WorldWideScience

Sample records for hmg co-a reductase

  1. Inhibition of HMG-CoA reductase induces the UPR pathway in C. elegans

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Hansen, Nadia Jin Storm; Pilon, Marc

    -requiring enzyme-1 (IRE-1), and activating transcription factor-6 (ATF-6). Using a transgenic GFP reporter strain of the model organism C. elegans, we have recently identified that inhibition of the enzyme HMG-CoA reductase (HMG-CoAR) with Fluvastatin and knock down of HMG-CoAR using RNA interference (RNAi) both...... including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) which are necessary for posttranslational prenylation of several small G proteins. C. elegans are cholesterol auxotrophs, which enable us to investigate the isoprenoid branch and its role in UPR induction. We found...

  2. Pharmaco-economic assessment of the HMG- CoA reductase ...

    African Journals Online (AJOL)

    by a decrease in the incidence of CHD morbidity and mortality.'-3. In the pharmacological treatment of primary hypercholesterolaemia, the HMG-CoA reductase inhibitors are emerging as the preferred pharmacological therapy! The two agents in this class currently available in South Africa are simvastatin and pravastatin.

  3. HMG-CoA Reductase Inhibitors from Monascus-Fermented Rice

    Directory of Open Access Journals (Sweden)

    Xuemei Li

    2013-01-01

    Full Text Available Seven compounds were isolated from Monascus-fermented rice by column chromatography with silica gel and semiprep HPLC. Their structures were elucidated by extensive spectroscopic methods. All compounds displayed HMG-CoA reductase inhibitory potential, among them compound 7 exhibited strong inhibition with IC50 value comparable with lovastatin. In this study, two compounds (1 and 2 were obtained from natural source for the first time.

  4. Regulation of schistosome egg production by HMG CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    VandeWaa, E.A.; Bennett, J.L.

    1986-03-05

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.

  5. Major Peptides from Amaranth (Amaranthus cruentus Protein Inhibit HMG-CoA Reductase Activity

    Directory of Open Access Journals (Sweden)

    Rosana Aparecida Manólio Soares

    2015-02-01

    Full Text Available The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase, a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC, and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect.

  6. Identification of HMG-CoA Reductase Inhibitor Active Compound in Medicinal Forest Plants

    Directory of Open Access Journals (Sweden)

    Shelly Rahmania

    2017-08-01

    Full Text Available Cardiovascular disease is a leading cause of death worldwide, hypercholesterolemia is one of the causes. Three medicinal forest plants are potential natural resources to be developed as cholesterol-reducing herbal product, but scientific informations on their mechanism is still limited. The objective of this research is to explore the potency of the leaf of Jati Belanda (Guazuma ulmifolia, Jabon (Antocephalus macrophyllus, and Mindi (Melia azedarach as inhibitor of HMG-CoA reductase (HMGR, a key enzyme in the regulation of cholesterol biosynthesis. Samples were macerated in ethanol 96% and the filtrate was partitioned using n-hexane and chloroform to obtain the ethanolic flavonoid extract. The effect of each extracts on the HMG-CoA reductase activity were analyzed using HMGR assay kit. At concentration of 10 ppm the G.ulmifolia ethanolic extract showed the highest inhibitory activity as well as pravastatin control inhibitor.  The phenolic content of the ethanolic extracts of G.ulmifolia, A.macrophyllus, and M.azedarach were: 11.00, 34.83, and 13.67 mg gallic acid AE/g dried leaves, respectively. The flavonoid content of the ethanolic extracts of G.ulmifolia, A.macrophyllus, and M.azedarach were: 0.22, 0.64, and 0.78 mg QE/g dried leaves, respectively. Interestingly, G.ulmifolia extract the lowest concentration of phenolic and flavonoid content. HPLC analysis showed that all samples contain quercetin at similiar small concentrations (6.7%, 6.6%, and 7.0% for G.ulmifolia, A.macrophyllus, and M.azedarach, respectively. This indicating other active compounds may play some roles in this inhibitory action on HMG-CoA reductase activity. Further identification using LC-MS/MS showed that G.ulmifolia flavonoid extract contained an unidetified coumpound with molecural weight of 380.0723 Da.  

  7. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Baskaran G

    2015-01-01

    Full Text Available Gunasekaran Baskaran,1 Shamala Salvamani,1 Siti Aqlima Ahmad,1 Noor Azmi Shaharuddin,1 Parveen Devi Pattiram,2 Mohd Yunus Shukor1 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, 2Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia Abstract: The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl, 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and a-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases. Keywords: HMG-CoA reductase, Basella alba, phytochemical, GC-MS/MS, RP-HPLC, hypercholesterolemia

  8. HMG-CoA reductase, cholesterol 7alpha-hydroxylase, LCAT, ACAT, LDL receptor, and SRB-1 in hereditary analbuminemia.

    Science.gov (United States)

    Liang, Kaihui; Vaziri, Nosratola D

    2003-07-01

    Hereditary analbuminemia is associated with hypercholesterolemia, which has been shown to be primarily caused by increased extrahepatic production of cholesterol. Nagase rats with hereditary analbuminemia (NAR) have been used as a model to dissect the effect of primary hypoalbuminemia from that caused by proteinuria in nephrotic syndrome. The present study was undertaken to explore the effect of hereditary analbuminemia on protein expression of the key factors involved in cholesterol metabolism. Hepatic tissue protein abundance of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, cholesterol 7alpha-hydroxylase (a rate-limiting enzyme in cholesterol catabolism), low density lipoprotein (LDL) receptor, high density lipoprotein (HDL) receptor (SRB-1), acyl-coA cholesterol acyltransferase-2 (ACAT-2), and plasma concentration of lecithin cholesterol acyltransferase (LCAT), as well as HMG-CoA reductase, ACAT, and LCAT activities were determined in fasting male NAR and Sprague-Dawley control rats. The NAR group exhibited significant up-regulation of HMG-CoA reductase protein abundance but normal HMG-CoA reductase enzymatic activity. This was coupled with a significant up-regulation of cholesterol 7alpha-hydroxylase and a mild up-regulation of ACAT protein abundance and activity. However, hepatic LDL receptor and HDL receptor and plasma LCAT protein concentration and activity were normal in NAR. Hypercholesterolemia in NAR is associated with elevated hepatic HMG-CoA reductase protein abundance, but normal HMG-CoA reductase activity. These findings point to post-translational regulation of this enzyme and favor an extrahepatic origin of hypercholesterolemia in NAR. The observed up-regulation of cholesterol 7alpha-hydroxylase represents a compensatory response to the associated hypercholesterolemia. Unlike nephrotic syndrome, which causes severe LDL receptor, HDL receptor, and LCAT deficiencies, hereditary analbuminemia does not affect these proteins.

  9. The Cholesterol-Lowering Effect of Alisol Acetates Based on HMG-CoA Reductase and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2016-01-01

    Full Text Available This study measured the impact of alisol B 23-acetate and alisol A 24-acetate, the main active ingredients of the traditional Chinese medicine Alismatis rhizoma, on total cholesterol (TC, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, and low density lipoprotein-cholesterol (LDL-C levels of hyperlipidemic mice. The binding of alisol B 23-acetate and alisol A 24-acetate to the key enzyme involved in the metabolism of TC, 3-hydroxy-3-methylglutary-coenzyme A (HMG-CoA reductase, was studied using the reagent kit method and the western blotting technique combined with a molecular simulation technique. According to the results, alisol acetates significantly lower the TC, TG, and LDL-C concentrations of hyperlipidemic mice, while raising HDL-C concentrations. Alisol acetates lower HMG-CoA reductase activity in a dose-dependent fashion, both in vivo and in vitro. Neither of these alisol acetates significantly lower the protein expression of HMG-CoA. This suggests that alisol acetates lower the TC level via inhibiting the activity of HMG-CoA reductase by its prototype drug, which may exhibit an inhibition effect via directly and competitively binding to HMG-CoA. The side chain of the alisol acetate was the steering group via molecular simulation.

  10. The potential behavioral and economic impacts of widespread HMG-CoA reductase inhibitor (statin) use.

    Science.gov (United States)

    Gendle, Mathew H

    2016-12-01

    Dyslipidemia is a common pathology throughout the industrialized world, and HMG-CoA reductase inhibitors (statins) are often administered to treat elevated lipid levels. Substantial concern has been raised regarding the aggressive clinical lowering of cholesterol, particularly in light of a growing body of research linking low circulating lipid levels with negative behavioral outcomes in both human samples and non-human primate models. In 2009, Goldstein and colleagues tentatively speculated that the greed, impulsiveness, and lack of foresight that lead to the worldwide economic collapse in 2007-2008 could have been caused (in part) by depressed population cholesterol levels resulting from the widespread use of statins by workers in the financial services industry. This paper reviews the literature that links low circulating lipid levels with neurobehavioral dysfunction, develops Goldstein and colleagues' initial speculation into a formal hypothesis, and proposes several specific studies that could rigorously empirically evaluate this hypothesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from Ficus virens Ait.

    Science.gov (United States)

    Iqbal, Danish; Khan, M Salman; Khan, Mohd Sajid; Ahmad, Saheem; Hussain, Md Sarfaraj; Ali, Mohd

    2015-03-04

    The current perspective for the search of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor has been shifted towards a natural agent also having antioxidant property. Thus, this study was intended to isolate and identify the bioactive compounds from methanolic extract of Ficus virens bark (FVBM) and to evaluate their antioxidant, HMG-CoA reductase inhibitory and hypolipidemic activity. Bioactivity guided fractionation and isolation of bioactive compound from FVBM extract has been done to isolate and characterize the potent HMG-CoA reductase (HMGR) inhibitor with antioxidant activity by using repeated extensive column chromatography followed by spectroscopic methods, including Infrared (IR), 1H & 13C nuclear magnetic resonance (NMR) and Mass spectrum analysis. The in vitro HMGR inhibition and enzyme kinetic assay was determined using HMG-CoA as substrate. In addition, antioxidant activity of the new isolated compound, was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and FRAP value. In-silico molecular informatics of HMGR enzyme type inhibition and pharmacokinetics data of the new compound was further evaluated through molecular docking and ADME-T studies. Further, in-vivo hypolipidemic property of FVBM extract and newly isolated compound was also analyzed in triton-WR 1339 induced rats. Thereby, we report the discovery of n-Octadecanyl-O-α-D-glucopyranosyl(6'→1″)-O-α-D-glucopyranoside (F18) as a novel HMG-CoA reductase inhibitor with strong antioxidant property. This inhibitor exhibited not only higher free radical scavenging activity but also marked HMG-CoA reductase inhibitory activity with an IC50 value of 84±2.8 ng/ml. This inhibitory activity concurred with kinetic study that showed inhibition constant (K i) of 84 ng/ml via an uncompetitive mode of inhibition. The inhibition was also corroborated by molecular docking analysis and in silico pharmacokinetics data. The in vivo study revealed that

  12. Robotic inhibition assay for determination of HMG-CoA reductase inhibitors in human plasma.

    Science.gov (United States)

    Fang, Wei; Liu, Lida; Hsieh, John Y-K; Zhao, Jamie; Matuszewski, Bogdan K; Rogers, John D; Dobrinska, Michael R

    2002-01-01

    The cholesterol-lowering drug simvastatin (SIMV, Zocor reduced heart attacks by 42% in patients who had high cholesterol levels and suffered from heart disease. Upon oral administration, SIMV is quickly hydrolyzed to its beta-hydroxyacid and other acid metabolites, which are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase. A Tecan-based enzyme inhibition assay has been developed to improve the existing Zymark-based assay for the determination of both active and total concentrations of HMG-CoA reductase inhibitors in human plasma. A Tecan Genesis 200 robotic workstation equipped with eight probes and customized hardware was utilized to achieve higher sample throughput and improve assay reproducibility and mechanical stability. The developed enzyme inhibition assay was validated over two concentration ranges of 0.4-20 ng equivalent/mL, and 2-50 ng equivalent/mL. Intra- and interday precision data (coefficient of variation (CV)) for both concentration ranges were less than 9%, with an accuracy of 93-107%. The interday precision for the determination of quality control (QC) samples was less than 2% and 8%, respectively. The respective interday QC accuracy values were 93-103% and 97-104%. Good linearity across the two concentration ranges was observed, with acceptable reproducibility. This improved enzyme inhibition assay has been utilized to analyze human plasma samples from several clinical studies. Copyright 2002 Wiley-Liss, Inc.

  13. Malignant fibrous histiocytoma of visceral organs: clinicopathologic features and diagnostic value of ezrin and HMG-CoA reductase

    Science.gov (United States)

    Gu, Jinyang; Zhang, Shu; Wu, Xingyu; Shi, Jiong; Zhang, Bin; Zhang, Xiaoqi; Yang, Jun; Obulkasim, Halmurat; Duan, Fei; Deng, Chao; He, Jing; Zou, Xiaoping; Ding, Yitao

    2015-01-01

    Malignant fibrous histiocytoma (MFH) of the breast and visceral organs is extremely rare. There is an incomplete understanding of the clinical pathology of the primary MFH originating from the breast and visceral organs, especially in comparison with other soft tissue sarcomas. As a consequence we searched and analyzed the clinical and pathological records of all the nine patients with diagnosed breast and visceral MFH in our hospital. Immunohistochemical staining was performed for ezrin and HMG-CoA reductase in these MFH cases and relevant mesenchymal sarcomas. The 9 MFH cases presented with nonspecific symptoms and imaging manifestations. 6 cases were classified as storiform-pleomorphic MFH, 2 cases as inflammatory MFH, and the remaining 1 case as giant cell MFH. The results showed that ezrin expression, as well as HMG-CoA reductase expression, was significantly stronger in MFH cases than other non-MFH sarcomas. Poor prognosis seemed to be associated with younger age. Certain characteristics and clinicopathologic features can help us making the diagnosis of MFH. In conclusion, our study provided the potential value of ezrin and HMG-CoA reductase for diagnosis and differential diagnosis of MFH located in the breast and visceral organs. More accurate prognostic information of this rare disease needed to be further investigated. PMID:26045796

  14. A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis.

    Science.gov (United States)

    Alaarg, Amr; Senders, Max L; Varela-Moreira, Aida; Pérez-Medina, Carlos; Zhao, Yiming; Tang, Jun; Fay, Francois; Reiner, Thomas; Fayad, Zahi A; Hennink, Wim E; Metselaar, Josbert M; Mulder, Willem J M; Storm, Gert

    2017-09-28

    Atherosclerosis is a leading cause of worldwide morbidity and mortality whose management could benefit from novel targeted therapeutics. Nanoparticles are emerging as targeted drug delivery systems in chronic inflammatory disorders. To optimally exploit nanomedicines, understanding their biological behavior is crucial for further development of clinically relevant and efficacious nanotherapeutics intended to reduce plaque inflammation. Here, three clinically relevant nanomedicines, i.e., high-density lipoprotein ([S]-HDL), polymeric micelles ([S]-PM), and liposomes ([S]-LIP), that are loaded with the HMG-CoA reductase inhibitor simvastatin [S], were evaluated in the apolipoprotein E-deficient (Apoe(-/-)) mouse model of atherosclerosis. We systematically employed quantitative techniques, including in vivo positron emission tomography imaging, gamma counting, and flow cytometry to evaluate the biodistribution, nanomedicines' uptake by plaque-associated macrophages/monocytes, and their efficacy to reduce macrophage burden in atherosclerotic plaques. The three formulations demonstrated distinct biological behavior in Apoe(-/-) mice. While [S]-PM and [S]-LIP possessed longer circulation half-lives, the three platforms accumulated to similar levels in atherosclerotic plaques. Moreover, [S]-HDL and [S]-PM showed higher uptake by plaque macrophages in comparison to [S]-LIP, while [S]-PM demonstrated the highest uptake by Ly6C(high) monocytes. Among the three formulations, [S]-PM displayed the highest efficacy in reducing macrophage burden in advanced atherosclerotic plaques. In conclusion, our data demonstrate that [S]-PM is a promising targeted drug delivery system, which can be advanced for the treatment of atherosclerosis and other inflammatory disorders in the clinical settings. Our results also emphasize the importance of a thorough understanding of nanomedicines' biological performance, ranging from the whole body to the target cells, as well drug retention in the

  15. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Shamala Salvamani

    2016-01-01

    Full Text Available Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH, nitric oxide (NO, and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.

  17. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    Directory of Open Access Journals (Sweden)

    Lin SH

    2015-06-01

    Full Text Available Shih-Hung Lin,1 Kao-Jean Huang,1,2 Ching-Feng Weng,1 David Shiuan1 1Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, Republic of China; 2Development Center of Biotechnology, Taipei, Taiwan, Republic of China Abstract: Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR. The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. Keywords: HMG-CoA reductase, virtual screening, curcumin, salvianolic acid C

  18. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.

    Science.gov (United States)

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.

  19. Development of predictive quantitative retention-activity relationship models of HMG-CoA reductase inhibitors by biopartitioning micellar chromatography.

    Science.gov (United States)

    Wang, Shu-Rong; Chen, Yu; Wu, Li-Ping; Miao, Wen-Juan; Xiong, Mei-Jin; Chen, Cong; Zhong, Zhi-Rong; Ye, Li-Ming

    2008-01-22

    Biological fluid cell membranes are barriers for the uptake of many kinds of drugs and their metabolites, along with passive transport across membranes and bioaccumulation. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography that uses micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to simulate the drug's passive absorption and the transport in biological systems. The use of micellar aqueous solutions of Brij35 as mobile phases in reversed-phase liquid chromatography has proven to be valid to predict the biological activities of barbiturates, benzodiazepines, catecholamines, local anesthetics, non-steriodal anti-inflammatory drugs and tricyclic antidepressants. In this study, the relationships between the capacity factor in BMC and some pharmacokinetic and pharmacodynamic parameters of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors are studied. Predictive quantitative retention-activity relationship (QRAR) models describing some of the biological activities and pharmacokinetic properties of HMG-CoA reductase inhibitors are obtained. The results indicate that QRAR model may be a useful tool during the drug discovery process.

  20. Benefit-risk assessment of HMG-CoA reductase inhibitors (statins): a discrete choice experiment.

    Science.gov (United States)

    Wanishayakorn, Tanatape; Sornlertlumvanich, Korn; Ngorsuraches, Surachat

    2016-02-25

    To conduct the benefit-risk assessment of 3-hydroxy-3-methyl-glutaryl (HMG) coenzyme A reductase inhibitors (statins) using a discrete choice experiment, based on 3 major stakeholders' perspectives including patients, experts and policymakers in Thailand. A discrete choice experiment questionnaire survey in three stakeholders' perspectives. Public hospitals in Thailand. A total of 353 policymakers, experts and patients. Stakeholders' preferences for assessment criteria (stroke reduction, myocardial infarction reduction, myalgia and hepatotoxicity). Statins' ranking and maximum acceptable risk in all perspectives were also calculated. For any perspective, the most and least important criteria were the risk of hepatotoxicity and the benefit of myocardial infarction reduction, respectively. Patients and experts agreed on the order of importance for myalgia and stroke reduction, but policymakers had different order of importance in these criteria. Overall, results showed that the highest and lowest chances of being chosen were atorvastatin and rosuvastatin, respectively. Only patients' ranking order was different from others. Maximum acceptable risk of hepatotoxicity was lower than that of myalgia, reflecting the greater concern of all perspectives to statin consequence on liver. The results of benefit-risk assessment from every perspective were somewhat consistent. This study demonstrated the feasibility of applying a discrete choice experiment in the benefit-risk assessment of drugs and encouraged the engagement of multiple stakeholders in the decision-making process. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2007-11-01

    Full Text Available Abstract The liver is responsible for controlling cholesterol homeostasis in the body. HMG-CoA reductase and the LDL receptor (LDL-r are involved in this regulation and are also ubiquitously expressed in all major tissues. We have previously shown in guinea pigs that there is a correlation in gene expression of HMG-CoA reductase and the LDL-r between liver and mononuclear cells. The present study evaluated human mononuclear cells as a surrogate for hepatic expression of these genes. The purpose was to evaluate the effect of dietary carbohydrate restriction with low and high cholesterol content on HMG-CoA reductase and LDL-r mRNA expression in mononuclear cells. All subjects were counseled to consume a carbohydrate restricted diet with 10–15% energy from carbohydrate, 30–35% energy from protein and 55–60% energy from fat. Subjects were randomly assigned to either EGG (640 mg/d additional dietary cholesterol or SUB groups [equivalent amount of egg substitute (0 dietary cholesterol contributions per day] for 12 weeks. At the end of the intervention, there were no changes in plasma total or LDL cholesterol (LDL-C compared to baseline (P > 0.10 or differences in plasma total or LDL-C between groups. The mRNA abundance for HMG-CoA reductase and LDL-r were measured in mononuclear cells using real time PCR. The EGG group showed a significant decrease in HMG-CoA reductase mRNA (1.98 ± 1.26 to 1.32 ± 0.92 arbitrary units P

  2. Tumor specific HMG-CoA reductase expression in primary pre-menopausal breast cancer predicts response to tamoxifen

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2011-01-31

    Abstract Introduction We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. Methods HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. Results HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive\\/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as

  3. Effects of HMG-CoA reductase inhibitors on continuous post-inflammatory vascular remodeling late after Kawasaki disease.

    Science.gov (United States)

    Hamaoka, Akiko; Hamaoka, Kenji; Yahata, Tomoyo; Fujii, Maiko; Ozawa, Seiichiro; Toiyama, Kentaro; Nishida, Masashi; Itoi, Toshiyuki

    2010-09-01

    In Kawasaki disease (KD), it has been clinically and experimentally reported that post-inflammatory vascular remodeling would induce the development of arteriosclerosis or early onset of atherosclerosis in the future. The effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors on continuous vascular remodeling late after Kawasaki disease were clinically evaluated. We enrolled and treated a total of 11 KD patients (age range, 7-25 years) with fluvastatin (0.5-0.7 mg/kg/day) for 12 months. All of them had significant coronary aneurysmal or stenotic lesions and more than 3 of the following 5 abnormal findings: reduced %flow-mediated dilatation (%FMD), reduced urinary NOx, elevated high-sensitivity C-reactive protein (hs-CRP), reduced urinary 8-isoprostane, and elevated brachial-ankle pulse wave velocity (baPWV; control, ≤1400 cm/s). A statistically significant improvement was observed in each biomarker after fluvastatin treatment: %FMD, from 9.29% (3.41)% to 10.55% (3.27)% (p=0.003) after 3 months; NOx/creatinine (cre), from 1.16 (0.54) µmol/mg cre to 1.30 (0.50) µmol/mg cre (p=0.038) after 12 months; baPWV, from 1175.4 (277.3) cm/s to 1031.8 (155.6) cm/s (p=0.009) after 3 months; hs-CRP, from 0.073 (0.035) mg/dl to 0.028 (0.014) mg/dl (p=0.0002) after 3 months; and 8-iso/cre, from 751.8 (241.8) pg/mg cre to 660.0 (198.5) pg/mg cre (p=0.018) after 3 months. No adverse events were clinically observed in the patients. The results of this study suggested that HMG-CoA reductase inhibitors are useful as an alternative therapeutic strategy for stabilizing continuous post-inflammatory vascular remodeling that results in the development of arteriosclerosis late after KD or early onset of atherosclerosis in the future. Copyright © 2010 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik, E-mail: henrik.thorlacius@med.lu.se

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  5. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    Directory of Open Access Journals (Sweden)

    Ewing Andrew G

    2008-12-01

    Full Text Available Abstract Background Primordial germ cells (PGCs are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.

  6. NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp.) food supplements.

    Science.gov (United States)

    Lachenmeier, Dirk W; Monakhova, Yulia B; Kuballa, Thomas; Löbell-Behrends, Sigrid; Maixner, Sibylle; Kohl-Himmelseher, Matthias; Waldner, Asja; Steffen, Christian

    2012-03-22

    Red yeast rice (i.e., rice fermented with Monascus spp.), as a food supplement, is claimed to be blood cholesterol-lowering. The red yeast rice constituent monacolin K, also known as lovastatin, is an inhibitor of the hydroxymethylglutaryl-CoA (HMG-CoA) reductase. This article aims to develop a sensitive nuclear magnetic resonance (NMR) method to determine the total statin content of red yeast rice products. The total statin content was determined by a 400 MHz 1H NMR spectroscopic method, based on the integration of the multiplet at δ 5.37-5.32 ppm of a hydrogen at the hexahydronaphthalene moiety in comparison to an external calibration with lovastatin. The activity of HMG-CoA reductase was measured by a commercial spectrophotometric assay kit. The NMR detection limit for total statins was 6 mg/L (equivalent to 0.3 mg/capsule, if two capsules are dissolved in 50 mL ethanol). The relative standard deviations were consistently lower than 11%. The total statin concentrations of five red yeast rice supplements were between 1.5 and 25.2 mg per specified daily dose. A dose-dependent inhibition of the HMG-CoA reductase enzyme activity by the red yeast rice products was demonstrated. A simple and direct NMR assay was developed to determine the total statin content in red yeast rice. The assay can be applied for the determination of statin content for the regulatory control of red yeast rice products.

  7. 7-Dehydrocholesterol–dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome

    Science.gov (United States)

    Fitzky, Barbara U.; Moebius, Fabian F.; Asaoka, Hitoshi; Waage-Baudet, Heather; Xu, Liwen; Xu, Guorong; Maeda, Nobuyo; Kluckman, Kimberly; Hiller, Sylvia; Yu, Hongwei; Batta, Ashok K.; Shefer, Sarah; Chen, Thomas; Salen, Gerald; Sulik, Kathleen; Simoni, Robert D.; Ness, Gene C.; Glossmann, Hartmut; Patel, Shailendra B.; Tint, G.S.

    2001-01-01

    Smith-Lemli-Opitz/RSH syndrome (SLOS), a relatively common birth-defect mental-retardation syndrome, is caused by mutations in DHCR7, whose product catalyzes an obligate step in cholesterol biosynthesis, the conversion of 7-dehydrocholesterol to cholesterol. A null mutation in the murine Dhcr7 causes an identical biochemical defect to that seen in SLOS, including markedly reduced tissue cholesterol and total sterol levels, and 30- to 40-fold elevated concentrations of 7-dehydrocholesterol. Prenatal lethality was not noted, but newborn homozygotes breathed with difficulty, did not suckle, and died soon after birth with immature lungs, enlarged bladders, and, frequently, cleft palates. Despite reduced sterol concentrations in Dhcr7–/– mice, mRNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-controlling enzyme for sterol biosynthesis, the LDL receptor, and SREBP-2 appeared neither elevated nor repressed. In contrast to mRNA, protein levels and activities of HMG-CoA reductase were markedly reduced. Consistent with this finding, 7-dehydrocholesterol accelerates proteolysis of HMG-CoA reductase while sparing other key proteins. These results demonstrate that in mice without Dhcr7 activity, accumulated 7-dehydrocholesterol suppresses sterol biosynthesis posttranslationally. This effect might exacerbate abnormal development in SLOS by increasing the fetal cholesterol deficiency. PMID:11560960

  8. Effects of HMG-CoA Reductase Inhibitors (Statins On Bone Mineral Density and Metabolism

    Directory of Open Access Journals (Sweden)

    Nehir Samancı

    2004-06-01

    Full Text Available Hydroxy methylglutaryl coenzyme A reductase inhibitors (statins have been shown to have effects on bone metabolism in laboratory studies. While early clinic studies have showed lower risk for osteoporotic fractures among statin users than nonusers, subsequent studies have found mixed results. The purpose of this study was to investigate the effects of statins on bone mineral density (BMD and bone metabolism. Thirty-five consecutive postmenopausal hypercholesterolemic women who were treated for at least last 6 months with statins were included in the study. Seventy-five normocholesterolemic age-matched postmenopausal women were in the control group. Subjects with a history of any diseases and used drugs that may affect calcium or bone metabolism were excluded from the study. Age, associated illness, years since menopause, and body mass index (BMI were obtained from all the patients including the control group. Besides, serum calcium, phosphate, alkaline phosphates, parathyroid hormone, 25 hydroxy D3, osteocalcin, and urinary calcium excretion were measured. BMD was measured by using dual-energy x-ray absorptiometry (DEXA at femoral neck and 3rd lomber spine. Mean duration of statin use was 28.17±21.17 months. BMI was found to be statistically higher in statin users than nonusers (27.47±3.67kg/m2 and 25.46±3.91 kg/m2, respectively. The markers of bone metabolism used in the study were found to be similar between the groups. BMD was not different in statin users and nonusers at femoral neck and lomber spine. As conclusion, statin use did not affect BMD and bone metabolism in this study. In our opinion large randomised, controlled, prospective clinical trials are needed to accurately determine the role of statins in the treatment of osteoporosis.

  9. NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp.) food supplements

    OpenAIRE

    Lachenmeier Dirk W; Monakhova Yulia B; Kuballa Thomas; Löbell-Behrends Sigrid; Maixner Sibylle; Kohl-Himmelseher Matthias; Waldner Asja; Steffen Christian

    2012-01-01

    Abstract Background Red yeast rice (i.e., rice fermented with Monascus spp.), as a food supplement, is claimed to be blood cholesterol-lowering. The red yeast rice constituent monacolin K, also known as lovastatin, is an inhibitor of the hydroxymethylglutaryl-CoA (HMG-CoA) reductase. This article aims to develop a sensitive nuclear magnetic resonance (NMR) method to determine the total statin content of red yeast rice products. Methods The total statin content was determined by a 400 MHz 1H N...

  10. NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp. food supplements

    Directory of Open Access Journals (Sweden)

    Lachenmeier Dirk W

    2012-03-01

    Full Text Available Abstract Background Red yeast rice (i.e., rice fermented with Monascus spp., as a food supplement, is claimed to be blood cholesterol-lowering. The red yeast rice constituent monacolin K, also known as lovastatin, is an inhibitor of the hydroxymethylglutaryl-CoA (HMG-CoA reductase. This article aims to develop a sensitive nuclear magnetic resonance (NMR method to determine the total statin content of red yeast rice products. Methods The total statin content was determined by a 400 MHz 1H NMR spectroscopic method, based on the integration of the multiplet at δ 5.37-5.32 ppm of a hydrogen at the hexahydronaphthalene moiety in comparison to an external calibration with lovastatin. The activity of HMG-CoA reductase was measured by a commercial spectrophotometric assay kit. Results The NMR detection limit for total statins was 6 mg/L (equivalent to 0.3 mg/capsule, if two capsules are dissolved in 50 mL ethanol. The relative standard deviations were consistently lower than 11%. The total statin concentrations of five red yeast rice supplements were between 1.5 and 25.2 mg per specified daily dose. A dose-dependent inhibition of the HMG-CoA reductase enzyme activity by the red yeast rice products was demonstrated. Conclusion A simple and direct NMR assay was developed to determine the total statin content in red yeast rice. The assay can be applied for the determination of statin content for the regulatory control of red yeast rice products.

  11. HMG-CoA reductase, cholesterol 7alpha-hydroxylase, LDL receptor, SR-B1, and ACAT in diet-induced syndrome X.

    Science.gov (United States)

    Roberts, Christian K; Liang, Kaihui; Barnard, R James; Kim, Choong H; Vaziri, Nosratola D

    2004-10-01

    Long-term consumption of Western diets can lead to acquired syndrome X, which presents with obesity, insulin resistance, hypertension, hyperlipidemia, and risk of atherosclerotic cardiovascular disease. While plasma lipid abnormalities in syndrome X have been well characterized, their molecular basis remains unclear. This study explored potential mechanisms of hypercholesterolemia in diet-induced syndrome X. Female Fischer rats were fed a high-fat, refined-carbohydrate (sucrose) diet (HFS) or standard rat chow (low-fat, complex carbohydrate, LFCC) for 20 months. Plasma lipids and hepatic tissue mRNA, protein, and/or activities of the key enzymes and receptors involved in cholesterol metabolism were determined. The HFS group exhibited hypertension, hyperlipidemia, insulin resistance, obesity, significant down-regulation of hepatic cholesterol 7alpha-hydroxylase (the rate-limiting step in cholesterol catabolism) and low-density lipoprotein (LDL) receptor (LDL-R, the primary pathway of LDL clearance). In contrast, hepatic tissue acyl-coenzyme A:cholesterol acyltransferase (ACAT-2, the primary enzyme involved in intracellular esterification of cholesterol) and scavenger-receptor class B, type 1 (SR-B1 or HDL receptor) were up-regulated. While 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA expression was increased, its protein abundance and activity were unchanged, and HMG-CoA reductase-to-cholesterol 7alpha-hydroxylase ratio was increased in HFS-fed animals. Hypercholesterolemia in diet-induced syndrome X is associated with depressed cholesterol 7alpha-hydroxylase, diminished LDL-R, elevated ACAT, and increased HMG-CoA reductase-to-cholesterol 7alpha-hydroxylase ratio. These findings point to impaired hepatic catabolism and uptake of cholesterol and inappropriate cholesterol production capacity as the underlying causes of hypercholesterolemia in rats with diet-induced syndrome X.

  12. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity

    Science.gov (United States)

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Background Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). Methodology/Principal Findings The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001), 54% of Low Density Lipoprotein (LDL)-cholesterol (p<0.001) and 34.5% of triglycerides (p<0.001). Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Conclusions Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent

  13. Phenolics from grapefruit peels inhibit HMG-CoA reductase and angiotensin-I converting enzyme and show antioxidative properties in endothelial EA.Hy 926 cells

    Directory of Open Access Journals (Sweden)

    Ayokunle O. Ademosun

    2015-06-01

    Full Text Available This study sought to investigate the possible mechanisms for the use of phenolic extracts from grapefruit peels in the management/prevention of cardiovascular complications. The effects of the phenolic extracts on key enzymes relevant to cardiovascular diseases [3-hydroxy-methyl-3-glutaryl coenzyme A reductase (HMG-CoA reductase and angiotensin-I converting enzyme (ACE], cellular antioxidant activity in human endothelial cells (EA.Hy 926 and radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS] scavenging abilities were investigated. The phenolic contents of the extracts were investigated using HPLC–DAD. There was no significant (P > 0.05 difference in the HMG-CoA reductase inhibitory ability of the two extracts, while the bound phenolic extracts had a stronger ACE inhibitory ability than the soluble free phenolics. The extracts also showed intracellular antioxidant activity in human endothelial (EA.Hy 926 cells. Furthermore, the bound phenolics had significantly higher radicals (DPPH* and ABTS* scavenging abilities than the free phenolics. The HPLC analysis revealed the presence of flavonoids (quercetin and kaempferol, phenolics acids (resveratrol, gallic acid, ellagic acid and caffeic acid and tannin (catechin. The cellular antioxidative properties and inhibition of enzymes relevant to the management of cardiovascular complications showed that grapefruit peels could be used as nutraceuticals for the management of such conditions.

  14. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Cenedella, R.J.; Hitchener, W.R.

    1986-05-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either /sup 3/H/sub 2/O or 1-/sup 14/C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of /sup 3/H/sub 2/O or 1-/sup 14/C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10/sup 6/ cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with /sup 3/H/sub 2/O and 4.0 +/- 1.1 times greater when measured with /sup 14/C-acetate. Thus, /sup 3/H/sub 2/O and /sup 14/C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid.

  15. CSA13 inhibits colitis-associated intestinal fibrosis via a formyl peptide receptor like-1 mediated HMG-CoA reductase pathway.

    Science.gov (United States)

    Xu, Chunlan; Ghali, Sally; Wang, Jiani; Shih, David Q; Ortiz, Christina; Mussatto, Caroline C; Lee, Elaine C; Tran, Diana H; Jacobs, Jonathan P; Lagishetty, Venu; Fleshner, Phillip; Robbins, Lori; Vu, Michelle; Hing, Tressia C; McGovern, Dermot P B; Koon, Hon Wai

    2017-11-27

    Many Crohn's disease (CD) patients develop intestinal strictures, which are difficult to prevent and treat. Cationic steroid antimicrobial 13 (CSA13) shares cationic nature and antimicrobial function with antimicrobial peptide cathelicidin. As many functions of cathelicidin are mediated through formyl peptide receptor-like 1 (FPRL1), we hypothesize that CSA13 mediates anti-fibrogenic effects via FPRL1. Human intestinal biopsies were used in clinical data analysis. Chronic trinitrobenzene sulfonic acid (TNBS) colitis-associated intestinal fibrosis mouse model with the administration of CSA13 was used. Colonic FPRL1 mRNA expression was positively correlated with the histology scores of inflammatory bowel disease patients. In CD patients, colonic FPRL1 mRNA was positively correlated with intestinal stricture. CSA13 administration ameliorated intestinal fibrosis without influencing intestinal microbiota. Inhibition of FPRL1, but not suppression of intestinal microbiota, reversed these protective effects of CSA13. Metabolomic analysis indicated increased fecal mevalonate levels in the TNBS-treated mice, which were reduced by the CSA13 administration. CSA13 inhibited colonic HMG-CoA reductase activity in an FPRL1-dependent manner. Mevalonate reversed the anti-fibrogenic effect of CSA13. The increased colonic FPRL1 expression is associated with severe mucosal disease activity and intestinal stricture. CSA13 inhibits intestinal fibrosis via FPRL1-dependent modulation of HMG-CoA reductase pathway.

  16. Applications of oxygen polarography to drug stability testing and formulation development: solution-phase oxidation of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors.

    Science.gov (United States)

    Kaufman, M J

    1990-03-01

    The kinetics of oxidation of the HMG-CoA reductase inhibitors lovastatin, simvastatin, L-157,012, and L-647,318 were studied in an aqueous surfactant solution. A thermally labile free radical initiator was used to attain measurable reaction rates at 40 degrees C and rate constants were determined by measuring oxygen consumption using an oxygen electrode. The stability of the drugs was found to increase in the order lovastatin = simvastatin less than L-157,012 less than L-647,318. The addition of butylated hydroxyanisole (BHA) was found to stabilize the drugs. For the oxidation of lovastatin, the effectiveness of antioxidants increased in the order propyl gallate less than BHA less than alpha-tocopherol. It is concluded that the stability of oxidizable drugs can be rapidly and conveniently assessed by the techniques described herein.

  17. HMG-CoA reductase inhibition aborts functional differentiation and triggers apoptosis in cultured primary human monocytes: a potential mechanism of statin-mediated vasculoprotection

    Directory of Open Access Journals (Sweden)

    Vamvakopoulos Joannis E

    2003-07-01

    Full Text Available Abstract Background Statins effectively lower blood cholesterol and the risk of cardiovascular death. Immunomodulatory actions, independent of their lipid-lowering effect, have also been ascribed to these compounds. Since macrophages participate in several vascular pathologies, we examined the effect of statin treatment on the survival and differentiation of primary human monocytes. Methods Peripheral blood mononuclear cells (PBMCs from healthy individuals were cultured in the presence or absence of mevastatin. Apoptosis was monitored by annexin V / PI staining and flow cytometry. In parallel experiments, cultures were stimulated with LPS in the presence or absence of mevastatin and the release of IL-1β and IL-1Ra was measured by ELISA. Results Among PBMCs, mevastatin-treated monocytes were particularly susceptible to apoptosis, which occurred at doses >1 microM and was already maximal at 5 microM. However, even at the highest mevastatin dose used (10 microM, apoptosis occurred only after 24 h of culture, possibly reflecting a requirement for cell commitment to differentiation. After 72 h of treatment the vast majority (>50% of monocytes were undergoing apoptosis. Stimulation with LPS revealed that mevastatin-treated monocytes retained the high IL-1β output characteristic of undifferentiated cells; conversely, IL-1Ra release was inhibited. Concurrent treatment with mevalonolactone prevented the induction of apoptosis and suppressed both IL-1β and IL-1Ra release in response to LPS, suggesting a rate-limiting role for HMG-CoA reductase in monocyte differentiation. Conclusions Our findings indicate that statins arrest the functional differentiation of monocytes into macrophages and steer these cells into apoptosis, suggesting a novel mechanism for the vasculoprotective properties of HMG-CoA reductase inhibitors.

  18. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-09-20

    Although overexpression of the tHMG1 gene is a well-known strategy for terpene synthesis in Saccharomyces cerevisiae, the optimal level for tHMG1p has not been established. In the present study, it was observed that two copies of the tHMG1 gene on a dual gene expression cassette improved squalene synthesis in laboratory strain by 16.8-fold in comparison to single-copy expression. It was also observed that tHMG1p is limited by its cofactor (NADPH), as the overexpression of NADPH regenerating genes', viz., ZWF1 and POS5 (full length and without mitochondrial presequence), has led to its increased enzyme activity. Further, it was demonstrated that overexpression of full-length POS5 has improved squalene synthesis in cytosol. Finally, when tHMG1 and full-length POS5 were co-overexpressed there was a net 27.5-fold increase in squalene when compared to control strain. These results suggest novel strategies to increase squalene accumulation in S. cerevisiae.

  19. Een vergelijking tussen de HMG-CoA reductaseremmende geneesmiddelen

    NARCIS (Netherlands)

    Touw, D.J.; Schalekamp, T.; Van der Kuy, A.; Van Loenen, A.C.

    2000-01-01

    There are significant differences between the 3-hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) reductase inhibitors with regards to drug-drug interactions. The most important enzyme involved in these interactions is the cytochrome P450 isoenzyme CYP3A4. The major adverse affect due to drug-drug

  20. Discovery and quantitative structure-activity relationship study of lepidopteran HMG-CoA reductase inhibitors as selective insecticides.

    Science.gov (United States)

    Zang, Yang-Yang; Li, Yuan-Mei; Yin, Yue; Chen, Shan-Shan; Kai, Zhen-Peng

    2017-09-01

    In a previous study we have demonstrated that insect 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) can be a potential selective insecticide target. Three series of inhibitors were designed on the basis of the difference in HMGR structures from Homo sapiens and Manduca sexta, with the aim of discovering potent selective insecticide candidates. An in vitro bioassay showed that gem-difluoromethylenated statin analogues have potent effects on JH biosynthesis of M. sexta and high selectivity between H. sapiens and M. sexta. All series II compounds {1,3,5-trisubstituted [4-tert-butyl 2-(5,5-difluoro-2,2-dimethyl-6-vinyl-4-yl) acetate] pyrazoles} have some effect on JH biosynthesis, whereas most of them are inactive on human HMGR. In particular, the IC50 value of compound II-12 (37.8 nm) is lower than that of lovastatin (99.5 nm) and similar to that of rosuvastatin (24.2 nm). An in vivo bioassay showed that I-1, I-2, I-3 and II-12 are potential selective insecticides, especially for lepidopteran pest control. A predictable and statistically meaningful CoMFA model of 23 inhibitors (20 as training sets and three as test sets) was obtained with a value of q2 and r2 of 0.66 and 0.996 respectively. The final model suggested that a potent insect HMGR inhibitor should contain suitable small and non-electronegative groups in the ring part, and electronegative groups in the side chain. Four analogues were discovered as potent selective lepidopteran HMGR inhibitors, which can specifically be used for lepidopteran pest control. The CoMFA model will be useful for the design of new selective insect HMGR inhibitors that are structurally related to the training set compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and FXR, as well as their downstream target genes.

    Science.gov (United States)

    Howe, Katharine; Sanat, Faizah; Thumser, Alfred E; Coleman, Tanya; Plant, Nick

    2011-07-01

    The therapeutic class of HMG-CoA reductase inhibitors, the statins are central agents in the treatment of hypercholesterolaemia and the associated conditions of cardiovascular disease, obesity and metabolic syndrome. Although statin therapy is generally considered safe, a number of known adverse effects do occur, most commonly treatment-associated muscular pain. In vitro evidence also supports the potential for drug-drug interactions involving this class of agents, and to examine this a ligand-binding assay was used to determine the ability of six clinically used statins for their ability to directly activate the nuclear receptors pregnane X-receptor (PXR), farnesoid X-receptor (FXR) and constitutive androstane receptor (CAR), demonstrating a relative activation of PXR>FXR>CAR. Using reporter gene constructs, we demonstrated that this order of activation is mirrored at the transcriptional activation level, with PXR-mediated gene activation being pre-eminent. Finally, we described a novel regulatory loop, whereby activation of FXR by statins increases PXR reporter gene expression, potentially enhancing PXR-mediated responses. Delineating the molecular interactions of statins with nuclear receptors is an important step in understanding the full biological consequences of statin exposure. This demonstration of their ability to directly activate nuclear receptors, leading to nuclear receptor cross-talk, has important potential implications for their use within a polypharmacy paradigm.

  2. Effect of atorvastatin, a HMG-CoA reductase inhibitor in monosodium iodoacetate-induced osteoarthritic pain: implication for osteoarthritis therapy.

    Science.gov (United States)

    Pathak, Nitya N; Balaganur, Venkanna; Lingaraju, Madhu C; Kant, Vinay; Kumar, Dhirendra; Kumar, Dinesh; Sharma, Anil K; Tandan, Surendra K

    2015-06-01

    Oxidative stress is one of the main causes of pain and cartilage degradation in osteoarthritis. This study on atorvastatin, a HMG-CoA reductase inhibitor used in the treatment of hypercholesterolemia and prevention of coronary heart disease aimed to investigate its effect on hyperalgesia and cartilage damage in monosodium iodoacetate (MIA)-induced osteoarthritis model in rats. Osteoarthritis was induced by a single intra-articular injection of 3mg MIA. After daily administration of atorvastatin (3, 10 and 30 mg/kg) for 20 days by oral gavage, pain was assessed on days 0, 1, 3, 7, 14 and 21. Histopathology of ipsilateral knee joint; oxidative markers and antioxidants in plasma were assessed on day 21. Atorvastatin attenuated hyperalgesia. The increased level of lipid peroxidation, superoxide, protein carbonyl; decreased activity of catalase, glutathione-S-transferase, reduced glutathione and total thiol levels in MIA rats were restored to the normal levels, however, superoxide dismutase and nitric oxide levels remained unaltered by atorvastatin. Further, atorvastatin reduced the MIA-induced histopathological alteration in the knee joint. Our study demonstrated that atorvastatin attenuates MIA-induced osteoarthritic pain and protect cartilage degradation through inhibition of oxidative stress suggesting its importance in osteoarthritic pain management. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. In vivo identification of promoter elements and transcription factors mediating activation of hepatic HMG-CoA reductase by T{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Lindsey R.; Niesen, Melissa I. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States); Jaroszeski, Mark [Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL (United States); Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States)

    2009-07-31

    The promoter elements and transcription factors necessary for triiodothyronine (T{sub 3}) induction of hepatic HMG-CoA reductase (HMGR) were investigated by transfecting rat livers with wild type and mutant HMGR promoter-luciferase constructs using in vivo electroporation. Mutations in the sterol response element (SRE), nuclear factor-y (NF-Y) site, and the newly identified upstream transcription factor-2 (USF-2) site essentially abolished the T{sub 3} response. Chromatin immunoprecipitation (ChIP) analysis demonstrated that T{sub 3} treatment caused a 4-fold increase in in vivo binding of USF-2 to the HMGR promoter. Co-transfection of the wild type HMGR promoter with siRNAs to USF-2, SREBP-2, or NF-Y nearly abolished the T{sub 3} induction, as measured by promoter activity. These data provide in vivo evidence for functional roles for USF-2, SREBP-2, and NF-Y in mediating the T{sub 3}-induction of hepatic HMGR transcription.

  4. Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull.) Persoon (Lion's Mane Mushroom)

    OpenAIRE

    Mohammad Azizur Rahman; Noorlidah Abdullah; Norhaniza Aminudin

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-...

  5. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion's mane mushroom).

    Science.gov (United States)

    Rahman, Mohammad Azizur; Abdullah, Noorlidah; Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  6. Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull. Persoon (Lion’s Mane Mushroom

    Directory of Open Access Journals (Sweden)

    Mohammad Azizur Rahman

    2014-01-01

    Full Text Available Oxidation of low-density lipoprotein (LDL has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM, hexane (HEX, dichloromethane (DCM, ethyl acetate (EA, and aqueous residue (AQ. The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins for the formation of conjugated diene (CD at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL of thiobarbituric acid reactive substances (TBARS at 1 mg/mL. It also mostly inhibited (59.91% the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  7. Effect of long-term cholesterol-lowering treatment with HMG-CoA reductase inhibitor (Simvastatin) of myocardial perfusion evaluated by thallium-201 single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Ryohei; Nohara, Ryuji; Linxue, Li; Sasayama, Shigetake [Kyoto Univ. (Japan). Graduate School of Medicine; Tamaki, Shunichi; Hashimoto, Tetsuo; Tanaka, Masahiro; Miki, Shinji

    2000-03-01

    Fifteen patients with either angina pectoris or old myocardial infarction, who had positive {sup 201}Tl single photon emission computed tomography (SPECT) imaging and coronary sclerosis of more than 50%, were treated with an HMG-CoA reductase inhibitor (simvastatin) for more than 1 year. They were compared with an untreated control group (n=25). Total cholesterol decreased 22% and high-density lipoprotein (HDL) increased 9% with simvastatin; both changes were significantly different from those in controls. Long-term simvastatin induced improvement of myocardial perfusion on {sup 201}Tl SPECT images both during exercise and at rest, which was also significantly different from controls. In addition, the improvement of myocardial perfusion on {sup 201}Tl SPECT images was clearly related to the improvements in cholesterol values, especially nonHDL cholesterol. Thus, the greater the decrease in nonHDL cholesterol, the greater the improvement in myocardial perfusion at rest or during exercise with long-term treatment using an HMG-CoA reductase inhibitor. These findings indicate that the improvements in cholesterol values caused by HMG-CoA reductase inhibitor therapy are related to improvements of myocardial perfusion seen on {sup 201}Tl SPECT images. (author)

  8. Inhibition of HMG-CoA reductase by MFS, a purified extract from the fermentation of marine fungus Fusarium solani FG319, and optimization of MFS production using response surface methodology.

    Science.gov (United States)

    Zhou, Yu; Wu, Wen-Hui; Zhao, Qing-Bo; Wang, Xiao-Yu; Bao, Bin

    2015-05-01

    The present study was designed to isolate and characterize a purified extract from Fusarium solani FG319, termed MFS (Metabolite of Fusarium solani FG319) that showed anti-atherosclerosis activity by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Response surface methodology (RSM) was employed to achieve an improved yield from the fermentation medium. The inhibiting effect of the isolate, MFS, on HMG-CoA reductase was greater than that of the positive control, lovastatin. The average recovery of MFS and the relative standard deviation (RSD) ranged between 99.75% to 101.18%, and 0.31% to 0.74%, respectively. The RSDs intra- and inter-assay of the three samples ranged from 0.288% to 2.438%, and from 0.934% to 2.383%, respectively. From the RSM, the concentration of inducer, cultivation time, and culture temperatures had significant effects on the MFS production, with the effect of inducer concentration being more pronounced that other factors. In conclusion, the optimal conditions for the MFS production were achieved using RSM and that MFS could be explored as an anti-atherosclerosis agent based on its ability to inhibit HMG-CoA reductase. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  9. A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-Aymice.

    Science.gov (United States)

    Wang, Kai; Bao, Li; Ma, Ke; Zhang, Jinjin; Chen, Baosong; Han, Junjie; Ren, Jinwei; Luo, Huajun; Liu, Hongwei

    2017-02-15

    Three new meroterpenoids, ganoleucin A-C (1-3), together with five known meroterpenoids (4-8), were isolated from the fruiting bodies of Ganoderma leucocontextum. The structures of the new compounds were elucidated by extensive spectroscopic analysis, circular dichroism (CD) spectroscopy, and chemical transformation. The inhibitory effects of 1-8 on HMG-CoA reductase and α-glucosidase were tested in vitro. Ganomycin I (4), 5, and 8 showed stronger inhibitory activity against HMG-CoA reductase than the positive control atorvastatin. Compounds 1, and 3-8 presented potent noncompetitive inhibitory activity against α-glucosidase from both yeast and rat small intestinal mucosa. Ganomycin I (4), the most potent inhibitor against both α-glucosidase and HMG-CoA reductase, was synthesized and evaluated for its in vivo bioactivity. Pharmacological results showed that ganomycin I (4) exerted potent and efficacious hypoglycemic, hypolipidemic, and insulin-sensitizing effects in KK-A y mice. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Long-term safety and efficacy of combination gemfibrozil and HMG-CoA reductase inhibitors for the treatment of mixed lipid disorders.

    Science.gov (United States)

    Murdock, D K; Murdock, A K; Murdock, R W; Olson, K J; Frane, A M; Kersten, M E; Joyce, D M; Gantner, S E

    1999-07-01

    Combinations of gemfibrozil and a 3-hydroxy-3-methylglutaryl (HMG) coenzyme A reductase inhibitor show promise in treating mixed lipid abnormalities. However, concern regarding the risk of myopathy and hepatic toxicity has limited the use of this combination. To determine the long-term safety and efficacy of this combination, we prospectively identified all patients placed on a combination of gemfibrozil and any HMG reductase inhibitor. Pravastatin, simvastatin, fluvastatin, lovastatin, or atorvastatin at incremental doses was combined with gemfibrozil (600 mg twice daily). Lipid profiles, creatine kinase levels, and aminotransferase levels were monitored. Two hundred fifty-two patients with established atherosclerosis receiving combination therapy for a mean of 2.36 +/- 1.52 years spanning a total of 593.6 patient-years were monitored. In 148 patients, gemfibrozil was started before an HMG was added. The pretreatment total cholesterol level fell from 222 +/- 34 mg/dL to 181 +/- 26 mg/dL (P <.001) on combination therapy. HDL cholesterol level rose from 30 +/- 5 mg/dL to 36 +/- 7 mg/dL (P <.01), triglyceride level fell from 361 +/- 141 mg/dL to 212 +/- 101 mg/dL (P <.03). The ratio of total cholesterol to HDL fell from 7.6 +/- 1. 7 to 5.3 +/- 1.6 (P <.001). In 104 patients an HMG was begun before gemfibrozil was added. Pretreatment total cholesterol level fell from 246 +/- 54 mg/dL to 192 +/- 40 mg/dL on combination therapy (P <.01). HDL level rose from 33 +/- 9 mg/dL to 38 +/- 9 mg/dL (P <.03) and triglyceride level fell from 314 +/- 183 mg/dL to 183 +/- 93 mg/dL (P <.001). The ratio of total cholesterol to HDL fell from 7.9 +/- 3.6 to 5.2 +/- 1.4 (P <.001). In both groups the lipid profile on combination therapy was significantly better than that obtained on single-agent therapy. One episode of myopathy (0.4%) and one episode of aminotransferase level elevation (0.4%) of greater than 3 times upper limit of normal occurred. Both resolved with cessation of therapy

  11. Simvastatin, an HMG-CoA reductase inhibitor, exhibits anti-metastatic and anti-tumorigenic effects in endometrial cancer1

    Science.gov (United States)

    Schointuch, Monica N.; Gilliam, Timothy P.; Stine, Jessica E.; Han, Xiaoyun; Zhou, Chunxiao; Gehrig, Paola A.; Kim, Kenneth; Bae-Jump, Victoria L.

    2014-01-01

    OBJECTIVE Our goal was to evaluate the effects of simvastatin on endometrial cancer cell lines and primary cultures of endometrial cancer cells. METHODS Cell proliferation in the ECC-1 and Ishikawa endometrial cancer cell lines and primary cultures of endometrial cancer cells was assessed by MTT assay. Apoptosis and cell cycle were detected by Annexin V assay and propidium iodide staining, respectively. Reactive oxygen species and cell adhesion were assessed using ELISA assays. Invasion was analyzed using a transwell invasion assay. Mitochondrial DNA damage was confirmed using qPCR. The effects of simvastatin on the AKT/mTOR and MAPK pathways were determined by Western blotting. RESULTS Simvastatin inhibited cell proliferation in a dose-dependent manner in both endometrial cancer cell lines and 5/8 primary cultures of endometrial cancer cells. Simvastatin treatment resulted in G1 cell cycle arrest, a reduction in the enzymatic activity of HMG-CoA, induction of apoptosis as well as DNA damage and cellular stress. Treatment with simvastatin resulted in inhibition of the MAPK pathway and exhibited differential effects on the AKT/mTOR pathway in the ECC-1 and Ishikawa cells. Minimal change in AKT phosphorylation was seen in both cell lines. An increase in phosphorylated S6 was seen in ECC-1 and a decrease was seen in Ishikawa. Treatment with simvastatin reduced cell adhesion and invasion (pSimvastatin had significant anti-proliferative and anti-metastatic effects in endometrial cancer cells, possibly through modulation of the MAPK and AKT/mTOR pathways, suggesting that statins may be a promising treatment strategy for endometrial cancer. PMID:24880141

  12. Methyl farnesoate synthesis in the lobster mandibular organ: The roles of HMG-CoA reductase and farnesoic acid-O-methyltransferase

    Science.gov (United States)

    Li, Sheng; Friesen, Jon A.; Holford, Kenneth C.; Borst, David W.

    2009-01-01

    Eyestalk ablation (ESA) increases crustacean production of methyl farnesoate (MF), a juvenile hormone-like compound, but the biochemical steps involved are not completely understood. We measured the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and farnesoic acid-O-methyl transferase (FAOMeT), an early step and the last step in MF synthesis. ESA elevated hemolymph levels of MF in male lobsters. Enzyme activity suggested that increased MF production on day one was due largely to elevated HMGR activity while changes in FAOMeT activity closely paralleled changes in MF levels on day 14. Transcript levels for HMGR and FAOMeT changed little on day one, but both increased substantially on day 14. We treated ESA males with a partially purified mandibular organ inhibiting hormone (MOIH) and observed a significant decline in MF levels, FAOMeT activity, and FAOMeT-mRNA levels after 5 hours. However, no effect was observed on HMGR activity or its mRNA indicating that they must be regulated by a separate sinus gland peptide. We confirmed that lobster HMGR was not a phosphoprotein and was not regulated by reversible phosphorylation, an important mechanism for regulating other HMGRs. Nevertheless, molecular modeling indicated that the catalytic mechanisms of lobster and mammalian HMGR were similar. PMID:19778626

  13. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  14. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A

    1997-01-01

    We report the isolation and characterization of a genomic clone containing the open reading frame sequence for 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. The protozoan gene encoded for a smaller polypeptide than the rest...... sensitive to proteolytic inactivation. Furthermore the enzyme can be efficiently overexpressed in a highly active form by using the expression vector pET-11c. Thus Trypanosoma cruzi HMG-CoA reductase is unique in the sense that it totally lacks the membrane-spanning sequences present in all eukaryotic HMG...... cellular distribution of enzymic activity was investigated after differential centrifugation of Trypanosoma cell extracts. Reductase activity was primarily associated with the cellular soluble fraction because 95% of the total cellular activity was recovered in the supernatant and was particularly...

  15. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  16. Inhibitors of cholesterol biosynthesis. 1. trans-6-(2-pyrrol-1-ylethyl)-4-hydroxypyran-2-ones, a novel series of HMG-CoA reductase inhibitors. 1. Effects of structural modifications at the 2- and 5-positions of the pyrrole nucleus.

    Science.gov (United States)

    Roth, B D; Ortwine, D F; Hoefle, M L; Stratton, C D; Sliskovic, D R; Wilson, M W; Newton, R S

    1990-01-01

    A novel series of trans-6-(2-pyrrol-1-ylethyl)-4-hydroxypyran-2-ones and their dihydroxy acid derivatives were prepared and evaluated for their ability to inhibit the enzyme HMG-CoA reductase in vitro. A systematic study of substitution at the 2- and 5-positions of the pyrrole ring revealed that optimum potency was realized with the 2-(4-fluorophenyl)-5-isopropyl derivative 8x, which possessed 30% of the in vitro activity of the potent fungal metabolite compactin (I). A molecular modeling analysis led to the description of a pharmacophore model characterized by (A) length limits of 5.9 and 3.3 A for the 2- and 5-substituents, respectively, as well as an overall width limit of 10.6 A across the pyrrole ring from the 2- to the 5-substituent and (B) an orientation of the ethyl(ene) bridge to the 4-hydroxypyran-2-one ring nearly perpendicular to the planes of the parent pyrrole, hexahydronaphthalene, and phenyl rings of the structures examined (Figure 3, theta = 80-110 degrees). Attempts to more closely mimic compactin's polar isobutyric ester side chain with the synthesis of 2-phenylpyrroles containing polar phenyl substituents resulted in analogues with equal or slightly reduced potencies when compared to the 2-[(unsubstituted or 4-fluoro)phenyl]pyrroles, supporting the hypothesis that inhibitory potency is relatively insensitive to side-chain polarity or charge distribution in this area.

  17. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight

    DEFF Research Database (Denmark)

    Swerdlow, Daniel I; Preiss, David; Kuchenbaecker, Karoline B

    2015-01-01

    BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR...

  18. Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation.

    Science.gov (United States)

    Dong, Yuguo; Zhang, Jian; Xu, Rui; Lv, Xinxin; Wang, Lihua; Sun, Aiyou; Wei, Dongzhi

    2016-11-28

    Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. β-Hydroxy-β-methylglutaryl-CoA (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.

  19. Mitochondrial protein thiol modifications in acetaminophen hepatotoxicity: effect on HMG-CoA synthase.

    Science.gov (United States)

    Andringa, Kelly K; Bajt, Mary Lynn; Jaeschke, Hartmut; Bailey, Shannon M

    2008-04-01

    Acetaminophen (APAP) overdose is the leading cause of drug related liver failure in many countries. N-acetyl-p-benzoquinone imine (NAPQI) is a reactive metabolite that is formed by the metabolism of APAP. NAPQI preferentially binds to glutathione and then cellular proteins. NAPQI binding is considered an upstream event in the pathophysiology, especially when binding to mitochondrial proteins and therefore leads to mitochondrial toxicity. APAP caused a significant increase in liver toxicity 3h post-APAP administration as measured by increased serum alanine aminotransferase (ALT) levels. Using high-resolution mitochondrial proteomics techniques to measure thiol and protein changes, no significant change in global thiol levels was observed. However, 3-hydroxy-3-methylglutaryl coenzyme A synthase 2 (HMG-CoA synthase) had significantly decreased levels of reduced thiols and activity after APAP treatment. HMG-CoA synthase is a key regulatory enzyme in ketogenesis and possesses a number of critical cysteines in the active site. Similarly, catalase, a key enzyme in hydrogen peroxide metabolism, also showed modification in protein thiol content. These data indicate post-translational modifications of a few selected proteins involved in mitochondrial and cellular regulation of metabolism during liver toxicity after APAP overdose. The pathophysiological relevance of these limited changes in protein thiols remains to be investigated.

  20. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan...... reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better...... understanding of the role of this enzyme in trypanosomatids, the effect of possible regulators of isoprenoid biosynthesis in cultured promastigote cells was studied. Neither mevalonic acid nor serum sterols appear to modulate enzyme activity whereas incubation with lovastatin results in significant increases...

  1. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, Andrea; Flores, Carmen-Lisset

    2004-01-01

    3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial...... obtained with wild-type cells and transfectants overexpressing the enzyme established that HMGR in both T. cruzi and Leishmania major is localized primarily in the mitochondrion and that elimination of the mitochondrial targeting sequence in Leishmania leads to protein accumulation in the cytosolic...... compartment. Furthermore, T. cruzi HMGR is efficiently targeted to the mitochondrion in yeast cells. Thus, when the gene encoding T. cruzi HMGR was expressed in a hmg1 hmg2 mutant of Saccharomyces cerevisiae, the mevalonate auxotrophy of mutant cells was relieved, and immunoelectron analysis showed...

  2. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Concepcion, M.; Gruissem, W. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  3. Docking molecular de derivados de 2-fenilindano-1,3-dionas inibidores da enzima HMG-CoA

    Directory of Open Access Journals (Sweden)

    R. Q. Pordeus

    2014-11-01

    Full Text Available As doenças cardiovasculares constituem uma das principais causas de mortes em todo o mundo. Estudos mostram que a enzima HMG-CoA é considerada uma precursora da via metabólica hipolipidêmica no soro sanguíneo. Na busca por uma nova classe de compostos aptos a inibir esta enzima e consequentemente reduzir os níveis de colesterol, as 2-fenilindano-1,3-dionas apresentam resultados promissores. Uma das maneiras de avaliar o poder farmacológico destes compostos e predizer análogos ainda mais potentes consiste na avaliação da interação entre fármaco (2-fenilindano-1,3-diona e enzima (HMG-CoA, em que se utiliza da técnica de modelagem molecular docking. Neste estudo, o procedimento computacional para obtenção dos resultados de docking foi feito através do software AutoDock 1.5.6. Para avaliar a interação no sítio ativo da HMG-CoA, utilizamos, dentre a série de congêneres, o composto 2-(2-clorofenilindano-1,3-diona. De acordo com os resultados obtidos, foi identificada uma interação hidrofílica importante, do tipo ligação de hidrogênio C=O∙∙∙H–N, a qual apresenta uma distância de 1.62 Å entre os grupos carbonila do anel diona e o aminoácido metionina da HMG-CoA. Outra ligação de hidrogênio p∙∙∙H–N com distância de 3.10 Å formada entre o anel aromático do grupo indano-1,3-diona e o aminoácido glicina também foi identificada.

  4. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight : evidence from genetic analysis and randomised trials

    NARCIS (Netherlands)

    Swerdlow, Daniel I; Preiss, David; Kuchenbaecker, Karoline B; Holmes, Michael V; Engmann, Jorgen E L; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C D; Scott, Robert A; Leusink, Maarten|info:eu-repo/dai/nl/357581164; Verweij, Niek; Sharp, Stephen J; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, KaWah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A; Drenos, Fotios; Li, Yun R; Lowe, Gordon; Gallacher, John; Stewart, Marlene C W; Tzoulaki, Ioanna; Buxbaum, Sarah G; van der A, Daphne L; Forouhi, Nita G; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Schnabel, Renate B; Hubacek, Jaroslav A; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Romanvan; Stepaniak, Urszula; Malyutina, Sofia; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; de Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J Wouter; Westendorp, Rudi G J; de Borst, Gert Jan; de Jong, Pim A; Algra, Ale; Spiering, Wilko; der Zee, Anke H Maitland-van|info:eu-repo/dai/nl/255164688; Klungel, Olaf H|info:eu-repo/dai/nl/181447649; de Boer, Anthonius|info:eu-repo/dai/nl/075097346; Doevendans, Pieter A; Eaton, Charles B; Robinson, Jennifer G; Duggan, David; Kjekshus, John; Downs, John R; Gotto, Antonio M; Keech, Anthony C; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S; Poulter, Neil R; Waters, David D; Pedersen, Terje R; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J V; Lewsey, James D; Chasman, Daniel I; Ridker, Paul M; Maggioni, Aldo P; Tavazzi, Luigi; Ray, Kausik K; Seshasai, Sreenivasa Rao Kondapally; Manson, JoAnn E; Price, Jackie F; Whincup, Peter H; Morris, Richard W; Lawlor, Debbie A; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J; Fornage, Myriam; Siscovick, David S; Cushman, Mary; Kumari, Meena; Wareham, Nick J; Verschuren, W M Monique; Redline, Susan; Patel, Sanjay R; Whittaker, John C; Hamsten, Anders; Delaney, Joseph A; Dale, Caroline; Gaunt, Tom R; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A; van der Harst, Pim; Brunner, Eric J; Tybjaerg-Hansen, Anne; Marmot, Michael G; Krauss, Ronald M; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C; Psaty, Bruce M; Lange, Leslie A; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E; Talmud, Philippa J; Kivimäki, Mika; Timpson, Nicholas J; Langenberg, Claudia; Asselbergs, Folkert W; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G; Reiner, Alex P; Keating, Brendan J; Hingorani, Aroon D; Sattar, Naveed; DIAGRAM Consortium, MAGIC Consortium, InterAct Consortium

    2014-01-01

    BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR

  5. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight : evidence from genetic analysis and randomised trials

    NARCIS (Netherlands)

    Swerdlow, Daniel I.; Preiss, David; Kuchenbaecker, Karoline B.; Holmes, Michael V.; Engmann, Jorgen E. L.; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C. D.; Scott, Robert A.; Leusink, Maarten; Verweij, Niek; Sharp, Stephen J.; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, Kawah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A.; Drenos, Fotios; Li, Yun R.; Lowe, Gordon; Gallacher, John; Stewart, Marlene C. W.; Tzoulaki, Ioanna; Buxbaum, Sarah G.; Daphne, L. van der A.; Forouhi, Nita G.; Onland-Moret, N. Charlotte; van der Schouw, Yvonne T.; Schnabel, Renate B.; Hubacek, Jaroslav A.; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Roman; Stepaniak, Urszula; Malyutina, Sofi A.; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; de Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J. Wouter; Westendorp, Rudi G. J.; de Borst, Gert Jan; de Jong, Pim A.; Algra, Ale; Spiering, Wilko; Maitland-van der Zee, Anke H.; Klungel, Olaf H.; de Boer, Anthonius; Doevendans, Pieter A.; Eaton, Charles B.; Robinson, Jennifer G.; Duggan, David; Kjekshus, John; Downs, John R.; Gotto, Antonio M.; Keech, Anthony C.; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S.; Poulter, Neil R.; Waters, David D.; Pedersen, Terje R.; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J. V.; Lewsey, James D.; Chasman, Daniel I.; Ridker, Paul M.; Maggioni, Aldo P.; Tavazzi, Luigi; Ray, Kausik K.; Seshasai, Sreenivasa Rao Kondapally; Manson, Joann E.; Price, Jackie F.; Whincup, Peter H.; Morris, Richard W.; Lawlor, Debbie A.; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J.; Fornage, Myriam; Siscovick, David S.; Cushman, Mary; Kumari, Meena; Wareham, Nick J.; Verschuren, W. M. Monique; Redline, Susan; Patel, Sanjay R.; Whittaker, John C.; Hamsten, Anders; Delaney, Joseph A.; Dale, Caroline; Gaunt, Tom R.; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A.; van der Harst, Pim; Brunner, Eric J.; Tybjaerg-Hansen, Anne; Marmot, Michael G.; Krauss, Ronald M.; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C.; Psaty, Bruce M.; Lange, Leslie A.; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E.; Talmud, Philippa J.; Kivimaeki, Mika; Timpson, Nicholas J.; Langenberg, Claudia; Asselbergs, Folkert W.; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G.; Reiner, Alex P.; Keating, Brendan J.; Hingorani, Aroon D.; Sattar, Naveed; Wijmenga, T. N.

    2015-01-01

    BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR

  6. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight : Evidence from genetic analysis and randomised trials

    NARCIS (Netherlands)

    Swerdlow, Daniel I.; Preiss, David; Kuchenbaecker, Karoline B.; Holmes, Michael V.; Engmann, Jorgen E L; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C D; Scott, Robert A.; Leusink, Maarten; Verweij, Niek; Sharp, Stephen J.; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, Kawah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A.; Drenos, Fotios; Li, Yun R.; Lowe, Gordon; Gallacher, John; Stewart, Marlene C W; Tzoulaki, Ioanna; Buxbaum, Sarah G.; Van Der A, Daphne L.; Forouhi, Nita G.; Onland-Moret, N. Charlotte|info:eu-repo/dai/nl/26504362X; Van Der Schouw, Yvonne T.|info:eu-repo/dai/nl/073449253; Schnabel, Renate B.; Hubacek, Jaroslav A.; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Romanvan; Stepaniak, Urszula; Malyutina, Sofia; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; De Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J. Wouter; Westendorp, Rudi G J; De Borst, Gert Jan|info:eu-repo/dai/nl/237108151; De Jong, Pim A.|info:eu-repo/dai/nl/287955672; Algra, Ale|info:eu-repo/dai/nl/07483472X; Spiering, Wilko|info:eu-repo/dai/nl/269114173; Der Zee, Anke H Maitland Van; Klungel, Olaf H.|info:eu-repo/dai/nl/181447649; De Boer, Anthonius; Doevendans, Pieter A.|info:eu-repo/dai/nl/164248366; Eaton, Charles B.; Robinson, Jennifer G.; Duggan, David; Kjekshus, John; Downs, John R.; Gotto, Antonio M.; Keech, Anthony C.; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S.; Poulter, Neil R.; Waters, David D.; Pedersen, Terje R.; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J V; Lewsey, James D.; Chasman, Daniel I.; Ridker, Paul M.; Maggioni, Aldo P.; Tavazzi, Luigi; Ray, Kausik K.; Seshasai, Sreenivasa Rao Kondapally; Manson, Joann E.; Price, Jackie F.; Whincup, Peter H.; Morris, Richard W.; Lawlor, Debbie A.; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J.; Fornage, Myriam; Siscovick, David S.; Cushman, Mary; Kumari, Meena; Wareham, Nick J.; Verschuren, W. M Monique|info:eu-repo/dai/nl/071858849; Redline, Susan; Patel, Sanjay R.; Whittaker, John C.; Hamsten, Anders; Delaney, Joseph A.; Dale, Caroline; Gaunt, Tom R.; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A.; Van Der Harst, Pim; Brunner, Eric J.; Tybjaerg-Hansen, Anne; Marmot, Michael G.; Krauss, Ronald M.; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C.; Psaty, Bruce M.; Lange, Leslie A.; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E.; Talmud, Philippa J.; Kivimäki, Mika; Timpson, Nicholas J.; Langenberg, Claudia; Asselbergs, Folkert W.|info:eu-repo/dai/nl/270752137; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G.; Reiner, Alex P.; Keating, Brendan J.; Hingorani, Aroon D.; Sattar, Naveed

    2015-01-01

    Background Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. Methods We used single nucleotide polymorphisms in the HMGCR

  7. Acyl-CoA: cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase in carp-liver microsomes: effect of cold acclimation on enzyme activities and on hepatic and plasma lipid composition.

    Science.gov (United States)

    Teichert, T; Wodtke, E

    1992-12-02

    Hepatic microsomal activities of acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, rate-limiting enzymes in cholesterol esterification and cholesterol synthesis, and the concentration sand compartmentalization of esterified and unesterified cholesterol, were studied in carp acclimated to 10 and 30 degrees C. Irrespective of acclimation temperature, carp-liver ACAT is characterized by an apparent Km-value for oleoyl-CoA of 11-15 microM and displays an optimum activity at pH 7.4. The enzyme activity is reduced approx. 2-fold upon preincubation of microsomes with alkaline phosphatase. Arrhenius plots of ACAT-activity are curvilinear, with curvatures considerably affected by the acclimation temperature of the fish. Carp HMG-CoA reductase has been characterized previously by Teichert and Wodtke ((1987) Biochim. Biophys. Acta 920, 161-170). When measured at 30 degrees C, ACAT activities from 30 degrees C- and 10 degrees C-acclimated carp are identical (approx. 6 pmol/min per mg protein), whilst 'expressed' HMG-CoA reductase activity (18.1 +/- 12.2 pmol/min per mg protein for 30 degrees C-acclimated carp vs. 159.8 +/- 106.6 pmol/min per mg protein for 10 degrees C-acclimated carp) is enhanced 9-fold in the cold environment. This disparity indicates that cold-acclimation results in a massive increase in the capacity for hepatic cholesterol synthesis relative to hepatic cholesterol esterification. At the same time, hepatic compositional analysis reveals identical contents of unesterified cholesterol in either groups of carp but significantly decreased (3-fold) amounts in cholesterol ester (and also in triacylglycerol, 4-fold) in cold-acclimated carp. Moreover, microsomal fractions display lower cholesterol to phospholipid ratios in the cold. In contrast, concentrations of either cholesterol fractions (and of triacylglycerols) in plasma--the mobile compartment for lipoprotein transport--do not differ in cold- and warm

  8. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  9. A 6-month trial of simvastatin (HMG-CoA reductase inhibitor) in the ...

    African Journals Online (AJOL)

    1991-06-01

    Jun 1, 1991 ... on a lipid-lowering diet as prescribed by the Nutrition Com- mittee of the American Heart Association.16 The patients were seen by a dietitian at .... Clinical signs of hypercholesterolaemia considered were tendon xanthomas. arcus cornealis and xanthelasma. Patients with familial hypercholesterolaemia ...

  10. [Effect of HMG-CoA reductase inhibitors on the erythrocyte membrane].

    Science.gov (United States)

    Rabini, R A; Antosiewicz, J; Staffolani, R; Polenta, M; Testa, I; Mazzanti, L

    1991-02-01

    We studied 10 patients affected by primary hypercholesterolemia treated with placebo for 1 month and with simvastatin (20 mg die) for 6 months during a double-blind clinical trial. At 1-month intervals we determined the following parameters in the serum: total and HDL-cholesterol, triglycerides, apolipoprotein A1 and B. At the same time intervals, we also determined the cholesterol and phospholipid concentration, the Na+/K+ ATPase activity and the fluidity of the erythrocyte membranes. Our results demonstrated the following modifications in the erythrocyte membranes during simvastatin treatment: 1) an initial increase in the cholesterol concentration and in the cholesterol/phospholipid ratio, with a significant decrease only after 4 months; 2) a similar behaviour of membrane fluidity, with an initial decrease and an elevation after 4 months; 3) an increase in the Na+/K+ ATPase activity only after 4 months. We hypothesize that simvastatin not only inhibits the hepatic synthesis of cholesterol, but also modifies the cholesterol exchange between plasma and the erythrocyte membrane.

  11. Determination of HMG-CoA reductase inhibitors by micellar electrokinetic chromatography

    Directory of Open Access Journals (Sweden)

    Mircia Eleonora

    2016-06-01

    Full Text Available Objective: In this study we report the development of a simple, rapid and efficient capillary electrophoresis method for the simultaneous determination of atorvastatin, fluvastatin, lovastatin and simvastin.

  12. HMG CoA reductase inhibitors (statins for people with chronic kidney disease not requiring dialysis

    Directory of Open Access Journals (Sweden)

    Suetonia C. Palmer

    Full Text Available ABSTRACT BACKGROUND: Cardiovascular disease (CVD is the most frequent cause of death in people with early stages of chronic kidney disease (CKD, for whom the absolute risk of cardiovascular events is similar to people who have existing coronary artery disease. This is an update of a review published in 2009, and includes evidence from 27 new studies (25,068 participants in addition to the 26 studies (20,324 participants assessed previously; and excludes three previously included studies (107 participants. This updated review includes 50 studies (45,285 participants; of these 38 (37,274 participants were meta-analysed. OBJECTIVES: To evaluate the benefits (such as reductions in all-cause and cardiovascular mortality, major cardiovascular events, MI and stroke; and slow progression of CKD to end-stage kidney disease (ESKD and harms (muscle and liver dysfunction, withdrawal, and cancer of statins compared with placebo, no treatment, standard care or another statin in adults with CKD who were not on dialysis. METHODS: Search methods: We searched the Cochrane Renal Group's Specialised Register to 5 June 2012 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. Selection criteria: Randomised controlled trials (RCTs and quasi-RCTs that compared the effects of statins with placebo, no treatment, standard care, or other statins, on mortality, cardiovascular events, kidney function, toxicity, and lipid levels in adults with CKD not on dialysis were the focus of our literature searches. Data collection and analysis: Two or more authors independently extracted data and assessed study risk of bias. Treatment effects were expressed as mean difference (MD for continuous outcomes (lipids, creatinine clearance and proteinuria and risk ratio (RR for dichotomous outcomes (major cardiovascular events, all-cause mortality, cardiovascular mortality, fatal or non-fatal myocardial infarction (MI, fatal or non-fatal stroke, ESKD, elevated liver enzymes, rhabdomyolysis, cancer and withdrawal rates with 95% confidence intervals (CI. MAIN RESULTS: We included 50 studies (45,285 participants: 47 studies (39,820 participants compared statins with placebo or no treatment and three studies (5547 participants compared two different statin regimens in adults with CKD who were not yet on dialysis. We were able to meta-analyse 38 studies (37,274 participants. The risk of bias in the included studies was high. Seven studies comparing statins with placebo or no treatment had lower risk of bias overall; and were conducted according to published protocols, outcomes were adjudicated by a committee, specified outcomes were reported, and analyses were conducted using intention-to-treat methods. In placebo or no treatment controlled studies, adverse events were reported in 32 studies (68% and systematically evaluated in 16 studies (34%. Compared with placebo, statin therapy consistently prevented major cardiovascular events (13 studies, 36,033 participants; RR 0.72, 95% CI 0.66 to 0.79, all-cause mortality (10 studies, 28,276 participants; RR 0.79, 95% CI 0.69 to 0.91, cardiovascular death (7 studies, 19,059 participants; RR 0.77, 95% CI 0.69 to 0.87 and MI (8 studies, 9018 participants; RR 0.55, 95% CI 0.42 to 0.72. Statins had uncertain effects on stroke (5 studies, 8658 participants; RR 0.62, 95% CI 0.35 to 1.12. Potential harms from statin therapy were limited by lack of systematic reporting and were uncertain in analyses that had few events: elevated creatine kinase (7 studies, 4514 participants; RR 0.84, 95% CI 0.20 to 3.48, liver function abnormalities (7 studies, RR 0.76, 95% CI 0.39 to 1.50, withdrawal due to adverse events (13 studies, 4219 participants; RR 1.16, 95% CI 0.84 to 1.60, and cancer (2 studies, 5581 participants; RR 1.03, 95% CI 0.82 to 130. Statins had uncertain effects on progression of CKD. Data for relative effects of intensive cholesterol lowering in people with early stages of kidney disease were sparse. Statins clearly reduced risks of death, major cardiovascular events, and MI in people with CKD who did not have CVD at baseline (primary prevention. AUTHORS' CONCLUSIONS: Statins consistently lower death and major cardiovascular events by 20% in people with CKD not requiring dialysis. Statin-related effects on stroke and kidney function were found to be uncertain and adverse effects of treatment are incompletely understood. Statins have an important role in primary prevention of cardiovascular events and mortality in people who have CKD.

  13. A 6-month trial of simvastatin (HMG-CoA reductase inhibitor) in the ...

    African Journals Online (AJOL)

    The rest of the adverse experiences were not severe enough to terminate the use of simvastatin and included gastro-intestinal tract symptoms, dizziness, conjunctivitis, pruritus and the aggravation of eczema. Aspartate aminotransferase, alanine aminotransferase and creatine kinase values were raised in a significant ...

  14. A 6-month trial of simvastatin (HMG-CoA reductase inhibitor) in the ...

    African Journals Online (AJOL)

    1991-06-01

    Jun 1, 1991 ... prevent myocardial infarction (MI) has been illustrated by a number of large multicentre drug ... means of a strict cholesterol-lowering diet and other lifestyle modifications. A significant number of .... and/or myocardial infarction and/or had had coronary artery bypass surgery. ECG changes considered were Q ...

  15. Development of Clinical Data Mart of HMG-CoA Reductase Inhibitor for Varied Clinical Research.

    Science.gov (United States)

    Kim, Hun Sung; Kim, Hyunah; Jeong, Yoo Jin; Kim, Tong Min; Yang, So Jung; Baik, Sun Jung; Lee, Seung Hwan; Cho, Jae Hyoung; Choi, In Young; Yoon, Kun Ho

    2017-03-01

    The increasing use of electronic medical record (EMR) systems for documenting clinical medical data has led to EMR data being increasingly accessed for clinical trials. In this study, a database of patients who were prescribed statins for the first time was developed using EMR data. A clinical data mart (CDM) was developed for cohort study researchers. Seoul St. Mary's Hospital implemented a clinical data warehouse (CDW) of data for ~2.8 million patients, 47 million prescription events, and laboratory results for 150 million cases. We developed a research database from a subset of the data on the basis of a study protocol. Data for patients who were prescribed a statin for the first time (between the period from January 1, 2009 to December 31, 2015), including personal data, laboratory data, diagnoses, and medications, were extracted. We extracted initial clinical data of statin from a CDW that was established to support clinical studies; the data was refined through a data quality management process. Data for 21,368 patients who were prescribed statins for the first time were extracted. We extracted data every 3 months for a period of 1 year. A total of 17 different statins were extracted. It was found that statins were first prescribed by the endocrinology department in most cases (69%, 14,865/21,368). Study researchers can use our CDM for statins. Our EMR data for statins is useful for investigating the effectiveness of treatments and exploring new information on statins. Using EMR is advantageous for compiling an adequate study cohort in a short period.

  16. Purificación de una actividad HMG-CoA reductasa fosfatasa tipo 1 de la fracción microsomal de hígado de rata

    OpenAIRE

    Asins Muñoz, Guillermina

    1989-01-01

    El enzima hidroxi-3-metil-glutaril coenzima A reductasa (HMG-CoA reductasa) es el principal enzima regulador de la vía de síntesis del colesterol. Al igual que otros muchos enzimas, éste intercambia sus estados inactivo o activo por fosforilación / desfosforilación reversible, dependiendo su nivel de actividad del grado de fosforilación. En estudios "in vitro" se ha demostrado que en el mecanismo de fosforilación reversible intervienen HMG-CoA reductasa quinasas y HMG-CoA reductasa fosfatasas...

  17. Relationship between Lipid Phenotypes, Overweight, Lipid Lowering Drug Response and KIF6 and HMG-CoA Genotypes in a Subset of the Brisighella Heart Study Population

    Directory of Open Access Journals (Sweden)

    Sabrina Angelini

    2017-12-01

    Full Text Available The existence of genetic traits might explain the susceptibility to develop hypercholesterolemia and the inter-individual differences in statin response. This study was performed to evaluate whether individuals’ polymorphisms in HMG-CoA and KIF6 genes are independently associated with hypercholesterolemia, other lipid-associated traits, and statin response in unselected individuals enrolled in the Brisighella heart study (Survey 2012. A total of 1622 individuals, of which 183 under statin medication, were genotyped for a total of five polymorphisms (KIF6 rs20455, rs9471077, rs9462535; HMG-CoA rs3761740, rs3846662. The relationships between the five loci and clinical characteristics were analyzed. The principal basic parameters calculated on 12 h fasting blood included total cholesterol (TC, High Density Lipoprotein Cholesterol (HDL-C, Low-Density Lipoprotein Cholesterol (LDL-C, and triglycerides (TG. Hypercholesterolemia was defined as a TC >200 mg/dL or use of lipid-lowering medication. 965 individuals were characterized by hypercholesterolemia; these subjects were significantly older (p < 0.001, with body mass index (BMI and waist circumference significantly higher (p < 0.001 compared to the others. HMG-CoA rs3846662 GG genotype was significantly over-represented in the hypercholesterolemic group (p = 0.030. HMG-CoA rs3846662 genotype was associated with the level of TC and LDL-C. Furthermore, in the same subset of untreated subjects, we observed a significant correlation between the KIF6 rs20455 and HDL-C. KIF6 variants were associated with a significantly lower (rs20455 or higher (rs9471077 and rs9462535 risk of obesity, in males only. No association between responsiveness to statins and the polymorphisms under investigation were observed. Our results showed associations between HMG-CoA rs3846662 and KIF6 rs20455 and lipid phenotypes, which may have an influence on dyslipidemia-related events. Moreover, this represents the first study

  18. Peroxisomal trans-2-enoyl-CoA reductase is involved in phytol degradation.

    Science.gov (United States)

    Gloerich, J; Ruiter, J P N; van den Brink, D M; Ofman, R; Ferdinandusse, S; Wanders, R J A

    2006-04-03

    Phytol is a naturally occurring precursor of phytanic acid. The last step in the conversion of phytol to phytanoyl-CoA is the reduction of phytenoyl-CoA mediated by an, as yet, unidentified enzyme. A candidate for this reaction is a previously described peroxisomal trans-2-enoyl-CoA reductase (TER). To investigate this, human TER was expressed in E. coli as an MBP-fusion protein. The purified recombinant protein was shown to have high reductase activity towards trans-phytenoyl-CoA, but not towards the peroxisomal beta-oxidation intermediates C24:1-CoA and pristenoyl-CoA. In conclusion, our results show that human TER is responsible for the reduction of phytenoyl-CoA to phytanoyl-CoA in peroxisomes.

  19. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials

    Science.gov (United States)

    Swerdlow, Daniel I; Preiss, David; Kuchenbaecker, Karoline B; Holmes, Michael V; Engmann, Jorgen E L; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C D; Scott, Robert A; Leusink, Maarten; Verweij, Niek; Sharp, Stephen J; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, KaWah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A; Drenos, Fotios; Li, Yun R; Lowe, Gordon; Gallacher, John; Stewart, Marlene C W; Tzoulaki, Ioanna; Buxbaum, Sarah G; van der A, Daphne L; Forouhi, Nita G; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Schnabel, Renate B; Hubacek, Jaroslav A; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Romanvan; Stepaniak, Urszula; Malyutina, Sofia; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; de Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J Wouter; Westendorp, Rudi G J; de Borst, Gert Jan; de Jong, Pim A; Algra, Ale; Spiering, Wilko; der Zee, Anke H Maitland-van; Klungel, Olaf H; de Boer, Anthonius; Doevendans, Pieter A; Eaton, Charles B; Robinson, Jennifer G; Duggan, David; Kjekshus, John; Downs, John R; Gotto, Antonio M; Keech, Anthony C; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S; Poulter, Neil R; Waters, David D; Pedersen, Terje R; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J V; Lewsey, James D; Chasman, Daniel I; Ridker, Paul M; Maggioni, Aldo P; Tavazzi, Luigi; Ray, Kausik K; Seshasai, Sreenivasa Rao Kondapally; Manson, JoAnn E; Price, Jackie F; Whincup, Peter H; Morris, Richard W; Lawlor, Debbie A; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J; Fornage, Myriam; Siscovick, David S; Cushman, Mary; Kumari, Meena; Wareham, Nick J; Verschuren, W M Monique; Redline, Susan; Patel, Sanjay R; Whittaker, John C; Hamsten, Anders; Delaney, Joseph A; Dale, Caroline; Gaunt, Tom R; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A; van der Harst, Pim; Brunner, Eric J; Tybjaerg-Hansen, Anne; Marmot, Michael G; Krauss, Ronald M; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C; Psaty, Bruce M; Lange, Leslie A; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E; Talmud, Philippa J; Kivimäki, Mika; Timpson, Nicholas J; Langenberg, Claudia; Asselbergs, Folkert W; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G; Reiner, Alex P; Keating, Brendan J; Hingorani, Aroon D; Sattar, Naveed

    2015-01-01

    Summary Background Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. Methods We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis. Findings Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05–0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18–0·43), waist circumference (0·32 cm, 0·16–0·47), plasma insulin concentration (1·62%, 0·53–2·72), and plasma glucose concentration (0·23%, 0·02–0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00–1·05); the rs12916-T allele association was consistent (1·06, 1·03–1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18–1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10–0·38 in all trials; 0·33 kg, 95% CI 0·24–0·42 in placebo or standard care controlled trials and −0·15 kg, 95% CI −0·39 to 0·08 in intensive

  20. Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola.

    Science.gov (United States)

    Bond-Watts, Brooks B; Weeks, Amy M; Chang, Michelle C Y

    2012-08-28

    The production of fatty acids is an important cellular pathway for both cellular function and the development of engineered pathways for the synthesis of advanced biofuels. Despite the conserved reaction chemistry of various fatty acid synthase systems, the individual isozymes that catalyze these steps are quite diverse in their structural and biochemical features and are important for controlling differences at the cellular level. One of the key steps in the fatty acid elongation cycle is the enoyl-ACP (CoA) reductase function that drives the equilibrium forward toward chain extension. In this work, we report the structural and biochemical characterization of the trans-enoyl-CoA reductase from Treponema denticola (tdTer), which has been utilized for the engineering of synthetic biofuel pathways with an order of magnitude increase in product titers compared to those of pathways constructed with other enoyl-CoA reductase components. The crystal structure of tdTer was determined to 2.00 Å resolution and shows that the Ter enzymes are distinct from members of the FabI, FabK, and FabL families but are highly similar to members of the FabV family. Further biochemical studies show that tdTer uses an ordered bi-bi mechanism initiated by binding of the NADH redox cofactor, which is consistent with the behavior of other enoyl-ACP (CoA) reductases. Mutagenesis of the substrate binding loop, characterization of enzyme activity with respect to crotonyl-CoA, hexenoyl-CoA, and dodecenoyl-CoA substrates, and product inhibition by lauroyl-CoA suggest that this region is important for controlling chain length specificity, with the major portal playing a more important role for longer chain length substrates.

  1. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower...

  2. Characterization of a cinnamoyl-CoA reductase gene in Ginkgo ...

    African Journals Online (AJOL)

    Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) catalyzes key steps in the biosynthesis of monolignols, which serve as building blocks in the formation of plant lignin. ... The expression analysis by quantitative real-time polymerase chain reaction (QRT-PCR showed that GbCCR was seen in a tissue specific manner in Ginkgo ...

  3. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    Science.gov (United States)

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.

  4. A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola.

    Science.gov (United States)

    Tucci, Sara; Martin, William

    2007-04-17

    An NADH-dependent trans-2-enoyl-CoA reductase (EC1.1.1.36) from the Gram negative spirochete Treponema denticola was identified, expressed and biochemically characterized. The recombinant protein is a monomeric enzyme with a molecular mass of 44 kDa with a specific activity of 43+/-4.8 U/mg (micromol mg(-1)min(-1)) and K(m) value of 2.7 microM for crotonoyl-CoA. This NADH-dependent trans-2-enoyl-CoA reductase represents the first enzymatically characterized member of a prokaryotic protein family involved in a fatty acid synthesis pathway that is distinct from the familiar fatty acid synthase system.

  5. Comparative evaluation of HMG CoA reductase inhibitors in experimentally-induced myocardial necrosis: Biochemical, morphological and histological studies.

    Science.gov (United States)

    Variya, Bhavesh C; Patel, Snehal S; Trivedi, Jinal I; Gandhi, Hardik P; Rathod, S P

    2015-10-05

    The present study was carried out to evaluate the protective effect of different statins on isoproterenol (ISO) induced myocardial necrosis. Atorvastatin, rosuvastatin, fluvastatin, simvastatin and pravastatin (10 mg/kg/day) were administered for 12 weeks. After pretreatment of 12 weeks myocardial necrosis was induced by subsequent injection of ISO (85 mg/kg/day, s.c.) to wistar rats. Serum biochemical parameters like glucose, lipid profile, cardiac markers and transaminases were evaluated. Animals were killed and heart was excised for histopathology and antioxidant study. Statins pretreated rats showed significant protection against ISO induced elevation in serum biochemical parameters and serum level of cardiac marker enzymes and transaminase level as compared to ISO control group. Mild to moderate protection was observed in different statins treated heart in histopathology and TTC stained sections. Result from our study also revealed that statins could efficiently protect against ISO intoxicated myocardial necrosis by impairing membrane bound enzyme integrity and endogenous antioxidant enzyme levels. Amongst all statins used, rosuvastatin and pravastatin were found to have maximum cardio-protective activity against ISO induced myocardial necrosis as compared to other statins. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Inhibition of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (Ex Vivo by Morus indica (Mulberry

    Directory of Open Access Journals (Sweden)

    Vanitha Reddy Palvai

    2014-01-01

    Full Text Available Phytochemicals are the bioactive components that contribute to the prevention of cardiovascular and other degenerative diseases. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA reductase would be an effective means of lowering plasma cholesterol in humans. The present study explores the HMG CoA reductase inhibitory effect of extracts from leaves of Morus indica varieties, M5, V1, and S36, compared with the statin, using an ex vivo method. The assay is based on the stoichiometric formation of coenzyme A during the reduction of microsomal HMG CoA to mevalonate. Dechlorophyllised extract of three varieties was studied at 300 µg. The coenzyme A released at the end of assay in control (100.31 nmoles and statins (94.46 nm was higher than the dechlorphyllised extracts of the samples. The coenzyme A released during the reduction of HMG CoA to mevalonate in dechlorophyllised extracts of the samples was as follows: S36 < M5 < V1. The results indicated that the samples were highly effective in inhibiting the enzyme compared to statins (standard drug. The results indicate the role of Morus varieties extracts in modulating the cholesterol metabolism by inhibiting the activity of HMG CoA reductase. These results provide scope for designing in vivo animal studies to confirm their effect.

  7. Statins: 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity

    Digital Repository Service at National Institute of Oceanography (India)

    Puttananjaiah, M.H.; Dhale, M.A.; Gaonkar, V.; Keni, S.

    induced oxidative damage to biological molecules [9]. It is now recognized that free radical species are responsible for numerous types of cell damage, membrane peroxidation, DNA modification, enzyme inactivation and oxidation of proteins [10]. Free... - ). Uncontrolled, generated free radicals are very unstable and react rapidly with other chemical groups or substances in the body, leading to cell or tissue injury. Moreover, uncontrolled lipid peroxidation is involved in the occurrence of numerous chronic...

  8. Inhibition of carnitine palmitoyltransferase leads to induction of 3-hydroxymethylglutaryl coenzyme A reductase activity in rat liver

    NARCIS (Netherlands)

    H. Jansen (Hans); N. Hoogerbrugge van der Linden (N.); W.C. Hülsmann (William)

    1990-01-01

    markdownabstractAbstract The relation between carnitine palmitoyltransferase (CPT) activity and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity was investigated. Rats were treated with aminocarnitine or 1-carnitine overnight. In rats, in which CPT activity was inhibited by

  9. Cloning and expression analysis of cinnamoyl-CoA reductase (CCR genes in sorghum

    Directory of Open Access Journals (Sweden)

    Jieqin Li

    2016-05-01

    Full Text Available Cinnamoyl-CoA reductase (CCR is the first enzyme in the monolignol-specific branch of the lignin biosynthetic pathway. In this research, three sorghum CCR genes including SbCCR1, SbCCR2-1 and SbCCR2-2 were cloned and characterized. Analyses of the structure and phylogeny of the three CCR genes showed evolutionary conservation of the functional domains and divergence of function. Transient expression assays in Nicotiana benthamiana leaves demonstrated that the three CCR proteins were localized in the cytoplasm. The expression analysis showed that the three CCR genes were induced by drought. But in 48 h, the expression levels of SbCCR1 and SbCCR2-2 did not differ between CK and the drought treatment; while the expression level of SbCCR2-1 in the drought treatment was higher than in CK. The expression of the SbCCR1 and SbCCR2-1 genes was not induced by sorghum aphid [Melanaphis sacchari (Zehntner] attack, but SbCCR2-2 was significantly induced by sorghum aphid attack. It is suggested that SbCCR2-2 is involved in the process of pest defense. Absolute quantitative real-time PCR revealed that the three CCR genes were mainly expressed in lignin deposition organs. The gene copy number of SbCCR1 was significantly higher than those of SbCCR2-1 and SbCCR2-2 in the tested tissues, especially in stem. The results provide new insight into the functions of the three CCR genes in sorghum.

  10. Cloning and expression analysis of cinnamoyl-CoA reductase (CCR) genes in sorghum.

    Science.gov (United States)

    Li, Jieqin; Fan, Feifei; Wang, Lihua; Zhan, Qiuwen; Wu, Peijin; Du, Junli; Yang, Xiaocui; Liu, Yanlong

    2016-01-01

    Cinnamoyl-CoA reductase (CCR) is the first enzyme in the monolignol-specific branch of the lignin biosynthetic pathway. In this research, three sorghum CCR genes including SbCCR1, SbCCR2-1 and SbCCR2-2 were cloned and characterized. Analyses of the structure and phylogeny of the three CCR genes showed evolutionary conservation of the functional domains and divergence of function. Transient expression assays in Nicotiana benthamiana leaves demonstrated that the three CCR proteins were localized in the cytoplasm. The expression analysis showed that the three CCR genes were induced by drought. But in 48 h, the expression levels of SbCCR1 and SbCCR2-2 did not differ between CK and the drought treatment; while the expression level of SbCCR2-1 in the drought treatment was higher than in CK. The expression of the SbCCR1 and SbCCR2-1 genes was not induced by sorghum aphid [Melanaphis sacchari (Zehntner)] attack, but SbCCR2-2 was significantly induced by sorghum aphid attack. It is suggested that SbCCR2-2 is involved in the process of pest defense. Absolute quantitative real-time PCR revealed that the three CCR genes were mainly expressed in lignin deposition organs. The gene copy number of SbCCR1 was significantly higher than those of SbCCR2-1 and SbCCR2-2 in the tested tissues, especially in stem. The results provide new insight into the functions of the three CCR genes in sorghum.

  11. Molecular Characterization of Two Fatty Acyl-CoA Reductase Genes From Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Li, Xiaolong; Zheng, Tianxiang; Zheng, Xiaowen; Han, Na; Chen, Xuexin; Zhang, Dayu

    2016-01-01

    Fatty acyl-CoA reductases (FARs) are key enzymes involved in fatty alcohol synthesis. Here, we cloned and characterized full-length cDNAs of two FAR genes from the cotton mealybug, Phenacoccus solenopsis. The results showed PsFAR I and PsFAR II cDNAs were 1,584 bp and 1,515 bp in length respectively. Both PsFAR I and PsFAR II were predicted to be located in the endoplasmic reticulum by Euk-mPLoc 2.0 approach. Both of them had a Rossmann folding region and a FAR_C region. Two conservative motifs were discovered in Rossmann folding region by sequence alignment including a NADPH combining motif, TGXXGG, and an active site motif, YXXXK. A phylogenetic tree made using MEGA 6.06 indicated that PsFAR I and PsFAR II were placed in two different branches. Gene expression analysis performed at different developmental stages showed that the expression of PsFar I is significantly higher than that of PsFar II in first and second instar nymphs and in male adults. Spirotetramat treatment at 125 mg/liter significantly increased the expression of PsFar I in third instar nymphs, but there was no effect in the expression of PsFar II Our results indicated these two FAR genes showed different expression patterns during insect development and after pesticide treatment, suggesting they play different roles in insect development and detoxification against pesticides. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  12. Function of human mitochondrial 2,4-dienoyl-CoA reductase and rat monofunctional Delta3-Delta2-enoyl-CoA isomerase in beta-oxidation of unsaturated fatty acids.

    OpenAIRE

    Gurvitz, A.; Wabnegger, L; Yagi, A I; Binder, M.; Hartig, A; Ruis, H; B. Hamilton; Dawes, I W; Hiltunen, J K; Rottensteiner, H.

    1999-01-01

    Human 2,4-dienoyl-CoA reductase (2,4-reductase; DECR) and rat monofunctional Delta(3)-Delta(2)-enoyl-CoA isomerase (rat 3, 2-isomerase; ECI) are thought to be mitochondrial auxiliary enzymes involved in the beta-oxidation of unsaturated fatty acids. However, their function during this process has not been demonstrated. Although they lack obvious peroxisomal targeting signals (PTSs), both proteins have been suggested previously to also occur in the mammalian peroxisomal compartment. The putati...

  13. The association of albuminuria and high-sensitivity C-reactive protein with the efficacy of HMG-coenzyme A reductase inhibitors for cardiovascular event prevention.

    Science.gov (United States)

    Özyilmaz, Akin; Boersma, Cornelis; Visser, Sipke T; Postma, Maarten J; de Jong-van den Berg, Lolkje Tw; Lambers-Heerspink, Hiddo J; de Jong, Paul E; Gansevoort, Ron T

    2016-05-01

    It is not clear which hypercholesterolemic patients benefit most from β-hydroxy-β-methylglutaryl coenzyme A reductase inhibitors with respect to the prevention of cardiovascular events. Early signs of atherosclerotic vascular damage may identify high-risk patients. We studied whether subjects with hypercholesterolemia will benefit more from starting statin treatment in the case of high albuminuria and/or high-sensitivity C-reactive protein (hsCRP). Included were subjects who had hypercholesterolemia at baseline, a negative cardiovascular disease history and who were not treated with statins. In total, 2011 subjects were analysed, of whom 695 started with a statin during a follow-up of 7.0 ± 1.7 years. Adjusted hazard ratios (HRs) for cardiovascular events were calculated in subjects who started versus those who did not start a statin stratified for albuminuria less than or ≥ 15 mg/day and/or hsCRP less than or ≥ 3 mg/L. The start of a statin was associated with a beneficial effect on cardiovascular risk in subjects with high albuminuria (HR 0.38 (0.23-0.60)), while the effect of starting a statin was non-significant in subjects with low albuminuria (HR 0.74 (0.44-1.24), P for interaction albuminuria and hsCRP subgroups, the start of statin treatment was associated with a lower risk of cardiovascular events dependent on albuminuria and not on the hsCRP level. The start of statin treatment is associated with a significantly lower absolute as well as relative risk of cardiovascular events in subjects with hypercholesterolemia and elevated albuminuria, whereas these drugs had less effect in subjects with normal albuminuria. © The European Society of Cardiology 2015.

  14. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression.

    Science.gov (United States)

    Schadeweg, Virginia; Boles, Eckhard

    2016-01-01

    n-Butanol can serve as an excellent gasoline substitute. Naturally, it is produced by some Clostridia species which, however, exhibit only limited suitability for industrial n-butanol production. The yeast Saccharomyces cerevisiae would be an ideal host due to its high robustness in fermentation processes. Nevertheless, n-butanol yields and titers obtained so far with genetically engineered yeast strains are only low. In our recent work, we showed that n-butanol production via a clostridial acetoacetyl-CoA-derived pathway in engineered yeast was limited by the availability of coenzyme A (CoA) and cytosolic acetyl-CoA. Increasing their levels resulted in a strain producing up to 130 mg/L n-butanol under anaerobic conditions. Here, we show that under aerobic conditions. this strain can even produce up to 235 mg/L n-butanol probably due to a more efficient NADH re-oxidation. Nevertheless, expression of a bacterial water-forming NADH oxidase (nox) significantly reduced n-butanol production although it showed a positive effect on growth and glucose consumption. Screening for an improved version of an acetyl-CoA forming NAD(+)-dependent acetylating acetaldehyde dehydrogenase, adhE(A267T/E568K/R577S), and its integration into n-butanol-producing strain further improved n-butanol production. Moreover, deletion of the competing NADP(+)-dependent acetaldehyde dehydrogenase Ald6 had a superior effect on n-butanol formation. To increase the endogenous supply of CoA, amine oxidase Fms1 was overexpressed together with pantothenate kinase coaA from Escherichia coli, and could completely compensate the beneficial effect on n-butanol synthesis of addition of pantothenate to the medium. By overexpression of each of the enzymes of n-butanol pathway in the n-butanol-producing yeast strain, it turned out that trans-2-enoyl-CoA reductase (ter) was limiting n-butanol production. Additional overexpression of ter finally resulted in a yeast strain producing n-butanol up to a titer of 0

  16. DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: A potential antiviral target.

    Directory of Open Access Journals (Sweden)

    Rubén Soto-Acosta

    2017-04-01

    Full Text Available Dengue is the most common mosquito-borne viral disease in humans. Changes of lipid-related metabolites in endoplasmic reticulum of dengue virus (DENV infected cells have been associated with replicative complexes formation. Previously, we reported that DENV infection inhibits HMGCR phosphorylation generating a cholesterol-enriched cellular environment in order to favor viral replication. In this work, using enzymatic assays, ELISA, and WB we found a significant higher activity of HMGCR in DENV infected cells, associated with the inactivation of AMPK. AMPK activation by metformin declined the HMGCR activity suggesting that AMPK inactivation mediates the enhanced activity of HMGCR. A reduction on AMPK phosphorylation activity was observed in DENV infected cells at 12 and 24 hpi. HMGCR and cholesterol co-localized with viral proteins NS3, NS4A and E, suggesting a role for HMGCR and AMPK activity in the formation of DENV replicative complexes. Furthermore, metformin and lovastatin (HMGCR inhibitor altered this co-localization as well as replicative complexes formation supporting that active HMGCR is required for replicative complexes formation. In agreement, metformin prompted a significant dose-dependent antiviral effect in DENV infected cells, while compound C (AMPK inhibitor augmented the viral genome copies and the percentage of infected cells. The PP2A activity, the main modulating phosphatase of HMGCR, was not affected by DENV infection. These data demonstrate that the elevated activity of HMGCR observed in DENV infected cells is mediated through AMPK inhibition and not by increase in PP2A activity. Interestingly, the inhibition of this phosphatase showed an antiviral effect in an HMGCR-independent manner. These results suggest that DENV infection increases HMGCR activity through AMPK inactivation leading to higher cholesterol levels in endoplasmic reticulum necessary for replicative complexes formation. This work provides new information about the mechanisms involved in host lipid metabolism during DENV replicative cycle and identifies new potential antiviral targets for DENV replication.

  17. Exercise-Induced Anaphylaxis in an Air Force Aviator Taking a HMG-CoA Reductase Inhibitor: A Case Report and Review of the Presentation, Diagnoses, and Treatment.

    Science.gov (United States)

    Kahl, Chad Gregory; Deas, Crystal

    2017-05-01

    A 46-year-old healthy male Air Force pilot presented to the emergency department (ED) experiencing symptoms of exercise-induced anaphylaxis (EIAn), during a vigorous outdoor run. The patient recovered in the ED and was seen, subsequently, by a civilian allergist; eventually a diagnosis consistent with EIAn was made. EIAn is a rare but potentially life-threatening syndrome believed to involve IgE mediated release of histamine and other immunoactive compounds, during or after exercise. The diagnosis is determined by a strong clinical suspicion along with careful exclusion of other potential diagnoses. Interestingly, this particular patient was also found to have a possible correlation between the introduction of 3-hydroxy-3-methylglutaryl-coenzyme A, for hyperlipidemia, shortly before his first episode of EIAn, and remission of the condition since discontinuing the statin medication. A detailed review of the clinical notes, ED presentation, and all subspecialty consultation notes were include in the compilation of this case report, in conjunction with a careful review of all current literature pertaining to drug exacerbated, exercise-induced EIAn. The review of literature was also conducted to review potential mechanisms of this particular hypersensitivity reaction, and to give a thorough discussion of the history and presentation of this disorder. The patient described in this case was successfully treated over a 2-year period, with exercise modifications and a daily second generation antihistamine. Nearly a year after his initial diagnoses, in an acute visit to the flight medicine clinic for muscle soreness and elevated creatine kinase isoenzymes, the patient's medication profile was reviewed and his statin medication was discontinued. The clinical notes revealed that the statin was started a few months before his first onset of EIAn, and following its discontinuation, the patient has been asymptomatic for over a year, exercising regularly, and completed a successful forward deployment to an austere desert environment. To our knowledge, this is the first reported case of possible statin exacerbated, EIAn. Data concerning the incidence of drug-induced hypersensitivity to statins are limited as is any discussion on prevalence of EIAn in adult populations. There have been, however, case reports documenting statin immunological effects on serum IgE levels, which may offer a potential mechanism of statin-exacerbated EIAn. However, the role of IgE antibodies in drug-induced anaphylactic reactions remains unclear. In this patient's case, there was no measure of statin-specific immune reactivity performed; however, the timing of statin initiation of monotherapy in relation to presentation of EIAn strongly supports the diagnosis of statin-exacerbated EIAn. Although the mechanisms involving statin-induced EIAn remain elusive, this case report illustrates the need for military providers to recognize this condition and cofactors that may contribute to its genesis. Moreover, this case also illustrates the need for increased research and surveillance of this condition in civilian and military populations. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  18. DIETARY-CHOLESTEROL INDUCED DOWN-REGULATION OF INTESTINAL 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE-ACTIVITY IS DIMINISHED IN RABBITS WITH HYPERRESPONSE OF SERUM-CHOLESTEROL TO DIETARY-CHOLESTEROL

    NARCIS (Netherlands)

    MEIJER, GW; SMIT, MJ; VANDERPALEN, JGP; KUIPERS, F; VONK, RJ; VANZUTPHEN, BFM; BEYNEN, AC

    Key enzymes of cholesterol metabolism were studied in two inbred strains of rabbits with hyper- or hyporesponse of serum cholesterol to dietary cholesterol. Baseline 3-hydroxy-3-methylglutaryl (HMG)CoA reductase activity in liver was similar in hypo- and hyperresponders, but that in intestine was

  19. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis.

    Science.gov (United States)

    Hoffmeister, Meike; Piotrowski, Markus; Nowitzki, Ulrich; Martin, William

    2005-02-11

    Under anaerobiosis, Euglena gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. An important enzyme of this unusual pathway is trans-2-enoyl-CoA reductase (EC 1.3.1.44), which catalyzes reduction of enoyl-CoA to acyl-CoA. Trans-2-enoyl-CoA reductase from Euglena was purified 1700-fold to electrophoretic homogeneity and was active with NADH and NADPH as the electron donor. The active enzyme is a monomer with molecular mass of 44 kDa. The amino acid sequence of tryptic peptides determined by electrospray ionization mass spectrometry were used to clone the corresponding cDNA, which encoded a polypeptide that, when expressed in Escherichia coli and purified by affinity chromatography, possessed trans-2-enoyl-CoA reductase activity close to that of the enzyme purified from Euglena. Trans-2-enoyl-CoA reductase activity is present in mitochondria and the mRNA is expressed under aerobic and anaerobic conditions. Using NADH, the recombinant enzyme accepted crotonyl-CoA (km=68 microm) and trans-2-hexenoyl-CoA (km=91 microm). In the crotonyl-CoA-dependent reaction, both NADH (km=109 microm) or NADPH (km=119 microm) were accepted, with 2-3-fold higher specific activities for NADH relative to NADPH. Trans-2-enoyl-CoA reductase homologues were not found among other eukaryotes, but are present as hypothetical reading frames of unknown function in sequenced genomes of many proteobacteria and a few Gram-positive eubacteria, where they occasionally occur next to genes involved in fatty acid and polyketide biosynthesis. Trans-2-enoyl-CoA reductase assigns a biochemical activity, NAD(P)H-dependent acyl-CoA synthesis from enoyl-CoA, to one member of this gene family of previously unknown function.

  20. Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR.

    Science.gov (United States)

    Chao, Nan; Li, Ning; Qi, Qi; Li, Shuang; Lv, Tong; Jiang, Xiang-Ning; Gai, Ying

    2017-01-01

    Two distinct cinnamoyl-coenzyme A reductases (CCRs) from Populus tomentosa were cloned and studied and active sites in CCRs were further identified based on sequence divergence, molecular simulation, and site-directed mutants. Cinnamoyl-coenzyme A (CoA) reductase (CCR) is the first committed gene in the lignin-specific pathway and plays a role in the lignin biosynthesis pathway. In this study, we cloned 11 genes encoding CCR or CCR-like proteins in Populus tomentosa. An enzymatic assay of the purified recombinant P. tomentosa (Pto) CCR and PtoCCR-like proteins indicated that only PtoCCR1 and PtoCCR7 had detectable activities toward hydroxycinnamoyl-CoA esters. PtoCCR1 exhibited specificity for feruloyl-CoA, with no detectable activity for any other hydroxycinnamoyl-CoA esters. However, PtoCCR7 catalyzed p-coumaroyl-CoA, caffeoyl-CoA, feruloyl-CoA, and sinapoyl-CoA with a preference for feruloyl-CoA. Site-directed mutations of selected amino acids divergent between PtoCCR1 and 7, combined with modeling and docking, showed that A132 in CCR7 combined with the catalytic triad might comprise the catalytic center. In CCR7, L192, F155, and H208 were identified as the substrate-binding sites, and site-directed mutations of these amino acids showed obvious changes in catalytic efficiency with respect to both feruloyl-CoA and sinapoyl-CoA. Mutant F155Y exhibited greater catalytic efficiency for sinapoyl-CoA compared with that of wild-type PtoCCR7. Finally, recent genome duplication events provided the foundation for CCR divergence. This study further identified the active sites in CCRs and the evolutionary process of CCRs in terrestrial plants.

  1. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase.

    Science.gov (United States)

    Van Acker, Rebecca; Leplé, Jean-Charles; Aerts, Dirk; Storme, Véronique; Goeminne, Geert; Ivens, Bart; Légée, Frédéric; Lapierre, Catherine; Piens, Kathleen; Van Montagu, Marc C E; Santoro, Nicholas; Foster, Clifton E; Ralph, John; Soetaert, Wim; Pilate, Gilles; Boerjan, Wout

    2014-01-14

    Lignin is one of the main factors determining recalcitrance to enzymatic processing of lignocellulosic biomass. Poplars (Populus tremula x Populus alba) down-regulated for cinnamoyl-CoA reductase (CCR), the enzyme catalyzing the first step in the monolignol-specific branch of the lignin biosynthetic pathway, were grown in field trials in Belgium and France under short-rotation coppice culture. Wood samples were classified according to the intensity of the red xylem coloration typically associated with CCR down-regulation. Saccharification assays under different pretreatment conditions (none, two alkaline, and one acid pretreatment) and simultaneous saccharification and fermentation assays showed that wood from the most affected transgenic trees had up to 161% increased ethanol yield. Fermentations of combined material from the complete set of 20-mo-old CCR-down-regulated trees, including bark and less efficiently down-regulated trees, still yielded ∼ 20% more ethanol on a weight basis. However, strong down-regulation of CCR also affected biomass yield. We conclude that CCR down-regulation may become a successful strategy to improve biomass processing if the variability in down-regulation and the yield penalty can be overcome.

  2. Silencing of NbECR encoding a putative enoyl-CoA reductase results in disorganized membrane structures and epidermal cell ablation in Nicotiana benthamiana.

    Science.gov (United States)

    Park, Jong-A; Kim, Tae-Wuk; Kim, Seong-Ki; Kim, Woo Taek; Pai, Hyun-Sook

    2005-08-15

    The very long chain fatty acids (VLCFAs) are synthesized by the microsomal fatty acid elongation system in plants. We investigated cellular function of NbECR putatively encoding enoyl-CoA reductase that catalyzes the last step of VLCFA elongation in Nicotiana benthamiana. Virus-induced gene silencing of NbECR produced necrotic lesions with typical cell death symptoms in leaves. In the affected tissues, ablation of the epidermal cell layer preceded disintegration of the whole leaf cell layers, and disorganized cellular membrane structure was evident. The amount of VLCFAs was reduced in the NbECR VIGS lines, suggesting NbECR function in elongation of VLCFAs. The results demonstrate that NbECR encodes a putative enoyl-CoA reductase and that the NbECR activity is essential for membrane biogenesis in N. benthamiana.

  3. Hydroxymethylglutaryl-CoA Reductase Inhibitors in Older Persons with Acute Myocardial Infarction: Evidence for an Age–Statin Interaction

    Science.gov (United States)

    Foody, JoAnne Micale; Rathore, Saif S.; Galusha, Deron; Masoudi, Frederick A.; Havranek, Edward P.; Radford, Martha J.; Krumholz, Harlan M.

    2009-01-01

    OBJECTIVES To characterize the relationship between hydroxymethylglutaryl-CoA reductase inhibitors (statins) and outcomes in older persons with acute myocardial infarction (AMI). DESIGN Observational study. SETTING Acute care hospitals in the United States from April 1998 to June 2001. PARTICIPANTS Medicare patients aged 65 and older with a principal discharge diagnosis of AMI (N = 65,020) who did and did not receive a discharge prescription for statins. MEASUREMENTS The primary outcome of interest was all-cause mortality at 3 years after discharge. RESULTS Of 23,013 patients with AMI assessed, 5,513 (24.0%) were receiving a statin at discharge. Nearly 40% of eligible patients (n =8,452) were aged 80 and older, of whom 1,310 (15.5%) were receiving a statin at discharge. In a multivariable model taking into account demographic, clinical, physician and hospital characteristics, and propensity score, discharge statin therapy was associated with significantly lower 3-year mortality (hazard ratio (HR) =0.89 (95% confidence interval (CI) =0.83–0.96)). In an analysis stratified by age, discharge statins were associated with lower mortality in patients younger than 80 (HR =0.84, 95% CI =0.76–0.92) but not in those aged 80 and older (HR =0.97, 95% CI =0.87–1.09). CONCLUSION Statin therapy is associated with lower mortality in older patients with AMI younger than 80 but not in those aged 80 and older, as a group. This finding questions whether statin efficacy data in younger patients can be broadly applied to the very old and indicates the need for further study of this group. PMID:16551308

  4. Association of Cognitive Impairment in Patients on 3-Hydroxy-3-Methyl-Glutaryl-CoA Reductase Inhibitors.

    Science.gov (United States)

    Roy, Satyajeet; Weinstock, Joshua Louis; Ishino, Allyse Sachiko; Benites, Jefferson Felix; Pop, Samantha Rachel; Perez, Christopher David; Gumbs, Edvard Adrian; Rosenbaum, Jennifer Ann; Roccato, Mary Kate; Shah, Hely; Contino, Gabriela; Hunter, Krystal

    2017-07-01

    Atherosclerotic cardiovascular diseases are the leading cause of death in the United States. A reduction in cholesterol with 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statin) significantly reduces mortality and morbidity. Statins may be associated with cognitive impairment or dementia. Our aim was to study the association of cognitive impairment or dementia in patients who were on a statin. Electronic medical records of 3,500 adult patients in our suburban internal medicine office were reviewed. There were 720 (20.6%) patients in the statin treatment group. Dementia or cognitive impairment was an associated comorbid condition in 7.9% patients in the statin treatment group compared to 3.1% patients in the non-statin group (P impairment or dementia showed that among the age ranges of 51 years through 100 years, the patients in the statin treatment group had a higher prevalence of cognitive impairment or dementia compared to the non-statin group. In the statin treatment group, we found significantly higher prevalence of hyperlipidemia (86.3%), hypertension (69.6%), diabetes mellitus (36.0%), osteoarthritis (31.5%), coronary artery disease (26.1%), hypothyroidism (21.5%) and depression (19.3%) compared to the non-statin group (P impairment were on statin therapy compared to 18.9% patients who had no dementia or cognitive impairment and were on statin therapy (P impairment with each year increase in age (1.3 times), in women (2.2 times), African American race (2.7 times), non-consumption of moderate amount of alcohol (two times), diabetes mellitus (1.6 times), hypothyroidism (1.7 times), cerebrovascular accident (3.2 times), and other rheumatological diseases (1.8 times). The association of dementia or cognitive impairment was significantly higher in the patients who were on statin therapy compared to the patients who were not on a statin.

  5. Influencia de la alimentación sobre la evolución diurna de la biosíntesis del colesterol en pollo : Efecto sobre la HMG-CoA reductasa y la composición lipidica microsomal

    OpenAIRE

    Ramírez Rodrigo, Hilario

    2013-01-01

    Se han estudiado las propiedades del enzima clave de la regulación de la biosíntesis del colesterol la hmg-coa reductasa inherentes a su condición de enzima ligado a membranas microsomales. Se ha estudiado su patrón diurno de actividad así como la velocidad total de síntesis de esteroles en hígado asa duodenal y cerebro de pollos recién nacidos poniéndose de manifiesto variaciones rítmicas diurnas en ambos parámetros de hígado e intestino. Se ha establecido asimismo sobre ellos y sobre la com...

  6. Anaerobic poly-3-D-hydroxybutyrate production from xylose in recombinant Saccharomyces cerevisiae using a NADH-dependent acetoacetyl-CoA reductase.

    Science.gov (United States)

    de Las Heras, Alejandro Muñoz; Portugal-Nunes, Diogo J; Rizza, Nathasha; Sandström, Anders G; Gorwa-Grauslund, Marie F

    2016-11-18

    Poly-3-D-hydroxybutyrate (PHB) that is a promising precursor for bioplastic with similar physical properties as polypropylene, is naturally produced by several bacterial species. The bacterial pathway is comprised of the three enzymes β-ketothiolase, acetoacetyl-CoA reductase (AAR) and PHB synthase, which all together convert acetyl-CoA into PHB. Heterologous expression of the pathway genes from Cupriavidus necator has enabled PHB production in the yeast Saccharomyces cerevisiae from glucose as well as from xylose, after introduction of the fungal xylose utilization pathway from Scheffersomyces stipitis including xylose reductase (XR) and xylitol dehydrogenase (XDH). However PHB titers are still low. In this study the acetoacetyl-CoA reductase gene from C. necator (CnAAR), a NADPH-dependent enzyme, was replaced by the NADH-dependent AAR gene from Allochromatium vinosum (AvAAR) in recombinant xylose-utilizing S. cerevisiae and PHB production was compared. A. vinosum AAR was found to be active in S. cerevisiae and able to use both NADH and NADPH as cofactors. This resulted in improved PHB titers in S. cerevisiae when xylose was used as sole carbon source (5-fold in aerobic conditions and 8.4-fold under oxygen limited conditions) and PHB yields (4-fold in aerobic conditions and up to 5.6-fold under oxygen limited conditions). Moreover, the best strain was able to accumulate up to 14% of PHB per cell dry weight under fully anaerobic conditions. This study reports a novel approach for boosting PHB accumulation in S. cerevisiae by replacement of the commonly used AAR from C. necator with the NADH-dependent alternative from A. vinosum. Additionally, to the best of our knowledge, it is the first demonstration of anaerobic PHB synthesis from xylose.

  7. Structures of trans-2-enoyl-CoA reductases from Clostridium acetobutylicum and Treponema denticola: insights into the substrate specificity and the catalytic mechanism.

    Science.gov (United States)

    Hu, Kuan; Zhao, Meng; Zhang, Tianlong; Zha, Manwu; Zhong, Chen; Jiang, Yu; Ding, Jianping

    2013-01-01

    TERs (trans-2-enoyl-CoA reductases; EC 1.3.1.44), which specifically catalyse the reduction of crotonyl-CoA to butyryl-CoA using NADH as cofactor, have recently been applied in the design of robust synthetic pathways to produce butan-1-ol as a biofuel. We report in the present paper the characterization of a CaTER (a TER homologue in Clostridium acetobutylicum), the structures of CaTER in apo form and in complexes with NADH and NAD+, and the structure of TdTER (Treponema denticola TER) in complex with NAD+. Structural and sequence comparisons show that CaTER and TdTER share approximately 45% overall sequence identity and high structural similarities with the FabV class enoyl-acyl carrier protein reductases in the bacterial fatty acid synthesis pathway, suggesting that both types of enzymes belong to the same family. CaTER and TdTER function as monomers and consist of a cofactor-binding domain and a substrate-binding domain with the catalytic active site located at the interface of the two domains. Structural analyses of CaTER together with mutagenesis and biochemical data indicate that the conserved Glu75 determines the cofactor specificity, and the conserved Tyr225, Tyr235 and Lys244 play critical roles in catalysis. Upon cofactor binding, the substrate-binding loop changes from an open conformation to a closed conformation, narrowing a hydrophobic channel to the catalytic site. A modelling study shows that the hydrophobic channel is optimal in both width and length for the binding of crotonyl-CoA. These results provide molecular bases for the high substrate specificity and the catalytic mechanism of TERs.

  8. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    Science.gov (United States)

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.

  9. Dual functions of the trans-2-enoyl-CoA reductase TER in the sphingosine 1-phosphate metabolic pathway and in fatty acid elongation.

    Science.gov (United States)

    Wakashima, Takeshi; Abe, Kensuke; Kihara, Akio

    2014-09-05

    The sphingolipid metabolite sphingosine 1-phosphate (S1P) functions as a lipid mediator and as a key intermediate of the sole sphingolipid to glycerophospholipid metabolic pathway (S1P metabolic pathway). In this pathway, S1P is converted to palmitoyl-CoA through 4 reactions, then incorporated mainly into glycerophospholipids. Although most of the genes responsible for the S1P metabolic pathway have been identified, the gene encoding the trans-2-enoyl-CoA reductase, responsible for the saturation step (conversion of trans-2-hexadecenoyl-CoA to palmitoyl-CoA) remains unidentified. In the present study, we show that TER is the missing gene in mammals using analyses involving yeast cells, deleting the TER homolog TSC13, and TER-knockdown HeLa cells. TER is known to be involved in the production of very long-chain fatty acids (VLCFAs). A significant proportion of the saturated and monounsaturated VLCFAs are used for sphingolipid synthesis. Therefore, TER is involved in both the production of VLCFAs used in the fatty acid moiety of sphingolipids as well as in the degradation of the sphingosine moiety of sphingolipids via S1P. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie [Nankai; (Chinese Aca. Sci.)

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  11. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Gallagher William M

    2010-04-01

    Full Text Available Abstract Background Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. Methods HMG-CoAR expression was assessed using immunohistochemistry (IHC on tissue microarrays (TMA consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS. Results Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46 of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012. Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93; p = 0.03 when adjusted for established prognostic factors such as residual disease, tumour stage and grade. Conclusion HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.

  12. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer.

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2010-01-01

    BACKGROUND: Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. METHODS: HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). RESULTS: Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. CONCLUSION: HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.

  13. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2010-04-01

    Abstract Background Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. Methods HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). Results Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. Conclusion HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.

  14. Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a Cinnamoyl CoA reductase gene.

    Science.gov (United States)

    Giordano, Andrea; Liu, Zhiqian; Panter, Stephen N; Dimech, Adam M; Shang, Yongjin; Wijesinghe, Hewage; Fulgueras, Karen; Ran, Yidong; Mouradov, Aidyn; Rochfort, Simone; Patron, Nicola J; Spangenberg, German C

    2014-06-01

    C4 grasses are favoured as forage crops in warm, humid climates. The use of C4 grasses in pastures is expected to increase because the tropical belt is widening due to global climate change. While the forage quality of Paspalum dilatatum (dallisgrass) is higher than that of other C4 forage grass species, digestibility of warm-season grasses is, in general, poor compared with most temperate grasses. The presence of thick-walled parenchyma bundle-sheath cells around the vascular bundles found in the C4 forage grasses are associated with the deposition of lignin polymers in cell walls. High lignin content correlates negatively with digestibility, which is further reduced by a high ratio of syringyl (S) to guaiacyl (G) lignin subunits. Cinnamoyl-CoA reductase (CCR) catalyses the conversion of cinnamoyl CoA to cinnemaldehyde in the monolignol biosynthetic pathway and is considered to be the first step in the lignin-specific branch of the phenylpropanoid pathway. We have isolated three putative CCR1 cDNAs from P. dilatatum and demonstrated that their spatio-temporal expression pattern correlates with the developmental profile of lignin deposition. Further, transgenic P. dilatatum plants were produced in which a sense-suppression gene cassette, delivered free of vector backbone and integrated separately to the selectable marker, reduced CCR1 transcript levels. This resulted in the reduction of lignin, largely attributable to a decrease in G lignin.

  15. Tobacco rattle virus (TRV) based silencing of cotton enoyl-CoA reductase (ECR) gene and the role of very long chain fatty acids in normal leaf development and resistance to wilt disease

    Science.gov (United States)

    A Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of Enoyl-CoA reductase (GhECR) in pathogen defense. Amino acid sequence al...

  16. Two modes of regulation of the fatty acid elongase ELOVL6 by the 3-ketoacyl-CoA reductase KAR in the fatty acid elongation cycle.

    Directory of Open Access Journals (Sweden)

    Tatsuro Naganuma

    Full Text Available Fatty acids (FAs are diverse molecules, and such diversity is important for lipids to exert their functions under several environmental conditions. FA elongation occurs at the endoplasmic reticulum and produces a variety of FA species; the FA elongation cycle consists of four distinct enzyme reactions. For this cycle to be driven efficiently, there must exist coordinated regulation of protein components of the FA elongation machinery. However, such regulation is poorly understood. In the present study, we performed biochemical analyses using the FA elongase ELOVL6 and the 3-ketoacyl-CoA reductase KAR, which catalyze the first and second steps of the FA elongation cycle, respectively. In vitro FA elongation assays using membrane fractions demonstrated that ELOVL6 activity was enhanced ∼10-fold in the presence of NADPH, although ELOVL6 itself did not require NADPH for its catalysis. On the other hand, KAR does use NADPH as a reductant in its enzyme reaction. Activity of purified ELOVL6 was enhanced by ∼3-fold in the presence of KAR. This effect was KAR enzyme activity-independent, since it was observed in the absence of NADPH and in the KAR mutant. However, ELOVL6 enzyme activity was further enhanced in a KAR enzyme activity-dependent manner. Therefore, KAR regulates ELOVL6 via two modes. In the first mode, KAR may induce conformational changes in ELOVL6 to become structure that can undergo catalysis. In the second mode, conversion of 3-ketoacyl-CoA to 3-hydroxyacyl-CoA by KAR may facilitate release of the product from the presumed ELOVL6-KAR complex.

  17. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.

    Science.gov (United States)

    Kildegaard, Kanchana R; Jensen, Niels B; Schneider, Konstantin; Czarnotta, Eik; Özdemir, Emre; Klein, Tobias; Maury, Jérôme; Ebert, Birgitta E; Christensen, Hanne B; Chen, Yun; Kim, Il-Kwon; Herrgård, Markus J; Blank, Lars M; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-03-15

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents

  18. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    Science.gov (United States)

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2008-10-01

    Full Text Available Abstract Lowering plasma low density lipoprotein-cholesterol (LDL-C, blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a β blocker, and an angiotensin converting enzyme (ACE inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by ~80%. Essential fatty acids (EFAs and their long-chain metabolites: γ-linolenic acid (GLA, dihomo-GLA (DGLA, arachidonic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA and other products such as prostaglandins E1 (PGE1, prostacyclin (PGI2, PGI3, lipoxins (LXs, resolvins, protectins including neuroprotectin D1 (NPD1 prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-γ ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of ω-3 and ω-6 fatty acids and the co-factors that are necessary for their appropriate action/metabolism is as beneficial as that of the combined use of a statin, thiazide, a β blocker, and an angiotensin converting enzyme (ACE inhibitor, folic acid, and aspirin. Furthermore, appropriate combination of ω-3 and ω-6 fatty acids may even show additional benefits in the form of protection from depression, schizophrenia, Alzheimer's disease, and enhances cognitive function; and serve as endogenous anti-inflammatory molecules; and could be administered from childhood for life long.

  20. Double-blind, randomized, placebo-controlled study of high-dose HMG CoA reductase inhibitor therapy on ventricular remodeling, pro-inflammatory cytokines and neurohormonal parameters in patients with chronic systolic heart failure.

    Science.gov (United States)

    Krum, Henry; Ashton, Emma; Reid, Christopher; Kalff, Victor; Rogers, Jim; Amarena, John; Singh, Bhuwan; Tonkin, Andrew

    2007-02-01

    Statins decrease mortality in patients with coronary artery disease. However, chronic heart failure (CHF) patients were often excluded in such trials. Statins possess pharmacologic properties (independent of cholesterol lowering) that may be beneficial on ventricular remodeling in such patients. We conducted a 6-month randomized placebo (PBO)-controlled study of rosuvastatin (ROS) in patients with systolic (left ventricular ejection fraction [LVEF] ventriculogram. Secondary end points included change in echocardiographic parameters, neurohormonal and inflammatory markers, Packer composite score, death, and heart failure hospitalization. Patients were well matched for baseline values. Compared with PBO (n = 46), ROS patients (n = 40) had a decrease in low-density lipoprotein cholesterol (PBO +3, ROS -54%, P ventriculogram (PBO +5.3, ROS +3.2%), fractional shortening by echocardiographic (PBO +2.7, ROS +1.8%), left ventricular end-diastolic diameter (PBO -1.7, ROS +0.8 mm), left ventricular end-systolic diameter (PBO -1.9, ROS +0.1 mm). Plasma norepinephrine, endothelin-1, brain natriuretic peptide, hsCRP, tumor necrosis factor-alpha and interleukin-6, patient global assessment, Packer composite, death/heart failure hospitalization, and adverse events were similar between PBO and ROS. Despite being safe and effective at decreasing plasma cholesterol, high-dose ROS did not beneficially alter parameters of LV remodeling. Reasons for absence of benefit are uncertain, but may include patient population studied, high dose of ROS used or high use of effective background CHF medications.

  1. Molecular cloning, characterization and expression analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Centella asiatica L.

    Science.gov (United States)

    Kalita, Ratna; Patar, Lochana; Shasany, Ajit Kumar; Modi, Mahendra K; Sen, Priyabrata

    2015-09-01

    3-Hydroxy-3-methylglutaryl-CoA reductases (HMGR) plays an important role in catalyzing the first committed step of isoprenoid biosynthesis in the mevelonic (MVA) pathway (catalyzes the conversion of HMG-CoA to MVA) in plants. The present manuscript reports the full length cDNA cloning of HMGR (CaHMGR, GenBank accession number: KJ939450.2) and its characterization from Centella asiatica. Sequence analysis indicated that the cDNA was of 1965 bp, which had an open reading frame of 1617 bp and encoded a protein containing 539 amino-acids with a mol wt of 57.9 kDa. A BLASTp search against non-redundant (nr) protein sequence showed that C. asiatica HMGR (CaHMGR) has 65-81% identity with HMGRs from different plant species and multi-alignment comparison analysis showed the presence of two motif each corresponding to HMG-CoA-binding and NADP(H)-binding. The Conserved Domain Database analysis predicted that CaHMGR belongs to Class I hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase. Three-dimensional modeling confirmed the novelty of CaHMGR with a spatial structure similar to Homo sapiens (PDB id: 1IDQ8_A). Tissue Expression analysis indicates that CaHMGR is ubiquitous albeit differentially expressed among different tissues analysed, Strong expression was recorded in the nodes and leaves and low in the roots. The present investigation confirmed that nodes are vital to terpenoid synthesis in C. asiatica. Thus, the cloning of full length CDS, characterization and structure-function analysis of HMGR gene in Centella facilitate to understand the HMGR's functions and regulatory mechanisms involved in mevalonate pathway in C. asiatica at genetic level.

  2. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Rebecca S Bart

    2010-09-01

    Full Text Available Rice NH1 (NPR1 homolog 1 is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo, constitutive expression of defense related genes and enhanced benzothiadiazole (BTH- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

  3. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis.

    Science.gov (United States)

    Zheng, Huanquan; Rowland, Owen; Kunst, Ljerka

    2005-05-01

    In the absence of cell migration, plant architecture is largely determined by the direction and extent of cell expansion during development. In this report, we show that very-long-chain fatty acid (VLCFA) synthesis plays an essential role in cell expansion. The Arabidopsis thaliana eceriferum10 (cer10) mutants exhibit severe morphological abnormalities and reduced size of aerial organs. These mutants are disrupted in the At3g55360 gene, previously identified as a gene coding for enoyl-CoA reductase (ECR), an enzyme required for VLCFA synthesis. The absence of ECR activity results in a reduction of cuticular wax load and affects VLCFA composition of seed triacylglycerols and sphingolipids, demonstrating in planta that ECR is involved in all VLCFA elongation reactions in Arabidopsis. Epidermal and seed-specific silencing of ECR activity resulted in a reduction of cuticular wax load and the VLCFA content of seed triacylglycerols, respectively, with no effects on plant morphogenesis, suggesting that the developmental phenotypes arise from abnormal sphingolipid composition. Cellular analysis revealed aberrant endocytic membrane traffic and defective cell expansion underlying the morphological defects of cer10 mutants.

  4. Tobacco Rattle Virus-Based Silencing of Enoyl-CoA Reductase Gene and Its Role in Resistance Against Cotton Wilt Disease.

    Science.gov (United States)

    Mustafa, Roma; Hamza, Muhammad; Kamal, Hira; Mansoor, Shahid; Scheffler, Jodi; Amin, Imran

    2017-07-01

    A Tobacco rattle virus (TRV)-based virus-induced gene silencing assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of the Enoyl-CoA reductase (GhECR) gene in pathogen defense. Amino acid sequence alignment of Arabidopsis ECR with homologous sequence from G. hirsutum, G. arboreum, G. herbaceum and G. barbadense showed that ECRs are highly conserved among these species. TRV-based silencing of GhECR gene in G. hirsutum induced a cell death/necrotic lesion-like phenotype. Reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative PCR showed reduced GhECR mRNA levels in TRV inoculated plants. Three isolates of Verticillium dahliae (V. dahliae) and Fusarium oxysporum f. sp. vasinfectum (FOV) were used to infect GhECR-silenced plants. Out of 6 races of 2 pathogens, down regulation of GhECR gene resulted in reduced resistance. This is the first report showing that cotton GhECR gene is involved in resistance to different strains of V. dahliae and FOV.

  5. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif.

    Science.gov (United States)

    Song, Wen-Qiang; Qin, Yong-Mei; Saito, Mihoko; Shirai, Tsuyoshi; Pujol, François M; Kastaniotis, Alexander J; Hiltunen, J Kalervo; Zhu, Yu-Xian

    2009-01-01

    Very long chain fatty acids are important components of plant lipids, suberins, and cuticular waxes. Trans-2-enoyl-CoA reductase (ECR) catalyses the fourth reaction of fatty acid elongation, which is NADPH dependent. In the present study, the expression of two cotton ECR (GhECR) genes revealed by quantitative RT-PCR analysis was up-regulated during cotton fibre elongation. GhECR1 and 2 each contain open reading frames of 933 bp in length, both encoding proteins consisting of 310 amino acid residues. GhECRs show 32% identity to Saccharomyces cerevisiae Tsc13p at the deduced amino acid level, and the GhECR genes were able to restore the viability of the S. cerevisiae haploid tsc13-deletion strain. A putative non-classical NADPH-binding site in GhECR was predicted by an empirical approach. Site-directed mutagenesis in combination with gas chromatography-mass spectrometry analysis suggests that G(5X)IPXG presents a putative novel NADPH-binding motif of the plant ECR family. The data suggest that both GhECR genes encode functional enzymes harbouring non-classical NADPH-binding sites at their C-termini, and are involved in fatty acid elongation during cotton fibre development.

  6. Genetic modifications of Mecr reveal a role for mitochondrial 2-enoyl-CoA/ACP reductase in placental development in mice.

    Science.gov (United States)

    Nair, Remya R; Kerätär, Juha M; Autio, Kaija J; Masud, Ali J; Finnilä, Mikko A J; Autio-Harmainen, Helena I; Miinalainen, Ilkka J; Nieminen, Pentti A; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2017-06-01

    Mitochondrial fatty acid synthesis (mtFAS) is an underappreciated but highly conserved metabolic process, indispensable for mitochondrial respiration. It was recently reported that dysfunction of mtFAS causes childhood onset of dystonia and optic atrophy in humans (MEPAN). To study the role of mtFAS in mammals, we generated three different mouse lines with modifications of the Mecr gene, encoding mitochondrial enoyl-CoA/ACP reductase (Mecr). A knock-out-first type mutation, relying on insertion of a strong transcriptional terminator between the first two exons of Mecr, displayed embryonic lethality over a broad window of time and due to a variety of causes. Complete removal of exon 2 or replacing endogenous Mecr by its functional prokaryotic analogue fabI (Mecrtm(fabI)) led to more consistent lethality phenotypes and revealed a hypoplastic placenta. Analyses of several mitochondrial parameters indicate that mitochondrial capacity for aerobic metabolism is reduced upon disrupting mtFAS function. Further analysis of the synthetic Mecrtm(fabI) models disclosed defects in development of placental trophoblasts consistent with disturbed peroxisome proliferator-activated receptor signalling. We conclude that disrupted mtFAS leads to deficiency in mitochondrial respiration, which lies at the root of the observed pantropic effects on embryonic and placental development in these mouse models. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Enhancing production of ergosterol in Pichia pastoris GS115 by over-expression of 3-hydroxy-3-methylglutaryl CoA reductase from Glycyrrhiza uralensis.

    Science.gov (United States)

    Liu, Ying; Zhu, Xiaoqing; Li, Wendong; Wen, Hao; Gao, Ya; Liu, Yong; Liu, Chunsheng

    2014-04-01

    The rate-limiting enzyme in the mevalonic acid (MVA) pathway which can lead to triterpenoid saponin glycyrrhizic acid (GA) is 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR). In order to reveal the effect of copy number variation in the HMGR gene on the MVA pathway, the HMGR gene from Glycyrrhiza uralensis Fisch. (GuHMGR) was cloned and over-expressed in Pichia pastoris GS115. Six recombinant P. pastoris strains containing different copy numbers of the GuHMGR gene were obtained and the content of ergosterol was analyzed by HPLC. The results showed that all the recombinant P. pastoris strains contained more ergosterol than the negative control and the strains with 8 and 44 copies contained significantly more ergosterol than the other strains. However, as the copy number increased, the content of ergosterol showed an increasing-decreasing-increasing pattern. This study provides a rationale for increasing the content of GA through over-expressing the GuHMGR gene in cultivars of G. uralensis.

  8. HMG-box sequences from microbats homologous to the human SOX30 HMG-box.

    Science.gov (United States)

    Bullejos, M; Díaz de la Guardia, R; Barragán, M J; Sánchez, A

    2000-01-01

    SOX genes are a family of genes that encode for proteins which are characterised by the presence of a HMG-domain related to that of the mammalian sex-determining gene (SRY). By definition, the DNA binding domain of SOX genes is at least 50% identical to the 79 amino acid HMG domain of the SRY gene. We report here two HMG-box sequences from two microbat species (R. ferrumequinum and P. Pipistrellus) which were PCR amplified using a primer pair specific to the mouse Sry HMG-box. The high percentage of identity of this sequences with the human and mouse SOX30 HMG-box suggests that they are the SOX30 HMG-box for these two bat species.

  9. A Novel Cytosolic Isoform of Mitochondrial Trans-2-Enoyl-CoA Reductase Enhances Peroxisome Proliferator-Activated Receptor α Activity

    Directory of Open Access Journals (Sweden)

    Dong-Gyu Kim

    2014-06-01

    Full Text Available BackgroundMitochondrial trans-2-enoyl-CoA reductase (MECR is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα. However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα.MethodsTo identify the expression pattern of MECR and the cytosolic form of MECR (cMECR, we performed reverse transcription polymerase chain reaction (RT-PCR with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity.ResultsWe provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells.ConclusionWe found the cytosolic form of MECR (cMECR was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.

  10. The GATA and SORLIP motifs in the 3-hydroxy-3-methylglutaryl-CoA reductase promoter of Picrorhiza kurrooa for the control of light-mediated expression.

    Science.gov (United States)

    Kawoosa, Tabasum; Gahlan, Parul; Devi, Aribam Surbala; Kumar, Sanjay

    2014-03-01

    Light upregulates the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in Picrorhiza kurrooa, an endangered medicinal herb. Upstream sequences of HMGR of P. kurrooa (PropkHMGR) were analyzed in relation to its role in light-mediated regulation of gene expression. GATA motif in PropkHMGR exhibited stronger DNA-protein interaction with the nuclear extract of dark-exposed plants in contrast to SORLIP that exhibited stronger binding with the nuclear extract of light-exposed plants. Analysis of PropkHMGR (PropkHMGR-D1, -1,059/-1) and its deletion fragments PropkHMGR-D2 (-825/-1), PropkHMGR-D3 (-651/-1), PropkHMGR-D4 (-452/-1), and PropkHMGR-D5 (-101/-1) in Arabidopsis thaliana showed PropkHMGR to regulate gene expression [β-glucuronidase (GUS) was used as a reporter gene] at all the developmental stages but only in actively dividing tissues, excluding anthers. Whereas, PropkHMGR-D2 regulated GUS expression in relatively older seedlings but the expression was observed only in shoot apical meristem, root tips, and anthers. PropkHMGR-mediated gene expression was higher in dark as compared to that in the light in Arabidopsis across four temperatures studied. As opposed to the results in P. kurrooa, GATA motifs exhibited DNA-protein interaction with nuclear extract of light-exposed plants of Arabidopsis. SORLIP motifs in Arabidopsis also exhibited DNA-protein interaction with nuclear extract of light-exposed plants as in P. kurrooa. Data showed that (1) PropkHMGR regulated light-mediated gene expression and (2) GATA motif exhibited an inverse relationship between strength of DNA-protein interaction and the gene expression whereas the relationship was species specific for SORLIP.

  11. A Novel Cytosolic Isoform of Mitochondrial Trans-2-Enoyl-CoA Reductase Enhances Peroxisome Proliferator-Activated Receptor α Activity.

    Science.gov (United States)

    Kim, Dong-Gyu; Yoo, Jae Cheal; Kim, Eunju; Lee, Young-Sun; Yarishkin, Oleg V; Lee, Da Yong; Lee, Kun Ho; Hong, Seong-Geun; Hwang, Eun Mi; Park, Jae-Yong

    2014-06-01

    Mitochondrial trans-2-enoyl-CoA reductase (MECR) is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα. To identify the expression pattern of MECR and the cytosolic form of MECR (cMECR), we performed reverse transcription polymerase chain reaction (RT-PCR) with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity. We provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells. We found the cytosolic form of MECR (cMECR) was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.

  12. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway.

    Science.gov (United States)

    Eisa-Beygi, Shahram; Hatch, Gary; Noble, Sandra; Ekker, Marc; Moon, Thomas W

    2013-01-15

    Spontaneous intracranial hemorrhage is a debilitating form of stroke, often leading to death or permanent cognitive impairment. Many of the causative genes and the underlying mechanisms implicated in developmental cerebral-vascular malformations are unknown. Recent in vitro and in vivo studies in mice have shown inhibition of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway to be effective in stabilizing cranial vessels. Using a combination of pharmacological and genetic approaches to specifically inhibit the HMGCR pathway in zebrafish (Danio rerio), we demonstrate a requirement for this metabolic pathway in developmental vascular stability. Here we report that inhibition of HMGCR function perturbs cerebral-vascular stability, resulting in progressive dilation of blood vessels, followed by vessel rupture, mimicking cerebral cavernous malformation (CCM)-like lesions in humans and murine models. The hemorrhages in the brain are rescued by prior exogenous supplementation with geranylgeranyl pyrophosphate (GGPP), a 20-carbon metabolite of the HMGCR pathway, required for the membrane localization and activation of Rho GTPases. Consistent with this observation, morpholino-induced depletion of the β-subunit of geranylgeranyltransferase I (GGTase I), an enzyme that facilitates the post-translational transfer of the GGPP moiety to the C-terminus of Rho family of GTPases, mimics the cerebral hemorrhaging induced by the pharmacological and genetic ablation of HMGCR. In embryos with cerebral hemorrhage, the endothelial-specific expression of cdc42, a Rho GTPase involved in the regulation of vascular permeability, was significantly reduced. Taken together, our data reveal a metabolic contribution to the stabilization of nascent cranial vessels, requiring protein geranylgeranylation acting downstream of the HMGCR pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Functional, thermodynamics, structural and biological studies of in silico-identified inhibitors of Mycobacterium tuberculosis enoyl-ACP(CoA) reductase enzyme

    Science.gov (United States)

    Martinelli, Leonardo K. B.; Rotta, Mariane; Villela, Anne D.; Rodrigues-Junior, Valnês S.; Abbadi, Bruno L.; Trindade, Rogério V.; Petersen, Guilherme O.; Danesi, Giuliano M.; Nery, Laura R.; Pauli, Ivani; Campos, Maria M.; Bonan, Carla D.; de Souza, Osmar Norberto; Basso, Luiz A.; Santos, Diogenes S.

    2017-04-01

    Novel chemotherapeutics agents are needed to kill Mycobacterium tuberculosis, the main causative agent of tuberculosis (TB). The M. tuberculosis 2-trans-enoyl-ACP(CoA) reductase enzyme (MtInhA) is the druggable bona fide target of isoniazid. New chemotypes were previously identified by two in silico approaches as potential ligands to MtInhA. The inhibition mode was determined by steady-state kinetics for seven compounds that inhibited MtInhA activity. Dissociation constant values at different temperatures were determined by protein fluorescence spectroscopy. van’t Hoff analyses of ligand binding to MtInhA:NADH provided the thermodynamic signatures of non-covalent interactions (ΔH°, ΔS°, ΔG°). Phenotypic screening showed that five compounds inhibited in vitro growth of M. tuberculosis H37Rv strain. Labio_16 and Labio_17 compounds also inhibited the in vitro growth of PE-003 multidrug-resistant strain. Cytotoxic effects on Hacat, Vero and RAW 264.7 cell lines were assessed for the latter two compounds. The Labio_16 was bacteriostatic and Labio_17 bactericidal in an M. tuberculosis-infected macrophage model. In Zebrafish model, Labio_16 showed no cardiotoxicity whereas Labio_17 showed dose-dependent cardiotoxicity. Accordingly, a model was built for the MtInhA:NADH:Labio_16 ternary complex. The results show that the Labio_16 compound is a direct inhibitor of MtInhA, and it may represent a hit for the development of chemotherapeutic agents to treat TB.

  14. Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2 trial: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    McAuley Daniel F

    2012-09-01

    Full Text Available Abstract Background Acute lung injury (ALI is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2 trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI. Methods/Design Patients fulfilling the American-European Consensus Conference Definition of ALI will be randomized in a 1:1 ratio to receive enteral simvastatin 80 mg or placebo once daily for a maximum of 28 days. Allocation to randomized groups will be stratified with respect to hospital of recruitment and vasopressor requirement. Data will be recorded by participating ICUs until hospital discharge, and surviving patients will be followed up by post at 3, 6 and 12 months post randomization. The primary outcome is number of ventilator-free days to day 28. Secondary outcomes are: change in oxygenation index and sequential organ failure assessment score up to day 28, number of non pulmonary organ failure free days to day 28, critical care unit mortality; hospital mortality; 28 day post randomization mortality and 12 month post randomization mortality; health related quality of life at discharge, 3, 6 and 12 months post randomization; length of critical care unit and hospital stay; health service use up to 12 months post-randomization; and safety. A total of 540 patients will be recruited from approximately 35 ICUs in the UK and Ireland. An economic evaluation will be conducted alongside the trial. Plasma and urine samples will be taken up to day 28 to investigate potential mechanisms

  15. Recent integrations of mammalian Hmg retropseudogenes

    Indian Academy of Sciences (India)

    The human Hmgn2 retropseu- dogenes were full length, whereas the mouse Hmg1 elements were either full length or 3 -truncated at specific positions, most plausibly the result of use of alternative polyadenylation sites. The nature of their recent amplification success in relation to other retropseudogenes is unclear, ...

  16. Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile.

    Science.gov (United States)

    Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio

    2013-12-20

    Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.

  17. The SRY gene HMG-box in micro- and megabats.

    Science.gov (United States)

    Bullejos, M; Sánchez, A; Burgos, M; Jiménez, R; Díaz De La Guardia, R

    2000-01-01

    Sex determination in mammals is controlled by the Y-linked SRY gene, which encodes a transcription factor with a DNA-binding motif of the HMG type. The only conserved region in this gene is the HMG-box, whose nucleotide sequence is currently available in a number of mammalian taxa. However, nothing is known about this gene in bats. Here, we report partial sequences of the SRY HMG-box from four microbat and four megabat species. We used the SRY HMG- box sequences from micro- and megabats to test the phylogenetic relationships between microbats, megabats, and primates. In maximum parsimony and maximum-likelihood trees, mega- and microbat branches start in the same internal node, which is consistent with a monophyletic origin of this mammalian group. Copyright 2000 S. Karger AG, Basel

  18. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid.

    Science.gov (United States)

    Choi, D; Ward, B L; Bostock, R M

    1992-10-01

    Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is essential for the biosynthesis of sesquiterpenoid phytoalexins and steroid derivatives in Solanaceous plants following stresses imposed by wounding and pathogen infection. To better understand this complex step in stress-responsive isoprenoid synthesis, we isolated three classes of cDNAS encoding HMGR (hmg1, hmg2, and hmg3) from a potato tuber library using a probe derived from an Arabidopsis HMGR cDNA. The potato cDNAs had extensive homology in portions of the protein coding regions but had low homology in the 3' untranslated regions. RNA gel blot analyses using gene-specific probes showed that hmg1 was strongly induced in tuber tissue by wounding, but the wound induction was strongly suppressed by treatment of the tissue with the fungal elicitor arachidonic acid or by inoculation with an incompatible or compatible race of the fungal pathogen Phytophtora infestans. The hmg2 and hmg3 mRNAs also accumulated in response to wounding, but in contrast to hmg1, these mRNAs were strongly enhanced by arachidonic acid or inoculation. Inoculation with a compatible race of P. infestans resulted in similar patterns in HMGR gene expression of hmg2 and hmg3 except that the magnitude and rate of the changes in mRNA levels were reduced relative to the incompatible interaction. The differential regulation of members of the HMGR gene family may explain in part the previously reported changes in HMGR enzyme activities following wounding and elicitor treatment. The suppression of hmg1 and the enhancement of hmg2 and hmg3 transcript levels following elicitor treatment or inoculation with the incompatible race parallel the suppression in steroid and stimulation of sesquiterpenoid accumulations observed in earlier investigations. The results are discussed in relation to the hypothesis that there are discrete organizational channels for sterol and sesquiterpene biosynthesis in potato and other Solanaceous species.

  19. Pathogenic role of anti-signal recognition protein and anti-3-Hydroxy-3-methylglutaryl-CoA reductase antibodies in necrotizing myopathies: Myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies.

    Science.gov (United States)

    Arouche-Delaperche, Louiza; Allenbach, Yves; Amelin, Damien; Preusse, Corinna; Mouly, Vincent; Mauhin, Wladimir; Tchoupou, Gaelle Dzangue; Drouot, Laurent; Boyer, Olivier; Stenzel, Werner; Butler-Browne, Gillian; Benveniste, Olivier

    2017-04-01

    Immune-mediated necrotizing myopathies (IMNM) may be associated with either anti-signal recognition protein (SRP) or anti-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) antibodies (Abs), and the titer of these Abs is correlated with disease activity. We investigated whether anti-SRP and anti-HMGCR Abs could be involved in muscle damage. Muscle biopsies of patients were analyzed for atrophy and regeneration by measuring fiber size and by performing immunostaining of neonatal myosin heavy chain. To further understand the role of the Abs in the pathology, we performed muscle cell coculture with the Abs. Atrophy and regeneration were evaluated based on the myotube surface area as well as gene and cytokine profiles. In muscle biopsies of patients with anti-SRP+ and anti-HMGCR+ Abs, a large number of small fibers corresponding to both atrophic and regenerating fibers were observed. In vitro, anti-SRP and anti-HMGCR Abs induced muscle fiber atrophy and increased the transcription of MAFbx and TRIM63. In addition, the muscle fiber atrophy was associated with high levels of inflammatory cytokines: tumor necrosis factor, interleukin (IL)-6, and reactive oxygen species. In the presence of anti-SRP or anti-HMGCR Abs, mechanisms involved in muscle regeneration were also impaired due to a defect of myoblast fusion. This defect was associated with a decreased production of IL-4 and IL-13. The addition of IL-4 and/or IL-13 totally rescued fusion capacity. These data show that molecular mechanisms of atrophy and regeneration are affected and contribute to loss of muscle function occurring in IMNM. This emphasizes the potential interest of targeted therapies addressing these mechanisms. Ann Neurol 2017;81:538-548. © 2017 American Neurological Association.

  20. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle Johnston

    Directory of Open Access Journals (Sweden)

    Sharma Madhu

    2010-11-01

    Full Text Available Abstract Background Geranyl pyrophosphate (GPP and p-hydroxybenzoate (PHB are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA and/or 2-C-methyl-D-erythritol 4-phosphate (MEP pathway(s, depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m-geranyl-p-hydroxybenzoate (GHB. Enzyme p-hydroxybenzoate-m-geranyltransferase (PGT catalyses the coupling of GPP and PHB to yield GHB. The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB. Results A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes, PP pathway (three genes, and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia. Conclusion A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR and AePGT suggested critical role played by these genes in shikonins

  1. Ethanol extract of Zhongtian hawthorn lowers serum cholesterol in mice by inhibiting transcription of 3-hydroxy-3-methylglutaryl-CoA reductase via nuclear factor-kappa B signal pathway.

    Science.gov (United States)

    Hu, Hai-Jie; Luo, Xue-Gang; Dong, Qing-Qing; Mu, Ai; Shi, Guo-Long; Wang, Qiu-Tong; Chen, Xiao-Ying; Zhou, Hao; Zhang, Tong-Cun; Pan, Li-Wen

    2016-03-01

    Hawthorn is a berry-like fruit from the species of Crataegus. In China, it has another more famous name, Shan-Zha, which has been used to improve digestion as a traditional Chinese medicine or food for thousands of years. Moreover, during the last decades, hawthorn has received more attention because of its potential to treat cardiovascular diseases. However, currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included as Shan-Zha in the Chinese Pharmacopoeia. In this study, our results showed that the ethanol extract of Zhongtian hawthorn, a novel grafted cultivar of C. cuneata (wild Shan-Zha), could markedly reduce body weight and levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, and liver cholesterol of hyperlipidemia mice. It could suppress the stimulation effect of high-fat diet on the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and p65, and counteract the downregulation of CYP7A1 and LDLR. In addition, the results of luciferase reporter assay and Western blot showed that the transcriptional activity of HMGCR promoter was inhibited by Zhongtian hawthorn ethanol extract in a dose-dependent manner, while overexpression of p65 could reverse this transcriptional repression effect. These results suggested that Zhongtian hawthorn could provide health benefits by counteracting the high-fat diet-induced hypercholesteolemic and hyperlipidemic effects in vivo, and the mechanism underlying this event was mainly dependent on the suppressive effect of Zhongtian hawthorn ethanol extract on the transcription of HMGCR via nuclear factor-kappa B (NF-κB) signal pathway. Therefore, this novel cultivar of hawthorn cultivar which has much bigger fruits, early bearing, high yield, cold resistance, and drought resistance, might be considered as a good alternative to Shan-Zha and has great value in the food and medicine industry. In addition, to our best knowledge, this is also the first report that the

  2. Structural and biochemical characterization of cinnamoyl-coa reductases

    Science.gov (United States)

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  3. Mutations underlying 3-Hydroxy-3-Methylglutaryl CoA Lyase deficiency in the Saudi population

    Directory of Open Access Journals (Sweden)

    Rashed Mohammed S

    2006-12-01

    Full Text Available Abstract Background 3-Hydroxy-3-Methylglutaric aciduria (3HMG, McKusick: 246450 is an autosomal recessive branched chain organic aciduria caused by deficiency of the enzyme 3-Hydroxy-3-Methylglutaryl CoA lyase (HL, HMGCL, EC 4.1.3.4. HL is encoded by HMGCL gene and many mutations have been reported. 3HMG is commonly observed in Saudi Arabia. Methods We utilized Whole Genome Amplification (WGA, PCR and direct sequencing to identify mutations underlying 3HMG in the Saudi population. Two patients from two unrelated families and thirty-four 3HMG positive dried blood spots (DBS were included. Results We detected the common missense mutation R41Q in 89% of the tested alleles (64 alleles. 2 alleles carried the frame shift mutation F305fs (-2 and the last two alleles had a novel splice site donor IVS6+1G>A mutation which was confirmed by its absence in more than 100 chromosomes from the normal population. All mutations were present in a homozygous state, reflecting extensive consanguinity. The high frequency of R41Q is consistent with a founder effect. Together the three mutations described account for >94% of the pathogenic mutations underlying 3HMG in Saudi Arabia. Conclusion Our study provides the most extensive genotype analysis on 3HMG patients from Saudi Arabia. Our findings have direct implications on rapid molecular diagnosis, prenatal and pre-implantation diagnosis and population based prevention programs directed towards 3HMG.

  4. Optimization, Validation and Application of Spectrophotometric ...

    African Journals Online (AJOL)

    HMG-CoA reductase inhibitors, namely, pravastatin, fluvastatin, and rosuvastatin. IC50 was calculated and compared with that of ... GBE50 significantly inhibited HMG-CoA reductase activity in a concentration- dependent manner (p < 0.05). Conclusion: ... CoA) reductase is the rate-limiting enzyme in the. MVA to cholesterol ...

  5. Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Møller, Kasper; Nielsen, Jens

    2005-01-01

    used this method for quantification of these metabolites in Saccharomyces cerevisiae, both during batch growth on glucose and on galactose and in glucose-limited chemostat cultures operated at three different dilution rates. The level of the metabolites changed depending on the growth phase....../specific growth rate and the carbon source, in a way which indicated that the synthesis of acetoacetyl CoA and HMG CoA is subject to glucose repression. In the glucose batch, acetyl CoA accumulated during the growth on glucose and, just after glucose depletion, HMG CoA and acetoacetyl CoA started to accumulate...... during the growth on ethanol. In the galactose batch, HMG CoA accumulated during the growth on galactose and a high level was maintained into the ethanol growth phase; and the levels of acetyl CoA and HMG CoA were more than two-fold higher in the galactose batch than in the glucose batch....

  6. Yeast Interacting Proteins Database: YML075C, YOR102W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of HMG-CoA to mevalonate, which is a rate-limiting step in sterol biosynthesis; localizes to the nuclear en...two isozymes of HMG-CoA reductase that catalyzes the conversion of HMG-CoA to mevalonate, which is a rate-limit

  7. A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina

    Science.gov (United States)

    Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert

    2013-01-01

    High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex

  8. Cloning and analysis of an HMG gene from the lamprey Lampetra fluviatilis

    DEFF Research Database (Denmark)

    Sharman, A C; Hay-Schmidt, Anders; Holland, P W

    1997-01-01

    that bind DNA in a non-sequence-specific manner, and have been implicated in a variety of cellular processes dependent on chromatin structure. They are characterised by two copies of a conserved motif, the HMG box, followed by an acidic C-terminal region. We report here the cloning of a cDNA clone from...... the river lamprey Lampetra fluviatilis containing a gene with two HMG boxes and an acidic tail; we designate this gene LfHMG1. Molecular phylogenetic analysis shows that LfHMG1 is descended from a gene ancestral to mammalian HMG1 and HMG2. This implies that there was a duplication event in the HMG1/2 gene...... family, that occurred after the divergence of the jawed and jawless fishes, 450 million years ago. This conclusion supports and refines the hypothesis that there was a period of extensive gene duplication early in vertebrate evolution. We also show that the HMG1/2 family originated before the protostomes...

  9. The DNA binding factor Hmg20b is a repressor of erythroid differentiation

    Science.gov (United States)

    Esteghamat, Fatemehsadat; van Dijk, Thamar Bryn; Braun, Harald; Dekker, Sylvia; van der Linden, Reinier; Hou, Jun; Fanis, Pavlos; Demmers, Jeroen; van IJcken, Wilfred; Özgür, Zeliha; Horos, Rastislav; Pourfarzad, Farzin; von Lindern, Marieke; Philipsen, Sjaak

    2011-01-01

    Background In erythroblasts, the CoREST repressor complex is recruited to target promoters by the transcription factor Gfi1b, leading to repression of genes mainly involved in erythroid differentiation. Hmg20b is a subunit of CoREST, but its role in erythropoiesis has not yet been established. Design and Methods To study the role of Hmg20b in erythropoiesis, we performed knockdown experiments in a differentiation-competent mouse fetal liver cell line, and in primary mouse fetal liver cells. The effects on globin gene expression were determined. We used microarrays to investigate global gene expression changes induced by Hmg20b knockdown. Functional analysis was carried out on Hrasls3, an Hmg20b target gene. Results We show that Hmg20b depletion induces spontaneous differentiation. To identify the target genes of Hmg20b, microarray analysis was performed on Hmg20b knockdown cells and controls. In line with its association to the CoREST complex, we found that 85% (527 out of 620) of the deregulated genes are up-regulated when Hmg20b levels are reduced. Among the few down-regulated genes was Gfi1b, a known repressor of erythroid differentiation. Among the consistently up-regulated targets were embryonic β-like globins and the phospholipase HRAS-like suppressor 3 (Hrasls3). We show that Hrasls3 expression is induced during erythroid differentiation and that knockdown of Hrasls3 inhibits terminal differentiation of proerythroblasts. Conclusions We conclude that Hmg20b acts as an inhibitor of erythroid differentiation, through the down-regulation of genes involved in differentiation such as Hrasls3, and activation of repressors of differentiation such as Gfi1b. In addition, Hmg20b suppresses embryonic β-like globins. PMID:21606163

  10. Theoretical prediction on the structures of the HMgN- and HNMg- anions using multiconfigurational methods

    Directory of Open Access Journals (Sweden)

    Xiao Cui-Ping

    2014-01-01

    Full Text Available The nine-valence-electron HMgN- and HNMg- anions have been investigated for the first time theoretically using CASSCF (complete active space self-consistent field and CASPT2 (multiconfiguration second-order perturbation theory methods in conjunction with the contracted atomic natural orbital (ANO basis sets. The structures of the low-lying electronic states of HMgN- and HNMg- were predicted. The possible unimolecular conversions between HMgN- and HNMg-were discussed. The calculated results indicated that the ground-state of HMgN-is linear, while the ground-state HNMg- is bent, which is in contradiction to Walsh’s rules predicting linear structures for the HXY systems containing 10 or less valence electrons.

  11. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    Sox is a large gene family which encodes Sry-related transcription factors and contains a HMG box that is responsible for the sequence-specific DNA binding. In this paper, we obtained ten clones representing HMG box-containing Sox genes (BmSox1a, BmSox1b, BmSox3a, BmSox3b, BmSox3c, BmSox11a, BmSox11b, ...

  12. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... Sox is a large gene family which encodes Sry-related transcription factors and contains a HMG box that is responsible for the sequence-specific DNA binding. In this paper, we obtained ten clones representing HMG box-containing Sox genes (BmSox1a, BmSox1b, BmSox3a, BmSox3b, BmSox3c,.

  13. Flavonoids from the buds of Rosa damascena inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme.

    Science.gov (United States)

    Kwon, Eun-Kyung; Lee, Dae-Young; Lee, Hyungjae; Kim, Dae-Ok; Baek, Nam-In; Kim, Young-Eon; Kim, Hae-Yeong

    2010-01-27

    Rosa damascena has been manufactured as various food products, including tea, in Korea. A new flavonoid glycoside, kaempferol-3-O-beta-D-glucopyranosyl(1-->4)-beta-D-xylopyranoside, named roxyloside A was isolated from the buds of this plant, along with four known compounds, isoquercitrin, afzelin, cyanidin-3-O-beta-glucoside, and quercetin gentiobioside. The chemical structures of these compounds were determined by spectroscopic analyses, including FAB-MS, UV, IR, (1)H and (13)C NMR, DEPT, and 2D NMR (COSY, HSQC, and HMBC). All the isolated compounds except cyanidin-3-O-beta-glucoside exhibited high levels of inhibitory activity against 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase with IC(50) values ranging from 47.1 to 80.6 microM. Cyanidin-3-O-beta-glucoside significantly suppressed angiotensin I-converting enzyme (ACE) activity, with an IC(50) value of 138.8 microM, while the other four compounds were ineffective. These results indicate that R. damascena and its flavonoids may be effective to improve the cardiovascular system.

  14. Cholesterol-lowering drug, in combination with chromium chloride ...

    Indian Academy of Sciences (India)

    Since the parasite synthesizesergosterol instead of cholesterol, using the same biochemical pathway and enzymes, an inhibitor of HMG-CoA-Reductase ... Lovastatin, being an inhibitor of HMG-CoA-Reductase, inhibitsinfection by cholesterol depletion, while chromium chloride complexes, at their higher concentrations, are ...

  15. Highly purified HMG versus recombinant FSH for ovarian stimulation in IVF cycles

    DEFF Research Database (Denmark)

    Platteau, P.; Nyboe, Andersen A.; Loft, A.

    2008-01-01

    The objective of this study was to compare the live birth rates resulting from ovarian stimulation with highly purified human menopausal gonadotrophin (HP-HMG), which combines FSH and human chorionic gonadotrophin-driven LH activities, or recombinant FSH (rFSH) alone in women undergoing IVF cycles....... An integrated analysis was performed of the raw data from two randomized controlled trials that were highly comparable in terms of eligibility criteria and post-randomization treatment regimens with either HP-HMG or rFSH for ovarian stimulation in IVF, following a long down-regulation protocol. All randomized...... subjects who received at least one dose of gonadotrophin in an IVF cycle (HP-HMG, n = 491; rFSH, n = 495) were included in the analysis. Subjects who underwent intracytoplasmic sperm injection cycles were excluded. The superiority of one gonadotrophin preparation over the other was tested using...

  16. Quinone Reductase 2 Is a Catechol Quinone Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao (NYMEDCO)

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  17. The DNA binding factor Hmg20b is a repressor of erythroid differentiation

    NARCIS (Netherlands)

    Esteghamat, Fatemehsadat; van Dijk, Thamar Bryn; Braun, Harald; Dekker, Sylvia; van der Linden, Reinier; Hou, Jun; Fanis, Pavlos; Demmers, Jeroen; van Ijcken, Wilfred; Ozgür, Zeliha; Horos, Rastislav; Pourfarzad, Farzin; von Lindern, Marieke; Philipsen, Sjaak

    2011-01-01

    In erythroblasts, the CoREST repressor complex is recruited to target promoters by the transcription factor Gfi1b, leading to repression of genes mainly involved in erythroid differentiation. Hmg20b is a subunit of CoREST, but its role in erythropoiesis has not yet been established. To study the

  18. The DNA binding factor Hmg20b is a repressor of erythroid differentiation

    NARCIS (Netherlands)

    F. Esteghamat (Fatemehsadat); T.B. van Dijk (Thamar); H. Braun (Harald); S. Dekker (Sylvia); R. van der Linden (Reinier); J. Hou (Jun); P. Fanis (Pavlos); J.A.A. Demmers (Jeroen); W.F.J. van IJcken (Wilfred); Z. Özgü (Zeliha); R. Horos (Rastislav); F. Pourfarzad, F. (Farzin); M.M. von Lindern (Marieke); J.N.J. Philipsen (Sjaak)

    2011-01-01

    textabstractBackground: In erythroblasts, the CoREST repressor complex is recruited to target promoters by the transcription factor Gfi1b, leading to repression of genes mainly involved in erythroid differentiation. Hmg20b is a subunit of CoREST, but its role in erythropoiesis has not yet been

  19. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... Full Length Research Paper. Cloning and analysis of the HMG domains of ten Sox genes from Bombina maxima (Amphibia: Anura). Jingjing Wang, Ning Wang and Liu-wang Nie*. The Provincial Key Lab. of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life.

  20. Transgenic tobacco overexpressing Brassica juncea HMG-CoA synthase 1 shows increased plant growth, pod size and seed yield.

    Science.gov (United States)

    Liao, Pan; Wang, Hui; Wang, Mingfu; Hsiao, An-Shan; Bach, Thomas J; Chye, Mee-Len

    2014-01-01

    Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS), the second enzyme in the mevalonate (MVA) pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt) and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A) BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A) BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi) of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i) phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1) in comparison to vector-transformed tobacco, (ii) higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii) induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant reproduction that is reminiscent to reduced fertility of hmgs RNAi lines in let-7 mutants of Caenorhabditis elegans.

  1. Transgenic tobacco overexpressing Brassica juncea HMG-CoA synthase 1 shows increased plant growth, pod size and seed yield.

    Directory of Open Access Journals (Sweden)

    Pan Liao

    Full Text Available Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS, the second enzyme in the mevalonate (MVA pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1 in comparison to vector-transformed tobacco, (ii higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant reproduction that is reminiscent to reduced fertility of hmgs RNAi lines in let-7 mutants of Caenorhabditis elegans.

  2. Statin treatment in multiple sclerosis

    DEFF Research Database (Denmark)

    Pihl-Jensen, Gorm; Tsakiri, Anna; Frederiksen, Jette Lautrup

    2015-01-01

    BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease that leads to progressive disability. Statins [hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors] are widely prescribed drugs in hypercholesterolemia. They exert immunomodulatory and neurotrophic effects and are attractive...

  3. A Unique HMG-Box Domain of Mouse Maelstrom Binds Structured RNA but Not Double Stranded DNA

    Science.gov (United States)

    Genzor, Pavol; Bortvin, Alex

    2015-01-01

    Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response. PMID:25807393

  4. A unique HMG-box domain of mouse Maelstrom binds structured RNA but not double stranded DNA.

    Directory of Open Access Journals (Sweden)

    Pavol Genzor

    Full Text Available Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL, which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a. MAEL HMG-box failed to bind double-stranded (dsDNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response.

  5. Isolasi dan Identifikasi Bakteri Asam Laktat Penghasil Inhibitor Enzim HMG-KoA Reduktase dari Bekasam sebagai Agen Pereduksi Kolesterol

    OpenAIRE

    Rinto, Rinto; Dewanti, Ratih; Yasni, Sedarnawati; SUHARTONO, MAGGY THENAWIDJAJA

    2015-01-01

    Penelitian ini bertujuan memperoleh bakteri penghasil statin sebagai inhibitor enzim HMG-KoA reduktase (HMGR), penghambat sintesis kolesterol. Tahapan penelitian yang dilakukan adalah isolasi bakteri yang resisten terhadap compactin dan lovastatin, produksi statin, uji penghambatan ekstrak dari kultur bakteri terhadap HMG-KoA reduktase dan identifikasi bakteri. Hasil penelitian menunjukan bahwa dari 20 isolat bakteri yang resisten terhadap compactin maupun lovastatin, terdapat 5 isolat bakter...

  6. The 3-hydroxy-3-methylglutaryl coenzyme-A reductases from fungi: a proposal as a therapeutic target and as a study model.

    Science.gov (United States)

    Andrade-Pavón, Dulce; Sánchez-Sandoval, Eugenia; Rosales-Acosta, Blanca; Ibarra, José Antonio; Tamariz, Joaquín; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes

    2014-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) catalyzes the conversion of HMG-Co-A into mevalonate. This step is the limiting point for the synthesis of cholesterol in mammals and ergosterol in fungi. We describe in this article the genome organization of HMGR coding genes and those deduced from different fungi, recount the evidence showing statins as HMGR inhibitors for ergosterol synthesis and its effect in yeast viability, and propose fungal HMGR (HMGRf) as a model to study the use of pharmaceutical compounds to inhibit cholesterol and ergosterol synthesis. Bibliographical search and bioinformatic analyses were performed and discussed. HMGRfs belong to the class I with a high homology in the catalytic region. The sterol biosynthetic pathway in humans and fungi share many enzymes in the initial steps (such as the HMGR enzyme), but in the last steps enzymes are different rendering the two final products: cholesterol in mammals and ergosterol in fungi. With regards to inhibitors such as statins and other compounds, these affect also fungal viability. Since HMGR from Schizosaccharomyces pombe and Ustilago maydis are very similar to the human HMGR in the catalytic regions, we propose that fungal enzymes can be used to test inhibitors for a potential use in humans. We consider that HMGRf is a good therapeutic target to design and test new antifungal compounds. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  7. Optimization, Validation and Application of Spectrophotometric ...

    African Journals Online (AJOL)

    Ginkgo biloba extract's (GBE50) inhibitory effect on HMG-CoA reductase activity was evaluated using the optimized spectrophotometric protocol. Results: The optimum assay conditions were as follows: reaction buffer pH 7.0, 100 μM NADPH, 50 μM HMG-CoA, and 200 μg/mL microsomal protein. The preincubation and ...

  8. Chromosomal protein HMG-14 gene maps to the Down syndrome region of human chromosome 21 and is overexpressed in mouse trisomy 16

    Energy Technology Data Exchange (ETDEWEB)

    Pash, J.; Popescu, N.; Matocha, M.; Rapoport, S.; Bustin, M. (National Institutes of Health, Bethesda, MD (USA))

    1990-05-01

    The gene for human high-mobility-group (HMG) chromosomal protein HMG-14 is located in region 21q22.3, a region associated with the pathogenesis of Down syndrome, one of the most prevalent human birth defects. The expression of this gene is analyzed in mouse embryos that are trisomic in chromosome 16 and are considered to be an animal model for Down syndrome. RNA blot-hybridization analysis and detailed analysis of HMG-14 protein levels indicate that mouse trisomy 16 embryos have approximately 1.5 times more HMG-14 mRNA and protein than their normal littermates, suggesting a direct gene dosage effect. The HMG-14 gene may be an additional marker for the Down syndrome. Chromosomal protein HMG-14 is a nucleosomal binding protein that may confer distinct properties to the chromatin structure of transcriptionally active genes and therefore may be a contributing factor in the etiology of the syndrome.

  9. Formation of D-3-hydroxybutyryl-coenzyme A by an acetoacetyl-coenzyme A reductase in Syntrophomonas wolfei subsp. wolfei

    Energy Technology Data Exchange (ETDEWEB)

    Amos, D.A.; McInerney, M.J. [Univ. of Oklahoma, Norman, OK (United States). Dept. of Botany and Microbiology

    1993-12-31

    Cell-free extracts of Syntrophomonas wolfei subsp. wolfei synthesized D-({minus})-3-hydroxybutyryl-coenzyme A (CoA) (the stereoisomer required for the synthesis of poly-{beta}-hydroxyalkanoate) from acetoacetyl-CoA, but not crotonyl-CoA, and NAD(P)H. Ammonium sulfate fractionation and ion exchange chromatography separated an acetoacetyl-CoA reductase activity that formed D-({minus})-3-hydroxybutyryl-CoA from the {beta}-oxidation enzyme activity, L-(+)-3-hydroxyacyl-CoA dehydrogenase. The former activity was further purified by hydroxylapatite and affinity chromatography. The most pure acetoacetyl-CoA reductase preparations formed D-({minus})-3-hydroxybutyryl-CoA from acetoacetyl-CoA and had high specific activity using either NADH or NADPH as the electron donor. Thus, S. wolfei makes D-({minus})-3-hydroxybutyryl-CoA by an acetoacetyl-CoA reductase rather than by a D-isomer specific enoyl-CoA hydratase and the reducing equivalents required for PHA synthesis from acetoacetyl-CoA can be supplied from the NADH made during {beta}-oxidation.

  10. Individualized lipid-lowering therapy to further reduce residual cardiovascular risk

    NARCIS (Netherlands)

    Weingaertner, Oliver; Luetjohann, Dieter; Ploesch, Torsten; Elsaesser, Albrecht

    Hypercholesterolemia is a major risk factor for cardiovascular diseases. Serum cholesterol concentrations are regulated by enteral absorption, biliary secretion, and hepatic synthesis. Statins inhibit the rate limiting enzyme of cholesterol synthesis, HMG-CoA-reductase, and reduce serum cholesterol

  11. Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Miehe, Michaela; Stolt, Claus C.

    2001-01-01

    Abstract The HMG-domain transcription factor Sox10 is essential for the development of various neural crest derived lineages including glia and neurons of the peripheral nervous system (PNS). Within the PNS the most striking defect is the complete absence of glial differentiation whereas neurogen......Abstract The HMG-domain transcription factor Sox10 is essential for the development of various neural crest derived lineages including glia and neurons of the peripheral nervous system (PNS). Within the PNS the most striking defect is the complete absence of glial differentiation whereas...

  12. High-dose statin use does not impair aerobic capacity or skeletal muscle function in older adults

    OpenAIRE

    Traustadóttir, Tinna; Stock, Anthoney A.; Harman, S. Mitchell

    2008-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are lipid-lowering agents widely employed for atherosclerosis prevention. HMG-CoA reductase blockade reduces skeletal muscle coenzyme Q10 (CoQ10) levels and mitochondrial respiratory chain activities and may produce mild to severe skeletal muscle myopathy. This study investigated whether high-dose statin treatment would result in measurably decreased exercise capacity in older men and women. Maximal oxygen consumpt...

  13. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    OpenAIRE

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious s...

  14. Pseudoazurin-nitrite reductase interactions.

    Science.gov (United States)

    Impagliazzo, Antonietta; Krippahl, Ludwig; Ubbink, Marcellus

    2005-09-01

    The nitrite reductase-binding site on pseudoazurin has been determined by using NMR chemical-shift perturbations. It comprises residues in the hydrophobic patch surrounding the exposed copper ligand His81 as well as several positively charged residues. The binding site is similar for both redox states of pseudoazurin, despite differences in the binding mode. The results suggest that pseudoazurin binds in a well-defined orientation. Docking simulations provide a putative structure of the complex with a binding site on nitrite reductase that has several hydrophobic and polar residues as well as a ridge of negatively charged side chains and a copper-to-copper distance of 14 A.

  15. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects of MTHFR ...

  16. HMG I-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters

    DEFF Research Database (Denmark)

    Jacobsen, K; Laursen, N B; Jensen, Erik Østergaard

    1990-01-01

    factors recognized several DNA sequences in the promoter region of the soybean nodulin N23 gene. Footprinting, deletion, and point mutation analyses revealed different binding properties for all three factors and further showed that even single base pair substitutions had a dramatic effect on binding......Three different nuclear factors recognizing short AT-rich DNA sequences were identified in different organs of soybean. One factor (NAT2) was found to be present in mature nodules, another factor (NAT1) was detected in roots and nodules, and a third one (LAT1) was only observed in leaves. All three...... affinity. The LAT1 and NAT1 factors were released from chromatin by extraction with a low-salt buffer and were soluble in 2% trichloroacetic acid, implying a relationship to high-mobility group (HMG) proteins. DNA binding studies further indicated a functional relationship of these factors to the human HMG...

  17. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  18. Effects of HMG-COA Reductase Inhibitor Therapy on LDL Cholesterol Blood Levels in Hyperlipidemia: A Longitudinal Retrospective Anlaysis Using a Department of Defense Integrated Database.

    Science.gov (United States)

    1998-05-21

    Kinlay, and Peter Ganz, Atherogenesis and Ischemic Heart Disease. American Journal of Cardiology 1997; 80(8B):3H-7H. 33. A. L. Lehninger , D. L. Nelson...of its Pharmacology and Therapeutic Potential in the Management of Hyperlipidaemias. Drugs 1997; 53(5):828-847. A. L. Lehninger , D. L. Nelson, and M

  19. Subcellular localization of the five members of the human steroid 5α-reductase family

    Directory of Open Access Journals (Sweden)

    Antonella Scaglione

    2017-06-01

    We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5α-reductase family as both N- and C-terminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates.

  20. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    Science.gov (United States)

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious sequence identity between biliverdin-IX alpha reductase (BVR-A) and biliverdin-IX beta reductase (BVR-B), they do show weak immunological cross-reactivity. Both enzymes bind to 2',5'-ADP-Sepharose. PMID:8687377

  1. [Aldehyde reductase activity and blood aldo-keto reductase spectrum in adolescents with neuroendocrine obesity].

    Science.gov (United States)

    Kuleshova, D K; Davydov, V V; Shvets, V N

    2012-01-01

    Investigation of aldehyde-reductase activity and blood aldo-keto reductase spectrum has been performed in 13-15 and 16-18-years old adolescents with obesity to clear up the mechanisms of neuroendocrine obesity at the age of puberty. It has been established that basal aldehyde reductase activity and blood aldo-keto reductase spectrum of healthy adolescents in early puberty do not differ from those of healthy adolescents in late puberty. A decreased aldehyde reductase activity and some alterations in blood aldo-keto reductase spectrum have been observed in late puberty in adolescents with neuroendocrine obesity. In adolescents with obesity there have been registered some changes in blood aldo-keto reductase spectrum which are not accompanied by any alterations in its aldehyde reductase activity. The results obtained suggest that certain prerequisites are formed in late puberty to complicate the course of neuroendocrine obesity.

  2. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  3. An overview of the non-mevalonate pathway for terpenoid ...

    Indian Academy of Sciences (India)

    Unknown

    methyl-2-(E)-butenyl-4-diphosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase ... functional roles in plants, human health and commerce. ... done in E. coli and demonstration of orthologous genes in various plants, encoding such enzymes that catalyze the same reaction.

  4. A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer.

    Science.gov (United States)

    Forés, Marta; Simón-Carrasco, Lucía; Ajuria, Leiore; Samper, Núria; González-Crespo, Sergio; Drosten, Matthias; Barbacid, Mariano; Jiménez, Gerardo

    2017-03-01

    HMG-box proteins, including Sox/SRY (Sox) and TCF/LEF1 (TCF) family members, bind DNA via their HMG-box. This binding, however, is relatively weak and both Sox and TCF factors employ distinct mechanisms for enhancing their affinity and specificity for DNA. Here we report that Capicua (CIC), an HMG-box transcriptional repressor involved in Ras/MAPK signaling and cancer progression, employs an additional distinct mode of DNA binding that enables selective recognition of its targets. We find that, contrary to previous assumptions, the HMG-box of CIC does not bind DNA alone but instead requires a distant motif (referred to as C1) present at the C-terminus of all CIC proteins. The HMG-box and C1 domains are both necessary for binding specific TGAATGAA-like sites, do not function via dimerization, and are active in the absence of cofactors, suggesting that they form a bipartite structure for sequence-specific binding to DNA. We demonstrate that this binding mechanism operates throughout Drosophila development and in human cells, ensuring specific regulation of multiple CIC targets. It thus appears that HMG-box proteins generally depend on auxiliary DNA binding mechanisms for regulating their appropriate genomic targets, but that each sub-family has evolved unique strategies for this purpose. Finally, the key role of C1 in DNA binding also explains the fact that this domain is a hotspot for inactivating mutations in oligodendroglioma and other tumors, while being preserved in oncogenic CIC-DUX4 fusion chimeras associated to Ewing-like sarcomas.

  5. Dihydroflavonol 4-Reductase Genes from Freesia hybrida Play Important and Partially Overlapping Roles in the Biosynthesis of Flavonoids

    National Research Council Canada - National Science Library

    Li, Yueqing; Liu, Xingxue; Cai, Xinquan; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Han, Taotao; Wang, Shucai; Wang, Li; Gao, Xiang

    2017-01-01

    ... were firstly cloned from Freesia hybrida. Phylogenetic analysis showed that they were classified into different branches, and FhDFR1, FhDFR2 and FhDFR3 were clustered into DFR subgroup, whereas others fell into the group with cinnamoyl-CoA reductase (CCR) proteins. Then, the functions of the three FhDFR genes were further characterized. Different...

  6. The stats are in: an update on statin use in COPD

    Directory of Open Access Journals (Sweden)

    Carlson AA

    2015-10-01

    Full Text Available Alexa A Carlson,1 Ethan A Smith,2 Debra J Reid11Department of Pharmacy and Health System Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA; 2Department of Pharmacy, Beth Israel Deaconess Medical Center, Boston, MA, USAAbstract: COPD is a chronic inflammatory disease of the lungs associated with an abnormal inflammatory response to noxious particles, the most prevalent of which is cigarette smoke. Studies have demonstrated that cigarette smoking is associated with activation of the bone marrow, and chronic smoking can lead to the inflammatory changes seen in COPD. Due to the inflammatory nature of the disease, medications affecting the inflammatory pathway may have clinical benefit and are being evaluated. One such class of medications, HMG-CoA reductase inhibitors, have been evaluated in the COPD population. Early studies have suggested that HMG-CoA reductase inhibitors have a variety of benefits in COPD including improvements in inflammatory markers, exacerbation rates, and mortality rates. However, the majority of this data comes from retrospective cohort studies, suggesting the need for randomized controlled trials. Recently, two randomized controlled trials, STATCOPE and RODEO, evaluated the benefit of HMG-CoA reductase inhibitors in the COPD population and found no benefit in exacerbation rates and vascular or pulmonary function, respectively. These results are reflected in practice guidelines, which do not support the use of HMG-CoA reductase inhibitors for the purpose of reducing COPD exacerbations.Keywords: chronic obstructive pulmonary disease, statins, HMG-CoA reductase inhibitors

  7. Autotrophic growth: methylated carbon monoxide dehydrogenase as an intermediate of acetyl-CoA synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pezacka, E.; Wood, H.G.

    1986-05-01

    A new pathway of autotrophic growth has been discovered in certain anaerobic bacteria in which acetyl-CoA is the product formed from CO/sub 2/ for initiation of anabolism rather than 3-phosphoglycerate as in the Calvin Cycle. CO/sub 2/ is reduced in combination with tetrahydrofolate to methyltetrahydrofolate (CH/sub 3/THF) and is the source of the CH/sub 3/ group. CO/sub 2/ or CO is the source of the carbonyl group. CO dehydrogenase (CODH), corrinoid enzyme, methyltransferase, ferredoxin and CODH disulfide reductase have been isolated from Clostridium thermoaceticum and shown to catalyze the synthesis of acetyl-CoA from CH/sub 3/THF, CO and CoA. The methyltransferase catalyzes transfer of the CH/sub 3/ group from CH/sub 3/THF to the corrinoid enzyme from which the methyl is transferred to CODH. CO is bound to the Ni of CODH forming a Ni-Fe-C center. When CO/sub 2/ is the source of carbon, H/sub 2/ and hydrogenase are required for reduction of the CO/sub 2/ by CODH. CODH disulfide reductase is required for the addition of CoA to the CODH (Pezacka, E. and Wood, H.G. J. Biol. Chem., in press). Then, CODH catalyzes the combination of the three groups forming acetyl-CoA. The authors have now succeeded in methylating CODH using /sup 14/CH/sub 3/I or /sup 14/CH/sub 3/-B/sub 12/. With the resulting /sup 14/CH/sub 3/-CODH, only CODH disulfide reductase is required for synthesis of (/sup 14/C)acetyl-CoA from CO and CoA. The amino acid sequence at the CH/sub 3/-site is being investigated.

  8. A randomized controlled trial comparing the efficacy and safety of two HMG preparations gaining their LH bioactivity from different HCG sources.

    Science.gov (United States)

    Lockwood, Gillian; Cometti, Barbara; Bogstad, Jeanette; Erb, Karin; De Geyter, Christian; Urbancsek, Janos; Trevisan, Silvia; Pocate-Cheriet, Khaled; de Ziegler, Dominique

    2017-07-01

    In this prospective, controlled, randomized, multicentre, non-inferiority study, efficacy and safety of two HMG preparations (Menopur(®)- Ferring and Meriofert®- IBSA Institut Biochimique SA) for ovarian stimulation were compared (270 women undergoing IVF aged between 18 and 39 years; BMI 30 kg/m(2) or less; less than three prior completed assisted reproduction technique cycles). A standard long down-regulation with gonadotrophin-releasing hormone agonist protocol, with HCG triggering was used; primary end-point was total number of oocytes retrieved; attention was paid toovarian hyperstimulation syndrome (OHSS). No statistically significant differences between the treatment groups were reported for most of the clinically significant end-points, including embryo quality, fertilization rate, implantation rate, ongoing pregnancy rate and live birth rate. Total number of oocytes retrieved was higher in the new HMG group compared with the reference (11.6 ± 6.6 and 9.7 ± 5.9, respectively, with a 95% CI of the difference equal +0.43 to +3.43). Increased number of oocytes was obtained through a shorter stimulation, but HMG units per oocyte retrieved were equivalent. The safety profile of the products for frequency of ovarian hyperstimulation syndrome was the same. This study showed that the new HMG preparation is a viable alternative for conducting ovarian stimulation in IVF cycles. Copyright © 2017 IBSA Institut Biochimique SA. Published by Elsevier Ltd.. All rights reserved.

  9. Effect of hydroxymethylglutaryl-CoA reductase inhibitors on the functional properties of erythrocyte membranes.

    Science.gov (United States)

    Rabini, R A; Polenta, M; Staffolani, R; Tocchini, M; Signore, R; Testa, I; Mazzanti, L

    1993-08-01

    We studied 56 patients affected by primary hypercholesterolemia treated with placebo for 1 month and with simvastatin (20 mg/day) or pravastatin (20 mg/day) for 6 months during a double-blind clinical trial. At 1-month intervals we determined the following parameters in the serum: total and HDL cholesterol, triglycerides, and apolipoprotein A-1 and B. At the same time intervals we also determined the cholesterol and phospholipid concentration, the Na+/K+ ATPase activity, and the fluidity of erythrocyte membranes. Our results demonstrated the following modifications in the erythrocyte membranes during simvastatin and pravastatin treatments: (1) an initial increase in cholesterol concentration and in cholesterol/phospholipid molar ratio, with a significant decrease only after 4 months; (2) a similar behavior of membrane fluidity, with an initial decrease and an elevation after 4 months; (3) an increase in the Na+/K+ ATPase activity only after 4 months. We hypothesize that simvastatin and pravastatin not only inhibit the hepatic synthesis of cholesterol, but also modify the cholesterol exchange between plasma and the erythrocyte membrane.

  10. Possible inhibition of hydroxy methyl glutaryl CoA reductase activity ...

    African Journals Online (AJOL)

    IL Farmaco, 55:725-729. 15. Magnus NA, Confalone PN, Storace L, Patel M,. Wood CC, Davis WP, Parsons RL(2003): General scope of 1,4-Diasteoselective additions to a 2(3H)- quinazoli- none: Practical preparation of HIV therapeutics. J Org. Chem, 68 :754-61. 16. McNamara DJ: Dietary cholesterol and atheroscle- rosis.

  11. Genetics Home Reference: 5-alpha reductase deficiency

    Science.gov (United States)

    ... G. New mutations, hotspots, and founder effects in Brazilian patients with steroid 5alpha-reductase deficiency type 2. ... should consult with a qualified healthcare professional . About Selection Criteria for Links Data Files & API Site Map ...

  12. Methylenetetrahydrofolate Reductase A1298C Polymorphism and ...

    African Journals Online (AJOL)

    Epigenetic alterations in cancer-related genes are recognized to play an important role in BC carcinogenesis. Epidemiological studies have consistently supported that ... Methylenetetrahydrofolate reductase (MTHFR) enzyme is essential for DNA synthesis ...... disease: A common mutation in methylenetetrahydrofolate.

  13. Postmitotic diversification of olfactory neuron types is mediated by differential activities of the HMG-box transcription factor SOX-2.

    Science.gov (United States)

    Alqadah, Amel; Hsieh, Yi-Wen; Vidal, Berta; Chang, Chieh; Hobert, Oliver; Chuang, Chiou-Fen

    2015-10-14

    Diversification of neuron classes is essential for functions of the olfactory system, but the underlying mechanisms that generate individual olfactory neuron types are only beginning to be understood. Here we describe a role of the highly conserved HMG-box transcription factor SOX-2 in postmitotic specification and alternative differentiation of the Caenorhabditis elegans AWC and AWB olfactory neurons. We show that SOX-2 partners with different transcription factors to diversify postmitotic olfactory cell types. SOX-2 functions cooperatively with the OTX/OTD transcription factor CEH-36 to specify an AWC "ground state," and functions with the LIM homeodomain factor LIM-4 to suppress this ground state and drive an AWB identity instead. Our findings provide novel insights into combinatorial codes that drive terminal differentiation programs in the nervous system and reveal a biological function of the deeply conserved Sox2 protein that goes beyond its well-known role in stem cell biology. © 2015 The Authors.

  14. Controlled ovarian stimulation with r-FSH plus r-LH vs. HMG plus r-FSH in patients candidate for IVF/ICSI cycles: An RCT

    Directory of Open Access Journals (Sweden)

    Ensieh Shahrokh Tehraninejad

    2017-08-01

    Full Text Available Background: Different combination of gonadotropin preparation has been introduced with no definite superiority of one over others in in vitro fertilization (IVF, but individualized regimens for each patient are needed. Objective: The aim of the present study was to investigate the effect of controlled ovarian stimulation with recombinant- follicle stimulating hormone (r-FSH plus recombinant-luteinizing hormone (rLH versus human menopausal gonadotropin (HMG plus r-FSH on fertility outcomes in IVF patients. Materials and Methods: This is a randomized clinical trial study that was performed from October 2014-April 2016 on 140 infertile patients with a set of inclusion criteria that referred to infertility clinics in Vali- asr and Gandhi Hospital in Tehran. The women were randomly divided into two treatment groups. The first group (n=70 received rFSH from the second day of cycle and was added HMG in 6th day and the 2nd group (n=70, received rFSH from the second day of cycle and was added recombinant-LH in 6th day. Then ovum Pick-Up and embryo transfer were performed. In this study, we assessed the outcomes such as; chemical and clinical pregnancy rate, live birth and abortion rate. Results: Number of follicles in ovaries, total number of oocytes or M2 oocytes and quality of fetuses has no significant differences between two groups (p>0.05. Total number of fetuses were significantly higher in patients who received rFSH + HMG (p=0.02. Fertility outcomes consisted of: live birth rate, chemical pregnancy and clinical pregnancy rate were higher in rFSH + HMG group in comparison to rFSH +r-LH group (p<0.05. Conclusion: It seems that in IVF patients, HMG + rFSH used for controlled ovarian hyperstimulation have better effects on fertility outcomes, but in order to verify the results, it is recommended to implement studies on more patients.

  15. Pleiotropic vasoprotective effects of statins: The chicken or the egg?

    Directory of Open Access Journals (Sweden)

    Dimitrios Kirmizis

    2009-06-01

    Full Text Available Dimitrios Kirmizis, Dimitrios ChatzidimitriouAristotle University, Thessaloniki, GreeceAbstract: Statins (3-hydroxy-3-methyl glutaryl coenzyme A [HMG-CoA] reductase inhibitors are the most commonly used lipid-lowering drugs. Their main lipid-lowering effect is achieved by an increase in the expression of low-density lipoprotein cholesterol receptors associated with inhibition of cholesterol synthesis through inhibition of HMG-CoA reductase – the first and rate-limiting step in cholesterol synthesis. However, beyond cholesterol synthesis inhibition, inhibition of the HMG-CoA reductase affects as well the synthesis of other molecules with significant roles in different, yet often intercalating, metabolic pathways. On this basis, and supported by an increasing series of advocating epidemiological and experimental data, an extended dialogue has been established over the last few years regarding the nonlipid or “pleiotropic” actions of statins.Keywords: statins, immunomodulatory, pleiotropic effects

  16. Characterization of the quinine reductase activity of the ferrice reductase B protein from Paracoccus denitrificans.

    NARCIS (Netherlands)

    Sedlacek, V.; van Spanning, R.J.M.; Kucera, I.

    2009-01-01

    The ferric reductase B (FerB) protein of Paracoccus denitrificans exhibits activity of an NAD(P)H: Fe(III) chelate, chromate and quinone oxidoreductase. Sequence analysis places FerB in a family of soluble flavin-containing quinone reductases. The enzyme reduces a range of quinone substrates,

  17. Investigation of Solid Dispersion of Atorvastatin Calcium in ...

    African Journals Online (AJOL)

    ATC), a poorly watersoluble 3-hydroxy 3-methyl glutaryl CoA (HMG-CoA) reductase inhibitor, by a solid dispersion technique using polyethylene glycol 6000 (PEG 6000) or polyvinylpyrrolidone k30 (PVP K30). Methods: The solid dispersions were ...

  18. Biosynthesis of Trehangelin in Polymorphospora rubra K07-0510: Identification of Metabolic Pathway to Angelyl-CoA.

    Science.gov (United States)

    Inahashi, Yuki; Shiraishi, Taro; Palm, Kaia; Takahashi, Yoko; Ōmura, Satoshi; Kuzuyama, Tomohisa; Nakashima, Takuji

    2016-08-03

    Trehangelins are trehalose angelates discovered from endophytic actinomycete Polymorphospora rubra K07-0510. We identified the trehangelin biosynthetic gene cluster, including genes that encode a glycoside hydrolase-like protein (thgC), α-amylase (thgD), 3-ketoacyl-ACP synthase III (thgI), 3-ketoacyl-ACP reductase (thgK), enoyl-CoA hydratase (thgH) and acyl transferase (thgJ). Heterologous expression of thgH, thgI, thgJ and thgK confirmed the importance of these genes in the biosynthesis of trehangelin A. Enzymatic activity studies showed that ThgI catalyses the condensation of acetyl-CoA and methylmalonyl-CoA to 2-methylacetoacetyl-CoA (MAA-CoA), ThgK catalyses NADPH-dependent reduction of MAA-CoA to 3-hydroxy-2-methylbutyryl-CoA (HMB-CoA) and ThgH catalyses the dehydration of HMB-CoA to angelyl-CoA (AN-CoA). This is the first report on the elucidation of the enzymatic formation of AN-CoA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  20. Hypocholesterolemic mechanism of phenolics-enriched extract from Moringa oleifera leaves in HepG2 cell lines

    Directory of Open Access Journals (Sweden)

    Peera Tabboon

    2016-04-01

    Full Text Available Previous studies have demonstrated the hypolipidemic activity of Moringa oleifera (MO leaves via lowering serum levels of cholesterol, but the mechanism of action is unknown. In this study, we demonstrated the hypocholesterolemic mechanism of a phenolics-enriched extract of Moringa oleifera leaf (PMO in HepG2 cells. When compared to the control treatment, PMO significantly decreased total intracellular cholesterol, inhibited the activity of HMG CoA reductase in a dosedependent manner and enhanced LDL receptor binding activity. Moreover, PMO also significantly increased the genetic expressions of HMG CoA reductase and LDL receptor.

  1. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U RNA.

    Directory of Open Access Journals (Sweden)

    Tiago Antonio de Souza

    Full Text Available Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC, a translin-associated factor X (CsTRAX, a VirE2-interacting protein (CsVIP2, a high mobility group (CsHMG and two poly(A-binding proteins (CsPABP1 and 2, interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.

  2. Characterization of the chlorate reductase from Pseudomonas chloritidismutans

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.; Schiltz, E.; Hagedoorn, P.L.; Hagen, W.R.; Kengen, S.W.M.; Stams, A.J.M.

    2003-01-01

    A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were

  3. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione reductase assay. (a) Identification. A glutathione reductase assay is a device used to determine the...

  4. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize

    Science.gov (United States)

    2015-01-01

    Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%–100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio. PMID:26605751

  5. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction. So, polymorphism in genes involved in folate metabolism may have a role in vascular disease. This study was designed to evaluate the relationship between methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

  6. Methylenetetrahydrofolate reductase A1298C polymorphism and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: A meta analysis of 33 studies. ... were searched for case‑control studies relating the association between MTHFR A1298C polymorphism and BC risk and estimated summary odds ratios (ORs) with confidence intervals (CIs) for assessment.

  7. Promiscuity and diversity in 3-ketosteroid reductases

    Science.gov (United States)

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  8. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium ... due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism.

  9. Two Greek siblings with sepiapterin reductase deficiency.

    NARCIS (Netherlands)

    Verbeek, M.M.; Willemsen, M.A.A.P.; Wevers, R.A.; Lagerwerf, A.J.; Abeling, N.G.; Blau, N.; Thony, B.; Vargiami, E.; Zafeiriou, D.I.

    2008-01-01

    BACKGROUND: Sepiapterin reductase (SR) deficiency is a rare inherited disorder of neurotransmitter metabolism; less than 25 cases have been described in the literature so far. METHODS: We describe the clinical history and extensive cerebrospinal fluid (CSF) and urine examination of two Greek

  10. Xylose reductase from the thermophilic fungus Talaromyces ...

    Indian Academy of Sciences (India)

    Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed ...

  11. Clipboard: Lymphohematopoietic licence: Sterol C-14 reductase ...

    Indian Academy of Sciences (India)

    Clipboard: Lymphohematopoietic licence: Sterol C-14 reductase activity of lamin B receptor (Lbr) is essential for neutrophil differentiation. Durgadas P Kasbekar. Volume 37 ... Keywords. Greenberg/HEM dysplasia; lymphohematopoietic progenitor cells; nuclear envelope; Pelger-Huët anomaly; promyelocyte differentiation ...

  12. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    Mohammed A AboElAsrar

    2012-05-05

    May 5, 2012 ... Elevated homocysteine is a known risk factor for vascular disease. So the polymorphism in methylenetetrahydrofolate reductase may have detrimental consequences [5]. In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction and folate supplementa- tion improves ...

  13. Crystal Structures of Two Bacterial 3-Hydroxy-3-methylglutaryl-CoA Lyases Suggest a Common Catalytic Mechanism among a Family of TIM Barrel Metalloenzymes Cleaving Carbon-Carbon Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Hussain, M.; Farid, R.; Benach, J.; Abashidze, M.; Edstrom, W.; Vorobiev, S.; Montelione, G.; Hunt, J.; et al.

    2006-01-01

    The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 {angstrom} resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name 'DRE-TIM metallolyases' for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis

  14. Molecular Biological basis for statin resistance in naturally statin-producing organisms

    DEFF Research Database (Denmark)

    Rems, Ana; Frandsen, Rasmus John Normand

    . A codonoptimized version of the mlcD gene was inserted into the Saccharomyces cerevisiae genome. The constructed yeast strain was tested for sensitivity to lovastatin, a statin structurally similar to compactin, by growing the strain on media containing lovastatin. The strain showed an increased resistance......, which leads to the synthesis of ergosterol. Following deletion of HMG1 and HMG2 genes in S. cerevisiae, we inserted the mlcD gene into the knockout mutants, and tested the resulted strains for sensitivity to lovastatin. The HMG1 and HMG2 knockout mutants were unable to grow on minimal media and had...... an increased sensitivity to lovastatin on rich media. However, insertion of the mlcD gene restored the growth of the yeast mutants and increased their resistance to lovastatin. These results show that MlcD complements the activity of the deleted HMG-CoA reductases, enabling synthesis of ergosterol in yeast...

  15. Steroid 5alpha-reductase inhibitors.

    Science.gov (United States)

    Flores, Eugenio; Bratoeff, Eugene; Cabeza, Marisa; Ramirez, Elena; Quiroz, Alexandra; Heuze, Ivonne

    2003-05-01

    The objective of this study is to synthesize new steroidal compounds based on the progesterone skeleton with a high inhibitory activity for the enzyme 5alpha-reductase. Presently similar compounds are being used for the treatment of androgen dependent diseases such as: hirsutism, androgenic alopecia, bening prostatic hyperplasia and prostate cancer. Dihydrotestosterone 2 (Fig. (1)), a 5alpha-reduced metabolite of testosterone 1 has been implicated as a causative factor in the progression of these diseases, largely through the clinical evaluation of males who are genetically deficient of steroid 5alpha-reductase enzyme. As a result of this study, the inhibition of this enzyme has become a pharmacological strategy for the design and synthesis of new antiandrogenic drugs. The advent of finasteride 8 (Fig. (4)) a 5alpha-reductase inhibitor has grately alleviated the symptoms associated with benign prostatic hyperplasia. In our laboratory we recently synthesized several new 16beta-methyl-pregnadiene-3,20-diones derivatives 27 (Fig.(6)), 38-42 (Fig. (11)), 16beta-phenyl-pregnadiene-3,17a-dione derivatives 32-33 (Fig. (7)), 16beta-phenyl-pregnatriene-3,17a-diones, 30, 31 (Fig. (7)) and 16beta-methyl-pregnatriene-3,20-diones 43-46 (Fig. (11)). These compounds were evaluated as 5alpha-reductase inhibitors in the following biological models: Penicillium crustosum broths, the flank organs of gonadectomized male hamsters, the incorporation of radiolabeled sodium acetate into lipids, the effect of the new steroids on the reduction of the weight of the seminal vesicles and on the in vitro metabolism of [(3)H]T to [(3)H]DHT in seminal vesicles homogenates of gonadectomized male hamsters. All trienones 30, 31, and 43-46 in all biological models showed consistently a higher 5alpha-reductase inhibitory activity than the corresponding dienones 27, 32, 33 and 38-42. We believe that with these compounds the 5alpha-reductase enzyme is inactivated by an irreversible Michael type addition

  16. Biliverdin reductase: A major physiologic cytoprotectant

    Science.gov (United States)

    Barañano, David E.; Rao, Mahil; Ferris, Christopher D.; Snyder, Solomon H.

    2002-01-01

    Bilirubin, an abundant pigment that causes jaundice, has long lacked any clear physiologic role. It arises from enzymatic reduction by biliverdin reductase of biliverdin, a product of heme oxygenase activity. Bilirubin is a potent antioxidant that we show can protect cells from a 10,000-fold excess of H2O2. We report that bilirubin is a major physiologic antioxidant cytoprotectant. Thus, cellular depletion of bilirubin by RNA interference markedly augments tissue levels of reactive oxygen species and causes apoptotic cell death. Depletion of glutathione, generally regarded as a physiologic antioxidant cytoprotectant, elicits lesser increases in reactive oxygen species and cell death. The potent physiologic antioxidant actions of bilirubin reflect an amplification cycle whereby bilirubin, acting as an antioxidant, is itself oxidized to biliverdin and then recycled by biliverdin reductase back to bilirubin. This redox cycle may constitute the principal physiologic function of bilirubin. PMID:12456881

  17. Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria.

    Science.gov (United States)

    Kim, Jihoe; Hetzel, Marc; Boiangiu, Clara Dana; Buckel, Wolfgang

    2004-10-01

    Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been proposed, in which one high-energy electron acts as cofactor and transiently reduces the electrophilic thiol ester carbonyl to a nucleophilic ketyl radical anion. The 2-hydroxyacyl-CoA dehydratases are two-component systems composed of an extremely oxygen-sensitive component A, an activator, and component D, the actual dehydratase. Component A, a homodimer with one [4Fe-4S]cluster, transfers an electron to component D, a heterodimer with 1-2 [4Fe-4S]clusters and FMN, concomitant with hydrolysis of two ATP. From component D the electron is further transferred to the substrate, where it facilitates elimination of the hydroxyl group. In the resulting enoxyradical the beta-hydrogen is activated (pK14). After elimination the electron is handed-over to the next incoming substrate without further hydrolysis of ATP. The helix-cluster-helix architecture of component A forms an angle of 105 degrees, which probably opens to 180 degrees upon binding of ATP resembling an archer shooting arrows. Therefore we designated component A as 'Archerase'. Here, we describe 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Clostridium symbiosum and Fusobacterium nucleatum, 2-phenyllactate dehydratase from Clostridium sporogenes, 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile, and lactyl-CoA dehydratase from Clostridium propionicum. A relative of the 2-hydroxyacyl-CoA dehydratases is benzoyl-CoA reductase from Thauera aromatica. Analogous but unrelated archerases are the iron proteins of nitrogenase and bacterial protochlorophyllide reductase. In anaerobic organisms, which do not oxidize 2-oxo acids, a second energy-driven electron transfer from NADH to ferredoxin, the

  18. Escherichia coli Enoyl-Acyl Carrier Protein Reductase (FabI) Supports Efficient Operation of a Functional Reversal of the β-Oxidation Cycle

    Science.gov (United States)

    Vick, Jacob E.; Clomburg, James M.; Blankschien, Matthew D.; Chou, Alexander; Kim, Seohyoung

    2014-01-01

    We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the β-oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782). While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a β-oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled ΔfabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli. PMID:25527535

  19. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    Energy Technology Data Exchange (ETDEWEB)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs.

  20. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    Science.gov (United States)

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  1. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  2. Estatinas hipolipêmicas e novas tendências terapêuticas Hypolipemic statins and new therapeutcal trends

    Directory of Open Access Journals (Sweden)

    Vanessa Leiria Campo

    2007-04-01

    Full Text Available Statins are the most used drugs for the treatment of hyperlipidemia in primary and secondary prevention, with the aim of decreasing the levels of plasmatic cholesterol- lipoproteins. Owing to their structural similarity to the substrate HMG-CoA (3-hydroxy-3-methylglutaryl-CoA, they inhibit the HMG-CoA reductase enzyme, disrupting the cholesterol biosynthesis. Currently, six therapeutic statins are available: lovastatin (Mevacor and pravastatin (Pravachol, which are natural, sinvastatin (Zocor, a semi-synthetic derivative, and the totally synthetic statins, fluvastatin (Lescol, atorvastatin (Lipitor and rosuvastatin (Crestor. Recent investigations have showed other important effects of statins, such as antineoplastic action and improvement in endothelial function.

  3. LDL cholesterol goals in high-risk patients: how low do we go and how do we get there?

    NARCIS (Netherlands)

    Besseling, Joost; van Capelleveen, Julian; Kastelein, John J. P.; Hovingh, G. Kees

    2013-01-01

    It is widely recognised that low-density lipoprotein cholesterol (LDL-C) is one of the most important and modifiable risk factors for cardiovascular disease (CVD). Statins (HMG-CoA reductase inhibitors) have consistently been shown to decrease both LDL-C and CVD risk in almost all patient

  4. Cholestrol content of the rat lens is lowered by administration of simvastatin, but not pravastatin

    NARCIS (Netherlands)

    Vries, A.C.J. de; Vermeer, M.A.; Bredman, J.J.; Bar, P.R.; Cohen, L.H.

    1993-01-01

    The influence of the 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors pravastatin and simvastatin on lens cholesterol metabolism was investigated in the rat. Short-term organ culture experiments with explanted lenses from 21-day-old Wistar rats showed that simvastatin was at

  5. Production of lovastatin by Pleurotus ostreatus | El-Shami | Egyptian ...

    African Journals Online (AJOL)

    Lovastatin is one of the earlier statin drugs, which is effective for the treatment of hypercholesterolemia, as an inhibitor of the HMG-CoA reductase. The present work was undertaken to determinate lovastatin production by Pleurotus ostreatus in fruiting bodies and its production on different fermentation media. The favorable ...

  6. Design and development of nanomedicines to treat atherosclerosis: A cross platform head-to-head theranostic study

    NARCIS (Netherlands)

    Alaarg, Amr|info:eu-repo/dai/nl/370549465; Perez Medina, Carlos; Tang, Jun; Fay, Francois; Zhao, Yiming|info:eu-repo/dai/nl/355358352; Sanchez-Gaytan, Brenda; Reiner, Thomas; Fayad, Zahi A.; Kok, Robbert J.|info:eu-repo/dai/nl/170678326; Metselaar, Josbert M.|info:eu-repo/dai/nl/244207690; Mulder, Willem J.; Storm, G|info:eu-repo/dai/nl/073356328

    2016-01-01

    Background: Atherosclerosis is a chronic inflammatory disease of the large arteries and a leading cause of death worldwide. Macrophages are key players in the progression of atherosclerosis and are a compelling target for disease management [1]. Statins, HMG-CoA reductase inhibitors, exhibit

  7. Effect of statin use on mobility disability and its prevention in at-risk older adults: the LIFE study

    Science.gov (United States)

    BACKGROUND: HMG-CoA reductase inhibitors (statins) are among the most commonly prescribed classes of medications. Although their cardiovascular benefits and myalgia risks are well documented, their effects on older adults initiating an exercise training program are less understood. METHODS: 1,635 s...

  8. Atorvastatin prevents hypoxia-induced inhibition of endothelial nitric oxide synthase expression but does not affect heme oxygenase-1 in human microvascular endothelial cells

    NARCIS (Netherlands)

    Loboda, Agnieszka; Jazwa, Agnieszka; Jozkowicz, Alicj A.; Dorosz, Jerzy; Balla, Jozsef; Molema, Grietje; Dulak, Jozef

    Beneficial cardiovascular effects of statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are particularly assigned to the modulation of inflammation. Endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) are listed among the crucial protective,

  9. Current and future pharmacologic options for the management of patients unable to achieve low-density lipoprotein-cholesterol goals with statins

    NARCIS (Netherlands)

    El Harchaoui, Karim; Akdim, Fatima; Stroes, Erik S. G.; Trip, Mieke D.; Kastelein, John J. P.

    2008-01-01

    Low-density lipoprotein-cholesterol (LDL-C) lowering is the mainstay of the current treatment guidelines in the management of cardiovascular risk. HMG-CoA reductase inhibitors (statins) are Currently the most effective LDL-C-lowering drugs. However, a substantial number of patients do not reach

  10. PCSK9 genetic variants and risk of type 2 diabetes: A mendelian randomisation study

    NARCIS (Netherlands)

    Schmidt, A.F. (Amand F.); D.I. Swerdlow (Daniel); M.V. Holmes (Michael); R.S. Patel (Riyaz); Fairhurst-Hunter, Z. (Zammy); Lyall, D.M. (Donald M.); Hartwig, F.P. (Fernando Pires); Horta, B.L. (Bernardo Lessa); E. Hypponen (Elina); C. Power (Christopher); Moldovan, M. (Max); E.P.A. van Iperen (Erik); G. Kees Hovingh; I. Demuth (Ilja); Norman, K. (Kristina); E. Steinhagen-Thiessen (Elisabeth); Demuth, J. (Juri); L. Bertram (Lars); Liu, T. (Tian); S. Coassin (Stefan); J. Willeit (Johann); S. Kiechl (Stefan); Willeit, K. (Karin); Mason, D. (Dan); J. Wright (Juliet); R. Morris (Richard); Wanamethee, G. (Goya); P.H. Whincup (Peter); Y. Ben-Shlomo; S. McLachlan (Stela); J.F. Price (Jackie F.); M. Kivimaki (Mika); Welch, C. (Catherine); Sanchez-Galvez, A. (Adelaida); P. Marques-Vidal (Pedro); A.N. Nicolaides (Andrew); A.G. Panayiotou (Andrie); Onland-Moret, N.C. (N Charlotte); Y.T. van der Schouw (Yvonne); G. Matullo; Fiorito, G. (Giovanni); S. Guarrera (Simonetta); C. Sacerdote (Carlotta); N.J. Wareham (Nick); C. Langenberg (Claudia); Scott, R. (Robert); Luan, J. (Jian'an); M. Bobak (Martin); S. Malyutina; Pajak, A. (Andrzej); R. Kubinova; A. Tamosiunas (Abdonas); H. Pikhart (Hynek); L.L.N. Husemoen (Lise Lotte); N. Grarup (Niels); O. Pedersen (Oluf); T. Hansen (T.); A. Linneberg (Allan); Simonsen, K.S. (Kenneth Starup); J. Cooper (Jim); S.E. Humphries (Steve); M.H. Brilliant (Murray H.); T.E. Kitchner (Terrie E.); H. Hakonarson (Hakon); D.S. Carrell (David); McCarty, C.A. (Catherine A.); Kirchner, H.L. (H Lester); E.B. Larson (Eric B.); D.R. Crosslin (David); de Andrade, M. (Mariza); Roden, D.M. (Dan M.); J.C. Denny (Joshua C.); C. Carty (Cara); Hancock, S. (Stephen); J. Attia (John); E.G. Holliday (Elizabeth); Donnell, M.O.'. (Martin O'); Yusuf, S. (Salim); Chong, M. (Michael); G. Pare (Guillame); P. van der Harst (Pim); Said, M.A. (M Abdullah); Eppinga, R.N. (Ruben N.); N. Verweij (Niek); H. Snieder (Harold); Christen, T. (Tim); D.O. Mook-Kanamori (Dennis); S. Gustafsson (Stefan); W.H.L. Kao (Wen); E. Ingelsson (Erik); Pazoki, R. (Raha); O.H. Franco (Oscar); A. Hofman (Albert); A.G. Uitterlinden (André); A. Dehghan (Abbas); A. Teumer (Alexander); S.E. Baumeister (Sebastian); M. Dörr (Marcus); Lerch, M.M. (Markus M.); U. Völker (Uwe); H. Völzke (Henry); Ward, J. (Joey); J.P. Pell (Jill P.); Smith, D.J. (Daniel J.); Meade, T. (Tom); A-H. Maitland-van der Zee (Anke-Hilse); Baranova, E.V. (Ekaterina V.); Young, R. (Robin); I. Ford (Ian); A. Campbell (Archie); S. Padmanabhan (Sandosh); M.L. Bots (Michiel); Grobbee, D.E. (Diederick E.); P. Froguel (Philippe); D. Thuillier (Dorothee); B. Balkau (Beverley); A. Bonnefond (Amélie); Cariou, B. (Bertrand); Smart, M. (Melissa); Bao, Y. (Yanchun); M. Kumari (Meena); A. Mahajan (Anubha); P.M. Ridker (Paul); D.I. Chasman (Daniel I.); A. Reiner (Alexander); L.A. Lange (Leslie); M.D. Ritchie (Marylyn D.); F.W. Asselbergs (Folkert); J.P. Casas (Juan); J. Keating (John); Preiss, D. (David); A. Hingorani (Aroon); N. Sattar (Naveed)

    2016-01-01

    textabstractBackground: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of

  11. PCSK9 genetic variants and risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Amand F; Swerdlow, Daniel I; Holmes, Michael V

    2017-01-01

    BACKGROUND: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 dia...

  12. PCSK9 genetic variants and risk of type 2 diabetes : A mendelian randomisation study

    NARCIS (Netherlands)

    Schmidt, Amand F.; Swerdlow, Daniel I.; Holmes, Michael V.; Patel, Riyaz S.; Fairhurst-Hunter, Zammy; Lyall, Donald M.; Hartwig, Fernando Pires; Horta, Bernardo Lessa; Hyppönen, Elina; Power, Christine; Moldovan, Max; van Iperen, Erik; Hovingh, G. Kees; Demuth, Ilja; Norman, Kristina; Steinhagen-Thiessen, Elisabeth; Demuth, Juri; Bertram, Lars; Liu, Tian; Coassin, Stefan; Willeit, Johann; Kiechl, Stefan; Willeit, Karin; Mason, Dan; Wright, John; Morris, Richard; Wanamethee, Goya; Whincup, Peter; Ben-Shlomo, Yoav; McLachlan, Stela; Price, Jackie F.; Kivimaki, Mika; Welch, Catherine; Sanchez-Galvez, Adelaida; Marques-Vidal, Pedro; Nicolaides, Andrew; Panayiotou, Andrie G.; Onland-Moret, N. Charlotte|info:eu-repo/dai/nl/26504362X; van der Schouw, Yvonne T.|info:eu-repo/dai/nl/073449253; Matullo, Giuseppe; Fiorito, Giovanni; Guarrera, Simonetta; Sacerdote, Carlotta; Wareham, Nicholas J.; Langenberg, Claudia; Scott, Robert; Luan, Jian'an; Bobak, Martin; Malyutina, Sofia; Pajak, Andrzej; Kubinova, Ruzena; Tamosiunas, Abdonas; Pikhart, Hynek; Husemoen, Lise Lotte Nystrup; Grarup, Niels; Pedersen, Oluf; Hansen, Torben; Linneberg, Allan; Simonsen, Kenneth Starup; Cooper, Jackie; Humphries, Steve E.; Brilliant, Murray; Kitchner, Terrie; Hakonarson, Hakon; Carrell, David S.; McCarty, Catherine A.; Kirchner, H. Lester; Larson, Eric B.; Crosslin, David R.; de Andrade, Mariza; Roden, Dan M.; Denny, Joshua C.; Carty, Cara; Hancock, Stephen; Attia, John; Holliday, Elizabeth; Donnell, Martin O.; Yusuf, Salim; Chong, Michael; Pare, Guillaume; van der Harst, Pim; Said, M. Abdullah; Eppinga, Ruben N.; Verweij, Niek; Snieder, Harold; Christen, Tim; Mook-Kanamori, Dennis O.; Gustafsson, Stefan; Lind, Lars; Ingelsson, Erik; Pazoki, Raha; Franco, Oscar; Hofman, Albert; Uitterlinden, Andre; Dehghan, Abbas; Teumer, Alexander; Baumeister, Sebastian; Dörr, Marcus; Lerch, Markus M.; Völker, Uwe; Völzke, Henry; Ward, Joey; Pell, Jill P.; Smith, Daniel J.; Meade, Tom; Maitland-van der Zee, Anke H.; Baranova, Ekaterina V.; Young, Robin; Ford, Ian; Campbell, Archie; Padmanabhan, Sandosh; Bots, Michiel L.|info:eu-repo/dai/nl/110610032; Grobbee, Diederick E.|info:eu-repo/dai/nl/071889256; Froguel, Philippe; Thuillier, Dorothée; Balkau, Beverley; Bonnefond, Amélie; Cariou, Bertrand; Smart, Melissa; Bao, Yanchun; Kumari, Meena; Mahajan, Anubha; Ridker, Paul M.; Chasman, Daniel I.; Reiner, Alex P.; Lange, Leslie A.; Ritchie, Marylyn D.; Asselbergs, Folkert W.|info:eu-repo/dai/nl/270752137; Casas, Juan Pablo; Keating, Brendan J.; Preiss, David; Hingorani, Aroon D.; Sattar, Naveed

    BACKGROUND: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2

  13. The treatment of cholesterol: issues, effects and targets

    African Journals Online (AJOL)

    Review: The treatment of cholesterol: issues, effects and targets. 523. Vol 52 No 6. SA Fam Pract 2010. Statins: what are they? Statins are the most powerful cholesterol lowering drugs currently available. Statins inhibit 3-hydroxy-3-methyl- glutaryl-coenzyme A (HMG CoA) reductase, which leads to reduced cholesterol ...

  14. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  15. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  16. Differential effects of amlodipine and atorvastatin treatment and their combination on atherosclerosis in ApoE*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Delsing, D.J.; Jukema, J.W.; van de Wiel, M.A.; Emeis, J.; van der Laarse, A.; Havekes, L.M.; Princen, H.M.G.

    2003-01-01

    This study was designed to investigate the potential antiatherosclerotic effects of the calcium antagonist amlodipine as compared with the HMG-CoA reductase inhibitor atorvastatin and the combination of both in ApoE*3-Leiden transgenic mice. Four groups of 15 ApoE*3-Leiden mice were put on a

  17. The exp1 gene essential for pileus expansion and autolysis of the inky cap mushroom Coprinopsis cinerea (Coprinus cinereus) encodes an HMG protein.

    Science.gov (United States)

    Muraguchi, Hajime; Fujita, Takashi; Kishibe, Yuya; Konno, Kanako; Ueda, Nanae; Nakahori, Kiyoshi; Yanagi, Sonoe O; Kamada, Takashi

    2008-06-01

    The homobasidiomycete Coprinopsis cinerea is a member of the fungi known as inky cap mushrooms, and its fruiting-body pileus autolyzes soon after completion of the development. During the last 3h of the development, the pileus exhibits umbrella-like expansion: the pileal tissue is cracked at the base of each gill and then each gill tissue is split to form a V-shape, as seen in a cross section. We identified two C. cinerea mutants defective in both pileus expansion and autolysis. The defects in both mutants are due to recessive mutations in a single gene, designated exp1. The exp1 gene is predicted to encode an HMG1/2-like protein with two HMG domains. The transcription of exp1 is strongly induced in the pileus 3h before pileus expansion. This result, together with the fact that the exp1 mutations cause a specific developmental phenotype, suggest that Exp1 is a novel, transcriptional regulator controlling the final phase of fruiting-body morphogenesis.

  18. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    GREGO

    nitrate transformation into nitrite (µg of NO2. -/min/g F.W) is observed when incubation period of enzyme is short (1 to 5 min). Key words: Extraction, dosage, nitrate reductase activity, callus, cotton. INTRODUCTION. Nitrate reductase (EC. 1.7.99.4) is an oxidoreductase enzyme involved in nitrogen assimilation in plant. It.

  19. Biliverdin Reductase: a Target for Cancer Therapy?

    Directory of Open Access Journals (Sweden)

    Peter eGibbs

    2015-06-01

    Full Text Available Biliverdin reductase (BVR is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1 and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation.

  20. [High throughput screening of active and stereoselective carbonyl reductases].

    Science.gov (United States)

    Zhang, Hang; Chen, Xi; Feng, Jinhui; Bao, Jinku; Wu, Qiaqing; Zhu, Dunming

    2015-02-01

    In this study, a fast carbonyl reductases colorimetric screening method for discovering stereoselective carbonyl reductases was established by combining the reverse alcohol oxidation with the azoreductase-catalyzed reduction of azo dye. When azo dye (Orange I , 4-(4-hydroxy-1-naphthylazo) benzenesulfonic acid) and azoreductase (AzoB) were added into the reaction system of alcohol oxidation catalyzed by carbonyl reductase, the produced NAD(P)H served as electron donor for the azoreductase to reduce the azo dye, resulting the color fade. Hence, the carbonyl reductases can be screened by the obvious color change. When chiral alcohol was used as the substrate, the activity and stereoselectivity of carbonyl reductases can be screened at the same time.

  1. Selective inactivation of various acyl-CoA dehydrogenases by (methylenecyclopropyl)acetyl-CoA.

    Science.gov (United States)

    Ikeda, Y; Tanaka, K

    1990-04-19

    Inactivation of five distinct acyl-CoA dehydrogenases by (methylenecyclopropyl)acetyl-CoA (MCPA-CoA), the toxic metabolite of hypoglycin from unripe ackee fruit, was investigated using purified enzyme preparations. Short-chain acyl-CoA (SCADH), medium-chain acyl-CoA (MCADH) and isovaleryl-CoA (IVDH) dehydrogenases were severely and irreversibly inactivated by MCPA-CoA, while 2-methyl-branched chain acyl-CoA dehydrogenase (2-meBCADH) was only slowly and mildly inactivated. Long-chain acyl-CoA dehydrogenase (LCADH) was not significantly inactivated, even after prolonged incubation with MCPA-CoA. Inactivation of SCADH, MCADH and IVDH was effectively prevented by the addition of substrate. This mode of inactivation by MCPA-CoA explains the urinary metabolite profile in hypoglycin treated-rats, which includes large amounts of metabolites from fatty acids and leucine, and relatively small amounts of those from valine and isoleucine. Spectrophotometric titration of SCADH and MCADH with MCPA-CoA, together with the protective effects of substrate, indicates that MCPA-CoA is acted upon by, and exerts in turn irreversible inactivation of, SCADH and MCADH, confirming that MCPA-CoA is a suicide inhibitor (Wenz et al. (1981) J. Biol. Chem. 256, 9809-9812). Spectrophotometric titration data of LCADH and MCPA-CoA is typical of non-reacting CoA ester.

  2. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli.

    Science.gov (United States)

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Tajima, Takahisa; Yakushi, Toshiharu; Matsushita, Kazunobu; Kato, Junichi

    2015-06-20

    1-Butanol is an important industrial platform chemical and an advanced biofuel. While various groups have attempted to construct synthetic pathways for 1-butanol production, efforts to construct a pathway that functions under aerobic conditions have met with limited success. Here, we constructed a CoA-dependent 1-butanol synthetic pathway that functions under aerobic conditions in Escherichia coli, by expanding the previously reported (R)-1,3-butanediol synthetic pathway. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, bld (butylraldehyde dehydrogenase) from Clostridium saccharoperbutylacetonicum, and inherent alcohol dehydrogenase(s) from E. coli. To evaluate the potential of this pathway for 1-butanol production, culture conditions, including volumetric oxygen transfer coefficient (kLa) and pH were optimized in a mini-jar fermenter. Under optimal conditions, 1-butanol was produced at a concentration of up to 8.60gL(-1) after 46h of fed-batch cultivation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biochemical and Structural Basis for Inhibition of Enterococcus faecalis Hydroxymethylglutaryl-CoA Synthase, mvaS, by Hymeglusin

    Energy Technology Data Exchange (ETDEWEB)

    Skaff, D. Andrew; Ramyar, Kasra X.; McWhorter, William J.; Barta, Michael L.; Geisbrecht, Brian V.; Miziorko, Henry M. (UMKC)

    2012-07-25

    Hymeglusin (1233A, F244, L-659-699) is established as a specific {beta}-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 {angstrom}) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.

  4. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites

    DEFF Research Database (Denmark)

    Kjaerulff, S; Dooijes, D; Clevers, H

    1997-01-01

    The Schizosaccharomyces pombe mfm1 gene is expressed in an M cell-specific fashion. This regulation requires two HMG-box proteins: the ubiquitous Ste11 transcription factor and the M cell-controlling protein Mat1-Mc. Here we report that the mfm1 promoter contains a single, weak Stell-binding site...

  5. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    Science.gov (United States)

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-04

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.

  6. Structures of mammalian cytosolic quinone reductases.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Faig, M; Amzel, L M

    2000-08-01

    The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.

  7. Enhancement of nitrate reductase activity by benzyladenine in Agrostemma githago

    Energy Technology Data Exchange (ETDEWEB)

    Kende, H.; Hahn, H.; Kays, S.E.

    1971-01-01

    Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO/sub 3//sup -/ and cytokinins. Discussed was whether cytokinins affected nitrate reductase activity directly or through NO/sub 3//sup -/, either by amplifying the effect of low endogenous NO/sub 3//sup -/ levels, or by making NO/sub 3//sup -/ available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO/sub 3//sup -/ and benzyladenine, additive responses were obtained. The effects of NO/sub 3//sup -/ and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO/sub 3//sup -/, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO/sub 3//sup -/ was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO/sub 3//sup -/ and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increased again as a result of a second treatment with benzyladenine but not with NO/sub 3//sup -/. At the time of the second exposure to benzyladenine, no NO/sub 3//sup -/ was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO/sub 3//sup -/. 11 references, 5 figures, 3 tables.

  8. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  9. TCF-1, a T cell-specific transcription factor of the HMG box family, interacts with sequence motifs in the TCR beta and TCR delta enhancers.

    Science.gov (United States)

    Oosterwegel, M A; van de Wetering, M L; Holstege, F C; Prosser, H M; Owen, M J; Clevers, H C

    1991-11-01

    We have recently identified and cloned TCF-1, a T cell-specific transcription factor with specificity for the AACAAAG motif in the CD3 epsilon enhancer and for the TTCAAAG motif in the TCR alpha enhancer. TCF-1 belongs to the family of transcription-regulating proteins which share a region of homology termed the HMG-box. Here, we show by gel retardation analysis that TCF-1 specifically recognizes the T beta 5 element of the TCR beta enhancer and the T delta 7 element of the TCR delta enhancer. Comparison of the sequences of all elements recognized by TCF-1 defines a consensus motif A/T A/T C A A/G A G. These observations imply that TCF-1 is involved in the control of several T cell-specific genes and might thus play an important role in the establishment and maintenance of the mature T cell phenotype.

  10. Feruloyl-CoA:monolignol transferase

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-08

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  11. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.

    Directory of Open Access Journals (Sweden)

    Changshui Liu

    Full Text Available The formation of fusion protein in biosynthetic pathways usually improves metabolic efficiency either channeling intermediates and/or colocalizing enzymes. In the metabolic engineering of biochemical pathways, generating unnatural protein fusions between sequential biosynthetic enzymes is a useful method to increase system efficiency and product yield. Here, we reported a special case. The malonyl-CoA reductase (MCR of Chloroflexus aurantiacus catalyzes the conversion of malonyl-CoA to 3-hydroxypropionate (3HP, and is a key enzyme in microbial production of 3HP, an important platform chemical. Functional domain analysis revealed that the N-terminal region of MCR (MCR-N; amino acids 1-549 and the C-terminal region of MCR (MCR-C; amino acids 550-1219 were functionally distinct. The malonyl-CoA was reduced into free intermediate malonate semialdehyde with NADPH by MCR-C fragment, and further reduced to 3HP by MCR-N fragment. In this process, the initial reduction of malonyl-CoA was rate limiting. Site-directed mutagenesis demonstrated that the TGXXXG(AX(1-2G and YXXXK motifs were important for enzyme activities of both MCR-N and MCR-C fragments. Moreover, the enzyme activity increased when MCR was separated into two individual fragments. Kinetic analysis showed that MCR-C fragment had higher affinity for malonyl-CoA and 4-time higher K cat/K m value than MCR. Dissecting MCR into MCR-N and MCR-C fragments also had a positive effect on the 3HP production in a recombinant Escherichia coli strain. Our study showed the feasibility of protein dissection as a new strategy in biosynthetic systems.

  12. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.

    Science.gov (United States)

    Liu, Changshui; Wang, Qi; Xian, Mo; Ding, Yamei; Zhao, Guang

    2013-01-01

    The formation of fusion protein in biosynthetic pathways usually improves metabolic efficiency either channeling intermediates and/or colocalizing enzymes. In the metabolic engineering of biochemical pathways, generating unnatural protein fusions between sequential biosynthetic enzymes is a useful method to increase system efficiency and product yield. Here, we reported a special case. The malonyl-CoA reductase (MCR) of Chloroflexus aurantiacus catalyzes the conversion of malonyl-CoA to 3-hydroxypropionate (3HP), and is a key enzyme in microbial production of 3HP, an important platform chemical. Functional domain analysis revealed that the N-terminal region of MCR (MCR-N; amino acids 1-549) and the C-terminal region of MCR (MCR-C; amino acids 550-1219) were functionally distinct. The malonyl-CoA was reduced into free intermediate malonate semialdehyde with NADPH by MCR-C fragment, and further reduced to 3HP by MCR-N fragment. In this process, the initial reduction of malonyl-CoA was rate limiting. Site-directed mutagenesis demonstrated that the TGXXXG(A)X(1-2)G and YXXXK motifs were important for enzyme activities of both MCR-N and MCR-C fragments. Moreover, the enzyme activity increased when MCR was separated into two individual fragments. Kinetic analysis showed that MCR-C fragment had higher affinity for malonyl-CoA and 4-time higher K cat/K m value than MCR. Dissecting MCR into MCR-N and MCR-C fragments also had a positive effect on the 3HP production in a recombinant Escherichia coli strain. Our study showed the feasibility of protein dissection as a new strategy in biosynthetic systems.

  13. Lagenaria siceraria ameliorates atheromatous lesions by modulating HMG–CoA reductase and lipoprotein lipase enzymes activity in hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Mithun Singh Rajput

    2014-01-01

    Conclusion: It can be concluded that ethanolic extract of fruits of L. siceraria contains active components which ameliorates the atheromatous lesions in rat aorta and lowers the risk of atherosclerosis in hypercholesterolemic rats.

  14. QSAR and Molecular Docking Studies of Oxadiazole-Ligated Pyrrole Derivatives as Enoyl-ACP (CoA) Reductase Inhibitors

    National Research Council Canada - National Science Library

    Asgaonkar, Kalyani D; Mote, Ganesh D; Chitre, Trupti S

    2014-01-01

    A quantitative structure-activity relationship model was developed on a series of compounds containing oxadiazole-ligated pyrrole pharmacophore to identify key structural fragments required for anti-tubercular activity. Two-dimensional (2D...

  15. [Fumarate reductase in the mitochondria of the trematode Calicophoron ijimai].

    Science.gov (United States)

    Iarygina, G V; Vykhrestiuk, N P; Burenina, E A

    1983-01-01

    The presence of active fumarate reductase system in mitochondria of the trematode Calicophoron ijimai was shown. Fumarate reductase activities in different collections of C. ijimai vary considerably. Maximum activity accounts for 47.7 +/- 1.0 nM/min/mg protein whereas minimum--for 15.1 +/- 0.1. Some properties of the enzyme were studied. The effect of thiabendazole, bitionol, oxinid and preparations of G-1026 and G-937 on the fumarate reductase activity was investigated. G-1026, G-937 preparations and bitionol have the strongest inhibitory effect on the enzyme. Thiabendazole inhibited but little the fumarate reductase reaction in C. ijimai. The enzyme activity was not affected by oxinid.

  16. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  17. Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima

    NARCIS (Netherlands)

    Loveridge, E Joel; Hroch, Lukas; Hughes, Robert L; Williams, Thomas; Davies, Rhidian L; Angelastro, Antonio; Luk, Louis Y P; Maglia, Giovanni; Allemann, Rudolf K

    2017-01-01

    Mammalian dihydrofolate reductases (DHFR) catalyse the reduction of folate more efficiently than the equivalent bacterial enzymes, despite typically having similar efficiencies for the reduction of their natural substrate dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic

  18. Study of the 3-Hydroxy Eicosanoyl-Coenzyme A Dehydratase and (E)-2,3 Enoyl-Coenzyme A Reductase Involved in Acyl-Coenzyme A Elongation in Etiolated Leek Seedlings1

    Science.gov (United States)

    Lessire, René; Chevalier, Sylvette; Lucet-Levannier, Karine; Lellouche, Jean-Paul; Mioskowski, Charles; Cassagne, Claude

    1999-01-01

    (R,S)-[1-14C]3-Hydroxy eicosanoyl-coenzyme A (CoA) has been chemically synthesized to study the 3-hydroxy acyl-CoA dehydratase involved in the acyl-CoA elongase of etiolated leek (Allium porrum L.) seedling microsomes. 3-Hydroxy eicosanoyl-CoA (3-OH C20:0-CoA) dehydration led to the formation of (E)-2,3 eicosanoyl-CoA, which has been characterized. Our kinetic studies have determined the optimal conditions of the dehydration and also resolved the stereospecificity requirement of the dehydratase for (R)-3-OH C20:0-CoA. Isotopic dilution experiments showed that 3-hydroxy acyl-CoA dehydratase had a marked preference for (R)-3-OH C20:0-CoA. Moreover, the very-long-chain synthesis using (R)-3-OH C20:0-CoA isomer and [2-14C]malonyl-CoA was higher than that using the (S) isomer, whatever the malonyl-CoA and the 3-OH C20:0-CoA concentrations. We have also used [1-14C]3-OH C20:0-CoA to investigate the reductant requirement of the enoyl-CoA reductase of the acyl-CoA elongase complex. In the presence of NADPH, [1-14C]3-OH C20:0-CoA conversion was stimulated. Aside from the product of dehydration, i.e. (E)-2,3 eicosanoyl-CoA, we detected eicosanoyl-CoA resulting from the reduction of (E)-2,3 eicosanoyl-CoA. When we replaced NADPH with NADH, the eicosanoyl-CoA was 8- to 10-fold less abundant. Finally, in the presence of malonyl-CoA and NADPH or NADH, [1-14C]3-OH C20:0-CoA led to the synthesis of very-long-chain fatty acids. This synthesis was measured using [1-14C]3-OH C20:0-CoA and malonyl-CoA or (E)-2,3 eicosanoyl-CoA and [2-14C]malonyl-CoA. In both conditions and in the presence of NADPH, the acyl-CoA elongation activity was about 60 nmol mg−1 h−1, which is the highest ever reported for a plant system. PMID:10069838

  19. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli.

    Science.gov (United States)

    van Wonderen, Jessica H; Burlat, Bénédicte; Richardson, David J; Cheesman, Myles R; Butt, Julea N

    2008-04-11

    Cytochrome c nitrite reductase (NrfA) from Escherichia coli has a well established role in the respiratory reduction of nitrite to ammonium. More recently the observation that anaerobically grown E. coli nrf mutants were more sensitive to NO. than the parent strain led to the proposal that NrfA might also participate in NO. detoxification. Here we describe protein film voltammetry that presents a quantitative description of NrfA NO. reductase activity. NO. reduction is initiated at similar potentials to NrfA-catalyzed reduction of nitrite and hydroxylamine. All three activities are strongly inhibited by cyanide. Together these results suggest a common site for reduction of all three substrates as axial ligands to the lysine-coordinated NrfA heme rather than nonspecific NO. reduction at one of the four His-His coordinated hemes also present in each NrfA subunit. NO. reduction by NrfA is described by a K(m) of the order of 300 microm. The predicted turnover number of approximately 840 NO. s(-1) is much higher than that of the dedicated respiratory NO. reductases of denitrification and the flavorubredoxin and flavohemoglobin of E. coli that are also proposed to play roles in NO. detoxification. In considering the manner by which anaerobically growing E. coli might detoxify exogenously generated NO. encountered during invasion of a human host it appears that the periplasmically located NrfA should be effective in maintaining low NO. levels such that any NO. reaching the cytoplasm is efficiently removed by flavorubredoxin (K(m) approximately 0.4 microm).

  20. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser

    2014-04-01

    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  1. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  2. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  3. The role of light in the inducation of nitrate reductase and nitrite reductase in cucumber seedlings

    Directory of Open Access Journals (Sweden)

    J. Buczek

    2015-01-01

    Full Text Available The activity of nitrate reductase (NR and nitrite reductase (NiR was investigated in vivo and in vitro in the roots and NR activity in 3-day-old cotyledons of cucumber seedlings. NR activity in the roots appears almost immediately after addition of nitrate ions to the induction medium, whereas, in the cotyledones NR induction is delayed. In general light enhances NR activity in the cotyledons and depresses it in the roots in experiments of short duration. Etiolation of the cotyledons reduces NR activity in the roots and leads to disappearance of the activity of this enzyme in the cotyledons, whereas the NR activity of roots kept in darkness, after transfer of the etiolated plants to light, increases threefold. In roots growing in darkness a delay in NiR induction is observed, while in those growing in ligth it occurs at the same time as NR induction. Chlormaphenicol (CAP, cycloheximide (CHI and actinomycin D (ACM applied at the beginning of the period of seedling induction with initrates inhibit NR activity in the cotyledons, whereas in the roots only CHI and ACM exert such an effect. To sum up, NR is synthesized in cucumber roots and cotyledons de novo on the cytoplasmic polyribosomes, and light per se is not indispensable for this synthesis, but it has an indirect influence on the activity level of NR and NiR both in the roots and the cotyledons.

  4. Purification and Properties of an NADPH-Aldose Reductase (Aldehyde Reductase) from Euonymus japonica Leaves

    Science.gov (United States)

    Negm, Fayek B.

    1986-01-01

    The enzyme aldose (aldehyde) reductase was partially purified (142-fold) and characterized from Euonymus japonica leaves. The reductase, a dimer, had an average molecular weight of 67,000 as determined by gel filtration on Sephadex G-100. The enzyme was NADPH specific and reduced a broad range of substrates including aldoses, aliphatic aldehydes, and aromatic aldehydes. Maximum activity was observed at pH 8 in phosphate and Tris-HCl buffers and at pH 8.6 to 9.0 in glycine-NaOH buffer using dl-glyceraldehyde or 3-pyridinecarboxaldehyde as substrate. NADP was a competitive inhibitor with respect to NADPH with a Ki of 60 micromolar. Glycerol was an uncompetitive inhibitor to dl-glyceraldehyde (K′i = 460 millimolar). The Euonymus enzyme was inhibited by sulfhydryl inhibitor, phenobarbital, and high concentrations of Li2SO4. Pyrazol and metal chelating agents inhibited the enzyme slightly. Enzyme activity was detected in the leaves and berries of Celastrus orbiculatus and several species of Euonymus. Probable function of this enzyme is to reduce d-galactose to galactitol, a characteristic metabolite in phloem sap of members of the Celastraceae family. Images Fig. 1 PMID:16664750

  5. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  6. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  7. Heterogeneous hCG and hMG commercial preparations result in different intracellular signalling but induce a similar long-term progesterone response in vitro.

    Science.gov (United States)

    Riccetti, Laura; Klett, Danièle; Ayoub, Mohammed Akli; Boulo, Thomas; Pignatti, Elisa; Tagliavini, Simonetta; Varani, Manuela; Trenti, Tommaso; Nicoli, Alessia; Capodanno, Francesco; La Sala, Giovanni Battista; Reiter, Eric; Simoni, Manuela; Casarini, Livio

    2017-10-01

    Are four urinary hCG/menotropin (hMG) and one recombinant preparation characterized by different molecular features and do they mediate specific intracellular signaling and steroidogenesis? hCG and hMG preparations have heterogeneous compositions and mediate preparation-specific cell signaling and early steroidogenesis, although similar progesterone plateau levels are achieved in 24 h-treated human primary granulosa cells in vitro. hCG is the pregnancy hormone marketed as a drug for ARTs to induce final oocyte maturation and ovulation, and to support FSH action. Several hCG formulations are commercially available, differing in source, purification methods and biochemical composition. Commercial hCG preparations for ART or research purposes were compared in vitro. The different preparations were quantified by immunoassay with calibration against the hCG standard (Fifth IS; NIBSC 07/364). Immunoreactivity patterns, isoelectric points and oligosaccharide contents of hCGs were evaluated using reducing and non-reducing Western blotting, capillary isoelectric-focusing immunoassay and lectin-ELISA, respectively. Functional studies were performed in order to evaluate intracellular and total cAMP, progesterone production and β-arrestin 2 recruitment by ELISA and BRET, in both human primary granulosa lutein cells (hGLC) and luteinizing hormone (LH)/hCG receptor (LHCGR)-transfected HEK293 cells, stimulated by increasing hormone concentrations. Statistical analysis was performed using two-way ANOVA and Bonferroni post-test or Mann-Whitney's U-test as appropriate. Heterogeneous profiles were found among preparations, revealing specific molecular weight patterns (20-75 KDa range), isoelectric points (4.0-9.0 pI range) and lectin binding (P hCG/hMG preparations is provided in International Units (IU) by in-vivo bioassay and calibration against an International Standard, although it is an unsuitable unit of measure for in-vitro studies. The re-calibration against recombinant h

  8. Pancreaticobiliary cancers with deficient methylenetetrahydrofolate reductase genotypes.

    Science.gov (United States)

    Matsubayashi, Hiroyuki; Skinner, Halcyon G; Iacobuzio-Donahue, Christine; Abe, Tadayoshi; Sato, Norihiro; Riall, Taylor Sohn; Yeo, Charles J; Kern, Scott E; Goggins, Michael

    2005-08-01

    Methyl group deficiency might promote carcinogenesis by inducing DNA breaks and DNA hypomethylation. We hypothesized that deficient methylenetetrahydrofolate reductase (MTHFR) genotypes could promote pancreatic cancer development. First, we performed a case-control study of germline MTHFR polymorphisms (C677T, A1298C) in 303 patients with pancreatic cancer and 305 matched control subjects. Pancreatic neoplasms frequently lose an MTHFR allele during tumorigenesis; we hypothesized that such loss could promote carcinogenesis. We therefore evaluated the cancer MTHFR genotypes of 82 patients with pancreaticobiliary cancers and correlated them to genome-wide measures of chromosomal deletion by using 386 microsatellite markers. Finally, MTHFR genotypes were correlated with global DNA methylation in 68 cancer cell lines. Germline MTHFR polymorphisms were not associated with an increased likelihood of having pancreatic cancer. Fractional allelic loss (a measure of chromosomal loss) trended higher in cancers with 677T genotypes than in cancers with other genotypes (P = .055). Among cancers with loss of an MTHFR allele, cancers with 677T MTHFR alleles had more deletions at folate-sensitive fragile sites (36.9%) and at tumor suppressor gene loci (68.5%) than 677C cancers (28.7% and 47.8%, P = .079 and .014, respectively). LINE1 methylation was lower in cancers with less functional 677T/TT genotypes (24.4%) than in those with 677CT (26.0%) and CC/C genotypes (32.5%) (P = .014). Cancers with defective MTHFR genotypes have more DNA hypomethylation and more chromosomal losses. Deficient MTHFR function due to loss of an MTHFR allele by an evolving neoplasm might, by promoting chromosomal losses, accelerate cancer development.

  9. Binding of NADP(+) triggers an open-to-closed transition in a mycobacterial FabG β-ketoacyl-ACP reductase.

    Science.gov (United States)

    Blaise, Mickaël; Van Wyk, Niël; Banères-Roquet, Françoise; Guérardel, Yann; Kremer, Laurent

    2017-03-07

    The ketoacyl-acyl carrier protein (ACP) reductase FabG catalyzes the NADPH/NADH dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products, the first reductive step in the fatty acid biosynthesis elongation cycle. FabG proteins are ubiquitous in bacteria and are part of the type II fatty acid synthase system. Mining the Mycobacterium smegmatis genome uncovered several putative FabG-like proteins. Among them, we identified M. smegmatis MSMEG_6753 whose gene was found adjacent to MSMEG_6754, encoding a recently characterized enoyl-CoA dehydratase, and to MSMEG_6755, encoding another potential reductase. Recombinantly expressed and purified MSMEG_6753 exhibits ketoacyl reductase activity in the presence of acetoacetyl-CoA and NADPH. This activity was subsequently confirmed by functional complementation studies in a fabG thermosensitive Escherichia coli mutant. Furthermore, comparison of the apo and the NADP(+)-bound MSMEG_6753 crystal structures showed that cofactor binding induces a closed conformation of the protein. A ΔMSMEG_6753 deletion mutant could be generated in M. smegmatis, indicating that this gene is dispensable for mycobacterial growth. Overall, these results showcase the diversity of FabG-like proteins in mycobacteria and new structural features regarding the catalytic mechanism of this important family of enzymes that may be of importance for the rational design of specific FabG inhibitors. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase.

    Science.gov (United States)

    Wang, Nuo; McCammon, J Andrew

    2016-01-01

    In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-enzyme complexes can be formed to facilitate the relay of substrates, i. e. substrate channeling, between sequential enzymatic reactions and to enhance the throughput of multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate reductase catalyze two consecutive reactions in the folate metabolism pathway, and experiments have shown that they are very likely to bind in the same multi-enzyme complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate reductase bifunctional enzyme give substantial evidences of substrate channeling along a surface "electrostatic highway," attention has not been paid to whether the human thymidylate synthase and dihydrofolate reductase, if they are in contact with each other in the multi-enzyme complex, are capable of substrate channeling employing surface electrostatics. This work utilizes protein-protein docking, electrostatics calculations, and Brownian dynamics to explore the existence and mechanism of the substrate channeling between the human thymidylate synthase and dihydrofolate reductase. The results show that the bound human thymidylate synthase and dihydrofolate reductase are capable of substrate channeling and the formation of the surface "electrostatic highway." The substrate channeling efficiency between the two can be reasonably high and comparable to that of the protozoa. © 2015 The Protein Society.

  11. Intrinsic enoyl-CoA isomerase activity of rat acyl-CoA oxidase I.

    Science.gov (United States)

    Zeng, Jia; Deng, Guisheng; Li, Ding

    2006-01-01

    Rat peroxisomal acyl-CoA oxidase I is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patient has been previously reported. It was found that rat acyl-CoA oxidase I has intrinsic enoyl-CoA isomerase activity, which was confirmed using incubation followed with HPLC analysis in this study. Various 3-enoyl-CoA substrates with cis or trans configuration were synthesized and used in the study of enzyme substrate specificity. The isomerase activity of the enzyme was characterized through studies of kinetics, pH dependence, and enzyme inhibition. Most k(cat)/K(M) values of rat peroxisomal acyl-CoA oxidase I for isomerization reaction are comparable with those of authentic rat liver peroxisomal Delta(3)-Delta(2)-enoyl-CoA isomerase and rat liver peroxisomal multifunctional enzyme 1 when hexenoyl-CoA and octenoyl-CoA with cis- or trans-configuration were used as substrate. Glu421 was found to be the catalytic residue for both oxidase and isomerase activities of the enzyme. The isomerase activity of rat peroxisomal acyl-CoA oxidase I is probably due to a spontaneous process driven by thermodynamic equilibrium with formation of a conjugated structure after deprotonation of substrate alpha-proton. The energy level of transition state may be lowered by a stable dienolate intermediate, which gain further stabilization via charge transfer with electron-deficient FAD cofactor of the enzyme.

  12. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue...... expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing...... metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute...

  13. Sulfite Reductase Activity in Extracts of Various Photosynthetic Bacteria

    Science.gov (United States)

    Peck, H. D.; Tedro, S.; Kamen, M. D.

    1974-01-01

    Extracts of representative bacterial strains from the various families of photosynthetic prokaryotes are demonstrated to possess significant levels of sulfite reductase [EC 1.8.99.1; hydrogen-sulfide: (acceptor)oxidoreductase] activity with reduced methyl viologen as electron donor, but not NADPH2. The enzyme is localized primarily in the soluble fraction of the extracts, in contrast to adenylysulfate reductase [EC 1.8.99.2; AMP, sulfite: (acceptor) oxidoreductase], which is bound normally in the membrane fractions of those bacteria in which it is found. Assignment of the sulfite reductase activities to the biosynthetic (“assimilatory”) pathway is suggested by levels of specific activity noted and ready solubility. PMID:4526215

  14. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa...... is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion...... nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d(1) hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity...

  15. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    Hb reductase activity in fish offsets their higher Hb autoxidation and higher likelihood of encountering elevated nitrite. Deoxygenation significantly raised the rates of RBC metHb reduction, and more so in rainbow trout than in carp. The temperature sensitivity of metHb reduction in rainbow trout RBCs......Red blood cells (RBCs) possess methemoglobin reductase activity that counters the ongoing oxidation of hemoglobin (Hb) to methemoglobin (metHb), which in circulating blood is caused by Hb autoxidation or reactions with nitrite. We describe an assay for determining metHb reductase activity in intact...... of counteracting oxidation. This assay was used to compare metHb reduction in rainbow trout and carp RBCs under both oxygenated and deoxygenated conditions. Washing resulted in effective wash-out of nitrite to low and safe values (~2μM). The subsequent decline in [metHb] with time followed first-order kinetics...

  16. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    Science.gov (United States)

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  18. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    Directory of Open Access Journals (Sweden)

    William D. Leavitt

    2015-12-01

    Full Text Available The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR. Here we provide the only direct observation of the major (34S/32S and minor (33S/32S, 36S/32S sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB. Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB to be 15.3±2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150±0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3 to 0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr-p = 16.1‰ (r – p indicates reactant versus product, n = 648. This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4-H2S = 17.3±1.5‰ and in modern marine sediments (34εSO4-H2S = 17.3±3.8‰. Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern

  19. Mitochondrial Thioredoxin-Glutathione Reductase from Larval Taenia crassiceps (Cysticerci

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    2010-01-01

    Full Text Available Mitochondrial thioredoxin-glutathione reductase was purified from larval Taenia crassiceps (cysticerci. The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At 25∘C specific activities were 437  ±  27 mU mg-1 and 840  ±  49 mU mg-1 with thioredoxin and GSSG, respectively. Apparent Km values were 0.87  ±  0.04  μM, 41  ±  6  μM and 19  ±  10  μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2 in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.

  20. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation.

    Science.gov (United States)

    Hügler, Michael; Menendez, Castor; Schägger, Hermann; Fuchs, Georg

    2002-05-01

    The 3-hydroxypropionate cycle is a new autotrophic CO(2) fixation pathway in Chloroflexus aurantiacus and some archaebacteria. The initial step is acetyl-coenzyme A (CoA) carboxylation to malonyl-CoA by acetyl-CoA carboxylase, followed by NADPH-dependent reduction of malonyl-CoA to 3-hydroxypropionate. This reduction step was studied in Chloroflexus aurantiacus. A new enzyme was purified, malonyl-CoA reductase, which catalyzed the two-step reduction malonyl-CoA + NADPH + H(+) --> malonate semialdehyde + NADP(+) + CoA and malonate semialdehyde + NADPH + H(+) --> 3-hydroxypropionate + NADP(+). The bifunctional enzyme (aldehyde dehydrogenase and alcohol dehydrogenase) had a native molecular mass of 300 kDa and consisted of a single large subunit of 145 kDa, suggesting an alpha(2) composition. The N-terminal amino acid sequence was determined, and the incomplete gene was identified in the genome database. Obviously, the enzyme consists of an N-terminal short-chain alcohol dehydrogenase domain and a C-terminal aldehyde dehydrogenase domain. No indication of the presence of a prosthetic group was obtained; Mg(2+) and Fe(2+) stimulated and EDTA inhibited activity. The enzyme was highly specific for its substrates, with apparent K(m) values of 30 microM malonyl-CoA and 25 microM NADPH and a turnover number of 25 s(-1) subunit(-1). The specific activity in autotrophically grown cells was 0.08 micromol of malonyl-CoA reduced min(-1) (mg of protein)(-1), compared to 0.03 micromol min(-1) (mg of protein)(-1) in heterotrophically grown cells, indicating downregulation under heterotrophic conditions. Malonyl-CoA reductase is not required in any other known pathway and therefore can be taken as a characteristic enzyme of the 3-hydroxypropionate cycle. Furthermore, the enzyme may be useful for production of 3-hydroxypropionate and for a coupled spectrophotometric assay for activity screening of acetyl-CoA carboxylase, a target enzyme of potent herbicides.

  1. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    ) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced......A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  2. NITRATE REDUCTASE ACTIVITY DURING HEAT SHOCK IN WINTER WHEAT

    Directory of Open Access Journals (Sweden)

    Klimenko S.B.

    2006-03-01

    Full Text Available Nitrates are the basic source of nitrogen for the majority of plants. Absorption and transformation of nitrates in plants are determined by external conditions and, first of all, temperature and light intensity. The influence of the temperature increasing till +40 0С on activity of nitrate reductase was studied. It is shown, that the rise of temperature was accompanied by sharp decrease of activity nitrate reductase in leaves of winter wheat, what, apparently, occurred for the account deactivations of enzyme and due to its dissociation.

  3. Succinyl-CoA:Mesaconate CoA-Transferase and Mesaconyl-CoA Hydratase, Enzymes of the Methylaspartate Cycle in Haloarcula hispanica

    Directory of Open Access Journals (Sweden)

    Farshad Borjian

    2017-09-01

    Full Text Available Growth on acetate or other acetyl-CoA-generating substrates as a sole source of carbon requires an anaplerotic pathway for the conversion of acetyl-CoA into cellular building blocks. Haloarchaea (class Halobacteria possess two different anaplerotic pathways, the classical glyoxylate cycle and the novel methylaspartate cycle. The methylaspartate cycle was discovered in Haloarcula spp. and operates in ∼40% of sequenced haloarchaea. In this cycle, condensation of one molecule of acetyl-CoA with oxaloacetate gives rise to citrate, which is further converted to 2-oxoglutarate and then to glutamate. The following glutamate rearrangement and deamination lead to mesaconate (methylfumarate that needs to be activated to mesaconyl-C1-CoA and hydrated to β-methylmalyl-CoA. The cleavage of β-methylmalyl-CoA results in the formation of propionyl-CoA and glyoxylate. The carboxylation of propionyl-CoA and the condensation of glyoxylate with another acetyl-CoA molecule give rise to two C4-dicarboxylic acids, thus regenerating the initial acetyl-CoA acceptor and forming malate, its final product. Here we studied two enzymes of the methylaspartate cycle from Haloarcula hispanica, succinyl-CoA:mesaconate CoA-transferase (mesaconate CoA-transferase, Hah_1336 and mesaconyl-CoA hydratase (Hah_1340. Their genes were heterologously expressed in Haloferax volcanii, and the corresponding enzymes were purified and characterized. Mesaconate CoA-transferase was specific for its physiological substrates, mesaconate and succinyl-CoA, and produced only mesaconyl-C1-CoA and no mesaconyl-C4-CoA. Mesaconyl-CoA hydratase had a 3.5-fold bias for the physiological substrate, mesaconyl-C1-CoA, compared to mesaconyl-C4-CoA, and virtually no activity with other tested enoyl-CoA/3-hydroxyacyl-CoA compounds. Our results further prove the functioning of the methylaspartate cycle in haloarchaea and suggest that mesaconate CoA-transferase and mesaconyl-CoA hydratase can be regarded as

  4. Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells.

    Science.gov (United States)

    Ferrero, Sergi; Grados-Torrez, Ricardo Enrique; Leivar, Pablo; Antolín-Llovera, Meritxell; López-Iglesias, Carmen; Cortadellas, Nuria; Ferrer, Joan Carles; Campos, Narciso

    2015-07-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formations of hypertrophied tightly packed ER membranes devoted to specific biosynthetic and secretory functions, the biogenesis of which remains largely unexplored. We show that the membrane domain of plant HMGR suffices to trigger ER proliferation and OSER biogenesis. The proliferating membranes become highly enriched in HMGR protein, but they do not accumulate sterols, indicating a morphogenetic rather than a metabolic role for HMGR. The N-terminal MDVRRRPP motif present in most plant HMGR isoforms is not required for retention in the ER, which was previously proposed, but functions as an ER morphogenic signal. Plant OSER structures are morphologically similar to those of animal cells, emerge from tripartite ER junctions, and mainly build up beside the nuclear envelope, indicating conserved OSER biogenesis in high eukaryotes. Factors other than the OSER-inducing HMGR construct mediate the tight apposition of the proliferating membranes, implying separate ER proliferation and membrane association steps. Overexpression of the membrane domain of Arabidopsis (Arabidopsis thaliana) HMGR leads to ER hypertrophy in every tested cell type and plant species, whereas the knockout of the HMG1 gene from Arabidopsis, encoding its major HMGR isoform, causes ER aggregation at the nuclear envelope. Our results show that the membrane domain of HMGR contributes to ER morphogenesis in plant cells. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  6. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the.

  7. Sepiapterin reductase deficiency : A Treatable Mimic of Cerebral Palsy

    NARCIS (Netherlands)

    Friedman, Jennifer; Roze, Emmanuel; Abdenur, Jose E.; Chang, Richard; Gasperini, Serena; Saletti, Veronica; Wali, Gurusidheshwar M.; Eiroa, Hernan; Neville, Brian; Felice, Alex; Parascandalo, Ray; Zafeiriou, Dimitrios I.; Arrabal-Fernandez, Luisa; Dill, Patricia; Eichler, Florian S.; Echenne, Bernard; Gutierrez-Solana, Luis G.; Hoffmann, Georg F.; Hyland, Keith; Kusmierska, Katarzyna; Tijssen, Marina A. J.; Lutz, Thomas; Mazzuca, Michel; Penzien, Johann; Bwee Tien Poll-The, [No Value; Sykut-Cegielska, Jolanta; Szymanska, Krystyna; Thoeny, Beat; Blau, Nenad

    Objective: Sepiapterin reductase deficiency (SRD) is an under-recognized levodopa-responsive disorder. We describe clinical, biochemical, and molecular findings in a cohort of patients with this treatable condition. We aim to improve awareness of the phenotype and available diagnostic and

  8. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... somatic embryogenesis stages, and that the level of GhNiR mRNA was also higher in the cultivar with higher somatic ..... Planta, 183: 17-24. Alexander H, Treusch, Sven L, Arnulf K, Stephan CS, Hans-Peter K,. Christa S (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of ...

  9. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    National University of Ireland, Galway, University Road, Galway, Ireland. 2Shannon Applied Biotechnology Centre, Limerick Institute Technology, Moylish Park, Limerick, Ireland. *Corresponding authors (Fax, 0035361208208; Email, patrick.murray@lit.ie). Xylose reductase is involved in the first step of the fungal pentose ...

  10. Dizygotic twinning is not associated with methylenetetrahydrofolate reductase haplotypes

    NARCIS (Netherlands)

    Montgomery, GW; Zhao, Z.Z.; Morley, K.I.; Marsh, A.J.; Boomsma, D.I.; Martin, N.G.; Duffy, DL

    2003-01-01

    Background: Folate metabolism is critical to embryonic development, influencing neural tube defects (NTD) and recurrent early pregnancy loss. Polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) have been associated with dizygotic (DZ) twinning through pregnancy loss. Methods: The C677T

  11. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    olayemitoyin

    Bioinformatic analysis of dihydrofolate reductase predicted in the genome sequence of Lactobacillus pentosus KCA1. *Kingsley C. Anukam. 1 and Uche Oge. 2. 1TWAS Genomic Research Unit, Department of Medical Laboratory Science, 2Department of Physiology,. School of Basic Medical Sciences, University of Benin, ...

  12. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    The genome has open reading frames coding for the complete genes required for folate biosynthesis. Our previous study shows that rats fed with L. pentosus KCA1 led to enhancement of haematological parameters. Bioinformatic tool such as ClustalW algorithm was used to analyze dihydrofolate reductase (folA/dfrA) ...

  13. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    Conditions of nitrate reductase extraction and activity measurement should be adapted to plant species, and to the organs of the same plant, because of extreme weaknesses and instabilities of the enzyme. Different extraction and reaction media have been compared in order to define the best conditions for cotton callus ...

  14. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  15. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.

    Science.gov (United States)

    Wang, Jun; Keceli, Gizem; Cao, Rui; Su, Jiangtao; Mi, Zhiyuan

    2017-01-01

    This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.

  16. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    Science.gov (United States)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  17. Cloning and expression analysis of dihydroxyflavonol 4-reductase ...

    African Journals Online (AJOL)

    Dihydroflavonol 4-reductase (DFR) gene is a key gene of anthocyanins biosynthesis pathway, which represent an importance pathway for orchid flower. In this study, cloning and expression analysis of DFR gene in Ascocenda spp. were carried out. Nucleotide analysis revealed that the Ascocenda DFR gene was 1,056 bp ...

  18. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    African Journals Online (AJOL)

    Thonn., Punica granatum L., and Stevia rebaudiana Bertoni) standardized extracts and their major constituents (morusin, phyllanthin, punicalagin and stevioside) in the treatment of long-term diabetic complications by inhibition of aldose reductase (AR) enzyme and advanced glycation end products (AGEs) formation.

  19. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    Science.gov (United States)

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  20. Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM-) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration.

    Science.gov (United States)

    Tanimizu, Naoki; Nishikawa, Yuji; Ichinohe, Norihisa; Akiyama, Haruhiko; Mitaka, Toshihiro

    2014-03-14

    It has been shown that mature hepatocytes compensate tissue damages not only by proliferation and/or hypertrophy but also by conversion into cholangiocyte-like cells. We found that Sry HMG box protein 9-positive (Sox9(+)) epithelial cell adhesion molecule-negative (EpCAM(-)) hepatocyte nuclear factor 4α-positive (HNF4α(+)) biphenotypic cells showing hepatocytic morphology appeared near EpCAM(+) ductular structures in the livers of mice fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. When Mx1-Cre:ROSA mice, which were injected with poly(I:C) to label mature hepatocytes, were fed with the DDC diet, we found LacZ(+)Sox9(+) cells near ductular structures. Although Sox9(+)EpCAM(-) cells adjacent to expanding ducts likely further converted into ductular cells, the incidence was rare. To know the cellular characteristics of Sox9(+)EpCAM(-) cells, we isolated them as GFP(+)EpCAM(-) cells from DDC-injured livers of Sox9-EGFP mice. Sox9(+)EpCAM(-) cells proliferated and could differentiate to functional hepatocytes in vitro. In addition, Sox9(+)EpCAM(-) cells formed cysts with a small central lumen in collagen gels containing Matrigel® without expressing EpCAM. These results suggest that Sox9(+)EpCAM(-) cells maintaining biphenotypic status can establish cholangiocyte-type polarity. Interestingly, we found that some of the Sox9(+) cells surrounded luminal spaces in DDC-injured liver while they expressed HNF4α. Taken together, we consider that in addition to converting to cholangiocyte-like cells, Sox9(+)EpCAM(-) cells provide luminal space near expanded ductular structures to prevent deterioration of the injuries and potentially supply new hepatocytes to repair damaged tissues.

  1. Osthol regulates hepatic PPAR alpha-mediated lipogenic gene expression in alcoholic fatty liver murine.

    Science.gov (United States)

    Sun, Fan; Xie, Mei-lin; Xue, Jie; Wang, Heng-bin

    2010-07-01

    Our previous studies found that osthol, an active constituent isolated from Cnidium monnieri (L.) Cusson (Apiaceae), could ameliorate the accumulation of lipids and decrease the lipid levels in serum and hepatic tissue in alcohol-induced fatty liver mice and rats. The objective of this study was to investigate its possible mechanism of the lipid-lowering effect. A mouse model with alcoholic fatty liver was induced by orally feeding 52% erguotou wine by gavage when they were simultaneously treated with osthol 10, 20, 40 mg/kg for 4 weeks. The BRL cells (rat hepatocyte line) were cultured and treated with osthol at 25, 50, 100, 200 microg/ml for 24h. The mRNA expressions of peroxisome proliferator-activated receptor (PPAR) alpha, diacylglycerol acyltransferase (DGAT), 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and cholesterol 7 alpha-hydroxylase (CYP7A) in mouse hepatic tissue or cultured hepatocytes were determined by reverse transcription polymerase chain reaction (RT-PCR). After treatment with osthol, the PPAR alpha mRNA expression in mouse liver and cultured hepatocytes was increased in dose dependent manner, while its related target genes for mRNA expression, e.g., DGAT and HMG-CoA reductase, were decreased, the CYP7A was inversely increased. And osthol-regulated mRNA expressions of DGAT, HMG-CoA reductase and CYP7A in the cultured hepatocytes were abrogated after pretreatment with specific inhibitor of PPAR alpha, MK886. It was concluded that osthol might regulate the gene expressions of DGAT, HMG-CoA reductase and CYP7A via increasing the PPAR alpha mRNA expression. (c) 2009 Elsevier GmbH. All rights reserved.

  2. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanandan, Saravanan; Moovarkumudalvan, Balasubramanian; Lescar, Julien; Kolatkar, Prasanna R.

    2015-10-30

    Sox9 is a fundamental sex-determining gene and the master regulator of chondrogenesis, and is involved in the development of various vital organs such as testes, kidney, heart and brain, and in skeletal development. Similar to other known Sox transcription factors, Sox9 recognizes and binds DNA with the consensus sequence C(T/A)TTG(T/A)(T/A) through the highly conserved HMG domain. Nonetheless, the molecular basis of the functional specificity of Sox9 in key developmental processes is still unclear. As an initial step towards a mechanistic understanding of Sox9 transcriptional regulation, the current work describes the details of the purification of the mouse Sox9 HMG domain (mSox9HMG), its crystallization in complex with a ChIP-Seq-identified FOXP2 promoter DNA element and the X-ray diffraction data analysis of this complex. The mSox9HMG–FOXP2 promoter DNA complex was crystallized by the hanging-drop vapour-diffusion method using 20% PEG 3350 in 200 mMsodium/potassium phosphate with 100 mMbis-tris propane at pH 8.5. The crystals diffracted to 2.7 Å resolution and the complex crystallized in the tetragonal space groupP41212, with unit-cell parametersa=b= 99.49,c= 45.89 Å. Crystal-packing parameters revealed that asymmetric unit contained one mSox9HMG–FOXP2 promoter DNA complex with an estimated solvent content of 64%.

  3. Steroidal antiandrogens and 5alpha-reductase inhibitors.

    Science.gov (United States)

    Bratoeff, E; Ramírez, E; Murillo, E; Flores, G; Cabeza, M

    1999-12-01

    The purpose of this work is to synthesize a pregnane derivative with a high antiandrogenic effect or a high inhibitory activity for the enzyme 5 alpha-reductase type 2. Benign prostatic hyperplasia and prostate cancer are androgen dependent diseases which afflict a large percentage of the male population. Dihydrotestosterone 3, a 5 alpha-reductase metabolite of testosterone 2 has been implicated as a causative factor in the progression of these diseases, largely through the clinical evaluation of males who are genetically deficient of steroid 5 alpha-reductase enzyme. As a result of this study, the inhibition of this enzyme has become a pharmacological strategy for the design and synthesis of new drugs. The advent of finasteride 22 "figure 5" a 5 alpha-reductase inhibitor, has greatly alleviated the symptoms associated with benign prostatic hyperplasia. On the other hand, the discovery of cyproterone acetate 4 "figure 2" alone or in combination with the antiandrogens flutamide 14 "figure 3" or bicalutamide 21 has greatly reduced the misery of prostate cancer. Prostate cancer kills about 40,000 men in the USA and approximately 400,000 prostatectomies are performed each year. In our laboratory we have recently synthesized ten new progesterone derivatives 17 alpha-acyloyloxy-6-halo (chloro, bromo) 16 beta-methyl-4, 6-pregnadiene-3, 20-diones (54a-54e and 55a-55e), "figure 10". These steroids were evaluated as antiandrogens and exhibited a much higher activity than the commercially available cyproterone acetate 4. The same compounds were also evaluated as 5 alpha-reductase inhibitors and showed a slightly higher inhibitory activity than that of finasteride 22, the drug of choice today for the treatment of benign prostatic hyperplasia In another study we synthesized several new 4-halo (bromo and chloro) 17 alpha-benzoyloxy and also 4-halo-17 alpha-acetoxy progesterone derivatives (58-63) "figure 13". These compounds were prepared from the commercially available 17 alpha

  4. A sense of balance: Experimental investigation and modeling of a malonyl-CoA sensor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Tamas eFeher

    2015-04-01

    Full Text Available Production of value-added chemicals in microorganisms is regarded as a viable alternative to chemical synthesis. In the past decade, several engineered pathways producing such chemicals, including plant secondary metabolites in microorganisms have been reported; upscaling their production yields, however, was often challenging. Here, we analyze a modular device designed for sensing malonyl-CoA, a common precursor for both fatty acid and flavonoid biosynthesis. The sensor can be used either for high-throughput pathway screening in synthetic biology applications or for introducing a feedback circuit to regulate production of the desired chemical. Here, we used the sensor to compare the performance of several predicted malonyl-CoA producing pathways, and validated the utility of malonyl-CoA reductase and malonate-CoA transferase for malonyl-CoA biosynthesis. We generated a second-order dynamic linear model describing the relation of the fluorescence generated by the sensor to the biomass of the host cell representing a filter/amplifier with a gain that correlates with the level of induction. We found the time constants describing filter dynamics to be independent of the level of induction but distinctively clustered for each of the production pathways, indicating the robustness of the sensor. Moreover, by monitoring the effect of the copy-number of the production plasmid on the dose-response curve of the sensor, we managed to coarse-tune the level of pathway expression to maximize malonyl-CoA synthesis. In addition, we provide an example of the sensor’s use in analyzing the effect of inducer or substrate concentrations on production levels. The rational development of models describing sensors, supplemented with the power of high-throughput optimization provide a promising potential for engineering feedback loops regulating enzyme levels to maximize productivity yields of synthetic metabolic pathways.

  5. A Sense of Balance: Experimental Investigation and Modeling of a Malonyl-CoA Sensor in Escherichia coli

    Science.gov (United States)

    Fehér, Tamás; Libis, Vincent; Carbonell, Pablo; Faulon, Jean-Loup

    2015-01-01

    Production of value-added chemicals in microorganisms is regarded as a viable alternative to chemical synthesis. In the past decade, several engineered pathways producing such chemicals, including plant secondary metabolites in microorganisms have been reported; upscaling their production yields, however, was often challenging. Here, we analyze a modular device designed for sensing malonyl-CoA, a common precursor for both fatty acid and flavonoid biosynthesis. The sensor can be used either for high-throughput pathway screening in synthetic biology applications or for introducing a feedback circuit to regulate production of the desired chemical. Here, we used the sensor to compare the performance of several predicted malonyl-CoA-producing pathways, and validated the utility of malonyl-CoA reductase and malonate-CoA transferase for malonyl-CoA biosynthesis. We generated a second-order dynamic linear model describing the relation of the fluorescence generated by the sensor to the biomass of the host cell representing a filter/amplifier with a gain that correlates with the level of induction. We found the time constants describing filter dynamics to be independent of the level of induction but distinctively clustered for each of the production pathways, indicating the robustness of the sensor. Moreover, by monitoring the effect of the copy-number of the production plasmid on the dose–response curve of the sensor, we managed to coarse-tune the level of pathway expression to maximize malonyl-CoA synthesis. In addition, we provide an example of the sensor’s use in analyzing the effect of inducer or substrate concentrations on production levels. The rational development of models describing sensors, supplemented with the power of high-throughput optimization provide a promising potential for engineering feedback loops regulating enzyme levels to maximize productivity yields of synthetic metabolic pathways. PMID:25905101

  6. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  7. Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins.

    Science.gov (United States)

    Banfi, Cristina; Baetta, Roberta; Gianazza, Erica; Tremoli, Elena

    2017-06-01

    Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Recent structural insights into the function of copper nitrite reductases.

    Science.gov (United States)

    Horrell, Sam; Kekilli, Demet; Strange, Richard W; Hough, Michael A

    2017-11-15

    Copper nitrite reductases (CuNiR) carry out the first committed step of the denitrification pathway of the global nitrogen cycle, the reduction of nitrite (NO 2 - ) to nitric oxide (NO). As such, they are of major agronomic and environmental importance. CuNiRs occur primarily in denitrifying soil bacteria which carry out the overall reduction of nitrate to dinitrogen. In this article, we review the insights gained into copper nitrite reductase (CuNiR) function from three dimensional structures. We particularly focus on developments over the last decade, including insights from serial femtosecond crystallography using X-ray free electron lasers (XFELs) and from the recently discovered 3-domain CuNiRs.

  9. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase

    Directory of Open Access Journals (Sweden)

    Li Phing Liew

    2016-11-01

    Full Text Available In many organisms, hydroxyurea (HU inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment.

  10. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala.

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    Full Text Available A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR, thioredoxin-glutathione reductase (TGR, and a putative thioredoxin reductase (TrxR was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.

  11. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    in prostate cancer patients: a potential factor implicated in. 5-alpha-reductase inhibitor treatment. Luis Alberto Henríquez-Hernández, Almudena Valenciano, Palmira Foro-Arnalot, María Jesús Álvarez-Cubero,. José Manuel Cozar, José Francisco Suárez-Novo, Manel Castells-Esteve, Pablo Fernández-Gonzalo,.

  12. Long term treatment with betaine in methylenetetrahydrofolate reductase deficiency.

    OpenAIRE

    Ronge, E; Kjellman, B

    1996-01-01

    A girl aged 7.5 years with deficiency of 5,10-methylenetetrahydrofolate reductase was treated from early infancy with betaine, 3-6 g daily. She has slight microcephaly, moderate developmental delay, and impaired vision but there have been no obvious signs of folate deficiency. From 4 years of age, she developed an unexplained extreme increase in appetite and weight. Recent magnetic resonance imaging of her brain was normal. The plasma methionine levels have been normal but in the lower range,...

  13. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.

    Science.gov (United States)

    Rowland, Owen; Domergue, Frédéric

    2012-09-01

    Primary fatty alcohols are found throughout the biological world, either in free form or in a combined state. They are common components of plant surface lipids (i.e. cutin, suberin, sporopollenin, and associated waxes) and their absence can significantly perturb these essential barriers. Fatty alcohols and/or derived compounds are also likely to have direct functions in plant biotic and abiotic interactions. An evolutionarily related set of alcohol-forming fatty acyl reductases (FARs) is present in all kingdoms of life. Plant microsomal and plastid-associated FAR enzymes have been characterized, acting on acyl-coenzymeA (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) substrates, respectively. FARs have distinct substrate specificities both with regard to chain length and chain saturation. Fatty alcohols and wax esters, which are a combination of fatty alcohol and fatty acid, have a variety of commercial applications. The expression of FARs with desired specificities in transgenic microbes or oilseed crops would provide a novel means of obtaining these valuable compounds. In the present review, we report on recent progress in characterizing plant FAR enzymes and in understanding the biological roles of primary fatty alcohols, as well as describe the biotechnological production and industrial uses of fatty alcohols. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Carbon-deuterium bonds as probes of dihydrofolate reductase.

    Science.gov (United States)

    Thielges, Megan C; Case, David A; Romesberg, Floyd E

    2008-05-21

    Much effort has been directed toward understanding the contributions of electrostatics and dynamics to protein function and especially to enzyme catalysis. Unfortunately, these studies have been limited by the absence of direct experimental probes. We have been developing the use of carbon-deuterium bonds as probes of proteins and now report the application of the technique to the enzyme dihydrofolate reductase, which catalyzes a hydride transfer and has served as a paradigm for biological catalysis. We observe that the stretching absorption frequency of (methyl- d 3) methionine carbon-deuterium bonds shows an approximately linear dependence on solvent dielectric. Solvent and computational studies support the empirical interpretation of the stretching frequency in terms of local polarity. To begin to explore the use of this technique to study enzyme function and mechanism, we report a preliminary analysis of (methyl- d 3) methionine residues within dihydrofolate reductase. Specifically, we characterize the IR absorptions at Met16 and Met20, within the catalytically important Met20 loop, and Met42, which is located within the hydrophobic core of the enzyme. The results confirm the sensitivity of the carbon-deuterium bonds to their local protein environment, demonstrate that dihydrofolate reductase is electrostatically and dynamically heterogeneous, and lay the foundation for the direct characterization protein electrostatics and dynamics and, potentially, their contribution to catalysis.

  15. DIHYDROFOLATE REDUCTASE AS A VERSATILE DRUG TARGET IN HEALTHCARE

    Directory of Open Access Journals (Sweden)

    Naira Rashid

    2016-09-01

    Full Text Available Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis. It has been used as a drug target for treatment of various diseases. A large number of pharmaceutical drugs have been designed to inhibit the activity of dihydrofolate reductase. However, over the period of time some organisms have developed resistance against some of these drugs. There is also a chance of cross reactivity for these drugs, as they may target the dihydrofolate reductase enzyme of other organisms. Although using NMR spectroscopy, phylogenetic sequence analysis, comparative sequence analysis between dihydrofolate enzymes of various organisms and molecular modeling studies, a lot has been unraveled about the difference in the structure of this enzyme in various organisms, yet there is a need for deeper understanding of these differences so as to design drugs that are specific to their targets and reduce the chance for cross reactivity. The dihydrofolate enzyme can also be explored for treatment of various other diseases that are associated with the folate cycle.

  16. Fibrillar collagen inhibits cholesterol biosynthesis in human aortic smooth muscle cells.

    Science.gov (United States)

    Ferri, Nicola; Roncalli, Elisa; Arnaboldi, Lorenzo; Fenu, Simone; Andrukhova, Olena; Aharinejad, Seyedhossein; Camera, Marina; Tremoli, Elena; Corsini, Alberto

    2009-10-01

    Integrin-mediated cell adhesion to type I fibrillar collagen regulates gene and protein expression, whereas little is known of its effect on lipid metabolism. In the present study, we examined the effect of type I fibrillar collagen on cholesterol biosynthesis in human aortic smooth muscle cells (SMCs). SMCs were cultured on either fibrillar or monomer collagen for 48 hours and [(14)C]-acetate incorporation into cholesterol was evaluated. Fibrillar collagen reduced by 72.9+/-2.6% cholesterol biosynthesis without affecting cellular cholesterol levels. Fibrillar collagen also reduced 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA) promoter activity (-72.6+/-7.3%), mRNA (-58.7+/-6.4%), protein levels (-35.5+/-8.5%), and enzyme activity (-37.7+/-2.2%). Intracellular levels of the active form of sterol regulatory element binding proteins (SREBP) 1a was decreased by 60.7+/-21.7% in SMCs cultured on fibrillar collagen, whereas SREBP2 was not significantly affected (+12.1+/-7.1%). The overexpression of the active form of SREBP1a rescued the downregulation of fibrillar collagen on HMG-CoA reductase levels. Blocking antibody to alpha2 integrin partially reversed the downregulation of HMG-CoA reductase mRNA expression. Finally, fibrillar collagen led to an intracellular accumulation of unprenylated Ras. Our study demonstrated that alpha2 beta 1 integrin interaction with fibrillar collagen affected the expression of HMG-CoA reductase, which led to the inhibition of cholesterol biosynthesis in human SMCs.

  17. Association Between Statin Use and Prevalence of Exercise-Related Injuries: A Cross-Sectional Survey of Amateur Runners in the Netherlands

    OpenAIRE

    Bakker, EA; Timmers, S; Hopman, MTE; Thompson, PD; Verbeek, ALM; Eijsvogels, TMH

    2017-01-01

    BACKGROUND: HMG-CoA reductase inhibitors (statins) are the first-choice therapy for primary prevention of cardiovascular disease. Some maintain that statins cause adverse musculoskeletal outcomes in highly active individuals, but few studies have examined the effects of statins on exercise-related injuries. OBJECTIVE: We sought to compare the prevalence of exercise-related injuries between runners who do or do not use statins. METHODS: Amateur runners (n = 4460) completed an extensive online ...

  18. Isoprenoids responsible for protein prenylation modulate the biological effects of statins on pancreatic cancer cells

    Czech Academy of Sciences Publication Activity Database

    Gbelcová, H.; Rimpelová, S.; Knejzlík, Z.; Šáchová, Jana; Kolář, Michal; Strnad, Hynek; Repiska, V.; D'Acunto, C.W.; Ruml, T.; Vítek, L.

    2017-01-01

    Roč. 16 (2017), č. článku 250. ISSN 1476-511X R&D Projects: GA MZd(CZ) NT13112 Institutional support: RVO:68378050 Keywords : Farmesyl pyrophosphate * Gene expression * Geranylgeranyl pyrophosphate * HMG-CoA reductase inhibitors * Isoprenoids * K-Ras oncogene * Mevalonate * Pncreatic cancer * Prenylation * Statins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.073, year: 2016

  19. Hypocholesterolemic mechanism of phenolics-enriched extract from Moringa oleifera leaves in HepG2 cell lines

    OpenAIRE

    Peera Tabboon; Bungorn Sripanidkulchai; Kittisak Sripanidkulchai

    2016-01-01

    Previous studies have demonstrated the hypolipidemic activity of Moringa oleifera (MO) leaves via lowering serum levels of cholesterol, but the mechanism of action is unknown. In this study, we demonstrated the hypocholesterolemic mechanism of a phenolics-enriched extract of Moringa oleifera leaf (PMO) in HepG2 cells. When compared to the control treatment, PMO significantly decreased total intracellular cholesterol, inhibited the activity of HMG CoA reductase in a dosedependent m...

  20. Evaluation of cholesterol absorption and biosynthesis by decoctions of Annona cherimola leaves.

    Science.gov (United States)

    Falé, Pedro L; Ferreira, Catarina; Maruzzella, Federica; Helena Florêncio, Maria; Frazão, Fátima N; Serralheiro, Maria L M

    2013-11-25

    Decoctions of the leaves of Annona cherimola Mill. are traditionally used in Azores to treat hypercholesterolemia. Although they are sold and consumed by people in order to improve their health, these are products that cannot be sold with claims for health benefits as they have never been studied scientifically. The activities of decoctions from Annona cherimola leaves were analysed for the two therapeutic approaches currently used to reduce plasma cholesterol: inhibition of dietary cholesterol uptake and inhibition of HMG-CoA reductase activity. Furthermore, the composition of the decoction was elucidated by LC-MS and the permeability of the active components was analysed using Caco-2 cell monolayers as a model of the intestinal barrier (dietary cholesterol uptake). The chemical composition of the Annona cherimola leaves' extract revealed that rutin was its main component. The in vitro gastrointestinal digestion did not modify the chemical composition of the extract. This extract was able to originate a slight reduction in cholesterol absorption through Caco-2 cells lines and to reduce the HMG-CoA reductase activity in 50% when using 137.3 μg of the extract/mL. Rutin, when used in the same concentration as that found in the extract, was able to reduce cholesterol absorption through Caco-2 cells monolayer in approximately 47%. This flavonoid had an IC50 of 17.85 μM relatively to the HMG-CoA reductase activity. The traditional use of decoctions from the leaves of Annona cherimola may be justified, at least by the inhibition of HMG-CoA reductase activity. © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Hypolipidemic effects of total flavonoide extracted from the leaves ofActinidiakolomiktain rats fed a high-fat diet.

    Science.gov (United States)

    Yu, Zhenxiang; Xu, Huali; Yu, Xiaofeng; Sui, Dayun; Lin, Guangzhu

    2017-10-01

    This study was to investigate the antihyperlipidemic and antioxidant effect of total flavonoid extract from Actinidiakolomikta (TFAK) in hyperlipidemia induced by a high-fat diet. Male SD rats were randomly divided into 6 groups: normal group, model (hyperlipidemic diet) group, hyperlipedemic diet supplemented with TFAK (50, 100 and 200 mg/kg) and simvastatin (30 mg/kg) groups. The rats were administrated TFAK by oral for 28 days. Body weight, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD), catalase(CAT), glutathione peroxidase(GSH-Px) and malondialdehyde (MDA) were measured. The atherogenic index (AI) and coronary risk index (CRI) were calculated. The activity of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase in hepatic tissue was examined. Histopathologic changes were also checked. The levels of TC, TG and LDL-c were increased in model group. Compared to the model group, TFAK reduced significantly the body weight, TC, TG, LDL-c, AI, CRI and elevated the level of HDL-c. Moreover, the activity of SOD was elevated significantly, whereas the content of MDA decreased. The activity of HMG-CoA reductase was also decreased. Morphological evaluation found that rats in model group developed a severe steatosis, but the severity of liver steatosis was ameliorated in TFAK treated groups. The possible mechanism may be associated with decrease HMG-CoA reductase activity. Our results suggest that TFAK exerts strong antioxidant and lipid-lowering effects, prevents hepatic fatty deposition and regulates the HMG-CoA reductase.

  2. Hypolipidemic effects of total flavonoide extracted from the leaves of Actinidia kolomikta in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Zhenxiang Yu

    2017-10-01

    Full Text Available Objective(s: This study was to investigate the antihyperlipidemic and antioxidant effect of total flavonoid extract from Actinidia kolomikta (TFAK in hyperlipidemia induced by a high-fat diet. Materials and Methods: Male SD rats were randomly divided into 6 groups: normal group, model (hyperlipidemic diet group, hyperlipedemic diet supplemented with TFAK (50, 100 and 200 mg/kg and simvastatin (30 mg/kg groups. The rats were administrated TFAK by oral for 28 days. Body weight, total cholesterol (TC, triglyceride (TG, low-density lipoprotein cholesterol (LDL-c, high-density lipoprotein cholesterol (HDL-c, superoxide dismutase (SOD, catalase(CAT, glutathione peroxidase (GSH-Px and malondialdehyde (MDA were measured. The atherogenic index (AI and coronary risk index (CRI were calculated. The activity of hydroxymethylglutaryl coenzyme A (HMG-CoA reductase in hepatic tissue was examined. Histopathologic changes were also checked. Results: The levels of TC, TG and LDL-c were increased in model group. Compared to the model group, TFAK reduced significantly the body weight, TC, TG, LDL-c, AI, CRI and elevated the level of HDL-c. Moreover, the activity of SOD was elevated significantly, whereas the content of MDA decreased. The activity of HMG-CoA reductase was also decreased. Morphological evaluation found that rats in model group developed a severe steatosis, but the severity of liver steatosis was ameliorated in TFAK treated groups. The possible mechanism may be associated with decrease HMG-CoA reductase activity. Conclusion: Our results suggest that TFAK exerts strong antioxidant and lipid-lowering effects, prevents hepatic fatty deposition and regulates the HMG-CoA reductase.

  3. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency.

    OpenAIRE

    Goyette, P; Frosst, P.; Rosenblatt, D S; ROZEN, R.

    1995-01-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA fo...

  4. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Justin R. Prigge

    2017-06-01

    Full Text Available Energetic nutrients are oxidized to sustain high intracellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1 disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1 and glutathione reductase (Gsr, respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

  5. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    Science.gov (United States)

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.

  6. Acetyl-CoA carboxylase regulates global histone acetylation.

    Science.gov (United States)

    Galdieri, Luciano; Vancura, Ales

    2012-07-06

    Histone acetylation depends on intermediary metabolism for supplying acetyl-CoA in the nucleocytosolic compartment. However, because nucleocytosolic acetyl-CoA is also used for de novo synthesis of fatty acids, histone acetylation and synthesis of fatty acids compete for the same acetyl-CoA pool. The first and rate-limiting reaction in de novo synthesis of fatty acids is carboxylation of acetyl-CoA to form malonyl-CoA, catalyzed by acetyl-CoA carboxylase. In yeast Saccharomyces cerevisiae, acetyl-CoA carboxylase is encoded by the ACC1 gene. In this study, we show that attenuated expression of ACC1 results in increased acetylation of bulk histones, globally increased acetylation of chromatin histones, and altered transcriptional regulation. Together, our data indicate that Acc1p activity regulates the availability of acetyl-CoA for histone acetyltransferases, thus representing a link between intermediary metabolism and epigenetic mechanisms of transcriptional regulation.

  7. Induction of NADPH-Cytochroune P-450 (c) Reductase in Wounded Tissues from Helianthus tuberosus Tubers

    OpenAIRE

    Agnes, Lesot; Irene, Benveniste; Marie-Paule, Hasenfratz; Francis, Durst; C.N.R.S.,Institut de Biologie Moleculaire des Plantes. Departement d'Enzymologie Cellulaire et Moieculaire, Institut de Botanique

    1990-01-01

    Cytochrome P-450 is not self-sufficient for the catalysis of monooxygenase reaction but requires NADPH and NADPH-cytochrome P-450 (c) reductase. The activity of NADPH-cytochrome P-450 reductase was strongly enhanced by wounding and aging in Jerusalem artichoke (Helianthus tuberosus L.) tuber tissues. This stimulation was correlated with the synthesis of the enzyme protein based on i) quantitation of the reductase protein by Western blotting, ii) incor-poration of [^S]methionine into the immun...

  8. A substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity

    OpenAIRE

    Takao, Haruna; Hirabayashi, Kei; Nishigaya, Yuki; Kouriki, Haruna; Nakaniwa, Tetsuko; Hagiwara, Yoshinori; Harada, Jiro; Sato, Hideaki; Yamazaki, Toshimasa; Sakakibara, Yoichi; Suiko, Masahito; Asada, Yujiro; Takahashi, Yasuhiro; Yamamoto, Ken; Fukuyama, Keiichi

    2017-01-01

    Biliverdin reductase catalyses the last step in haem degradation and produces the major lipophilic antioxidant bilirubin via reduction of biliverdin, using NAD(P)H as a cofactor. Despite the importance of biliverdin reductase in maintaining the redox balance, the molecular details of the reaction it catalyses remain unknown. Here we present the crystal structure of biliverdin reductase in complex with biliverdin and NADP+. Unexpectedly, two biliverdin molecules, which we designated the proxim...

  9. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli.

    Directory of Open Access Journals (Sweden)

    Jianming Yang

    Full Text Available The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the "upper pathway" which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from Saccharomyces cerevisiae to Enterococcus faecalis; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from Populus alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation.

  10. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis

    DEFF Research Database (Denmark)

    Rasmussen, J T; Færgeman, Nils J.; Kristiansen, K

    1994-01-01

    The dissociation constants for octanoyl-CoA, dodecanoyl-CoA and hexadecanoyl-CoA binding to acyl-CoA-binding protein (ACBP) were determined by using titration microcalorimetry. The KD values obtained, (0.24 +/- 0.02) x 10(-6) M, (0.65 +/- 0.2) x 10(-8) M and (0.45 +/- 0.2) x 10(-13) M respectivel...... on a nitrocellulose membrane, and to donate them to beta-oxidation or glycerolipid synthesis in mitochondria or microsomes, respectively....

  11. Development of a Simvastatin Selection Marker for a Hyperthermophilic Acidophile, Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Zheng, Tao; Huang, Qihong; Zhang, Changyi

    2012-01-01

    We report here a novel selectable marker for the hyperthermophilic crenarchaeon Sulfolobus islandicus. The marker cassette is composed of the sac7d promoter and the hmg gene coding for the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (P(sac7d)-hmg), which confers simvastatin resistance....... islandicus was constructed using pyrEF marker and used as the host to obtain pSSRNherA transformant with simvastatin selection. While the gene knockout (¿herA) cells generated from the herA merodiploid cells failed to form colonies in the presence of 5-fluoroorotic acid (5-FOA), the mutant cells could...... be rescued by expression of the gene from a plasmid (pSSRNherA), because their transformants formed colonies on a solid medium containing 5-FOA and simvastatin. This demonstrates that HerA is essential for cell viability of S. islandicus. To our knowledge, this is the first application of an antibiotic...

  12. Crude Ethanol Extract of Pithecellobium ellipticum as a Potential Lipid-Lowering Treatment for Hypercholesterolaemia

    Directory of Open Access Journals (Sweden)

    Janet P.-C. Wong

    2014-01-01

    Full Text Available If left untreated, hypercholesterolaemia can lead to atherosclerosis, given time. Plants from the Fabaceae family have shown the ability to significantly suppress atherosclerosis progression. We selected four extracts from Pithecellobium ellipticum, from the Fabaceae family, to be screened in a 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase assay. The ethanol extract, at a concentration of 500 μg/mL, exhibited superior inhibition properties over the other extracts by demonstrating 80.9% inhibition, while 0.223 μg/mL of pravastatin (control showed 78.1% inhibition towards enzymatic activity. These findings led to the fractionation of the ethanol extract using ethyl acetate : methanol (95 : 5, gradually increasing polarity and produced seven fractions (1A to 7A. Fraction 7A at 150 μg/mL emerged as being the most promising bioactive fraction with 78.7% inhibition. FRAP, beta carotene, and DPPH assays supported the findings from the ethanol extract as it exhibited good overall antioxidant activity. The antioxidant properties have been said to reduce free radicals that are able to oxidize lipoproteins which are the cause of atherosclerosis. Phytochemical screenings revealed the presence of terpenoid, steroid, flavonoid, and phenolic compounds as the responsible group of compound(s, working individually or synergistically, within the extract to prevent binding of HMG-CoA to HMG-CoA reductase.

  13. Histochemical localization of glutathione dependent NBT-reductase in mouse skin.

    Science.gov (United States)

    Shukla, Y

    2001-09-01

    Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. The fresh frozen tissue sections (8 m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  14. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  15. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.

    Science.gov (United States)

    Vienozinskis, J; Butkus, A; Cenas, N; Kulys, J

    1990-01-01

    The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed. PMID:2375745

  16. Methylenetetrahydrofolate reductase (MTHFR) deficiency presenting as a rash.

    LENUS (Irish Health Repository)

    Crushell, Ellen

    2012-09-01

    We report on the case of a 2-year-old girl recently diagnosed with Methylenetetrahydrofolate reductase (MTHFR) deficiency who originally presented in the neonatal period with a distinctive rash. At 11 weeks of age she developed seizures, she had acquired microcephaly and developmental delay. The rash deteriorated dramatically following commencement of phenobarbitone; both rash and seizures abated following empiric introduction of pyridoxine and folinic acid as treatment of possible vitamin responsive seizures. We postulate that phenobarbitone in combination with MTHFR deficiency may have caused her rash to deteriorate and subsequent folinic acid was helpful in treating the rash and preventing further acute neurological decline as commonly associated with this condition.

  17. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  18. Methylenetetrahydrofolate Reductase C677T: Hypoplastic Left Heart and Thrombosis.

    Science.gov (United States)

    Spronk, Kimberly J; Olivero, Anthony D; Haw, Marcus P; Vettukattil, Joseph J

    2015-10-01

    The incidence of congenital heart defects is higher in infants with mutation of methylenetetrahydrofolate reductase (MTHFR) gene. The MTHFR C677T gene decreases the bioavailability of folate and increases plasma homocysteine, a risk factor for thrombosis. There have been no reported cases in the literature on the clinical implications of this procoagulable state in the setting of cyanotic heart disease, which itself has prothrombotic predisposition. Two patients with hypoplastic left heart syndrome developed postoperative thrombotic complications, both were homozygous for MTHFR C677T. We present these cases and highlight the implications of MTHFR mutation in the management of complex congenital heart disease. © The Author(s) 2015.

  19. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and ......) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6]....... and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP...

  20. Functions of Flavin Reductase and Quinone Reductase in 2,4,6-Trichlorophenol Degradation by Cupriavidus necator JMP134▿

    OpenAIRE

    Belchik, Sara Mae; Xun, Luying

    2007-01-01

    The tcpRXABCYD operon of Cupriavidus necator JMP134 is involved in the degradation of 2,4,6-trichlorophenol (2,4,6-TCP), a toxic pollutant. TcpA is a reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase that converts 2,4,6-TCP to 6-chlorohydroxyquinone. It has been implied via genetic analysis that TcpX acts as an FAD reductase to supply TcpA with FADH2, whereas the function of TcpB in 2,4,6-TCP degradation is still unclear. In order to provide direct biochemical evidence for t...

  1. Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply

    OpenAIRE

    Gholamreza Kavoosi; Sadegh Balotf; Homeira Eshghi; Hasan Hasani

    2014-01-01

    Nitrate is one of the major sources of nitrogen for the growth of plants. It is taken up by plant roots and transported to the leaves where it is reduced to nitrite in the. The main objective of this research was to investigate stimulatory effects of sodium nitrate, potassium nitrate, ammonia and urea on the production/generation of the nitrate reductase mRNA in Triticum aestivum plants. The plants were grown in standard nutrient solution for 21 days and then starved in a media without nitrat...

  2. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans

    NARCIS (Netherlands)

    de Boer, A P; van der Oost, J.; Reijnders, W N; Westerhoff, H V; Stouthamer, A.H.; van Spanning, R J

    1996-01-01

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N.,

  3. Structure and substrate specificity of the pyrococcal coenzyme A disulfide reductases/polysulfide reductases (CoADR/Psr): implications for S(0)-based respiration and a sulfur-dependent antioxidant system in Pyrococcus.

    Science.gov (United States)

    Herwald, Sanna; Liu, Albert Y; Zhu, Brian E; Sea, Kevin W; Lopez, Karlo M; Sazinsky, Matthew H; Crane, Edward J

    2013-04-23

    FAD and NAD(P)H-dependent coenzyme A disulfide reductases/polysulfide reductases (CoADR/Psr) have been proposed to be important for the reduction of sulfur and disulfides in the sulfur-reducing anaerobic hyperthermophiles Pyrococcus horikoshii and Pyrococcus furiosus; however, the form(s) of sulfur that the enzyme actually reduces are not clear. Here we determined the structure for the FAD- and coenzyme A-containing holoenzyme from P. horikoshii to 2.7 Å resolution and characterized its substrate specificity. The enzyme is relatively promiscuous and reduces a range of disulfide, persulfide, and polysulfide compounds. These results indicate that the likely in vivo substrates are NAD(P)H and di-, poly-, and persulfide derivatives of coenzyme A, although polysulfide itself is also efficiently reduced. The role of the enzyme in the reduction of elemental sulfur (S(8)) in situ is not, however, ruled out by these results, and the possible roles of this substrate are discussed. During aerobic persulfide reduction, rapid recycling of the persulfide substrate was observed, which is proposed to occur via sulfide oxidation by O(2) and/or H(2)O(2). As expected, this reaction disappears under anaerobic conditions and may explain observations by others that CoADR is not essential for S(0) respiration in Pyrococcus or Thermococcus but appears to participate in oxidative defense in the presence of S(0). When compared to the homologous Npsr enzyme from Shewanella loihica PV-4 and homologous enzymes known to reduce CoA disulfide, the phCoADR structure shows a relatively restricted substrate channel leading into the sulfur-reducing side of the FAD isoalloxazine ring, suggesting how this enzyme class may select for specific disulfide substrates.

  4. Interspecific variation for thermal dependence of glutathione reductase in sainfoin.

    Science.gov (United States)

    Kidambi, S P; Mahan, J R; Matches, A G

    1990-05-01

    Understanding the biochemical and physiological consequences of species variation would expedite improvement in agronomically useful genotypes of sainfoin (Onobrychis spp.) Information on variation among sainfoin species is lacking on thermal dependence of glutathione reductase (B.C. 1.6.4.2.), which plays an important role in the protection of plants from both high and low temperature stresses by preventing harmful oxidation of enzymes and membranes. Our objective was to investigate the interspecific variation for thermal dependency of glutathione reductase in sainfoin. Large variation among species was found for: (i) the minimum apparent Km (0.4-2.5 μM NADPH), (ii) the temperature at which the minimum apparent Km was observed (15°-5°C), and (iii) the thermal kinetic windows (2°-30°C width) over a 15°-45°C temperature gradient. In general, tetraploid species had narrower (≤17°C) thermal kinetic windows than did diploid species (∼30°C), with one exception among the diploids. Within the tetraploid species, the cultivars of O. viciifolia had a broader thermal kinetic window (≥7°C) than the plant introduction (PI 212241, >2 °C) itself.

  5. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase.

    Science.gov (United States)

    Hoffmann, Christina; Dietrich, Michael; Herrmann, Ann-Kathrin; Schacht, Teresa; Albrecht, Philipp; Methner, Axel

    2017-01-01

    Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro . We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase.

  6. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Christina Hoffmann

    2017-01-01

    Full Text Available Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2 leading to increased synthesis of the major cellular antioxidant glutathione (GSH and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR, a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase.

  7. Crystal structure of human quinone reductase type 2, a metalloflavoprotein.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Zhao, Q; Amzel, L M

    1999-08-03

    In mammals, two separate but homologous cytosolic quinone reductases have been identified: NAD(P)H:quinone oxidoreductase type 1 (QR1) (EC 1.6.99.2) and quinone reductase type 2 (QR2). Although QR1 and QR2 are nearly 50% identical in protein sequence, they display markedly different catalytic properties and substrate specificities. We report here two crystal structures of QR2: in its native form and bound to menadione (vitamin K(3)), a physiological substrate. Phases were obtained by molecular replacement, using our previously determined rat QR1 structure as the search model. QR2 shares the overall fold of the major catalytic domain of QR1, but lacks the smaller C-terminal domain. The FAD binding sites of QR1 and QR2 are very similar, but their hydride donor binding sites are considerably different. Unexpectedly, we found that QR2 contains a specific metal binding site, which is not present in QR1. Two histidine nitrogens, one cysteine thiol, and a main chain carbonyl group are involved in metal coordination. The metal binding site is solvent-accessible, and is separated from the FAD cofactor by a distance of about 13 A.

  8. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  9. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself.

    Science.gov (United States)

    Gachhui, R; Presta, A; Bentley, D F; Abu-Soud, H M; McArthur, R; Brudvig, G; Ghosh, D K; Stuehr, D J

    1996-08-23

    Rat neuronal NO synthase (nNOS) is comprised of a flavin-containing reductase domain and a heme-containing oxygenase domain. Calmodulin binding to nNOS increases the rate of electron transfer from NADPH into its flavins, triggers electron transfer from flavins to the heme, activates NO synthesis, and increases reduction of artificial electron acceptors such as cytochrome c. To investigate what role the reductase domain plays in calmodulin's activation of these functions, we overexpressed a form of the nNOS reductase domain (amino acids 724-1429) in the yeast Pichia pastoris that for the first time exhibits a complete calmodulin response. The reductase domain was purified by 2',5'-ADP affinity chromatography yielding 25 mg of pure protein per liter of culture. It contained 1 FAD and 0.8 FMN per molecule. Most of the protein as isolated contained an air-stable flavin semiquinone radical that was sensitive to FeCN6 oxidation. Anaerobic titration of the FeCN6-oxidized reductase domain with NADPH indicated the flavin semiquinone re-formed after addition of 1-electron equivalent and the flavins could accept up to 3 electrons from NADPH. Calmodulin binding to the recombinant reductase protein increased its rate of NADPH-dependent flavin reduction and its rate of electron transfer to cytochrome c, FeCN6, or dichlorophenolindophenol to fully match the rate increases achieved when calmodulin bound to native full-length nNOS. Calmodulin's activation of the reductase protein was associated with an increase in domain tryptophan and flavin fluorescence. We conclude that many of calmodulin's actions on native nNOS can be fully accounted for through its interaction with the nNOS reductase domain itself.

  10. Mixed protocols: Multiple ratios of FSH and LH bioactivity using highly purified, human-derived FSH (BRAVELLE and highly purified hMG (MENOPUR are unaltered by mixing together in the same syringe

    Directory of Open Access Journals (Sweden)

    Raike Elizabeth

    2005-11-01

    Full Text Available Abstract Background The use of mixed or blended protocols, that utilize both FSH and hMG, for controlled ovarian hyperstimulation is increasing in use. To reduce the number of injections a patient must administer, many physicians instruct their patients to mix their FSH and hMG together to be given as a single injection. Therefore, the goal of this study was to definitively determine if the FSH and LH bioactivities of highly purified, human-derived FSH (Bravelle(R and highly purified hMG (Menopur(R were altered by reconstituting in 0.9% saline and mixing in the same syringe. Methods Bravelle(R and Menopur(R were reconstituted in 0.9% saline and mixed in a Becton Dickinson plastic syringe. The FSH and LH bioactivities of the products were determined after injecting female and male rats, respectively, with Bravelle(R, Menopur(R, or a mixture of Bravelle(R and Menopur(R. Ratios of FSH:LH activity tested were 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1 vial Bravelle(R: 3 vials of Menopur(R. Results There were no statistically significant changes in either FSH or LH bioactivity that occurred after mixing Bravelle(R with Menopur(R in the same syringe. The theoretical vs. actual FSH bioactivity for Bravelle(R and Menopur(R were 75 vs. 76.58 IU/mL and 75 vs. 76.0 IU/mL, respectively. For the 3 ratios of FSH:LH activity tested, 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1 vial Bravelle(R: 3 vials of Menopur(R tested, the theoretical vs. actual FSH bioactivities were 150 vs. 156.86 IU/mL, 300 vs. 308.69 IU/mL and 300 vs. 306.58 IU/mL, respectively. The theoretical vs. actual LH bioactivity for Menopur(R in the above mentioned ratios tested were 75 vs. 77.50 IU/mL. For the 3 ratios of FSH:LH activity tested, 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1

  11. Individualized supplementation of folic acid according to polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) reduced pregnant complications.

    Science.gov (United States)

    Li, Xiujuan; Jiang, Jing; Xu, Min; Xu, Mei; Yang, Yan; Lu, Wei; Yu, Xuemei; Ma, Jianlin; Pan, Jiakui

    2015-01-01

    This study aimed to detect the genotype distributions and allele frequencies of methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and methionine synthase reductase (MTRR) A66G polymorphisms of pregnant women in Jiaodong region in China, and to investigate whether folic acid supplementation affect the pregnancy complications. A total of 7,812 pregnant women from the Jiaodong region in Shandong province in China. By using Taqman-MGB, 2,928 pregnant women (case group) were tested for the genotype distributions and allele frequencies of MTHFR C677T, A1298C and MTRR A66G polymorphisms. Folic acid metabolism ability was ranked at four levels and then pregnant women in different rank group were supplemented with different doses of folic acid. Their pregnancy complications were followed up and compared with 4,884 pregnant women without folic acid supplementation (control group) in the same hospital. The allele frequencies of MTHFR C677T were 49.1 and 50.9%; those of MTHFR A1298C were 80.2 and 19.8%, and those of MTRR A66G were 74.1 and 25.9%. After supplemented with folic acid, the complication rates in different age groups were significantly reduced, especially for gestational diabetes mellitus and hypertension. Periconceptional folic acid supplementation and healthcare following gene polymorphism testing may be a powerful measure to decrease congenital malformations. © 2015 S. Karger AG, Basel.

  12. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    Science.gov (United States)

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  13. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis.

    Science.gov (United States)

    Vadassery, Jyothilakshmi; Tripathi, Swati; Prasad, Ram; Varma, Ajit; Oelmüller, Ralf

    2009-08-15

    Ascorbate is a major antioxidant and radical scavenger in plants. Monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) are two enzymes of the ascorbate-glutathione cycle that maintain ascorbate in its reduced state. MDAR2 (At3g09940) and DHAR5 (At1g19570) expression was upregulated in the roots and shoots of Arabidopsis seedlings co-cultivated with the root-colonizing endophytic fungus Piriformospora indica, or that were exposed to a cell wall extract or a culture filtrate from the fungus. Growth and seed production were not promoted by Piriformospora indica in mdar2 (SALK_0776335C) and dhar5 (SALK_029966C) T-DNA insertion lines, while colonized wild-type plants were larger and produced more seeds compared to the uncolonized controls. After 3 weeks of drought stress, growth and seed production were reduced in Piriformospora indica-colonized plants compared to the uncolonized control, and the roots of the drought-stressed insertion lines were colonized more heavily by the fungus than were wild-type plants. Upregulation of the message for the antimicrobial PDF1.2 protein in drought-stressed insertion lines indicated that MDAR2 and DHAR5 are crucial for producing sufficient ascorbate to maintain the interaction between Piriformospora indica and Arabidopsis in a mutualistic state.

  14. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases

    Energy Technology Data Exchange (ETDEWEB)

    Rangarajan,E.; Li, Y.; Ajamian, E.; Iannuzzi, P.; Kernaghan, S.; Fraser, M.; Cygler, M.; Matte, A.

    2005-01-01

    Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 Angstrom resolution, respectively. YdiF is organized into tetramers, with each monomer having an open {alpha}/{beta} structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent {gamma}-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.

  15. Comparative inhibition studies of enoyl-CoA hydratase 1 and enoyl-CoA hydratase 2 in long-chain fatty acid oxidation.

    Science.gov (United States)

    Wu, Long; Lin, Shuping; Li, Ding

    2008-08-07

    Enoyl-CoA hydratase 1 and enoyl-CoA hydratase 2 in long-chain fatty acid oxidation were comparatively investigated through mechanistic studies for inactivation of the enzymes with methylenecyclopropylformyl-CoA and 3-octynoyl-CoA. Methylenecyclopropylformyl-CoA can inactivate both enzymes, while 3-octynoyl-CoA inactivates enoyl-CoA hydratase 2 only. The study increased our understanding of these two enzymes in fatty acid oxidation.

  16. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...... disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism...

  17. Methylenetetrahydrofolate reductase polymorphisms in myeloid leukemia patients from Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Cynara Gomes Barbosa

    2008-01-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR: EC 1.5.1.20 polymorphisms are associated to acute lymphoid leukemia in different populations. We used the polymerase chain reaction and the restriction fragment length polymorphism method (PCR-RFLP to investigate MTHFR C677T and A1298C polymorphism frequencies in 67 patients with chronic myeloid leukemia (CML, 27 with acute myeloid leukemia FAB subtype M3 (AML-M3 and 100 apparently healthy controls. The MTHFR mutant allele frequencies were as follows: CML = 17.2% for C677T, 21.6% for A1298C; AML-M3 = 22.2% for C677T, 24.1% for A1298C; and controls = 20.5% for C677T, 21% for A1298C. Taken together, our results provide evidence that MTHFR polymorphisms have no influence on the development of CML or AML-M3.

  18. Go Green: The Antiinflammatory Effects of Biliverdin Reductase

    Directory of Open Access Journals (Sweden)

    Barbara eWegiel

    2012-03-01

    Full Text Available Biliverdin (BV has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR is catalyzed by biliverdin reductase (BVR and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced pro-inflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K-Akt-IL10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor and transcriptional regulator.

  19. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism......Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...

  20. B-vitamins, methylenetetrahydrofolate reductase (MTHFR) and hypertension.

    Science.gov (United States)

    Ward, Mary; Wilson, Carol P; Strain, J J; Horigan, Geraldine; Scott, John M; McNulty, Helene

    2011-07-01

    Hypertension is a leading risk factor for cardiovascular disease (CVD) and stroke. A common polymorphism in the gene encoding the enzyme methylenetetrahydrofolate reductase (MTHFR), previously identified as the main genetic determinant of elevated homocysteine concentration and also recognized as a risk factor for CVD, appears to be independently associated with hypertension. The B-vitamin riboflavin is required as a cofactor by MTHFR and recent evidence suggests it may have a role in modulating blood pressure, specifically in those with the homozygous mutant MTHFR 677 TT genotype. If studies confirm that this genetic predisposition to hypertension is correctable by low-dose riboflavin, the findings could have important implications for the management of hypertension given that the frequency of this polymorphism ranges from 3 to 32 % worldwide.

  1. 5-Alpha-Reductase Inhibitors and Combination Therapy.

    Science.gov (United States)

    Füllhase, Claudius; Schneider, Marc P

    2016-08-01

    By inhibiting the conversion from testosterone to dihydrotestosterone 5-Alpha reductase inhibitors (5ARIs) are able to hinder prostatic growth, shrink prostate volumes, and improve BPH-related LUTS. 5ARIs are particularly beneficial for patients with larger prostates (>30-40ml). Generally the side effects of 5ARI treatment are mild, and according to the FORTA classification 5ARIs are suitable for frail elderly. 5ARI / alpha-blocker (AB) combination therapy showed the best symptomatic outcome and risk reduction for clinical progression. Combining Phosphodieseterase type 5 inhbibitors (PDE5Is) with 5ARIs counteracts the negative androgenic sexual side effects of 5ARIs, and simultaneously combines their synergistic effects on LUTS. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling.

    Science.gov (United States)

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder

    2015-11-25

    A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine.

  3. Investigation of the antioxidant and aldose reductase inhibitory activities of extracts from Peruvian tea plant infusions.

    Science.gov (United States)

    Wang, Zhiqiang; Hwang, Seung Hwan; Guillen Quispe, Yanymee N; Gonzales Arce, Paul H; Lim, Soon Sung

    2017-09-15

    In the present study, the antioxidant and aldose reductase inhibitory activities of 24 Peruvian infusion tea plants were investigated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and aldose reductase assays. Phoradendron sp. showed the highest inhibition of aldose reductase (IC 50 , 1.09±0.06μg/mL) and considerable antioxidant (IC 50 of DPPH, 58.36±1.65μg/mL; IC 50 of ABTS, 9.91±0.43μg/mL) effects. In order to identify the antioxidants and aldose reductase inhibitors of Phoradendron sp., DPPH-high performance liquid chromatography (HPLC) and ultrafiltration-HPLC assays were performed. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid, and 1,3,5-tri-O-caffeoylquinic acid were identified as the antioxidants and aldose reductase inhibitors; apigenin was identified as the antioxidant. Finally, Phoradendron sp. and its aldose reductase inhibitors also showed a dose-dependent anti-inflammatory effect without cellular toxicity. These results suggested that Phoradendron sp. can be a potent functional food ingredient as an antioxidant, aldose reductase inhibitor and anti-inflammatory agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Multi-genome analysis identifies functional and phylogenetic diversity of basidiomycete adenylate-forming reductases.

    Science.gov (United States)

    Brandenburger, Eileen; Braga, Daniel; Kombrink, Anja; Lackner, Gerald; Gressler, Julia; Künzler, Markus; Hoffmeister, Dirk

    2016-07-22

    Among the invaluable benefits of basidiomycete genomics is the dramatically enhanced insight into the potential capacity to biosynthesize natural products. This study focuses on adenylate-forming reductases, which is a group of natural product biosynthesis enzymes that resembles non-ribosomal peptide synthetases, yet serves to modify one substrate, rather than to condense two or more building blocks. Phylogenetically, these reductases fall in four classes. The phylogeny of Heterobasidion annosum (Russulales) and Serpula lacrymans (Boletales) adenylate-forming reductases was investigated. We identified a previously unrecognized phylogenetic branch within class III adenylate-forming reductases. Three representatives were heterologously produced and their substrate preferences determined in vitro: NPS9 and NPS11 of S. lacrymans preferred l-threonine and benzoic acid, respectively, while NPS10 of H. annosum accepted phenylpyruvic acid best. We also investigated two class IV adenylate-forming reductases of Coprinopsis cinerea, which each were active with l-alanine, l-valine, and l-serine as substrates. Our results show that adenylate-forming reductases are functionally more diverse than previously recognized. As none of the natural products known from the species investigated in this study includes the identified substrates of their respective reductases, our findings may help further explore the diversity of these basidiomycete secondary metabolomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106

    Science.gov (United States)

    Sabaty, Monique; Schwintner, Carole; Cahors, Sandrine; Richaud, Pierre; Verméglio, Andre

    1999-01-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N2O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  6. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    OpenAIRE

    Pegan, Scott D; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A; Mesecar, Andrew D

    2011-01-01

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identi...

  7. Engineering and systems level analysis of Saccharomyces cerevisiae for production of 3 hydroxypropionic acid via malonyl CoA reductase dependent pathway

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg; Schneider, Konstantin

    2016-01-01

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3...

  8. On the thermodynamic equilibrium between (R)-2-hydroxyacyl-CoA and 2-enoyl-CoA.

    Science.gov (United States)

    Parthasarathy, Anutthaman; Buckel, Wolfgang; Smith, David M

    2010-04-01

    A combined experimental and computational approach has been applied to investigate the equilibria between several alpha-hydroxyacyl-CoA compounds and their 2-enoyl-CoA derivatives. In contrast to those of their beta, gamma and delta counterparts, the equilibria for the alpha-compounds are relatively poorly characterized, but qualitatively they appear to be unusually sensitive to substituents. Using a variety of techniques, we have succeeded in measuring the equilibrium constants for the reactions beginning from 2-hydroxyglutaryl-CoA and lactyl-CoA. A complementary computational evaluation of the equilibrium constants shows quantitative agreement with the measured values. By examining the computational results, we arrive at an explanation of the substituent sensitivity and provide a prediction for the, as yet unmeasured, equilibrium involving 2-hydroxyisocaproyl-CoA.

  9. Heterologous expression of glutamyl-tRNA reductase gene in Rhodobacter sphaeroides O.U.001 to enhance 5-aminolevulinic acid production

    Science.gov (United States)

    Kars, Gökhan; Alparslan, Ümmühan

    2014-01-01

    The pathways for synthesis of 5-aminolevulinic acid (5-ALA) use either succinyl-CoA and glycine (C-4 pathway), or glutamate (C-5 pathway). Although Rhodobacter sphaeroides synthesizes 5-ALA through the C-4 pathway, it also has the genes coding for the enzymes of the C-5 pathway, except for glutamyl-tRNA reductase. The glutamyl-tRNA reductase gene was cloned from Rhodospirillum rubrum and expressed in R. sphaeroides; thus, the C-5 pathway was enabled to function upon assembling all the required genes. Consequently, a new and unique bacterial strain producing more 5-ALA was developed. Biohydrogen was also produced in the same bioprocess within a biorefinery approach using sugar beet molasses as substrate. The amount of 5-ALA produced by the modified strain was 25.9 mg/g dry cell weight (DCW), whereas the wild-type strain produced 12.4 mg/g DCW. In addition, the amount of H2 generated by the modified and wild-type cells, respectively, was 0.92 L/L culture and 1.05 L/L culture. PMID:26740781

  10. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency

    NARCIS (Netherlands)

    Diekman, E.F.; Koning, T.J. de; Verhoeven-Duif, N.M.; Rovers, M.M.; Hasselt, P.M. van

    2014-01-01

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  11. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  12. Plasmodium falciparum dihydrofolate reductase alleles and pyrimethamine use in pregnant Ghanaian women

    NARCIS (Netherlands)

    Mockenhaupt, F. P.; Eggelte, T. A.; Böhme, T.; Thompson, W. N.; Bienzle, U.

    2001-01-01

    Drug resistance in Plasmodium falciparum affects prevention of malaria in pregnancy. In a cross-sectional study of 530 pregnant Ghanaian women, P. falciparum dihydrofolate reductase (DHFR) gene mutations linked with pyrimethamine resistance were assessed and associations with pyrimethamine intake

  13. Survival and Psychomotor Development With Early Betaine Treatment in Patients With Severe Methylenetetrahydrofolate Reductase Deficiency

    NARCIS (Netherlands)

    Diekman, Eugene F.; de Koning, Tom J.; Verhoeven-Duif, Nanda M.; Rovers, Maroeska M.; van Hasselt, Peter M.

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  14. The Importance of Homozygous Polymorphisms of Methylenetetrahydrofolate Reductase Gene in Romanian Patients with Idiopathic Venous Thromboembolism

    OpenAIRE

    Hotoleanu, Cristina; Trifa, Adrian; Popp, Radu; Fodor, Daniela

    2013-01-01

    Background: Methylenetetrahydrofolate reductase (MTHFR) polymorphisms have recently raised the interest as a possible thrombophilic factors. Aims: We aimed to assess the frequency of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in idiopathic venous thromboembolism (VTE) in a Romanian population and the associated risk of VTE. Study Design: We performed a case-control transversal study including 90 patients diagnosed with VTE and 75 sex- an...

  15. Aldo-keto Reductase Family 1 B10 as a Novel Target for Breast Cancer Treatment

    Science.gov (United States)

    2010-08-01

    aldo-keto reductase family protein AKR1B10 is highly correlated with smokers ’ non -small cell lung carcinomas. Clin Cancer Res 11: 1776-1785. Gallego...reductase family 1 B10 protein detoxifies dietary and lipid -derived alpha, beta-unsaturated carbonyls at physiological levels . Biochem Biophys Res...AKR1B10 expression in breast cancer, define the role of AKR1B10 in lipid metabolism, proliferation, and tumorigenicity of breast cancer cells using

  16. Tissue thioredoxin reductase-1 expression in astrocytomas of different grades.

    Science.gov (United States)

    Esen, Hasan; Erdi, Fatih; Kaya, Bulent; Feyzioglu, Bahadır; Keskin, Fatih; Demir, Lutfi Saltuk

    2015-02-01

    Thioredoxin (Trx) is a redox active protein that regulates several physiological and biochemical functions, such as growth, apoptosis and cellular defense. The function of Trx itself is regulated by thioredoxin reductase (TrxR). Studies performed in a variety of human primary tumors have shown that thioredoxin reductase 1 (TrxR1) is overexpressed in tumoral tissues compared with corresponding normal tissues. This study was designed to determine the expression of TrxR1 in astrocytoma tissues of different World Health Organization (WHO) grades (grade I-IV). The proliferative (Ki-67) and apoptotic indices of the specimens were also investigated for correlation analysis. Astrocytoma tissues were extracted from the histopathological specimens of 40 patients. These samples included seven histologically normal brain tissues that served as a control group and ten tumoral samples for each grade of astrocytoma (grade I-IV). The histologically normal brain tissues were obtained from the non-tumoral portions of the pathological specimens of grade I (2 cases), grade II (2 cases), grade III (2 cases) and grade IV (1 case) astrocytomas. TrxR1 expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunostaining. The proliferative and apoptotic indices of the specimens were investigated by Ki-67 immunostaining and TUNEL assay, respectively. TrxR1 expression, as assessed by qRT-PCR, increased significantly with astrocytoma grade (p = 0.01). The immunostaining intensity of TrxR1 in grade IV astrocytomas was significantly greater than that in the control tissue and all other astrocytoma grades (p grade III astrocytomas was significantly greater than that in the control group and grade I astrocytomas (p grades, but the differences between grade I and the control, grade II and the control, grades II and I, grades III and II were not statistically significant (p > 0.05). Ki-67 index values increased significant in accordance with grade

  17. Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Testing Registry: Deficiency of isobutyryl-CoA dehydrogenase Other Diagnosis and Management Resources (2 links) Baby's First Test MedlinePlus Encyclopedia: Dilated Cardiomyopathy General Information from MedlinePlus (5 links) Diagnostic Tests ...

  18. Genetics Home Reference: malonyl-CoA decarboxylase deficiency

    Science.gov (United States)

    ... decarboxylase malonic aciduria malonyl-coenzyme A decarboxylase deficiency MCD deficiency Related Information How are genetic conditions and ... Morrell JC, Wanders RJ, Matalon R, Gould SJ. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA ...

  19. Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025).

    Science.gov (United States)

    Hartsock, Angela; Shapleigh, James P

    2011-12-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth.

  20. Androgen regulation of 5α-reductase isoenzymes in prostate cancer: implications for prostate cancer prevention.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT, performs key functions in the androgen receptor (AR signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type-specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention.

  1. Purification and characterization of NADPH-cytochrome P450 reductase from filamentous fungus Rhizopus nigricans.

    Science.gov (United States)

    Makovec, T; Breskvar, K

    1998-09-15

    We report here the isolation and partial characterization of a flavoprotein, NADPH-cytochrome P450 (cytochrome c) reductase. The enzyme is a part of steroid 11 alpha-hydroxylating system and is associated with the microsomal fraction of the fungus Rhizopus nigricans. Fungal reductase was solubilized from microsomal membranes with Triton X-100 and purified to apparent homogeneity by affinity and high-performance ion-exchange chromatography. A 350-fold purification of the enzyme with specific activity of 37 mumol cytochrome c reduced/min/mg protein was achieved. A single protein band was obtained on SDS-PAGE analysis with an apparent molecular weight of 79 kDa. Purified reductase contained approximately equimolar quantities of flavin adenine dinucleotide and flavin mononucleotide per mole of the enzyme. Upon induction of the steroid hydroxylating system with progesterone the activity of microsomal NADPH-cytochrome c (P450) reductase increased 10-fold. This is in good correlation with the increase in content of fungal cytochrome P450. Purified fungal flavoprotein was active in a reconstituted system with cytochrome P450 C21 from adrenal gland but could not replace adrenodoxin reductase in the mitochondrial steroid 11 beta-hydroxylating system. We were able to confirm the role of the enzyme by reconstituting steroid 11 alpha-hydroxylating activity from the separated components NADPH-cytochrome P450 reductase and cytochrome P450, partly purified from fungal microsomes.

  2. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. (Rockefeller Univ., New York, NY (United States)); Sweet, R.M. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  3. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size

    DEFF Research Database (Denmark)

    Knudsen, J; Faergeman, N J; Skøtt, H

    1994-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein characterized in vertebrates. We have isolated two ACBP homologues from the yeast Saccharomyces carlsbergensis, named yeast ACBP types 1 and 2. Both proteins contain 86 amino acid residues and are identical except for four conservative substitut...

  4. Defective Pollen Wall is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.; Shanklin, J.; Tan, H.; Yu, X.-H.; Liu, Y.; Liang, W.; Ranathunge, K.; Franke, R. B.; Schreiber, L.; Wang, Y.; Kai, G.; Ma, H.; Zhang, D.

    2011-06-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.

  5. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids

    DEFF Research Database (Denmark)

    Wadum, M.C.; Villadsen, J.K.; Feddersen, S.

    2002-01-01

    Long-chain acyl-CoA esters are key metabolites in lipid synthesis and b-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable...... methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl...

  6. Binding of Natural and Synthetic Polyphenols to Human Dihydrofolate Reductase

    Directory of Open Access Journals (Sweden)

    José Neptuno Rodríguez-López

    2009-12-01

    Full Text Available Dihydrofolate reductase (DHFR is the subject of intensive investigation since it appears to be the primary target enzyme for antifolate drugs. Fluorescence quenching experiments show that the ester bond-containing tea polyphenols (--epigallocatechin gallate (EGCG and (--epicatechin gallate (ECG are potent inhibitors of DHFR with dissociation constants (KD of 0.9 and 1.8 μM, respectively, while polyphenols lacking the ester bound gallate moiety [e.g., (--epigallocatechin (EGC and (--epicatechin (EC] did not bind to this enzyme. To avoid stability and bioavailability problems associated with tea catechins we synthesized a methylated derivative of ECG (3-O-(3,4,5-trimethoxybenzoyl-(--epicatechin; TMECG, which effectively binds to DHFR (KD = 2.1 μM. In alkaline solution, TMECG generates a stable quinone methide product that strongly binds to the enzyme with a KD of 8.2 nM. Quercetin glucuronides also bind to DHFR but its effective binding was highly dependent of the sugar residue, with quercetin-3-xyloside being the stronger inhibitor of the enzyme with a KD of 0.6 μM. The finding that natural polyphenols are good inhibitors of human DHFR could explain the epidemiological data on their prophylactic effects for certain forms of cancer and open a possibility for the use of natural and synthetic polyphenols in cancer chemotherapy.

  7. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    Science.gov (United States)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris

    2017-02-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.

  8. Reductive activation of E. coli respiratory nitrate reductase.

    Science.gov (United States)

    Ceccaldi, Pierre; Rendon, Julia; Léger, Christophe; Toci, René; Guigliarelli, Bruno; Magalon, Axel; Grimaldi, Stéphane; Fourmond, Vincent

    2015-10-01

    Over the past decades, a number of authors have reported the presence of inactive species in as-prepared samples of members of the Mo/W-bisPGD enzyme family. This greatly complicated the spectroscopic studies of these enzymes, since it is impossible to discriminate between active and inactive species on the basis of the spectroscopic signatures alone. Escherichia coli nitrate reductase A (NarGHI) is a member of the Mo/W-bisPGD family that allows anaerobic respiration using nitrate as terminal electron acceptor. Here, using protein film voltammetry on NarGH films, we show that the enzyme is purified in a functionally heterogeneous form that contains between 20 and 40% of inactive species that activate the first time they are reduced. This activation proceeds in two steps: a non-redox reversible reaction followed by an irreversible reduction. By carefully correlating electrochemical and EPR spectroscopic data, we show that neither the two major Mo(V) signals nor those of the two FeS clusters that are the closest to the Mo center are associated with the two inactive species. We also conclusively exclude the possibility that the major "low-pH" and "high-pH" Mo(V) EPR signatures correspond to species in acid-base equilibrium. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A second target of benzamide riboside: dihydrofolate reductase.

    Science.gov (United States)

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  10. Association study between methylenetetrahydrofolate reductase gene polymorphisms and Graves' disease.

    Science.gov (United States)

    Mao, Renfang; Fan, Yihui; Zuo, Lulu; Geng, Dongfeng; Meng, Fantao; Zhu, Jing; Li, Qiang; Qiao, Hong; Jin, Yan; Bai, Jing; Fu, Songbin

    2010-10-01

    5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the metabolism of folate and nucleotides, which are essential for DNA synthesis and methylation. It is highly polymorphic, and its variant genotypes result in lower enzymatic activity and higher plasma homocysteine. Previous studies have provided evidence that a high prevalence of MTHFR gene polymorphisms is frequently detected in patients with autoimmune disease, suggesting a novel genetic association with autoimmune disorders. However, the genetic association between MTHFR and Graves' disease (GD), one of the most common autoimmune diseases, has not been studied. Here, we designed a clinic-based case-control study including 199 GD cases and 235 healthy controls to examine the associations between three common MTHFR polymorphisms (i.e., C677T, A1298C, and G1793A) and GD. Surprisingly, logistic regression analysis shows MTHFR 677CT + TT genotypes are associated with an approximately 42% reduction in the risk of GD in women (adjusted OR = 0.58, 95% CI = 0.3-0.9), compared to the CC genotype, indicating a significant protective effect of 677CT + TT genotypes. Our result provides epidemiological evidence that MTHFR mutation (C677T) protects women from GD. The protective effect, possibly obtained by influencing DNA methylation, should be confirmed in a large number of cohorts. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Old and new inhibitors of quinone reductase 2.

    Science.gov (United States)

    Ferry, Gilles; Hecht, Sabrina; Berger, Sylvie; Moulharat, Natacha; Coge, Francis; Guillaumet, Gérald; Leclerc, Véronique; Yous, Saïd; Delagrange, Philippe; Boutin, Jean A

    2010-07-30

    Quinone reductase 2 is a cytosolic enzyme which catalyses the reduction of quinones, such as menadione and coenzymes Q. Despite a relatively close sequence-based resemblance to NAD(P)H:quinone oxidoreductase 1 (QR1), it has many different features. QR2 is the third melatonin binding site (MT3). It is inhibited in the micromolar range by melatonin, and does not accept conventional phosphorylated nicotinamides as hydride donors. QR2 has a powerful capacity to activate quinones leading to unexpected toxicity situations. In the present paper, we report the characterization of three QR2 modulators: melatonin, resveratrol and S29434. The latter compound inhibits QR2 activity with an IC(50) in the low nanomolar range. The potency of the modulators ranged as follows, from the least to the most potent: melatonin

  12. Antiproliferative and quinone reductase-inducing activities of withanolides derivatives.

    Science.gov (United States)

    García, Manuela E; Nicotra, Viviana E; Oberti, Juan C; Ríos-Luci, Carla; León, Leticia G; Marler, Laura; Li, Guannan; Pezzuto, John M; van Breemen, Richard B; Padrón, José M; Hueso-Falcón, Idaira; Estévez-Braun, Ana

    2014-07-23

    Two new and five known withanolides (jaborosalactones 2, 3, 4, 5, and 24) were isolated from the leaves of Jaborosa runcinata Lam. We also obtained some derivatives from jaborosalactone 5, which resulted to be the major isolated metabolite. The natural compounds as well as derivatives were evaluated for their antiproliferative activity and the induction of quinone reductase 1 (QR1; NQ01) activity. Structure-activity relationships revealed valuable information on the pharmacophore of withanolide-type compounds. Three compounds of this series showed significantly higher antiproliferative activity than jaborosalactone 5. The effect of these compounds on the cell cycle was determined. Furthermore, the ability of major compounds to induce QR1 was evaluated. It was found that all the active test compounds are monofunctional inducers that interact with Keap1. The most promising derivatives prepared from jaborosalactone 5 include (23R)-4β,12β,21-trihydroxy-1,22-dioxo-12,23-cycloergostan-2,5,17,24-tetraen-26,23-olide (18) and (23R)-21-acetoxy-12β-hydroxy-1,22-dioxo-12,23-cycloergostan-2,5,17,24-tetraen-26,23-lactame (20). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Structure, function, and mechanism of cytosolic quinone reductases.

    Science.gov (United States)

    Bianchet, Mario A; Erdemli, Sabri Bora; Amzel, L Mario

    2008-01-01

    Quinone reductases type 1 (QR1) are FAD-containing enzymes that catalyze the reduction of many quinones, including menadione (Vit K3), to hydroquinones using reducing equivalents provided by NAD(P)H. The reaction proceeds with a ping-pong mechanism in which the NAD(P)H and the substrate occupy alternatively overlapping regions of the same binding site and participate in a double hydride transfer: one from NAD(P)H to the FAD of the enzyme, and one from the FADH(2) of the enzyme to the quinone substrate. The main function of QR1 is probably the detoxification of dietary quinones but it may also contribute to the reduction of vitamin K for its involvement in blood coagulation. In addition, the same reaction that QR1 uses in the detoxification of quinones, activates some compounds making them cytotoxic. Since QR1 is elevated in many tumors, this property has encouraged the development of chemotherapeutic compounds that become cytotoxic after reduction by QR1. The structures of QR1 alone, and in complexes with substrates, inhibitors, and chemotherapeutic prodrugs, combined with biochemical and mechanistic studies have provided invaluable insight into the mechanism of the enzyme as well as suggestions for the improvements of the chemotherapeutic prodrugs. Similar information is beginning to accumulate about another related enzyme, QR2.

  14. DFT Based QSAR Study of Enzyme Ribonucleoside Diphosphate Reductase

    Directory of Open Access Journals (Sweden)

    Mohiuddin Ansari

    2010-01-01

    Full Text Available Quantum chemical descriptors such as heat of formation, energy of HOMO, total energy, absolute hardness and chemical potential in different combinations have been used to develop QSAR models of inhibitors of enzyme ribonucleoside diphosphate reductase, RDR. The inhibitors are mainly derivatives of 1-formylisoquinoline thiosemicarbazone and 2-formylpyridine thiosemicarbazone. The values of various descriptors have been evaluated with the help of Win MOPAC 7.21 software using DFT method. Multiple linear regression analysis has been made with the help of above mentioned descriptors using the same software. Regression equations have been found to be successful models as indicated by the regression coefficient r2 having the value as high as 0.96 and cross validation coefficient rCV2 having the value approaching 0.95. The value of these two coefficients is indicative of high order of reliability for the proposed prediction. The results obtained are also validated on account of the closeness of observed and predicted inhibitory activities. The best combination of descriptors is heat of formation, total energy and energy of HOMO. Thus the prediction of suitability of inhibitors of the enzyme RDR can be made with the help of the best regression equation.

  15. Methylenetetrahydrofolate reductase (MTHFR) deficiency enhances resistance against cytomegalovirus infection.

    Science.gov (United States)

    Fodil-Cornu, N; Kozij, N; Wu, Q; Rozen, R; Vidal, S M

    2009-10-01

    Folates provide one-carbon units for nucleotide synthesis and methylation reactions. A common polymorphism in the MTHFR gene (677C --> T) results in reduced enzymatic activity, and is associated with an increased risk for neural tube defects and cardiovascular disease. The high prevalence of this polymorphism suggests that it may have experienced a selective advantage under environmental pressure, possibly an infectious agent. To test the hypothesis that methylenetetrahydrofolate reductase (MTHFR) genotype influences the outcome of infectious disease, we examined the response of Mthfr-deficient mice against mouse cytomegalovirus (MCMV) infection. Acute MCMV infection of Mthfr(-/-) mice resulted in early control of cytokine secretion, decreased viral titer and preservation of spleen immune cells, in contrast to Mthfr wild-type littermates. The phenotype was abolished in MTHFR transgenic mice carrying an extra copy of the gene. Infection of primary fibroblasts with MCMV showed a decrease in viral replication and in the number of productively infected cells in Mthfr(+/-) fibroblasts compared with wild-type cells. These results indicate that Mthfr deficiency protects against MCMV infection in vivo and in vitro, suggesting that human genetic variants may provide an advantage in the host response against certain pathogens.

  16. Prognostic Relevance of Methylenetetrahydrofolate Reductase Polymorphisms for Prostate Cancer.

    Science.gov (United States)

    Lin, Victor C; Lu, Te-Ling; Yin, Hsin-Ling; Yang, Sheau-Fang; Lee, Yung-Chin; Liu, Chia-Chu; Huang, Chao-Yuan; Yu, Chia-Cheng; Chang, Ta-Yuan; Huang, Shu-Pin; Bao, Bo-Ying

    2016-11-29

    Folate metabolism has been associated with cancers via alterations in nucleotide synthesis, DNA methylation, and DNA repair. We hypothesized that genetic variants in methylenetetrahydrofolate reductase (MTHFR), a key enzyme of folate metabolism, would affect the prognosis of prostate cancer. Three haplotype-tagging single-nucleotide polymorphisms (SNPs) across the MTHFR gene region were genotyped in a cohort of 458 patients with clinically localized prostate cancer treated with radical prostatectomy. One SNP, rs9651118, was associated with disease recurrence, and the association persisted after multivariate analyses adjusting for known risk factors. Public dataset analyses suggested that rs9651118 affects MTHFR expression. Quantitative real-time polymerase chain reaction analysis revealed that MTHFR expression is significantly upregulated in prostate tumor tissues when compared with adjacent normal tissues. Furthermore, overexpression of MTHFR correlates with cancer recurrence and death in two independent publicly available prostate cancer datasets. In conclusion, our data provide rationale to further validate the clinical utility of MTHFR rs9651118 as a biomarker for prognosis in prostate cancer.

  17. Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability.

    Science.gov (United States)

    Shaw, Daniel J; Robb, Kirsty; Vetter, Beatrice V; Tong, Madeline; Molle, Virginie; Hunt, Neil T; Hoskisson, Paul A

    2017-07-05

    Tuberculosis (TB) is a global health problem that affects over 10 million people. There is an urgent need to develop novel antimicrobial therapies to combat TB. To achieve this, a thorough understanding of key validated drug targets is required. The enoyl reductase InhA, responsible for synthesis of essential mycolic acids in the mycobacterial cell wall, is the target for the frontline anti-TB drug isoniazid. To better understand the activity of this protein a series of mutants, targeted to the NADH co-factor binding pocket were created. Residues P193 and W222 comprise a series of hydrophobic residues surrounding the cofactor binding site and mutation of both residues negatively affect InhA function. Construction of an M155A mutant of InhA results in increased affinity for NADH and DD-CoA turnover but with a reduction in V max for DD-CoA, impairing overall activity. This suggests that NADH-binding geometry of InhA likely permits long-range interactions between residues in the NADH-binding pocket to facilitate substrate turnover in the DD-CoA binding region of the protein. Understanding the precise details of substrate binding and turnover in InhA and how this may affect protein-protein interactions may facilitate the development of improved inhibitors enabling the development of novel anti-TB drugs.

  18. Studies on aldose reductase inhibitors from natural products. IV. Constituents and aldose reductase inhibitory effect of Chrysanthemum morifolium, Bixa orellana and Ipomoea batatas.

    Science.gov (United States)

    Terashima, S; Shimizu, M; Horie, S; Morita, N

    1991-12-01

    The hot water extracts of Chrysanthemum morifolium, Bixa orellana and Ipomoea batatas, were found to have potent inhibitory activity towards lens aldose reductase (AR). Ellagic acid (4) was isolated from C. morifolium and I. batatas, isoscutellarein (7) from B. orellana and 3,5-dicaffeoylquinic acid (10) from I. batatas, respectively, as potent inhibitors.

  19. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen. R. [McGill Univ., Montreal (Canada)

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defect that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.

  20. Recombinant bovine dihydrofolate reductase produced by mutagenesis and nested PCR of murine dihydrofolate reductase cDNA.

    Science.gov (United States)

    Cody, Vivian; Mao, Qilong; Queener, Sherry F

    2008-11-01

    Recent reports of the slow-tight binding inhibition of bovine liver dihydrofolate reductase (bDHFR) in the presence of polyphenols isolated from green tea leaves has spurred renewed interest in the biochemical properties of bDHFR. Earlier studies were done with native bDHFR but in order to validate models of polyphenol binding to bDHFR, larger quantities of bDHFR are necessary to support structural studies. Bovine DHFR differs from its closest sequence homologue, murine DHFR, by 19 amino acids. To obtain the bDHFR cDNA, murineDHFR cDNA was transformed by a series of nested PCRs to reproduce the amino acid coding sequence for bovine DHFR. The bovine liver DHFR cDNA has an open reading frame of 561 base pairs encoding a protein of 187 amino acids that has a high level of conservation at the primary sequence level with other DHFR enzymes, and more so for the amino acid residues in the active site of the mammalian DHFR enzymes. Expression of the bovine DHFR cDNA in bacterial cells produced a stable recombinant protein with high enzymatic activity and kinetic properties similar to those previously reported for the native protein.

  1. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.

    OpenAIRE

    McEwan, A G; Greenfield, A J; Wetzstein, H G; Jackson, J B; Ferguson, S J

    1985-01-01

    After growth in the absence of nitrogenous oxides under anaerobic phototrophic conditions, several strains of Rhodopseudomonas capsulata were shown to possess a nitrous oxide reductase activity. The enzyme responsible for this activity had a periplasmic location and resembled a nitrous oxide reductase purified from Pseudomonas perfectomarinus. Electron flow to nitrous oxide reductase was coupled to generation of a membrane potential and inhibited by rotenone but not antimycin. It is suggested...

  2. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency

    NARCIS (Netherlands)

    Sacksteder, K. A.; Morrell, J. C.; Wanders, R. J.; Matalon, R.; Gould, S. J.

    1999-01-01

    Malonyl-CoA decarboxylase (MCD) catalyzes the proton-consuming conversion of malonyl-CoA to acetyl-CoA and CO(2). Although defects in MCD activity are associated with malonyl-CoA decarboxylase deficiency, a lethal disorder characterized by cardiomyopathy and developmental delay, the metabolic role

  3. Production and Characterization of Monoclonal Antibodies against NADPH-Cytochrome P-450 Reductases from Helianthus tuberosus1

    Science.gov (United States)

    Lesot, Agnès; Benveniste, Irène; Hasenfratz, Marie-Paule; Durst, Francis

    1992-01-01

    Monoclonal antibodies (mAbs) against a plant NADPH-cytochrome P-450 (Cyt P-450) reductase from Jerusalem artichoke (Helianthus tuberosus) tuber were prepared. These antibodies were produced by hybridoma resulting from the fusion of spleen cells from a rat immunized with a purified preparation of the reductase and mouse myeloma cells. The mAbs thus obtained were screened for their interaction with the reductases, first in western dots and then in blots, and for their ability to inhibit the NADPH-cytochrome c (Cyt c) reductase activity from Jerusalem artichoke microsomes. Among the 11 clones giving a positive response on western blots, only 6 were also able to inhibit microsomal NADPH-Cyt c reductase activity, and the microsomal Cyt P-450 monooxygenase activities dependent upon electrons transferred by the reductase. Thus, two families of mAbs were characterized: a family of mAbs that interact with epitopes of the reductase implicated in the reduction of Cyt P-450 by NADPH (binding sites for NADPH, flavin mononucleotide, flavin adenine dinucleotide, and Cyt P-450), and a structural family, whose members recognize epitopes outside the active site of the reductases. These mAbs specifically recognize the reductase, and all of them interact with all of the isoforms, indicating that important primary or secondary structural analogies exist between the isoforms, not only at the active site, but also at the level of epitopes not directly associated with catalytic activity. Images Figure 1 Figure 2 Figure 3 PMID:16653138

  4. Resolution and reconstitution of the NADPH-cytochrome c (P-450) reductase induced by progesterone in Rhizopus nigricans.

    Science.gov (United States)

    Cresnar, B; Breskvar, K; Hudnik-Plevnik, T

    1985-12-31

    The NADPH-cytochrome c (P-450) reductase induced in the filamentous fungus Rhizopus nigricans as a component of 11 alpha-hydroxylase of progesterone was resolved by DEAE-cellulose chromatography into two components. One of the components is an iron-sulfur protein (rhizoporedoxin), whereas the other component is a protein with reductase activity dependent on NADPH (rhizoporedoxin reductase). As shown in the reconstitution assay, the NADPH-cytochrome c (P-450) reductase activity was restored upon combination of these two proteins.

  5. Thioredoxin reductase induction coincides with melanin biosynthesis in brown and black guinea pigs and in murine melanoma cells.

    Science.gov (United States)

    Schallreuter, K U; Lemke, K R; Hill, H Z; Wood, J M

    1994-12-01

    X-rays were used to induce melanin biosynthesis in brown and black guinea pigs in vivo. During the course of pigmentation, the expression of thioredoxin reductase was increased, whereas for the other antioxidant enzymes, superoxide dismutase (cytosol Cu/Zn-enzyme), catalase, and glutathione reductase, levels and activities decreased. Isobutylmethylxanthine induced eumelanin biosynthesis in murine melanoma cells (Cloudman S-91). In these cells, thioredoxin reductase levels coincided with melanogenesis. Our results suggest that both tyrosinase and thioredoxin reductase respond to oxidative stress in the epidermis as well as in melanoma cells and react with superoxide anion radicals to stimulate melanogenesis and to prevent peroxidative damage, respectively.

  6. Diffuse multicystic encephalomalacia in a preterm baby due to homozygous methylenetetrahydrofolate reductase 677 C-->T mutation.

    Science.gov (United States)

    Aygun, Canan; Tanyeri, Bilge; Ceyhan, Meltem; Bagci, Hasan; Kucukoduk, Sukru

    2008-06-01

    Methylenetetrahydrofolate reductase catalyzes the formation of 5-methyltetrahydrofolate from 5,10-methylentetrahydrofolate and produces folate for the methylation of homocysteine to methionine. Due to insufficient conversion of homocysteine to methionine, plasma homocysteine levels increase in methylenetetrahydrofolate reductase deficiency. Homocysteine is an amino acid that contains a neurotoxic sulfur molecule and can induce neuronal apoptosis. Methylenetetrahydrofolate reductase deficiency is 1 of the etiological factors that causes neurological symptoms and signs in the newborn and childhood period. Here, we report a premature baby with prenatal onset diffuse multicystic encephalomalacia and cerebellar atrophy due to homozygous methylenetetrahydrofolate reductase mutation.

  7. Is it Simvastatin harmful in children? A case report

    Directory of Open Access Journals (Sweden)

    Mara Pisani

    2014-09-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the most common liver disease in children living in Western countries. Hyperlipidemia, obesity and insulin resistance are common components of the metabolic syndrome, which is frequently associated with NAFLD. Since patients with NAFLD are at high risk to develop cardiovascular disease (CVD, statins are frequently prescribed to patients with NAFLD and hyperlipidemia. The 3-Hydroxy-3-methyl-coenzyme A reductase (HMG-CoA reductase is the rate limiting enzyme in cholesterol biosynthesis. Simvastatin is a lactone that is readily hydrolyzed in vivo to the corresponding β-hydroxyacid, a potent inhibitor of HMG-CoA reductase. Under treatment with simvastatin, an improvement of enzymatic antioxidant parameters has been described in subjects with hypercholesterolemia. The safety and effectivity of statins in pediatric patients with NAFLD or non-alcoholic steatohepatitis (NASH, and their effect on hepatic fat infiltration or the extent of hepatic fibrosis are not known. Also, no evidences of the effects of a non therapeutic ingestion of this drug on the glutathione homeostasis and in children have been reported. We describe the case of a obese 4-year-old girl in whom an accidental overdose of simvastatin led to decrease levels of glutathione in blood with increase of the GSSG/GSH ratio. No adverse reactions were registered. All laboratory test were normal during the follow up. Only a 35% decrease of Glutathione was observed  such as a possible mechanism of mithocondrial toxicity and depletion of the glutathione pool after the intake of excessive dose of HMG-CoA reductase inhibitors.  Further  RCTs are needed in order to establish the safety and efficacy to use of statin for pediatric NAFLD or NASH.

  8. Hyperhomocysteinaemia, methylenetetrahydrofolate reductase polymorphism and risk of coronary artery disease.

    Science.gov (United States)

    Kerkeni, Mohsen; Addad, Faouzi; Chauffert, Maryline; Myara, Anne; Gerhardt, Marie; Chevenne, Didier; Trivin, François; Farhat, Mohamed Ben; Miled, Abdelhedi; Maaroufi, Khira

    2006-05-01

    Hyperhomocysteinaemia is an independent, graded risk factor for coronary artery disease (CAD). The methylenetetrahydrofolate reductase (MTHFR) polymorphism is associated with hyperhomcysteinaemia and may therefore influence individual susceptibility to CAD. We have investigated this risk factor in a Tunisian Arab population. Polymerase chain reaction-restriction fragment length polymorphism analysis was used to detect the C677T and A1298C variants of the MTHFR gene in 100 patients with CAD and 120 healthy controls. The severity of CAD was expressed as the number of affected vessels. Plasma total homocysteine (tHcy) concentration was determined using a direct chemiluminescence assay. MTHFR CC, CT and TT genotype frequencies in the CAD group were significantly different from those observed in the control group (49%, 35% and 16% versus 48.3%, 45.8% and 5.8%, respectively; P = 0.031). However, MTHFR AA, AC and CC genotypes frequencies in the CAD group were not significantly different from the control group ( P = 0.568). Patients with CAD showed higher plasma tHcy concentrations than patients without CAD (15.86 +/- 8.63 micromol/L versus 11.90 +/- 3.25 micromol/L, P MTHFR polymorphisms and the number of stenosed vessels. Patients with the MTHFR TT genotype had higher plasma tHcy, serum creatinine, cholesterol and triglyceride concentrations than patients with the MTHFR CC genotype. The C677T polymorphism of the MTHFR gene is associated with hyperhomocysteinaemia, lipid dysregulation and the presence of CAD in this Tunisian Arab population.

  9. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Directory of Open Access Journals (Sweden)

    Ji Hun Paek

    2013-01-01

    Full Text Available The ethyl acetate (EtOAc soluble fraction of methanol extracts of Perilla frutescens (P. frutescens inhibits aldose reductase (AR, the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR. The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2 (IC50 = 3.16 μM, rosmarinic acid (4 (IC50 = 2.77 μM, luteolin (5 (IC50 = 6.34 μM, and methyl rosmarinic acid (6 (IC50 = 4.03 μM.

  10. Methylenetetrahydrofolate Reductase gene polymorphism in children with allergic rhinitis.

    Science.gov (United States)

    Dogru, M; Aydin, H; Aktas, A; Cırık, A A

    2015-01-01

    Methylenetetrahydrofolate Reductase (MTHFR) polymorphisms by impairing folate metabolism may influence the development of allergic diseases. The results of studies evaluating the relationship between MTHFR polymorphisms and atopic disease are controversial. The aim of this study was to investigate the association between the polymorphisms of C677T and A1298C for MTHFR gene and allergic rhinitis (AR) in children. Ninety patients followed up with diagnosis of allergic rhinitis in our clinic and 30 children with no allergic diseases were included in the study. All participants were genotyped for the MTHFR (C677T) and (A1298C) polymorphisms. Vitamin b12, folate and homocysteine levels were measured. The mean age of patients was 9.2±2.9 years; 66.7% of the patients were male. There was no significant difference between patient and control groups regarding gender, age and atopy history of the family (p>0.05). The frequency of homozygotes for MTHFR C677T polymorphism in the patient and control groups was 3.3% and 10%, respectively. The frequency of homozygotes for MTHFR A1298C polymorphism among groups was 26.7% and 16.7%, respectively. The association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene was not statistically significant in patients compared with controls (p>0.05). There were no statistically significant differences between the patients and the control group in terms of serum vitamin b12, folate and homocysteine levels (p>0.05). We found no evidence for an association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene in children. Further studies investigating the relationship between MTHFR polymorphism and AR are required. Copyright © 2014 SEICAP. Published by Elsevier Espana. All rights reserved.

  11. Methylenetetrahydrofolate reductase gene polymorphisms in Egyptian Turner Syndrome patients.

    Science.gov (United States)

    Ismail, Manal F; Zarouk, Waheba A; Ruby, Mona O; Mahmoud, Wael M; Gad, Randa S

    2015-01-01

    Folate metabolism dysfunctions can result in DNA hypomethylation and abnormal chromosome segregation. Two common polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) encoding gene (C677T and A1298C) reduce MTHFR activity, but when associated with aneuploidy, the results are conflicting. Turner Syndrome (TS) is an interesting model for investigating the association between MTHFR gene polymorphisms and nondisjunction because of the high frequency of chromosomal mosaicism in this syndrome. To investigate the association of MTHFR gene C677T and A1298C polymorphisms in TS patients and their mothers and to correlate these polymorphisms with maternal risk of TS offspring. MTHFR C677T and A1298C polymorphisms were genotyped in 33 TS patients, their mothers and 15 healthy females with their mothers as controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing technique. Genotype and allele frequencies of both C677T and A1298C were not significantly different between TS cases and controls. There were no significant differences in C677T genotype distribution between the TS mothers and controls (p=1). The MTHFR 1298AA and 1298AC genotypes were significantly increased in TS mothers Vs. control mothers (p=0.002). The C allele frequency of the A1298C polymorphism was significantly different between the TS mothers and controls (p=0.02). The association of A1298C gene polymorphism in TS patients was found to increase with increasing age of both mothers (p=0.026) and fathers (p=0.044) of TS cases. Our findings suggest a strong association between maternal MTHFR A1298C and risk of TS in Egypt.

  12. Methylenetetrahydrofolate reductase genotype association with the risk of follicular lymphoma.

    Science.gov (United States)

    Ismail, Said I; Ababneh, Nida A; Khader, Yousef; Abu-Khader, Ahmad A; Awidi, Abdullah

    2009-12-01

    The metabolism of folate is essential in DNA synthesis, and polymorphisms of genes involved in such metabolism have been implicated in many types of cancer. Among these, the methylene tetrahydrofolate reductase gene (MTHFR) encodes an enzyme that converts folate to a methyl donor used for DNA methylation. We studied the association between the different genotypes of the two most common MTHFR polymorphisms, C677T and A1298C, and the risk of follicular lymphoma (FL). For this purpose, 55 previously diagnosed FL patients and 170 normal control subjects were examined using polymerase chain reaction followed by restriction fragment length polymorphism. The frequency of the A1298C CC homozygous mutant genotype was significantly higher in patients with FL than in control subjects (OR = 3.51, 95% CI = 1.39-8.86, P = 0.008). No such association was found for the heterozygous A1298C AC genotype (OR = 1.08, 95% CI = 0.55-2.12, P = 0.83). On the other hand, no significant association was found for either the C677T CT heterozygous genotype (OR = 0.79, 95% CI = 0.42-1.51, P = 0.49) or the C677T TT homozygous mutant genotype (OR = 0.55, 95% CI = 0.12-2.65, P = 0.46). The present findings add to the very few reports suggesting a link between the A1298C CC homozygous MTHFR genotype and a higher risk of developing FL, and the first such in a Jordanian population.

  13. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  14. Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression.

    Science.gov (United States)

    Bronstein, M; Schütz, M; Hauska, G; Padan, E; Shahak, Y

    2000-06-01

    The gene encoding sulfide-quinone reductase (SQR; E.C.1.8.5.'), the enzyme catalyzing the first step of anoxygenic photosynthesis in the filamentous cyanobacterium Oscillatoria limnetica, was cloned by use of amino acid sequences of tryptic peptides as well as sequences conserved in the Rhodobacter capsulatus SQR and in an open reading frame found in the genome of Aquifex aeolicus. SQR activity was also detected in the unicellular cyanobacterium Aphanothece halophytica following sulfide induction, with a V(max) of 180 micromol of plastoquinone-1 (PQ-1) reduced/mg of chlorophyll/h and apparent K(m) values of 20 and 40 microM for sulfide and quinone, respectively. Based on the conserved sequences, the gene encoding A. halophytica SQR was also cloned. The SQR polypeptides deduced from the two cyanobacterial genes consist of 436 amino acids for O. limnetica SQR and 437 amino acids for A. halophytica SQR and show 58% identity and 74% similarity. The calculated molecular mass is about 48 kDa for both proteins; the theoretical isoelectric points are 7.7 and 5.6 and the net charges at a neutral pH are 0 and -14 for O. limnetica SQR and A. halophytica SQR, respectively. A search of databases showed SQR homologs in the genomes of the cyanobacterium Anabaena PCC7120 as well as the chemolithotrophic bacteria Shewanella putrefaciens and Thiobacillus ferrooxidans. All SQR enzymes contain characteristic flavin adenine dinucleotide binding fingerprints. The cyanobacterial proteins were expressed in Escherichia coli under the control of the T7 promoter. Membranes isolated from E. coli cells expressing A. halophytica SQR performed sulfide-dependent PQ-1 reduction that was sensitive to the quinone analog inhibitor 2n-nonyl-4-hydroxyquinoline-N-oxide. The wide distribution of SQR genes emphasizes the important role of SQR in the sulfur cycle in nature.

  15. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    Science.gov (United States)

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  16. Methylenetetrahy-drofolate Reductase Gene Polymorphism in Patients Receiving Hemodialysis

    Directory of Open Access Journals (Sweden)

    Ermina Kiseljaković

    2010-04-01

    Full Text Available Methylenetetrahydrofolate Reductase (MTHFR is key enzyme in metabolism of homocysteine. Homozygotes for mutation (TT genotype have hyperhomocysteinemia, risk factor for atherosclerosis development. The aim of the study was to find out distribution of genotype frequencies of C677T MTHFR among patients on maintenance hemodialysis. Possible association of alleles and genotypes of C677T polymorphism of the MTHFR gene with age of onset, duration of dialysis and cause of kidney failure was studied also. Cross-sectional study includes 80 patients from Clinic of Hemodialysis KUCS in Sarajevo. In order to perform genotyping, isolated DNA was analyzed by RFLP-PCR and gel-electrophoresis. From total of 80 patients, 42.5% (n=24 were female, 57.5% (n=46 were male, mean age 54.59±1.78 years and duration of dialysis 79.92±6.32 months. Genotype distribution was: CC 51.2% (n=41, CT 37.5% (n=30 and TT 11.2% (n=9. Patients with wild-type genotype have longer duration of dialysis in month (87.1 ± 63.93 comparing to TT genotype patients (67.06 ± 39.3, with no statistical significance. T allele frequency was significantly higher in group of vascular and congenital cause of kidney failure (Pearson X2 =6.049, P<0.05 comparing to inflammation etiology group. Genotype distribution results are within the results other studies in Europe. Obtained results indicate that C677T polymorphism is not associated with onset, duration and cause of kidney failure in our hemodialysis population. There is an association of T allele of the MTHFR gene and vascular and congenital cause kidney failure.

  17. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  18. Dihydroflavonol 4-Reductase Genes from Freesia hybrida Play Important and Partially Overlapping Roles in the Biosynthesis of Flavonoids.

    Science.gov (United States)

    Li, Yueqing; Liu, Xingxue; Cai, Xinquan; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Han, Taotao; Wang, Shucai; Wang, Li; Gao, Xiang

    2017-01-01

    Dihydroflavonol-4-reductase (DFR) is a key enzyme in the reduction of dihydroflavonols to leucoanthocyanidins in both anthocyanin biosynthesis and proanthocyanidin accumulation. In many plant species, it is encoded by a gene family, however, how the different copies evolve either to function in different tissues or at different times or to specialize in the use of different but related substrates needs to be further investigated, especially in monocot plants. In this study, a total of eight putative DFR-like genes were firstly cloned from Freesia hybrida. Phylogenetic analysis showed that they were classified into different branches, and FhDFR1, FhDFR2, and FhDFR3 were clustered into DFR subgroup, whereas others fell into the group with cinnamoyl-CoA reductase (CCR) proteins. Then, the functions of the three FhDFR genes were further characterized. Different spatio-temporal transcription patterns and levels were observed, indicating that the duplicated FhDFR genes might function divergently. After introducing them into Arabidopsis dfr (tt3-1) mutant plants, partial complementation of the loss of cyanidin derivative synthesis was observed, implying that FhDFRs could convert dihydroquercetin to leucocyanidin in planta. Biochemical assays also showed that FhDFR1, FhDFR2, and FhDFR3 could utilize dihydromyricetin to generate leucodelphinidin, while FhDFR2 could also catalyze the formation of leucocyanidin from dihydrocyanidin. On the contrary, neither transgenic nor biochemical analysis demonstrated that FhDFR proteins could reduce dihydrokaempferol to leucopelargonidin. These results were consistent with the freesia flower anthocyanin profiles, among which delphinidin derivatives were predominant, with minor quantities of cyanidin derivatives and undetectable pelargonidin derivatives. Thus, it can be deduced that substrate specificities of DFRs were the determinant for the categories of anthocyanins aglycons accumulated in F. hybrida. Furthermore, we also found that

  19. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J

    2005-01-01

    -CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified...... duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage...

  20. INHIBITORY ACTIVITY OF FLAVONOIDS ON THE LENS ALDOSE REDUCTASE OF HEALTHY AND DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    M. T. Goodarzi

    2006-05-01

    Full Text Available Aldose reductase is a critical enzyme in the polyol pathway that plays an important role in diabetes mellitus. Inhibition of the activity of this enzyme can prevent cataract in diabetic patients’lenses. In this study the inhibitory effect of two flavonoids, quercetin and naringin, in the activity of aldose reductase in streptozotocin-induced diabetic and healthy rats were investigated. Thirty male rats were divided in six groups. The first, second and third group were healthy rats that received water,quercetin and naringin, respectively. The fourth, fifth and sixth groups were streptozocin-induced diabetic rats that received water, quercetin and naringin, respectively. These rats were fed orally in a definite dose from each substance for 12 days. After this period rats were scarified and their lenses were separated and homogenized. The activity of aldose reductase was measured in each homogenized sample separately. The effect of feeding of these substances in blood sugar was also determined. Aldose reductase activity was reduced 73 and 69 percent in diabetic rats fed by quercetin and naringin, respectively, and the difference compared to control group was significant. In healthy rats this reduction was 63 and 59 percent, respectively, and the difference was significant compared to those who did not receive flavonoids. It was concluded that these substances were effective in reduction of aldose reductase activity in vivo and consequently could delay the progress of cataract.

  1. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  2. Genetics Home Reference: peroxisomal acyl-CoA oxidase deficiency

    Science.gov (United States)

    ... recurrent seizures (epilepsy), and loss of vision and hearing. Most children with peroxisomal acyl-CoA oxidase deficiency do not survive past early childhood. Related Information What does it mean if a disorder seems to run in my family? What is ...

  3. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  4. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions.

    Science.gov (United States)

    Yuan, Jifeng; Ching, Chi-Bun

    2016-11-01

    Acetyl-CoA is a central molecule in the metabolism of the cell, which is also a precursor molecule to a variety of value-added products such as terpenoids and fatty acid derived molecules. Considering subcellular compartmentalization of metabolic pathways allows higher concentrations of enzymes, substrates and intermediates, and bypasses competing pathways, mitochondrion-compartmentalized acetyl-CoA utilization pathways might offer better pathway activities with improved product yields. As a proof-of-concept, we sought to explore a mitochondrial farnesyl pyrophosphate (FPP) biosynthetic pathway for the biosynthesis of amorpha-4,11-diene in budding yeast. In the present study, the eight-gene FPP biosynthetic pathway was successfully expressed inside yeast mitochondria to enable high-level amorpha-4,11-diene production. In addition, we also found the mitochondrial compartment serves as a partial barrier for the translocation of FPP from mitochondria into the cytosol, which would potentially allow minimized loss of FPP to cytosolic competing pathways. To our best knowledge, this is the first report to harness yeast mitochondria for terpenoid productions from the mitochondrial acetyl-CoA pool. We envision subcellular metabolic engineering might also be employed for an efficient production of other bio-products from the mitochondrial acetyl-CoA in other eukaryotic organisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kiyota, Eduardo [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Sousa, Sylvia Morais de [Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Santos, Marcelo Leite dos; Costa Lima, Aline da [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Menossi, Marcelo [Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Yunes, José Andrés [Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP (Brazil); Aparicio, Ricardo, E-mail: aparicio@iqm.unicamp.br [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil)

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  6. A substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity.

    Science.gov (United States)

    Takao, Haruna; Hirabayashi, Kei; Nishigaya, Yuki; Kouriki, Haruna; Nakaniwa, Tetsuko; Hagiwara, Yoshinori; Harada, Jiro; Sato, Hideaki; Yamazaki, Toshimasa; Sakakibara, Yoichi; Suiko, Masahito; Asada, Yujiro; Takahashi, Yasuhiro; Yamamoto, Ken; Fukuyama, Keiichi; Sugishima, Masakazu; Wada, Kei

    2017-02-07

    Biliverdin reductase catalyses the last step in haem degradation and produces the major lipophilic antioxidant bilirubin via reduction of biliverdin, using NAD(P)H as a cofactor. Despite the importance of biliverdin reductase in maintaining the redox balance, the molecular details of the reaction it catalyses remain unknown. Here we present the crystal structure of biliverdin reductase in complex with biliverdin and NADP+. Unexpectedly, two biliverdin molecules, which we designated the proximal and distal biliverdins, bind with stacked geometry in the active site. The nicotinamide ring of the NADP+ is located close to the reaction site on the proximal biliverdin, supporting that the hydride directly attacks this position of the proximal biliverdin. The results of mutagenesis studies suggest that a conserved Arg185 is essential for the catalysis. The distal biliverdin probably acts as a conduit to deliver the proton from Arg185 to the proximal biliverdin, thus yielding bilirubin.

  7. Aldose reductase is involved in long-term adaptation of EUE cells to hyperosmotic stress.

    Science.gov (United States)

    Ferraretto, A; Negri, A; Giuliani, A; De Grada, L; Fuhrman Conti, A M; Ronchi, S

    1993-02-17

    Aldose reductase has been shown to be expressed in large amount by human embryonic epithelial cells (EUE) in response to osmotic stress. This conclusion is the result of studies undertaken following the purification to homogeneity of two forms of a 35-kDa protein overexpressed in EUE cells grown in hypertonic saline culture medium as compared to EUE cells grown in isoosmotic medium. Amino-acid composition, molecular weight and partial internal amino-acid sequence showed that the above proteins are two different forms of aldose reductase. These findings were confirmed by the observation that aldose reductase activity increased about 150-fold in adapted cells and returned to basal levels in de-adapted cells.

  8. Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators.

    Science.gov (United States)

    Reddy, J K; Goel, S K; Nemali, M R; Carrino, J J; Laffler, T G; Reddy, M K; Sperbeck, S J; Osumi, T; Hashimoto, T; Lalwani, N D

    1986-01-01

    The structurally diverse peroxisome proliferators ciprofibrate, clofibrate, and bis(2-ethylhexyl) phthalate [(EtHx)2 greater than Pht] increase the activities of hepatic catalase and peroxisomal fatty acid beta-oxidation enzymes in conjunction with profound proliferation of peroxisomes in hepatocytes. In order to delineate the level at which these enzymes are induced in the liver, the transcriptional activity of specific genes for fatty acyl-CoA oxidase (FAOxase) and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme (PBE), the first two enzymes of the peroxisomal beta-oxidation system, and for catalase were measured in isolated hepatocyte nuclei obtained from male rats following a single intragastric dose of ciprofibrate, clofibrate, or (EtHx)2 greater than Pht. All three peroxisome proliferators rapidly increased the rate of FAOxase and PBE gene transcription in liver, with near maximal rates (9-15 times control) reached by 1 hr and persisting until at least 16 hr after administration of the compound. FAOxase and PBE mRNA levels, measured by blot-hybridization analysis and FAOxase and PBE protein content, analyzed by immunoblotting, increased concurrently up to at least 16 hr following a single dose of peroxisome proliferator. The catalase mRNA level increased about 1.4-fold, but the transcription rate of the catalase gene was not significantly affected. The results show that the peroxisome proliferators clofibrate, ciprofibrate, and (EtHx)2 greater than Pht selectively increase the rate of transcription of peroxisomal fatty acid beta-oxidation enzyme genes. Whether the transcriptional effects are mediated by peroxisome proliferator-receptor complexes remains to be elucidated. Images PMID:3456610

  9. Aldose reductase inhibition prevents metaplasia of airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available BACKGROUND: Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR regulates the mucus cell metaplasia in vitro and in vivo. METHODOLOGY/FINDINGS: Metaplasia in primary human small airway epithelial cells (SAEC was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE. CONCLUSIONS: The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors

  10. Aldose reductase inhibition prevents metaplasia of airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Aguilera-Aguirre, Leopoldo; Ramana, Kota V; Boldogh, Istvan; Srivastava, Satish K

    2010-12-28

    Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR) regulates the mucus cell metaplasia in vitro and in vivo. Metaplasia in primary human small airway epithelial cells (SAEC) was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS)-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE)-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE. The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors such as fidarestat could be developed as therapeutic agents to

  11. drFrnE Represents a Hitherto Unknown Class of Eubacterial Cytoplasmic Disulfide Oxido-Reductases.

    Science.gov (United States)

    Bihani, Subhash C; Panicker, Lata; Rajpurohit, Yogendra S; Misra, Hari S; Kumar, Vinay

    2017-10-16

    Living cells employ thioredoxin and glutaredoxin disulfide oxido-reductases to protect thiol groups in intracellular proteins. FrnE protein of Deinococcus radiodurans (drFrnE) is a disulfide oxido-reductase that is induced in response to Cd(2+) exposure and is involved in cadmium and radiation tolerance. The aim of this study is to probe structure, function, and cellular localization of FrnE class of proteins. Here, we show drFrnE as a novel cytoplasmic oxido-reductase that could be functional in eubacteria under conditions where thioredoxin/glutaredoxin systems are inhibited or absent. Crystal structure analysis of drFrnE reveals thioredoxin fold with an alpha helical insertion domain and a unique, flexible, and functionally important C-terminal tail. The C-tail harbors a novel 239-CX4C-244 motif that interacts with the active site 22-CXXC-25 motif. Crystal structures with different active site redox states, including mixed disulfide (Cys22-Cys244), are reported here. The biochemical data show that 239-CX4C-244 motif channels electrons to the active site cysteines. drFrnE is more stable in the oxidized form, compared with the reduced form, supporting its role as a disulfide reductase. Using bioinformatics analysis and fluorescence microscopy, we show cytoplasmic localization of drFrnE. We have found "true" orthologs of drFrnE in several eubacterial phyla and, interestingly, all these groups apparently lack a functional glutaredoxin system. Innovation and Conclusion: We show that drFrnE represents a new class of hitherto unknown intracellular oxido-reductases that are abundantly present in eubacteria. Unlike other well-known oxido-reductases, FrnE harbors an additional dithiol motif that acts as a conduit to channel electrons to the active site during catalytic turnover. Antioxid. Redox Signal. 00, 000-000.

  12. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Leonora F Ciufo

    Full Text Available Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C(29 and C(28 yielding cholesterol (C(27. The final step of this dealkylation pathway involves desmosterol reductase (DHCR24-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735. Following PCR-based cloning of the cDNA (1.6 kb and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD-dependent reaction.Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250 kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation.

  13. 5{alpha}-reductase expression by prostate cancer cell lines and benign prostatic hyperplasia in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.M.; Masters, J.R.W. [Univ. College of London (United Kingdom)]|[Pfizer Central Research, Kent (United Kingdom); Ballard, S.A.; Worman, N. [Pfizer Central Research, Sandwich (United Kingdom)

    1996-04-01

    5{alpha}-Reductase (5{alpha}R) activity in two human prostate cancer cell lines was compared to that in benign prostatic hyperplasia (BPH) tissue and COS cells transfected with and expressing the human genes for 5{alpha}-reductase type 1 (5{alpha}R1) and type 2 (5{alpha}R2). Comparisons were based on pH profiles and sensitivities to selective inhibitors of 5{alpha}-reductase. In the cancer lines, activity was greatest over the pH range 7-8, compared to a sharp peak of activity between pH 5-5.5 in BPH tissue and COS cells expressing 5{alpha}R2. Finasteride and SKF105,657 were potent inhibitors of 5{alpha}-reductase activity in BPH tissue and COS cells expressing 5{alpha}R2, but weak inhibitors in the cancer lines and in COS cells expressing 5{alpha}R1. In contrast, LTK1 17,026 was a more potent inhibitor of 5{alpha}-reductase activity in the prostate cancer cell lines and in COS cells expressing 5{alpha}R1. These data indicate that human prostate cancer cell lines express 5{alpha}-reductase activity similar to that in COS cells transfected with 5{alpha}R1, but different from that in BPH tissue. This may be a consequence of in vitro culture. Alternatively, it may reflect a change occurring as a result of neoplastic transformation, in which case it will be important to select appropriate inhibitors in the clinic. 29 refs., 3 figs., 2 tabs.

  14. Methylenetetrahydrofolate reductase in the rat central nervous system: intracellular and regional distribution

    Energy Technology Data Exchange (ETDEWEB)

    Burton, E.G.; Sallach, H.J.

    1975-01-01

    Methylenetetrahydrofolate reductase and methyltetrahydrofolate-homocysteine methyltransferase were found to be localized in the soluble fraction of rat brain. They are clearly separated from serine hydroxymethyltransferase and the glycine cleavage complex which are localized in the mitochondria in this tissue. Hence, although the primary, if not the only, site of 5, 10-methylenetetrahydrofolate formation in brain appears to be the mitochondrion, the utilization of this compound for 5-methyltetrahydrofolate synthesis and utilization of the latter compound for methylation of homocysteine occurs in the cytosol. Parallel experiments with rat liver confirmed that the reductase and homocysteine methyltransferase of this tissue are also localized in the soluble fraction, while the hydroxymethyltransferase is about evenly divided between mitochondria and cytosol. However, in liver (but not in brain) the reductase activity of the supernatant fraction is only partially expressed unless the fraction is dialyzed. We have found that this phenomenon, which initially suggested the occurrence of an endogenous inhibitor in liver extracts is due to loss of the product (5, 10-methylenetetrahydrofolate) of the reductase assay via its oxidation by methylenetetrahydrofolate dehydrogenase, in combination with the NADP present in undialyzed extracts. All regions of the rat central nervous system tested contained methylenetetrahydrofolate reductase activity. Regional variations were observed however, with an almost threefold difference between the specific activities of the highest and lowest ranking regions. Comparison of the rank order of 12 regions tested with respect to reductase specific activity (this study) and methyltetrahydrofolate-tryptamine N-methyltransferase specific activity shows a high positive correlation (r = 0.916) between these activities in the selected regions.

  15. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production.

    Science.gov (United States)

    Miller, R T; Martásek, P; Roman, L J; Nishimura, J S; Masters, B S

    1997-12-09

    Neuronal nitric oxide synthase (nNOS) is a modular enzyme which consists of a flavin-containing reductase domain and a heme-containing oxygenase domain, linked by a stretch of amino acids which contains a calmodulin (CaM) binding site. CaM binding to nNOS facilitates the transfer of NADPH-derived electrons from the reductase domain to the oxygenase domain, resulting in the conversion of L-arginine to L-citrulline with the concomitant formation of a guanylate cyclase activating factor, putatively nitric oxide. Numerous studies have established that peroxynitrite-derived nitrogen oxides are present following nNOS turnover. Since peroxynitrite is formed by the diffusion-limited reaction between the two radical species, nitric oxide and O2.-, we employed the adrenochrome assay to examine whether nNOS was capable of producing O2.- during catalytic turnover in the presence of L-arginine. To differentiate between the role played by the reductase domain and that of the oxygenase domain in O2.- production, we compared its production by nNOS against that of a nNOS mutant (CYS-331), which was unable to transfer NADPH-derived electrons efficiently to the heme iron under special conditions, and against that of a flavoprotein module construct of nNOS. We report that O2.- production by nNOS and the CYS-331 mutant is CaM-dependent and that O2.- production can be modulated by substrates and inhibitors of nNOS. O2.- was also produced by the reductase domain of nNOS; however, it did not display the same CaM dependency. We conclude that both the reductase and oxygenase domains of nNOS produce O2.-, but that the reductase domain is both necessary and sufficient for O2.- production.

  16. Inhibitory activity of Cinnamomum cassia bark-derived component against rat lens aldose reductase.

    Science.gov (United States)

    Lee, Hoi-Seon

    2002-01-01

    To evaluate the inhibitory activity of active compounds isolated from Cinnamomum cassia bark against lens aldose reductase and compare to that of three commercially available compounds (cinnamyl alcohol, trans -cinnamic acid, and eugenol) and quercitrin as aldose reductase inhibitors. The IC (50) value of cinnamaldehyde was determined. Active compound was purified on repeated silica gel column and HPLC (Waters Delta Prep 4000). Aldose reductase was prepared from lenses of Sprague-Dawley male rat eyes. The incubation mixture contained 135 mM Na, K-phosphate buffer (pH 7.0), 100 mM lithium sulfate, 0.03 mM NADPH, 0.04 mM DL-glyceraldehyde and 50 micro L of an enzyme preparation, with or without a plant extract. The reaction was initiated by adding NADPH at 37 degrees C and stopped by adding 0.5 N hydrochloric acid. Subsequently, 6 N NaOH containing 10 mM imidazole was added, and the mixture was incubated at 60 degrees C for 10 min to convert NADP into a fluorescent product. The fluorescence was measured with a spectrofluorophotometer. The biologically active constituents of C. cassia extract against lens aldose reductase were characterized as trans -cinnamaldehyde by spectral analysis. The IC (50) value of cinnamaldehyde is 0.003 mg/mL. However, cinnamyl alcohol, trans -cinnamic acid and eugenol exhibited only weak inhibition against aldose reductase. In comparison, quercitrin was 6 times more potent than cinnamaldehyde. These results suggest that cinnamaldehyde isolated from C. cassia barks may be useful as a lead compound and a medicinal foodstuff for aldose reductase inhibition.

  17. BIOLOGICAL ROLE OF ALDO-KETO REDUCTASES IN RETINOIC ACID BIOSYNTHESIS AND SIGNALING

    Directory of Open Access Journals (Sweden)

    F. Xavier eRuiz

    2012-04-01

    Full Text Available Several aldo-keto reductase (AKR enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3, as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

  18. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp PCC7120

    NARCIS (Netherlands)

    Sanchez-Riego, Ana M.; Mata-Cabana, Alejandro; Galmozzi, CarlaV.; Florencio, Francisco J.

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of

  19. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  20. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Alessandro S.; Ferrarezi, Thiago [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil); Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A. [Facultad de Ciencias Bioquímicas y Farmacéuticas, Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario (Argentina); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil)

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  1. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Finnie, Christine

    2009-01-01

    Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs...... is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25 degrees and bent by a 38% closure...

  2. Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4).

    OpenAIRE

    Seibert, V; Stadler-Fritzsche, K; Schlömann, M

    1993-01-01

    Maleylacetate reductase (EC 1.3.1.32) plays a major role in the degradation of chloroaromatic compounds by channeling maleylacetate and some of its substituted derivatives into the 3-oxoadipate pathway. The enzyme was purified to apparent homogeneity from an extract of 2,4-dichlorophenoxyacetate (2,4-D)-grown cells of Alcaligenes eutrophus JMP134. Maleylacetate reductase appears to be a dimer of two identical subunits of 35 kDa. The pI was determined to be at pH 5.4. There was no indication o...

  3. Isolation, modification, and aldose reductase inhibitory activity of rosmarinic acid derivatives from the roots of Salvia grandifolia.

    Science.gov (United States)

    Kang, Jie; Tang, Yanbo; Liu, Quan; Guo, Nan; Zhang, Jian; Xiao, Zhiyan; Chen, Ruoyun; Shen, Zhufang

    2016-07-01

    To find aldose reductase inhibitors, two previously unreported compounds, grandifolias H and I, and five known compounds, including rosmarinic acid and rosmarinic acid derivatives, were isolated from the roots of Salvia grandifolia. A series of rosmarinic acid derivatives was obtained from rosmarinic acid using simple synthetic methods. The aldose reductase inhibitory activity of the isolated and synthesized compounds was assessed. Seven of the tested compounds showed moderate aldose reductase inhibition (IC50=0.06-0.30μM). The structure-activity relationship of aldose reductase inhibitory activity of rosmarinic acid derivatives was discussed for the first time. This study provided useful information that will facilitate the development of aldose reductase inhibitors. Copyright © 2016. Published by Elsevier B.V.

  4. Hypothesis on Serenoa repens (Bartram) small extract inhibition of prostatic 5α-reductase through an in silico approach on 5β-reductase x-ray structure.

    Science.gov (United States)

    Governa, Paolo; Giachetti, Daniela; Biagi, Marco; Manetti, Fabrizio; De Vico, Luca

    2016-01-01

    Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5β-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets.

  5. Hypothesis on Serenoa repens (Bartram small extract inhibition of prostatic 5α-reductase through an in silico approach on 5β-reductase x-ray structure

    Directory of Open Access Journals (Sweden)

    Paolo Governa

    2016-11-01

    Full Text Available Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5β-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets.

  6. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; El-Kabbani, Ossama; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2017-08-15

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the Ki values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    Science.gov (United States)

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-04

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Obesity, cancer, and acetyl-CoA metabolism

    OpenAIRE

    Lee, Joyce V.; Shah, Supriya A.; Wellen, Kathryn E.

    2013-01-01

    As rates of obesity soar in the Unites States and around the world, cancer attributed to obesity has emerged as major threat to public health. The link between obesity and cancer can be attributed in part to the state of chronic inflammation that develops in obesity. Acetyl-CoA production and protein acetylation patterns are highly sensitive to metabolic state and are significantly altered in obesity. In this article, we explore the potential role of nutrient-sensitive lysine acetylation in r...

  9. Enoyl-CoA hydratase. reaction, mechanism, and inhibition.

    Science.gov (United States)

    Agnihotri, Gautam; Liu, Hung-wen

    2003-01-02

    Enoyl-CoA hydratase (ECH) catalyzes the second step in the physiologically important beta-oxidation pathway of fatty acid metabolism. This enzyme facilitates the syn-addition of a water molecule across the double bond of a trans-2-enoyl-CoA thioester, resulting in the formation of a beta-hydroxyacyl-CoA thioester. The catalytic mechanism of this proficient enzyme has been studied in great depth through a combination of kinetic, spectroscopic, and structural techniques, and is proposed to occur via the formation of a single transition state. Sequence alignment and mutagenesis studies have implicated the key residues important for catalysis: Gly-141, Glu-144, and Glu-164 (rat liver ECH numbering). The two catalytic glutamic acid residues are believed to act in concert to activate a water molecule, while Gly-141 is proposed to be involved in substrate activation. Recently, two potent inhibitors of ECH have been reported in the literature, which result in the irreversible inactivation of the enzyme via covalent adduct formation. This review summarizes studies on the structure, mechanism, and inhibition of ECH.

  10. Stearoyl-CoA desaturase – the lipid metabolism regulator

    Directory of Open Access Journals (Sweden)

    Mirosław Kucharski

    2014-03-01

    Full Text Available Stearoyl-CoA desaturase is an enzyme from the class of oxidoreductase, which catalyzes the formation of a fatty acid double bond between C9 and C10. It plays a key role in composition of the fatty acid profile in adipose tissue and animal products such as meat and milk. Additionally, it is an important regulator of metabolic processes in the body, and it determines the maintenance of energy homeostasis. This enzyme is encoded by an SCD gene, which, depending on the species, may exist as different isoforms. mRNA expression of stearoyl-CoA desaturase is dependent on many factors, including diet, hormones, and the activity of other genes. In previous studies, several mutations were characterized within the sequence of Δ9-desaturase, which may affect the activity of the protein in the tissues, as well as the value of breeding animals. Effects of particular mutations of the gene encoding the enzyme appears to be particularly important for diseases associated with obesity, diabetes, hypertension, heart diseases or cancer in humans. Also, it seems that using sheep as a potential animal model could be helpful in uncovering and understanding the mechanisms regulated by stearoyl-CoA desaturase.

  11. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.

    Science.gov (United States)

    Wang, Junhua; Wang, Cheng; Song, Kejing; Wen, Jianping

    2017-10-03

    Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA

  12. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  13. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri▿ †

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.

    2008-01-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531

  14. Molecular cloning and expression of the human Δ7-sterol reductase

    Science.gov (United States)

    Moebius, Fabian F.; Fitzky, Barbara U.; Lee, Joon No; Paik, Young-Ki; Glossmann, Hartmut

    1998-01-01

    Inhibitors of the last steps of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. Their molecular target is the Δ7-sterol reductase (EC 1.3.1.21), suspected to be defective in the Smith–Lemli–Opitz syndrome, a frequent inborn disorder of sterol metabolism. Molecular cloning of the cDNA revealed that the human enzyme is a membrane-bound protein with a predicted molecular mass of 55 kDa and six to nine putative transmembrane segments. The protein is structurally related to plant and yeast sterol reductases. In adults the ubiquitously transcribed mRNA is most abundant in adrenal gland, liver, testis, and brain. The Δ7-sterol reductase is the ultimate enzyme of cholesterol biosynthesis in vertebrates and is absent from yeast. Microsomes from Saccharomyces cerevisiae strains heterologously expressing the human cDNA remove the C7–8 double bond in 7-dehydrocholesterol. The conversion to cholesterol depends on NADPH and is potently inhibited by AY9944 (IC50 0.013 μM), BM15766 (IC50 1.2 μM), and triparanol (IC50 14 μM). Our work paves the way to clarify whether a defect in the Δ7-sterol reductase gene underlies the Smith–Lemli–Opitz syndrome. PMID:9465114

  15. Inhibitory effect of polar oregano extracts on aldose reductase and soybean lipoxygenase in vitro.

    Science.gov (United States)

    Koukoulitsa, Catherine; Zika, Chariklia; Hadjipavlou-Litina, Dimitra; Demopoulos, Vassilis J; Skaltsa, Helen

    2006-07-01

    The effect of methanol and aqueous methanol extract of Origanum vulgare L. ssp. hirtum on aldose reductase and soybean lipoxygenase was investigated. The results revealed a promising potential of oregano for preventing diabetes complications in the long term and an antiinflammatory efficacy by inhibiting soybean lipoxygenase.

  16. The 5,10-methylenetetrahydrofolate reductase C677T polymorphism interacts with smoking to increase homocysteine.

    NARCIS (Netherlands)

    Brown, K.S.; Kluijtmans, L.A.J.; Young, I.S.; Murray, L.; McMaster, D.; Woodside, J.; Yarnell, J.W.; Boreham, C.A.; McNulty, H.; Strain, J.J.; McPartlin, J.; Scott, J.M.; Mitchell, L.E.; Whitehead, A.S.

    2004-01-01

    Elevated homocysteine is a risk marker for several human pathologies. Risk factors for elevated homocysteine include low folate and homozygosity for the T allele of the 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism. Because nitric oxide may inhibit folate catabolism and

  17. A New Type of YumC-Like Ferredoxin (Flavodoxin) Reductase Is Involved in Ribonucleotide Reduction

    DEFF Research Database (Denmark)

    Chen, Jun; Shen, Jing; Solem, Christian

    2015-01-01

    . subtilis but that the addition of deoxynucleosides cannot compensate for the lethal phenotype displayed by the B. subtilis yumC knockout mutant. Ferredoxin (flavodoxin) reductase (FdR) is involved in many important reactions in both eukaryotes and prokaryotes, such as photosynthesis, nitrate reduction, etc. The recently...

  18. Differential stress-induced regulation of two quinone reductases in the brown rot Basidiomycete Gloeophyllum trabeum

    Science.gov (United States)

    Roni Cohen; Melissa R. Suzuki; Kenneth E. Hammel

    2004-01-01

    Quinone reductases (QRDs) have two important functions in the basidiomycete Gloeophyllum trabeum, which causes brown rot of wood. First, a QRD is required to generate biodegradative hydroxyl radicals via redox cycling between two G. trabeum extracellular metabolites, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 2,5-dimethoxy-1,4-benzoquinone (2,5- DMBQ). Second, because 2,...

  19. NMR structure of the flavin domain from soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath).

    Science.gov (United States)

    Chatwood, Lisa L; Müller, Jens; Gross, John D; Wagner, Gerhard; Lippard, Stephen J

    2004-09-28

    Soluble methane monooxygenase (sMMO) catalyzes the hydroxylation of methane by dioxygen to methanol, the first step in carbon assimilation by methanotrophs. This multicomponent system transfers electrons from NADH through a reductase component to the non-heme diiron center in the hydroxylase where O(2) is activated. The reductase component comprises three distinct domains, a [2Fe-2S] ferredoxin domain along with FAD- and NADH-binding domains. We report the solution structure of the reduced 27.6 kDa FAD- and NADH-binding domains (MMOR-FAD) of the reductase from Methylococcus capsulatus (Bath). The FAD-binding domain consists of a six-stranded antiparallel beta-barrel and one alpha-helix, with the first 10 N-terminal residues unstructured. In the interface between the two domains, the FAD cofactor is tightly bound in an unprecedented extended conformation. The NADH-binding domain consists of a five-stranded parallel beta-sheet with four alpha-helices packing closely around this sheet. MMOR-FAD is structurally homologous to other FAD-containing oxidoreductases, and we expect similar structures for the FAD/NADH-binding domains of reductases that occur in other multicomponent monooxygenases.

  20. Biliverdin Reductase inhibitors did not improve severe unconjugated hyperbilirubinemia in vivo

    NARCIS (Netherlands)

    van Dijk, Remco; Aronson, Sem J.; de Waart, Dirk R.; van de Graaf, Stan F.; Duijst, Suzanne; Seppen, Jurgen; Oude Elferink, Ronald; Beuers, Ulrich; Bosma, Piter J.

    2017-01-01

    We aimed to identify potent biliverdin reductase (BVRA) inhibitors as a novel concept for the treatment of severe unconjugated hyperbilirubinemia. 1280 FDA-approved compounds were screened in vitro for their ability to inhibit human and rat BVRA activity and 26 compounds were identified as BVRA

  1. [The usefulness of the nitrate reductase assay for detecting drug-resistant Mycobacterium tuberculosis].

    Science.gov (United States)

    González, Lorena; Sánchez, Ricardo; Murcia, Martha Isabel

    2014-04-01

    The early detection of resistance in Mycobacterium tuberculosis is of primary importance for both patient management and infection control. To evaluate nitrate reductase assay (NRA) performance for the testing of Mycobacterium tuberculosis drug-resistance against first-line anti-tuberculosis drugs, such as rifampicin (RIF), isoniazid (INH), streptomycin (STR) and ethambutol (EMB). Fifty isolates were tested by using both the proportion method and the nitrate reductase assay. RIF, INH, STR and EMB sensitivity was found to be 92%, 91%, 63% and 80% and 100%, respectively, and a corresponding specificity of 100%, 100%, 100% and 98% by comparing NRA results to those obtained with the gold standard (i.e., the proportion method). The positive predictive values for RIF, INH, STR and EMB were 100%, 100%, 100% and 80% and the negative predictive values were 97%, 93%, 73% and 98%, respectively. The mean time for obtaining results was shorter when using the nitrate reductase assay (10 days) compared to using the proportion method (28 days). Excellent agreement was observed between both phenotypic tests: 98%, 96%, 81% and 96% for RIF, INH, STR and EMB, respectively . The results showed that the nitrate reductase assay is suitable for the early determination of multidrug-resistant tuberculosis (MDR-TB) and is a useful tool for the quick and accurate determination of a rapid M. tuberculosis drug-sensitivity test in countries having low resources.

  2. Voltammetry and In Situ Scanning Tunneling Microscopy of Cytochrome c Nitrite Reductase on Au(111)-Electrodes

    DEFF Research Database (Denmark)

    Gwyer, James; Zhang, Jingdong; Butt, Julea

    2006-01-01

    Escherichia coli cytochrome c nitrite reductase (NrfA) catalyzes the six-electron reduction of nitrite to perform an important role in the biogeochemical cycling of nitrogen. Here we describe NrfA adsorption on single-crystal Au(111) electrodes as an electrocatalytically active film in which the ...

  3. Calorimetric and spectroscopic investigations of the thermal denaturation of wild type nitrite reductase

    NARCIS (Netherlands)

    Stirpe, A; Guzzi, R; Wijma, H; Verbeet, MP; Canters, GW; Sportelli, L

    2005-01-01

    Nitrite reductase (NiR) is a multicopper protein, with a trimeric structure containing two types of copper site: type I is present in each subunit whereas type 2 is localized at the subunits interface. The paper reports on the thermal behaviour of wild type NiR from Alcaligenes faecalis S-6. The

  4. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    Science.gov (United States)

    Macedo, Maíra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  5. Spectrophotometric activity microassay for pure and recombinant cytochrome P450-type nitric oxide reductase

    CSIR Research Space (South Africa)

    Garny, S

    2014-02-01

    Full Text Available Nitric oxide reductase (NOR) of the P450 oxidoreductase family accepts electrons directly from its cofactor, NADH, to reduce two nitric oxide (NO) molecules to one nitrous oxide molecule and water. The enzyme plays a key role in removal of radical...

  6. Cloning, expression and antigenicity of the L. donovani reductase

    DEFF Research Database (Denmark)

    Jensen, A T; Kemp, K; Theander, T G

    2001-01-01

    (K). Only 2 of 22 plasma samples from patients with visceral leishmaniasis were found to have detectable anti-reductase antibodies and peripheral blood mononuclear cells (PBMC) from one of three individuals previously infected with visceral leishmaniasis proliferated in the presence of recombinant...

  7. Cotton Benzoquinone Reductase: Up-regulation During Early Cotton Fiber Developement

    Science.gov (United States)

    Benzoquinone reductase (BR; EC 1.6.5.7) is an enzyme that catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE comparisons, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage but ...

  8. Redox-state-dependent complex formation between pseudoazurin and nitrite reductase.

    Science.gov (United States)

    Impagliazzo, Antonietta; Blok, Anneloes J; Cliff, Matthew J; Ladbury, John E; Ubbink, Marcellus

    2007-01-10

    Bacterial copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide as part of the denitrification process. Pseudoazurin interacts with nitrite reductase in a transient fashion to supply the necessary electrons. The redox-state dependence of complex formation between pseudoazurin and nitrite reductase was studied by nuclear magnetic resonance spectroscopy and isothermal titration calorimetry. Binding of pseudoazurin in the reduced state is characterized by the presence of two binding modes, a slow and a fast exchange mode, with a K(d)(app) of 100 microM. In the oxidized state of pseudoazurin, binding occurs in a single fast exchange mode with a similar affinity. Metal-substituted proteins have been used to show that the mode of binding of pseudoazurin is independent of the metal charge of nitrite reductase. Contrary to what was found for other cupredoxins, protonation of the exposed His ligand to the copper of pseudoazurin, His81, does not appear to be involved directly in the dual binding mode of the reduced form. A model assuming the presence of a minor form of pseudoazurin is proposed to explain the behavior of the complex in the reduced state.

  9. Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians

    DEFF Research Database (Denmark)

    Andersen, Helle Raun; Jeune, B; Nybo, H

    1998-01-01

    aged between 60 and 79 years. MEASUREMENTS: enzyme activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase, catalase and glutathione reductase (GR) in erythrocytes. Functional capacity among the centenarians was evaluated by Katz' index of activities of daily living, the Physical...

  10. On the role of fumarate reductase in anaerobic carbohydrate catabolism of Mytilus edulis L

    NARCIS (Netherlands)

    Holwerda, Dirk A.; Zwaan, Albertus de

    1980-01-01

    1. 1. The role of the fumarate:NADH oxidoreduction in the anaerobic glycolysis of the sea mussel is examined and discussed. 2. 2. Fumarate reductase activity is present in submitochondrial particles especially from adductor muscle, digestive gland and mantle. 3. 3. The pH optimum of the enzyme

  11. Methylenetetrahydrofolate reductase (MTHFR) and susceptibility for (pre)neoplastic cervical disease

    NARCIS (Netherlands)

    Zoodsma, M; Nolte, IM; Schipper, M; Oosterom, E; van der Steege, G; de Vries, E; te Meerman, GJ; van der Zee, AGJ

    Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme regulating the metabolism of folate and methionine. The potential influence of MTHFR activity on DNA methylation and on the availability of uridylates and thymidylates for DNA synthesis and repair presents MTHFR as a candidate for

  12. Protein film voltammetry of copper-containing nitrite reductase reveals reversible inactivation

    NARCIS (Netherlands)

    Wijma, Hein J.; Jeuken, Lars J. C.; Verbeet, Martin Ph.; Armstrong, Fraser A.; Canters, Gerard W.

    2007-01-01

    The Cu-containing nitrite reductase from Alcaligenes faecalis S-6 catalyzes the one-electron reduction of nitrite to nitric oxide (NO). Electrons enter the enzyme at the so-called type-1 Cu site and are then transferred internally to the catalytic type-2 Cu site. Protein film voltammetry experiments

  13. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.

    Science.gov (United States)

    Rižner, Tea Lanišnik; Penning, Trevor M

    2014-01-01

    Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial...

  15. Polymorphisms in catechol-O-methyltransferase and methylenetetrahydrofolate reductase in relation to the risk of schizophrenia.

    NARCIS (Netherlands)

    Muntjewerff, J.W.; Gellekink, H.; Heijer, M. den; Hoogendoorn, M.L.; Kahn, R.S.; Sinke, R.J.; Blom, H.J.

    2008-01-01

    BACKGROUND: Evidence is emerging for the association of aberrant homocysteine-methylation cycle and increased risk of schizophrenia. METHODS: We examined the prevalence of the catechol-O-methyltransferase (COMT) 324G>A (Val108/158Met) and methylenetetrahydrofolate reductase (MTHFR) 677C>T

  16. Inherited glutathione reductase deficiency and Plasmodium falciparum malaria--a case study

    NARCIS (Netherlands)

    Gallo, Valentina; Schwarzer, Evelin; Rahlfs, Stefan; Schirmer, R. Heiner; van Zwieten, Rob; Roos, Dirk; Arese, Paolo; Becker, Katja

    2009-01-01

    In Plasmodium falciparum-infected red blood cells (RBCs), the flavoenzyme glutathione reductase (GR) regenerates reduced glutathione, which is essential for antioxidant defense. GR utilizes NADPH produced in the pentose phosphate shunt by glucose-6-phosphate dehydrogenase (G6PD). Thus, conditions

  17. Folate and the methylenetetrahydrofolate reductase 677C ---> T mutation correlate with cognitive performance

    NARCIS (Netherlands)

    Durga, J.; Boxtel, van M.P.J.; Schouten, E.G.; Bots, M.L.; Kok, F.J.; Verhoef, P.

    2006-01-01

    Low folate status has been associated with cognitive decline. We investigated the association of folate status and the 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C ¿ T polymorphism with performance on a battery of neuropsychological tests. Furthermore, we investigated whether the

  18. GLUTATHIONE TRANSFERASE, GLUTATHIONE REDUCTASE AND GLUTATHIONE PEROXIDASE OF CAECUM AND LIVER OF PIG

    OpenAIRE

    FEDETS O.M.

    2009-01-01

    The content of glutathione and the activity of enzymes have been investigated. The data of glutathione, glutathione transferase and glutathione peroxidase are the highest in the liver. In mucosa of caecum activity of glutathione reductase is the highest than in liver.

  19. Relationships between nitrate uptake and nitrate reductase activity in Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Grażyna Kłobus

    2014-01-01

    Full Text Available Anti-NR IgG fragments obtained after papain digestion of polyclonal antibodies gave the positive immunological reaction with both, a soluble and plasma membrane-bound nitrate reductase. Anti-NR antibody as well as IgG fragments almost totally inhibited the nitrate reductase activity in cytosol proving a crossreaction of antibody with the catalytic site of a soluble NR. Anti-NR IgG fragments, but not undigested polyclonal antibodies affected the activity of the nitrate reductase associated with plasma membranes. Discrepancy in the action of intact antibodies and fragments obtained after they digestion were interpreted as a consequence of same differences in the ability of those molecules to the penetration through the membrane. Undigested anti-NR antibody have no effect on the nitrate uptake by intact plants, as well as by the right-side plasma membrane vesicles. On the other hand, IgG fragments of polyclonal antibodies abolished almost totally the nitrate uptake in the case of intact seedlings, but have only slight effect on the N03 uptake in plasma membranes. On the basis of above findings, some relations between nitrate uptake and its assimilation inside the cell are suggested. Since IgG fragments only slightly changed the N03 absorption in vesicles whereas the activity of plasmalemma associated nitrate reductase was strongly repressed, we concluded that the PM-NR is not structurally involved in the nitrate transport through the membrane.

  20. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    OpenAIRE

    Macedo, Ma?ra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB.

  1. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans.

    Science.gov (United States)

    Bito, Tomohiro; Yabuta, Yukinori; Ichiyanagi, Tsuyoshi; Kawano, Tsuyoshi; Watanabe, Fumio

    2014-01-01

    In this study, we showed that cyanocobalamin dodecylamine, a ribose 5'-carbamate derivative of cyanocobalamin, was absorbed and accumulated to significant levels by Caenorhabditis elegans and was not further metabolized. The levels of methylmalonic acid and homocysteine, which serve as indicators of cobalamin deficiency, were significantly increased in C. elegans treated with the dodecylamine derivative, indicating severe cobalamin deficiency. Kinetic studies show that the affinity of the cyanocobalamin dodecylamine derivative was greater for two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, compared with their respective coenzymes, suggesting that the dodecylamine derivative inactivated these enzymes. The dodecylamine derivative did not affect the levels of mRNAs encoding these enzymes or those of other proteins involved in intercellular cobalamin metabolism, including methylmalonyl-CoA mutase (mmcm-1), methylmalonic acidemia cobalamin A complementation group (mmaa-1), methylmalonic aciduria cblC type (cblc-1), and methionine synthase reductase (mtrr-1). In contrast, the level of the mRNAs encoding cob(I)alamin adenosyltransferase (mmab-1) was increased significantly and identical to that of cobalamin-deficient C. elegans. These results indicate that the cyanocobalamin-dodecylamine derivative acts as a potent inhibitor of cobalamin-dependent enzymes and induces severe cobalamin deficiency in C. elegans.

  2. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Tomohiro Bito

    2014-01-01

    Full Text Available In this study, we showed that cyanocobalamin dodecylamine, a ribose 5′-carbamate derivative of cyanocobalamin, was absorbed and accumulated to significant levels by Caenorhabditis elegans and was not further metabolized. The levels of methylmalonic acid and homocysteine, which serve as indicators of cobalamin deficiency, were significantly increased in C. elegans treated with the dodecylamine derivative, indicating severe cobalamin deficiency. Kinetic studies show that the affinity of the cyanocobalamin dodecylamine derivative was greater for two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, compared with their respective coenzymes, suggesting that the dodecylamine derivative inactivated these enzymes. The dodecylamine derivative did not affect the levels of mRNAs encoding these enzymes or those of other proteins involved in intercellular cobalamin metabolism, including methylmalonyl-CoA mutase (mmcm-1, methylmalonic acidemia cobalamin A complementation group (mmaa-1, methylmalonic aciduria cblC type (cblc-1, and methionine synthase reductase (mtrr-1. In contrast, the level of the mRNAs encoding cob(Ialamin adenosyltransferase (mmab-1 was increased significantly and identical to that of cobalamin-deficient C. elegans. These results indicate that the cyanocobalamin-dodecylamine derivative acts as a potent inhibitor of cobalamin-dependent enzymes and induces severe cobalamin deficiency in C. elegans.

  3. New 5alpha-reductase inhibitors: in vitro and in vivo effects.

    Science.gov (United States)

    Pérez-Ornelas, Víctor; Cabeza, Marisa; Bratoeff, Eugene; Heuze, Ivonne; Sánchez, Mauricio; Ramírez, Elena; Naranjo-Rodríguez, Elia

    2005-03-01

    The enzyme 5alpha-reductase is responsible for the conversion of testosterone (T) to its more potent androgen dihydrotestosterone (DHT). This steroid had been implicated in androgen-dependent diseases such as: benign prostatic hyperplasia, prostate cancer, acne and androgenic alopecia. The inhibition of 5alpha-reductase enzyme offers a potentially useful treatment for these diseases. In this study, we report the synthesis and pharmacological evaluation of several new 3-substituted pregna-4, 16-diene-6, 20-dione derivatives. These compounds were prepared from the commercially available 16-dehydropregnenolone acetate. The biological activity of the new steroidal derivatives was determined in vivo as well as in vitro experiments. In vivo experiments, the anti-androgenic effect of the steroids was demonstrated by the decrease of the weight of the prostate gland of gonadectomized hamster treated with T plus finasteride or the new steroids. The IC50 value of these steroids was determined by measuring the conversion of radio labeled T to DHT. The results of this study carried out with 5alpha-reductase enzyme from hamster and human prostate showed that four of the six steroidal derivatives (5, 7, 9, 10) exhibited much higher 5alpha-reductase inhibitory activity, as indicated by the IC50 values than the presently used Proscar 3 (finasteride). The comparison of the weight of the hamster's prostate gland indicated that compound 5 had a comparable weight decrease as finasteride. The overall data of this study showed very clearly those compounds 5, 7, 9, 10 are good inhibitors for the 5alpha-reductase enzyme.

  4. Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Rieble, S.; Beale, S.I. (Brown Univ., Providence, RI (United States))

    1991-05-01

    {delta}-Aminolevulinic acid (ALA) is the universal precursor for all tetrapyrroles including hemes, chlorophylls, and bilins. In plants, algae, cyanobacteria, and many other bacteria, ALA is synthesized from glutamate in a reaction sequence that requires three enzymes, ATP, NADPH, and tRNA{sup Glu}. The three enzymes have been characterized as glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde (GSA) aminotransferase. All three enzymes have been separated and partially characterized from plants and algae. In prokaryotic phototrophs, only the glutamyl-tRNA synthetase and GSA aminotransferase have been described. The authors report here the purification and some properties of the glutamyl-tRNA reductase from extracts of the unicellular cyanobacterium, Synechocystis sp. PCC 6803. The glutamyl-tRNA reductase has been purified over 370 fold to apparent homogeneity. Its native molecular mass was determined to be 350 kDa by SDS-PAGE. The N-terminal amino acid sequence was determined for 42 residues. Much higher activity occurred with NADPH than with NADH as the reduced pyridine nucleotide substrate. Half-maximal rates occurred at 5 {mu}M NADPH, whereas saturation was not reached even at 10 mM NADH. Purified Synechocystis glutamyl-tRNA reductase was inhibited 50% by 5 {mu}M heme. Activity was unaffected by 10 {mu}M gabaculine. No flavin, pyridine nucleotide, or other light-absorbing prosthetic group was detected on the purified enzyme. The catalytic turnover number of purified Synechocystis glutamyl-tRNA reductase is comparable to those of prokaryotic and plastidic glutamyl-tRNA synthetases.

  5. The Fungal Pathogen Candida glabrata Does Not Depend on Surface Ferric Reductases for Iron Acquisition

    Directory of Open Access Journals (Sweden)

    Franziska Gerwien

    2017-06-01

    Full Text Available Iron acquisition is a crucial virulence determinant for many bacteria and fungi, including the opportunistic fungal pathogens Candida albicans and C. glabrata. While the diverse strategies used by C. albicans for obtaining iron from the host are well-described, much less is known about the acquisition of this micronutrient from host sources by C. glabrata – a distant relative of C. albicans with closer evolutionary ties to Saccharomyces cerevisiae, which nonetheless causes severe clinical symptoms in humans. Here we show that C. glabrata is much more restricted than C. albicans in using host iron sources, lacking, for example, the ability to grow on transferrin and hemin/hemoglobin. Instead, C. glabrata is able to use ferritin and non-protein-bound iron (FeCl3 as iron sources in a pH-dependent manner. As in other fungal pathogens, iron-dependent growth requires the reductive high affinity (HA iron uptake system. Typically highly conserved, this uptake mechanism normally relies on initial ferric reduction by cell-surface ferric reductases. The C. glabrata genome contains only three such putative ferric reductases, which were found to be dispensable for iron-dependent growth. In addition and in contrast to C. albicans and S. cerevisiae, we also detected no surface ferric reductase activity in C. glabrata. Instead, extracellular ferric reduction was found in this and the two other fungal species, which was largely dependent on an excreted low-molecular weight, non-protein ferric reductant. We therefore propose an iron acquisition strategy of C. glabrata which differs from other pathogenic fungi, such as C. albicans, in that it depends on a limited set of host iron sources and that it lacks the need for surface ferric reductases. Extracellular ferric reduction by a secreted molecule possibly compensates for the loss of surface ferric reductase activity in the HA iron uptake system.

  6. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.

    Science.gov (United States)

    Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen

    2017-06-01

    The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.

  7. Molecular simulation to investigate the cofactor specificity for pichia stipitis Xylose reductase.

    Science.gov (United States)

    Xia, Xiao-Le; Cong, Shan; Weng, Xiao-Rong; Chen, Jin-Hua; Wang, Jing-Fang; Chou, Kuo-Chen

    2013-11-01

    Xylose is one of the most abundant carbohydrates in nature, and widely used to produce bioethanol via fermentation in industry. Xylulose can produce two key enzymes: xylose reductase and xylitol dehydrogenase. Owing to the disparate cofactor specificities of xylose reductase and xylitol dehydrogenase, intracellular redox imbalance is detected during the xylose fermentation, resulting in low ethanol yields. To overcome this barrier, a common strategy is applied to artificially modify the cofactor specificity of xylose reductase. In this study, we utilized molecular simulation approaches to construct a 3D (three-dimensional) structural model for the NADP-dependent Pichia stipitis xylose reductase (PsXR). Based on the 3D model, the favourable binding modes for both cofactors NAD and NADP were obtained using the flexible docking procedure and molecular dynamics simulation. Structural analysis of the favourable binding modes showed that the cofactor binding site of PsXR was composed of 3 major components: a hydrophilic pocket, a hydrophobic pocket as well as a linker channel between the aforementioned two pockets. The hydrophilic pocket could recognize the nicotinamide moiety of the cofactors by hydrogen bonding networks, while the hydrophobic pocket functioned to position the adenine moiety of the cofactors by hydrophobic and Π-Π stacking interactions. The linker channel contained some key residues for ligand-binding; their mutation could have impact to the specificity of PsXR. Finally, it was found that any of the two single mutations, K21A and K270N, might reverse the cofactor specificity of PsXR from major NADP- to NADdependent, which was further confirmed by the additional experiments. Our findings may provide useful insights into the cofactor specificity of PsXR, stimulating new strategies for better designing xylose reductase and improving ethanol production in industry.

  8. Identification of Multiple Soluble Fe(III Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    Directory of Open Access Journals (Sweden)

    Subrata Pal

    2014-01-01

    Full Text Available Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III and Cr(VI anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs, thioredoxin reductase (Trx, NADP(H-nitrite reductase (Ntr, and thioredoxin disulfide reductase (Tdr were determined to be responsible for Fe(III reductase activity. Amino acid sequence and three-dimensional (3D structural similarity analyses of the T. indiensis Fe(III reductases were carried out with Cr(VI reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI reduction as well.

  9. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol.

    Science.gov (United States)

    Smeriglio, Antonella; Giofrè, Salvatore V; Galati, Enza M; Monforte, Maria T; Cicero, Nicola; D'Angelo, Valeria; Grassi, Gianpaolo; Circosta, Clara

    2018-02-07

    Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important. The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications. Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes. Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro. A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions. The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors. The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity. These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. FQR1, a Novel Primary Auxin-Response Gene, Encodes a Flavin Mononucleotide-Binding Quinone Reductase1

    Science.gov (United States)

    Laskowski, Marta J.; Dreher, Kate A.; Gehring, Mary A.; Abel, Steffen; Gensler, Arminda L.; Sussex, Ian M.

    2002-01-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress. PMID:11842161

  11. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase.

    Science.gov (United States)

    Laskowski, Marta J; Dreher, Kate A; Gehring, Mary A; Abel, Steffen; Gensler, Arminda L; Sussex, Ian M

    2002-02-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.

  12. (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB’) from fatty acid degradation operon of Ralstonia eutropha H16

    Science.gov (United States)

    2014-01-01

    In this study (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (H16_A0461/FadB’, gene ID: 4247876) from one of two active fatty acid degradation operons of Ralstonia eutropha H16 has been heterologously expressed in Escherichia coli, purified as protein possessing a His-Tag and initially characterized. FadB’ is an enzyme with two catalytic domains exhibiting a single monomeric structure and possessing a molecular weight of 86 kDa. The C-terminal part of the enzyme harbors enoyl-CoA hydratase activity and is able to convert trans-crotonyl-CoA to 3-hydroxybutyryl-CoA. The N-terminal part of FadB’ comprises an NAD+ binding site and is responsible for 3-hydroxyacyl-CoA dehydrogenase activity converting (S)-3-hydroxybutyryl-CoA to acetoacetyl-CoA. Enoyl-CoA hydratase activity was detected spectrophotometrically with trans-crotonyl-CoA. (S)-3-Hydroxyacyl-CoA dehydrogenase activity was measured in both directions with acetoacetyl-CoA and 3-hydroxybutyryl-CoA. FadB’ was found to be strictly stereospecific to (S)-3-hydroxybutyryl-CoA and to prefer NAD+. The Km value for acetoacetyl-CoA was 48 μM and Vmax 149 μmol mg−1 min−1. NADP(H) was utilized at a rate of less than 10% in comparison to activity with NAD(H). FadB’ exhibited optimal activity at pH 6–7 and the activity decreased at alkaline and acidic pH values. Acetyl-CoA, propionyl-CoA and CoA were found to have an inhibitory effect on FadB’. This study is a first report on biochemical properties of purified (S)-stereospecific 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase with the inverted domain order from R. eutropha H16. In addition to fundamental information about FadB’ and fatty acid metabolism, FadB’ might be also interesting for biotechnological applications. PMID:25401070

  13. (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB') from fatty acid degradation operon of Ralstonia eutropha H16.

    Science.gov (United States)

    Volodina, Elena; Steinbüchel, Alexander

    2014-01-01

    In this study (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (H16_A0461/FadB', gene ID: 4247876) from one of two active fatty acid degradation operons of Ralstonia eutropha H16 has been heterologously expressed in Escherichia coli, purified as protein possessing a His-Tag and initially characterized. FadB' is an enzyme with two catalytic domains exhibiting a single monomeric structure and possessing a molecular weight of 86 kDa. The C-terminal part of the enzyme harbors enoyl-CoA hydratase activity and is able to convert trans-crotonyl-CoA to 3-hydroxybutyryl-CoA. The N-terminal part of FadB' comprises an NAD(+) binding site and is responsible for 3-hydroxyacyl-CoA dehydrogenase activity converting (S)-3-hydroxybutyryl-CoA to acetoacetyl-CoA. Enoyl-CoA hydratase activity was detected spectrophotometrically with trans-crotonyl-CoA. (S)-3-Hydroxyacyl-CoA dehydrogenase activity was measured in both directions with acetoacetyl-CoA and 3-hydroxybutyryl-CoA. FadB' was found to be strictly stereospecific to (S)-3-hydroxybutyryl-CoA and to prefer NAD(+). The K m value for acetoacetyl-CoA was 48 μM and V max 149 μmol mg(-1) min(-1). NADP(H) was utilized at a rate of less than 10% in comparison to activity with NAD(H). FadB' exhibited optimal activity at pH 6-7 and the activity decreased at alkaline and acidic pH values. Acetyl-CoA, propionyl-CoA and CoA were found to have an inhibitory effect on FadB'. This study is a first report on biochemical properties of purified (S)-stereospecific 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase with the inverted domain order from R. eutropha H16. In addition to fundamental information about FadB' and fatty acid metabolism, FadB' might be also interesting for biotechnological applications.

  14. Identification of liver CYP51 as a gene responsive to circulating cholesterol in a hamster model.

    Science.gov (United States)

    Huang, Haiqiu; Xie, Zhuohong; Yokoyama, Wallace; Yu, Liangli; Wang, Thomas T Y

    2016-01-01

    Hypercholesterolaemia is a risk factor for CVD, which is a leading cause of death in industrialised societies. The biosynthetic pathways for cholesterol metabolism are well understood; however, the regulation of circulating cholesterol by diet is still not fully elucidated. The present study aimed to gain more comprehensive understanding of the relationship between circulating cholesterol levels and molecular effects in target tissues using the hamster model. Male golden Syrian hamsters were fed with chow or diets containing 36 % energy from fat with or without 1 % cholesteyramine (CA) as a modulator of circulating cholesterol levels for 35 d. It was revealed that the expression of lanosterol 14α-demethylase (CYP51) instead of 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase mRNA expression was responsive to circulating cholesterol in hamsters fed hypercholesterolaemic diets. The high-fat diet increased circulating cholesterol and down-regulated CYP51, but not HMG-CoA reductase. The CA diet decreased cholesterol and increased CYP51 expression, but HMG-CoA reductase expression was not affected. The high-fat diet and CA diet altered the expression level of cholesterol, bile acids and lipid metabolism-associated genes (LDL receptor, cholesterol 7α-hydroxylase (CYP7A1), liver X receptor (LXR) α, and ATP-binding cassette subfamily G member 5/8 (ABCG5/8)) in the liver, which were significantly correlated with circulating cholesterol levels. Correlation analysis also showed that circulating cholesterol levels were regulated by LXR/retinoid X receptor and PPAR pathways in the liver. Using the hamster model, the present study provided additional molecular insights into the influence of circulating cholesterol on hepatic cholesterol metabolism pathways during hypercholesterolaemia.

  15. Androgen-mediated cholesterol metabolism in LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A:Cholesterol Acyltransferase (ACAT).

    Science.gov (United States)

    Locke, Jennifer A; Wasan, Kishor M; Nelson, Colleen C; Guns, Emma S; Leon, Carlos G

    2008-01-01

    The objective of this work was to determine the effect of an androgen agonist, R1881, on intracellular cholesterol synthesis and esterification in androgen-sensitive (AS) prostate cancer (LNCaP) cells. We investigated the activity and expression of cholesterol metabolism enzymes, HMG-CoA-reductase and ACAT in the LNCaP and PC-3 (androgen-independent control) models. Microsomal PC-3 HMG-CoA-reductase activity was increased with R1881 despite having similar cholesterol levels while increased cholesterol levels in microsomes from LNCaPs treated with R1881 (L+) were associated with increased HMG-CoA reductase activity. Increased intracellular cholesteryl esters (CE) found in (L+) were not associated with an increased ACAT1 activity. There was no effect from androgen treatment on ACAT1 protein expression in theses cells; however, ACAT2 expression was induced upon R1881 treatment. In contrast, we found an increase in the in vitro ACAT1 activity in PC-3 cells treated with androgen (P+). Only ACAT1 expression was induced in P+. We further assessed the expression of STAT1 alpha, a transcriptional activator that modulates ACAT1 expression. STAT1 alpha expression and phosphorylation were induced in P+. To determine the role of the AR on ACAT1 expression and esterification, we treated PC-3 cells overexpressing the androgen receptor with R1881 (PAR+). AR expression was decreased in PAR+ cells; ACAT1 protein expression and cholesterol ester levels were also decreased, however, ACAT2 remained unchanged. STAT1 alpha expression was decreased in PAR+. Overall, these findings support the importance of cholesterol metabolism regulation within prostate cancer cells and unravel a novel role for STAT1 alpha in prostate cancer metabolism. (c) 2007 Wiley-Liss, Inc.

  16. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities.

    Science.gov (United States)

    Toroser, D; Huber, S C

    1998-07-15

    Plant 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR; EC 1.1.1.34) and sucrose-phosphate synthase (SPS; EC 2.4.1.14) and synthetic peptides designed from the known phosphorylation sites of plant HMGR (SAMS*: KSHMKYNRSTKDVK), rat acetyl-CoA carboxylase (SAMS: HMRSAMSGLHLVKRR), spinach SPS (SP2: GRRJRRISSVEJJDKK), and spinach NADH:nitrate reductase (NR6: GPTLKRTASTPFJNTTSK) were used to characterize kinase activities from cauliflower (Brassica oleracea L. ) inflorescences. The three major peaks of protein kinase activity resolved by anion-exchange FPLC are homologs of those observed previously in spinach leaves and thus are designated PKI, PKIV, and PKIII, listed in order of elution. PKIV was the most active in terms of phosphorylation and inactivation of recombinant Nicotiana HMGR and was also strictly Ca2+ dependent. The novel aspects are that PKIII has not been detected in previous cauliflower studies, that SAMS* is a more specific peptide substrate to identify potential HMGR kinases, and that the major HMGR kinase in cauliflower is Ca2+ dependent. Of the three major kinases that phosphorylated the SP2 peptide only PKI (partially Ca2+ sensitive) and PKIII (Ca2+ insensitive) inactivated native spinach leaf SPS. Cauliflower extracts contained endogenous SPS that was inactivated by endogenous kinase(s) in an ATP-dependent manner and this may be one of the substrate target proteins for PKI and/or PKIII. The substrate specificity of the three kinase peaks was studied using synthetic peptide variants of the SP2 sequence. All three kinases had a strong preference for peptides with a basic residue at P-6 (as in SP2 and SAMS*; SAMS has a free amino terminus at this position) or a Pro at P-7 (as in NR6). This requirement for certain residues at P-6 or P-7 was not recognized in earlier studies but appears to be a general requirement. In plant HMGR, a conserved His residue at P-6 is involved directly in catalysis and this may explain why substrates reduced HMGR phosphorylation

  17. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hain, D.; Valenzuela, A.; Branes, M. C.; Fuenzalida, M.; Videla, L. A.

    2012-07-01

    Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP), in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg1 of butyric acid esterified policosanol (BAEP), or 164 mg kg1 of oleic acid esterified policosanol (OAEP). Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red) phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05) in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis. (Author) 49 refs.

  18. Entendendo o processo químico de bioativação da sinvastatina por métodos experimentais e computacionais: uma aula prática

    Directory of Open Access Journals (Sweden)

    Maurício Temotheo Tavares

    2016-05-01

    Full Text Available Cholesterol is a lipid which in high concentration can be an important risk factor for coronary diseases and atherosclerotic lesions. This lipid presents an endogenous biosynthesis that involves several steps; one of them is modulated by the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase. HMG-CoA reductase is inhibited by statins, such as simvastatin, in order to reduce seric become active. The structure of simvastatin has a lactone ring that undergoes enzymatic hydrolysis giving the 3,5-dihydroxy-heptanoate metabolite. This group is essential for simvastatin antilipemic activity, but significantly increases their water solubility. Make students understand the influence of chemical groups and organic functions on physicochemical properties and pharmacokinetic profiles of drugs, as simvastatin, is not an easy task. In this context, combine practical strategies and theoretical presentations of the concepts involved on drug biotransformation certainly could improve the teaching learning process. This manuscript correlates organic strategies and in silico techniques throught simvastatin hydrolysis followed by comparative ClogP measurement. This approach intends to allow students to have contact with a cross-platform and multidisciplinary learning, making it ludic, easier and more interesting than theoretical classes.

  19. FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats.

    Science.gov (United States)

    Ono, S; Hirano, H

    1984-04-01

    We studied the FAD-induced in vitro stimulation of lenticular glutathione reductase in riboflavin-deficient rats. The stimulatory effect of FAD on lenticular glutathione reductase in rats fed a B2-deficient diet for 4 weeks was remarkably higher than in paired control rats fed a B2-supplemented basal diet and control rats had ad libitum access to a B2-supplemented basal diet. The in vitro FAD stimulation effect on rat lenticular glutathione reductase represents a sensitive indicator of the B2 deficient status.

  20. The N-terminal region of mature mitochondrial aspartate aminotransferase can direct cytosolic dihydrofolate reductase into mitochondria in vitro.

    Science.gov (United States)

    Giannattasio, S; Azzariti, A; Marra, E; Quagliariello, E

    1994-06-30

    Two fused genes were constructed which encode for two chimeric proteins in which either 10 or 191 N-terminal amino acids of mature mitochondrial aspartate aminotransferase had been attached to the entire polypeptide chain of cytosolic dihydrofolate reductase. The precursor and mature form of mitochondrial aspartate aminotransferase, dihydrofolate reductase and both chimeric proteins were synthesized in vitro and their import into isolated mitochondria was studied. Both chimeric proteins were taken up by isolated organelles, where they became protease resistant, thus indicating the ability of the N-terminal portion of the mature moiety of the precursor of mitochondrial aspartate aminotransferase to direct cytosolic dihydrofolate reductase into mitochondria.