (PAHs on gene expression in the extracellular environment remain to be elucidated and little information is currently available on the effect of ionic strength on the transformation of plasmid DNA exposed to PAHs. Phenanthrene and pyrene were used as representative PAHs to evaluate the transformation of plasmid DNA after PAH exposure and to determine the role of Ca(2+ during the transformation. Plasmid DNA exposed to the test PAHs demonstrated low transformation efficiency. In the absence of PAHs, the transformation efficiency was 4.7 log units; however, the efficiency decreased to 3.72-3.14 log units with phenanthrene/pyrene exposures of 50 µg · L(-1. The addition of Ca(2+ enhanced the low transformation efficiency of DNA exposed to PAHs. Based on the co-sorption of Ca(2+ and phenanthrene/pyrene by DNA, we employed Fourier-transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and mass spectrometry (MS to determine the mechanisms involved in PAH-induced DNA transformation. The observed low transformation efficiency of DNA exposed to either phenanthrene or pyrene can be attributed to a broken hydrogen bond in the double helix caused by planar PAHs. Added Ca(2+ formed strong electrovalent bonds with "-POO(--" groups in the DNA, weakening the interaction between PAHs and DNA based on weak molecular forces. This decreased the damage of PAHs to hydrogen bonds in double-stranded DNA by isolating DNA molecules from PAHs and consequently enhanced the transformation efficiency of DNA exposed to PAH contaminants. The findings provide insight into the effects of anthropogenic trace PAHs on DNA transfer in natural environments.

  20. Structural requirements for cub domain containing protein 1 (CDCP1 and Src dependent cell transformation.

    Directory of Open Access Journals (Sweden)

    Gwendlyn Kollmorgen

    Full Text Available Cub domain containing protein 1 (CDCP1 is strongly expressed in tumors derived from lung, colon, ovary, or kidney. It is a membrane protein that is phosphorylated and then bound by Src family kinases. Although expression and phosphorylation of CDCP1 have been investigated in many tumor cell lines, the CDCP1 features responsible for transformation have not been fully evaluated. This is in part due to the lack of an experimental system in which cellular transformation depends on expression of exogenous CDCP1 and Src. Here we use retrovirus mediated co-overexpression of c-Src and CDCP1 to induce focus formation of NIH3T3 cells. Employing different mutants of CDCP1 we show that for a full transformation capacity, the intact amino- and carboxy-termini of CDCP1 are essential. Mutation of any of the core intracellular tyrosine residues (Y734, Y743, or Y762 abolished transformation, and mutation of a palmitoylation motif (C689,690G strongly reduced it. Src kinase binding to CDCP1 was not required since Src with a defective SH2 domain generated even more CDCP1 dependent foci whereas Src myristoylation was necessary. Taken together, the focus formation assay allowed us to define structural requirements of CDCP1/Src dependent transformation and to characterize the interaction of CDCP1 and Src.

  1. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

    DEFF Research Database (Denmark)

    Seghezzi, Nicolas; Amar, Patrick; Købmann, Brian

    2011-01-01

    Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so...... cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different...... projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the −10 box, the −10 extended motif as well as the spacer of the strong Streptomyces promoters...

  2. EMT-induced stemness and tumorigenicity are fueled by the EGFR/Ras pathway.

    Directory of Open Access Journals (Sweden)

    Dominic Chih-Cheng Voon

    Full Text Available Recent studies have revealed that differentiated epithelial cells would acquire stem cell-like and tumorigenic properties following an Epithelial-Mesenchymal Transition (EMT. However, the signaling pathways that participate in this novel mechanism of tumorigenesis have not been fully characterized. In Runx3 (-/- p53 (-/- murine gastric epithelial (GIF-14 cells, EMT-induced plasticity is reflected in the expression of the embryonal proto-oncogene Hmga2 and Lgr5, an exclusive gastrointestinal stem cell marker. Here, we report the concurrent activation of an EGFR/Ras gene expression signature during TGF-β1-induced EMT in GIF-14 cells. Amongst the altered genes was the induction of Egfr, which corresponded with a delayed sensitization to EGF treatment in GIF-14. Co-treatment with TGF-β1 and EGF or the expression of exogenous KRas led to increased Hmga2 or Lgr5 expression, sphere initiation and colony formation in soft agar assay. Interestingly, the gain in cellular plasticity/tumorigenicity was not accompanied by increased EMT. This uncoupling of EMT and the induction of plasticity reveals an involvement of distinct signaling cues, whereby the EGFR/Ras pathway specifically promotes stemness and tumorigenicity in EMT-altered GIF-14 cells. These data show that the EGFR/Ras pathway requisite for the sustenance of gastric stem cells in vivo and in vitro is involved in the genesis and promotion of EMT-induced tumor-initiating cells.

  3. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus

    Directory of Open Access Journals (Sweden)

    Yin Weilun

    2010-01-01

    Full Text Available Abstract Background CBL1 is a calcium sensor that regulates drought, cold and salt signals in Arabidopsis. Overexpression of CBL1 gene in Arabidopsis and in Ammopiptanthus mongolicus showed different tolerant activities. We are interested in understanding the molecular mechanism of the upstream region of the CBL1 gene of A. mongolicus (AmCBL1. We investigated and characterized the promoter of the AmCBL1 gene, for promoters play a very important role in regulating gene expression in eukaryotes. Results A 1683-bp 5' flanking region was isolated from A. mongolicus. The sequence was identified as AmCBL1 promoter. Analysis of the promoter sequence indicated a 690-bp intron and some basic cis-acting elements were related to various environmental stresses and plant hormones. To identify the functional region of the AmCBL1 promoter, five plant expression vectors fused with the GUS (β-glucuronidase gene, driven by series deleted fragments of AmCBL1 promoter at different lengths from -1659, -1414, -1048, -296 to -167 bp relative to the transcriptional start site were constructed and transformed into Nicotiana tabacum L. cv. 89. Functional properties of each promoter segment were examined by GUS staining and fluorescence quantitative analyses using at least three single-copy PCR-positive plants of transgenic tobacco, treated with various environmental stresses and plant hormones for different times. We demonstrated that the AmCBL1 promoter was a vascular-specific and multiple-stress-inducible promoter. Our results further imply that the promoter fragment B1S3 possessed sufficient essential cis-acting elements, accounting for vascular-specific and stress-induced expression patterns. It may also indicate that for response to some stresses certain cis-elements are required in tissues outside the region of the B1S3 construct. Conclusions To help resolve uncertainties about the upstream regulatory mechanism of the CBL1 gene in desert plants, we suggest that

  4. Transformation and evaluation of Cry1Ac+Cry2A and GTGene in Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Agung Nugroho Puspito

    2015-11-01

    Full Text Available More than 50 countries around the globe cultivate cotton on a large scale. It is a major cash crop of Pakistan and is considered white gold because it is highly important to the economy of Pakistan. In addition to its importance, cotton cultivation faces several problems, such as insect pests, weeds, and viruses. In the past, insects have been controlled by insecticides, but this method caused a severe loss to the economy. However, conventional breeding methods have provided considerable breakthroughs in the improvement of cotton, but it also has several limitations. In comparison with conventional methods, biotechnology has the potential to create genetically modified plants that are environmentally safe and economically viable. In this study, a local cotton variety VH 289 was transformed with two Bt genes (Cry1Ac and Cry2A and a herbicide resistant gene (cp4 EPSPS using the Agrobacterium mediated transformation method. The constitutive CaMV 35S promoter was attached to the genes taken from Bacillus thuringiensis (Bt and to an herbicide resistant gene during cloning, and this promoter was used for the expression of the genes in cotton plants. This construct was used to develop the Glyphosate Tolerance Gene (GTGene for herbicide tolerance and insecticidal gene (Cry1Ac and Cry2A for insect tolerance in the cotton variety VH 289. The transgenic cotton variety performed 85% better compared with the non-transgenic variety. The study results suggest that farmers should use the transgenic cotton variety for general cultivation to improve the production of cotton.

  5. Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein Tax via a dually active promoter element responsive to NF-kappaB and NFAT.

    Science.gov (United States)

    Silbermann, Katrin; Schneider, Grit; Grassmann, Ralph

    2008-11-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein transforms human lymphocytes and is critical for the pathogenesis of HTLV-1-induced adult T-cell leukaemia. In HTLV-transformed cells, Tax upregulates interleukin (IL)-13, a cytokine with proliferative and anti-apoptotic functions that is linked to leukaemogenesis. Tax-stimulated IL-13 is thought to result in autocrine stimulation of HTLV-infected cells and thus may be relevant to their growth. The causal transactivation of the IL-13 promoter by Tax is predominantly dependent on a nuclear factor of activated T cells (NFAT)-binding P element. Here, it was shown that the isolated IL-13 Tax-responsive element (IL13TaxRE) was sufficient to mediate IL-13 transactivation by Tax and NFAT1. However, cyclosporin A, a specific NFAT inhibitor, revealed that Tax transactivation of IL13TaxRE or wild-type IL-13 promoter was independent of NFAT and that NFAT did not contribute to IL-13 upregulation in HTLV-transformed cells. By contrast, Tax stimulation was repressible by an efficient nuclear factor (NF)-kappaB inhibitor (IkBaDN), indicating the requirement for NF-kappaB. The capacity of NF-kappaB to stimulate IL13TaxRE was demonstrated by a strong response to NF-kappaB in reporter assays and by direct binding of NF-kappaB to IL13TaxRE. Thus, IL13TaxRE in the IL-13 promoter represents a dually active promoter element responsive to NF-kappaB and NFAT. Together, these results indicate that Tax causes IL-13 upregulation in HTLV-1-infected cells via NF-kappaB.

  6. In vitro cell transformation induced by synthetic amorphous silica nanoparticles.

    Science.gov (United States)

    Fontana, Caroline; Kirsch, Anaïs; Seidel, Carole; Marpeaux, Léa; Darne, Christian; Gaté, Laurent; Remy, Aurélie; Guichard, Yves

    2017-11-01

    Synthetic amorphous silica nanoparticles (SAS) are among the most widely produced and used nanomaterials, but little is known about their carcinogenic potential. This study aims to evaluate the ability of four different SAS, two precipitated, NM-200 and NM-201, and two pyrogenic, NM-202 and NM-203, to induce the transformation process. For this, we used the recently developed in vitro Bhas 42 cell transformation assay (CTA). The genome of the transgenic Bhas 42 cells contains several copies of the v-Ha-ras gene, making them particularly sensitive to tumor-promoter agents. The Bhas 42 CTA, which includes an initiation assay and a promotion assay, was validated in our laboratory using known soluble carcinogenic substances. Its suitability for particle-type substances was verified by using quartz Min-U-Sil 5 (Min-U-Sil) and diatomaceous earth (DE) microparticles. As expected given their known transforming properties, Min-U-Sil responded positively in the Bhas 42 CTA and DE responded negatively. Transformation assays were performed with SAS at concentrations ranging from 2μg/cm 2 to 80μg/cm 2 . Results showed that all SAS have the capacity to induce transformed foci, interestingly only in the promotion assay, suggesting a mode of action similar to tumor-promoter substances. NM-203 exhibited transforming activity at a lower concentration than the other SAS. In conclusion, this study showed for the first time the transforming potential of different SAS, which act as tumor-promoter substances in the Bhas 42 model of cell transformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Achieving the sustainable development goals: transforming public ...

    African Journals Online (AJOL)

    Achieving the sustainable development goals: transforming public health ... PROMOTING ACCESS TO AFRICAN RESEARCH ... The conference focused on transforming public health education and practice in the context of South Africa.

  8. S-duality as Fourier transform for arbitrary ϵ1, ϵ2

    International Nuclear Information System (INIS)

    N Nemkov

    2014-01-01

    The Alday–Gaiotto–Tachikawa relations reduce S-duality to the modular transformations of conformal blocks. It was recently conjectured that, for the four-point conformal block, the modular transform up to the non-perturbative contributions can be written in the form of the ordinary Fourier transform when β ≡ −ϵ 1 /ϵ 2 = 1. Here I extend this conjecture to general values of ϵ 1 , ϵ 2 . Namely, I argue that, for a properly normalized four-point conformal block the S-duality is perturbatively given by the Fourier transform for arbitrary values of the deformation parameters ϵ 1 , ϵ 2 . The conjecture is based on explicit perturbative computations in the first few orders of the string coupling constant g 2 ≡ −ϵ 1 ϵ 2 and hypermultiplet masses. (paper)

  9. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells

    Directory of Open Access Journals (Sweden)

    Malik Mohammed T

    2005-01-01

    Full Text Available Abstract Background Pituitary tumor transforming gene1 (PTTG1 is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3 cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293 cells. Results We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. Conclusions Our results

  10. Transformation of lacZ using different promoters in the commercially ...

    African Journals Online (AJOL)

    Yomi

    2012-01-26

    Jan 26, 2012 ... forced growth under unnatural conditions. In order to ... yezoensis include the gluc, cat, GUS and GFP genes. (Cheney et al. ... bacterial lacZ gene encodes the β-galactosidase enzyme which is capable of .... Table 1. Effect of viral promoters on transient β-galactosidase activity in microparticle bombarded G.

  11. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    Science.gov (United States)

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4 + CD49b + LAG-3 + T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25 + Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10 + Foxp3 - CD4 + T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  12. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    Science.gov (United States)

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the c-erbA-1 promoter led to the identification of an upstream region that is necessary for NS1-driven transactivation. This sequence harbors a putative hormone-responsive element and is sufficient to render a minimal promoter NS1 inducible in FREJ4 but not in FR3T3 cells, and it is involved in distinct interactions with proteins from the respective cell lines. The NS1-responsive element of the c-erbA-1 promoter bears no homology with sequences that were previously reported to be necessary for NS1 DNA binding and transactivation. Altogether, our data point to a novel, cell-specific mechanism of promoter activation by NS1. PMID:8642664

  13. Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.

    Science.gov (United States)

    Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman

    2018-06-05

    The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. The Wnt Signaling Pathway Is Differentially Expressed during the Bovine Herpesvirus 1 Latency-Reactivation Cycle: Evidence That Two Protein Kinases Associated with Neuronal Survival, Akt3 and BMPR2, Are Expressed at Higher Levels during Latency.

    Science.gov (United States)

    Workman, Aspen; Zhu, Liqian; Keel, Brittney N; Smith, Timothy P L; Jones, Clinton

    2018-04-01

    Sensory neurons in trigeminal ganglia (TG) of calves latently infected with bovine herpesvirus 1 (BoHV-1) abundantly express latency-related (LR) gene products, including a protein (ORF2) and two micro-RNAs. Recent studies in mouse neuroblastoma cells (Neuro-2A) demonstrated ORF2 interacts with β-catenin and a β-catenin coactivator, high-mobility group AT-hook 1 (HMGA1) protein, which correlates with increased β-catenin-dependent transcription and cell survival. β-Catenin and HMGA1 are readily detected in a subset of latently infected TG neurons but not TG neurons from uninfected calves or reactivation from latency. Consequently, we hypothesized that the Wnt/β-catenin signaling pathway is differentially expressed during the latency and reactivation cycle and an active Wnt pathway promotes latency. RNA-sequencing studies revealed that 102 genes associated with the Wnt/β-catenin signaling pathway were differentially expressed in TG during the latency-reactivation cycle in calves. Wnt agonists were generally expressed at higher levels during latency, but these levels decreased during dexamethasone-induced reactivation. The Wnt agonist bone morphogenetic protein receptor 2 (BMPR2) was intriguing because it encodes a serine/threonine receptor kinase that promotes neuronal differentiation and inhibits cell death. Another differentially expressed gene encodes a protein kinase (Akt3), which is significant because Akt activity enhances cell survival and is linked to herpes simplex virus 1 latency and neuronal survival. Additional studies demonstrated ORF2 increased Akt3 steady-state protein levels and interacted with Akt3 in transfected Neuro-2A cells, which correlated with Akt3 activation. Conversely, expression of Wnt antagonists increased during reactivation from latency. Collectively, these studies suggest Wnt signaling cooperates with LR gene products, in particular ORF2, to promote latency. IMPORTANCE Lifelong BoHV-1 latency primarily occurs in sensory neurons

  15. Effect of 8-methoxypsoralen-plus ultraviolet light on cell-virus interaction: the transforming infection; effect of PUVA on the transformation of baby hamster kidney cells by polyma virus

    International Nuclear Information System (INIS)

    Morhenn, V.B.; Kaye, J.A.

    1979-01-01

    Pre-treatment of baby hamster kidney (BHK) cells with 8-methoxypsoralen (8-MOP) plus ultraviolet (UV) light enhances the frequency of their transformation by polyoma (Py) virus. Of the doses tested, 0.5 microgram/m1 8-MOP plus 0 . 3 J/cm2 UV-light results in maximal (30-fold) stimulation of viral transformation. 8-MOP alone does not affect viral transformation and UV-light alone causes only a slight increase in the transformation frequency. Thus the drug and light act synergistically in promoting the effect. Treatment of BHK cells with drug plus light without Py infection does not lead to a transformed morphology. A drug-light combination (0 . 01 microgram/m1 8-MOP plus 1 . 2 J/cm2 UV) that inhibits cellular DNA synthesis is 75% of control at 28 hr after treatment results in a 6-fold stimulation of the transformation frequency

  16. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    Science.gov (United States)

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-11-01

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Induction of malignant transformation in CHL-1 cells by exposure to tritiated water

    International Nuclear Information System (INIS)

    Zou Shu'ai; Wang Hui

    1992-01-01

    The induction of neoplastic transformation in CHL-1 cells by low-dose-rate exposure to tritiated water was reported. CHL-1 cells were exposed to tritiated water (9.25 x 10 5 - 3.7 x 10 6 Bq/mL) for 24-96 hours and the accumulated doses were estimated to be 0.055-0.88 Gy, respectively. Neoplastic transformation was found in all exposed cell groups. The morphological study and transplantation test was carried out for demonstration malignancy of the transformed cells and the results show that they are with the morphology and behaviour for malignant tumour cells. For CHL-1 cells exposed to various doses of tritiated water, transformation rates were found to be from 3.28% to 13.0% at dose of 0.055-0.88 Gy. In order to estimate RBE of tritium for malignant transformation in CHL-1 cells, the induction of malignant transformation in CHL-1 cells by exposure to 137 Cs gamma-rays was carried out at dose rates of 0.359 Gy/24 hr and transformation rates for irradiated CHL-1 cells were found to be from 2.59% to 13.4%. Based on these data, RBE of tritium for malignant transformation in CHL-1 cells was estimated to be 1.6

  18. Modifiers of free radicals inhibit in vitro the oncogenic actions of x-rays, bleomycin, and the tumor promoter 12-O-tetradecanoylphorbol 13-acetate

    International Nuclear Information System (INIS)

    Borek, C.; Troll, W.

    1983-01-01

    Using short-term cultures of hamster embryo cells, we have examined the effects of the free-radical scavenger superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) and the enzyme catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) on x-ray-and bleomycin-induced transformation and on the enhancement of radiogenic transformation by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). We find that superoxide dismutase inhibits (i) transformation induced by x-ray and bleomycin and (ii) promotional action of TPA in vitro. The results suggest that the oncogenic action of x-rays and bleomycin and the enhancement of oncogenic transformation by TPA are mediated in part by free radicals. The findings also suggest that superoxide dismutase can serve as an inhibitor of oncogenesis and that its actions, as seen in this in vitro system, are most predominantly on inhibiting late events in the progression of cellular transformation--those associated with promotion

  19. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax

    International Nuclear Information System (INIS)

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion–induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo

  20. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax.

    Science.gov (United States)

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-12-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion-induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  1. How to transform local energy systems towards bioenergy? Three strategy models for transformation

    International Nuclear Information System (INIS)

    Martensson, Kjell; Westerberg, Karin

    2007-01-01

    During the last decades, the actors within the energy sector in Sweden-as well as in many other countries-have faced increasing demands to transform the energy system towards ecological sustainability. In Sweden these demands have led to numerous policies and economic incentives promoting the use of renewables (which in the Swedish discourse often also includes a connotation of 'indigenous energy sources'), and especially the promotion of bioenergy. To be successful, however, these policies and economic incentives need to be interpreted and adapted to different local contexts and translated into actual transformation processes. In Sweden the municipal authorities have played an important role as interpreters of such institutional frameworks and implementers of local transformation processes. In this article, we re-construct three transformation processes implemented by local municipal authorities, chiselling out the different strategy models developed through them. We argue that such re-constructions help to make visible the different and complex interactions between national institutional frameworks and local contexts as well as interactions within such local contexts. We hope that the strategy models presented can contribute to the understanding of the different kinds of local actions that can foster a further implementation of bioenergy into the energy system

  2. Microbial transformation of isosteviol and inhibitory effects on Epstein-Barr virus activation of the transformation products.

    Science.gov (United States)

    Akihisa, Toshihiro; Hamasaki, Yusuke; Tokuda, Harukuni; Ukiya, Motohiko; Kimura, Yumiko; Nishino, Hoyoku

    2004-03-01

    Microbial transformation of isosteviol (2), a beyerane-type diterpenoid obtained from stevioside (1) by acid hydrolysis, yielded 7beta-hydroxyisosteviol (3), 11beta-hydroxyisosteviol (5), and 12beta-hydroxyisosteviol (6) by the fungus Aspergillus niger, 17-hydroxyisosteviol (7) by the fungus Glomerella cingulata, and 3 and 7-oxoisosteviol (4) by the fungus Mortierella elongate. The five metabolites, 3-7, along with 1 and 2 were evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells as a primary screening test for inhibitors of tumor promoters. All the diterpenes tested showed potent inhibitory effects, with the five metabolites 3-7 exhibiting more potent effects.

  3. Optimization of Agrobacterium -mediated transformation parameters ...

    African Journals Online (AJOL)

    Agrobacterium-mediated transformation factors for sweet potato embryogenic calli were optimized using -glucuronidase (GUS) as a reporter. The binary vector pTCK303 harboring the modified GUS gene driven by the CaMV 35S promoter was used. Transformation parameters were optimized including bacterial ...

  4. Comparative tumor promotion assessment of e-cigarette and cigarettes using the in vitro Bhas 42 cell transformation assay.

    Science.gov (United States)

    Breheny, Damien; Oke, Oluwatobiloba; Pant, Kamala; Gaça, Marianna

    2017-05-01

    In vitro cell transformation assays (CTA) are used to assess the carcinogenic potential of chemicals and complex mixtures and can detect nongenotoxic as well as genotoxic carcinogens. The Bhas 42 CTA has been developed with both initiation and promotion protocols to distinguish between these two carcinogen classes. Cigarette smoke is known to be carcinogenic and is positive in in vitro genotoxicity assays. Cigarette smoke also contains nongenotoxic carcinogens and is a tumour promoter and cocarcinogen in vivo. We have combined a suite of in vitro assays to compare the relative biological effects of new categories of tobacco and nicotine products with traditional cigarettes. The Bhas promotion assay has been included in this test battery to provide an in vitro surrogate for detecting tumor promoters. The activity of an electronic cigarette (e-cigarette; Vype ePen) was compared to that of a reference cigarette (3R4F) in the promotion assay, using total particulate matter (TPM)/aerosol collected matter (ACM) and aqueous extracts (AqE) of product aerosol emissions. 3R4F TPM was positive in this assay at concentrations ≥6 µg/mL, while e-cigarette ACM did not have any promoter activity. AqE was found to be a lesssuitable test matrix in this assay due to high cytotoxicity. This is the first study to use the Bhas assay to compare tobacco and nicotine products and demonstrates the potential for its future application as part of a product assessment framework. These data add to growing evidence suggesting that e-cigarettes may provide a safer alternative to traditional cigarettes. Environ. Mol. Mutagen. 58:190-198, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation.

    Directory of Open Access Journals (Sweden)

    Christian Berrios

    2016-11-01

    Full Text Available Merkel cell polyomavirus (MCPyV is an etiological agent of Merkel cell carcinoma (MCC, a highly aggressive skin cancer. The MCPyV small tumor antigen (ST is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1. Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis.

  6. Transforming care in nursing: a concept analysis.

    Science.gov (United States)

    Vázquez-Calatayud, Mónica; Oroviogoicoechea, Cristina; Saracibar, Maribel; Pumar-Méndez, María J

    2017-04-01

    Although the concept of 'Transforming care' is promising for improving health care, there is no consensus in the field as to its definition. The aim of this concept analysis is to develop a deeper understanding of the term 'Transforming care' within the nursing discipline, in order to facilitate its comprehension, implementation, and evaluation. We performed a comprehensive literature review on electronic databases such as Medline (PubMed), Cinahl (Ebsco), Cochrane Library, PsycINFO (Ovid), Web of Science, Wiley-Blackwell, ScienceDirect, and SpringerLink and used Walker and Avant's approach to analyse the concept. From the 20 studies selected for this analysis, 3 main attributes of 'Transforming care' were identified: patient-centredness, evidence-based change, and transformational leadership driven. We suggest an operational definition to facilitate the implementation of the concept in practice. Furthermore, we propose that implementation is guided by the following key ideas: (1) fostering a culture of continuous improvement; (2) encouraging bottom-up initiatives; (3) promoting patient-centred care; and (4) using transformational leadership. Lastly, the evaluation of 'Transforming care' initiatives should assess care processes and professionals' and patients' outcomes.

  7. Leukaemia virus infection promotes fibroblast transformation by normal BALB/c mouse DNA

    NARCIS (Netherlands)

    Krump-Konvalinkova, V.; Berg, K.J. van den

    1980-01-01

    All normal cells are thought to carry genetic information for oncogenic transformation, which, on activation to continuous expression. might make the cell cancerous. The presently known transforming retroviruses contain transforming genes which were probably derived by recombination of a slow

  8. Superconducting transformer

    International Nuclear Information System (INIS)

    Murphy, J.H.

    1982-01-01

    A superconducting transformer having a winding arrangement that provides for current limitation when subjected to a current transient as well as more efficient utilization of radial spacing and winding insulation. Structural innovations disclosed include compressed conical shaped winding layers and a resistive matrix to promote rapid switching of current between parallel windings

  9. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

    Science.gov (United States)

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-11-12

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.

  10. Overexpression of VpPR10.1 by an efficient transformation method enhances downy mildew resistance in V. vinifera.

    Science.gov (United States)

    Su, Hang; Jiao, Yun-Tong; Wang, Fang-Fang; Liu, Yue-E; Niu, Wei-Li; Liu, Guo-Tian; Xu, Yan

    2018-05-01

    Putrescine and spermidine increase the transformation efficiency of Vitis vinifera L. cv. Thompson seedless. Accumulation of VpPR10.1 in transgenic V. vinifera Thompson seedless, likely increases its resistance to downy mildew. A more efficient method is described for facilitating Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless somatic embryogenesis using polyamines (PAs). The efficacies of putrescine, spermidine and spermine are identified at a range of concentrations (10 µM, 100 µM and 1 mM) added to the culture medium during somatic embryo growth. Putrescine (PUT) and spermidine (SPD) promote the recovery of proembryonic masses (PEM) and the development of somatic embryos (SE) after co-cultivation. Judging from the importance of the time-frame in genetic transformation, PAs added at the co-cultivation stage have a stronger effect than delayed selection treatments, which are superior to antibiotic treatments in the selection stage. Best embryogenic responses are with 1 mM PUT and 100 µM SPD added to the co-culture medium. Using the above method, a pathogenesis-related gene (VpPR10.1) from Chinese wild Vitis pseudoreticulata was transferred into Thompson Seedless for functional evaluation. The transgenic line, confirmed by western blot analysis, was inoculated with Plasmopara viticola to test for downy mildew resistance. Based on observed restrictions of hyphal growth and increases in H 2 O 2 accumulation in the transgenic plants, the accumulation of VpPR10.1 likely enhanced the transgenic plants resistance to downy mildew.

  11. Mammalian cell transformation: Mechanisms of carcinogenesis and assays for carcinogens

    International Nuclear Information System (INIS)

    Barrett, J.C.; Tennant, R.W.

    1985-01-01

    This book contains nine sections, each consisting of several papers. The section titles are: Molecular Changes in Cell Transformation; Differentiation, Growth Control, and Cell Transformation; Mutagenesis and Cell Transformation; Tumor Promotion and Cell Transformation; Mechanisms of Transformation of Human Fibroblasts; Mechanisms of Transformation of Epithelial Cells; Mechanisms of C 3 H 10T12 Cell Transformation; Mechanisms of Radiation-Induced Cell Transformation; and Use of Cell Transformation Assays for Carcinogen Testing

  12. Development of a 1.0 MV 100 Hz compact tesla transformer with PFL

    International Nuclear Information System (INIS)

    Kang Qiang; Chang Anbi; Li Mingjia; Meng Fanbao; Su Youbin

    2006-01-01

    The theory and characteristic of a compact Tesla transformer are introduced, and an unitized configuration design is performed for 1.0 MV, 100 Hz Tesla transformer and 40 Ω, 40 ns pulse forming line (PFL). Two coaxial open cores in Tesla transformer serve as the inner and outer conductors of PFL, and a traditional PFL is combined with the Tesla transformer, then the pulse generator can be smaller, more efficient, and more stable. The designed compact Tesla transformer employed in electron beams accelerator CHP01 can charge PFL of 600 pF for 1.3 MV voltage at a single shot, and keep 1.15 MV at 100 Hz repeated rates. Furthermore, a continuance run in 5 seconds is achieved by Tesla transformer under voltage and frequency ratings. (authors)

  13. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma.

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    Full Text Available Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4 have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ, and even low grade gliomas (LGGs, WHO grade 2 eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6-methylguanine-DNA methyltransferase (MGMT that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1 IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2 LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3 LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4 higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

  14. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Song, Shun; Xu, Yi; Huang, Dongmei; Miao, Hongxia; Liu, Juhua; Jia, Caihong; Hu, Wei; Valarezo, Ana Valeria; Xu, Biyu; Jin, Zhiqiang

    2018-07-01

    Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Intertwining relations and Darboux transformations for Schroedinger equations in (n+1) dimensions

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2010-01-01

    We evaluate the intertwining relation for Schroedinger equations in (n+1) dimensions. The conditions for the existence of a Darboux transformation are analyzed and compared to their (1+1) dimensional counterparts. A complete solution of the conditions is given for (2+1) dimensions, and a Darboux transformation is constructed.

  16. A small peptide with potential ability to promote wound healing.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  17. Transformation by Oncogenic Ras Expands the Early Genomic Response to Transforming Growth Factor β in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Carl E. Allen

    2008-10-01

    Full Text Available A substantial body of evidence implicates TGFβ as a tumor promoter in epithelial cells that have become resistant to its tumor suppressor activity. To better understand early, genome-wide TGFβ responses in cells resistant to growth inhibition by TGFβ, we used microarray analysis in a well-defined cell culture system of sensitive and resistant intestinal epithelial cells. TGFβ-regulated gene expression in TGFβ-growth-sensitive, nontransformed rat intestinal epithelial cells (RIE-1 was compared to expression in TGFβ-growth-resistant RIE cells stably transformed by oncogenic Ras(12V. Treatment of RIE-1 cells with 2 ng/ml TGFβ1 for 1 hour increased the expression of eight gene sequences by 2.6-fold or more, whereas eight were down regulated 2.6-fold. In RIE-Ras(12V cells, 42 gene sequences were upregulated and only 3 were down-regulated. Comparison of RIE and RIE-Ras(12V identified 37 gene sequences as unique, Ras-dependent genomic targets of TGFβ1. TGFβ-regulation of connective tissue growth factor and vascular endothelial growth factor, two genes up-regulated in RIE-Ras cells and previously implicated in tumor promotion, was independently confirmed and further characterized by Northern analysis. Our data indicate that overexpression of oncogenic Ras in intestinal epithelial cells confers a significantly expanded repertoire of robust, early transcriptional responses to TGFβ via signaling pathways yet to be fully elucidated but including the canonical Raf-1/MAPK/Erk pathway. Loss of sensitivity to growth inhibition by TGFβ does not abrogate TGFβ signaling and actually expands the early transcriptional response to TGFβ1. Expression of some of these genes may confer to Ras-transformed cells characteristics favorable for tumor promotion.

  18. The 1+ → n+ transformation for the radioactive ion acceleration

    International Nuclear Information System (INIS)

    Chauvin, N.; Lamy, T.; Bruandet, J.F.; Bouly, J.L.; Curdy, J.C.; Geller, R.; Sole, P.; Sortais, P.; Vieux-Rochaz, J.L.

    1999-01-01

    The radioactive ions are produced as single-charge ions either starting from nuclear reactions induced by a high energy primary beam, or by neutron bombarding of a target. However, in order to obtain beams of several MeV per nucleon, il will be convenient of transforming the mono-charged ions issued from the production source, in multicharged ions. Consequently, an operation should be implemented to transform the 1+ charge state into n+ state, with a double requirement of maximal yield and minimal response time. The objectives are a particle yield of several percents and a response time below 1 second, taking into account the low lifetimes of certain radioactive nuclei. The conjoint achievement of both high charged states and maximal beam intensity forced us to make a choice for an ECR (Electron Cyclotron Resonance) type source to realize the transformation 1+ → n+

  19. Characterization of a Suppressive Cis-acting Element in the Epstein–Barr Virus LMP1 Promoter

    Directory of Open Access Journals (Sweden)

    Masahiro Yoshida

    2017-11-01

    Full Text Available Latent membrane protein 1 (LMP1 is a major oncogene encoded by Epstein–Barr virus (EBV and is essential for immortalization of B cells by the virus. Previous studies suggested that several transcription factors, such as PU.1, RBP-Jκ, NFκB, EBF1, AP-2 and STAT, are involved in LMP1 induction; however, the means by which the oncogene is negatively regulated remains unclear. Here, we introduced short mutations into the proximal LMP1 promoter that includes recognition sites for the E-box and Ikaros transcription factors in the context of EBV-bacterial artificial chromosome. Upon infection, the mutant exhibited increased LMP1 expression and EBV-mediated immortalization of B cells. However, single mutations of either the E-box or Ikaros sites had limited effects on LMP1 expression and transformation. Our results suggest that this region contains a suppressive cis-regulatory element, but other transcriptional repressors (apart from the E-box and Ikaros transcription factors may remain to be discovered.

  20. Porcine synapsin 1: SYN1 gene analysis and functional characterization of the promoter

    DEFF Research Database (Denmark)

    Hedegaard, Claus; Kjaer-Sorensen, Kasper; Madsen, Lone Bruhn

    2013-01-01

    of elements responsible for neuron-specific expression. Expression analysis of SYN1 demonstrated presence of transcript during embryonic development. Analysis of GFP expression in transgenic zebrafish embryos suggests that the pig SYN1 promoter directs expression in neuronal cells. Thus, the SYN1 promoter...

  1. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  2. Increased expression of high-mobility group A2: A novel independent indicator of poor prognosis in patients with esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Rongna Wei

    2016-01-01

    Conclusions: High HMGA2 expression was related to lymph node metastasis and poor prognosis in ESCC. Our results indicated that HMGA2 could act as a potential biomarker for prognosis evaluation of ESCC patients.

  3. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link.

    Directory of Open Access Journals (Sweden)

    Gemma L Kelly

    2009-03-01

    Full Text Available Two factors contribute to Burkitt lymphoma (BL pathogenesis, a chromosomal translocation leading to c-myc oncogene deregulation and infection with Epstein-Barr virus (EBV. Although the virus has B cell growth-transforming ability, this may not relate to its role in BL since many of the transforming proteins are not expressed in the tumor. Mounting evidence supports an alternative role, whereby EBV counteracts the high apoptotic sensitivity inherent to the c-myc-driven growth program. In that regard, a subset of BLs carry virus mutants in a novel form of latent infection that provides unusually strong resistance to apoptosis. Uniquely, these virus mutants use Wp (a viral promoter normally activated early in B cell transformation and express a broader-than-usual range of latent antigens. Here, using an inducible system to express the candidate antigens, we show that this marked apoptosis resistance is mediated not by one of the extended range of EBNAs seen in Wp-restricted latency but by Wp-driven expression of the viral bcl2 homologue, BHRF1, a protein usually associated with the virus lytic cycle. Interestingly, this Wp/BHRF1 connection is not confined to Wp-restricted BLs but appears integral to normal B cell transformation by EBV. We find that the BHRF1 gene expression recently reported in newly infected B cells is temporally linked to Wp activation and the presence of W/BHRF1-spliced transcripts. Furthermore, just as Wp activity is never completely eclipsed in in vitro-transformed lines, low-level BHRF1 transcripts remain detectable in these cells long-term. Most importantly, recognition by BHRF1-specific T cells confirms that such lines continue to express the protein independently of any lytic cycle entry. This work therefore provides the first evidence that BHRF1, the EBV bcl2 homologue, is constitutively expressed as a latent protein in growth-transformed cells in vitro and, in the context of Wp-restricted BL, may contribute to virus

  4. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS.

    Science.gov (United States)

    Inoue, D; Kitaura, J; Matsui, H; Hou, H-A; Chou, W-C; Nagamachi, A; Kawabata, K C; Togami, K; Nagase, R; Horikawa, S; Saika, M; Micol, J-B; Hayashi, Y; Harada, Y; Harada, H; Inaba, T; Tien, H-F; Abdel-Wahab, O; Kitamura, T

    2015-04-01

    Mutations in ASXL1 are frequent in patients with myelodysplastic syndrome (MDS) and are associated with adverse survival, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) is not fully understood. Recently, it has been found that deletion of Asxl1 or expression of C-terminal-truncating ASXL1-MTs inhibit myeloid differentiation and induce MDS-like disease in mice. Here, we find that SET-binding protein 1 (SETBP1) mutations (SETBP1-MT) are enriched among ASXL1-mutated MDS patients and associated with increased incidence of leukemic transformation, as well as shorter survival, suggesting that SETBP1-MT play a critical role in leukemic transformation of MDS. We identify that SETBP1-MT inhibit ubiquitination and subsequent degradation of SETBP1, resulting in increased expression. Expression of SETBP1-MT, in turn, inhibited protein phosphatase 2A activity, leading to Akt activation and enhanced expression of posterior Hoxa genes in ASXL1-mutant cells. Biologically, SETBP1-MT augmented ASXL1-MT-induced differentiation block, inhibited apoptosis and enhanced myeloid colony output. SETBP1-MT collaborated with ASXL1-MT in inducing acute myeloid leukemia in vivo. The combination of ASXL1-MT and SETBP1-MT activated a stem cell signature and repressed the tumor growth factor-β signaling pathway, in contrast to the ASXL1-MT-induced MDS model. These data reveal that SETBP1-MT are critical drivers of ASXL1-mutated MDS and identify several deregulated pathways as potential therapeutic targets in high-risk MDS.

  5. ROTRAN 1 - SOLUTION OF EQUATIONS FOR ROTARY TRANSFORMERS

    Science.gov (United States)

    Salomon, P. M.

    1994-01-01

    ROTRAN1 is a computer program to calculate the impedance and current gain of a simple transformer. Inputs to the program are primary resistance, primary inductance, secondary (load) resistance, secondary inductance, and mutual inductance. ROTRAN1 was written in BASICA for execution on the IBM PC personal computer. It was written in 1986.

  6. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk

    Science.gov (United States)

    Wen, Guohong; Wang, Huadong; Zhong, Zhaohui

    2018-01-01

    Abstract Background: Oral tumor is a heterogeneous group of tumors, in which it has several different histopathological and molecular features. Recently, genetic and epigenetic alterations are often detected in the development of oral cancer. Gene promoter hypermethylation leads to the silencing of cancer related genes without changes of genes sequence. To clarify the effect of RAS association domain family protein 1a (RASSF1A), retinoic acid receptor beta (RARβ), and E-cadherin (CDH1) promoter hypermethylation on the risk of oral cancer, we performed this meta-analysis. Methods: PubMed, Web of Science, Embase, and Chinese National Knowledge Infrastructure (CNKI) databases were retrieved to identify eligible articles. Stata 12.0 software was used to analyze extracted data of the included articles. Odds ratios (ORs) with the corresponding 95% confidence interval (95% CI) were calculated to evaluate the associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk. Results: Around 23 literatures with 29 studies were included in the final meta-analysis, in which 12 studies were about RASSF1A promoter methylation, 4 studies were about RARβ promoter methylation, and 13 studies were about CDH1 promoter methylation. Overall, the results of this meta-analysis showed that there were significant associations between RASSF1A, RARβ, and CDH1 promoter hypermethylation and oral cancer risk (RASSF1A, OR = 11.8, 95% CI = 6.14–22.66; RARβ, OR = 20.35, 95% CI = 5.64–73.39; CDH1, OR = 13.46, 95% CI = 5.31–34.17). In addition, we found that RASSF1A promoter hypermethylation exerted higher frequency in the tongue tumor than other site tumor in mouth (RASSF1A, tongue tumor vs other site tumor in mouth, unmethylation vs methylation, OR = 0.65, 95%CI = 0.44–0.98). Conclusion: RASSF1A, RARβ, and CDH1 promoter hypermethylation might significantly increase the risk of oral cancer. PMID:29538221

  7. Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.

    Science.gov (United States)

    Feng, Zhen; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart; Guo, He; Wang, Yuxin

    2014-09-01

    l1-SPIRiT is a fast magnetic resonance imaging (MRI) method which combines parallel imaging (PI) with compressed sensing (CS) by performing a joint l1-norm and l2-norm optimization procedure. The original l1-SPIRiT method uses two-dimensional (2D) Wavelet transform to exploit the intra-coil data redundancies and a joint sparsity model to exploit the inter-coil data redundancies. In this work, we propose to stack all the coil images into a three-dimensional (3D) matrix, and then a novel 3D Walsh transform-based sparsity basis is applied to simultaneously reduce the intra-coil and inter-coil data redundancies. Both the 2D Wavelet transform-based and the proposed 3D Walsh transform-based sparsity bases were investigated in the l1-SPIRiT method. The experimental results show that the proposed 3D Walsh transform-based l1-SPIRiT method outperformed the original l1-SPIRiT in terms of image quality and computational efficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL.

    Science.gov (United States)

    Fu, Yao; Chang, Ye; Chen, Shuang; Li, Yuan; Chen, Yintao; Sun, Guozhe; Yu, Shasha; Ye, Ning; Li, Chao; Sun, Yingxian

    2018-05-01

    Under normal physiological condition, the mature vascular smooth muscle cells (VSMCs) show differentiated phenotype. In response to various environmental stimuluses, VSMCs convert from the differentiated phenotype to dedifferentiated phenotype characterized by the increased ability of proliferation/migration and the reduction of contractile ability. The phenotypic transformation of VSMCs played an important role in atherosclerosis. Both Bcl-2-associated athanogene 3 (BAG3) and tumor necrosis factor-related apopt-osis inducing ligand (TRAIL) involved in apoptosis. The relationship between BAG3 and TRAIL and their effects the proliferation and migration in VSMCs are rarely reported. This study investigated the effects of BAG3 on the phenotypic modulation and the potential underlying mechanisms in primary rat VSMCs. Primary rat VSMCs were extracted and cultured in vitro. Cell proliferation was detected by cell counting, real-time cell analyzer (RTCA) and EdU incorporation. Cell migration was detected by wound healing, Transwell and RTCA. BAG3 and TRAIL were detected using real-time PCR and western blotting and the secreted proteins in the cultured media by dot blot. The expression of BAG3 increased with continued passages in cultured primary VSMCs. BAG3 promoted the proliferation and migration of primary rat VSMC in a time-dependent manner. BAG3 significantly increased the expression of TRAIL while had no effects on its receptors. TRAIL knockdown or blocking by neutralizing antibody inhibited the proliferation of VSMCs induced by BAG3. TRAIL knockdown exerted no obvious influence on the migration of VSMCs. Based on this study, we report for the first time that BAG3 was expressed in cultured primary rat VSMCs and the expression of BAG3 increased with continued passages. Furthermore, BAG3 promoted the proliferation of VSMCs via increasing the expression of TRAIL. In addition, we also demonstrated that BAG3 promoted the migration of VSMCs independent of TRAIL

  9. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    Science.gov (United States)

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  10. Stable nuclear transformation of Eudorina elegans

    Directory of Open Access Journals (Sweden)

    Lerche Kai

    2013-02-01

    Full Text Available Abstract Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii and a multicellular alga with differentiated cell types (Volvox carteri. Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold at elevated temperatures. Long-term stability and both constitutive and

  11. CONFORMITY IN CHRIST 1. THE TRANSFORMATION PROCESS

    African Journals Online (AJOL)

    This essay investigates the notion of conformity in Christ as it is part of a compre- hensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...

  12. Promoting structural transformation: Strategic diversification vs laissez-faire approach

    NARCIS (Netherlands)

    Freire Junior, Clovis

    2017-01-01

    Economic development is associated with structural transformation and the increase of complexity of production and exports. This paper examines whether strategic diversification is required to increase economic complexity or whether market incentives would be sufficient to drive this process of

  13. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    Science.gov (United States)

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  14. Form-preserving Transformations for the Time-dependent Schroedinger Equation in (n + 1) Dimensions

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2006-01-01

    We define a form-preserving transformation (also called point canonical transformation) for the time-dependent Schroedinger equation (TDSE) in (n+1) dimensions. The form-preserving transformation is shown to be invertible and to preserve L 2 -normalizability. We give a class of time-dependent TDSEs that can be mapped onto stationary Schroedinger equations by our form-preserving transformation. As an example, we generate a solvable, time-dependent potential of Coulombic ring-shaped type together with the corresponding exact solution of the TDSE in (3+1) dimensions. We further consider TDSEs with position-dependent (effective) masses and show that there is no form-preserving transformation between them and the conventional TDSEs, if the spatial dimension of the system is higher than one

  15. Apurinic/apyrimidinic endonuclease 1 regulates angiogenesis in a transforming growth factor β-dependent manner in human osteosarcoma.

    Science.gov (United States)

    Jiang, Xuan; Shan, Jinlu; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Yang, Yuxing; Zhang, Shiheng; Li, Chongyi; Sui, Jiangdong; Ren, Tao; Li, Mengxia; Wang, Dong

    2015-10-01

    Angiogenesis plays an important role in tumor growth and metastasis and has been reported to be inversely correlated with overall survival of osteosarcoma patients. It has been shown that apurinic/apyrimidinic endonuclease 1 (APE1), a dually functional protein possessing both base excision repair and redox activities, is involved in tumor angiogenesis, although these mechanisms are not fully understood. Our previous study showed that the expression of transforming growth factor β (TGFβ) was significantly reduced in APE1-deficient osteosarcoma cells. Transforming growth factor β promotes cancer metastasis through various mechanisms including immunosuppression, angiogenesis, and invasion. In the current study, we initially revealed that APE1, TGFβ, and microvessel density (MVD) have pairwise correlation in osteosarcoma tissue samples, whereas TGFβ, tumor size, and MVD were inversely related to the prognosis of the cohort. We found that knocking down APE1 in osteosarcoma cells resulted in TGFβ downregulation. In addition, APE1-siRNA led to suppression of angiogenesis in vitro based on HUVECs in Transwell and Matrigel tube formation assays. Reduced secretory protein level of TGFβ of culture medium also resulted in decreased phosphorylation of Smad3 of HUVECs. In a mouse xenograft model, siRNA-mediated silencing of APE1 downregulated TGFβ expression, tumor size, and MVD. Collectively, the current evidence indicates that APE1 regulates angiogenesis in osteosarcoma by controlling the TGFβ pathway, suggesting a novel target for anti-angiogenesis therapy in human osteosarcoma. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Src Induces Podoplanin Expression to Promote Cell Migration*

    Science.gov (United States)

    Shen, Yongquan; Chen, Chen-Shan; Ichikawa, Hitoshi; Goldberg, Gary S.

    2010-01-01

    Nontransformed cells can force tumor cells to assume a normal morphology and phenotype by the process of contact normalization. Transformed cells must escape this process to become invasive and malignant. However, mechanisms underlying contact normalization have not been elucidated. Here, we have identified genes that are affected by contact normalization of Src-transformed cells. Tumor cells must migrate to become invasive and malignant. Src must phosphorylate the adaptor protein Cas (Crk-associated substrate) to promote tumor cell motility. We report here that Src utilizes Cas to induce podoplanin (Pdpn) expression to promote tumor cell migration. Pdpn is a membrane-bound extracellular glycoprotein that associates with endogenous ligands to promote tumor cell migration leading to cancer invasion and metastasis. In fact, Pdpn expression accounted for a major part of the increased migration seen in Src-transformed cells. Moreover, nontransformed cells suppressed Pdpn expression in adjacent Src-transformed cells. Of >39,000 genes, Pdpn was one of only 23 genes found to be induced by transforming Src activity and suppressed by contact normalization of Src-transformed cells. In addition, we found 16 genes suppressed by Src and induced by contact normalization. These genes encode growth factor receptors, adaptor proteins, and products that have not yet been annotated and may play important roles in tumor cell growth and migration. PMID:20123990

  17. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Science.gov (United States)

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  18. Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2012-01-01

    We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schrödinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.

  19. Kinetics of transformation of 1,1,1-trichloroethane by Fe(II) in cement slurries

    International Nuclear Information System (INIS)

    Jung, Bahngmi; Batchelor, Bill

    2009-01-01

    This study examines the applicability of the iron-based degradative solidification/stabilization (DS/S-Fe(II)) process to 1,1,1-trichloroethane (1,1,1-TCA), which is one of common chlorinated aliphatic hydrocarbons (CAHs) of concern at contaminated sites. DS/S-Fe(II) combines contaminant degradation by Fe(II) and immobilization by the hydration reactions of Portland cement. The transformation of 1,1,1-TCA by Fe(II) in 10% Portland cement slurries was studied using a batch slurry reactor system. The effects of Fe(II) dose, pH, and initial concentration of 1,1,1-TCA on the kinetics of 1,1,1-TCA degradation were evaluated. Degradation of 1,1,1-TCA in cement slurries including Fe(II) was very rapid and could be described by a pseudo-first-order rate law. The half-lives for 1,1,1-TCA were measured between 0.4 and 5 h when Fe(II) dose ranged from 4.9 to 39.2 mM. The pseudo-first-order rate constant increased with pH to a maximum near pH 12.5. A saturation rate equation was able to predict degradation kinetics over a wide range of target organic concentrations and at higher Fe(II) doses. The major transformation product of 1,1,1-TCA in mixtures of Fe(II) and cement was 1,1-dichloroethane (1,1-DCA), which indicates that degradation occurred by a hydrogenolysis pathway. A small amount of ethane was observed. The conversion of 1,1,1-TCA to ethane was better described by a parallel reaction model than by a consecutive reaction model

  20. Transformational leadership to promote cross-generational retention.

    Science.gov (United States)

    Lobo, Vanessa M

    2010-05-01

    As the current nursing shortage intensifies under the weight of an aging population, retention of front-line staff is becoming paramount. Studies have consistently demonstrated that the leadership style of nurse managers plays a significant role to this end. This paper describes some of the challenges that managers encounter in their dealings with the contemporary multigenerational workforce - including the baby boomers, generation X and generation Y (the "millennials"). A review of research findings suggests the insufficiency of a single leadership approach to nurse management compared to more tailored generational strategies. Application of the transformational leadership model provides the background and tenets from which solutions are proposed for multigenerational management.

  1. Three-dimensional ideal theta(1)/theta(2) angular transformer and its uses in fiber optics.

    Science.gov (United States)

    Ning, X

    1988-10-01

    A 3-D ideal theta(1)/theta(2) angular transformer in nonimaging optics is introduced. The axially symmetric transformer, combining a portion of a hyperbolic concentrator with two lenses, transforms an input limited Lambertian over an angle theta(1) to an output limited Lambertian over an angle theta(2) without losing throughput. This is the first known transformer with such ideal properties. Results of computer simulations of a transformer with planospherical lenses are presented. Because of its ideal angular transforming property, the transformer offers an excellent solution for power launching and fiber-fiber coupling in optical fiber systems. In principle, the theoretical maximum coupling efficiency based on radiance conservation can be achieved with this transformer. Several conceptual designs of source-fiber and fiber-fiber couplers using the transformer are given.

  2. Supervision as transformative leadership in the context of university ...

    African Journals Online (AJOL)

    This article discusses different models of supervision and promotion of Masters', Doctoral and PhD students. It argues that leadership is inherent in and underpins any model of supervision or promotion of students. The article advances a view that supervision and promotion of the said students should be transformative ...

  3. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation.

    Science.gov (United States)

    Zhou, C; Huang, C; Wang, J; Huang, H; Li, J; Xie, Q; Liu, Y; Zhu, J; Li, Y; Zhang, D; Zhu, Q; Huang, C

    2017-07-06

    Long noncoding RNAs (lncRNAs) are emerging as key factors in various fundamental cellular biological processes, and many of them are likely to have functional roles in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA, and the decreased MEG3 expression has been reported in multiple cancer tissues. However, nothing is known about the alteration and role of MEG3 in environmental carcinogen-induced lung tumorigenesis. Our present study, for the first time to the best of our knowledge, discovered that environmental carcinogen nickel exposure led to MEG3 downregulation, consequently initiating c-Jun-mediated PHLPP1 transcriptional inhibition and hypoxia-inducible factor-1α (HIF-1α) protein translation upregulation, in turn resulting in malignant transformation of human bronchial epithelial cells. Mechanistically, MEG3 downregulation was attributed to nickel-induced promoter hypermethylation via elevating DNMT3b expression, whereas PHLPP1 transcriptional inhibition was due to the decreasing interaction of MEG3 with its inhibitory transcription factor c-Jun. Moreover, HIF-1α protein translation was upregulated via activating the Akt/p70S6K/S6 axis resultant from PHLPP1 inhibition in nickel responses. Collectively, we uncover that nickel exposure results in DNMT3b induction and MEG3 promoter hypermethylation and expression inhibition, further reduces its binding to c-Jun and in turn increasing c-Jun inhibition of PHLPP1 transcription, leading to the Akt/p70S6K/S6 axis activation, and HIF-1α protein translation, as well as malignant transformation of human bronchial epithelial cells. Our studies provide a significant insight into understanding the alteration and role of MEG3 in nickel-induced lung tumorigenesis.

  4. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    OpenAIRE

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the...

  5. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun; Rojanasakul, Yon; Liu, Ling-Zhi; Jiang, Bing-Hua

    2011-01-01

    Highlights: ► Chronic exposure to arsenite induces cell proliferation and transformation. ► Arsenite-induced transformation increases ROS production and downstream signalings. ► Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. ► Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

  6. Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Celestino; Cheng, Erdong; Shuda, Masahiro; Lee-Oesterreich, Paula J.; Pogge von Strandmann, Lisa; Gritsenko, Marina A.; Jacobs, Jon M.; Moore, Patrick S.; Chang, Yuan

    2016-07-11

    mTOR-directed 4E-BP1 phosphorylation promotes cap-dependent translation and tumorigen-esis. During mitosis, CDK1 substitutes for mTOR and fully phosphorylates 4E-BP1 at canoni-cal as well a non-canonical S83 site resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. While S83 phosphorylation of 4E-BP1 does not affect in vitro cap-dependent translation, nor eIF4G/4E-BP1 cap-binding, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus (MCV) small T (sT) antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain-of-function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.

  7. Construction of phosphomannose isomerase (PMI) transformation vectors and evaluation of the effectiveness of vectors in tobacco (Nicotiana tabacum L).

    Science.gov (United States)

    Bahariah, Bohari; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul; Khalid, Norzulaani

    2012-01-01

    Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.

  8. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

    Science.gov (United States)

    Grunseich, Christopher; Wang, Isabel X; Watts, Jason A; Burdick, Joshua T; Guber, Robert D; Zhu, Zhengwei; Bruzel, Alan; Lanman, Tyler; Chen, Kelian; Schindler, Alice B; Edwards, Nancy; Ray-Chaudhury, Abhik; Yao, Jianhua; Lehky, Tanya; Piszczek, Grzegorz; Crain, Barbara; Fischbeck, Kenneth H; Cheung, Vivian G

    2018-02-01

    R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    Shan Xin

    Full Text Available Apoplastic ascorbate oxidase (AO plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1 gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA. Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome, Gossypium raimondii (Gr, diploid cotton with a DD genome and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence

  10. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum.

    Science.gov (United States)

    Xin, Shan; Tao, Chengcheng; Li, Hongbin

    2016-01-01

    Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a

  11. Pro-tumorigenic effects of transforming growth factor beta 1 in canine osteosarcoma.

    Science.gov (United States)

    Portela, R F; Fadl-Alla, B A; Pondenis, H C; Byrum, M L; Garrett, L D; Wycislo, K L; Borst, L B; Fan, T M

    2014-01-01

    Transforming growth factor beta 1 (TGFβ1) is a pleiotropic cytokine that contributes to reparative skeletal remodeling by inducing osteoblast proliferation, migration, and angiogenesis. Organic bone matrix is the largest bodily reservoir for latent TGFβ1, and active osteoblasts express cognate receptors for TGFβ1 (TGFβRI and TGFβRII). During malignant osteolysis, TGFβ1 is liberated from eroded bone matrix and promotes local progression of osteotropic solid tumors by its mitogenic and prosurvival activities. Canine osteosarcoma (OS) cells will possess TGFβ1 signaling machinery. Blockade of TGFβ1 signaling will attenuate pro-tumorigenic activities in OS cells. Naturally occurring primary OS samples will express cognate TGFβ1 receptors; and in dogs with OS, focal malignant osteolysis will contribute to circulating TGFβ1 concentrations. Thirty-three dogs with appendicular OS. Expression of TGFβ1 and its cognate receptors, as well as the biologic effects of TGFβ1 blockade, was characterized in OS cells. Ten spontaneous OS samples were characterized for TGFβRI/II expressions by immunohistochemistry. In 33 dogs with OS, plasma TGFβ1 concentrations were quantified and correlated with bone resorption. Canine OS cells secrete TGFβ1, express cognate receptors, and TGFβ1 signaling blockade decreases proliferation, migration, and vascular endothelial growth factor secretion. Naturally occurring OS samples abundantly and uniformly express TGFβRI/II, and in OS-bearing dogs, circulating TGFβ1 concentrations correlate with urine N-telopeptide excretion. Canine OS cells possess TGFβ1 signaling machinery, potentially allowing for the establishment of an autocrine and paracrine pro-tumorigenic signaling loop. As such, TGFβ1 inhibitors might impede localized OS progression in dogs. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  12. Radiation-induced transformation in oncogene primed C3H/10T1/2 cells; a new system for analysis of multi-step transformation in vitro

    International Nuclear Information System (INIS)

    Drozdoff, V.V.

    1988-01-01

    Several established rodent cell lines, such as C3H/10T1/2 fibroblasts, have been developed to study radiation and chemically-induced malignant transformation. Most experimental evidence has supported the idea that transformation in 10T1/2 cells involved at least two steps but that the apparent frequency of transformation depends on the density of plated cells. A new approach is presented here for studying radiation-induced transformation. An oncogene primed cell system (C3H-myc) was developed by introducing a constitutively active mouse c-myc gene into 10T1/2 cells. A primary goal was to determine if the introduction of an activated oncogene could substitute for one of the required steps in radiation-induced transformation. Results are presented that show that the expression of the exogenous myc gene significantly increased the frequency of radiation-induced transformation in these cells. Subculture experiments performed to analyze the kinetics of transformation in C3H-myc cells and reconstruction experiments allowing the effects of normal cells on radiation-induced transformants to be determined indicated that transformed cells arose very shortly after irradiation. These results support the conclusion that a radiation-induced event can complement the effect of myc in C3H-myc cells and directly result in transformation. This system thus provides an opportunity to isolate early steps in radiation-induced transformation and should facilitate the identification and analysis of these events

  13. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    Science.gov (United States)

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  14. The triterpenoid corosolic acid blocks transformation and epigenetically reactivates Nrf2 in TRAMP-C1 prostate cells.

    Science.gov (United States)

    Yang, Jie; Wu, Renyi; Li, Wenji; Gao, Linbo; Yang, Yuqing; Li, Ping; Kong, Ah-Ng

    2018-04-01

    Corosolic acid (CRA) is found in various plants and has been used as a health food supplement worldwide. Although it has been reported that CRA exhibits significant anticancer activity, the effect of this compound on prostate cancer remains unknown. In this study, we investigated the effect of CRA on cellular transformation and the reactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) through epigenetic regulation in TRAMP-C1 prostate cells. Specifically, we found that CRA inhibited anchorage-independent growth of prostate cancer TRAMP-C1 cells but not Nrf2 knockout prostate cancer TRAMP-C1 cells. Moreover, CRA induced mRNA and protein expression of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H Quinone Oxidoreductase 1 (NQO1). Bisulfite genomic sequencing and methylated DNA immunoprecipitation results revealed that CRA treatment decreased the level of methylation of the first five CpG sites of the Nrf2 promoter. Histone modification was analyzed using a chromatin immunoprecipitation (ChIP) assay, which revealed that CRA treatment increased the acetylation of histone H3 lysine 27 (H3K27ac) while decreasing the trimethylation of histone H3 lysine 27 (H3K27me3) in the promoter region of Nrf2. Furthermore, CRA treatment attenuated the protein expression of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). These findings indicate that CRA has a significant anticancer effect in TRAMP-C1 cells, which could be partly attributed to epigenetics including its ability to epigenetically restore the expression of Nrf2. © 2017 Wiley Periodicals, Inc.

  15. App. 1. Fourier series and Fourier transform

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Definitions, formulas and practical properties in quantum mechanics are presented: Fourier series (development of periodic function, Bessel-Parseval equality); Fourier transform (Parseval-Plancherel formula, Fourier transform in three-dimensional space) [fr

  16. Identification, isolation and evaluation of a constitutive sucrose phosphate synthase gene promoter from tomato

    International Nuclear Information System (INIS)

    Naqvi, R.Z.; Mubeen, H.; Maqsood, A.; Khatoon, A.

    2017-01-01

    Sucrose phosphate synthase (SPS) is one of the abundantly expressed genes in plants. The promoters of SPS gene was identified, analyzed and retrieved from high throughput genomic sequence (HTGS) database. The cis-acting regulatory elements and transcription start sites of promoter were identified through different bioinformatics tools. The SPS promoter was isolated from Solanum lycopersicum and was initially cloned in TA vector (pTZ57R/T). Later on this promoter was transferred to a plant expression binary vector, pGR1 (pGRSPS) that was used for the transient GUS expression studies in various tissues of Nicotiana tabacum. SPS promoter was also cloned in plant stable expression vector pGA482 (pGASPS) and was transformed in Nicotiana tabacum through Agrobacterium-mediated transformation method. The histochemical GUS expression analysis of both transient and stable transgenic plants for this promoter indicated its functional importance in regulating gene expression in a constitutive manner. It was concluded that SPS promoter is constitutively expressed with a strength equivalent to CaMV 2X35S promoter. The promoter isolated through these studies may be effectively substituted in plant genetic engineering with other constitutive promoter for transgene expression in economically important agricultural crops. (author)

  17. Unique case of oligoastrocytoma with recurrence and grade progression: Exhibiting differential expression of high mobility group-A1 and human telomerase reverse transcriptase

    Science.gov (United States)

    Gandhi, Puneet; Khare, Richa; Niraj, Kavita; Garg, Nitin; Sorte, Sandeep K; Gulwani, Hanni

    2016-01-01

    Mixed gliomas, primarily oligoastrocytomas, account for about 5%-10% of all gliomas. Distinguishing oligoastrocytoma based on histological features alone has limitations in predicting the exact biological behavior, necessitating ancillary markers for greater specificity. In this case report, human telomerase reverse transcriptase (hTERT) and high mobility group-A1 (HMGA1); markers of proliferation and stemness, have been quantitatively analyzed in formalin-fixed paraffin-embedded tissue samples of a 34 years old patient with oligoastrocytoma. Customized florescence-based immunohistochemistry protocol with enhanced sensitivity and specificity is used in the study. The patient presented with a history of generalized seizures and his magnetic resonance imaging scans revealed infiltrative ill-defined mass lesion with calcified foci within the left frontal white matter, suggestive of glioma. He was surgically treated at our center for four consecutive clinical events. Histopathologically, the tumor was identified as oligoastrocytoma-grade II followed by two recurrence events and final progression to grade III. Overall survival of the patient without adjuvant therapy was more than 9 years. Glial fibrillary acidic protein, p53, Ki-67, nuclear atypia index, pre-operative neutrophil-lymphocyte ratio, are the other parameters assessed. Findings suggest that hTERT and HMGA1 are linked to tumor recurrence and progression. Established markers can assist in defining precise histopathological grade in conjuction with conventional markers in clinical setup. PMID:27672647

  18. 26 CFR 1.263(b)-1 - Expenditures for advertising or promotion of good will.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Expenditures for advertising or promotion of... advertising or promotion of good will. See § 1.162-14 for the rules applicable to a corporation which has elected to capitalize expenditures for advertising or the promotion of good will under the provisions of...

  19. Biochemical transformation of deoxythymidine kinase-deficient mouse cells with uv-irradiated equine herpesvirus type 1

    International Nuclear Information System (INIS)

    Allen, G.P.; McGowan, J.J.; Gentry, G.A.; Randall, C.C.

    1978-01-01

    A line of 3T3 mouse cells lacking deoxythymidine kinase (dTK - ) was stably transformed to the dTK + phenotype after exposure to uv-irradiated equine herpesvirus type 1 (EHV-1). Biochemical transformants were isolated in a system selective for the dTK + phenotype (Eagle minimal essential medium containing 10 -4 M hypoxanthine, 6 x 10 -7 M aminopterin, and 2 x 10 -5 M deoxythymidine). Transformation was accompanied by the acquisition of a dTK activity with immunological, electrophoretic, and biochemical characteristics identical to those of the dTK induced by EHV-1 during productive infection. The transformed cells have been maintained in selective culture medium for more than 50 passages and have retained the capacity to express EHV-1-specific antigens. Spontaneous release of infectious virus has not been detected in the transformed lines, and the cells were not oncogenic for athymic nude mice. In contrast to normal dTK + 3T3 cells, EHV-1 transformants were unable to grow in the presence of arabinosylthymine, a drug selectively phosphorylated by herpesvirus-coded dTK's. These results indicate that a portion of the EHV-1 genome is able to persist in the transformed cells for many generations and be expressed as an enzymatically active viral gene product

  20. Chronic exercise reduces hypothalamic transforming growth factor-β1 in middle-aged obese mice.

    Science.gov (United States)

    Silva, Vagner R R; Katashima, Carlos K; Lenhare, Luciene; Silva, Carla G B; Morari, Joseane; Camargo, Rafael L; Velloso, Licio A; Saad, Mario A; da Silva, Adelino S R; Pauli, Jose Rodrigo; Ropelle, Eduardo Rochete

    2017-08-28

    Obesity and aging are associated with hypothalamic inflammation, hyperphagia and abnormalities in the thermogenesis control. It has been demonstrated that the association between aging and obesity induces hypothalamic inflammation and metabolic disorders, at least in part, through the atypical hypothalamic transforming growth factor-β (TGF-β1). Physical exercise has been used to modulate several metabolic parameters. Thus, the aim of this study was to evaluate the impact of chronic exercise on TGF-β1 expression in the hypothalamus of Middle-Aged mice submitted to a one year of high-fat diet (HFD) treatment. We observed that long-term of HFD-feeding induced hypothalamic TGF-β1 accumulation, potentiated the hypothalamic inflammation, body weight gain and defective thermogenesis of Middle-Aged mice when compared to Middle-Aged animals fed on chow diet. As expected, chronic exercise induced negative energy balance, reduced food consumption and increasing the energy expenditure, which promotes body weight loss. Interestingly, exercise training reduced the TGF-β1 expression and IkB-α ser32 phosphorylation in the hypothalamus of Middle-Aged obese mice. Taken together our study demonstrated that chronic exercise suppressed the TGF-β1/IkB-α axis in the hypothalamus and improved the energy homeostasis in an animal model of obesity-associated to aging.

  1. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    International Nuclear Information System (INIS)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-01-01

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET

  2. Gastritis promotes an activated bone marrow-derived mesenchymal stem cell with a phenotype reminiscent of a cancer-promoting cell.

    Science.gov (United States)

    Donnelly, Jessica M; Engevik, Amy C; Engevik, Melinda; Schumacher, Michael A; Xiao, Chang; Yang, Li; Worrell, Roger T; Zavros, Yana

    2014-03-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis. The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype. Age matched C57BL/6 (BL/6) and gastrin deficient (GKO) mice were used for isolation of stomach, serum and mesenchymal stem cells (MSCs) at 3 and 6 months of age. MSC activation was assessed by growth curve analysis, fluorescence-activated cell sorting and xenograft assays. To allow for the isolation of bone marrow-derived stromal cells and assay in response to chronic gastritis, IRG/Vav-1(Cre) mice that expressed both enhanced green fluorescent protein-expressing hematopoietic cells and red fluorescent protein-expressing stromal cells were generated. In a parabiosis experiment, IRG/Vav-1(Cre) mice were paired to either an uninfected Vav-1(Cre) littermate or a BL/6 mouse inoculated with Helicobacter pylori. GKO mice displayed severe atrophic gastritis accompanied by elevated gastric tissue and circulating transforming growth factor beta (TGFβ) by 3 months of age. Compared to BM-MSCs isolated from uninflamed BL/6 mice, BM-MSCs isolated from GKO mice displayed an increased proliferative rate and elevated phosphorylated-Smad3 suggesting active TGFβ signaling. In xenograft assays, mice injected with BM-MSCs from 6-month-old GKO animals displayed tumor growth. RFP+ stromal cells were rapidly recruited to the gastric mucosa of H. pylori parabionts and exhibited changes in gene expression. Gastritis promotes the in vivo activation of BM-MSCs to a phenotype reminiscent of a cancer-promoting cell.

  3. Far infrared promotes wound healing through activation of Notch1 signaling.

    Science.gov (United States)

    Hsu, Yung-Ho; Lin, Yuan-Feng; Chen, Cheng-Hsien; Chiu, Yu-Jhe; Chiu, Hui-Wen

    2017-11-01

    The Notch signaling pathway is critically involved in cell proliferation, differentiation, development, and homeostasis. Far infrared (FIR) has an effect that promotes wound healing. However, the underlying molecular mechanisms are unclear. In the present study, we employed in vivo and HaCaT (a human skin keratinocyte cell line) models to elucidate the role of Notch1 signaling in FIR-promoted wound healing. We found that FIR enhanced keratinocyte migration and proliferation. FIR induced the Notch1 signaling pathway in HaCaT cells and in a microarray dataset from the Gene Expression Omnibus database. We next determined the mRNA levels of NOTCH1 in paired normal and wound skin tissues derived from clinical patients using the microarray dataset and Ingenuity Pathway Analysis software. The result indicated that the Notch1/Twist1 axis plays important roles in wound healing and tissue repair. In addition, inhibiting Notch1 signaling decreased the FIR-enhanced proliferation and migration. In a full-thickness wound model in rats, the wounds healed more rapidly and the scar size was smaller in the FIR group than in the light group. Moreover, FIR could increase Notch1 and Delta1 in skin tissues. The activation of Notch1 signaling may be considered as a possible mechanism for the promoting effect of FIR on wound healing. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model.

  4. Transforming lives: microcredit promotes renewable energy in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Urmee, Tania; Wimmer, Nancy [Grameen Shakti, Dhaka (Bangladesh)

    1999-07-01

    Outlines the work of Grameen Shakti in Bangladesh in promoting the use of renewable energy, in particular the marketing strategy aimed at popularising PV systems. Challenges to the success of its strategy such as cost and competition are outlined. Biomass and wind power are briefly mentioned.

  5. Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Xiujuan; Hong, Quan; Wang, Zhen; Yu, Yanyan; Zou, Xin; Xu, Lihong

    2016-02-01

    Renal fibrosis is a progressive pathological change characterized by tubular cell apoptosis, tubulointerstitial fibroblast proliferation, and excessive deposition of extracellular matrix (ECM). miR-21 has been implicated in transforming growth factor-β (TGF-β)-stimulated tissue fibrosis. Recent studies showed that sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) are also critical for TGF-β-stimulated tissue fibrosis; however, it is not clear whether SphK/S1P interacts with miR-21 or not. In this study, we hypothesized that SphK/S1P signaling is linked to upregulation of miR-21 by TGF-β. To verify this hypothesis, we first determined that miR-21 was highly expressed in renal tubular epithelial cells (TECs) stimulated with TGF-β by using qRT-PCR and Northern blotting. Simultaneously, inhibition of miR-21, mediated by the corresponding antimir, markedly decreased the expression and deposition of type I collagen, fibronectin (Fn), cysteine-rich protein 61 (CCN1), α-smooth muscle actin, and fibroblast-specific protein1 in TGF-β-treated TECs. ELISA and qRT-PCR were used to measure the S1P and SphK1 levels in TECs. S1P production was induced by TGF-β through activation of SphK1. Furthermore, it was observed that TGF-β-stimulated upregulation of miR-21 was abolished by SphK1 siRNA and was restored by the addition of exogenous S1P. Blocking S1PR2 also inhibited upregulation of miR-21. Additionally, miR-21 overexpression attenuated the repression of TGF-β-stimulated ECM deposition and epithelial-mesenchymal transition by SphK1 and S1PR2 siRNA. In summary, our study demonstrates a link between SphK1/S1P and TGF-β-induced miR-21 in renal TECs and may represent a novel therapeutic target in renal fibrosis. © 2015 by the Society for Experimental Biology and Medicine.

  6. Ship detection in Sentinel-1 imagery using the h-dome transformation

    CSIR Research Space (South Africa)

    Schwegmann, CP

    2015-07-01

    Full Text Available is then processed to detect cluster centroids which indicate the ships’ positions. The following sections detail this procedure. 3.1. H-dome transform The H-dome transform is a method for finding local maxima, often used in the medical field for finding sub-cellular...) and comparing it to Fig. 2 (d) we no- tice that the brightest section of the ship can be seen much more clearly in (d). This is due to the property of the H- dome transform to highlight structures not typically visible (such as sub-cellular structures in [8...

  7. Expression in Arabidopsis of a nucellus-specific promoter from watermelon (Citrullus lanatus).

    Science.gov (United States)

    Dwivedi, Krishna K; Roche, Dominique; Carman, John G

    2010-11-01

    Though many tissue-specific promoters have been identified, few have been associated specifically with the angiospermous megasporangium (nucellus). In the present study the 2000-bp regulatory region upstream to the watermelon, Citrullus lanatus (Thunb.) Matsum & Nakai, gene WM403 (GenBank accession no. AF008925), which shows nucellus-specific expression, was cloned from watermelon gDNA and fused to the β-glucuronidase reporter gene (GUS). The resulting plasmid, WM403 Prom::GUS(+), which also contained NPTII, was transformed into Arabidopsis thaliana ecotype Co1-0. Seedlings were selected on kanamycin-containing medium, and transformants were confirmed by PCR. GUS assays of T(3) transformants revealed weak promoter activation in epidermal layers of the placenta and locule septum during premeiotic ovule development but strong activation in the nucellus, embryo sac and early embryo, from early embryo sac formation to early globular embryo formation. Expression in seeds was absent thereafter. These results indicate that the WM403 promoter may be useful in driving nucellus-specific gene expression in plants including candidate genes for important nucellus-specific traits such as apospory or adventitious embryony. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. The relevance of cell transformation to carcinogenesis in vivo

    International Nuclear Information System (INIS)

    Little, J.B.

    1989-01-01

    Despite the caveats concerning rodent as opposed to human cell transformation systems, the author concludes there are several areas in which cell transformation studies with rodent cells have shown clear relevance to carcinogenesis in vivo, especially studies of carcinogenic effects of high LET radiation, particularly dependence on dose rate. In vitro studies firmly established the generality of promotion by phorbol esters tumour promotors. Initial studies on suppression of transformation, notably by protease inhibitors, has led to the confirmation of this phenomenon in in vivo carcinogenesis; development of inhibitor preparations from natural sources suitable for long-term supplementation in human diet, is under investigation. The potential importance of these modifiers is further emphasized by mechanistic studies suggesting that radiation may initiate a large fraction of exposed cell population, and expression of transformation may be controlled to a large extent by environmental conditions including the presence of promoting or suppressing agents. Finally, cell transformation systems offer the opportunity for mechanistic studies of the initial stages of carcinogenesis. Provocative results have arisen in several areas consistent with findings in experimental animals. (author)

  9. Functional significance of SPINK1 promoter variants in chronic pancreatitis.

    Science.gov (United States)

    Derikx, Monique H M; Geisz, Andrea; Kereszturi, Éva; Sahin-Tóth, Miklós

    2015-05-01

    Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation. Copyright © 2015 the American Physiological Society.

  10. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  11. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Li, Wei [Department of Gerontology, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qichang [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Qin, Tao [Department of Hepatobiliary Pancreatic Surgery, People' s Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou 450003 (China); Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Liu, Sanguang, E-mail: sanguang1998@sina.com [Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000 (China); Song, Zifang, E-mail: zsong@hust.edu.cn [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China)

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  12. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-01-01

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation

  13. Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd+2 or As+3 transformed human urothelial cells

    Directory of Open Access Journals (Sweden)

    Ajjimaporn Amornpan

    2011-02-01

    Full Text Available Abstract Background Studies have shown that metallothionein 3 (MT-3 is not expressed in normal urothelium or in the UROtsa cell line, but is expressed in urothelial cancer and in tumors generated from the UROtsa cells that have been transformed by cadmium (Cd+2 or arsenite (As+3.The present study had two major goals. One, to determine if epigenetic modifications control urothelial MT-3 gene expression and if regulation is altered by malignant transformation by Cd+2 or As+3. Two, to determine if MT-3 expression might translate clinically as a biomarker for malignant urothelial cells released into the urine. Results The histone deacetylase inhibitor MS-275 induced MT-3 mRNA expression in both parental UROtsa cells and their transformed counterparts. The demethylating agent, 5-Aza-2'-deoxycytidine (5-AZC had no effect on MT-3 mRNA expression. ChIP analysis showed that metal-responsive transformation factor-1 (MTF-1 binding to metal response elements (MRE elements of the MT-3 promoter was restricted in parental UROtsa cells, but MTF-1 binding to the MREs was unrestricted in the transformed cell lines. Histone modifications at acetyl H4, trimethyl H3K4, trimethyl H3K27, and trimethyl H3K9 were compared between the parental and transformed cell lines in the presence and absence of MS-275. The pattern of histone modifications suggested that the MT-3 promoter in the Cd+2 and As+3 transformed cells has gained bivalent chromatin structure, having elements of being "transcriptionally repressed" and "transcription ready", when compared to parental cells. An analysis of MT-3 staining in urinary cytologies showed that a subset of both active and non-active patients with urothelial cancer shed positive cells in their urine, but that control patients only rarely shed MT-3 positive cells. Conclusion The MT-3 gene is silenced in non-transformed urothelial cells by a mechanism involving histone modification of the MT-3 promoter. In contrast, transformation of the

  14. Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens.

    Science.gov (United States)

    Mayo, Kristin J; Gonzales, Barbara J; Mason, Hugh S

    2006-01-01

    This protocol is used to produce stably transformed tobacco (Nicotiana tabacum) NT1 cell lines, using Agrobacterium tumefaciens-mediated DNA delivery of a binary vector containing a gene encoding hepatitis B surface antigen and a gene encoding the kanamycin selection marker. The NT1 cultures, at the appropriate stage of growth, are inoculated with A. tumefaciens containing the binary vector. A 3-day cocultivation period follows, after which the cultures are rinsed and placed on solid selective medium. Transformed colonies ('calli') appear in approximately 4 weeks; they are subcultured until adequate material is obtained for analysis of antigen production. 'Elite' lines are selected based on antigen expression and growth characteristics. The time required for the procedure from preparation of the plant cell materials to callus development is approximately 5 weeks. Growth of selected calli to sufficient quantities for antigen screening may require 4-6 weeks beyond the initial selection. Creation of the plasmid constructs, transformation of the A. tumefaciens line, and ELISA and Bradford assays to assess protein production require additional time.

  15. TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses' Health Study

    International Nuclear Information System (INIS)

    Cox, David G; Penney, Kathryn; Guo, Qun; Hankinson, Susan E; Hunter, David J

    2007-01-01

    Transforming growth factor beta 1 (TGFB1) forms a signaling complex with transforming growth factor beta receptors 1 and 2 and has been described as both a tumor suppressor and tumor promoter. Single nucleotide polymorphisms in TGFB1 and a microsatellite in TGFBR1 have been investigated for association with risk of breast cancer, with conflicting results. We examined polymorphisms in the promoter region of the TGFB1 gene as well as the TGFBR1*6A microsatellite in the Nurses' Health Study cohort. No overall associations between the L10P polymorphism of TGFB1 or the TGFBR1 microsatellite were detected. However, we observed an inverse association between the -509 C/T polymorphism of TGFB1 (p-trend = 0.04), which was stronger and more significant among women with estrogen receptor positive breast cancer. Polymorphisms in the promoter region of TGFB1 are not likely to be associated with large increases in breast cancer risk overall among Caucasian women

  16. Transforming Growth Factor-β and Interleukin-1β Signaling Pathways Converge on the Chemokine CCL20 Promoter.

    Science.gov (United States)

    Brand, Oliver J; Somanath, Sangeeta; Moermans, Catherine; Yanagisawa, Haruhiko; Hashimoto, Mitsuo; Cambier, Stephanie; Markovics, Jennifer; Bondesson, Andrew J; Hill, Arthur; Jablons, David; Wolters, Paul; Lou, Jianlong; Marks, James D; Baron, Jody L; Nishimura, Stephen L

    2015-06-05

    CCL20 is the only chemokine ligand for the chemokine receptor CCR6, which is expressed by the critical antigen presenting cells, dendritic cells. Increased expression of CCL20 is likely involved in the increased recruitment of dendritic cells observed in fibroinflammatory diseases such as chronic obstructive pulmonary disease (COPD). CCL20 expression is increased by the proinflammatory cytokine IL-1β. We have determined that IL-1β-dependent CCL20 expression is also dependent on the multifunctional cytokine TGF-β. TGF-β is expressed in a latent form that must be activated to function, and activation is achieved through binding to the integrin αvβ8 (itgb8). Here we confirm correlative increases in αvβ8 and IL-1β with CCL20 protein in lung parenchymal lysates of a large cohort of COPD patients. How IL-1β- and αvβ8-mediated TGF-β activation conspire to increase fibroblast CCL20 expression remains unknown, because these pathways have not been shown to directly interact. We evaluate the 5'-flanking region of CCL20 to determine that IL-1β-driven CCL20 expression is dependent on αvβ8-mediated activation of TGF-β. We identify a TGF-β-responsive element (i.e. SMAD) located on an upstream enhancer of the human CCL20 promoter required for efficient IL-1β-dependent CCL20 expression. By chromatin immunoprecipitation, this upstream enhancer complexes with the p50 subunit of NF-κB on a NF-κB-binding element close to the transcriptional start site of CCL20. These interactions are confirmed by electromobility shift assays in nuclear extracts from human lung fibroblasts. These data define a mechanism by which αvβ8-dependent activation of TGF-β regulates IL-1β-dependent CCL20 expression in COPD. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Resident support for a landfill-to-park transformation

    Science.gov (United States)

    Christine A. Vogt; David B. Klenosky; Stephanie A. Snyder; Lindsay K. Campbell

    2015-01-01

    Globally, landfills are being transformed into other uses because land resources scarce, property values are increasing, and governments seek to reduce urban blight and adaptively reuse space. Park planners and city managers are likely to find that gauging public perceptions of a landfill-to-park project transformation and promoting such sites to potential visitors as...

  18. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    Science.gov (United States)

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  19. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The high mobility group protein A2 (HMGA2) has been demonstrated as an architectural transcription factor that is associated with pathogenesis of many malignant cancers, however, its role in prostate cancer cells remains largely unknown. To explore whether HMGA2 participates in the development and progression of ...

  20. A primary study of high performance transgenic rice through maize UBI-1 promoter fusing selective maker gene

    International Nuclear Information System (INIS)

    Shen, J.; Cai, P.; Qing, F.

    2012-01-01

    Based on the expression vector pBI121, we successfully constructed a plant over-expression vector of Hspa4 gene fusing with selective maker gene (hygromycin-resistance gene) driven by the Ubi-1 promoter (pBI121-Ubi-Hpt-Hspa4, p121UHH). The plant expression vectors p121UHH and pCAMBIA1301-Ubi-Hspa4 (p1301UH) were transformed into the rice callus, mediated by Agrobacterium tumefaciens. We screened 17 p121UHH-positive transgenic plants and 15 p1301UH-positive transgenic plants by the hygromycin-resistance gene. The pick-up rate of the resistance callus was 51.7% and 42.5%, respectively, and the rate of regeneration for the resistance callus was 51.2% and 49.1%, respectively. The result of polymerase chain reaction (P CR) identification indicated that the pick-up rate of positive transgenic plants was 51.7% and 42.5% and the total transformation efficiency was 16.5% and 6.2%, and the former was 2.66 time s of the later. The results of the experiment indicate that the possibility of the appearance of false positive results in the fusing of a plant over-expression vector with a selective maker gene is much less. (author)

  1. Anaerobic transformation of 1,4-Tyrosol to 4-Hydoxyphenylacetate by Desulfovibrio Species

    International Nuclear Information System (INIS)

    Chamkh, F.; El Bakouchi, I.; Ouazzani, N.; Said Eddarir, S.; Bennisse, R.; Qatibi, A. I.

    2009-01-01

    1,4 Tyrosol (4-hydroxyphenylethanol) is a phenolic compound that is typically found in olive oil, olive brine, and olive oil mill wastewaters. Its anaerobic transformation was investigated in Desulfovibrio strain EMSSDQT (chamkh et al., 2008) and Desulgovibrio alcoholivorans (Qatibi et al., 1991) using high-performance liquid chromatography (HPLC) and nuclear magnetic resonance ( 1 3C-NMR) as analysis technic. To our knowledge, this is the first report showing the transformation of 1,4-tyrosol to 4-hydroxyphenylacetate (PHPA) by Desulfovibrio sp in anoxic conditions. (Author)

  2. The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris.

    Science.gov (United States)

    Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong

    2018-08-01

    The transformation of nitrogen in microalgae during entrained-flow pyrolysis of Chlorella vulgaris was systematically investigated at the temperatures of 600-900 °C and pressures of 0.1-4.0 MPa. It was found that pressure had a profound impact on the transformation of nitrogen during pyrolysis. The nitrogen retention in bio-char and its content in bio-oil reached a maximum value at 1.0 MPa. The highest conversion of nitrogen (50.25 wt%) into bio-oil was achieved at 1.0 MPa and 800 °C, which was about 7 wt% higher than that at atmospheric pressure. Higher pressures promoted the formation of pyrrolic-N (N-5) and quaternary-N (N-Q) compounds in bio-oil at the expense of nitrile-N and pyridinic-N (N-6) compounds. The X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results on bio-chars clearly evidenced the transformation of N-5 structures into N-6 and N-Q structures at elevated pressures. The nitrogen transformation pathways during pyrolysis of microalgae were proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan

    International Nuclear Information System (INIS)

    Kenessov, Bulat; Alimzhanova, Mereke; Sailaukhanuly, Yerbolat; Baimatova, Nassiba; Abilev, Madi; Batyrbekova, Svetlana; Carlsen, Lars; Tulegenov, Akyl; Nauryzbayev, Mikhail

    2012-01-01

    In our research, three fall places of first stages of Proton rockets have been studied for the presence and distribution of transformation products of 1,1-dimethylhydrazine (1,1-DMH). Results of identification of transformation products of 1,1-DMH in real soil samples polluted due to rocket fuel spills allowed to detect 18 earlier unknown metabolites of 1,1-DMH being formed only under field conditions. According to the results of quantitative analyses, maximum concentrations of 1-methyl-1H-1,2,4-triazole made up 57.3, 44.9 and 13.3 mg kg −1 , of 1-ethyl-1H-1,2,4-triazole — 5.45, 3.66 and 0.66 mg kg −1 , of 1,3-dimethyl-1H-1,2,4-triazole - 24.0, 17.8 and 4.9 mg kg −1 in fall places 1, 2 and 3, respectively. 4-Methyl-4H-1,2,4-triazole was detected only in fall places 2 and 3 where its maximum concentrations made up 4.2 and 0.66 mg kg −1 , respectively. The pollution of soils with transformation products of 1,1-DMH was only detected in epicenters of fall places having a diameter of 8 to10 m where rocket boosters landed. The results of a detailed study of distribution of 1,1-DMH transformation products along the soil profile indicate that transformation products can migrate down to the depth of 120 cm, The highest concentrations of 1,1-DMH transformation products were detected, as a rule, at the depth 20 to 60 cm. However, this index can vary depending on the compound, humidity and physical properties of soil, landscape features and other conditions. In the surface layer, as a rule, only semi-volatile products of transformation were detected which was caused by fast evaporation and biodegradation of volatile metabolites. - Highlights: ► We study metabolites of 1,1-dimethylhydrazine and their distribution in soils. ► Fifty four metabolites can be formed in soils polluted with 1,1-dimethylhydrazine. ► Metabolites are detected in the epicenter having diameter of about 10 m. ► Metabolites can migrate down to the depth of 120 cm. ► Volatile metabolites

  4. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Kenessov, Bulat, E-mail: bkenesov@gmail.com [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan); Alimzhanova, Mereke; Sailaukhanuly, Yerbolat; Baimatova, Nassiba; Abilev, Madi; Batyrbekova, Svetlana [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan); Carlsen, Lars [Awareness Center, Linkopingvej 35, Trekroner, DK-4000 Roskilde (Denmark); Department of Chemical Engineering, Kazakh-British Technical University, 59 Tole Bi st., Almaty, 050000 (Kazakhstan); Tulegenov, Akyl; Nauryzbayev, Mikhail [Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96A Tole Bi st., Almaty, 050012 (Kazakhstan)

    2012-06-15

    In our research, three fall places of first stages of Proton rockets have been studied for the presence and distribution of transformation products of 1,1-dimethylhydrazine (1,1-DMH). Results of identification of transformation products of 1,1-DMH in real soil samples polluted due to rocket fuel spills allowed to detect 18 earlier unknown metabolites of 1,1-DMH being formed only under field conditions. According to the results of quantitative analyses, maximum concentrations of 1-methyl-1H-1,2,4-triazole made up 57.3, 44.9 and 13.3 mg kg{sup -1}, of 1-ethyl-1H-1,2,4-triazole - 5.45, 3.66 and 0.66 mg kg{sup -1}, of 1,3-dimethyl-1H-1,2,4-triazole - 24.0, 17.8 and 4.9 mg kg{sup -1} in fall places 1, 2 and 3, respectively. 4-Methyl-4H-1,2,4-triazole was detected only in fall places 2 and 3 where its maximum concentrations made up 4.2 and 0.66 mg kg{sup -1}, respectively. The pollution of soils with transformation products of 1,1-DMH was only detected in epicenters of fall places having a diameter of 8 to10 m where rocket boosters landed. The results of a detailed study of distribution of 1,1-DMH transformation products along the soil profile indicate that transformation products can migrate down to the depth of 120 cm, The highest concentrations of 1,1-DMH transformation products were detected, as a rule, at the depth 20 to 60 cm. However, this index can vary depending on the compound, humidity and physical properties of soil, landscape features and other conditions. In the surface layer, as a rule, only semi-volatile products of transformation were detected which was caused by fast evaporation and biodegradation of volatile metabolites. - Highlights: Black-Right-Pointing-Pointer We study metabolites of 1,1-dimethylhydrazine and their distribution in soils. Black-Right-Pointing-Pointer Fifty four metabolites can be formed in soils polluted with 1,1-dimethylhydrazine. Black-Right-Pointing-Pointer Metabolites are detected in the epicenter having diameter of about 10 m

  5. Effects of glucocorticoid hormones on radiation induced and 12-O-tetradecanoylphorbol-13-acetate enhanced radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Umans, R.S.

    1988-01-01

    We have studied the interactions of glucocorticoid hormones with radiation in the induction of transformation in vitro in C3AH10T1/2 cells. We have observed that cortisone has its primary enhancing effect on radiation transformation when present after the radiation exposure during the ''expression period'', or the time after carcinogen exposure during which promoting agents have been shown to enhance radiation transformation in vitro, and that two different glucocorticoid hormones, dexamethasone and cortisone, have a suppressive effect on the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation transformation in vitro

  6. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Lixia Zhao

    Full Text Available HIV-1 associated neurocognitive disorders (HAND develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS, glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN α specifically activated the glutaminase 1 (GLS1 promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1 phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1 mRNA levels in HIV associated-dementia (HAD individuals correlate with STAT1 (p<0.01, IFN-α (p<0.05 and IFN-β (p<0.01. Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and

  7. Immediate Supervisors’ Leadership Behaviour and Employees’ Organizational Commitment: Do Pay and Promotion Mediate the Nexus?

    Directory of Open Access Journals (Sweden)

    Emmanuel Yaw Ampofo

    2016-09-01

    Full Text Available This study examines the mediating effect of motivational factors of pay and promotion on transformational leadership and organizational commitment relationship in Unilever Ghana using a quantitative, non-experimental, cross-sectional and analytical survey design study. The results of the study revealed significant positive relationship between transformational leadership style and affective commitment, continuance commitment, and normative commitment. However, the results of the study revealed no significant mediation of pay in the relationship between transformational leadership style and affective commitment, continuance commitment, and normative commitment. Additionally, no significant mediation of promotion was found in the relationship between transformational leadership and affective commitment, transformational leadership and continuance commitment, and transformational leadership and normative commitment. Managers’ adoption of transformational leadership behavior as a key strategy to get employees committed to the organizations will be of great significance because motivational factors such as pay and promotion do not mediate the transformational leadership and organizational commitment relationship. This is a maiden empirical research in Ghana where motivational factors are used as mediators in transformational leadership and organizational commitment relationship.

  8. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency

    Directory of Open Access Journals (Sweden)

    Junhui An

    2017-02-01

    Full Text Available Cultured spermatogonial stem cells (GSCs can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1+ after trypsin digestion, are epithelial-like cells. CDH1+ GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  9. Proteomics-based investigation of multiple stages of OSCC development indicates that the inhibition of Trx-1 delays oral malignant transformation.

    Science.gov (United States)

    Chen, Xijuan; Hu, Qinchao; Wu, Tong; Wang, Chunyang; Xia, Juan; Yang, Linglan; Cheng, Bin; Chen, Xiaobing

    2018-03-01

    The majority of cases of oral squamous cell carcinoma (OSCC) develop from oral potentially malignant disorders, which have been confirmed to be involved in chronic oxidative stimulation. However, no effective treatment approaches have been used to prevent the development of dysplasia into cancerous lesions thus far. In the present study, a well-established OSCC model was used to detect proteomics profiles at different stages during oral malignant transformation. Of the 15 proteins that were found to be upregulated in both the dysplasia and carcinoma stages, the oxidative stress-associated proteins, thioredoxin-1 (Trx-1), glutaredoxin-1 and peroxiredoxin-2 were note as the proteins with significant changes in expression Trx-1 was identified to be the most significantly upregulated protein in the precancerous stage. Validation experiments confirmed that Trx-1 was overexpressed both in dysplasia and cancerous tissue samples, and the inhibition of Trx-1 was able to promote the apoptosis of OSCC cells under hypoxic conditions. Furthermore, the experimental application of a Trx-1-specific inhibitory agent in an animal model led to a lower cancerization rate and a delay in tumor formation. The possible mechanisms were associated with the increased apoptosis via a reactive oxygen species (ROS)-dependent pathway. Taken together, our findings indicate that Trx-1 may be an important target for delaying oral malignant transformation, which provides a novel therapeutic strategy for the prevention and treatment of OSCC.

  10. Transformational Leadership in Special Education: Leading the IEP Team

    Science.gov (United States)

    Lentz, Kirby

    2012-01-01

    Using the principles of transformational leadership, IEP teams become effective tools to ensure student success and achievements. There is a difference of teams that are simply chaired and those that are lead. Teams with transformational leaders promote the best efforts of all participants including parents and students to effectively deliver…

  11. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  12. Darboux transformation and explicit solutions for some (2+1)-dimensional equations

    International Nuclear Information System (INIS)

    Wang Yan; Shen Lijuan; Du Dianlou

    2007-01-01

    Three systems of (2+1)-dimensional soliton equations and their decompositions into the (1+1)-dimensional soliton equations are proposed. These equations include KPI, CKP, MKPI. With the help of Darboux transformation of (1+1)-dimensional equations, we get the explicit solutions of the (2+1)-dimensional equations

  13. For Function or Transformation? A Critical Discourse Analysis of Education under the Sustainable Development Goals

    Science.gov (United States)

    Brissett, Nigel; Mitter, Radhika

    2017-01-01

    We conduct a critical discourse analysis of the extent to which Sustainable Development Goal 4, "to ensure inclusive and equitable quality education for all and promote lifelong learning," promotes a utilitarian and/or transformative approach to education. Our findings show that despite transformative language used throughout the Agenda,…

  14. The Genetic Intractability Of Symbiodinium microadriaticum To Standard Algal Transformation Methods

    KAUST Repository

    Chen, Jit Ern

    2017-05-23

    Modern transformation and genome editing techniques have shown great success across a broad variety of organisms. However, no study of successfully applied genome editing has been reported in a dinoflagellate despite the first genetic transformation of Symbiodinium being published about 20 years ago. Using an array of different available transformation techniques, we attempted to transform Symbiodinium microadriaticum (CCMP2467), a dinoflagellate symbiont of reef-building corals, in order to perform CRISPR-Ca9 mediated genome editing. Plasmid vectors containing the chloramphenicol resistance gene under the control of the CaMV p35S promoter as well as several putative endogenous promoters were used to test a variety of transformation techniques including biolistics, electroporation, silica whiskers and glass bead agitation. We report that we have been unable to confer chloramphenicol resistance to our specific Symbiodinium strain. These results are intended to provide other researchers with an overview of previously attempted techniques and sequences in order to support efficient planning of future experiments in this important field.

  15. Substrate stiffness promotes latent TGF-β1 activation in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Pang, Mingshu; Teng, Yao; Huang, Jianyong; Yuan, Yuan; Lin, Feng; Xiong, Chunyang

    2017-01-01

    Hepatocellular carcinoma (HCC) was usually coupled with increased stiffness of the extracellular matrix (ECM) and elevated level of transforming growth factor-β1 (TGF-β1). However, the mechanism by which substrate rigidity modulated TGF-β1 signaling transduction remained unknown. This paper investigated the molecular mechanism of how matrix stiffness regulating TGF-β1 signaling in HCC cells. By means of stiffness tunable collagen I-coated polyacrylamide (PA) gels, we found that the expressions of β1 integrin, p-FAK Y397 and p-Smad2 upregulated on stiffer gels as well as the content of TGF-β1 in culture media of HCC cells, which were inhibited by RGD blocking peptides, Y-27632 (ROCK inhibitor) or Blebbistatin (myosin II inhibitor). Cellular traction force was also significantly higher when plated on stiffer substrates but dramatically decreased after treatment with Y-27632 or Blebbistatin. Furthermore, the upregulation of p-Smad2 in the HCC cells on stiffer PA gels induced by exogenetic latent TGF-β1 was downregulated in the presence of RGD peptides. The nuclear translocation of Smad2 induced by latent TGF-β1 was inhibited by Y-27632 or Blebbistatin. Our results suggested that the extracellular matrix stiffness regulated latent TGF-β1 activation by cytoskeletal tension in HCC cells, showing that matrix stiffness was a key regulator involving the TGF-β1 activity in HCC cells. The current study presented a mechanism of how hepatocirrhosis developed into liver cancer. - Highlights: • TGF-β1 signaling pathway regulated by ECM stiffness was studied in hepatocellular carcinoma. • Matrix stiffness promoted latent TGF-β1 activation via β1 integrin-FAK-Rho GTPase pathway. • A mechanism of how hepatocirrhosis developed into liver cancer was presented.

  16. Study on renormalization transformation for U(1) gauge theory in the neighbourhood of gaussian fixed point

    International Nuclear Information System (INIS)

    Neves, A.G.M.

    1988-01-01

    The renormalization transformation e sup(-S 1) sup((B)) const. ζ e sup(-S o (A) - V(A)) δ (B-C sub(1) A) δ sub(Ax) (A)DA for the U(1) lattice gauge theory, where S sub(o) (A) is the gaussian fixed point of the transformation, V(A) is a gauge invariant perturbation, C sub(1) is the averaging operator and δ sub(Ax) (A) fixes the local axial gauge is studied via an equivalent renormalization transformation on the 2-forms F = dA. The transformation is linearized in the neighborhood of the fixed point and then diagonalized. (author)

  17. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    International Nuclear Information System (INIS)

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-01-01

    Highlights: → Genistein (GEN) is a phytoestrogen found in soy products. → GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. → GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. → A high-resolution melting assay was used to screen for epigenetic change. → We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  18. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  19. Inhibition of Geranylgeranyl Transferase-I Decreases Cell Viability of HTLV-1-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Cynthia A. Pise-Masison

    2011-10-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL, an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.

  20. Power transformers - Part 11: Dry-type transformers

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Applies to dry-type power transformers (including auto-transformers) having values of highest voltage for equipment up to and including 36 kV and at least one winding operating at greater than 1,1 kV. Applies to all construction technologies.

  1. Transformational Leadership in Research Universities

    Science.gov (United States)

    Gilmore, Ryann M.

    2011-01-01

    In order to preserve research integrity, leaders at postsecondary research institutions must utilize transformational leadership behaviors in order to promote a campus culture that is the most conducive to responsible research conduct. In support of this assertion, the issue of research misconduct and its potential consequences for both…

  2. Ubiquilin 1 Promotes IFN-γ-Induced Xenophagy of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Erik T Sakowski

    2015-07-01

    Full Text Available The success of Mycobacterium tuberculosis (Mtb as a pathogen rests upon its ability to grow intracellularly in macrophages. Interferon-gamma (IFN-γ is critical in host defense against Mtb and stimulates macrophage clearance of Mtb through an autophagy pathway. Here we show that the host protein ubiquilin 1 (UBQLN1 promotes IFN-γ-mediated autophagic clearance of Mtb. Ubiquilin family members have previously been shown to recognize proteins that aggregate in neurodegenerative disorders. We find that UBQLN1 can interact with Mtb surface proteins and associates with the bacilli in vitro. In IFN-γ activated macrophages, UBQLN1 co-localizes with Mtb and promotes the anti-mycobacterial activity of IFN-γ. The association of UBQLN1 with Mtb depends upon the secreted bacterial protein, EsxA, which is involved in permeabilizing host phagosomes. In autophagy-deficient macrophages, UBQLN1 accumulates around Mtb, consistent with the idea that it marks bacilli that traffic through the autophagy pathway. Moreover, UBQLN1 promotes ubiquitin, p62, and LC3 accumulation around Mtb, acting independently of the E3 ligase parkin. In summary, we propose a model in which UBQLN1 recognizes Mtb and in turn recruits the autophagy machinery thereby promoting intracellular control of Mtb. Thus, polymorphisms in ubiquilins, which are known to influence susceptibility to neurodegenerative illnesses, might also play a role in host defense against Mtb.

  3. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang; Lin, Ching-Yu; Chuu, Chih-Pin [Institute of Cellular and System Medicine National Health Research Institute, Zhunan Town 35053, Miaoli County, Taiwan, ROC (China); Morishita, Kazuhiro; Ichikawa, Tomonaga [Division of Tumor and Cellular Biochemistry Department of Medical Sciences Faculty of Medicine University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-shi, Miyazaki 889-1692 Japan (Japan); Jessberger, Rolf [Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany); Fukui, Yasuhisa, E-mail: 990412@nhri.org.tw [Institute of Cellular and System Medicine National Health Research Institute, Zhunan Town 35053, Miaoli County, Taiwan, ROC (China)

    2016-07-15

    Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. - Highlights: • Mouse embryo fibroblasts (MEFs) lacking SWAP-70 do not cause spontaneous transform. • Adding back of SWAP-70 to SWAP-70-deficient MEFs induces spontaneous transformation. • SWAP-70 is required for spontaneous transformation of MEFs.

  4. Regulatory focus and burnout in nurses: The mediating effect of perception of transformational leadership.

    Science.gov (United States)

    Shi, Rui; Zhang, Shilei; Xu, Hang; Liu, Xufeng; Miao, Danmin

    2015-12-01

    This correlation study investigated the relationship between nurses' regulatory focus and burnout, as mediated by their perceptions of transformational leadership, using a cross-sectional research design with anonymous questionnaires. In July-August 2012, data were collected from 378 nurses from three hospitals in Shaanxi Province, China, using self-report questionnaires for measuring the nurses' regulatory focus, their level of burnout and their perception of whether the leadership of their supervisor was transformational. Structural equation modelling and bootstrapping procedures were used to identify the mediating effect of their perceptions of transformational leadership. The results supported our hypothesized model. The type of regulatory focus emerged as a significant predictor of burnout. Having a perception of transformational leadership partially mediated the relationship between regulatory focus and burnout. Having a promotion focus reduced burnout when the participants perceived transformational leadership, whereas having a prevention focus exhibited the opposite pattern. The mediating effect of the perception of transformational leadership suggests that a promotion focus may help diminish burnout, directly and indirectly. Nurse managers must be aware of the role of a regulatory focus and cultivate promotion focus in their followers. © 2014 Wiley Publishing Asia Pty Ltd.

  5. Soliton solutions of the (2 + 1)-dimensional Harry Dym equation via Darboux transformation

    International Nuclear Information System (INIS)

    Halim, A.A.

    2008-01-01

    This work introduces solitons solutions for the (2 + 1)-dimensional Harry Dym equation using Darboux transformation. The link between the (2 + 1)-dimensional Harry Dym equation and the linear system associated with the modified Kadomtzev-Patvishvili equation is used. Namely, soliton solutions for the linear system associated with the later equation are produced using Darboux transformation. These solutions are inserted in the mentioned link to produce soliton solutions for the (2 + 1)-dimensional Harry Dym equation

  6. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Deng, Shuang; Culley, David E.; Bruno, Kenneth S.; Magnuson, Jon K.

    2017-06-19

    Background: Because of interest in the production of renewable bio-hydrocarbon fuels, various living organisms have been explored for their potential use in producing fuels and chemicals. The oil-producing (oleaginous) yeast Lipomyces starkeyi is the subject of active research regarding the production of lipids using a wide variety of carbon and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements using the tools of synthetic biology and metabolic engineering. However, using these tools for strain improvement requires the establishment of effective and reliable transformation methods with suitable selectable markers (antibiotic resistance or auxotrophic marker genes) and the necessary genetic elements (promoters and terminators) for expression of introduced genes. Chemical-based methods have been published, but suffer from low efficiency or the requirement for targeting to rRNA loci. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. Results: In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species and that the introduced DNA can be reliably integrated into the chromosomes of these species. The gene deletion of Ku70 and Pex10 was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial -glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1 promoter was also stably expressed in seven different Lipomyces species. Conclusion: The results from this study clearly demonstrate that Agrobacterium-mediated transformation is a reliable genetic tool for gene deletion and integration and expression of heterologous genes in L. starkeyi and other Lipomyces species.

  7. Inverse correlation between promoter strength and excision activity in class 1 integrons.

    Directory of Open Access Journals (Sweden)

    Thomas Jové

    2010-01-01

    Full Text Available Class 1 integrons are widespread genetic elements that allow bacteria to capture and express gene cassettes that are usually promoterless. These integrons play a major role in the dissemination of antibiotic resistance among Gram-negative bacteria. They typically consist of a gene (intI encoding an integrase (that catalyzes the gene cassette movement by site-specific recombination, a recombination site (attI1, and a promoter (Pc responsible for the expression of inserted gene cassettes. The Pc promoter can occasionally be combined with a second promoter designated P2, and several Pc variants with different strengths have been described, although their relative distribution is not known. The Pc promoter in class 1 integrons is located within the intI1 coding sequence. The Pc polymorphism affects the amino acid sequence of IntI1 and the effect of this feature on the integrase recombination activity has not previously been investigated. We therefore conducted an extensive in silico study of class 1 integron sequences in order to assess the distribution of Pc variants. We also measured these promoters' strength by means of transcriptional reporter gene fusion experiments and estimated the excision and integration activities of the different IntI1 variants. We found that there are currently 13 Pc variants, leading to 10 IntI1 variants, that have a highly uneven distribution. There are five main Pc-P2 combinations, corresponding to five promoter strengths, and three main integrases displaying similar integration activity but very different excision efficiency. Promoter strength correlates with integrase excision activity: the weaker the promoter, the stronger the integrase. The tight relationship between the aptitude of class 1 integrons to recombine cassettes and express gene cassettes may be a key to understanding the short-term evolution of integrons. Dissemination of integron-driven drug resistance is therefore more complex than previously thought.

  8. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex.

    Science.gov (United States)

    Jacquemet, Guillaume; Green, David M; Bridgewater, Rebecca E; von Kriegsheim, Alexander; Humphries, Martin J; Norman, Jim C; Caswell, Patrick T

    2013-09-16

    Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.

  9. β-carotene and canthaxanthin inhibit chemically- and physically-induced transformation in 10T1/2 cells

    International Nuclear Information System (INIS)

    Pung, A.; Rundhaug, J.E.; Yoshizawa, C.N.; Bertram, J.S.

    1988-01-01

    We have studied the effects of β-carotene (β-C), a vitamin A precursor of plant origin, and canthaxanthin (CTX), a non-provitamin A carotenoid, on the neoplastic transformation of C3H/10T1/2 murine fibroblast cells. We show that both β-C and CTX inhibit 3-methylcholanthrene (MCA)-induced transformation. Both carotenoids failed to inhibit X-ray-induced transformation when the cells were treated prior to and during irradiation. However, when the drugs were added 1 week after X-irradiation and maintained in the medium thereafter, both carotenoids inhibited subsequent development of transformed foci in a dose-dependent manner. Again, CTX was more effective than β-C. The inhibition of MCA-induced transformation was reversible; upon removal of the drug, transformed foci developed within 2 weeks, indicating that the carotenoids were not specifically toxic to initiated cells. Although both carotenoids caused a small dose-dependent decrease in the growth rate of both parental and initiated 10T1/2 cells, they did not markedly affect colony size or number when the cells were treated as in the transformation assays, nor did they influence the expression of neoplasia of two transformed cell lines. We suggest that the carotenoids' lipid anti-oxidant properties may be responsible for their inhibitory actions on transformation. (author)

  10. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    Science.gov (United States)

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  11. Ras-Induced and Extracellular Signal-Regulated Kinase 1 and 2 Phosphorylation-Dependent Isomerization of Protein Tyrosine Phosphatase (PTP)-PEST by PIN1 Promotes FAK Dephosphorylation by PTP-PEST ▿

    Science.gov (United States)

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X.; Lu, Zhimin

    2011-01-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression. PMID:21876001

  12. Agrobacterium tumefaciens-mediated transformation for investigating pathogenicity genes of the phytopathogenic fungus Colletotrichum sansevieriae.

    Science.gov (United States)

    Nakamura, Masayuki; Kuwahara, Hideto; Onoyama, Keisuke; Iwai, Hisashi

    2012-08-01

    Agrobacterium tumefaciens-mediated transformation (AtMT) has become a common technique for DNA transformation of yeast and filamentous fungi. In this study, we first established a protocol of AtMT for the phytopathogenic fungus Colletotrichum sansevieriae. Binary T-DNA vector containing the hygromycin B phosphotransferase gene controlled by the Aspergillus nidulans gpdA promoter and the trpC terminator was constructed with pCAMBIA0380 and used with three different strains LBA4404, GV3101, and GV2260 of A. tumefaciens. Transformants were most effectively obtained when GV2260 and C. sansevieriae Sa-1-2 were co-cultivated; there were about 320 transformants per 10(6) spores. When 1,048 transformants were inoculated on Sansevieria trifasciata, three transformants were found to have completely lost their pathogenicity and two transformants displayed reduced pathogenicity. All of the five transformants had a single copy of T-DNA in their genomes. The three pathogenicity-deficient transformants were subjected to thermal asymmetric interlaced polymerase chain reaction and the reaction allowed us to amplify the sequences flanking the left and/or right borders. The flanking sequences of the two transformants, M154 and M875, showed no homology to any sequences in databases, but the sequences of M678 contained motifs of alpha-1,3-glucan synthase, suggesting that the gene might contribute to the pathogenicity of C. sansevieriae. This study describes a useful method for investigating pathogenicity genes in C. sansevieriae.

  13. Distinctive transforming genes in x-ray-transformed mammalian cells

    International Nuclear Information System (INIS)

    Borek, C.; Ong, A.; Mason, H.

    1987-01-01

    DNAs from hamster embryo cells and mouse C3H/10T1/2 cells transformed in vitro by x-irradiation into malignant cells transmit the radiation transformation phenotype by producing transformed colonies (transfectants) in two mouse recipient lines, the NIH 3T3 and C3H/101/2 cells, and in a rat cell line, the Rat-2 cells. DNAs from unirradiated cells or irradiated and visibly untransformed cells do not produce transformed colonies. The transfectant grow in agar and form tumors in nude mice. Treatment of the DNAs with restriction endonucleases prior to transfection indicates that the same transforming gene (oncogene) is present in each of the transformed mouse cells and is the same in each of the transformed hamster cells. Southern blot analysis of 3T3 or Rat-2 transfectants carrying oncogenes from radiation-transformed C3H/10T1/2 or hamster cells indicates that the oncogenes responsible for the transformation of 3T3 cells are not the Ki-ras, Ha-ras, N-ras genes, nor are they neu, trk, raf, abl, or fms. The work demonstrates that DNAs from mammalian cells transformed into malignancy by direct exposure in vitro to radiation contain genetic sequences with detectable transforming activity in three recipient cell lines. The results provide evidence that DNA is the target of radiation carcinogenesis induced at a cellular level in vitro. The experiments indicate that malignant radiogenic transformation in vitro of hamster embryo and mouse C3H/10T1/2 cells involves the activation of unique non-ras transforming genes, which heretofore have not been described

  14. Transcriptional regulation of the Bacillus subtilis menp1 promoter.

    Science.gov (United States)

    Qin, X; Taber, H W

    1996-02-01

    The Bacillus subtilis men genes encode biosynthetic enzymes for formation of the respiratory chain component menaquinone. The menp1 promoter previously was shown to be the primary cis element for menFD gene expression. In the present work, it was found that either supplementation with nonfermentable carbon sources or reutilization of glycolytic end products increased menp1 activity in the late postexponential phase. The effect on menp1 activity by a particular end product (such as acetoin or acetate) was prevented by blocking the corresponding pathway for end product utilization. Alteration of a TGAAA motif within the promoter region resulted in unregulated menp1 activity throughout the culture cycle, irrespective of the carbon source added.

  15. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  16. Art therapy as a path to spiritual transformation

    Directory of Open Access Journals (Sweden)

    Juana M. Cáceres-Gutiérrez

    2018-01-01

    Full Text Available The study of art therapy and spirituality makes it possible to describe the symbolic and universal meaning that the different expressions of art can contribute to the comprehensive transformation —personal and transpersonal— of spirit. The article understands said transformation from the perspective of intervention in pathology or dysfunctionality, as well as of health and personal growth promotion. What is it about art that transforms individuals? The paper argues that the therapeutic relation, the creative act, and the authentic self are the pillars of a productive individual and social intervention.

  17. Data Transformations for Inference with Linear Regression: Clarifications and Recommendations

    Science.gov (United States)

    Pek, Jolynn; Wong, Octavia; Wong, C. M.

    2017-01-01

    Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…

  18. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    International Nuclear Information System (INIS)

    Ohshimo, Shinichiro; Yokoyama, Akihito; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-01-01

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases

  19. Phase diagrams and phase transformations in 'Zirlo': Zr-1% Sn-1% Nb (0,1% Fe)

    International Nuclear Information System (INIS)

    Canay, Marcelo G.

    1996-01-01

    The transformation temperatures and the phases present in Zr-base alloys with 1% at. Nb, (0,1 and 0,8) % at. Sn, (0,2 and 0,7) % at. Fe and 600 and 6000 ppmat O were studied it the present work. α ↔ α + β and α + β ↔ β transformation temperatures were determined by means of electrical resistivity variation v. temperature measurements. Scanning Electronic Microscopy (SEM) and quantitative microanalysis techniques were used in order to study the microstructures and chemical composition of the phases appearing at three different annealing temperatures (600, 800 and 850 C degrees). Samples annealed at 600 C degrees were also analyzed by X-ray diffraction methods. Oxygen influence turned out to increase the α + β ↔ β transformation temperature, while iron produced a decrease in the α ↔ α + β one. Comparing with literature data we concluded that tin increases the α + β ↔ β and decreases the α ↔ α + β temperatures while niobium decreases both. The samples annealed at 800 and 850 C degrees, showed two different microstructures of α-phases: α-plates which correspond to the α-phases portion at the annealing temperature and α-Widmanstaetten like structure formed from the β-phase when quenching the sample. A Widmanstaetten like structure consisting in α phase plates with a supersaturated (in Nb and Fe) α phase (α s ) in between was observed at 600 C degrees. It is in this α s phase the different intermetallic phases could precipitate. We were only able to identify Zr 3 Fe in two alloys with low tin and oxygen content. (author)

  20. cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity

    International Nuclear Information System (INIS)

    Taira, M.; Yoshida, T.; Miyagawa, K.; Sakamoto, H.; Terada, M.; Sugimura, T.

    1987-01-01

    The hst gene was originally identified as a transforming gene in DNAs from human stomach cancers and from a noncancerous portion of stomach mucosa by DNA-mediated transfection assay using NIH3T3 cells. cDNA clones of hst were isolated from the cDNA library constructed from poly(A) + RNA of a secondary transformant induced by the DNA from a stomach cancer. The sequence analysis of the hst cDNA revealed the presence of two open reading frames. When this cDNA was inserted into an expression vector containing the simian virus 40 promoter, it efficiently induced the transformation of NIH3T3 cells upon transfection. It was found that one of the reading frames, which coded for 206 amino acids, was responsible for the transforming activity

  1. The continous Legendre transform, its inverse transform, and applications

    Directory of Open Access Journals (Sweden)

    P. L. Butzer

    1980-01-01

    Full Text Available This paper is concerned with the continuous Legendre transform, derived from the classical discrete Legendre transform by replacing the Legendre polynomial Pk(x by the function Pλ(x with λ real. Another approach to T.M. MacRobert's inversion formula is found; for this purpose an inverse Legendre transform, mapping L1(ℝ+ into L2(−1,1, is defined. Its inversion in turn is naturally achieved by the continuous Legendre transform. One application is devoted to the Shannon sampling theorem in the Legendre frame together with a new type of error estimate. The other deals with a new representation of Legendre functions giving information about their behaviour near the point x=−1.

  2. Six1 promotes proliferation of pancreatic cancer cells via upregulation of cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Zhaoming Li

    Full Text Available Six1 is one of the transcription factors that act as master regulators of development and are frequently dysregulated in cancers. However, the role of Six1 in pancreatic cancer is not clear. Here we show that the relative expression of Six1 mRNA is increased in pancreatic cancer and correlated with advanced tumor stage. In vitro functional assays demonstrate that forced overexpression of Six1 significantly enhances the growth rate and proliferation ability of pancreatic cancer cells. Knockdown of endogenous Six1 decreases the proliferation of these cells dramatically. Furthermore, Six1 promotes the growth of pancreatic cancer cells in a xenograft assay. We also show that the gene encoding cyclin D1 is a direct transcriptional target of Six1 in pancreatic cancer cells. Overexpression of Six1 upregulates cyclin D1 mRNA and protein, and significantly enhances the activity of the cyclin D1 promoter in PANC-1 cells. We demonstrate that Six1 promotes cell cycle progression and proliferation by upregulation of cyclin D1. These data suggest that Six1 is overexpressed in pancreatic cancer and may contribute to the increased cell proliferation through upregulation of cyclin D1.

  3. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  4. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    Science.gov (United States)

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The optimal digital filters of sine and cosine transforms for geophysical transient electromagnetic method

    Science.gov (United States)

    Zhao, Yun-wei; Zhu, Zi-qiang; Lu, Guang-yin; Han, Bo

    2018-03-01

    The sine and cosine transforms implemented with digital filters have been used in the Transient electromagnetic methods for a few decades. Kong (2007) proposed a method of obtaining filter coefficients, which are computed in the sample domain by Hankel transform pair. However, the curve shape of Hankel transform pair changes with a parameter, which usually is set to be 1 or 3 in the process of obtaining the digital filter coefficients of sine and cosine transforms. First, this study investigates the influence of the parameter on the digital filter algorithm of sine and cosine transforms based on the digital filter algorithm of Hankel transform and the relationship between the sine, cosine function and the ±1/2 order Bessel function of the first kind. The results show that the selection of the parameter highly influences the precision of digital filter algorithm. Second, upon the optimal selection of the parameter, it is found that an optimal sampling interval s also exists to achieve the best precision of digital filter algorithm. Finally, this study proposes four groups of sine and cosine transform digital filter coefficients with different length, which may help to develop the digital filter algorithm of sine and cosine transforms, and promote its application.

  6. Engaging First Graders in Transformational Early Childhood Emergent Learning Themes

    Science.gov (United States)

    Pendergrass, Amanda Daniel

    2013-01-01

    The purpose of this qualitative case study was to encourage learners to care for others and make a difference in the world through Reggio Emilia-inspired teaching and learning practice that promoted transformational education. Students were anticipated to take an active role in helping to develop the transformational educational curriculum.…

  7. The Relationship between Chief Information Officer Transformational Leadership and Computing Platform Operating Systems

    Science.gov (United States)

    Anderson, George W.

    2010-01-01

    The purpose of this study was to relate the strength of Chief Information Officer (CIO) transformational leadership behaviors to 1 of 5 computing platform operating systems (OSs) that may be selected for a firm's Enterprise Resource Planning (ERP) business system. Research shows executive leader behaviors may promote innovation through the use of…

  8. Transformational leadership and employee safety performance: a within-person, between-jobs design.

    Science.gov (United States)

    Inness, Michelle; Turner, Nick; Barling, Julian; Stride, Chris B

    2010-07-01

    We investigated the extent to which the safety performance (i.e., self-reported safety compliance and safety participation) of employees with 2 jobs was predicted by their respective supervisors' transformational leadership behaviors. We compared 2 within-person models: a context-specific model (i.e., transformational leadership experienced by employees in 1 context related to those same employees' safety performance only in that context) and a context-spillover model (i.e., transformational leadership experienced by employees in 1 context related to those same employees' safety performance in the same and other contexts). Our sample comprised 159 "moonlighters" (73 men, 86 women): employees who simultaneously hold 2 different jobs, each with a different supervisor, providing within-person data on the influence of different supervisors on employee safety performance across 2 job contexts. Having controlled for individual differences (negative affectivity and conscientiousness) and work characteristics (e.g., hours worked and length of relationship with supervisor), the context-specific model provided the best fit to the data among alternative nested models. Implications for the role of transformational leadership in promoting workplace safety are discussed.

  9. Speeding through cell cycle roadblocks: Nuclear cyclin D1-dependent kinase and neoplastic transformation

    Directory of Open Access Journals (Sweden)

    Diehl J Alan

    2008-09-01

    Full Text Available Abstract Mitogenic induction of cyclin D1, the allosteric regulator of CDK4/6, is a key regulatory event contributing to G1 phase progression. Following the G1/S transition, cyclin D1 activation is antagonized by GSK3β-dependent threonine-286 (Thr-286 phosphorylation, triggering nuclear export and subsequent cytoplasmic degradation mediated by the SCFFbx4-αBcrystallin E3 ubiquitin ligase. Although cyclin D1 overexpression occurs in numerous malignancies, overexpression of cyclin D1 alone is insufficient to drive transformation. In contrast, cyclin D1 mutants refractory to phosphorylation-dependent nuclear export and degradation are acutely transforming. This raises the question of whether overexpression of cyclin D1 is a significant contributor to tumorigenesis or an effect of neoplastic transformation. Significantly, recent work strongly supports a model wherein nuclear accumulation of cyclin D1-dependent kinase during S-phase is a critical event with regard to transformation. The identification of mutations within SCFFbx4-αBcrystallin ligase in primary tumors provides mechanistic insight into cyclin D1 accumulation in human cancer. Furthermore, analysis of mouse models expressing cyclin D1 mutants refractory to degradation indicate that nuclear cyclin D1/CDK4 kinase triggers DNA re-replication and genomic instability. Collectively, these new findings provide a mechanism whereby aberrations in post-translational regulation of cyclin D1 establish a cellular environment conducive to mutations that favor neoplastic growth.

  10. Heat shock factor 1 upregulates transcription of Epstein–Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    International Nuclear Information System (INIS)

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-01-01

    Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the − 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  11. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  12. Four regulatory elements in the human c-fos promoter mediate transactivation by HTLV-1 Tax protein.

    Science.gov (United States)

    Alexandre, C; Verrier, B

    1991-04-01

    Expression of the human c-fos proto-oncogene is activated in trans by the Tax protein encoded by human T-cell leukemia virus type-1 (HTLV-1). Indeed, we show here that a HeLa clone stably transfected by Tax expresses Fos at a high level. We also show that multiple elements of the human c-fos promoter, i.e. the v-sis conditioned medium inducible element (SIE), the dyad symmetry element (DSE) necessary for growth factor induction, the octanucleotide direct repeat element (DR), and the cyclic AMP response element (CRE) centred at -60, can all mediate Tax transactivation. In the DSE, the 10bp central core that binds the serum response factor (SRF) is, by itself, sufficient to mediate Tax transactivation. Moreover, a CRE-binding protein is involved in Tax activation through the CRE-60 element. Since Fos is a transregulator of cellular genes, our results suggest that the oncoprotein plays a crucial role in T-cell transformation by HTLV-1 in conjunction with other Tax-inducible genes.

  13. Chemical inducible promoter used to obtain transgenic plants with a silent marker

    Science.gov (United States)

    Aoyama, Takashi; Zuo, Jianru; Chua, Nam-Hai

    2004-08-31

    A chemically inducible promoter is described that may be used to transform plants, including tobacco and lettuce, with genes which are easily regulatable by adding the plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one that is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  14. Mutant IDH1 Promotes Glioma Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Beatrice Philip

    2018-05-01

    Full Text Available Summary: Isocitrate dehydrogenase 1 (IDH1 is the most commonly mutated gene in grade II–III glioma and secondary glioblastoma (GBM. A causal role for IDH1R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1R132H exhibited elevated (R-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled proneural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1R132H promotes glioma development. This model enhances our understanding of the biology of IDH1R132H-driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease. : Philip et al. show that mutant IDH1 cooperates with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote gliomagenesis in vivo in a mouse model of glioma. These tumors resemble proneural human mutant IDH1 glioblastoma and exhibit enhanced sensitivity to PARP inhibition in combination with chemotherapy. Keywords: IDH1, Cdkn2a, Atrx, Pten, glioma, mouse model, RCAS/TVA

  15. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    International Nuclear Information System (INIS)

    Müller, Imke; Wischnewski, Frank; Pantel, Klaus; Schwarzenbach, Heidi

    2010-01-01

    The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. This study is one of the first to reveal the histone code and MBD profile

  16. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1–IQGAP1 complex

    Science.gov (United States)

    Jacquemet, Guillaume; Green, David M.; Bridgewater, Rebecca E.; von Kriegsheim, Alexander; Humphries, Martin J.; Norman, Jim C.

    2013-01-01

    Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)–dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM. PMID:24019536

  17. Functional analysis of the OCA-B promoter.

    Science.gov (United States)

    Stevens, S; Wang, L; Roeder, R G

    2000-06-15

    OCA-B was identified as a B cell-specific coactivator that functions with either Oct-1 or Oct-2 to mediate efficient cell type-specific transcription via the octamer site (ATGCAAAT) both in vivo and in vitro. Mice lacking OCA-B exhibit normal Ag-independent B cell maturation. In contrast, Ag-dependent functions, including production of secondary Ig isotypes and germinal center formation, are greatly affected. To better understand OCA-B expression and, ultimately, the defects observed in the OCA-B knockout mice, we have cloned the OCA-B promoter and examined its function in both transformed and primary B cells. We show here that the OCA-B promoter is developmentally regulated, with activity increasing throughout B cell differentiation. Through physical and functional assays, we have found an activating transcription factor/cAMP response element binding protein binding site (or cAMP response element) that is crucial for OCA-B promoter activity. Furthermore, we demonstrate that IL-4 and anti-CD40 induce both the OCA-B promoter and octamer-dependent promoters, thus implicating OCA-B in B cell signaling events in the nucleus.

  18. Effect of phosphorus addition on the reductive transformation of pentachlorophenol (PCP) and iron reduction with microorganism involvement.

    Science.gov (United States)

    Wang, Yongkui; Liu, Xianli; Huang, Jiexun; Xiao, Wensheng; Zhang, Jiaquan; Yin, Chunqin

    2017-10-01

    The transformation of phosphorus added to the soil environment has been proven to be influenced by the Fe biochemical process, which thereby may affect the transformation of organic chlorinated contaminants. However, the amount of related literatures regarding this topic is limited. This study aimed to determine the effects of phosphorus addition on pentachlorophenol (PCP) anaerobic transformation, iron reduction, and paddy soil microbial community structure. Results showed that the transformation of phosphorus, iron, and PCP were closely related to the microorganisms. Moreover, phosphorus addition significantly influenced PCP transformation and iron reduction, which promoted and inhibited these processes at low and high concentrations, respectively. Both the maximum reaction rate of PCP transformation and the maximum Fe(II) amount produced were obtained at 1 mmol/L phosphorus concentration. Among the various phosphorus species, dissolved P and NaOH-P considerably changed, whereas only slight changes were observed for the remaining phosphorus species. Microbial community structure analysis demonstrated that adding low concentration of phosphorus promoted the growth of Clostridium bowmanii, Clostridium hungatei, and Clostridium intestinale and Pseudomonas veronii. By contrast, high-concentration phosphorus inhibited growth of these microorganisms, similar to the curves of PCP transformation and iron reduction. These observations indicated that Clostridium and P. veronii, especially Clostridium, played a vital role in the transformation of related substances in the system. All these findings may serve as a reference for the complicated reactions among the multiple components of soils.

  19. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus.

    Science.gov (United States)

    Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang

    2018-05-01

    Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.

  20. Study of the Role of siRNA Mediated Promoter Methylation in DNMT3B Knockdown and Alteration of Promoter Methylation of CDH1, GSTP1 Genes in MDA-MB -453 Cell Line.

    Science.gov (United States)

    Naghitorabi, Mojgan; Mir Mohammad Sadeghi, Hamid; Mohammadi Asl, Javad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas

    2017-01-01

    Promoter methylation is one of the main epigenetic mechanisms that leads to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifically knock down the DNMTs at mRNA level. Also many studies have focused on transcriptional gene silencing in mammalian cells via siRNA mediated promoter methylation. The present study was designed to assess the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of Cadherin-1 (CDH1), Glutathione S-Transferase Pi 1(GSTP1), and DNMT3B genes in MDA-MB-453 cell line. MDA-MB-453 cells were transfected with siDNMT targeting DNMT3B promoter and harvested at 24 and 48 h post transfection to monitor gene silencing and promoter methylation respectively. DNMT3B expression was monitored by quantitative RT-PCR method. Promoter methylation was quantitatively evaluated using differential high resolution melting analysis. A non-significant 20% reduction in DNMT3B mRNA level was shown only after first transfection with siDNMT, which was not reproducible. Promoter methylation levels of DNMT3B, CDH1, and GSTP1 were detected at about 15%, 70% and 10% respectively, in the MDA-MB-453 cell line, with no significant change after transfection. Our results indicated that siDNMT sequence were not able to affect promoter methylation and silencing of DNMT3B in MDA-MB-453 cells. However, quantitation of methylation confirmed a hypermethylated phenotype at CDH1 and GSTP1 promoters as well as a differential methylation pattern at DNMT3B promoter in breast cancer.

  1. A QSAR/QSTR Study on the Environmental Health Impact by the Rocket Fuel 1,1-Dimethyl Hydrazine and its Transformation Products

    Directory of Open Access Journals (Sweden)

    Lars Carlsen

    2008-01-01

    Full Text Available QSAR/QSTR modelling constitutes an attractive approach to preliminary assessment of the impact on environmental health by a primary pollutant and the suite of transformation products that may be persistent in and toxic to the environment. The present paper studies the impact on environmental health by residuals of the rocket fuel 1,1-dimethyl hydrazine (heptyl and its transformation products. The transformation products, comprising a variety of nitrogen containing compounds are suggested all to possess a significant migration potential. In all cases the compounds were found being rapidly biodegradable. However, unexpected low microbial activity may cause significant changes. None of the studied compounds appear to be bioaccumulating. Apart from substances with an intact hydrazine structure or hydrazone structure the transformation products in general display rather low environmental toxicities. Thus, it is concluded that apparently further attention should be given to tri- and tetramethyl hydrazine and 1-formyl 2,2-dimethyl hydrazine as well as to the hydrazones of formaldehyde and acetaldehyde as these five compounds may contribute to the overall environmental toxicity of residual rocket fuel and its transformation products.

  2. Biolistic co-transformation of Metarhizium anisopliae var. acridum strain CG423 with green fluorescent protein and resistance to glufosinate ammonium.

    Science.gov (United States)

    Inglis, P W; Aragão, F J; Frazão, H; Magalhães, B P; Valadares-Inglis, M C

    2000-10-15

    Metarhizium anisopliae var. acridum (syn. M. flavoviride) is recognized as a highly specific and virulent mycopathogen of locusts and grasshoppers and is currently being developed as a biological control agent for this group of insects in Brazil. Intact conidia of M. anisopliae var. acridum strain CG423 were transformed using microparticle bombardment. Plasmids used were: (1) pBARKS1 carrying the bar gene of Streptomyces hygroscopicus fused to the Aspergillus nidulans trpC promoter, encoding resistance to glufosinate ammonium (or phosphinothricin) and modified by addition of the telomeric repeat (TTAGGG)(18) of Fusarium oxysporum and 2.pEGFP/gpd/tel carrying a red-shifted variant gene for Aequorea victoria green fluorescent protein (EGFP) which we have fused to the A. nidulans gpd promoter and trpC terminator. Highly fluorescent co-transformants were selected on solid minimal medium containing 100 microg ml(-1) glufosinate ammonium using an inverted microscope with 450-490 nm excitation/510 nm emission filter set. Southern blot analysis of co-transformants revealed varying multiple chromosomal integrations of both bar and egfp genes at both telomeric and non-telomeric loci. Transformants retained pathogenicity in bioassays against Rhammatocerus schistocercoides and showed unaltered lack of pathogenicity against larvae of the non-target insect Anticarsia gemmatalis. One co-transformant from four tested, however, showed a significant, but non-dose-dependent, elevation in virulence against Tenebrio molitor.

  3. Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability.

    Science.gov (United States)

    Gao, Guangxun; Chen, Liang; Li, Jingxia; Zhang, Dongyun; Fang, Yong; Huang, Haishan; Chen, Xiequn; Huang, Chuanshu

    2014-05-15

    The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.

  4. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    International Nuclear Information System (INIS)

    Guo Xiu-Rong

    2016-01-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A 1 , then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. (paper)

  5. Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats.

    Science.gov (United States)

    Witzmann, Simone R; Turner, Jonathan D; Mériaux, Sophie B; Meijer, Onno C; Muller, Claude P

    2012-11-01

    Regulation of glucocorticoid receptor (GR) levels is an important stress adaptation mechanism. Transcription factor Nfgi-a and environmentally induced Gr promoter 1 7 methylation have been implicated in fine-tuning the expression of Gr 1 7 transcripts. Here, we investigated Gr promoter 1 7 methylation and Gr 1 7 expression in adult rats exposed to either acute or chronic stress paradigms. A strong negative correlation was observed between the sum of promoter-wide methylation levels and Gr 1 7 transcript levels, independent of the stressor. Methylation of individual sites did not, however, correlate with transcript levels. This suggested that promoter 1 7 was directly regulated by promoter-wide DNA methylation. Although acute stress increased Ngfi-a expression in the hypothalamic paraventricular nucleus (PVN), Gr 1 7 transcript levels remained unaffected despite low methylation levels. Acute stress had little effect on these low methylation levels, except at four hippocampal CpGs. Chronic stress altered the corticosterone response to an acute stressor. In the adrenal and pituitary glands, but not in the brain, this was accompanied by an increase in methylation levels in orchestrated clusters rather than individual CpGs. PVN methylation levels, unaffected by acute or chronic stress, were significantly more variable within- than between-groups, suggesting that they were instated probably during the perinatal period and represent a pre-established trait. Thus, in addition to the known perinatal programming, the Gr 1 7 promoter is epigenetically regulated by chronic stress in adulthood, and retains promoter-wide tissue-specific plasticity. Differences in methylation susceptibility between the PVN in the perinatal period and the peripheral HPA axis tissues in adulthood may represent an important "trait" vs. "state" regulation of the Gr gene.

  6. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Longjian; Xu, Zeng-Fu

    2016-08-01

    The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.

  7. Thermochemical transformations of anthracite fractions

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.

    1979-08-01

    Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)

  8. Transformation of mouse embryo (C3H 10T1/2) cells by alpha particles

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, A.; Henning, C.B.; Gemmell, D.S.; Zabransky, B.J.

    1977-01-01

    Mammalian cells in culture (C3H mouse 10T1/2 cells) have been shown here for the first time to be transformed by alpha irradiation when cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine. Malignant tumors were induced following inoculation of the transformed cells into syngeneic hosts. Unirradiated control cells injected at the same concentration have, so far, failed to produce tumors. The morphology of the transformed foci was remarkably similar to that obtained by x rays and chemicals but different from virally transformed cells. When the cells were seeded at low density in the exponential growth phase, the transformation frequency per surviving cell increased approximately as the cube of the dose and peaked at an alpha particle fluence between 1.5 and 2.5 x 10 7 alpha particles per cm 2 (205 to 342 rads). The frequency of the transformation was found to be greatly dependent on the number of cells per dish irradiated. Irradiation of larger numbers resulted in much lower frequencies of transformation. The maximum transformation frequency observed in nine separate experiments was 4 percent of the surviving cells. At doses greater than 200 rads the transformation frequency per surviving cell remained constant. The present results permit us to conclude that alpha irradiation may, indeed, be able to exert a direct effect on the genome of the cell to produce malignancy without any external immunological or hormonal influences

  9. Transformation characteristics of LaV/sub x/Nb/sub 1-x/O4 compounds

    International Nuclear Information System (INIS)

    Nevitt, M.V.; Aldred, A.T.

    1983-06-01

    X-ray diffractometry measurements were made as a function of temperature on a series of polycrystalline LaV/sub x/Nb/sub 1-x/O 4 compounds (0 4 compounds that are either candidates or are appropriate models for candidate materials for hosting nuclear-waste ions. Partial substitution of V 5+ on the Nb 5+ site significantly lowers the tetragonal scheelite (I4 1 /a) to monoclinic fergusonite (I2/c) transformation, from 770 0 K in LaNbO 4 to approximately 215 0 K for LaV 0 25 Nb 0 75 O 4 (the solubility limit is close to x = 0.35). The transformation is displacive, of second order, involving two coupled order parameters. Heat capacity measurements on LaV 0 25 Nb 0 75 O 4 showed that the specific heat anamoly at the transformation point is extremely small. It is concluded that the two polymorphic forms of LaV/sub x/Nb/sub 1-x/O 4 have very nearly the same free energies over a substantial range of temperature below the transformation

  10. Characterization of a Lactococcus lactis promoter for heterologous protein production

    Directory of Open Access Journals (Sweden)

    Christian E. Ogaugwu

    2018-03-01

    Full Text Available Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.

  11. Snail family members unequally trigger EMT and thereby differ in their ability to promote the neoplastic transformation of mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Baptiste Gras

    Full Text Available By fostering cell commitment to the epithelial-to-mesenchymal transition (EMT, SNAIL proteins endow cells with motility, thereby favoring the metastatic spread of tumor cells. Whether the phenotypic change additionally facilitates tumor initiation has never been addressed. Here we demonstrate that when a SNAIL protein is ectopically produced in non-transformed mammary epithelial cells, the cells are protected from anoikis and proliferate under low-adherence conditions: a hallmark of cancer cells. The three SNAIL proteins show unequal oncogenic potential, strictly correlating with their ability to promote EMT. SNAIL3 especially behaves as a poor EMT-inducer comforting the concept that the transcription factor functionally diverges from its two related proteins.

  12. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.

    Science.gov (United States)

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-04-07

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.

  13. Transformation of Mortierella alpina (fatty acid supplier myceliums via AMT system (Agrobacterium Mediated Transformation

    Directory of Open Access Journals (Sweden)

    Aida Javanmard

    2016-09-01

    Full Text Available Introduction: Mortierella alpina is one of the most important fungi in food industry because of having ability of synthesizing unsaturated fatty acids, particularly Arashidonic Acid. This is a precursor of Eicosanoidregulate-lipoprotein metabolism which is involved in blood rheology, platelet activation and leukocyte-function, and the functional characteristics of the cell membrane. Materials and methods: In this study genetic transformation of M. alpina CBS754.68 fungus was evaluated via Agrobacterium tumefaciens and Agrobacterium rhizogenes. Agrobacteriums containing pBI121 vector were used for transformation of three days of old mycelia. Three days old hyphae were exposed to the bacteria with three level of time (one, two and three hours in the present of acetosyringone. Mitotic stability of the third generation of transgenic (T2 was confirmed by GUS assay and amplification of CaMV 35S promoter by polymerase chain reaction. Results: The highest percentage of transformation and mitotic stability were obtained by using A. tumefaciens and A. rhizogenese, respectively. Discussion and conclusion: The results showed that to obtain more efficient and more stable transformation, the fundamental factor is the use of suitable species of Agrobacterium. It is the first report for transformation of autothroph strain of M. alpine via Agrobacterium.

  14. Effect of B and B + Nb on the bainitic transformation in low carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Kangying, E-mail: kangying.zhu@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France); Oberbillig, Carla, E-mail: carla.oberbillig@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France); Musik, Celine, E-mail: celine.musik@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France); Loison, Didier, E-mail: didier.loison@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France); Iung, Thierry, E-mail: thierry.iung@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, BP 30320, 57283 Maizieres-les-Metz Cedex (France)

    2011-05-15

    Research highlights: {yields} B retards slightly the bainite transformation kinetics. {yields} Combined addition of B + Nb delayed dramatically bainite transformation kinetics. {yields} B refines the microstructure and promotes lath morphology of bainite. {yields} Larger packets of laths and longer laths are observed in the B + Nb steel. {yields} More free boron/finer borocarbide precipitates on {gamma} grain boundaries in B + Nb steel. - Abstract: Development of new, advanced high and ultra-high strength bainitic steels requires the selection of the optimum balance of bainite promoting elements allowing the production of the desired bainitic microstructure over a wide range of cooling rates. The addition of boron or a combined addition of boron and niobium is well known to retard strongly the polygonal ferrite formation but very little knowledge has been acquired on the bainitic transformation. Therefore, the purpose of this study is to investigate the influence of boron and boron plus niobium on the bainite transformation kinetics, microstructural evolution and mechanical properties in a low carbon steel (Fe-0.05C-1.49Mn-0.30Si). Isothermal and continuous cooling transformation diagrams were determined and followed by a detailed quantitative characterisation of the bainite microstructure and morphology using complementary advanced metallographic techniques (FEG-SEM-EBSD, SIMS and TEM). The relationship between microstructure and hardness has been evaluated. Finally, results of SIMS and TEM analyses coupled with microstructural investigations enable to propose a mechanism to explain the effect of the synergy between boron and niobium on the bainitic transformation and the resultant microstructure.

  15. Effect of B and B + Nb on the bainitic transformation in low carbon steels

    International Nuclear Information System (INIS)

    Zhu Kangying; Oberbillig, Carla; Musik, Celine; Loison, Didier; Iung, Thierry

    2011-01-01

    Research highlights: → B retards slightly the bainite transformation kinetics. → Combined addition of B + Nb delayed dramatically bainite transformation kinetics. → B refines the microstructure and promotes lath morphology of bainite. → Larger packets of laths and longer laths are observed in the B + Nb steel. → More free boron/finer borocarbide precipitates on γ grain boundaries in B + Nb steel. - Abstract: Development of new, advanced high and ultra-high strength bainitic steels requires the selection of the optimum balance of bainite promoting elements allowing the production of the desired bainitic microstructure over a wide range of cooling rates. The addition of boron or a combined addition of boron and niobium is well known to retard strongly the polygonal ferrite formation but very little knowledge has been acquired on the bainitic transformation. Therefore, the purpose of this study is to investigate the influence of boron and boron plus niobium on the bainite transformation kinetics, microstructural evolution and mechanical properties in a low carbon steel (Fe-0.05C-1.49Mn-0.30Si). Isothermal and continuous cooling transformation diagrams were determined and followed by a detailed quantitative characterisation of the bainite microstructure and morphology using complementary advanced metallographic techniques (FEG-SEM-EBSD, SIMS and TEM). The relationship between microstructure and hardness has been evaluated. Finally, results of SIMS and TEM analyses coupled with microstructural investigations enable to propose a mechanism to explain the effect of the synergy between boron and niobium on the bainitic transformation and the resultant microstructure.

  16. Analysis of the promoters involved in enterocin AS-48 expression.

    Science.gov (United States)

    Cebrián, Rubén; Rodríguez-Ruano, Sonia; Martínez-Bueno, Manuel; Valdivia, Eva; Maqueda, Mercedes; Montalbán-López, Manuel

    2014-01-01

    The enterocin AS-48 is the best characterized antibacterial circular protein in prokaryotes. It is a hydrophobic and cationic bacteriocin, which is ribosomally synthesized by enterococcal cells and post-translationally cyclized by a head-to-tail peptide bond. The production of and immunity towards AS-48 depend upon the coordinated expression of ten genes organized in two operons, as-48ABC (where genes encoding enzymes with processing, secretion, and immunity functions are adjacent to the structural as-48A gene) and as-48C1DD1EFGH. The current study describes the identification of the promoters involved in AS-48 expression. Seven putative promoters have been here amplified, and separately inserted into the promoter-probe vector pTLR1, to create transcriptional fusions with the mCherry gene used as a reporter. The activity of these promoter regions was assessed measuring the expression of the fluorescent mCherry protein using the constitutive pneumococcal promoter PX as a reference. Our results revealed that only three promoters PA, P2(2) and PD1 were recognized in Enterococcus faecalis, Lactococcus lactis and Escherichia coli, in the conditions tested. The maximal fluorescence was obtained with PX in all the strains, followed by the P2(2) promoter, which level of fluorescence was 2-fold compared to PA and 4-fold compared to PD1. Analysis of putative factors influencing the promoter activity in single and double transformants in E. faecalis JH2-2 demonstrated that, in general, a better expression was achieved in presence of pAM401-81. In addition, the P2(2) promoter could be regulated in a negative fashion by genes existing in the native pMB-2 plasmid other than those of the as-48 cluster, while the pH seems to affect differently the as-48 promoter expression.

  17. Analysis of the promoters involved in enterocin AS-48 expression.

    Directory of Open Access Journals (Sweden)

    Rubén Cebrián

    Full Text Available The enterocin AS-48 is the best characterized antibacterial circular protein in prokaryotes. It is a hydrophobic and cationic bacteriocin, which is ribosomally synthesized by enterococcal cells and post-translationally cyclized by a head-to-tail peptide bond. The production of and immunity towards AS-48 depend upon the coordinated expression of ten genes organized in two operons, as-48ABC (where genes encoding enzymes with processing, secretion, and immunity functions are adjacent to the structural as-48A gene and as-48C1DD1EFGH. The current study describes the identification of the promoters involved in AS-48 expression. Seven putative promoters have been here amplified, and separately inserted into the promoter-probe vector pTLR1, to create transcriptional fusions with the mCherry gene used as a reporter. The activity of these promoter regions was assessed measuring the expression of the fluorescent mCherry protein using the constitutive pneumococcal promoter PX as a reference. Our results revealed that only three promoters PA, P2(2 and PD1 were recognized in Enterococcus faecalis, Lactococcus lactis and Escherichia coli, in the conditions tested. The maximal fluorescence was obtained with PX in all the strains, followed by the P2(2 promoter, which level of fluorescence was 2-fold compared to PA and 4-fold compared to PD1. Analysis of putative factors influencing the promoter activity in single and double transformants in E. faecalis JH2-2 demonstrated that, in general, a better expression was achieved in presence of pAM401-81. In addition, the P2(2 promoter could be regulated in a negative fashion by genes existing in the native pMB-2 plasmid other than those of the as-48 cluster, while the pH seems to affect differently the as-48 promoter expression.

  18. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  19. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.

    Science.gov (United States)

    Pei, Ming; Chen, Demeng; Li, Jingting; Wei, Lei

    2009-12-01

    The transforming growth factor-beta (TGF-beta) superfamily members play diverse roles in cartilage development and maintenance. TGF-beta up-regulates chondrogenic gene expression by enhancing transcription factor SRY (sex determining region Y)-box 9 (Sox9) and inhibits osteoblast differentiation by repressing runt-related transcription factor 2 (Runx2). Recently, histone deacetylases (HDACs) were reported to act as negative regulators of chondrocyte hypertrophy. It was speculated that HDAC4 may promote TGF-beta1-induced MSC chondrogenesis. In this study, the adenovirus-mediated HDAC4 gene (Ad.HDAC4) was utilized to infect synovium-derived stem cells (SDSCs). Adenovirus-mediated LacZ (Ad.LacZ) served as a control. The infected cells were centrifuged to form SDSC pellets followed by incubation in a serum-free chondrogenic medium for 15 days with or without 10ng/mL TGF-beta1. Transfection efficiency was determined in SDSCs using Ad.LacZ. Cytotoxicity was measured using lactate dehydrogenase assay. Histology, immunostaining, biochemical analysis, and real-time polymerase chain reaction were performed to assess chondrogenesis at protein and mRNA levels in infected SDSCs. Our data demonstrated that supplementation with TGF-beta1 could initiate and promote SDSC chondrogenesis; however, TGF-beta1 alone was insufficient to fully differentiate SDSCs into chondrocytes. Ad.HDAC4 could be efficiently transfected into SDSCs. Without TGF-beta1 treatment, HDAC4 had no effect on SDSC chondrogenesis; however, in the presence of TGF-beta1, HDAC4 could speed up and maintain a high level of chondrogenesis while down-regulating the hypertrophic marker - type X collagen expression. This study is the first report showing that HDAC4 overexpression promotes TGF-beta1-induced SDSC chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. The mechanism underlying this process needs further investigation.

  20. Natural plasmid transformation in a high-frequency-of transformation marine Vibrio strain

    International Nuclear Information System (INIS)

    Frischer, M.E.; Thurmond, J.M.; Paul, J.H.

    1990-01-01

    The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 x 10 -9 and 3.4 x 10 -7 transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42,857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 x 10 -8 to 1.3 x 10 -4 transformants per recipient with plasmid DNA and at an average frequency of 8.3 x 10 -5 transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [ 3 H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations

  1. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    Farwell, Andrea J.; Vesely, Susanne; Nero, Vincent; Rodriguez, Hilda; McCormack, Kimberley; Shah, Saleh; Dixon, D. George; Glick, Bernard R.

    2007-01-01

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  2. Impact of TiO2 on the chemical and biological transformation of formulated chiral-metalaxyl in agricultural soils.

    Science.gov (United States)

    Huang, Junxing; Zhang, Xu; Liang, Chuanzhou; Hu, Jun

    2018-04-15

    The impacts of TiO 2 on the chemical and biological transformation of racemic metalaxyl wettable powder (rac-metalaxyl WP) in agricultural soils, and soil microorganisms were investigated. Under simulated solar irradiation, TiO 2 highly promoted the transformation of rac-metalaxyl WP without changing the enantiomer fraction, with the promotion amplitude (60-1280%) being dependent on TiO 2 characteristics. TiO 2 characteristics showed different influence on the transformation of rac-metalaxyl WP in soils and aqueous solutions because their characteristics changed differently in soils. The impact of the mancozeb and other co-constituents on the transformation of rac-metalaxyl WP was smaller in soil media than in aqueous solution. Autoclave sterilization changed soil properties and subsequently weakened the promotion effects of TiO 2 on the chemical transformations of rac-metalaxyl WP to 0-233%. Microorganism biomass and bacterial community were not statistically significant changed by TiO 2 exposure regardless of rac-metalaxyl WP, suggesting that the promotional effects occurred mainly through chemical processes. The results also showed TiO 2 -soil interactions may be strengthened with TiO 2 (Degussa P25) aging time in soils, which decreased its promotion amplitude from 1060% (without aging) to 880% (aging for 20 days). Intermediate formed in soil biological transformation process was different from that in TiO 2 photocatalysis process. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. OBS Data Denoising Based on Compressed Sensing Using Fast Discrete Curvelet Transform

    Science.gov (United States)

    Nan, F.; Xu, Y.

    2017-12-01

    OBS (Ocean Bottom Seismometer) data denoising is an important step of OBS data processing and inversion. It is necessary to get clearer seismic phases for further velocity structure analysis. Traditional methods for OBS data denoising include band-pass filter, Wiener filter and deconvolution etc. (Liu, 2015). Most of these filtering methods are based on Fourier Transform (FT). Recently, the multi-scale transform methods such as wavelet transform (WT) and Curvelet transform (CvT) are widely used for data denoising in various applications. The FT, WT and CvT could represent signal sparsely and separate noise in transform domain. They could be used in different cases. Compared with Curvelet transform, the FT has Gibbs phenomenon and it cannot handle points discontinuities well. WT is well localized and multi scale, but it has poor orientation selectivity and could not handle curves discontinuities well. CvT is a multiscale directional transform that could represent curves with only a small number of coefficients. It provide an optimal sparse representation of objects with singularities along smooth curves, which is suitable for seismic data processing. As we know, different seismic phases in OBS data are showed as discontinuous curves in time domain. Hence, we promote to analysis the OBS data via CvT and separate the noise in CvT domain. In this paper, our sparsity-promoting inversion approach is restrained by L1 condition and we solve this L1 problem by using modified iteration thresholding. Results show that the proposed method could suppress the noise well and give sparse results in Curvelet domain. Figure 1 compares the Curvelet denoising method with Wavelet method on the same iterations and threshold through synthetic example. a)Original data. b) Add-noise data. c) Denoised data using CvT. d) Denoised data using WT. The CvT can well eliminate the noise and has better result than WT. Further we applied the CvT denoise method for the OBS data processing. Figure 2a

  4. Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides

    Directory of Open Access Journals (Sweden)

    Alexander Michael Bedford Johns

    2016-10-01

    Full Text Available Rhodotorula (Rhodosporidium toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70 % of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3 and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides.

  5. Reduced expression of APC-1B but not APC-1A by the deletion of promoter 1B is responsible for familial adenomatous polyposis.

    Science.gov (United States)

    Yamaguchi, Kiyoshi; Nagayama, Satoshi; Shimizu, Eigo; Komura, Mitsuhiro; Yamaguchi, Rui; Shibuya, Tetsuo; Arai, Masami; Hatakeyama, Seira; Ikenoue, Tsuneo; Ueno, Masashi; Miyano, Satoru; Imoto, Seiya; Furukawa, Yoichi

    2016-05-24

    Germline mutations in the tumor suppressor gene APC are associated with familial adenomatous polyposis (FAP). Here we applied whole-genome sequencing (WGS) to the DNA of a sporadic FAP patient in which we did not find any pathological APC mutations by direct sequencing. WGS identified a promoter deletion of approximately 10 kb encompassing promoter 1B and exon1B of APC. Additional allele-specific expression analysis by deep cDNA sequencing revealed that the deletion reduced the expression of the mutated APC allele to as low as 11.2% in the total APC transcripts, suggesting that the residual mutant transcripts were driven by other promoter(s). Furthermore, cap analysis of gene expression (CAGE) demonstrated that the deleted promoter 1B region is responsible for the great majority of APC transcription in many tissues except the brain. The deletion decreased the transcripts of APC-1B to 39-45% in the patient compared to the healthy controls, but it did not decrease those of APC-1A. Different deletions including promoter 1B have been reported in FAP patients. Taken together, our results strengthen the evidence that analysis of structural variations in promoter 1B should be considered for the FAP patients whose pathological mutations are not identified by conventional direct sequencing.

  6. LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis.

    Science.gov (United States)

    Zhu, Shizhen; Zhang, Xiaoling; Weichert-Leahey, Nina; Dong, Zhiwei; Zhang, Cheng; Lopez, Gonzalo; Tao, Ting; He, Shuning; Wood, Andrew C; Oldridge, Derek; Ung, Choong Yong; van Ree, Janine H; Khan, Amish; Salazar, Brittany M; Lummertz da Rocha, Edroaldo; Zimmerman, Mark W; Guo, Feng; Cao, Hong; Hou, Xiaonan; Weroha, S John; Perez-Atayde, Antonio R; Neuberg, Donna S; Meves, Alexander; McNiven, Mark A; van Deursen, Jan M; Li, Hu; Maris, John M; Look, A Thomas

    2017-09-11

    A genome-wide association study identified LMO1, which encodes an LIM-domain-only transcriptional cofactor, as a neuroblastoma susceptibility gene that functions as an oncogene in high-risk neuroblastoma. Here we show that dβh promoter-mediated expression of LMO1 in zebrafish synergizes with MYCN to increase the proliferation of hyperplastic sympathoadrenal precursor cells, leading to a reduced latency and increased penetrance of neuroblastomagenesis. The transgenic expression of LMO1 also promoted hematogenous dissemination and distant metastasis, which was linked to neuroblastoma cell invasion and migration, and elevated expression levels of genes affecting tumor cell-extracellular matrix interaction, including loxl3, itga2b, itga3, and itga5. Our results provide in vivo validation of LMO1 as an important oncogene that promotes neuroblastoma initiation, progression, and widespread metastatic dissemination. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation

    Directory of Open Access Journals (Sweden)

    Yiannis Drosos

    2016-03-01

    Full Text Available The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.

  8. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo. Comprehensive progress report

    International Nuclear Information System (INIS)

    Little, J.B.

    1983-01-01

    Work has involved the following three areas: (1) an investigation of the mechanisms of radiation carcinogenesis by studying the events involved in the process of malignant transformation of mouse 10 T-1/2 cells; (2) an investigation of the effects of promoting agents on radiation-induced transformation in vitro; and (3) an investigation of the induction of transformation by internally emitting radionuclides incorporated into cellular DNA. The latter area has been extended to include studies of mutagenesis by these radionuclides in human lymphoblasts, and molecular measurements of DNA strand breaks. During the past year, research has focused on the first area, as well as on studies of the mutagenic effects of incorporated radionuclides

  9. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo. Comprehensive progress report

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B.

    1983-09-01

    Work has involved the following three areas: (1) an investigation of the mechanisms of radiation carcinogenesis by studying the events involved in the process of malignant transformation of mouse 10 T-1/2 cells; (2) an investigation of the effects of promoting agents on radiation-induced transformation in vitro; and (3) an investigation of the induction of transformation by internally emitting radionuclides incorporated into cellular DNA. The latter area has been extended to include studies of mutagenesis by these radionuclides in human lymphoblasts, and molecular measurements of DNA strand breaks. During the past year, research has focused on the first area, as well as on studies of the mutagenic effects of incorporated radionuclides.

  10. The Method of Measured Electrical Resistivity in Studying Phase Transformations in Zr1Nb Alloy

    International Nuclear Information System (INIS)

    Gritsina, V.M.; Klimenko, S.P.; Chernyaeva, T.P.

    2006-01-01

    The paper systematically arranges and analyzes the data on the methods of research into α ↔ β transformation process in zirconium alloys, as well as capabilities and information provided by each method. A special emphasis is put on the method of measured electrical resistivity. The authors also present the results of their own research into α ↔ β transformation process in Zr1Nb alloy (in the material of Zr+1% Nb tubing produced in Ukraine from calciothermal zirconium). The ρ →T curve was used to define the maximum and minimum values for transformation temperatures. Combined processing of the phase data on Zr+1% Nb found in literature and obtained from measured resistivity suggests that transformation process happens in several stages. The maximum value on the ρ → T curve corresponds to the beginning of stage 3, whereas the minimum - to its completion; as suggested by the pooled data, accounts for over 95% of the total volume of the material

  11. Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.).

    Science.gov (United States)

    Chaïr, H; Legavre, T; Guiderdoni, E

    1996-06-01

    We compared the transient activity of three cereal gene-derived promoter-gus fusions and the efficiency of selection mediated by three different selectable genes in a polyethylene glycol transformation system with haploid cell suspension protoplasts of rice. The maize ubiquitin promoter was found to be the most active in transformed protoplasts, and selection on ammonium glufosinate mediated by the bar gene was the most efficient for producing resistant calluses. Cotransformation of protoplasts with two separate plasmids carrying the gus and the bar genes, at either a 2∶1 or 11 ratio, led to 0.8 × 10(-5) and 1.6 × 10(-5) resistant callus recovery frequencies and 59.7 and 37.9 cotransformation efficiencies respectively. No escapes were detected in dot blot analyses of 100 resistant calluses with a probe consisting of the bar coding region. Cotransformation efficiency, based on resistance to basta and β-glucuronidase staining of the leaf tissue of 115 regenerated plants, was 47%. Resistance tests and Southern analysis of seed progenies of three diploid transgenic plants demonstrated homozygous integration of multiple copies of the transgene at one locus at least in the first plant, heterozygous integration at one locus in the second plant and heterozygous integration at two loci in the third plant.

  12. Cell surface response of chemically transformed, malignant mouse embryonal fibroblasts and human colon cancer cells to the maturation-promoting agent, N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Marks, M.E.

    1985-01-01

    The lactoperoxidase/ 125 I radioiodination procedure was used to probe the cell surface of normal, nontransformed AKR-2B mouse embryo fibroblasts and malignant, permanently methylcholanthrene-transformed AKR-2B (AKR-MCA) cells to establish the relationship between cell surface changes and transformation/differentiation in this call system. AKR-MCA cells displayed surface alterations secondary to N,N-dimethylformamide (DFM)-promoted differentiation. Growth of AKR-MCA cells in DMF virtually eliminated the 85,000 and 63,000 molecular weight surface proteins susceptible to radioiodination and increased surface material of ∼200,000 molecular weight. Thus, surface profiles of DFM-treated AKR-MCA cells were essentially identical to those of nontransformed AKR-2B cells. Experimentation was extended to a cultured human colon cancer cell line (HCT MOSER). HCT MOSER cells exposed to DMF manifested marked, reversible morphological and surface changes which occurred as a function of time of growth in DMF and DMF concentration. Interestingly, material reactive with anti-fibronectin was found on the surfaces and in the culture medium of DFM-treated HCT MOSER cells

  13. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu [College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027 (China); Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Lian, Yu [College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027 (China); Zhejiang Province Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310029 (China); Xiuyang, Guo [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Tingqing, Guo [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shengpeng, Wang [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Changde, Lu [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2006-03-31

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat body nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.

  15. Quantification of transforming growth factor-beta in biological material using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct

    NARCIS (Netherlands)

    VanWaarde, MAWH; VanAssen, AJ; Kampinga, HH; Konings, AWT; Vujaskovic, Z

    1997-01-01

    Transforming growth factor-beta (TGF-beta), a multifunctional cytokine, can be quantified by a variety of bioassays or immunoassays. One of the disadvantages of these techniques is that they require sample purification to remove components that interfere with the TGF-beta signal. In the current

  16. Methods for suspension culture, protoplast extraction, and transformation of high-biomass yielding perennial grass Arundo donax.

    Science.gov (United States)

    Pigna, Gaia; Dhillon, Taniya; Dlugosz, Elizabeth M; Yuan, Joshua S; Gorman, Connor; Morandini, Piero; Lenaghan, Scott C; Stewart, C Neal

    2016-12-01

    Arundo donax L. is a promising biofuel feedstock in the Mediterranean region. Despite considerable interest in its genetic improvement, Arundo tissue culture and transformation remains arduous. The authors developed methodologies for cell- and tissue culture and genetic engineering in Arundo. A media screen was conducted, and a suspension culture was established using callus induced from stem axillary bud explants. DBAP medium, containing 9 µM 2,4-D and 4.4 µM BAP, was found to be the most effective medium among those tested for inducing cell suspension cultures, which resulted in a five-fold increase in tissue mass over 14 days. In contrast, CIM medium containing 13 µM 2,4-D, resulted in just a 1.4-fold increase in mass over the same period. Optimized suspension cultures were superior to previously-described solidified medium-based callus culture methods for tissue mass increase. Suspension cultures proved to be very effective for subsequent protoplast isolation. Protoplast electroporation resulted in a 3.3 ± 1.5% transformation efficiency. A dual fluorescent reporter gene vector enabled the direct comparison of the CAMV 35S promoter with the switchgrass ubi2 promoter in single cells of Arundo. The switchgrass ubi2 promoter resulted in noticeably higher reporter gene expression compared with that conferred by the 35S promoter in Arundo. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fostering Employee Creativity through Transformational Leadership: Moderating Role of Creative Self-Efficacy

    Science.gov (United States)

    Jaiswal, Neeraj Kumar; Dhar, Rajib Lochan

    2016-01-01

    This study examined the moderating role of creative self-efficacy in predictions of employees' creativity through transformational leadership. Data from a dyadic sample of 424 employees and their immediate supervisors were collected and analyzed. The results signify that transformational leaders promote creativity among their subordinates.…

  18. TWIST1 promotes invasion through mesenchymal change in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wakimoto Hiroaki

    2010-07-01

    Full Text Available Abstract Background Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates carcinoma metastasis through an epithelial mesenchymal transition (EMT is upregulated in GBM and promotes invasion of the SF767 GBM cell line in vitro. Results To further define TWIST1 functions in GBM we tested the impact of TWIST1 over-expression on invasion in vivo and its impact on gene expression. We found that TWIST1 significantly increased SNB19 and T98G cell line invasion in orthotopic xenotransplants and increased expression of genes in functional categories associated with adhesion, extracellular matrix proteins, cell motility and locomotion, cell migration and actin cytoskeleton organization. Consistent with this TWIST1 reduced cell aggregation, promoted actin cytoskeletal re-organization and enhanced migration and adhesion to fibronectin substrates. Individual genes upregulated by TWIST1 known to promote EMT and/or GBM invasion included SNAI2, MMP2, HGF, FAP and FN1. Distinct from carcinoma EMT, TWIST1 did not generate an E- to N-cadherin "switch" in GBM cell lines. The clinical relevance of putative TWIST target genes SNAI2 and fibroblast activation protein alpha (FAP identified in vitro was confirmed by their highly correlated expression with TWIST1 in 39 human tumors. The potential therapeutic importance of inhibiting TWIST1 was also shown through a decrease in cell invasion in vitro and growth of GBM stem cells. Conclusions Together these studies demonstrated that TWIST1 enhances GBM invasion in concert with mesenchymal change not involving the canonical cadherin switch of carcinoma EMT. Given the recent recognition that mesenchymal change in GBMs is

  19. Comparative Study of Phase Transformation in Single-Crystal Germanium during Single and Cyclic Nanoindentation

    Directory of Open Access Journals (Sweden)

    Koji Kosai

    2017-11-01

    Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.

  20. Mapping of ESE-1 subdomains required to initiate mammary epithelial cell transformation via a cytoplasmic mechanism

    Directory of Open Access Journals (Sweden)

    Tentler John J

    2011-08-01

    Full Text Available Abstract Background The ETS family transcription factor ESE-1 is often overexpressed in human breast cancer. ESE-1 initiates transformation of MCF-12A cells via a non-transcriptional, cytoplasmic process that is mediated by a unique 40-amino acid serine and aspartic acid rich (SAR subdomain, whereas, ESE-1's nuclear transcriptional property is required to maintain the transformed phenotype of MCF7, ZR-75-1 and T47D breast cancer cells. Results To map the minimal functional nuclear localization (NLS and nuclear export (NES signals, we fused in-frame putative NLS and NES motifs between GFP and the SAR domain. Using these GFP constructs as reporters of subcellular localization, we mapped a single NLS to six basic amino acids (242HGKRRR247 in the AT-hook and two CRM1-dependent NES motifs, one to the pointed domain (NES1: 102LCNCALEELRL112 and another to the DNA binding domain (DBD, (NES2: 275LWEFIRDILI284. Moreover, analysis of a putative NLS located in the DBD (316GQKKKNSN323 by a similar GFP-SAR reporter or by internal deletion of the DBD, revealed this sequence to lack NLS activity. To assess the role of NES2 in regulating ESE-1 subcellular localization and subsequent transformation potency, we site-specifically mutagenized NES2, within full-length GFP-ESE-1 and GFP-NES2-SAR reporter constructs. These studies show that site-specific mutation of NES2 completely abrogates ESE-1 transforming activity. Furthermore, we show that exclusive cytoplasmic targeting of the SAR domain is sufficient to initiate transformation, and we report that an intact SAR domain is required, since block mutagenesis reveals that an intact SAR domain is necessary to maintain its full transforming potency. Finally, using a monoclonal antibody targeting the SAR domain, we demonstrate that the SAR domain contains a region accessible for protein - protein interactions. Conclusions These data highlight that ESE-1 contains NLS and NES signals that play a critical role in

  1. Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter.

    Science.gov (United States)

    Li, Peizhen; Wang, Bo; Cao, Dandan; Liu, Yuezhong; Zhang, Quanqi; Wang, Xubo

    2017-10-01

    PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nucleosome structure of the yeast CHA1 promoter

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1998-01-01

    conditions. Five yeast TBP mutants defective in different steps in activated transcription abolished CHA1 expression, but failed to affect induction-dependent chromatin rearrangement of the promoter region. Progressive truncations of the RNA polymerase II C-terminal domain caused a progressive reduction...

  3. Wisdom and narcissism as predictors of transformational leadership

    NARCIS (Netherlands)

    Greaves, Claire E.; Zacher, Hannes; McKenna, Bernard; Rooney, David

    2014-01-01

    Purpose - Although leadership and organizational scholars have suggested that the virtue of wisdom may promote outstanding leadership behavior, this proposition has rarely been empirically tested. The purpose of this paper is to investigate the relationships between transformational leadership,

  4. Prognostic value of MLH1 promoter methylation in male patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wu, Dongping; Chen, Xiaoying; Xu, Yan; Wang, Haiyong; Yu, Guangmao; Jiang, Luping; Hong, Qingxiao; Duan, Shiwei

    2017-04-01

    The DNA mismatch repair (MMR) gene MutL homolog 1 ( MLH1 ) is critical for the maintenance of genomic integrity. Methylation of the MLH1 gene promoter was identified as a prognostic marker for numerous types of cancer including glioblastoma, colorectal, ovarian and gastric cancer. The present study aimed to determine whether MLH1 promoter methylation was associated with survival in male patients with esophageal squamous cell carcinoma (ESCC). Formalin-fixed, paraffin-embedded ESCC tissues were collected from 87 male patients. MLH1 promoter methylation was assessed using the methylation-specific polymerase chain reaction approach. Kaplan-Meier survival curves and log-rank tests were used to evaluate the association between MLH1 promoter methylation and overall survival (OS) in patients with ESCC. Cox regression analysis was used to obtain crude and multivariate hazard ratios (HR), and 95% confidence intervals (CI). The present study revealed that MLH1 promoter methylation was observed in 53/87 (60.9%) of male patients with ESCC. Kaplan-Meier survival analysis demonstrated that MLH1 promoter hypermethylation was significantly associated with poorer prognosis in patients with ESCC (P=0.048). Multivariate survival analysis revealed that MLH1 promoter hypermethylation was an independent predictor of poor OS in male patients with ESCC (HR=1.716; 95% CI=1.008-2.921). Therefore, MLH1 promoter hypermethylation may be a predictor of prognosis in male patients with ESCC.

  5. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation

    Science.gov (United States)

    Price, Nathan L.; Holtrup, Brandon; Kwei, Stephanie L.; Wabitsch, Martin; Rodeheffer, Matthew; Bianchini, Laurence; Suárez, Yajaira

    2016-01-01

    White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease. PMID:26830228

  6. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.L. (Dept. of Agriculture, Madison, WI (United States) Univ. of Wisconsin, Madison (United States)); Gaskell, J.; Cullen, D. (Dept. of Agriculture, Madison, WI (United States)); Berka, R.M.; Yang, M.; Henner, D.J. (Genentech Inc., San Francisco, CA (United States))

    1990-01-01

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (Hy[sup R]) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. Hy[sup R] transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcription start points are the same in U. maydis and A. niger.

  7. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    Science.gov (United States)

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  8. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  9. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey

    Directory of Open Access Journals (Sweden)

    Tung Shu-Yun

    2011-04-01

    Full Text Available Abstract Background Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. Results Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR. A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI genes (OnTI1, OnTI2 and OnTI3, which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. Conclusions By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.

  10. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    International Nuclear Information System (INIS)

    Oiwa, Ako; Kakizawa, Tomoko; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions

  11. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Directory of Open Access Journals (Sweden)

    Schwarzenbach Heidi

    2010-06-01

    Full Text Available Abstract Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3 at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one

  12. "互联网+"开启酒店业转型升级%"Internet+ " Promotes the Transformation and Upgrading of the Hotel Industry

    Institute of Scientific and Technical Information of China (English)

    陈莉

    2015-01-01

    Nowadays, China's hotel industry has entered a period of new normal. The hotel industry is facing tremendous pressure of industry transformation. It becomes a significant task of hotels as to how to improve the marketing, channel, communication, payment, and consumer experience, ensure the long-term competitive advantages under the circumstances of increasingly severe market competition. This article attempts to explore, in the background of the " Internet+," how to promote the transformation and upgrading of the hotel industry .%当前,中国酒店业正面临国内外经济发展新常态和行业转型的双重压力,行业竞争异常激烈.酒店业正在从营销、渠道、传播、支付、消费者体验等环节,重新定义行业的运营模式和发展模式,越来越多的传统酒店纷纷融入"互联网+"大潮,以开放共享的用户思维全面进入转型阶段.

  13. RACK1-mediated translation control promotes liver fibrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Min; Peng, Peike; Wang, Jiajun [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Wang, Lan; Duan, Fangfang [Institute of Biomedical Science, Fudan University, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Ruan, Yuanyuan, E-mail: yuanyuanruan@fudan.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institute of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2015-07-31

    Activation of quiescent hepatic stellate cells (HSCs) is the central event of liver fibrosis. The translational machinery is an optimized molecular network that affects cellular homoeostasis and diseases, whereas the role of protein translation in HSCs activation and liver fibrosis is little defined. Our previous report suggests that up-regulation of receptor for activated C-kinase 1(RACK1) in HSCs is critical for liver fibrogenesis. In this study, we found that RACK1 promoted macrophage conditioned medium (MCM)-induced assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. RACK1 enhanced the translation and expression of pro-fibrogenic factors collagen 1α1, snail and cyclin E1 induced by MCM. Administration of PP242 or knock-down of eIF4E suppressed RACK1-stimulated collagen 1α1 production, proliferation and migration in primary HSCs. In addition, depletion of eIF4E attenuated thioacetamide (TAA)-induced liver fibrosis in vivo. Our data suggest that RACK1-mediated stimulation of cap-dependent translation plays crucial roles in HSCs activation and liver fibrogenesis, and targeting translation initiation could be a promising strategy for the treatment of liver fibrosis. - Highlights: • RACK1 induces the assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. • RACK1 stimulates the translation of collagen 1α1, snail and cyclin E1 in HSCs. • RACK1 promotes HSCs activation via cap-mediated translation. • Depletion of eIF4E suppresses liver fibrogenesis in vivo.

  14. RACK1-mediated translation control promotes liver fibrogenesis

    International Nuclear Information System (INIS)

    Liu, Min; Peng, Peike; Wang, Jiajun; Wang, Lan; Duan, Fangfang; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2015-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the central event of liver fibrosis. The translational machinery is an optimized molecular network that affects cellular homoeostasis and diseases, whereas the role of protein translation in HSCs activation and liver fibrosis is little defined. Our previous report suggests that up-regulation of receptor for activated C-kinase 1(RACK1) in HSCs is critical for liver fibrogenesis. In this study, we found that RACK1 promoted macrophage conditioned medium (MCM)-induced assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. RACK1 enhanced the translation and expression of pro-fibrogenic factors collagen 1α1, snail and cyclin E1 induced by MCM. Administration of PP242 or knock-down of eIF4E suppressed RACK1-stimulated collagen 1α1 production, proliferation and migration in primary HSCs. In addition, depletion of eIF4E attenuated thioacetamide (TAA)-induced liver fibrosis in vivo. Our data suggest that RACK1-mediated stimulation of cap-dependent translation plays crucial roles in HSCs activation and liver fibrogenesis, and targeting translation initiation could be a promising strategy for the treatment of liver fibrosis. - Highlights: • RACK1 induces the assembly of eIF4F and phosphorylation of eIF4E in primary HSCs. • RACK1 stimulates the translation of collagen 1α1, snail and cyclin E1 in HSCs. • RACK1 promotes HSCs activation via cap-mediated translation. • Depletion of eIF4E suppresses liver fibrogenesis in vivo

  15. Function of the EGR-1/TIS8 radiation inducible promoter in a minimal HSV-1 amplicon system

    International Nuclear Information System (INIS)

    Spear, M.A.; Sakamoto, K.M.; Herrlinger, U.; Pechan, P.; Breakefield, X.O.

    1997-01-01

    Purpose: To evaluate function of the EGR-1/TIS8 promoter region in minimal HSV-1 amplicon system in order to determine the feasibility of using the system to regulate vector replication with radiation. Materials and Methods: A 600-base pair 5' upstream region of the EGR-1 promoter linked to chloramphenicol acetyltransferase (CAT) was recombined into a minimal HSV-1 amplicon vector system (pONEC). pONEC or a control plasmid was transfected into U87 glioma cells using the Lipofectamine method. Thirty-six hours later one aliquot of cells from each transfection was irradiated to a dose of 20 Gy and another identical aliquot served as a control. CAT activity was assayed 8 hours after irradiation. Results: pONEC transfected cells irradiated with 20 Gy demonstrated 2.0 fold increase in CAT activity compared to non-irradiated cells. Cells transfected with control plasmid showed no change in CAT activity. Unirradiated pONEC cells had CAT activity 1.3 times those transfected with control plasmid. Conclusion: We have previously created HSV-1 gene therapy amplicon vector systems which allow virus-amplicon interdependent replication, with the intent of regulating replication. The above data demonstrates that a minimal amplicon system will allow radiation dependent regulation by the EGR-1 promoter, thus indicating the possibility of using this system to regulate onsite, spatially and temporally regulated vector production. Baseline CAT activity was higher and relative induction lower than other reported expression constructs, which raises concern for the ability of the system to produce a differential in transcription levels sufficient for this purpose. This is possibly the result of residual promoter/enhancer elements remaining in the HSV-1 sequences. We are attempting to create constructs lacking these elements. Addition of secondary promoter sequences may also be of use. We are also currently evaluating the efficacy of the putative IEX-1 radiation inducible promoter region in

  16. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  17. Transformative Learning: Personal Empowerment in Learning Mathematics

    Science.gov (United States)

    Hassi, Marja-Liisa; Laursen, Sandra L.

    2015-01-01

    This article introduces the concept of personal empowerment as a form of transformative learning. It focuses on commonly ignored but enhancing elements of mathematics learning and argues that crucial personal resources can be essentially promoted by high engagement in mathematical problem solving, inquiry, and collaboration. This personal…

  18. Amplification of S-1 Spheromak current by an inductive current transformer

    International Nuclear Information System (INIS)

    Jardin, S.C.; Janos, A.; Yamada, M.

    1985-11-01

    We attempt to predict the consequences of adding an inductive current transformer (OH Transformer) to the present S-1 Spheromak experiment. Axisymmetric modeling with only classical dissipation shows an increase of toroidal current and a shrinking and hollowing of the current channel, conserving toroidal flux. These unstable profiles will undergo helical reconnection, conserving helicity K = ∫ A-vector x B-vector d tau while increasing the toroidal flux and decreasing the poloidal flux so that the plasma relaxes toward the Taylor state. This flux rearrangement is modeled by a new current viscosity term in the mean-field Ohm's law which conserves helicity and dissipates energy

  19. Poly(ADP-ribose polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.

    Directory of Open Access Journals (Sweden)

    Dan Huang

    Full Text Available BACKGROUND: Transforming growth factor type-β (TGF-β/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose polymerase 1 (PARP1, a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs. METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB or N-(6-oxo-5,6-dihydrophenanthridin-2-yl-2-(N,N-dimethylaminoacetami (PJ34, or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosylation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosylation enhanced Smad-Smad binding element (SBE complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.

  20. Thrombospondin-1 is not the major activator of TGF-β1 in thrombopoietin-induced myelofibrosis

    DEFF Research Database (Denmark)

    Evrard, Solène; Bluteau, Olivier; Tulliez, Micheline

    2011-01-01

    Transforming growth factor-β1 (TGF-β1) is the most important cytokine involved in the promotion of myelofibrosis. Mechanisms leading to its local activation in the bone marrow environment remain unclear. As a recent study has highlighted the role of thrombospondin-1 (TSP-1) in platelet-derived TG...

  1. Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs

    Science.gov (United States)

    Dias, Tiago; Roma, Nuno; Sousa, Leonel

    2014-12-01

    A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.

  2. Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qiuzhi, E-mail: neuqgao@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066000 (China); Wang, Cong; Qu, Fu; Wang, Yingling [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066000 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2014-10-15

    Highlights: • The obtained M{sub s} temperatures of samples austenitized at 1150 °C are higher than at 900 °C. • Martensite-start transformation is slower for austenitizing at 1150 °C than at 900 °C. • Martensite transformation was controlled by nucleation rate. • Growth of martensite plates was controlled by thermal activation of atoms. - Abstract: Martensite transformation features in the 9Cr–1.7W–0.4Mo–Co ferritic steel, was conducted on a Netzsch Differential Thermal Analysis (DTA), after austenitized at 900 °C and 1150 °C followed by cooling at various rates to room temperature were studied. A martensite transformation kinetics model based on assumption of continuous nucleation and consideration of impingement was introduced to investigate the influence of austenitizing temperature and cooling rate on the martensite transformation behaviors. The obtained interface velocity and the activation energy for interface-controlling growth are lower than 10{sup −5} m/s and 40 kJ/mol, respectively, according to the fitted data. Both indicated that martensite transformation in the 9Cr–1.7W–0.4Mo–Co ferritic steel was controlled by nucleation rate, and that growth of plates was controlled by thermal activation of atoms.

  3. Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel

    International Nuclear Information System (INIS)

    Gao, Qiuzhi; Wang, Cong; Qu, Fu; Wang, Yingling; Qiao, Zhixia

    2014-01-01

    Highlights: • The obtained M s temperatures of samples austenitized at 1150 °C are higher than at 900 °C. • Martensite-start transformation is slower for austenitizing at 1150 °C than at 900 °C. • Martensite transformation was controlled by nucleation rate. • Growth of martensite plates was controlled by thermal activation of atoms. - Abstract: Martensite transformation features in the 9Cr–1.7W–0.4Mo–Co ferritic steel, was conducted on a Netzsch Differential Thermal Analysis (DTA), after austenitized at 900 °C and 1150 °C followed by cooling at various rates to room temperature were studied. A martensite transformation kinetics model based on assumption of continuous nucleation and consideration of impingement was introduced to investigate the influence of austenitizing temperature and cooling rate on the martensite transformation behaviors. The obtained interface velocity and the activation energy for interface-controlling growth are lower than 10 −5 m/s and 40 kJ/mol, respectively, according to the fitted data. Both indicated that martensite transformation in the 9Cr–1.7W–0.4Mo–Co ferritic steel was controlled by nucleation rate, and that growth of plates was controlled by thermal activation of atoms

  4. BAG3 protects bovine papillomavirus type 1-transformed equine fibroblasts against pro-death signals.

    Science.gov (United States)

    Cotugno, Roberta; Gallotta, Dario; d'Avenia, Morena; Corteggio, Annunziata; Altamura, Gennaro; Roperto, Franco; Belisario, Maria Antonietta; Borzacchiello, Giuseppe

    2013-07-22

    In human cancer cells, BAG3 protein is known to sustain cell survival. Here, for the first time, we demonstrate the expression of BAG3 protein both in equine sarcoids in vivo and in EqS04b cells, a sarcoid-derived fully transformed cell line harbouring bovine papilloma virus (BPV)-1 genome. Evidence of a possible involvement of BAG3 in equine sarcoid carcinogenesis was obtained by immunohistochemistry analysis of tumour samples. We found that most tumour samples stained positive for BAG3, even though to a different grade, while normal dermal fibroblasts from healthy horses displayed very weak staining pattern for BAG3 expression. By siRNA technology, we demonstrate in EqS04b the role of BAG3 in counteracting basal as well as chemical-triggered pro-death signals. BAG3 down-modulation was indeed shown to promote cell death and cell cycle arrest in G0/G1. In addition, we found that BAG3 silencing sensitized EqS04b cells to phenethylisothiocyanate (PEITC), a promising cancer chemopreventive/chemotherapeutic agent present in edible cruciferous vegetables. Notably, such a pro-survival role of BAG3 was less marked in E. Derm cells, an equine BPV-negative fibroblast cell line taken as a normal counterpart. Altogether our findings might suggest a mutual cooperation between BAG3 and viral oncoproteins to sustain cell survival.

  5. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence and cellular fitness

    Directory of Open Access Journals (Sweden)

    Zheng eWang

    2013-12-01

    Full Text Available Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA has been demonstrated to increase stress resistance, persistence and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly repressed in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  6. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness.

    Science.gov (United States)

    Wang, Zheng; Lin, Baochuan; Mostaghim, Anahita; Rubin, Robert A; Glaser, Evan R; Mittraparp-Arthorn, Pimonsri; Thompson, Janelle R; Vuddhakul, Varaporn; Vora, Gary J

    2013-01-01

    Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA) has been demonstrated to increase stress resistance, persistence, and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism, and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia, and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid, and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly less abundant in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  7. Cellular shear stiffness reflects progression of arsenic-induced transformation during G1

    DEFF Research Database (Denmark)

    Muñoz, Alexandra; Eldridge, Will J; Jakobsen, Nina Munkholt

    2017-01-01

    epithelial cells were exposed to sodium arsenite to initiate early stages of transformation. Exposed cells were cultured in soft agar to further transformation and select for clonal populations exhibiting anchorage independent growth. Shear stiffness of various cell populations in G1 was assessed using...... reduced stiffness relative to control clonal lines, which were cultured in soft agar but did not receive arsenic treatment. The relative standard deviation of the stiffness of Arsenic clones was reduced compared to control clones, as well as to the arsenic exposed cell population. Cell stiffness...

  8. MLH1 Promoter Methylation Frequency in Colorectal Cancer Patients and Related Clinicopathological and Molecular Features

    Science.gov (United States)

    Li, Xia; Yao, Xiaoping; Wang, Yibaina; Hu, Fulan; Wang, Fan; Jiang, Liying; Liu, Yupeng; Wang, Da; Sun, Guizhi; Zhao, Yashuang

    2013-01-01

    Purpose To describe the frequency of MLH1 promoter methylation in colorectal cancer (CRC); to explore the associations between MLH1 promoter methylation and clinicopathological and molecular factors using a systematic review and meta-analysis. Methods A literature search of the PubMed and Embase databases was conducted to identify relevant articles published up to September 7, 2012 that described the frequency of MLH1 promoter methylation or its associations with clinicopathological and molecular factors in CRC. The pooled frequency, odds ratio (OR) and 95% confidence intervals (95% CI) were calculated. Results The pooled frequency of MLH1 promoter methylation in unselected CRC was 20.3% (95% CI: 16.8–24.1%). They were 18.7% (95% CI: 14.7–23.6%) and 16.4% (95% CI: 11.9–22.0%) in sporadic and Lynch syndrome (LS) CRC, respectively. Significant associations were observed between MLH1 promoter methylation and gender (pooled OR = 1.641, 95% CI: 1.215–2.215; P = 0.001), tumor location (pooled OR = 3.804, 95% CI: 2.715–5.329; PMLH1 promoter methylation and MLH1 protein expression, BRAF mutation (OR = 14.919 (95% CI: 6.427–34.631; PMLH1 promoter methylation in unselected CRC was 20.3%. They were 18.7% in sporadic CRC and 16.4% in LS CRC, respectively. MLH1 promoter methylation may be significantly associated with gender, tumor location, tumor differentiation, MSI, MLH1 protein expression, and BRAF mutation. PMID:23555617

  9. c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells

    International Nuclear Information System (INIS)

    Chen, Yinghua; Xu, Jinhua; Borowicz, Stanley; Collins, Cindy; Huo, Dezheng; Olopade, Olufunmilayo I

    2011-01-01

    The BRCA1 gene plays an important role in the maintenance of genomic stability. BRCA1 inactivation contributes to breast cancer tumorigenesis. An increasing number of transcription factors have been shown to regulate BRCA1 expression. c-Myc can act as a transcriptional activator, regulating up to 15% of all genes in the human genome and results from a high throughput screen suggest that BRCA1 is one of its targets. In this report, we used cultured breast cancer cells to examine the mechanisms of transcriptional activation of BRCA1 by c-Myc. c-Myc was depleted using c-Myc-specific siRNAs in cultured breast cancer cells. BRCA1 mRNA expression and BRCA1 protein expression were determined by quantitative RT-PCR and western blot, respectively and BRCA1 promoter activities were examined under these conditions. DNA sequence analysis was conducted to search for high similarity to E boxes in the BRCA1 promoter region. The association of c-Myc with the BRCA1 promoter in vivo was tested by a chromatin immunoprecipitation assay. We investigated the function of the c-Myc binding site in the BRCA1 promoter region by a promoter assay with nucleotide substitutions in the putative E boxes. BRCA1-dependent DNA repair activities were measured by a GFP-reporter assay. Depletion of c-Myc was found to be correlated with reduced expression levels of BRCA1 mRNA and BRCA1 protein. Depletion of c-Myc decreased BRCA1 promoter activity, while ectopically expressed c-Myc increased BRCA1 promoter activity. In the distal BRCA1 promoter, DNA sequence analysis revealed two tandem clusters with high similarity, and each cluster contained a possible c-Myc binding site. c-Myc bound to these regions in vivo. Nucleotide substitutions in the c-Myc binding sites in these regions abrogated c-Myc-dependent promoter activation. Furthermore, breast cancer cells with reduced BRCA1 expression due to depletion of c-Myc exhibited impaired DNA repair activity. The distal BRCA1 promoter region is associated with c

  10. Chaos-assisted broadband momentum transformation in optical microresonators

    Science.gov (United States)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-01

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

  11. Association of a transforming growth factor-β1 polymorphism with acute coronary syndrome in a Chinese Han population.

    Science.gov (United States)

    Yang, Y N; Zhao, B; Li, X M; Xie, X; Liu, F; Chen, B D

    2014-04-03

    Acute coronary syndrome (ACS) is a complex multifactorial and polygenic disorder that is thought to result from the interaction between an individual's genetic makeup and various environmental factors. The aim of this study was to investigate the association of a transforming growth factor-β1 (TGF-β1) polymorphism (-509C>T) with ACS in a Chinese Han population. The TGF-β1 polymorphism was evaluated in 336 patients with ACS and 396 healthy control subjects by polymerase chain reaction-restriction fragment length polymorphism. The genotype distributions of the control and ACS groups were in Hardy-Weinberg equilibrium (X(2) = 3.54 and X(2) = 1.72, respectively, P > 0.05). The frequencies of the CC, CT, and TT genotypes were 22.61, 53.57, and 20.83% in the ACS group, respectively, whereas they were 8.33, 48.74, and 42.17% in controls. There were significant differences between controls and ACS patients in the frequencies of the CC genotype and the C allele. These results suggest that the promoter polymorphism (-509C>T) in TGF-β1 is associated with ACS in this population. The CC genotype and the C allele of TGF-β1 might be a specific risk factor of ACS in the Chinese Han population in Xinjiang.

  12. Promoter isolation and characterization of GhAO-like1, a Gossypium hirsutum gene similar to multicopper oxidases that is highly expressed in reproductive organs.

    Science.gov (United States)

    Lambret-Frotté, Julia; Artico, Sinara; Muniz Nardeli, Sarah; Fonseca, Fernando; Brilhante Oliveira-Neto, Osmundo; Grossi-de-Sá, Maria Fatima; Alves-Ferreira, Marcio

    2016-01-01

    Cotton is one of the most economically important cultivated crops. It is the major source of natural fiber for the textile industry and an important target for genetic modification for both biotic stress and herbicide tolerance. Therefore, the characterization of genes and regulatory regions that might be useful for genetic transformation is indispensable. The isolation and characterization of new regulatory regions is of great importance to drive transgene expression in genetically modified crops. One of the major drawbacks in cotton production is pest damage; therefore, the most promising, cost-effective, and sustainable method for pest control is the development of genetically resistant cotton lines. Considering this scenario, our group isolated and characterized the promoter region of a MCO (multicopper oxidase) from Gossypium hirsutum, named GhAO-like1 (ascorbate oxidase-like1). The quantitative expression, together with the in vivo characterization of the promoter region reveals that GhAO-like1 has a flower- and fruit-specific expression pattern. The GUS activity is mainly observed in stamens, as expected considering that the GhAO-like1 regulatory sequence is enriched in cis elements, which have been characterized as a target of reproductive tissue specific transcription factors. Both histological and quantitative analyses in Arabidopsis thaliana have confirmed flower (mainly in stamens) and fruit expression of GhAO-like1. In the present paper, we isolated and characterized both in silico and in vivo the promoter region of the GhAO-like1 gene. The regulatory region of GhAO-like1 might be useful to confer tissue-specific expression in genetically modified plants.

  13. Arsenite promotes centrosome abnormalities under a p53 compromised status induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    International Nuclear Information System (INIS)

    Liao, W.-T.; Yu, H.-S.; Lin Pinpin; Chang, Louis W.

    2010-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus an interaction between arsenite and cigarette smoking in lung carcinogenesis was suspected. In the present study, we investigated the interactions of a tobacco-specific carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) and arsenite on lung cell transformation. BEAS-2B, an immortalized human lung epithelial cell line, was selected to test the centrosomal abnormalities and colony formation by NNK and arsenite. We found that NNK, alone, could enhance BEAS-2B cell growth at 1-5 μM. Under NNK exposure, arsenite was able to increase centrosomal abnormality as compared with NNK or arsenite treatment alone. NNK treatment could also reduce arsenite-induced G2/M cell cycle arrest and apoptosis, these cellular effects were found to be correlated with p53 dysfunction. Increased anchorage-independent growth (colony formation) of BEAS-2B cells cotreated with NNK and arsenite was also observed in soft agar. Our present investigation demonstrated that NNK could provide a p53 compromised status. Arsenite would act specifically on this p53 compromised status to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenite under tobacco-specific carcinogen co-exposure.

  14. Serum Transforming Growth Factor Beta-1 as an Index of Chemical Hepato carcinogenesis in Rats

    International Nuclear Information System (INIS)

    Abdelgawad, M.R.; Fekry, A.E.; Edrees, G.; Ali, M.A.; Ghareeb, N.A.

    2008-01-01

    Transforming growth factor beta-1 (TGF β1) is an important mediator which controls liver cell proliferation and replication. The relation between TGF β1, Alpha-fetoprotein (AFP) and clinically thought hepatocellular carcinoma (HCC) in rats were investigated to clarify the clinical value of measuring peripheral serum TGF β1 and AFP in evaluation of HCC. Peripheral serum TGF β1 and AFP were measured during chemically induced hepato carcinogenesis. Male rats were given a genotoxic compound diethylnitrosamine (DEN) in drinking water for 149 days with control receiving drinking water only. Animals were killed at different times intervals 54, 86 and 149 days, serum TGF β1 levels were measured by, Enzyme Linked Immunosorbent Assay (ELISA) and AFP levels were assayed by immunoradiometric assay (IRMA). In DEN treated rats 54 days, there was mild portal tract inflammatory cellular infiltrate, serum TGF β1 and AFP levels were both significantly elevated above control (P>0.05 and P<0.001). At 86 days there were moderate inflammation (portal and peri portal), serum TGF β1 and AFP levels were significantly increased, (P<0.001). At 149 days typical HCC were present in ten of ten rats and serum TGF β1 and AFP were both significantly elevated compared with controls, (P<0.001). It can be concluded that serum TGF β1 and AFP levels are elevated during chemically induced HCC and have roles during the stages of process (initiation, promotion and progression); both serum TGF β1 and AFP levels can be used in parallel as a non invasive tumor markers for early diagnosis and prognosis of HCC

  15. Alterations in HIV-1 LTR promoter activity during AIDS progression

    International Nuclear Information System (INIS)

    Hiebenthal-Millow, Kirsten; Greenough, Thomas C.; Bretttler, Doreen B.; Schindler, Michael; Wildum, Steffen; Sullivan, John L.; Kirchhoff, Frank

    2003-01-01

    HIV-1 variants evolving in AIDS patients frequently show increased replicative capacity compared to those present during early asymptomatic infection. It is known that late stage HIV-1 variants often show an expanded coreceptor tropism and altered Nef function. In the present study we investigated whether enhanced HIV-1 LTR promoter activity might also evolve during disease progression. Our results demonstrate increased LTR promoter activity after AIDS progression in 3 of 12 HIV-1-infected individuals studied. Further analysis revealed that multiple alterations in the U3 core-enhancer and in the transactivation-response (TAR) region seem to be responsible for the enhanced functional activity. Our findings show that in a subset of HIV-1-infected individuals enhanced LTR transcription contributes to the increased replicative potential of late stage virus isolates and might accelerate disease progression

  16. Subtype-Specific Tumor-Associated Fibroblasts Contribute to the Pathogenesis of Uterine Leiomyoma.

    Science.gov (United States)

    Wu, Xin; Serna, Vanida A; Thomas, Justin; Qiang, Wenan; Blumenfeld, Michael L; Kurita, Takeshi

    2017-12-15

    Recent genomic studies have identified subtypes of uterine leiomyoma (LM) with distinctive genetic alterations. Here, we report the elucidation of the biological characteristics of the two most prevalent uterine leiomyoma subtypes, MED12-mutant (MED12-LM) and HMGA2-overexpressing (HMGA2-LM) uterine leiomyomas. Because each tumor carries only one genetic alteration, both subtypes are considered to be monoclonal. Approximately 90% of cells in HMGA2-uterine leiomyoma were smooth muscle cells (SMC) with HMGA2 overexpression. In contrast, MED12-LM consisted of similar numbers of SMC and non-SMC, which were mostly tumor-associated fibroblasts (TAF). Paradoxically, TAF carried no mutations in MED12, suggesting an interaction between SMC and TAF to coordinate their growth. The higher amount of extracellular matrix in MED12-LM than HMGA2-LM was partially due to the high concentration of collagen-producing TAF. SMC growth in a xenograft assay was driven by progesterone in both uterine leiomyoma subtypes. In contrast, TAF in MED12-LM proliferated in response to estradiol, whereas progesterone had no effect. The high concentration of estrogen-responsive TAF in MED12-LM explains the inconsistent discoveries between in vivo and in vitro studies on the mitogenic effect of estrogen and raises questions regarding the accuracy of previous studies utilizing MED12-LM cell culture. In addition, the differential effects of estradiol and progesterone on these uterine leiomyoma subtypes emphasize the importance of subtypes and genotypes in designing nonsurgical therapeutic strategies for uterine leiomyoma. Cancer Res; 77(24); 6891-901. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Transforming doctor-patient relationships to promote patient-centered care: lessons from palliative care.

    Science.gov (United States)

    Yedidia, Michael J

    2007-01-01

    Palliative care was studied for its potential to yield lessons for transforming doctor-patient relationships to promote patient-centered care. Examination of patient and provider experiences of the transition from curative to palliative care promises valuable insights about establishing and maintaining trust as the goals of care shift and about addressing a broad spectrum of patient needs. The study was guided by a conceptual framework grounded in existing models to address five dimensions of doctor-patient relationships: range of needs addressed, source of authority, maintenance of trust, emotional involvement, and expression of authenticity. Data collection included observation of the care of 40 patients in the inpatient hospice unit and at home, interviews with patients and family members, and in-depth interviews with 22 physicians and two nurses providing end-of-life care. Standard qualitative procedures were used to analyze the data, incorporating techniques for maximizing the validity of the results and broadening their relevance to other contexts. Findings provide evidence for challenging prominent assumptions about possibilities for doctor-patient relationships: questioning the merits of the prohibition on emotional involvement, dependence on protocols for handling difficult communication issues, unqualified reliance on consumer empowerment to assure that care is responsive to patients' needs, and adoption of narrowly defined boundaries between medical and social service systems in caring for patients. Medical education can play a role in preparing doctors to assume new roles by openly addressing management of emotions in routine clinical work, incorporating personal awareness training, facilitating reflection on interactions with patients through use of standardized patients and videotapes, and expanding capacity to effectively address a broad range of needs through teamwork training.

  18. Tail modeling in a stretched magnetosphere 1. Methods and transformations

    International Nuclear Information System (INIS)

    Stern, D.P.

    1987-01-01

    A new method is developed for representing the magnetospheric field B as a distorted dipole field. Because delxB = 0 must be maintained,such a distortion may be viewed as a transformation of the vector potential A. The simplest form is a one-dimensional ''stretch transformation'' along the x axis, a generalization of a method introduced by Voigt. The transformation is concisely represented by the ''stretch function'' f(x), which is also a convenient tool for representing features of the substorm cycle. Onedimensional stretch transformations are extended to spherical, cylindrical, and parabolic coordinates and then to arbitrary coordinates. It is next shown that distortion transformations can be viewed as mappings of field lines from one pattern to another: Euler potentials are used in the derivation, but the final result only requires knowledge of the field and not of the potentials. General transformations in Cartesian and arbitrary coordinates are then derived,and applications to field modeling, field line motion, MHD modeling, and incompressible fluid dynamics are considered. copyrightAmerican Geophysical Union 1987

  19. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation.

    Science.gov (United States)

    Marsolier, J; Perichon, M; DeBarry, J D; Villoutreix, B O; Chluba, J; Lopez, T; Garrido, C; Zhou, X Z; Lu, K P; Fritsch, L; Ait-Si-Ali, S; Mhadhbi, M; Medjkane, S; Weitzman, J B

    2015-04-16

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  20. Strategic vectors of transformational shifts in the national tourism system of Ukraine

    Directory of Open Access Journals (Sweden)

    Alla OKHRIMENKO

    2017-10-01

    Full Text Available The article determines transformational factors, which influence a national tourism system (NTS of Ukraine and proposes strategical vectors of its development. Research of the NTS as an economic system is a pre-condition for formation of strategic vectors of development. Transformational driving forces principally change scales, components, and proportions between external and internal factors of development of the NTS. Correspondingly, the mentioned processes objectively encourage modernization of the national tourism system and application of innovative managerial methods. The following Strategical vectors of transformational shifts in the NTS were grounded: 1 Safety of tourists and investors; 2 The normative and legislative framework of the NTS development; 3 Development of infrastructure of the NTS component; 4 Human resources development; 5 A marketing policy of the NTS promotion; 6 Ecological and cultural policies. Their implementation will improve efficiency and competitiveness of the NTS and the national economy.

  1. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines

    International Nuclear Information System (INIS)

    Mameli, Giuseppe; Astone, Vito; Khalili, Kamel; Serra, Caterina; Sawaya, Bassel E.; Dolei, Antonina

    2007-01-01

    Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNFα, interferon-γ, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-β is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNFα had the ability to activate the ERVWE1 promoter through an NF-κB-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNFα enhances the binding of the p65 subunit of NF-κB, to its cognate site within the promoter. The effect of TNFα is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNFα-mediated induction of syncytin-1 in multiple sclerosis

  2. RecFOR Is Not Required for Pneumococcal Transformation but Together with XerS for Resolution of Chromosome Dimers Frequently Formed in the Process

    Science.gov (United States)

    Johnston, Calum; Mortier-Barrière, Isabelle; Granadel, Chantal; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre

    2015-01-01

    Homologous recombination (HR) is required for both genome maintenance and generation of diversity in eukaryotes and prokaryotes. This process initiates from single-stranded (ss) DNA and is driven by a universal recombinase, which promotes strand exchange between homologous sequences. The bacterial recombinase, RecA, is loaded onto ssDNA by recombinase loaders, RecBCD and RecFOR for genome maintenance. DprA was recently proposed as a third loader dedicated to genetic transformation. Here we assessed the role of RecFOR in transformation of the human pathogen Streptococcus pneumoniae. We firstly established that RecFOR proteins are not required for plasmid transformation, strongly suggesting that DprA ensures annealing of plasmid single-strands internalized in the process. We then observed no reduction in chromosomal transformation using a PCR fragment as donor, contrasting with the 10,000-fold drop in dprA - cells and demonstrating that RecFOR play no role in transformation. However, a ∼1.45-fold drop in transformation was observed with total chromosomal DNA in recFOR mutants. To account for this limited deficit, we hypothesized that transformation with chromosomal DNA stimulated unexpectedly high frequency (>30% of cells) formation of chromosome dimers as an intermediate in the generation of tandem duplications, and that RecFOR were crucial for dimer resolution. We validated this hypothesis, showing that the site-specific recombinase XerS was also crucial for dimer resolution. An even higher frequency of dimer formation (>80% of cells) was promoted by interspecies transformation with Streptococcus mitis chromosomal DNA, which contains numerous inversions compared to pneumococcal chromosome, each potentially promoting dimerization. In the absence of RecFOR and XerS, dimers persist, as confirmed by DAPI staining, and can limit the efficiency of transformation, since resulting in loss of transformant chromosome. These findings strengthen the view that different HR

  3. RecFOR is not required for pneumococcal transformation but together with XerS for resolution of chromosome dimers frequently formed in the process.

    Directory of Open Access Journals (Sweden)

    Calum Johnston

    2015-01-01

    Full Text Available Homologous recombination (HR is required for both genome maintenance and generation of diversity in eukaryotes and prokaryotes. This process initiates from single-stranded (ss DNA and is driven by a universal recombinase, which promotes strand exchange between homologous sequences. The bacterial recombinase, RecA, is loaded onto ssDNA by recombinase loaders, RecBCD and RecFOR for genome maintenance. DprA was recently proposed as a third loader dedicated to genetic transformation. Here we assessed the role of RecFOR in transformation of the human pathogen Streptococcus pneumoniae. We firstly established that RecFOR proteins are not required for plasmid transformation, strongly suggesting that DprA ensures annealing of plasmid single-strands internalized in the process. We then observed no reduction in chromosomal transformation using a PCR fragment as donor, contrasting with the 10,000-fold drop in dprA- cells and demonstrating that RecFOR play no role in transformation. However, a ∼1.45-fold drop in transformation was observed with total chromosomal DNA in recFOR mutants. To account for this limited deficit, we hypothesized that transformation with chromosomal DNA stimulated unexpectedly high frequency (>30% of cells formation of chromosome dimers as an intermediate in the generation of tandem duplications, and that RecFOR were crucial for dimer resolution. We validated this hypothesis, showing that the site-specific recombinase XerS was also crucial for dimer resolution. An even higher frequency of dimer formation (>80% of cells was promoted by interspecies transformation with Streptococcus mitis chromosomal DNA, which contains numerous inversions compared to pneumococcal chromosome, each potentially promoting dimerization. In the absence of RecFOR and XerS, dimers persist, as confirmed by DAPI staining, and can limit the efficiency of transformation, since resulting in loss of transformant chromosome. These findings strengthen the view that

  4. Fourier transform and its application to 1D and 2D NMR

    International Nuclear Information System (INIS)

    Canet, D.

    1988-01-01

    In this review article, the following points are developed: Pulsed NMR and Fourier transform; Fourier transform and two-dimensional spectroscopy; Mathematical properties of Fourier transform; Fourier transform of a sine function- one dimensional NMR; Fourier transform of a product of sine functions - two-dimensional NMR; Data manipulations in the time domain; Numerical Fourier transform [fr

  5. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khin, Sann Sanda [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Pathology Research Unit, Department of Medical Research (Central Myanmar), Naypyitaw, Union of (Myanmar); Kitazawa, Riko [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Haraguchi, Ryuma [Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Mori, Kiyoshi [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Kitazawa, Sohei, E-mail: kitazawa@m.ehime-u.ac.jp [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan)

    2011-03-03

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  6. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Khin, Sann Sanda; Kitazawa, Riko; Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo; Haraguchi, Ryuma; Mori, Kiyoshi; Kitazawa, Sohei

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  7. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius.

    Science.gov (United States)

    Quan, Lin-Hu; Kim, Yeon-Ju; Li, Guan Hao; Choi, Kwang-Tea; Yang, Deok-Chun

    2013-06-01

    In this study, the major ginsenoside Rb1 was transformed into the more pharmacologically active minor compound K by food grade Lactobacillus paralimentarius LH4, which was isolated from kimchi, a traditional Korean fermented food. The enzymatic reaction was analyzed by TLC, HPLC, and NMR. Using the cell-free enzyme of Lactobacillus paralimentarius LH4 at optimal conditions for 30 °C at pH 6.0, 1.0 mg ml(-1) ginsenoside Rb1 was transformed into 0.52 mg ml(-1) compound K within 72 h, with a corresponding molar conversion yield of 88 %. The cell-free enzyme hydrolyzed the two glucose moieties attached to the C-3 position and the outer glucose moiety attached to the C-20 position of the ginsenoside Rb1. The cell-free enzyme hydrolyzed the ginsenoside Rb1 along the following pathway: ginsenoside Rb1 → gypenoside XVII and ginsenoside Rd → ginsenoside F2 → compound K. Our results indicate that Lactobacillus paralimentarius LH4 has the potential to be applied for the preparation of compound K in the food industry.

  8. Characterisation of the Mucor circinelloides regulated promoter gpd1P

    DEFF Research Database (Denmark)

    Larsen, G.G.; Appel, K.F.; Wolff, A.M.

    2004-01-01

    The promoter of the Mucor circinelloides gpd1 gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd1P) was recently cloned and used for the production of recombinant proteins, such as the Aspergillus niger glucose oxidase 1 (GOX). This represents the first example of the application...

  9. Transformation research for a sustainable energy system. Contributions; Transformationsforschung fuer ein nachhaltiges Energiesystem. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Stadermann, Gerd; Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas (comps.)

    2012-03-15

    Within the 2011 annual meeting of the Renewable Energy Research Association (Berlin, Federal Republic of Germany) from 12th to 13th October 2011, the following lectures were held: (1) Environmentally safe and socially compatible transformation of energy systems (G. Schuette); (2) Open questions on the transformation of energy systems (E. Weber); (3) System analysis on the transformation of energy systems up to 2050 (J. Schmid); (4) Economic aspects: Chances, markets and workplaces (F. Staiss); (5) Perspectives for an interplay of energy efficiency and renewable energy resources as well as their implementation in the energy system (A. Bett); (6) New accents of research promotion for a more rapid development of renewable energy sources (K. Deller); (7) The 6th Energy Research Program of the Federal Government (R. Tryfonidou); (8) Recommendations of the FVEE for the research policy of the Research Government (G. Sadermann); (9) How can research and politics promote the system transformation (M. Hustedt); (10) The energy system of tomorrow - Strategies and research for the transformation of high amounts of renewable energy resources (W. Duerrschmidt); (11) Long-term strategies for the development of renewable energies in Germany (J. Nitsch); (12) Development of storage capacities for an efficient power generation by renewable energy resources in Germany and Europe by 2050 (Y. Scholz); (13) Prognoses of temporal and spatial variability of renewable energy resources (B. Lange); (14) Smart Grids - Transformation of our electrical energy supply (G. Ebert); (15) Model regions for intelligently networked energy systems; (16) Cities and concepts of neighbourhood - model cities (D. Schmidt); (17) Transformation of the German power system to a decentral regenerative economy (U. Leprich); (18) Alteration of the general conditions for new incentive models, heat acts, restoration of buildings (M. Schmidt); (19) Acceptance and participation research on energy sustainability (P

  10. Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis

    DEFF Research Database (Denmark)

    Rohlin, A; Engwall, Y; Fritzell, K

    2011-01-01

    inactivation of promoter 1B is disease causing in FAP; (ii) expression of transcripts from promoter 1B is generated at considerable higher levels compared with 1A, demonstrating a hitherto unknown importance of 1B; (iii) adenoma formation in FAP, caused by impaired function of promoter 1B, does not require......Familial adenomatous polyposis (FAP) is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Two promoters, 1A and 1B, have been recognized in APC, and 1B is thought to have a minor role in the regulation of the gene. We have identified a novel deletion encompassing half...... of this promoter in the largest family (Family 1) of the Swedish Polyposis Registry. The mutation leads to an imbalance in allele-specific expression of APC, and transcription from promoter 1B was highly impaired in both normal colorectal mucosa and blood from mutation carriers. To establish the significance...

  11. Sp1 and Sp3 Are the Transcription Activators of Human ek1 Promoter in TSA-Treated Human Colon Carcinoma Cells.

    Science.gov (United States)

    Kuan, Chee Sian; See Too, Wei Cun; Few, Ling Ling

    2016-01-01

    Ethanolamine kinase (EK) catalyzes the phosphorylation of ethanolamine, the first step in the CDP-ethanolamine pathway for the biosynthesis of phosphatidylethanolamine (PE). Human EK exists as EK1, EK2α and EK2β isoforms, encoded by two separate genes, named ek1 and ek2. EK activity is stimulated by carcinogens and oncogenes, suggesting the involvement of EK in carcinogenesis. Currently, little is known about EK transcriptional regulation by endogenous or exogenous signals, and the ek gene promoter has never been studied. In this report, we mapped the important regulatory regions in the human ek1 promoter. 5' deletion analysis and site-directed mutagenesis identified a Sp site at position (-40/-31) that was essential for the basal transcription of this gene. Treatment of HCT116 cells with trichostatin A (TSA), a histone deacetylase inhibitor, significantly upregulated the ek1 promoter activity through the Sp(-40/-31) site and increased the endogenous expression of ek1. Chromatin immunoprecipitation assay revealed that TSA increased the binding of Sp1, Sp3 and RNA polymerase II to the ek1 promoter in HCT116 cells. The effect of TSA on ek1 promoter activity was cell-line specific as TSA treatment did not affect ek1 promoter activity in HepG2 cells. In conclusion, we showed that Sp1 and Sp3 are not only essential for the basal transcription of the ek1 gene, their accessibility to the target site on the ek1 promoter is regulated by histone protein modification in a cell line dependent manner.

  12. Better Rooting Procedure to Enhance Survival Rate of Field Grown Malaysian Eksotika Papaya Transformed with 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Gene

    Science.gov (United States)

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom

    2013-01-01

    A high survival rate for transformed papaya plants when transferred to the field is useful in the quest for improving the commercial quality traits. We report in this paper an improved rooting method for the production of transformed Malaysian Eksotika papaya with high survival rate when transferred to the field. Shoots were regenerated from embryogenic calli transformed with antisense and RNAi constructs of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes using the Agrobacterium tumefaciens-mediated transformation method. Regenerated transformed shoots, each measuring approximately 3-4 cm in height, were cultured in liquid half-strength Murashige and Skoog (MS) medium or sterile distilled water, and with either perlite or vermiculite supplementation. All the culturing processes were conducted either under sterile or nonsterile condition. The results showed that rooting under sterile condition was better. Shoots cultured in half-strength MS medium supplemented with vermiculite exhibited a 92.5% rooting efficiency while perlite showed 77.5%. The survival rate of the vermiculite-grown transformed papaya plantlets after transfer into soil, contained in polybags, was 94%, and the rate after transfer into the ground was 92%. Morpho-histological analyses revealed that the tap roots were more compact, which might have contributed to the high survival rates of the plantlets. PMID:25969786

  13. Better rooting procedure to enhance survival rate of field grown malaysian eksotika papaya transformed with 1-aminocyclopropane-1-carboxylic Acid oxidase gene.

    Science.gov (United States)

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom

    2013-01-01

    A high survival rate for transformed papaya plants when transferred to the field is useful in the quest for improving the commercial quality traits. We report in this paper an improved rooting method for the production of transformed Malaysian Eksotika papaya with high survival rate when transferred to the field. Shoots were regenerated from embryogenic calli transformed with antisense and RNAi constructs of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes using the Agrobacterium tumefaciens-mediated transformation method. Regenerated transformed shoots, each measuring approximately 3-4 cm in height, were cultured in liquid half-strength Murashige and Skoog (MS) medium or sterile distilled water, and with either perlite or vermiculite supplementation. All the culturing processes were conducted either under sterile or nonsterile condition. The results showed that rooting under sterile condition was better. Shoots cultured in half-strength MS medium supplemented with vermiculite exhibited a 92.5% rooting efficiency while perlite showed 77.5%. The survival rate of the vermiculite-grown transformed papaya plantlets after transfer into soil, contained in polybags, was 94%, and the rate after transfer into the ground was 92%. Morpho-histological analyses revealed that the tap roots were more compact, which might have contributed to the high survival rates of the plantlets.

  14. Open science initiatives: challenges for public health promotion.

    Science.gov (United States)

    Holzmeyer, Cheryl

    2018-03-07

    While academic open access, open data and open science initiatives have proliferated in recent years, facilitating new research resources for health promotion, open initiatives are not one-size-fits-all. Health research particularly illustrates how open initiatives may serve various interests and ends. Open initiatives not only foster new pathways of research access; they also discipline research in new ways, especially when associated with new regimes of research use and peer review, while participating in innovation ecosystems that often perpetuate existing systemic biases toward commercial biomedicine. Currently, many open initiatives are more oriented toward biomedical research paradigms than paradigms associated with public health promotion, such as social determinants of health research. Moreover, open initiatives too often dovetail with, rather than challenge, neoliberal policy paradigms. Such initiatives are unlikely to transform existing health research landscapes and redress health inequities. In this context, attunement to social determinants of health research and community-based local knowledge is vital to orient open initiatives toward public health promotion and health equity. Such an approach calls for discourses, norms and innovation ecosystems that contest neoliberal policy frameworks and foster upstream interventions to promote health, beyond biomedical paradigms. This analysis highlights challenges and possibilities for leveraging open initiatives on behalf of a wider range of health research stakeholders, while emphasizing public health promotion, health equity and social justice as benchmarks of transformation.

  15. MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available To describe the frequency of MLH1 promoter methylation in colorectal cancer (CRC; to explore the associations between MLH1 promoter methylation and clinicopathological and molecular factors using a systematic review and meta-analysis.A literature search of the PubMed and Embase databases was conducted to identify relevant articles published up to September 7, 2012 that described the frequency of MLH1 promoter methylation or its associations with clinicopathological and molecular factors in CRC. The pooled frequency, odds ratio (OR and 95% confidence intervals (95% CI were calculated.The pooled frequency of MLH1 promoter methylation in unselected CRC was 20.3% (95% CI: 16.8-24.1%. They were 18.7% (95% CI: 14.7-23.6% and 16.4% (95% CI: 11.9-22.0% in sporadic and Lynch syndrome (LS CRC, respectively. Significant associations were observed between MLH1 promoter methylation and gender (pooled OR = 1.641, 95% CI: 1.215-2.215; P = 0.001, tumor location (pooled OR = 3.804, 95% CI: 2.715-5.329; P<0.001, tumor differentiation (pooled OR = 2.131, 95% CI: 1.464-3.102; P<0.001, MSI (OR: 27.096, 95% CI: 13.717-53.526; P<0.001. Significant associations were also observed between MLH1 promoter methylation and MLH1 protein expression, BRAF mutation (OR = 14.919 (95% CI: 6.427-34.631; P<0.001 and 9.419 (95% CI: 2.613-33.953; P = 0.001, respectively.The frequency of MLH1 promoter methylation in unselected CRC was 20.3%. They were 18.7% in sporadic CRC and 16.4% in LS CRC, respectively. MLH1 promoter methylation may be significantly associated with gender, tumor location, tumor differentiation, MSI, MLH1 protein expression, and BRAF mutation.

  16. Two distinct promoters drive transcription of the human D1A dopamine receptor gene.

    Science.gov (United States)

    Lee, S H; Minowa, M T; Mouradian, M M

    1996-10-11

    The human D1A dopamine receptor gene has a GC-rich, TATA-less promoter located upstream of a small, noncoding exon 1, which is separated from the coding exon 2 by a 116-base pair (bp)-long intron. Serial 3'-deletions of the 5'-noncoding region of this gene, including the intron and 5'-end of exon 2, resulted in 80 and 40% decrease in transcriptional activity of the upstream promoter in two D1A-expressing neuroblastoma cell lines, SK-N-MC and NS20Y, respectively. To investigate the function of this region, the intron and 245 bp at the 5'-end of exon 2 were investigated. Transient expression analyses using various chloramphenicol acetyltransferase constructs showed that the transcriptional activity of the intron is higher than that of the upstream promoter by 12-fold in SK-N-MC cells and by 5.5-fold in NS20Y cells in an orientation-dependent manner, indicating that the D1A intron is a strong promoter. Primer extension and ribonuclease protection assays revealed that transcription driven by the intron promoter is initiated at the junction of intron and exon 2 and at a cluster of nucleotides located 50 bp downstream from this junction. The same transcription start sites are utilized by the chloramphenicol acetyltransferase constructs employed in transfections as well as by the D1A gene expressed within the human caudate. The relative abundance of D1A transcripts originating from the upstream promoter compared with those transcribed from the intron promoter is 1.5-2.9 times in SK-N-MC cells and 2 times in the human caudate. Transcript stability studies in SK-N-MC cells revealed that longer D1A mRNA molecules containing exon 1 are degraded 1.8 times faster than shorter transcripts lacking exon 1. Although gel mobility shift assay could not detect DNA-protein interaction at the D1A intron, competitive co-transfection using the intron as competitor confirmed the presence of trans-acting factors at the intron. These data taken together indicate that the human D1A gene has

  17. Transforming growth factor β1 enhances heme oxygenase 1 expression in human synovial fibroblasts by inhibiting microRNA 519b synthesis.

    Directory of Open Access Journals (Sweden)

    Shu-Jui Kuo

    Full Text Available Osteoarthritis (OA is manifested by synovial inflammation and cartilage destruction that is directly linked to synovitis, joint swelling and pain. In the light of the role of synovium in the pathogenesis and the symptoms of OA, synovium-targeted therapy is a promising strategy to mitigate the symptoms and progression of OA. Transforming growth factor beta 1 (TGF-β1, a secreted homodimeric protein, possesses unique and potent anti-inflammatory and immune-regulatory properties in many cell types. Heme oxygenase 1 (HO-1 is an inducible anti-inflammatory and stress responsive enzyme that has been proven to prevent injuries caused by many diseases. Despite the similar anti-inflammatory profile and their involvement in the pathogenesis of arthritic diseases, no studies have as yet explored the possibility of any association between the expression of TGF-β1 and HO-1.TGF-β1-induced HO-1 expression was examined by HO-1 promoter assay, qPCR, and Western blotting. The siRNAs and enzyme inhibitors were utilized to determine the intermediate involved in the signal transduction pathway. We showed that TGF-β1 stimulated the synthesis of HO-1 in a concentration- and time-dependent manner, which can be mitigated by blockade of the phospholipase (PLCγ/protein kinase C alpha (PKCα pathway. We also showed that the expression of miRNA-519b, which blocks HO-1 transcription, is inhibited by TGF-β1, and the suppression of miRNA 519b could be reversed via blockade of the PLCγ/PKCα pathway.TGF-β1 stimulated the expression of HO-1 via activating the PLCγ/PKCα pathway and suppressing the downstream expression of miRNA-519b. These results may shed light on the pathogenesis and treatment of OA.

  18. CD147 Promotes CXCL1 Expression and Modulates Liver Fibrogenesis

    Directory of Open Access Journals (Sweden)

    Wen-Pu Shi

    2018-04-01

    Full Text Available Activated hepatic stellate cells (HSCs release pro-inflammatory and pro-fibrogenic factors. CXC chemokine-ligand-1 (CXCL1 is expressed on HSCs. We previously found that the CD147 is overexpressed in activated HSCs. In this study, we showed an important role of CD147 in promoting liver fibrosis by activating HSCs and upregulating expression of chemokines. Specifically, we found that CD147 specific deletion in HSCs mice alleviated CCl4-induced liver fibrosis and inhibited HSCs activation. Overexpression of CD147 upregulated the secretion of CXCL1. Meanwhile, CXCL1 promoted HSCs activation through autocrine. Treating with PI3K/AKT inhibitor could effectively suppress CD147-induced CXCL1 expression. Taken together, these findings suggest that CD147 regulates CXCL1 release in HSCs by PI3K/AKT signaling. Inhibition of CD147 attenuates CCl4-induced liver fibrosis and inflammation. Therefore, administration of targeting CD147 could be a promising therapeutic strategy in liver fibrosis.

  19. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  20. Lacrimal Gland Pleomorphic Adenoma and Carcinoma ex Pleomorphic Adenoma

    DEFF Research Database (Denmark)

    von Holstein, Sarah L; Fehr, André; Persson, Marta

    2014-01-01

    To study genetic alterations in lacrimal gland pleomorphic adenoma (PA) and carcinoma ex pleomorphic adenoma (Ca-ex-PA) with focus on copy number changes and expression patterns of the translocation target genes PLAG1, HMGA2, and CRTC1-MAML2 in relation to clinical data....

  1. Prognostic Significance of Promoter DNA Hypermethylation of cysteine dioxygenase 1 (CDO1 Gene in Primary Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Naoko Minatani

    Full Text Available Using pharmacological unmasking microarray, we identified promoter DNA methylation of cysteine dioxygenase 1 (CDO1 gene in human cancer. In this study, we assessed the clinicopathological significance of CDO1 methylation in primary breast cancer (BC with no prior chemotherapy. The CDO1 DNA methylation was quantified by TaqMan methylation specific PCR (Q-MSP in 7 BC cell lines and 172 primary BC patients with no prior chemotherapy. Promoter DNA of the CDO1 gene was hypermethylated in 6 BC cell lines except SK-BR3, and CDO1 gene expression was all silenced at mRNA level in the 7 BC cell lines. Quantification of CDO1 methylation was developed using Q-MSP, and assessed in primary BC. Among the clinicopathologic factors, CDO1 methylation level was not statistically significantly associated with any prognostic factors. The log-rank plot analysis elucidated that the higher methylation the tumors harbored, the poorer prognosis the patients exhibited. Using the median value of 58.0 as a cut-off one, disease specific survival in BC patients with CDO1 hypermethylation showed significantly poorer prognosis than those with hypomethylation (p = 0.004. Multivariate Cox proportional hazards model identified that CDO1 hypermethylation was prognostic factor as well as Ki-67 and hormone receptor status. The most intriguingly, CDO1 hypermethylation was of robust prognostic relevance in triple negative BC (p = 0.007. Promoter DNA methylation of CDO1 gene was robust prognostic indicator in primary BC patients with no prior chemotherapy. Prognostic relevance of the CDO1 promoter DNA methylation is worthy of being paid attention in triple negative BC cancer.

  2. Modulating effects of the protease inhibitor Antipain on x-ray induced transformations

    International Nuclear Information System (INIS)

    Borek, C.; Miller, R.C.

    1979-01-01

    Protease inhibitors have been shown to inhibit the expression of mutations in bacteria and to inhibit the tumor-promoting effect of phorbol esters in mice. We have investigated the effect of the protease inhibitor Antipain on cell transformation by x-irradiation in two in vitro systems; namely short-term cultures of freshly explanted hamster embryo cells and in the 10T1/2 cell line derived and cloned from C3H mouse embryo

  3. Aberrant Transforming Growth Factor β1 Signaling and SMAD4 Nuclear Translocation Confer Epigenetic Repression of ADAM19 in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Michael W.Y. Chan

    2008-09-01

    Full Text Available Transforming growth factor-beta (TGF-β/SMAD signaling is a key growth regulatory pathway often dysregulated in ovarian cancer and other malignancies. Although loss of TGF-β–mediated growth inhibition has been shown to contribute to aberrant cell behavior, the epigenetic consequence(s of impaired TGF-β/SMAD signaling on target genes is not well established. In this study, we show that TGF-β1 causes growth inhibition of normal ovarian surface epithelial cells, induction of nuclear translocation SMAD4, and up-regulation of ADAM19 (a disintegrin and metalloprotease domain 19, a newly identified TGF-β1 target gene. Conversely, induction and nuclear translocation of SMAD4 were negligible in ovarian cancer cells refractory to TGF-β1 stimulation, and ADAM19 expression was greatly reduced. Furthermore, in the TGF-β1 refractory cells, an inactive chromatin environment, marked by repressive histone modifications (trimethyl-H3K27 and dimethyl-H3K9 and histone deacetylase, was associated with the ADAM19 promoter region. However, the CpG island found within the promoter and first exon of ADAM19 remained generally unmethylated. Although disrupted growth factor signaling has been linked to epigenetic gene silencing in cancer, this is the first evidence demonstrating that impaired TGF-β1 signaling can result in the formation of a repressive chromatin state and epigenetic suppression of ADAM19. Given the emerging role of ADAMs family proteins in growth factor regulation in normal cells, we suggest that epigenetic dysregulation of ADAM19 may contribute to the neoplastic process in ovarian cancer.

  4. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    Science.gov (United States)

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  5. Fast ghost imaging and ghost encryption based on the discrete cosine transform

    International Nuclear Information System (INIS)

    Tanha, Mehrdad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza

    2013-01-01

    We introduce the discrete cosine transform as an advanced compression tool for images in computational ghost imaging. A novel approach to fast imaging and encryption, the discrete cosine transform, promotes the security level of ghost images and reduces the image retrieval time. To discuss the advantages of this technique we compare experimental outcomes with simulated ones. (paper)

  6. 26 CFR 1.162-14 - Expenditures for advertising or promotion of good will.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Expenditures for advertising or promotion of... and Corporations § 1.162-14 Expenditures for advertising or promotion of good will. A corporation... expenditures for advertising or the promotion of good will which it seeks to deduct in the taxable year may not...

  7. Simian virus 40 small t antigen is not required for the maintenance of transformation but may act as a promoter (cocarcinogen) during establishment of transformation in resting rat cells.

    Science.gov (United States)

    Seif, R; Martin, R G

    1979-12-01

    Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation.

  8. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2013-10-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.

  9. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis.

    Science.gov (United States)

    Li, Xiaojie; Han, Liping; Zhao, Yanying; You, Zhenzhen; Dong, Hansong; Zhang, Chunling

    2014-03-01

    Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

  10. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  11. Analysis of the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) gene and promoter in Hodgkin's disease isolates

    DEFF Research Database (Denmark)

    Sandvej, K; Andresen, B S; Zhou, X G

    2000-01-01

    AIMS: To study the distribution of Epstein-Barr virus (EBV) variants containing mutations in the latent membrane protein 1 (LMP-1) oncogene and promoter in EBV associated Hodgkin's disease and infectious mononucleosis compared with previous findings in asymptomatic EBV carriers. METHODS: Sequence...... analysis of the EBV LMP-1 promoter and gene in isolates from Danish patients with Hodgkin's disease (n = 61) and infectious mononucleosis (n = 10). RESULTS: Viruses (previously designated group D) that contain two mutations in the activating transcription factor/cAMP response element (ATF/CRE) in the LMP-1...... promoter, which are known to decrease promoter activity greatly, were significantly less frequent in Hodgkin's disease than in both infectious mononucleosis (p = 0.0081) and asymptomatic EBV carriers (p = 0.0084). In some cases, the LMP-1 gene contained mutations in a recently identified cytotoxic T cell...

  12. Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis

    Science.gov (United States)

    Rost, Martin Christopher

    1988-01-01

    Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.

  13. The economics of energy market transformation programs

    International Nuclear Information System (INIS)

    Duke, R.; Kammen, D.M.

    1999-01-01

    This paper evaluates three energy-sector market transformation programs: the US Environmental Protection Agency's Green Lights program to promote on-grid efficient lighting; the World Bank Group's new Photovoltaic Market Transformation Initiative; and the federal grain ethanol subsidy. The authors develop a benefit-cost model that uses experience curves to estimate unit cost reductions as a function of cumulative production. Accounting for dynamic feedback between the demand response and price reductions from production experience raises the benefit-cost ratio (BCR) of the first two programs substantially. The BCR of the ethanol program, however, is approximately zero, illustrating a technology for which subsidization was not justified. Their results support a broader role for market transformation programs to commercialize new environmentally attractive technologies, but the ethanol experience suggests moderately funding a broad portfolio composed of technologies that meet strict selection criteria

  14. Delineating an Epigenetic Continuum for Initiation, Transformation and Progression to Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kang Mei; Stephen, Josena K. [Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, 1 Ford Place, 1D, Detroit, MI 48202 (United States); Raju, Usha [Department of Pathology, Henry Ford Hospital, Detroit, 1 Ford Place, 1D, Detroit, MI 48202 (United States); Worsham, Maria J., E-mail: mworsha1@hfhs.org [Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, 1 Ford Place, 1D, Detroit, MI 48202 (United States)

    2011-03-29

    Aberrant methylation of promoter CpG islands is a hallmark of human cancers and is an early event in carcinogenesis. We examined whether promoter hypermethylation contributes to the pathogenesis of benign breast lesions along a progression continuum to invasive breast cancer. The exploratory study cohort comprised 17 breast cancer patients with multiple benign and/or in situ lesions concurrently present with invasive carcinoma within a tumor biopsy. DNA from tumor tissue, normal breast epithelium when present, benign lesions (fibroadenoma, hyperplasia, papilloma, sclerosing adenosis, apocrine metaplasia, atypical lobular hyperplasia or atypical ductal hyperplasia), and in situ lesions of lobular carcinoma and ductal carcinoma were interrogated for promoter methylation status in 22 tumor suppressor genes using the multiplex ligation-dependent probe amplification assay (MS-MLPA). Methylation specific PCR was performed to confirm hypermethylation detected by MS-MLPA. Promoter methylation was detected in 11/22 tumor suppressor genes in 16/17 cases. Hypermethylation of RASSF1 was most frequent, present in 14/17 cases, followed by APC in 12/17, and GSTP1 in 9/17 cases with establishment of an epigenetic monocloncal progression continuum to invasive breast cancer. Hypermethylated promoter regions in normal breast epithelium, benign, and premalignant lesions within the same tumor biopsy implicate RASSF1, APC, GSTP1, TIMP3, CDKN2B, CDKN2A, ESR1, CDH13, RARB, CASP8, and TP73 as early events. DNA hypermethylation underlies the pathogenesis of step-wise transformation along a monoclonal continuum from normal to preneoplasia to invasive breast cancer.

  15. Delineating an Epigenetic Continuum for Initiation, Transformation and Progression to Breast Cancer

    International Nuclear Information System (INIS)

    Chen, Kang Mei; Stephen, Josena K.; Raju, Usha; Worsham, Maria J.

    2011-01-01

    Aberrant methylation of promoter CpG islands is a hallmark of human cancers and is an early event in carcinogenesis. We examined whether promoter hypermethylation contributes to the pathogenesis of benign breast lesions along a progression continuum to invasive breast cancer. The exploratory study cohort comprised 17 breast cancer patients with multiple benign and/or in situ lesions concurrently present with invasive carcinoma within a tumor biopsy. DNA from tumor tissue, normal breast epithelium when present, benign lesions (fibroadenoma, hyperplasia, papilloma, sclerosing adenosis, apocrine metaplasia, atypical lobular hyperplasia or atypical ductal hyperplasia), and in situ lesions of lobular carcinoma and ductal carcinoma were interrogated for promoter methylation status in 22 tumor suppressor genes using the multiplex ligation-dependent probe amplification assay (MS-MLPA). Methylation specific PCR was performed to confirm hypermethylation detected by MS-MLPA. Promoter methylation was detected in 11/22 tumor suppressor genes in 16/17 cases. Hypermethylation of RASSF1 was most frequent, present in 14/17 cases, followed by APC in 12/17, and GSTP1 in 9/17 cases with establishment of an epigenetic monocloncal progression continuum to invasive breast cancer. Hypermethylated promoter regions in normal breast epithelium, benign, and premalignant lesions within the same tumor biopsy implicate RASSF1, APC, GSTP1, TIMP3, CDKN2B, CDKN2A, ESR1, CDH13, RARB, CASP8, and TP73 as early events. DNA hypermethylation underlies the pathogenesis of step-wise transformation along a monoclonal continuum from normal to preneoplasia to invasive breast cancer

  16. Mos1 transposon-based transformation of fish cell lines using baculoviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Yokoo, Masako [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Fujita, Ryosuke [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213 (Japan); Yoshimizu, Mamoru; Kasai, Hisae [Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611 (Japan); Asano, Shin-ichiro [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan); Bando, Hisanori, E-mail: hban@abs.agr.hokudai.ac.jp [Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589 (Japan)

    2013-09-13

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.

  17. Mos1 transposon-based transformation of fish cell lines using baculoviral vectors

    International Nuclear Information System (INIS)

    Yokoo, Masako; Fujita, Ryosuke; Nakajima, Yumiko; Yoshimizu, Mamoru; Kasai, Hisae; Asano, Shin-ichiro; Bando, Hisanori

    2013-01-01

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells

  18. Haplotype defined by the MLH1-93G/A polymorphism is associated with MLH1 promoter hypermethylation in sporadic colorectal cancers.

    Science.gov (United States)

    Miyakura, Yasuyuki; Tahara, Makiko; Lefor, Alan T; Yasuda, Yoshikazu; Sugano, Kokichi

    2014-11-24

    Methylation of the MLH1 promoter region has been suggested to be a major mechanism of gene inactivation in sporadic microsatellite instability-positive (MSI-H) colorectal cancers (CRCs). Recently, single-nucleotide polymorphism (SNP) in the MLH1 promoter region (MLH1-93G/A; rs1800734) has been proposed to be associated with MLH1 promoter methylation, loss of MLH1 protein expression and MSI-H tumors. We examined the association of MLH1-93G/A and six other SNPs surrounding MLH1-93G/A with the methylation status in 210 consecutive sporadic CRCs in Japanese patients. Methylation of the MLH1 promoter region was evaluated by Na-bisulfite polymerase chain reaction (PCR)/single-strand conformation polymorphism (SSCP) analysis. The genotype frequencies of SNPs located in the 54-kb region surrounding the MLH1-93G/A SNP were examined by SSCP analysis. Methylation of the MLH1 promoter region was observed in 28.6% (60/210) of sporadic CRCs. The proportions of MLH1-93G/A genotypes A/A, A/G and G/G were 26% (n=54), 51% (n=108) and 23% (n=48), respectively, and they were significantly associated with the methylation status (p=0.01). There were no significant associations between genotype frequency of the six other SNPs and methylation status. The A-allele of MLH1-93G/A was more common in cases with methylation than the G-allele (p=0.0094), especially in females (p=0.0067). In logistic regression, the A/A genotype of the MLH1-93G/A SNP was shown to be the most significant risk factor for methylation of the MLH1 promoter region (odds ratio 2.82, p=0.003). Furthermore, a haplotype of the A-allele of rs2276807 located -47 kb upstream from the MLH1-93G/A SNP and the A-allele of MLH1-93G/A SNP was significantly associated with MLH1 promoter methylation. These results indicate that individuals, and particularly females, carrying the A-allele at the MLH1-93G/A SNP, especially in association with the A-allele of rs2276807, may harbor an increased risk of methylation of the MLH1 promoter

  19. Transformation and Transformational Leadership: A Review of the Current and Relevant Literature for Academic Radiologists.

    Science.gov (United States)

    Thomson, Norman B; Rawson, James V; Slade, Catherine P; Bledsoe, Martin

    2016-05-01

    With the US healthcare system on an unsustainable course, change is inevitable. Changes in the healthcare landscape impacting radiology include changing payment models, rapid adoption of digital technology, changes in radiology resident certifying exams, and the rise of consumerism in health care. Academic Radiology will be part of that change with none of its missions spared. What matters is not that change is coming but how Academic Radiology responds to change. Do we ignore, adapt, adopt others' practices, or lead change? Change management or transformation is a management skill set that can be learned and developed. Transformational leadership is a leadership style defined by the relationships between the leaders and the followers and the results they are able to achieve together to meet organizational goals. In this paper, we provide a review of key change management theories, as well as practical advice for self-reflection and development of leadership behaviors that promote effective change management and organizational transformation, particularly in a complex industry like Academic Radiology. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1.

    Science.gov (United States)

    Ma, Min; Zhou, Qiong-Jie; Xiong, Yu; Li, Bin; Li, Xiao-Tian

    2018-01-01

    Previous studies have demonstrated a dynamic epigenetic regulation of genes expression in placenta trophoblasts and a dynamic imbalance of DNA methylation and hydroxymethylation. Reduced IGF-1 has been observed in preeclampsia. This study was to investigate the interactive roles between IGF-1 and the global DNA methylation/hydroxymethylation, and the status of DNA methylation/hydroxymethylation and associated enzymes such as DNMTs and TETs in peeeclamptic placentas and hypoxic trophoblasts. It was found that IGF-1 was decreased in preeclamptic placentas and hypoxic trophoblasts when compared to the control group using immunohistochemisty, western blot, qRT-PCR and ELISA. Pyrophosphate sequencing showed IGF-1 promoter was significantly hypermethylated in preeclamptic placentas, which was responsible for reduced IGF-1 expression. Preeclamptic placentas and hypoxic trophoblasts were hypermethylated and hypohydroxymethylated accompanied by remarkably higher 5mC, DNMT1 and DNMT3b, and lower DNMT3a, 5hmC, TET1, TET2 and TET3 detected by immunohistochemisty, western blot, qRT-PCR and ELISA. Pearson's correlation confirmed a statistically significant negative correlation between IGF-1 and DNMT1. Furthermore, both treatment with 5-Aza-dc and DNMT1-siRNA significantly increased the expression of IGF-1 in HTR8 cells, indicating the potential mechanism of DNMT1-mediated DNA methylation in IGF-1 regulation. However, IGF-1 didn't change DNA methylation or hydroxymethylation. These findings suggest that preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1 and provide new insights into the diagnosis and treatment of preeclampsia.

  1. DDB1-Mediated CRY1 Degradation Promotes FOXO1-Driven Gluconeogenesis in Liver.

    Science.gov (United States)

    Tong, Xin; Zhang, Deqiang; Charney, Nicholas; Jin, Ethan; VanDommelen, Kyle; Stamper, Kenneth; Gupta, Neil; Saldate, Johnny; Yin, Lei

    2017-10-01

    Targeted protein degradation through ubiquitination is an important step in the regulation of glucose metabolism. Here, we present evidence that the DDB1-CUL4A ubiquitin E3 ligase functions as a novel metabolic regulator that promotes FOXO1-driven hepatic gluconeogenesis. In vivo, hepatocyte-specific Ddb1 deletion leads to impaired hepatic gluconeogenesis in the mouse liver but protects mice from high-fat diet-induced hyperglycemia. Lack of Ddb1 downregulates FOXO1 protein expression and impairs FOXO1-driven gluconeogenic response. Mechanistically, we discovered that DDB1 enhances FOXO1 protein stability via degrading the circadian protein cryptochrome 1 (CRY1), a known target of DDB1 E3 ligase. In the Cry1 depletion condition, insulin fails to reduce the nuclear FOXO1 abundance and suppress gluconeogenic gene expression. Chronic depletion of Cry1 in the mouse liver not only increases FOXO1 protein but also enhances hepatic gluconeogenesis. Thus, we have identified the DDB1-mediated CRY1 degradation as an important target of insulin action on glucose homeostasis. © 2017 by the American Diabetes Association.

  2. ISAba1 and Tn6168 acquisition by natural transformation leads to third-generation cephalosporins resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Domingues, Sara; Rosário, Natasha; Ben Cheikh, Hadhemi; Da Silva, Gabriela Jorge

    2018-05-15

    Acinetobacter baumannii has intrinsic beta-lactamase genes, namely ampC and bla OXA-51 -like, which are only strongly expressed when the ISAba1 insertion sequence is upstream the 5' end of the genes. A second ampC gene has also been identified in some clinical A. baumannii strains. The increased expression of these genes leads to resistance to beta-lactams, including third-generation cephalosporins and/or carbapenems. The aim of this work was to assess the involvement of natural transformation in the transfer of chromosomal ampC-associated mobile elements, and related changes in the resistance profile of recipient cells. Natural transformation assays with the naturally competent A. baumannii A118 clinical isolate as recipient cell and the multidrug resistant A. baumannii Ab51 clinical isolate as the source of donor DNA produced transformants. All tested transformants showed integration of the ISAba1 close to the ampC gene. In two transformants, the ISAba1 was acquired by transposition and inserted between the usual folE and the ampC genes. The remaining transformants acquired the ISAba1 adjacent to a second ampC gene, as part of Tn6168, likely by homologous recombination. Our study demonstrates that natural transformation can contribute to the widespread of beta-lactams resistance, and acquisition of non-resistant determinants can lead to changes in the susceptibility profile of A. baumannii strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Low light and low ammonium are key factors for guayule leaf tissue shoot organogenesis and transformation.

    Science.gov (United States)

    Dong, Niu; Montanez, Belen; Creelman, Robert A; Cornish, Katrina

    2006-02-01

    A new method has been developed for guayule tissue culture and transformation. Guayule leaf explants have a poor survival rate when placed on normal MS medium and under normal culture room light conditions. Low light and low ammonium treatment greatly improved shoot organogenesis and transformation from leaf tissues. Using this method, a 35S promoter driven BAR gene and an ubiquitin-3 promoter driven GUS gene (with intron) have been successfully introduced into guayule. These transgenic guayule plants were resistant to the herbicide ammonium-glufosinate and were positive to GUS staining. Molecular analysis showed the expected band and signal in all GUS positive transformants. The transformation efficiency with glufosinate selection ranged from 3 to 6%. Transformation with a pBIN19-based plasmid containing a NPTII gene and then selection with kanamycin also works well using this method. The ratio of kanamycin-resistant calli to total starting explants reached 50% in some experiments.

  4. Patterns of DNMT1 Promoter Methylation in Patients with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Rahmani, Tirdad; Azad, Mehdi; Chahardouli, Bahram; Nasiri, Hajar; Vatanmakanian, Mousa; Kaviani, Saeid

    2017-07-01

    Background: Acute lymphoblastic leukemia (ALL) is a clonal malignant disorder characterized by an uncontrolled proliferation of immature T or B lymphocytes. Extensive studies have shown that the epigenetic changes, especially modified DNA methylation patterns in the regulatory regions through the DNA methyltransferase (DNMTs), play an important role in the development of genetic disorders and abnormal growth and maturation capacity of leukemic stem cells (LSCs).The aim of this study was to evaluate the changes in DNMT1 promoter methylation and its expression pattern in patients with ALL. Materials and Methods: In this experimental study, methylation specific PCR (MSP) was used to assess the methylation status of DNMT1 promoter regions in samples collected from ALL patients (n=45) and healthy control subjects. According to this method, un-methylated cytosine nucleotides are converted to uracil by sodium bisulfite and the proliferation of methylated and un-methylated regions are performed using specific primers for target sequences. Results: None of the patients with B and T-ALL showed methylated promoter regions of the DNMT1 gene, while the methylation pattern of both pre-B ALL patients and the control group showed a relative promoter methylation. Conclusion: Analysis of promoter methylation patterns in various subgroups of ALL has revealed the importance of DNMT1 in the regulation of gene expression. Likewise, extensive data have also highlighted the methylation-based mechanisms exerted by DNAM1 as one of the main participants regulating gene expression in B-ALL and T-ALL patients. Investigation of the overall DNA methylation pattern offers significant improvements in the prediction of disease prognosis and treatment response.

  5. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas.

    Science.gov (United States)

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-11-15

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs.25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2.In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance.

  6. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    International Nuclear Information System (INIS)

    Jiang Fangxu; Harrison, Leonard C.

    2005-01-01

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its α 6 integrin and α-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells

  7. Enhanced reductive transformation of p-chloronitrobenzene in a novel bioelectrode-UASB coupled system.

    Science.gov (United States)

    Zhu, Liang; Gao, Kaituo; Qi, Jiaoqin; Jin, Jie; Xu, Xiangyang

    2014-09-01

    The laboratory-scale upflow anaerobic sludge blanket (UASB) reactor equipped with a pair of bioelectrodes was established for the enhancement of p-chloronitrobenzene (p-ClNB) reductive transformation via the electrolysis. Results showed that a stable COD removal efficiency over 99% and high p-ClNB transformation rate of 0.328 h(-1) were achieved in the bioelectrode-UASB coupled system with influent COD and p-ClNB loading rates of 2.1-4.2 kg COD m(-3)d(-1) and 60 gm(-3)d(-1), respectively. The bioelectrodes were supplied with a voltage of 2.5-5.0 V and the effective current was above 2 mA, which resulted in a continuous supply of H2. Compared with the traditional UASB reactor (R1), the production of H2 was promoted in the bioelectrode-UASB coupled system (R2), and was consumed as an internal electron donor for p-ClNB reductive transformation by anaerobic microbes simultaneously. Furthermore, the cyclic voltammetry curve (CV) analysis of biocathodes showed a positive shift in the reductive peak potential and a dramatic increase in the reductive peak current, which demonstrated the catalytic reduction of p-ClNB by biocathode in the combined system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. SUMOylation of Blimp-1 promotes its proteasomal degradation.

    Science.gov (United States)

    Shimshon, Livnat; Michaeli, Avital; Hadar, Rivka; Nutt, Stephen L; David, Yael; Navon, Ami; Waisman, Ari; Tirosh, Boaz

    2011-08-04

    B lymphocyte induced maturation protein-1 (Blimp-1) is a transcription repressor of the Krueppel-like family. Blimp-1 plays important roles in developmental processes, such as of germ cells and hair follicle stem cells. In B lymphocytes Blimp-1 orchestrates the terminal differentiation into plasma cells. We discovered that Blimp-1 undergoes SUMOylation by SUMO-1. This SUMOylation is modulated by the SUMO protease SENP1. While Blimp-1 is relatively stable in 293T cells, a fusion with SUMO1 rendered it to rapid proteasomal degradation. Increase in SENP1 activity stabilized Blimp-1, while a decrease promoted its degradation. Our data indicate that SUMOylation of Blimp-1 regulates its intracellular stability. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway.

    Directory of Open Access Journals (Sweden)

    Angela C Poole

    2010-04-01

    Full Text Available Loss-of-function mutations in the PINK1 or parkin genes result in recessive heritable forms of parkinsonism. Genetic studies of Drosophila orthologs of PINK1 and parkin indicate that PINK1, a mitochondrially targeted serine/threonine kinase, acts upstream of Parkin, a cytosolic ubiquitin-protein ligase, to promote mitochondrial fragmentation, although the molecular mechanisms by which the PINK1/Parkin pathway promotes mitochondrial fragmentation are unknown. We tested the hypothesis that PINK1 and Parkin promote mitochondrial fragmentation by targeting core components of the mitochondrial morphogenesis machinery for ubiquitination. We report that the steady-state abundance of the mitochondrial fusion-promoting factor Mitofusin (dMfn is inversely correlated with the activity of PINK1 and Parkin in Drosophila. We further report that dMfn is ubiquitinated in a PINK1- and Parkin-dependent fashion and that dMfn co-immunoprecipitates with Parkin. By contrast, perturbations of PINK1 or Parkin did not influence the steady-state abundance of the mitochondrial fission-promoting factor Drp1 or the mitochondrial fusion-promoting factor Opa1, or the subcellular distribution of Drp1. Our findings suggest that dMfn is a direct substrate of the PINK1/Parkin pathway and that the mitochondrial morphological alterations and tissue degeneration phenotypes that derive from mutations in PINK1 and parkin result at least in part from reduced ubiquitin-mediated turnover of dMfn.

  10. Palmitoylation at Cys574 is essential for MT1-MMP to promote cell migration

    DEFF Research Database (Denmark)

    Anilkumar, Narayanapanicker; Uekita, Takamasa; Couchman, John R

    2005-01-01

    of the palmitoylated cysteine relative to LLY573, a motif that interacts with mu2 subunit of adaptor protein 2, is critical for the cell motility-promoting activity of MT1-MMP and its clathrin-mediated internalization. Taken together, palmitoylation of MT1-MMP is one of the key posttranslational modifications......MT1-MMP is a type I transmembrane proteinase that promotes cell migration and invasion. Here, we report that MT1-MMP is palmitoylated at Cys574 in the cytoplasmic domain, and this lipid modification is critical for its promotion of cell migration and clathrin-mediated internalization...... that determines MT1-MMP-dependent cell migration....

  11. Eosin Y-catalyzed, visible-light-promoted carbophosphinylation of allylic alcohols via a radical neophyl rearrangement.

    Science.gov (United States)

    Yin, Yao; Weng, Wei-Zhi; Sun, Jian-Guo; Zhang, Bo

    2018-03-28

    A visible-light-promoted phosphinylation of allylic alcohols with concomitant 1,2-aryl migration is described. This transformation proceeds smoothly under metal-free and mild conditions by using an inexpensive organic dye, eosin Y, as the photocatalyst, affording various β-aryl-γ-ketophosphine oxides in moderate to good yields. Mechanistic studies suggested that the 1,2-aryl migration proceeded through a radical (neophyl) rearrangement.

  12. Promotion of Preventive Measures in Public Nursery Schools: Lessons From the H1N1 Pandemic.

    Science.gov (United States)

    Michail, Koralia A; Ioannidou, Christina; Galanis, Petros; Tsoumakas, Kostantinos; Pavlopoulou, Ioanna D

    2017-09-01

    Nursery schools serve as reservoirs of transmission of infectious diseases, and teachers should be able to implement and monitor hygiene measures to prevent them. The aim of the present study was to assess the compliance of nursery school teachers on promoting preventive interventions and to identify associated factors, during the novel H1N1 influenza pandemic. A secondary objective was to evaluate their knowledge and vaccination status regarding the novel virus. A cross-sectional study was performed, with the use of a predesigned anonymous, questionnaire, and distributed to all public nursery teachers of Athens, Greece. General etiquette practices were highly acceptable to over 92% of teachers. Those with longer teaching experience promoted simple preventive measures, such as hand washing and use of hand sanitizer, more often while older children were more likely to familiarize with them. However, teachers presented inadequate knowledge concerning the novel virus and their vaccination rates with the pandemic vaccine were unacceptably low (1.1%). Our study showed that promotion of simple preventive measures is feasible and may contribute to the prevention of outbreaks in nursery schools, although knowledge gaps and fear concerning the pandemic vaccine highlight communication issues.

  13. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Kiyoshi Mori

    2011-03-01

    Full Text Available Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β, induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  14. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism

    LENUS (Irish Health Repository)

    Tansey, Katherine E

    2011-03-31

    Abstract Background Arginine vasopressin (AVP) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (AVPR1A) is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at AVPR1A has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5\\'-flanking region of AVPR1A in variable gene expression and social behaviour. Methods We examined four tagging single nucleotide polymorphisms (SNPs) (rs3803107, rs1042615, rs3741865, rs11174815) and three microsatellites (RS3, RS1 and AVR) at the AVPR1A gene for association in an autism cohort from Ireland. Two 5\\'-flanking region polymorphisms in the human AVPR1A, RS3 and RS1, were also tested for their effect on relative promoter activity. Results The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (P = 0.036 and P = 0.008, respectively). Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y. Conclusions These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased AVPR1A transcription, which may proffer increased susceptibility to the autism phenotype.

  15. Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model

    International Nuclear Information System (INIS)

    Abe, Hajime; Ogawa, Takashi; Wang, Liyun; Kimura, Masayuki; Tanaka, Takeshi; Morita, Reiko; Yoshida, Toshinori; Shibutani, Makoto

    2014-01-01

    Thioacetamide (TAA) has been used to develop a rodent model for hepatocarcinogenesis. To determine the genes with epigenetic modifications in early hepatocarcinogenesis, we did a genome-wide scan for hypermethylated promoter regions using CpG island microarrays in TAA-promoted rat liver tissue. Eight genes were selected based on the microarray profile; of these, Yy1 and Wdr45b were confirmed to be hypermethylated by methylation-specific polymerase chain reaction (PCR) and pyrosequencing and downregulated by real-time reverse transcription PCR. Non-neoplastic liver cells had nuclear Yy1 immunoreactivity, while preneoplastic foci with glutathione S-transferase placental form (GST-P) immunoreactivity had decreased Yy1 immunoreactivity. The incidence of these foci was proportional to the dose of TAA administered. Co-expression analysis of gene products downstream of Yy1 revealed increased nuclear phospho-c-Myc + foci as well as nuclear and cytoplasmic p21 Cip1+ foci in Yy1 − or GST-P + foci in response to TAA-promotion dose. Although the absolute number of cells was low, the incidence of death receptor 5 − foci was increased in Yy1 − foci in proportion to the TAA dose. Yy1 − /GST-P + foci revealed a higher number of proliferating cell nuclear antigen (PCNA)-immunoreactive cells than Yy1 + /GST-P + foci, while cleaved caspase-3 + cells were unchanged between Yy1 – /GST-P + and Yy1 + /GST-P + foci. In the case of Wdr45b, most GST-P + foci were Wdr45b – and were not increased by TAA promotion. These results suggest involvement of Yy1 in the epigenetic gene regulation at the early stages of TAA promoted cell proliferation and concomitant cell cycle arrest in preneoplastic lesions. - Highlights: • Epigenetically downregulated genes were searched in TAA-promnoted rat livers. • Yy1 and Wdr45b showed promoter-region hypermethylation and mRNA downregulation. • TAA promoted increase of preneoplastic Yy1 – /GST-P + foci showing high proliferation. • TAA

  16. PIAS1 Promotes Lymphomagenesis through MYC Upregulation

    Directory of Open Access Journals (Sweden)

    Andrea Rabellino

    2016-06-01

    Full Text Available The MYC proto-oncogene is a transcription factor implicated in a broad range of cancers. MYC is regulated by several post-translational modifications including SUMOylation, but the functional impact of this post-translational modification is still unclear. Here, we report that the SUMO E3 ligase PIAS1 SUMOylates MYC. We demonstrate that PIAS1 promotes, in a SUMOylation-dependent manner, MYC phosphorylation at serine 62 and dephosphorylation at threonine 58. These events reduce the MYC turnover, leading to increased transcriptional activity. Furthermore, we find that MYC is SUMOylated in primary B cell lymphomas and that PIAS1 is required for the viability of MYC-dependent B cell lymphoma cells as well as several cancer cell lines of epithelial origin. Finally, Pias1-null mice display endothelial defects reminiscent of Myc-null mice. Taken together, these results indicate that PIAS1 is a positive regulator of MYC.

  17. Genomic organization and promoter cloning of the human X11α gene APBA1.

    LENUS (Irish Health Repository)

    Chai, Ka-Ho

    2012-05-01

    X11α is a brain specific multi-modular protein that interacts with the Alzheimer\\'s disease amyloid precursor protein (APP). Aggregation of amyloid-β peptide (Aβ), an APP cleavage product, is believed to be central to the pathogenesis of Alzheimer\\'s disease. Recently, overexpression of X11α has been shown to reduce Aβ generation and to ameliorate memory deficit in a transgenic mouse model of Alzheimer\\'s disease. Therefore, manipulating the expression level of X11α may provide a novel route for the treatment of Alzheimer\\'s disease. Human X11α is encoded by the gene APBA1. As evidence suggests that X11α expression can be regulated at transcription level, we have determined the gene structure and cloned the promoter of APBA1. APBA1 spans over 244 kb on chromosome 9 and is composed of 13 exons and has multiple transcription start sites. A putative APBA1 promoter has been identified upstream of exon 1 and functional analysis revealed that this is highly active in neurons. By deletion analysis, the minimal promoter was found to be located between -224 and +14, a GC-rich region that contains a functional Sp3 binding site. In neurons, overexpression of Sp3 stimulates the APBA1 promoter while an Sp3 inhibitor suppresses the promoter activity. Moreover, inhibition of Sp3 reduces endogenous X11α expression and promotes the generation of Aβ. Our findings reveal that Sp3 play an essential role in APBA1 transcription.

  18. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor

    Directory of Open Access Journals (Sweden)

    Rian de Laat

    2015-03-01

    Full Text Available Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP by β-secretase and γ-secretase generate amyloid β (Aβ peptides, which are thought to contribute to Alzheimer's disease (AD. Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  19. DNA transformations of Candida tropicalis with replicating and integrative vectors.

    Science.gov (United States)

    Sanglard, D; Fiechter, A

    1992-12-01

    The alkane-assimilating yeast Candida tropicalis was used as a host for DNA transformations. A stable ade2 mutant (Ha900) obtained by UV-mutagenesis was used as a recipient for different vectors carrying selectable markers. A first vector, pMK16, that was developed for the transformation of C. albicans and carries an ADE2 gene marker and a Candida autonomously replicating sequence (CARS) element promoting autonomous replication, was compatible for transforming Ha900. Two transformant types were observed: (i) pink transformants which easily lose pMK16 under non-selective growth conditions; (ii) white transformants, in which the same plasmid exhibited a higher mitotic stability. In both cases pMK16 could be rescued from these cells in Escherichia coli. A second vector, pADE2, containing the isolated C. tropicalis ADE2, gene, was used to transform Ha900. This vector integrated in the yeast genome at homologous sites of the ade2 locus. Different integration types were observed at one or both ade2 alleles in single or in tandem repeats.

  20. Transforming a NEP1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche--failure and success.

    Science.gov (United States)

    Meir, Sagit; Amsellem, Ziva; Al-Ahmad, Hani; Safran, Einat; Gressel, Jonathan

    2009-05-01

    The NEP1 gene encoding a fungal toxin that successfully conferred hypervirulence when transformed into Colletotrichum coccodes (Wallr.) Hughes attacking Abutilon theophrasti (L.) Medic. was tested to ascertain if it would enhance pathogenicity of Fusarium species to Orobanche aegyptiaca Pers. parasitising crops. None of the Fusarium oxysporum (#CNCM I-1622) NEP1 transformants was hypervirulent. NEP1 transformants of a new but unnamed Fusarium sp. (#CNCM I-1621--previously identified as F. arthrosporioides) killed Orobanche more rapidly than the wild type. Transformed lines of both species were NEP1 PCR positive, as was the wild type of F. oxysporum #CNCM I-1622 and five other formae speciales of F. oxysporum. All six wild-type formae speciales of F. oxysporum tested excrete minute amounts of immunologically and bioassay-detectable NEP1-like protein. NEP1 expression of most F. oxysporum transformants was suppressed, suggesting that the native gene and the transgene silence each other. The sequence of the putative NEP1 gene in Fusarium oxysporum #CNCM I-1622 differs from the sequence in the toxin-overproducing strain of F. oxysporum f. sp. erythroxyli in four or five amino acids in the first exon. Wild-type Fusarium sp. #CNCM I-1621 does not contain a NEP1-like gene, explaining why it seemed amenable to transformation with high expression, and its virulence was probably enhanced by not cosuppressing the endogenous gene as occurred with Fusarium oxysporum #CNCM I-1622.

  1. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Science.gov (United States)

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  2. Development of a Candida glabrata dominant nutritional transformation marker utilizing the Aspergillus nidulans acetamidase gene (amdS).

    Science.gov (United States)

    Fu, Jianmin; Blaylock, Morganne; Wickes, Cameron F; Welte, William; Mehrtash, Adrian; Wiederhold, Nathan; Wickes, Brian L

    2016-05-01

    The gene encoding Aspergillus nidulans acetamidase (amdS) was placed under control of Candida albicans ACT1 promoter and terminator sequences and then cloned into a plasmid containing C. glabrata ARS10,CEN8 or ARS10+CEN8 sequences. All plasmids transformed C. glabrata wild-type cells to acetamide+, with the ARS-only containing plasmid transforming cells at the highest frequencies (>1.0 × 10(4) transformants μg(-1)). Plasmids were rapidly lost under non-selective conditions with the frequency dependent on chromosomal element, thus recycling the acetamide- phenotype. The amdS plasmid was used to transform a set of clinical isolates resistant to a variety of antifungal drugs. All strains were successfully transformed to the acetamide+ phenotype at high frequency, confirming that this plasmid construct could be used as a simple dominant marker on virtually any strain. Gap repair experiments demonstrated that just as in Saccharomyces cerevisiae, gap repair functions efficiently inC. glabrata, suggesting that C. glabrata has numerous similarities toS. cerevisiae with regard to ease of molecular manipulation. The amdS system is inexpensive and efficient, and combined with existing C. glabrata plasmid elements, confers a high transformation frequency for C. glabrata with a phenotype that can be easily recycled. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Transcriptional regulation of the Bacillus subtilis menp1 promoter.

    OpenAIRE

    Qin, X; Taber, H W

    1996-01-01

    The Bacillus subtilis men genes encode biosynthetic enzymes for formation of the respiratory chain component menaquinone. The menp1 promoter previously was shown to be the primary cis element for menFD gene expression. In the present work, it was found that either supplementation with nonfermentable carbon sources or reutilization of glycolytic end products increased menp1 activity in the late postexponential phase. The effect on menp1 activity by a particular end product (such as acetoin or ...

  4. INFLUENCE OF TECHNOGENIC LANDSCAPES RECULTIVATION ON FUNCTIONING OF SOIL MICROORGANISMS COMMUNITIES WHICH TAKE PART IN TRANSFORMATION OF NITROGEN COMPOUNDS

    Directory of Open Access Journals (Sweden)

    O. V. Syshchykova

    2014-04-01

    Full Text Available It is established that mining recultivation of tailings dams slimes promotes restoration of numerical structure of soil microorganisms community which take part in processes of nitrogen compounds transformation. The certificate of that is number restoration of the organotrophic bacteria of a nitrogen cycle to 0.3 million CFU/g of soil and increase by 2-3 times of streptomycetes quantity in blankets. The received results of quantitative structure of the microorganisms which are taking part in processes of nitrogen mineral compounds transformation in the chernozem usual allow to claim that in blankets the number of microorganisms makes 3.89 and 2.33 million CFU/g soil. It should be noted that the best conditions for microflora development are formed on slime with drawing 50 cm of loess-like loam and 30 cm of a fertile layer. The microorganism quantity on the specified monitoring area increases by 3-4 times in the soil of a fertile layer and by 1.3-1.6 times in loess-like loam in comparison with slime without recultivation. Increase of microbiological processes intensity, extremely important, considering strengthening of ecosystems self-regulation functions. It is established high level of microbiological transformation of organic substance, the indicator is made 7.3-11.1 in the edatopes of the recultivated slimes. Increasing indicators of microbiological transformation and mineralization of organic compounds in the technozems confirm restoration of a slimes biogenity at carrying out of recultivation that promotes an intensification of mineralization processes and assimilation by plants nitrogen compounds in the soil. Keywords: microorganisms, nitrogen compounds, technozems, mining recultivation.

  5. INFLUENCE OF TECHNOGENIC LANDSCAPES RECULTIVATION ON FUNCTIONING OF SOIL MICROORGANISMS COMMUNITIES WHICH TAKE PART IN TRANSFORMATION OF NITROGEN COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Syshchykova Oksana Vitalyevna

    2014-04-01

    Full Text Available It is established that mining recultivation of tailings dams slimes promotes restoration of numerical structure of soil microorganisms community which take part in processes of nitrogen compounds transformation. The certificate of that is number restoration of the organotrophic bacteria of a nitrogen cycle to 0.3 million CFU/g of soil and increase by 2-3 times of streptomycetes quantity in blankets. The received results of quantitative structure of the microorganisms which are taking part in processes of nitrogen mineral compounds transformation in the chernozem usual allow to claim that in blankets the number of microorganisms makes 3.89 and 2.33 million CFU/g soil. It should be noted that the best conditions for microflora development are formed on slime with drawing 50 cm of loess-like loam and 30 cm of a fertile layer. The microorganism quantity on the specified monitoring area increases by 3-4 times in the soil of a fertile layer and by 1.3-1.6 times in loess-like loam in comparison with slime without recultivation. Increase of microbiological processes intensity, extremely important, considering strengthening of ecosystems self-regulation functions. It is established high level of microbiological transformation of organic substance, the indicator is made 7.3-11.1 in the edatopes of the recultivated slimes. Increasing indicators of microbiological transformation and mineralization of organic compounds in the technozems confirm restoration of a slimes biogenity at carrying out of recultivation that promotes an intensification of mineralization processes and assimilation by plants nitrogen compounds in the soil.

  6. Comparative analysis of transformed potato microtubers and its non ...

    African Journals Online (AJOL)

    The rapid progress of transgenic biotechnology has significantly promoted the development and production of genetically modified (GM) crops. The aim of this study was to compare some compositional analysis and genetic variation of transformed potato microtubers (Solanum tuberosum L. Desiree) line (which harbor ...

  7. In vivo overexpression of Emi1 promotes chromosome instability and tumorigenesis.

    Science.gov (United States)

    Vaidyanathan, S; Cato, K; Tang, L; Pavey, S; Haass, N K; Gabrielli, B G; Duijf, P H G

    2016-10-13

    Cell cycle genes are often aberrantly expressed in cancer, but how their misexpression drives tumorigenesis mostly remains unclear. From S phase to early mitosis, EMI1 (also known as FBXO5) inhibits the anaphase-promoting complex/cyclosome, which controls cell cycle progression through the sequential degradation of various substrates. By analyzing 7403 human tumor samples, we find that EMI1 overexpression is widespread in solid tumors but not in blood cancers. In solid cancers, EMI1 overexpression is a strong prognostic marker for poor patient outcome. To investigate causality, we generated a transgenic mouse model in which we overexpressed Emi1. Emi1-overexpressing animals develop a wide variety of solid tumors, in particular adenomas and carcinomas with inflammation and lymphocyte infiltration, but not blood cancers. These tumors are significantly larger and more penetrant, abundant, proliferative and metastatic than control tumors. In addition, they are highly aneuploid with tumor cells frequently being in early mitosis and showing mitotic abnormalities, including lagging and incorrectly segregating chromosomes. We further demonstrate in vitro that even though EMI1 overexpression may cause mitotic arrest and cell death, it also promotes chromosome instability (CIN) following delayed chromosome alignment and anaphase onset. In human solid tumors, EMI1 is co-expressed with many markers for CIN and EMI1 overexpression is a stronger marker for CIN than most well-established ones. The fact that Emi1 overexpression promotes CIN and the formation of solid cancers in vivo indicates that Emi1 overexpression actively drives solid tumorigenesis. These novel mechanistic insights have important clinical implications.

  8. Identification of let-7-regulated oncofetal genes

    DEFF Research Database (Denmark)

    Boyerinas, Benjamin; Park, Sun-Mi; Shomron, Noam

    2008-01-01

    -regulated at the end of embryonic development. Let-7 is often down-regulated early during cancer development, suggesting that let-7-regulated oncofetal genes (LOG) may become reexpressed in cancer cells. Using comparative bioinformatics, we have identified 12 conserved LOGs that include HMGA2 and IMP-1/CRD-BP. IMP-1...

  9. SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Waaqo Daddacha

    2017-08-01

    Full Text Available DNA double-strand break (DSB repair by homologous recombination (HR is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.

  10. Application of thermo-electromotive force and electric resistance measuring methods to researching phase transformations in Zr1Nb alloy

    International Nuclear Information System (INIS)

    Klimenko, S.P.; Gritsina, V.M.; Petel'guzov, I.A.; Chernyaeva, T.P.

    2007-01-01

    The paper determines the applicability areas of different methods for the study of structural phase transformations in a Zr+1Nb alloy, which is extensively used in reactor construction; production and fabrication of products from Zr+1Nb is currently developed in Ukraine. Electromotive force and electric resistance were measured to study structural phase transformations of Zr+1Nb fuel rod tubes based on calciumthermal zirconium (Zr1Nb). It was established that changes in electric resistance clearly show the beginning of a massive α → β transition at ∼ 750 degree C and the end of α → β transition at ∼ 950 degree C, whereas measurement of thermo-e.m.f. in the samples subjected to successive 3-hour step annealing in the temperature range from 300 to 700 degree C allows the temperature of monotectoid transformation to be found. For sample Zr1Nb batches the temperature of monotectoid transformation is (620±7) degree C. The measurement results are consistent with the similar studies carried out on Zr+1Nb fuel rod tubes based on electrolytic zirconium (E110), for which the temperature of monotectoid transformation is equal to ∼ 610 degree C

  11. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation.

    Science.gov (United States)

    Kwon, Tackmin

    2016-09-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

  12. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements.

    Science.gov (United States)

    Durrieu-Gaillard, Stéphanie; Dumay-Odelot, Hélène; Boldina, Galina; Tourasse, Nicolas J; Allard, Delphine; André, Fabrice; Macari, Françoise; Choquet, Armelle; Lagarde, Pauline; Drutel, Guillaume; Leste-Lasserre, Thierry; Petitet, Marion; Lesluyes, Tom; Lartigue-Faustin, Lydia; Dupuy, Jean-William; Chibon, Frédéric; Roeder, Robert G; Joubert, Dominique; Vagner, Stéphan; Teichmann, Martin

    2018-01-01

    RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.

  13. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    Science.gov (United States)

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. CacyBP/SIP promotes the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Huihong Zhai

    Full Text Available CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

  15. HNF1 alpha activates the aminopeptidase N promoter in intestinal (Caco-2) cells

    DEFF Research Database (Denmark)

    Olsen, Jørgen; Laustsen, Lotte; Troelsen, J

    1994-01-01

    The importance of HNF1 binding proteins for intestinal aminopeptidase N expression was investigated using the Caco-2 cell-line. Aminopeptidase N promoter activity in Caco-2 cells depends on the HNF1 element (positions -85 to -58) and co-transfection with an HNF1 alpha expression vector demonstrates...... a direct activation of the promoter by HNF1 alpha through this element. Electrophoretic mobility shift assays using nuclear extracts from Caco-2 cells show the presence of high amounts of HNF1 binding proteins irrespective of their state of differentiation....

  16. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Science.gov (United States)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  17. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    Science.gov (United States)

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope. TIM family proteins were recently found to enhance infections by many different viruses, including several members of the Flaviviridae family. However, their importance in HCV infection has not previously been examined experimentally. The TIM family proteins include three members in humans: TIM-1, TIM-3, and TIM-4. The findings derived from our studies demonstrate that TIM-1, but not TIM-3 or TIM-4, promotes HCV infection by functioning as an HCV attachment factor. Knockout of the TIM-1 gene resulted in a remarkable reduction of HCV cell attachment and infection. PS-containing liposomes blocked HCV cell attachment and subsequent HCV infection. HCV particles could also be precipitated with a PS-specific monoclonal antibody. These findings suggest that TIM-1

  18. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    Science.gov (United States)

    Guo, Xiu-Rong

    2016-06-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  19. Milk—A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation

    Science.gov (United States)

    Melnik, Bodo C.

    2015-01-01

    Based on own translational research of the biochemical and hormonal effects of cow’s milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1) essential branched-chain amino acids (BCAAs); (2) glutamine; (3) palmitic acid; and (4) bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER) stress and drives an aimless quasi-program, which promotes aging and age-related diseases. PMID:26225961

  20. Milk—A Nutrient System of Mammalian Evolution Promoting mTORC1-Dependent Translation

    Directory of Open Access Journals (Sweden)

    Bodo C. Melnik

    2015-07-01

    Full Text Available Based on own translational research of the biochemical and hormonal effects of cow’s milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1, the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1 essential branched-chain amino acids (BCAAs; (2 glutamine; (3 palmitic acid; and (4 bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER stress and drives an aimless quasi-program, which promotes aging and age-related diseases.

  1. Promoter hypermethylation of CDH1, FHIT, MTAP and PLAGL1 in gastric adenocarcinoma in individuals from Northern Brazil

    Science.gov (United States)

    Leal, Mariana Ferreira; Lima, Eleonidas Moura; Silva, Patrícia Natália Oliveira; Assumpção, Paulo Pimentel; Calcagno, Danielle Queiroz; Payão, Spencer Luiz Marques; Burbano, Rommel Rodríguez; Smith, Marília de Arruda Cardoso

    2007-01-01

    AIM: To evaluate the methylation status of CDH1, FHIT, MTAP and PLAGL1 promoters and the association of these findings with clinico-pathological characteristics. METHODS: Methylation-specific PCR (MSP) assay was performed in 13 nonneoplastic gastric adenocarcinoma, 30 intestinal-type gastric adenocarcinoma and 35 diffuse-type gastric adenocarcinoma samples from individuals in Northern Brazil. Statistical analyses were performed using the chi-square or Fisher's exact test to assess associations between methylation status and clinico-pathological characteristics. RESULTS: Hypermethylation frequencies of CDH1, FHIT, MTAP and PLAGL1 promoter were 98.7%, 53.9%, 23.1% and 29.5%, respectively. Hypermethylation of three or four genes revealed a significant association with diffuse-type gastric cancer compared with nonneoplastic cancer. A higher hypermethylation frequency was significantly associated with H pylori infection in gastric cancers, especially with diffuse-type. Cancer samples without lymph node metastasis showed a higher FHIT hypermethylation frequency. MTAP hypermethylation was associated with H pylori in gastric cancer samples, as well as with diffuse-type compared with intestinal-type. In diffuse-type, MTAP hypermethylation was associated with female gender. CONCLUSION: Our findings show differential gene methylation in tumoral tissue, which allows us to conclude that hypermethylation is associated with gastric carcinogenesis. MTAP promoter hypermethylation can be characterized as a marker of diffuse-type gastric cancer, especially in women and may help in diagnosis, prognosis and therapies. The H pylori infectious agent was present in 44.9% of the samples. This infection may be correlated with the carcinogenic process through the gene promoter hypermethylation, especially the MTAP promoter in diffuse-type. A higher H pylori infection in diffuse-type may be due to greater genetic predisposition. PMID:17552003

  2. Immunohistochemical and Proteomic Evaluation of Nuclear Ubiquitous Casein and Cyclin-Dependent Kinases Substrate in Invasive Ductal Carcinoma of the Breast

    Directory of Open Access Journals (Sweden)

    Piotr Ziółkowski

    2009-01-01

    Full Text Available Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS is 27 kDa chromosomal protein of unknown function. Its amino acid composition as well as structure of its DNA binding domain resembles that of high-mobility group A, HMGA proteins. HMGA proteins are associated with various malignancies. Since changes in expression of HMGA are considered as marker of tumor progression, it is possible that similar changes in expression of NUCKS could be useful tool in diagnosis and prognosis of breast cancer. For identification and analysis of NUCKS we used proteomic and histochemical methods. Analysis of patient-matched samples of normal and breast cancer by mass spectrometry revealed elevated levels of NUCKS in protein extracts from ductal breast cancers. We elicited specific antibodies against NUCKS and used them for immunohistochemistry in invasive ductal carcinoma of breast. We found high expression of NUCKS in 84.3% of cancer cells. We suggest that such overexpression of NUCKS can play significant role in breast cancer biology.

  3. From LL-regular to LL(1) grammars: Transformations, covers and parsing

    NARCIS (Netherlands)

    Nijholt, Antinus

    1982-01-01

    In this paper it is shown that it is possible to transform any LL-regular grammar G into an LL(1) grammar G' in such a way that parsing G' is as good as parsing G. That is, a parse of a sentence of grammar G can be obtained with a simple string homomorphism from the parse of a corresponding sentence

  4. How Does Environmental Regulation Affect Industrial Transformation? A Study Based on the Methodology of Policy Simulation

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available The difference of factor input structure determines different response to environmental regulation. This paper constructs a theoretical model including environmental regulation, factor input structure, and industrial transformation and conducts a policy simulation based on the difference of influencing mechanism of environmental regulation considering industrial heterogeneity. The findings show that the impact of environmental regulation on industrial transformation presents comparison of distortion effect of resource allocation and technology effect. Environmental regulation will promote industrial transformation when technology effect of environmental regulation is stronger than distortion effect of resource allocation. Particularly, command-control environmental regulation has a significant incentive effect and spillover effect of technological innovation on cleaning industries, but these effects do not exist in pollution-intensive industries. Command-control environmental regulation promotes industrial transformation. The result of simulation showed that environmental regulation of market incentives is similar to that of command-control.

  5. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila

    Science.gov (United States)

    Hoopfer, Eric D; Jung, Yonil; Inagaki, Hidehiko K; Rubin, Gerald M; Anderson, David J

    2015-01-01

    How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner. DOI: http://dx.doi.org/10.7554/eLife.11346.001 PMID:26714106

  6. Study of transformation behavior in a Ti-4.4 Ta-1.9 Nb alloy

    International Nuclear Information System (INIS)

    Mythili, R.; Paul, V. Thomas; Saroja, S.; Vijayalakshmi, M.; Raghunathan, V.S.

    2005-01-01

    An alloy of composition Ti-4.4 wt.% Ta-1.9 wt.% Nb is being developed as a structural material for corrosion applications, as titanium and its alloys possess excellent corrosion resistance in many oxidizing media. The primary physical metallurgy database for the Ti-4.4 wt.% Ta-1.9 wt.% Nb alloy is being presented for the first time. Determination of the β transus, M s temperature and classification of the alloy have been carried out, employing a variety of microscopy techniques, X-ray diffraction (XRD), micro-hardness and differential scanning calorimetry (DSC). The β transition temperature or β transus determined using different experimental techniques was found to agree very well with evaluations based on empirical calculations. Based on chemistry and observed room temperature microstructure, the alloy has been classified as an α + β titanium alloy. The high temperature β transforms to either α' or α + β by a martensitic or Widmanstatten transformation. The mechanisms of transformation of β under different conditions and characteristics of different types of α have been studied and discussed in this paper

  7. Managerial strategies to reorient hospitals towards health promotion: lessons from organisational theory.

    Science.gov (United States)

    Röthlin, Florian

    2013-01-01

    Reorienting health services towards health promotion is one of the major health promotion strategies stipulated by the Ottawa Charter). Important contradictions, tensions and barriers to health promotion implementation associated with organisational structures have, thus far, been underexposed in the hospital health promotion discourse. This paper aims at identifying risks and the chances for hospital management to strategically and sustainably reorient their hospitals towards health promotion. The paper combines theories and findings from organisational science and management studies as well as from capacity development in the form of a narrative literature review. The aim is to focus on the conditions hospitals, as organisational systems with a highly professionalised workforce, provide for a strategically managed reorientation towards health promotion. Models and principles helping managers to navigate the difficulties and complexities of health promotion reorientation will be suggested. Hospital managers have to deal with genuine obstacles in the complexity and structural formation of hospital organisations. Against this background, continuous management support, a transformative leadership style, participative strategic management and expert governance can be considered important organisational capacities for the reorientation towards a new concept such as health promotion. This paper discusses managerial strategies, effective structural transformations and important organisational capacities that can contribute to a sustainable reorientation of hospitals towards health promotion. It supports hospital managers in exploring their chances of facilitating and effectively supporting a sustainable health promotion reorientation of their hospitals. The paper provides an innovative approach where the focus is on enhanced possibilities for hospital managers to strategically manage the reorientation towards health promotion.

  8. A novel mechanism of skin tumor promotion involving interferon-gamma (IFNγ)/signal transducer and activator of transcription-1 (Stat1) signaling.

    Science.gov (United States)

    Bozeman, Ronald; Abel, Erika L; Macias, Everardo; Cheng, Tianyi; Beltran, Linda; DiGiovanni, John

    2015-08-01

    The current study was designed to explore the role of signal transducer and activator of transcription 1 (Stat1) during tumor promotion using the mouse skin multistage carcinogenesis model. Topical treatment with both 12-O-tetradecanoylphorbol-13-acetate (TPA) and 3-methyl-1,8-dihydroxy-9-anthrone (chrysarobin or CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Y701) and serine (S727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. CHRY treatment also led to upregulation of interferon regulatory factor 1 (IRF-1) mRNA and protein, which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNγ) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNγ signaling. Stat1 deficient (Stat1(-/-) ) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1(-/-) mice and wild-type littermates with TPA as the promoter. Maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNγ signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1, IRF-1 and uStat1. © 2014 Wiley Periodicals, Inc.

  9. Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors

    International Nuclear Information System (INIS)

    Voisin, Laure; Basik, Mark; Meloche, Sylvain; Julien, Catherine; Duhamel, Stéphanie; Gopalbhai, Kailesh; Claveau, Isabelle; Saba-El-Leil, Marc K; Rodrigue-Gervais, Ian Gaël; Gaboury, Louis; Lamarre, Daniel

    2008-01-01

    The Ras-dependent ERK1/2 MAP kinase signaling pathway plays a central role in cell proliferation control and is frequently activated in human colorectal cancer. Small-molecule inhibitors of MEK1/MEK2 are therefore viewed as attractive drug candidates for the targeted therapy of this malignancy. However, the exact contribution of MEK1 and MEK2 to the pathogenesis of colorectal cancer remains to be established. Wild type and constitutively active forms of MEK1 and MEK2 were ectopically expressed by retroviral gene transfer in the normal intestinal epithelial cell line IEC-6. We studied the impact of MEK1 and MEK2 activation on cellular morphology, cell proliferation, survival, migration, invasiveness, and tumorigenesis in mice. RNA interference was used to test the requirement for MEK1 and MEK2 function in maintaining the proliferation of human colorectal cancer cells. We found that expression of activated MEK1 or MEK2 is sufficient to morphologically transform intestinal epithelial cells, dysregulate cell proliferation and induce the formation of high-grade adenocarcinomas after orthotopic transplantation in mice. A large proportion of these intestinal tumors metastasize to the liver and lung. Mechanistically, activation of MEK1 or MEK2 up-regulates the expression of matrix metalloproteinases, promotes invasiveness and protects cells from undergoing anoikis. Importantly, we show that silencing of MEK2 expression completely suppresses the proliferation of human colon carcinoma cell lines, whereas inactivation of MEK1 has a much weaker effect. MEK1 and MEK2 isoforms have similar transforming properties and are able to induce the formation of metastatic intestinal tumors in mice. Our results suggest that MEK2 plays a more important role than MEK1 in sustaining the proliferation of human colorectal cancer cells

  10. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  11. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars.

    Science.gov (United States)

    Shri, Manju; Rai, Arti; Verma, Pankaj Kumar; Misra, Prashant; Dubey, Sonali; Kumar, Smita; Verma, Sikha; Gautam, Neelam; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2013-04-01

    Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of L-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm = 0.5-0.8) promoted the highest frequency of transformation (83.04 %) in medium containing L-cysteine (400 mg l(-1)). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of L-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.

  12. 1 Rethinking Transformation and Its Knowledge(s): The Case of ...

    African Journals Online (AJOL)

    Lis Lange

    'transformation' as a concept has lost its intellectual, political and moral content through becoming .... strategies to the transformation of higher education, the schools system, the judiciary, the media, etc. .... staff, students, management and leadership at universities. Finally ..... Lack of hospitality and a sense of being Other is.

  13. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species.

    Science.gov (United States)

    Dai, Ziyu; Deng, Shuang; Culley, David E; Bruno, Kenneth S; Magnuson, Jon K

    2017-08-01

    Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces

  14. Chaos-assisted broadband momentum transformation in optical microresonators.

    Science.gov (United States)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-20

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Studi Pengaruh Pemasangan NGR 40 Ohm pada Uprating Transformator 2 GI Gianyar Terhadap Gangguan Hubung Singkat 1 Phasa Tanah

    Directory of Open Access Journals (Sweden)

    Arya Surya Darma

    2017-08-01

    Full Text Available Along with the development of ever-increasing burden on the GI Gianyar then the transformer unit 2 with a capacity of 30 MVA will be uprating with a capacity of 60 MVA transformer. To maintain the continuity and reliability of the flow of electrical power to the consumer , NGR (Neutral Grounding Resistance and relay SBEF is used as the safety equipment of the short circuit 1 phase to ground was not in to the neutral point of the transformer. Uprating of transformers that have been done changes on 1 phase fault current to ground when using a direct earthing systems with a value to become 1838.21 A. While the value of the short-circuit current 1 phase to ground after pairing NGR 40 Ohm value is fixed at 288.675 A, so that the current setting and time relay SBEF fixed at 90 A and 7.067 seconds. The analysis result from the effect of installation NGR and rele SBEF on the transformer 60 MVA against short circuit 1 phase to ground has the ability good protection for the value of the fault current is able to be reduced from 1838,21 A into 288.675 A after pairing NGR 40 Ohm and time is needed SBEF to handle distractions 7.067 seconds. Intisari- Seiring dengan perkembangan beban yang terus meningkat di GI Gianyar maka transformator unit 2 berkapasitas 30 MVA akan di lakukan uprating (penggantian dengan transformator berkapasitas 60 MVA. Untuk menjaga kontinyuitas dan keandalan aliran daya listrik sampai ke konsumen (beban, NGR (Neutral Grounding Resistance dan rele SBEF dipergunakan sebagai peralatan pengaman dari gangguan hubung singkat phasa tanah agar arus gangguan 1 phasa ke tanah tidak sampai mengalir ke titik netral transformator. Dari uprating transformator yang sudah di lakukan terjadi perubahan pada arus gangguan 1 phasa ke tanah jika menggunakan sistem pentanahan langsung (solid grounding menjadi 1838,21 A. Sedangkan nilai dari arus hubung singkat 1 phasa ke tanah setelah dipasangkan NGR 40 Ohm nilainya tetap sebesar 288,675 A

  16. 1,3,5-Triethylbenzene Transformation Reactions Compared to Its Transalkylation Reaction with Ethylbenzene

    KAUST Repository

    Akhtar, M. Naseem; Sulaiman, Al Khattaf

    2009-01-01

    The transalkylation of 1,3,5-triethylbenzene (1,3,5-TEB) with ethylbenzene (EB) has been studied over USYtype catalysts using a riser simulator that mimics the operation of a fluidized-bed reactor. The reaction mixture EB and 1,3,5-TEB was used at a molar ratio of 1:1, which is equivalent to 40:60 wt % of EB/1,3,5-TEB, respectively. The reaction temperature was varied from 350 to 500 °C with a time on stream ranging from 3-15 s. The effect of reaction conditions on 1,3,5-TEB conversion, DEB selectivity, and isomerization of 1,3,5-TEB is reported. The transalkylation of 1,3,5-TEB with EB has been compared to the transformation reaction of pure 1,3,5-TEB and EB. The experimental results have revealed that reactivity of 1,3,5-TEB and selectivity of DEB is increased during the transalkylation reaction (EB + 1,3,5-TEB) as compared to the transformation reaction of pure EB or 1,3,5-TEB. The 1,3,5-TEB undergoes isomerization and a cracking reaction to produce DEB and EB but does not undergo any appreciable disproportionation reaction. The isomerization of 1,3,5-TEB is more active at low temperatures, while cracking is more active at high temperatures. © 2009 American Chemical Society.

  17. 1,3,5-Triethylbenzene Transformation Reactions Compared to Its Transalkylation Reaction with Ethylbenzene

    KAUST Repository

    Akhtar, M. Naseem

    2009-08-20

    The transalkylation of 1,3,5-triethylbenzene (1,3,5-TEB) with ethylbenzene (EB) has been studied over USYtype catalysts using a riser simulator that mimics the operation of a fluidized-bed reactor. The reaction mixture EB and 1,3,5-TEB was used at a molar ratio of 1:1, which is equivalent to 40:60 wt % of EB/1,3,5-TEB, respectively. The reaction temperature was varied from 350 to 500 °C with a time on stream ranging from 3-15 s. The effect of reaction conditions on 1,3,5-TEB conversion, DEB selectivity, and isomerization of 1,3,5-TEB is reported. The transalkylation of 1,3,5-TEB with EB has been compared to the transformation reaction of pure 1,3,5-TEB and EB. The experimental results have revealed that reactivity of 1,3,5-TEB and selectivity of DEB is increased during the transalkylation reaction (EB + 1,3,5-TEB) as compared to the transformation reaction of pure EB or 1,3,5-TEB. The 1,3,5-TEB undergoes isomerization and a cracking reaction to produce DEB and EB but does not undergo any appreciable disproportionation reaction. The isomerization of 1,3,5-TEB is more active at low temperatures, while cracking is more active at high temperatures. © 2009 American Chemical Society.

  18. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Huang, S.Q.; Liao, Q.J.; Wang, X.W.; Xin, D.Q.; Chen, S.X.; Wu, Q.J.; Ye, G.

    2012-01-01

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy

  19. Lynch syndrome-associated endometrial carcinoma with MLH1 germline mutation and MLH1 promoter hypermethylation: a case report and literature review.

    Science.gov (United States)

    Yokoyama, Takanori; Takehara, Kazuhiro; Sugimoto, Nao; Kaneko, Keika; Fujimoto, Etsuko; Okazawa-Sakai, Mika; Okame, Shinichi; Shiroyama, Yuko; Yokoyama, Takashi; Teramoto, Norihiro; Ohsumi, Shozo; Saito, Shinya; Imai, Kazuho; Sugano, Kokichi

    2018-05-21

    Lynch syndrome is an autosomal dominant inherited disease caused by germline mutations in mismatch repair genes. Analysis for microsatellite instability (MSI) and immunohistochemistry (IHC) of protein expressions of disease-associated genes is used to screen for Lynch syndrome in endometrial cancer patients. When losses of both MLH1 and PMS2 proteins are observed by IHC, MLH1 promoter methylation analysis is conducted to distinguish Lynch syndrome-associated endometrial cancer from sporadic cancer. Here we report a woman who developed endometrial cancer at the age of 49 years. She had a family history of colorectal cancer (first-degree relative aged 52 years) and stomach cancer (second-degree relative with the age of onset unknown). No other family history was present, and she failed to meet the Amsterdam II criteria for the diagnosis of Lynch syndrome. Losses of MLH1 and PMS2, but not MSH2 and MSH6, proteins were observed by IHC in endometrial cancer tissues. Because MLH1 promoter hypermethylation was detected in endometrial cancer tissue samples, the epigenetic silencing of MLH1 was suspected as the cause of the protein loss. However, because of the early onset of endometrial cancer and the positive family history, a diagnosis of Lynch syndrome was also suspected. Therefore, we provided her with genetic counseling. After obtaining her consent, MLH1 promoter methylation testing and genetic testing of peripheral blood were performed. MLH1 promoter methylation was not observed in peripheral blood. However, genetic testing revealed a large deletion of exon 5 in MLH1; thus, we diagnosed the presence of Lynch syndrome. Both MLH1 germline mutation and MLH1 promoter hypermethylation may be observed in endometrial cancer. Therefore, even if MLH1 promoter hypermethylation is detected, a diagnosis of Lynch syndrome cannot be excluded.

  20. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene