WorldWideScience

Sample records for hmg co-a reductase

  1. Regulation of schistosome egg production by HMG CoA reductase

    International Nuclear Information System (INIS)

    VandeWaa, E.A.; Bennett, J.L.

    1986-01-01

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of 14 C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production

  2. Inhibition of HMG-CoA reductase induces the UPR pathway in C. elegans

    DEFF Research Database (Denmark)

    Elmelund-Præstekær, Louise Cathrine Braun; Hansen, Nadia Jin Storm; Pilon, Marc

    -requiring enzyme-1 (IRE-1), and activating transcription factor-6 (ATF-6). Using a transgenic GFP reporter strain of the model organism C. elegans, we have recently identified that inhibition of the enzyme HMG-CoA reductase (HMG-CoAR) with Fluvastatin and knock down of HMG-CoAR using RNA interference (RNAi) both...... including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) which are necessary for posttranslational prenylation of several small G proteins. C. elegans are cholesterol auxotrophs, which enable us to investigate the isoprenoid branch and its role in UPR induction. We found...

  3. The Cholesterol-Lowering Effect of Alisol Acetates Based on HMG-CoA Reductase and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2016-01-01

    Full Text Available This study measured the impact of alisol B 23-acetate and alisol A 24-acetate, the main active ingredients of the traditional Chinese medicine Alismatis rhizoma, on total cholesterol (TC, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, and low density lipoprotein-cholesterol (LDL-C levels of hyperlipidemic mice. The binding of alisol B 23-acetate and alisol A 24-acetate to the key enzyme involved in the metabolism of TC, 3-hydroxy-3-methylglutary-coenzyme A (HMG-CoA reductase, was studied using the reagent kit method and the western blotting technique combined with a molecular simulation technique. According to the results, alisol acetates significantly lower the TC, TG, and LDL-C concentrations of hyperlipidemic mice, while raising HDL-C concentrations. Alisol acetates lower HMG-CoA reductase activity in a dose-dependent fashion, both in vivo and in vitro. Neither of these alisol acetates significantly lower the protein expression of HMG-CoA. This suggests that alisol acetates lower the TC level via inhibiting the activity of HMG-CoA reductase by its prototype drug, which may exhibit an inhibition effect via directly and competitively binding to HMG-CoA. The side chain of the alisol acetate was the steering group via molecular simulation.

  4. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Baskaran G

    2015-01-01

    Full Text Available Gunasekaran Baskaran,1 Shamala Salvamani,1 Siti Aqlima Ahmad,1 Noor Azmi Shaharuddin,1 Parveen Devi Pattiram,2 Mohd Yunus Shukor1 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, 2Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia Abstract: The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl, 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and a-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases. Keywords: HMG-CoA reductase, Basella alba, phytochemical, GC-MS/MS, RP-HPLC, hypercholesterolemia

  5. Identification of HMG-CoA Reductase Inhibitor Active Compound in Medicinal Forest Plants

    Directory of Open Access Journals (Sweden)

    Shelly Rahmania

    2017-08-01

    Full Text Available Cardiovascular disease is a leading cause of death worldwide, hypercholesterolemia is one of the causes. Three medicinal forest plants are potential natural resources to be developed as cholesterol-reducing herbal product, but scientific informations on their mechanism is still limited. The objective of this research is to explore the potency of the leaf of Jati Belanda (Guazuma ulmifolia, Jabon (Antocephalus macrophyllus, and Mindi (Melia azedarach as inhibitor of HMG-CoA reductase (HMGR, a key enzyme in the regulation of cholesterol biosynthesis. Samples were macerated in ethanol 96% and the filtrate was partitioned using n-hexane and chloroform to obtain the ethanolic flavonoid extract. The effect of each extracts on the HMG-CoA reductase activity were analyzed using HMGR assay kit. At concentration of 10 ppm the G.ulmifolia ethanolic extract showed the highest inhibitory activity as well as pravastatin control inhibitor.  The phenolic content of the ethanolic extracts of G.ulmifolia, A.macrophyllus, and M.azedarach were: 11.00, 34.83, and 13.67 mg gallic acid AE/g dried leaves, respectively. The flavonoid content of the ethanolic extracts of G.ulmifolia, A.macrophyllus, and M.azedarach were: 0.22, 0.64, and 0.78 mg QE/g dried leaves, respectively. Interestingly, G.ulmifolia extract the lowest concentration of phenolic and flavonoid content. HPLC analysis showed that all samples contain quercetin at similiar small concentrations (6.7%, 6.6%, and 7.0% for G.ulmifolia, A.macrophyllus, and M.azedarach, respectively. This indicating other active compounds may play some roles in this inhibitory action on HMG-CoA reductase activity. Further identification using LC-MS/MS showed that G.ulmifolia flavonoid extract contained an unidetified coumpound with molecural weight of 380.0723 Da.  

  6. Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2007-11-01

    Full Text Available Abstract The liver is responsible for controlling cholesterol homeostasis in the body. HMG-CoA reductase and the LDL receptor (LDL-r are involved in this regulation and are also ubiquitously expressed in all major tissues. We have previously shown in guinea pigs that there is a correlation in gene expression of HMG-CoA reductase and the LDL-r between liver and mononuclear cells. The present study evaluated human mononuclear cells as a surrogate for hepatic expression of these genes. The purpose was to evaluate the effect of dietary carbohydrate restriction with low and high cholesterol content on HMG-CoA reductase and LDL-r mRNA expression in mononuclear cells. All subjects were counseled to consume a carbohydrate restricted diet with 10–15% energy from carbohydrate, 30–35% energy from protein and 55–60% energy from fat. Subjects were randomly assigned to either EGG (640 mg/d additional dietary cholesterol or SUB groups [equivalent amount of egg substitute (0 dietary cholesterol contributions per day] for 12 weeks. At the end of the intervention, there were no changes in plasma total or LDL cholesterol (LDL-C compared to baseline (P > 0.10 or differences in plasma total or LDL-C between groups. The mRNA abundance for HMG-CoA reductase and LDL-r were measured in mononuclear cells using real time PCR. The EGG group showed a significant decrease in HMG-CoA reductase mRNA (1.98 ± 1.26 to 1.32 ± 0.92 arbitrary units P

  7. Tumor specific HMG-CoA reductase expression in primary pre-menopausal breast cancer predicts response to tamoxifen

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2011-01-31

    Abstract Introduction We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. Methods HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. Results HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive\\/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as

  8. Statins: 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity

    Digital Repository Service at National Institute of Oceanography (India)

    Puttananjaiah, M.H.; Dhale, M.A.; Gaonkar, V.; Keni, S.

    inhibitors (commonly known as statins) are widely used in cardiovascular disease prevention to lower the cholesterol. The antioxidant activity of HMG-CoA reductase inhibitors was studied by lipid peroxidation inhibition assay, DPPH, and hydroxyl radical...

  9. Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Parmida Ranji

    Full Text Available HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368 mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368 mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.

  10. HMG-CoA reductase inhibitors, other lipid-lowering medication, antiplatelet therapy, and the risk of venous thrombosis

    NARCIS (Netherlands)

    Ramcharan, A.S.; van Stralen, K.J.; Snoep, J.D.; Mantel-Teeuwisse, A.K.; Doggen, Catharina Jacoba Maria

    2009-01-01

    Background: Statins [3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors] and antiplatelet therapy reduce the risk of atherosclerotic disease. Besides a reduction of lipid levels, statins might also have antithrombotic and anti-inflammatory properties, and anti-platelet

  11. Site of pheromone biosynthesis and isolation of HMG-CoA reductase cDNA in the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Taban, A Huma; Fu, Jessica; Blake, Jacob; Awano, Ami; Tittiger, Claus; Blomquist, Gary J

    2006-08-01

    Isolated gut tissue from male cotton boll weevil, Anthonomus grandis (Coleoptera: Curculionidae), incorporated radiolabeled acetate into components that co-eluted with monoterpenoid pheromone components on HPLC. This demonstrates that pheromone components of male A. grandis are produced de novo and strongly suggests that pheromone biosynthesis occurs in gut tissue. A central enzyme in isoprenoid biosynthesis is 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R), and a full-length HMG-R cDNA was isolated from A. grandis. The predicted translation product was 54 and 45% identical to HMG-R from Ips paraconfusus and Drosophila melanogaster, respectively. HMG-R gene expression gradually increased with age in male A. grandis, which correlates with pheromone production. However, topical application of JH III did not significantly increase HMG-R mRNA levels.

  12. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    Directory of Open Access Journals (Sweden)

    Lin SH

    2015-06-01

    Full Text Available Shih-Hung Lin,1 Kao-Jean Huang,1,2 Ching-Feng Weng,1 David Shiuan1 1Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, Republic of China; 2Development Center of Biotechnology, Taipei, Taiwan, Republic of China Abstract: Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR. The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. Keywords: HMG-CoA reductase, virtual screening, curcumin, salvianolic acid C

  13. Acrolein-Induced Dyslipidemia and Acute Phase Response Independenly of HMG-CoA Reductase

    Science.gov (United States)

    Conklin, Daniel J.; Prough, Russell A.; Juvan, Peter; Rezen, Tadeja; Rozman, Damjana; Haberzettl, Petra; Srivastava, Sanjay; Bhatnagar, Aruni

    2012-01-01

    Scope Aldehydes are ubiquitous natural constituents of foods, water and beverages. Dietary intake represents the greatest source of exposure to acrolein and related aldehydes. Oral acrolein induces dyslipidemia acutely and chronically increases atherosclerosis in mice, yet the mechanisms are unknown. Because lipid synthesis and trafficking are largely under hepatic control, we examined hepatic genes in murine models of acute and chronic oral acrolein exposure. Methods and results Changes in hepatic gene expression were examined using a Steroltalk microarray. Acute acrolein feeding modified plasma and hepatic proteins and increased plasma triglycerides within 15 min. By 6h, acrolein altered hepatic gene expression including Insig1, Insig2 and Hmgcr genes and stimulated an acute phase response (APR) with up-regulation of serum amyloid A genes (Saa) and systemic hypoalbuminemia. To test if decreased HMG-CoA reductase activity could modify acrolein-induced dyslipidemia or the APR, mice were pretreated with simvastatin. Statin treatment, however, did not alter acrolein-induced dyslipidemia or hypoalbuminemia associated with an APR. Few hepatic genes were dysregulated by chronic acrolein feeding in apoE-null mice. These studies confirmed that acute acrolein exposure altered expression of hepatic genes involved with lipid synthesis and trafficking and APR, and thus, indicated a hepatic locus of acrolein-induced dyslipidemia and APR that was independent of HMG CoA-reductase. Conclusion Dietary intake of acrolein could contribute to cardiovascular disease risk by disturbing hepatic function. PMID:21812109

  14. A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-Ay mice.

    Science.gov (United States)

    Wang, Kai; Bao, Li; Ma, Ke; Zhang, Jinjin; Chen, Baosong; Han, Junjie; Ren, Jinwei; Luo, Huajun; Liu, Hongwei

    2017-02-15

    Three new meroterpenoids, ganoleucin A-C (1-3), together with five known meroterpenoids (4-8), were isolated from the fruiting bodies of Ganoderma leucocontextum. The structures of the new compounds were elucidated by extensive spectroscopic analysis, circular dichroism (CD) spectroscopy, and chemical transformation. The inhibitory effects of 1-8 on HMG-CoA reductase and α-glucosidase were tested in vitro. Ganomycin I (4), 5, and 8 showed stronger inhibitory activity against HMG-CoA reductase than the positive control atorvastatin. Compounds 1, and 3-8 presented potent noncompetitive inhibitory activity against α-glucosidase from both yeast and rat small intestinal mucosa. Ganomycin I (4), the most potent inhibitor against both α-glucosidase and HMG-CoA reductase, was synthesized and evaluated for its in vivo bioactivity. Pharmacological results showed that ganomycin I (4) exerted potent and efficacious hypoglycemic, hypolipidemic, and insulin-sensitizing effects in KK-A y mice. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp. food supplements

    Directory of Open Access Journals (Sweden)

    Lachenmeier Dirk W

    2012-03-01

    Full Text Available Abstract Background Red yeast rice (i.e., rice fermented with Monascus spp., as a food supplement, is claimed to be blood cholesterol-lowering. The red yeast rice constituent monacolin K, also known as lovastatin, is an inhibitor of the hydroxymethylglutaryl-CoA (HMG-CoA reductase. This article aims to develop a sensitive nuclear magnetic resonance (NMR method to determine the total statin content of red yeast rice products. Methods The total statin content was determined by a 400 MHz 1H NMR spectroscopic method, based on the integration of the multiplet at δ 5.37-5.32 ppm of a hydrogen at the hexahydronaphthalene moiety in comparison to an external calibration with lovastatin. The activity of HMG-CoA reductase was measured by a commercial spectrophotometric assay kit. Results The NMR detection limit for total statins was 6 mg/L (equivalent to 0.3 mg/capsule, if two capsules are dissolved in 50 mL ethanol. The relative standard deviations were consistently lower than 11%. The total statin concentrations of five red yeast rice supplements were between 1.5 and 25.2 mg per specified daily dose. A dose-dependent inhibition of the HMG-CoA reductase enzyme activity by the red yeast rice products was demonstrated. Conclusion A simple and direct NMR assay was developed to determine the total statin content in red yeast rice. The assay can be applied for the determination of statin content for the regulatory control of red yeast rice products.

  16. The role of HMG-CoA reductase inhibition in endothelial dysfunction and inflammation

    Directory of Open Access Journals (Sweden)

    Paolo Gelosa

    2007-11-01

    Full Text Available Paolo Gelosa1, Mauro Cimino2, Alice Pignieri1, Elena Tremoli1,3, Uliano Guerrini1, Luigi Sironi11Department of Pharmacological Sciences, University of Milan, Italy; 2Institute of Pharmacological Sciences, Carlo Bo University of Urbino, Italy; 3Monzino Cardiologic Center IRCCS, Milan, ItalyAbstract: Statin-induced inhibition of HMG-CoA reductase reduces cholesterol production and prevents the formation of many non-steroidal isoprenoid compounds, such as farnesylpyrophosphate and geranylgeranylpyrophosphate, that act as lipid attachments for the post-translational modification of various proteins, including the G-proteins and transcription factors involved in a number of cell processes. However, the blockade of isoprenylation elicited by statin treatment also has biological effects on cell function that go beyond the decrease in cholesterol synthesis: these are the so-called “pleiotropic” effects that mainly relate to vascular function. Endothelial dysfunction is an independent predictor of cardiovascular events that correlates with inflammation markers/mediators and robust predictors of cardiovascular diseases such as increased high-sensitivity C-reactive protein levels. The results of in vivo and in vitro studies indicate that the statins have beneficial effects unrelated to cholesterol lowering, such as improving endothelial function, increasing myocardial perfusion, and enhancing the availability of nitric oxide. This review describes the pleiotropic effects of statins that may be involved in modulating/preventing endothelial dysfunction and inflammatory processes, as well as the cellular and molecular mechanisms through which they improve endothelial function.Keywords: statins; inflammation; endothelial dysfunction; nitric oxide; HMG-CoA reductase

  17. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.

    Science.gov (United States)

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.

  19. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from L...

  20. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity.

    Directory of Open Access Journals (Sweden)

    Ioanna Vallianou

    Full Text Available Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO.The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001, 54% of Low Density Lipoprotein (LDL-cholesterol (p<0.001 and 34.5% of triglycerides (p<0.001. Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins.Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent and merits further evaluation.

  1. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity

    Science.gov (United States)

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Background Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). Methodology/Principal Findings The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001), 54% of Low Density Lipoprotein (LDL)-cholesterol (p<0.001) and 34.5% of triglycerides (p<0.001). Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Conclusions Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent

  2. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Hitchener, W.R.

    1986-01-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either 3 H 2 O or 1- 14 C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of 3 H 2 O or 1- 14 C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10 6 cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with 3 H 2 O and 4.0 +/- 1.1 times greater when measured with 14 C-acetate. Thus, 3 H 2 O and 14 C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid

  3. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion's mane mushroom).

    Science.gov (United States)

    Rahman, Mohammad Azizur; Abdullah, Noorlidah; Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  4. Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull. Persoon (Lion’s Mane Mushroom

    Directory of Open Access Journals (Sweden)

    Mohammad Azizur Rahman

    2014-01-01

    Full Text Available Oxidation of low-density lipoprotein (LDL has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM, hexane (HEX, dichloromethane (DCM, ethyl acetate (EA, and aqueous residue (AQ. The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins for the formation of conjugated diene (CD at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL of thiobarbituric acid reactive substances (TBARS at 1 mg/mL. It also mostly inhibited (59.91% the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  5. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    International Nuclear Information System (INIS)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik

    2014-01-01

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  6. The potential behavioral and economic impacts of widespread HMG-CoA reductase inhibitor (statin) use.

    Science.gov (United States)

    Gendle, Mathew H

    2016-12-01

    Dyslipidemia is a common pathology throughout the industrialized world, and HMG-CoA reductase inhibitors (statins) are often administered to treat elevated lipid levels. Substantial concern has been raised regarding the aggressive clinical lowering of cholesterol, particularly in light of a growing body of research linking low circulating lipid levels with negative behavioral outcomes in both human samples and non-human primate models. In 2009, Goldstein and colleagues tentatively speculated that the greed, impulsiveness, and lack of foresight that lead to the worldwide economic collapse in 2007-2008 could have been caused (in part) by depressed population cholesterol levels resulting from the widespread use of statins by workers in the financial services industry. This paper reviews the literature that links low circulating lipid levels with neurobehavioral dysfunction, develops Goldstein and colleagues' initial speculation into a formal hypothesis, and proposes several specific studies that could rigorously empirically evaluate this hypothesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 1200 nt rat liver mRNA identified by differential hybridization exhibits coordinate regulation with 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase

    International Nuclear Information System (INIS)

    Tanaka, R.D.; Clarke, C.F.; Fogelman, A.M.; Edwards, P.A.

    1986-01-01

    Differential hybridization has been used to identify genes in rat liver that encode transcripts which are increased by the drugs cholestyramine and mevinolin and are decreased by dietary cholesterol. This approach should prove useful in isolating and identifying coordinately regulated genes involved in the isoprene biosynthetic pathway. Rat liver poly (A) + RNA was isolated from animals fed diets supplemented with either cholestyramine and mevinolin or with cholesterol. Radiolabeled cDNAs generated from these two RNA preparations were used to screen a rat cDNAs library. A preliminary screen of 10,000 recombinants has led to the identification of a clone with an insert of 1200 bp that hybridizes to a mRNA species of about 1200 nt. The level of this RNA species in rat liver is elevated by the drugs cholestyramine and mevinolin and is decreased by cholesterol feeding. This RNA species is also decreased by mevalonate administration to rats. The regulation of this 1200 nt mRNA species mirrors that of HMG CoA reductase and HMG CoA synthase. It seems very likely that this 1200 nt mRNA encodes a polypeptide which is involved in the isoprene biosynthetic pathway

  8. Relationships between HMG-CoA reductase inhibitors (statin) use and strength, balance and falls in older people.

    Science.gov (United States)

    Haerer, W; Delbaere, K; Bartlett, H; Lord, S R; Rowland, J

    2012-12-01

    To investigate associations between HMG-CoA reductase inhibitor (statin) use and muscle strength, balance, mobility and falls in older people. Five hundred community-dwelling people aged 70-90 years provided information about their medication use and undertook tests of lower limb strength, postural sway, leaning balance (maximal balance range and coordinated stability tests) and functional mobility. Participants were then followed up for 12 months with respect to falls. After adjusting for general health in analyses of covariance procedures, statin users had poorer maximal balance range than non-statin users (P = 0.017). Statin and non-statin users did not differ with respect to strength, postural sway, mobility or falls experienced in the follow-up year. In a sample of healthy older people, statin use was not associated with muscle weakness, postural sway, reduced mobility or falls. Statin users, however, had poorer leaning balance which may potentially increase fall risk in this group. © 2011 The Authors; Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  9. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer.

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2010-01-01

    BACKGROUND: Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. METHODS: HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). RESULTS: Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. CONCLUSION: HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.

  10. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2010-04-01

    Abstract Background Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. Methods HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). Results Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. Conclusion HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens.

  11. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Brennan, Donal J; Jirstrom, Karin; Brändstedt, Jenny; Rexhepaj, Elton; Foley, Michael; Pontén, Fredrik; Uhlén, Mathias; Gallagher, William M; O'Connor, Darran P; O'Herlihy, Colm

    2010-01-01

    Our group previously reported that tumour-specific expression of the rate-limiting enzyme in the mevalonate pathway, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) is associated with more favourable tumour parameters and a good prognosis in breast cancer. In the present study, the prognostic value of HMG-CoAR expression was examined in tumours from a cohort of patients with primary epithelial ovarian cancer. HMG-CoAR expression was assessed using immunohistochemistry (IHC) on tissue microarrays (TMA) consisting of 76 ovarian cancer cases, analysed using automated algorithms to develop a quantitative scoring model. Kaplan Meier analysis and Cox proportional hazards modelling were used to estimate the risk of recurrence free survival (RFS). Seventy-two tumours were suitable for analysis. Cytoplasmic HMG-CoAR expression was present in 65% (n = 46) of tumours. No relationship was seen between HMG-CoAR and age, histological subtype, grade, disease stage, estrogen receptor or Ki-67 status. Patients with tumours expressing HMG-CoAR had a significantly prolonged RFS (p = 0.012). Multivariate Cox regression analysis revealed that HMG-CoAR expression was an independent predictor of improved RFS (RR = 0.49, 95% CI (0.25-0.93); p = 0.03) when adjusted for established prognostic factors such as residual disease, tumour stage and grade. HMG-CoAR expression is an independent predictor of prolonged RFS in primary ovarian cancer. As HMG-CoAR inhibitors, also known as statins, have demonstrated anti-neoplastic effects in vitro, further studies are required to evaluate HMG-CoAR expression as a surrogate marker of response to statin treatment, especially in conjunction with current chemotherapeutic regimens

  12. In vivo identification of promoter elements and transcription factors mediating activation of hepatic HMG-CoA reductase by T{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Lindsey R.; Niesen, Melissa I. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States); Jaroszeski, Mark [Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL (United States); Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States)

    2009-07-31

    The promoter elements and transcription factors necessary for triiodothyronine (T{sub 3}) induction of hepatic HMG-CoA reductase (HMGR) were investigated by transfecting rat livers with wild type and mutant HMGR promoter-luciferase constructs using in vivo electroporation. Mutations in the sterol response element (SRE), nuclear factor-y (NF-Y) site, and the newly identified upstream transcription factor-2 (USF-2) site essentially abolished the T{sub 3} response. Chromatin immunoprecipitation (ChIP) analysis demonstrated that T{sub 3} treatment caused a 4-fold increase in in vivo binding of USF-2 to the HMGR promoter. Co-transfection of the wild type HMGR promoter with siRNAs to USF-2, SREBP-2, or NF-Y nearly abolished the T{sub 3} induction, as measured by promoter activity. These data provide in vivo evidence for functional roles for USF-2, SREBP-2, and NF-Y in mediating the T{sub 3}-induction of hepatic HMGR transcription.

  13. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    Directory of Open Access Journals (Sweden)

    Ewing Andrew G

    2008-12-01

    Full Text Available Abstract Background Primordial germ cells (PGCs are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.

  14. Properties of latent and thiol-activated rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and regulation of enzyme activity.

    Science.gov (United States)

    Dotan, I; Shechter, I

    1983-10-15

    The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.

  15. Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase.

    Science.gov (United States)

    Würtz, Peter; Wang, Qin; Soininen, Pasi; Kangas, Antti J; Fatemifar, Ghazaleh; Tynkkynen, Tuulia; Tiainen, Mika; Perola, Markus; Tillin, Therese; Hughes, Alun D; Mäntyselkä, Pekka; Kähönen, Mika; Lehtimäki, Terho; Sattar, Naveed; Hingorani, Aroon D; Casas, Juan-Pablo; Salomaa, Veikko; Kivimäki, Mika; Järvelin, Marjo-Riitta; Davey Smith, George; Vanhala, Mauno; Lawlor, Debbie A; Raitakari, Olli T; Chaturvedi, Nish; Kettunen, Johannes; Ala-Korpela, Mika

    2016-03-15

    Statins are first-line therapy for cardiovascular disease prevention, but their systemic effects across lipoprotein subclasses, fatty acids, and circulating metabolites remain incompletely characterized. This study sought to determine the molecular effects of statin therapy on multiple metabolic pathways. Metabolic profiles based on serum nuclear magnetic resonance metabolomics were quantified at 2 time points in 4 population-based cohorts from the United Kingdom and Finland (N = 5,590; 2.5 to 23.0 years of follow-up). Concentration changes in 80 lipid and metabolite measures during follow-up were compared between 716 individuals who started statin therapy and 4,874 persistent nonusers. To further understand the pharmacological effects of statins, we used Mendelian randomization to assess associations of a genetic variant known to mimic inhibition of HMG-CoA reductase (the intended drug target) with the same lipids and metabolites for 27,914 individuals from 8 population-based cohorts. Starting statin therapy was associated with numerous lipoprotein and fatty acid changes, including substantial lowering of remnant cholesterol (80% relative to low-density lipoprotein cholesterol [LDL-C]), but only modest lowering of triglycerides (25% relative to LDL-C). Among fatty acids, omega-6 levels decreased the most (68% relative to LDL-C); other fatty acids were only modestly affected. No robust changes were observed for circulating amino acids, ketones, or glycolysis-related metabolites. The intricate metabolic changes associated with statin use closely matched the association pattern with rs12916 in the HMGCR gene (R(2) = 0.94, slope 1.00 ± 0.03). Statin use leads to extensive lipid changes beyond LDL-C and appears efficacious for lowering remnant cholesterol. Metabolomic profiling, however, suggested minimal effects on amino acids. The results exemplify how detailed metabolic characterization of genetic proxies for drug targets can inform indications, pleiotropic effects

  16. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Concepcion, M.; Gruissem, W. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  17. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols

    Energy Technology Data Exchange (ETDEWEB)

    Panini, S.R.; Sexton, R.C.; Gupta, A.K.; Parish, E.J.; Chitrakorn, S.; Rudney, H.

    1986-11-01

    Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-(2-(diethylamino)-ethoxy)androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy(/sup 3/H)anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase. In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. (Abstract Truncated)

  18. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols

    International Nuclear Information System (INIS)

    Panini, S.R.; Sexton, R.C.; Gupta, A.K.; Parish, E.J.; Chitrakorn, S.; Rudney, H.

    1986-01-01

    Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-[2-(diethylamino)-ethoxy]androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy[ 3 H]anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase. In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. (Abstract Truncated)

  19. Purification, crystallization and preliminary X-ray analysis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase of Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Zhang, Liping; Feng, Lingling; Zhou, Li; Gui, Jie; Wan, Jian; Hu, Xiaopeng

    2010-01-01

    3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of Streptococcus pneumoniae has been cloned, overexpressed and purified to homogeneity using Ni–NTA affinity chromatography. Crystals were obtained using the hanging-drop vapour-diffusion method. Class II 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases are potential targets for novel antibiotic development. In order to obtain a precise structural model for use in virtual screening and inhibitor design, HMG-CoA reductase of Streptococcus pneumoniae was cloned, overexpressed and purified to homogeneity using Ni–NTA affinity chromatography. Crystals were obtained using the hanging-drop vapour-diffusion method. A complete data set was collected from a single frozen crystal on a home X-ray source. The crystal diffracted to 2.3 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 773.4836, b = 90.3055, c = 160.5592 Å, α = β = γ = 90°. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be 54.1% (V M = 2.68 Å 3 Da −1 )

  20. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  1. Attenuation of Streptozotocin-Induced Lipid Profile Anomalies in the Heart, Brain, and mRNA Expression of HMG-CoA Reductase by Diosgenin in Rats.

    Science.gov (United States)

    Hao, Shuang; Xu, Rihao; Li, Dan; Zhu, Zhicheng; Wang, Tiance; Liu, Kexiang

    2015-07-01

    Diabetes mellitus is associated with significant morbidity and mortality that contributes to pathogenesis of cardiovascular diseases. Diosgenin, a naturally occurring aglycone, is present abundantly in fenugreek. The steroidal saponin is being used as a traditional medicine for diabetes. The present study has investigated the effects of diosgenin on lipid profile in the heart and brain, mRNA expression, and hepatic HMG-CoA reductase (HMGR) activity of streptozotocin-induced diabetic rats. In our study, diosgenin was administered (40 mg/kg b.w.) orally for 45 days to control animals and experimentally induced diabetic rats. The effects of diosgenin on glucose, plasma insulin, cholesterol, triglycerides, free fatty acids, and phospholipids (PLs) in the heart and brain were studied. The levels of glucose, cholesterol, triglycerides, free fatty acids, PLs, and HMGR activity were increased significantly (P rats. Administration of diosgenin to diabetic rats significantly reduced blood glucose, cholesterol, triglycerides, free fatty acids, PLs levels, and also HMGR activity. In addition, the plasma insulin level was increased in diosgenin-treated diabetic rats. The above findings were correlated with histological observations of the heart and brain. The results showed that administration of diosgenin remarkably increased plasma insulin level with absolute reduction of blood glucose, lipid profile, and HMGR level when compared to diabetic control rats. The results have suggested that diosgenin prevents hypercholesterolemia and hepatosteatosis by modulation of enzymatic expression that is associated with cholesterol metabolism.

  2. Inhibition of Cholesterol Synthesis in HepG2 Cells by GINST-Decreasing HMG-CoA Reductase Expression Via AMP-Activated Protein Kinase.

    Science.gov (United States)

    Han, Joon-Seung; Sung, Jong Hwan; Lee, Seung Kwon

    2017-11-01

    GINST, a hydrolyzed ginseng extract, has been reported to have antidiabetic effects and to reduce hyperglycemia and hyperlipidemia. Hypercholesterolemia is caused by diet or genetic factors and can lead to atherosclerosis and coronary heart disease. Thus, the purpose of this study is to determine whether GINST and the ginsenoside metabolite, IH-901 (compound K), reduce cholesterol synthesis in HepG2 cells and the signal transduction pathways involved. Concentrations of cholesterol were measured by using an enzymatic method. Expression levels of sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer-binding proteins α (C/EBPα), GAPDH, and phosphorylation of AMP-activated protein kinase α (AMPKα), protein kinase B (PKB, also known as Akt), and mechanistic target of rapamycin complex 1 (mTORC1) were measured using western blot. Total cholesterol concentration decreased after GINST treatment for 24 and 48 h. Expression of HMGCR decreased more with GINST than with the inhibitors, U18666A and atorvastatin, after 48 h in a dose-dependent manner. Phosphorylation of AMPKα increased 2.5x by GINST after 360 min of treatment, and phosphorylation of Akt decreased after 120 and 360 min. We separated compound K from GINST extracts flash chromatography. Compound K decreased cholesterol synthesis in HepG2 cells at 24 and 48 h. Therefore, we conclude that GINST inhibits cholesterol synthesis in HepG2 cells by decreasing HMGCR expression via AMPKα activation. GINST, a hydrolyzed ginseng extract, can inhibit cholesterol synthesis in liver cells via activation of AMPKα. IH-901 (compound K), which is the main component with bioactivity in GINST, also has anticholesterol effects. Thus, we suggest that GINST can be used to reduce hypercholesterolemia. © 2017 Institute of Food Technologists®.

  3. Docking molecular de derivados de 2-fenilindano-1,3-dionas inibidores da enzima HMG-CoA

    Directory of Open Access Journals (Sweden)

    R. Q. Pordeus

    2014-11-01

    Full Text Available As doenças cardiovasculares constituem uma das principais causas de mortes em todo o mundo. Estudos mostram que a enzima HMG-CoA é considerada uma precursora da via metabólica hipolipidêmica no soro sanguíneo. Na busca por uma nova classe de compostos aptos a inibir esta enzima e consequentemente reduzir os níveis de colesterol, as 2-fenilindano-1,3-dionas apresentam resultados promissores. Uma das maneiras de avaliar o poder farmacológico destes compostos e predizer análogos ainda mais potentes consiste na avaliação da interação entre fármaco (2-fenilindano-1,3-diona e enzima (HMG-CoA, em que se utiliza da técnica de modelagem molecular docking. Neste estudo, o procedimento computacional para obtenção dos resultados de docking foi feito através do software AutoDock 1.5.6. Para avaliar a interação no sítio ativo da HMG-CoA, utilizamos, dentre a série de congêneres, o composto 2-(2-clorofenilindano-1,3-diona. De acordo com os resultados obtidos, foi identificada uma interação hidrofílica importante, do tipo ligação de hidrogênio C=O∙∙∙H–N, a qual apresenta uma distância de 1.62 Å entre os grupos carbonila do anel diona e o aminoácido metionina da HMG-CoA. Outra ligação de hidrogênio p∙∙∙H–N com distância de 3.10 Å formada entre o anel aromático do grupo indano-1,3-diona e o aminoácido glicina também foi identificada.

  4. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    Science.gov (United States)

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.

  5. DIETARY-CHOLESTEROL INDUCED DOWN-REGULATION OF INTESTINAL 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE-ACTIVITY IS DIMINISHED IN RABBITS WITH HYPERRESPONSE OF SERUM-CHOLESTEROL TO DIETARY-CHOLESTEROL

    NARCIS (Netherlands)

    MEIJER, GW; SMIT, MJ; VANDERPALEN, JGP; KUIPERS, F; VONK, RJ; VANZUTPHEN, BFM; BEYNEN, AC

    Key enzymes of cholesterol metabolism were studied in two inbred strains of rabbits with hyper- or hyporesponse of serum cholesterol to dietary cholesterol. Baseline 3-hydroxy-3-methylglutaryl (HMG)CoA reductase activity in liver was similar in hypo- and hyperresponders, but that in intestine was

  6. Molecular Biological basis for statin resistance in naturally statin-producing organisms

    DEFF Research Database (Denmark)

    Rems, Ana; Frandsen, Rasmus John Normand

    to lovastatin compared to the wild-type strain. Furthermore, we investigated if MlcD confers the resistance by functional complementation of the endogenous HMG-CoA reductases in S. cerevisiae. There are two isozymes of HMG-CoA reductase in yeast, HMG1 and HMG2, both involved in the sterol biosynthetic pathway......, which leads to the synthesis of ergosterol. Following deletion of HMG1 and HMG2 genes in S. cerevisiae, we inserted the mlcD gene into the knockout mutants, and tested the resulted strains for sensitivity to lovastatin. The HMG1 and HMG2 knockout mutants were unable to grow on minimal media and had...... an increased sensitivity to lovastatin on rich media. However, insertion of the mlcD gene restored the growth of the yeast mutants and increased their resistance to lovastatin. These results show that MlcD complements the activity of the deleted HMG-CoA reductases, enabling synthesis of ergosterol in yeast...

  7. Discovery and quantitative structure-activity relationship study of lepidopteran HMG-CoA reductase inhibitors as selective insecticides.

    Science.gov (United States)

    Zang, Yang-Yang; Li, Yuan-Mei; Yin, Yue; Chen, Shan-Shan; Kai, Zhen-Peng

    2017-09-01

    In a previous study we have demonstrated that insect 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) can be a potential selective insecticide target. Three series of inhibitors were designed on the basis of the difference in HMGR structures from Homo sapiens and Manduca sexta, with the aim of discovering potent selective insecticide candidates. An in vitro bioassay showed that gem-difluoromethylenated statin analogues have potent effects on JH biosynthesis of M. sexta and high selectivity between H. sapiens and M. sexta. All series II compounds {1,3,5-trisubstituted [4-tert-butyl 2-(5,5-difluoro-2,2-dimethyl-6-vinyl-4-yl) acetate] pyrazoles} have some effect on JH biosynthesis, whereas most of them are inactive on human HMGR. In particular, the IC 50 value of compound II-12 (37.8 nm) is lower than that of lovastatin (99.5 nm) and similar to that of rosuvastatin (24.2 nm). An in vivo bioassay showed that I-1, I-2, I-3 and II-12 are potential selective insecticides, especially for lepidopteran pest control. A predictable and statistically meaningful CoMFA model of 23 inhibitors (20 as training sets and three as test sets) was obtained with a value of q 2 and r 2 of 0.66 and 0.996 respectively. The final model suggested that a potent insect HMGR inhibitor should contain suitable small and non-electronegative groups in the ring part, and electronegative groups in the side chain. Four analogues were discovered as potent selective lepidopteran HMGR inhibitors, which can specifically be used for lepidopteran pest control. The CoMFA model will be useful for the design of new selective insect HMGR inhibitors that are structurally related to the training set compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight : Evidence from genetic analysis and randomised trials

    NARCIS (Netherlands)

    Swerdlow, Daniel I.; Preiss, David; Kuchenbaecker, Karoline B.; Holmes, Michael V.; Engmann, Jorgen E L; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C D; Scott, Robert A.; Leusink, Maarten; Verweij, Niek; Sharp, Stephen J.; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, Kawah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A.; Drenos, Fotios; Li, Yun R.; Lowe, Gordon; Gallacher, John; Stewart, Marlene C W; Tzoulaki, Ioanna; Buxbaum, Sarah G.; Van Der A, Daphne L.; Forouhi, Nita G.; Onland-Moret, N. Charlotte; Van Der Schouw, Yvonne T.; Schnabel, Renate B.; Hubacek, Jaroslav A.; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Romanvan; Stepaniak, Urszula; Malyutina, Sofia; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; De Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J. Wouter; Westendorp, Rudi G J; De Borst, Gert Jan; De Jong, Pim A.; Algra, Ale; Spiering, Wilko; Der Zee, Anke H Maitland Van; Klungel, Olaf H.; De Boer, Anthonius; Doevendans, Pieter A.; Eaton, Charles B.; Robinson, Jennifer G.; Duggan, David; Kjekshus, John; Downs, John R.; Gotto, Antonio M.; Keech, Anthony C.; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S.; Poulter, Neil R.; Waters, David D.; Pedersen, Terje R.; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J V; Lewsey, James D.; Chasman, Daniel I.; Ridker, Paul M.; Maggioni, Aldo P.; Tavazzi, Luigi; Ray, Kausik K.; Seshasai, Sreenivasa Rao Kondapally; Manson, Joann E.; Price, Jackie F.; Whincup, Peter H.; Morris, Richard W.; Lawlor, Debbie A.; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J.; Fornage, Myriam; Siscovick, David S.; Cushman, Mary; Kumari, Meena; Wareham, Nick J.; Verschuren, W. M Monique; Redline, Susan; Patel, Sanjay R.; Whittaker, John C.; Hamsten, Anders; Delaney, Joseph A.; Dale, Caroline; Gaunt, Tom R.; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A.; Van Der Harst, Pim; Brunner, Eric J.; Tybjaerg-Hansen, Anne; Marmot, Michael G.; Krauss, Ronald M.; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C.; Psaty, Bruce M.; Lange, Leslie A.; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E.; Talmud, Philippa J.; Kivimäki, Mika; Timpson, Nicholas J.; Langenberg, Claudia; Asselbergs, Folkert W.; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G.; Reiner, Alex P.; Keating, Brendan J.; Hingorani, Aroon D.; Sattar, Naveed

    2015-01-01

    Background Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. Methods We used single nucleotide polymorphisms in the HMGCR

  9. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight : evidence from genetic analysis and randomised trials

    NARCIS (Netherlands)

    Swerdlow, Daniel I; Preiss, David; Kuchenbaecker, Karoline B; Holmes, Michael V; Engmann, Jorgen E L; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C D; Scott, Robert A; Leusink, Maarten|info:eu-repo/dai/nl/357581164; Verweij, Niek; Sharp, Stephen J; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, KaWah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A; Drenos, Fotios; Li, Yun R; Lowe, Gordon; Gallacher, John; Stewart, Marlene C W; Tzoulaki, Ioanna; Buxbaum, Sarah G; van der A, Daphne L; Forouhi, Nita G; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Schnabel, Renate B; Hubacek, Jaroslav A; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Romanvan; Stepaniak, Urszula; Malyutina, Sofia; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; de Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J Wouter; Westendorp, Rudi G J; de Borst, Gert Jan; de Jong, Pim A; Algra, Ale; Spiering, Wilko; der Zee, Anke H Maitland-van|info:eu-repo/dai/nl/255164688; Klungel, Olaf H|info:eu-repo/dai/nl/181447649; de Boer, Anthonius|info:eu-repo/dai/nl/075097346; Doevendans, Pieter A; Eaton, Charles B; Robinson, Jennifer G; Duggan, David; Kjekshus, John; Downs, John R; Gotto, Antonio M; Keech, Anthony C; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S; Poulter, Neil R; Waters, David D; Pedersen, Terje R; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J V; Lewsey, James D; Chasman, Daniel I; Ridker, Paul M; Maggioni, Aldo P; Tavazzi, Luigi; Ray, Kausik K; Seshasai, Sreenivasa Rao Kondapally; Manson, JoAnn E; Price, Jackie F; Whincup, Peter H; Morris, Richard W; Lawlor, Debbie A; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J; Fornage, Myriam; Siscovick, David S; Cushman, Mary; Kumari, Meena; Wareham, Nick J; Verschuren, W M Monique; Redline, Susan; Patel, Sanjay R; Whittaker, John C; Hamsten, Anders; Delaney, Joseph A; Dale, Caroline; Gaunt, Tom R; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A; van der Harst, Pim; Brunner, Eric J; Tybjaerg-Hansen, Anne; Marmot, Michael G; Krauss, Ronald M; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C; Psaty, Bruce M; Lange, Leslie A; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E; Talmud, Philippa J; Kivimäki, Mika; Timpson, Nicholas J; Langenberg, Claudia; Asselbergs, Folkert W; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G; Reiner, Alex P; Keating, Brendan J; Hingorani, Aroon D; Sattar, Naveed; DIAGRAM Consortium, MAGIC Consortium, InterAct Consortium

    2014-01-01

    BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR

  10. Relationship between Lipid Phenotypes, Overweight, Lipid Lowering Drug Response and KIF6 and HMG-CoA Genotypes in a Subset of the Brisighella Heart Study Population

    Directory of Open Access Journals (Sweden)

    Sabrina Angelini

    2017-12-01

    Full Text Available The existence of genetic traits might explain the susceptibility to develop hypercholesterolemia and the inter-individual differences in statin response. This study was performed to evaluate whether individuals’ polymorphisms in HMG-CoA and KIF6 genes are independently associated with hypercholesterolemia, other lipid-associated traits, and statin response in unselected individuals enrolled in the Brisighella heart study (Survey 2012. A total of 1622 individuals, of which 183 under statin medication, were genotyped for a total of five polymorphisms (KIF6 rs20455, rs9471077, rs9462535; HMG-CoA rs3761740, rs3846662. The relationships between the five loci and clinical characteristics were analyzed. The principal basic parameters calculated on 12 h fasting blood included total cholesterol (TC, High Density Lipoprotein Cholesterol (HDL-C, Low-Density Lipoprotein Cholesterol (LDL-C, and triglycerides (TG. Hypercholesterolemia was defined as a TC >200 mg/dL or use of lipid-lowering medication. 965 individuals were characterized by hypercholesterolemia; these subjects were significantly older (p < 0.001, with body mass index (BMI and waist circumference significantly higher (p < 0.001 compared to the others. HMG-CoA rs3846662 GG genotype was significantly over-represented in the hypercholesterolemic group (p = 0.030. HMG-CoA rs3846662 genotype was associated with the level of TC and LDL-C. Furthermore, in the same subset of untreated subjects, we observed a significant correlation between the KIF6 rs20455 and HDL-C. KIF6 variants were associated with a significantly lower (rs20455 or higher (rs9471077 and rs9462535 risk of obesity, in males only. No association between responsiveness to statins and the polymorphisms under investigation were observed. Our results showed associations between HMG-CoA rs3846662 and KIF6 rs20455 and lipid phenotypes, which may have an influence on dyslipidemia-related events. Moreover, this represents the first study

  11. Comparison of the effects of gemfibrozil and clofibric acid on peroxisomal enzymes and cholesterol synthesis of rat hepatocytes.

    Science.gov (United States)

    Hashimoto, F; Taira, S; Hayashi, H

    1998-11-01

    We studied whether the peroxisomal proliferation, induction of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and activation of cholesterol synthesis by gemfibrozil shown in whole body (Hashimoto F., Ishikawa T., Hamada S. and Hayashi H., Biochemical. Pharm., 49, 1213-1221 (1995)) is also detected at a culture cell level, and we made a comparative analysis of the effects of clofibric acid. Gemfibrozil at 0.25 mM increased the activity of some peroxisomal enzymes (catalase and the cyanide-insensitive fatty acyl-CoA oxidizing system) after incubation for 72 h. However, contrary to whole body experiments, gemfibrozil decreased the activity of HMG-CoA reductase and cholesterol synthesis from [14C]acetate. At 1 mM, gemfibrozil decreased not only the activity of HMG-CoA reductase and cholesterol synthesis, but also the protein content of the cells and peroxisomal enzyme activity, indicating nonspecific inhibition at this concentration. Clofibric acid (0.25 and 1 mM) increased the activity of peroxisomal enzymes, but decreased the activity of HMG-CoA reductase and cholesterol synthesis. With respect to the direct effect on HMG-CoA reductase in the cell homogenate, gemfibrozil at 0.25 mm did not affect the activity, but it clearly inhibited the activity at 2 mM and above. Clofibric acid at 2 mM hardly affected the activity, but it clearly decreased the activity at 5 mM and over. That is, gemfibrozil directly inhibited the activity more strongly than clofibric acid. The direct inhibition of the enzyme itself required higher concentrations of both agents than did inhibition at the culture cell level. These results suggest that the cytotoxicity of gemfibrozil is greater than that of clofibric acid, and that gemfibrozil, as well as clofibric acid, can induce peroxisomal enzymes in the culture cell level. In contrast to whole body results, gemfibrozil may suppress cholesterol synthesis from [14C]acetate through the inhibition of HMG-CoA reductase at the culture

  12. Absence of anti-HMG-CoA reductase autoantibodies in severe self-limited statin-related myopathy.

    Science.gov (United States)

    Floyd, James S; Brody, Jennifer A; Tiniakou, Eleni; Psaty, Bruce M; Mammen, Andrew

    2016-06-01

    Patients with self-limited statin-related myopathy improve spontaneously when statins are stopped. In contrast, patients with statin-associated autoimmune myopathy have autoantibodies recognizing 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) and usually require immunosuppressive therapy to control their disease. On initial presentation, it can sometimes be difficult to distinguish between these 2 diseases, as both present with muscle pain, weakness, and elevated serum creatine kinase (CK) levels. The goal of this study was to determine whether patients with severe self-limited statin-related myopathy also make anti-HMGCR autoantibodies. We screened 101 subjects with severe self-limited cerivastatin-related myopathy for anti-HMGCR autoantibodies. No patient with severe self-limited cerivastatin-related myopathy had anti-HMGCR autoantibodies. Anti-HMGCR autoantibody testing can be used to help differentiate whether a patient has self-limited myopathy due to cerivastatin or autoimmune statin-associated myopathy; these findings may apply to other statins as well. Muscle Nerve 54: 142-144, 2016. © 2016 Wiley Periodicals, Inc.

  13. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia.

    Science.gov (United States)

    Muñoz-Bertomeu, Jesús; Sales, Ester; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2007-11-01

    Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.

  14. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  15. Fatty acyl-CoA reductases of birds

    Science.gov (United States)

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  16. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    Energy Technology Data Exchange (ETDEWEB)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs.

  17. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    International Nuclear Information System (INIS)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs

  18. Liquid chromatography-tandem mass spectrometry method for the measurement of serum mevalonic acid: a novel marker of hydroxymethylglutaryl coenzyme A reductase inhibition by statins.

    Science.gov (United States)

    Waldron, Jenna; Webster, Craig

    2011-05-01

    Mevalonic acid (MVA) is synthesized at an early and rate-limiting step in the biosynthesis of cholesterol by the enzyme hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase, and is a useful measure of statin efficacy or treatment. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the measurement of serum MVA has been developed. Following the in vitro conversion of MVA to mevalonic acid lactone (MVAL) in the serum, MVAL and a deuterated internal standard were extracted using an online solid-phase extraction procedure. Chromatographic separation was achieved using a Luna PFP column (Phenomenex), with enhanced selectivity and improved resolution for polar compounds. A gradient system was used, with mobile phase comprising methanol and water (5 mmol/L ammonium formate buffer, pH 2.5). Analysis was performed using an API 5000 tandem mass spectrometer (Applied Biosystems) in positive electrospray ionization mode. The method showed excellent recoveries (98 ± 8%) and imprecision (intra-assay coefficient of variation of 2.2% [6.5 ng/mL] and 2.6% [10.5 ng/mL], and inter-assay coefficient of variation of 9% [10.5 ng/mL]). The assay provides a calibration range up to 50 ng/mL with a limit of detection at 0.1 ng/mL. A simple, rapid and analytically specific method has been developed for the measurement of serum MVA, in the form of MVAL. The high analytical sensitivity of the method allows for accurate quantitation of MVAL in serum samples, both at the endogenous levels found in healthy individuals and in statin-treated patients where normal levels are expected to be greatly reduced through the inhibition of HMG-CoA reductase.

  19. Effects of HMG-CoA Reductase Inhibitors (Statins On Bone Mineral Density and Metabolism

    Directory of Open Access Journals (Sweden)

    Nehir Samancı

    2004-06-01

    Full Text Available Hydroxy methylglutaryl coenzyme A reductase inhibitors (statins have been shown to have effects on bone metabolism in laboratory studies. While early clinic studies have showed lower risk for osteoporotic fractures among statin users than nonusers, subsequent studies have found mixed results. The purpose of this study was to investigate the effects of statins on bone mineral density (BMD and bone metabolism. Thirty-five consecutive postmenopausal hypercholesterolemic women who were treated for at least last 6 months with statins were included in the study. Seventy-five normocholesterolemic age-matched postmenopausal women were in the control group. Subjects with a history of any diseases and used drugs that may affect calcium or bone metabolism were excluded from the study. Age, associated illness, years since menopause, and body mass index (BMI were obtained from all the patients including the control group. Besides, serum calcium, phosphate, alkaline phosphates, parathyroid hormone, 25 hydroxy D3, osteocalcin, and urinary calcium excretion were measured. BMD was measured by using dual-energy x-ray absorptiometry (DEXA at femoral neck and 3rd lomber spine. Mean duration of statin use was 28.17±21.17 months. BMI was found to be statistically higher in statin users than nonusers (27.47±3.67kg/m2 and 25.46±3.91 kg/m2, respectively. The markers of bone metabolism used in the study were found to be similar between the groups. BMD was not different in statin users and nonusers at femoral neck and lomber spine. As conclusion, statin use did not affect BMD and bone metabolism in this study. In our opinion large randomised, controlled, prospective clinical trials are needed to accurately determine the role of statins in the treatment of osteoporosis.

  20. Identification of 3-hydroxy-3-methylglutaric acid (HMG) as a hypoglycemic principle of Spanish moss (Tillandsia usneoides).

    Science.gov (United States)

    Witherup, K M; McLaughlin, J L; Judd, R L; Ziegler, M H; Medon, P J; Keller, W J

    1995-08-01

    Bioactivity-directed fractionation, using brine shrimp lethality and murine hypoglycemia, of an ethanol extract prepared from Tillandsia usneoides, led to the isolation of four apparently bioactive compounds from the water-soluble fraction. The compounds were identified as citric acid, succinic acid, 3-hydroxy-3-methylglutaric acid (HMG), and 3,6,3',5'-tetramethoxy-5,7,4'-trihydroxyflavone-7-O-beta-D-g lucoside. The brine shrimp lethality of the acids was simply due to acidity; however, HMG elicited significant hypoglycemic responses in fasting normal mice. Ethyl and methyl esters of citric acid were prepared and tested in the murine hypoglycemic assay. Five of the predominant sugars were identified by tlc. Free thymidine was also isolated. Further evaluation of HMG and other potential inhibitors of HMG CoA lyase, in the treatment of symptoms of diabetes mellitus, is suggested.

  1. Genotoxicity evaluation of HMG CoA reductase inhibitor rosuvastatin.

    Science.gov (United States)

    Berber, Ahmet Ali; Celik, Mustafa; Aksoy, Hüseyin

    2014-07-01

    The genotoxic potential of rosuvastatin as one of the statin drugs was assessed by chromosomal aberrations (CAs), micronucleus (MN) and DNA damage by comet assay in the human peripheral blood lymphocytes. Rosuvastatin was used at concentrations of 0.0625, 0.125, 0.25, 0.5 and 1 µg/mL for these in vitro assays. In all assays, a negative and positive control were also included. CA frequencies were significantly increased in all concentrations at 24 hours and significantly increased in all concentrations except 0.0625 µg/mL at 48 hours, compared to the negative control. Rosuvastatin has a decreased mitotic index (MI) at 0.5- and 1-µg/mL concentrations at 24 hours and at 0.25, 0.5 and 1 µg/mL at 48 hours. A significant increase was observed for induction of MN in all treatments, compared to the negative control. Cytokinesis-block proliferation indices were not affected by treatments with rosuvastatin. In the comet assay, significant increases in comet tail length and tail moment were observed at 0.0625-, 0.5- and 1-µg/mL concentrations. Comet intensity was significantly increased in all concentrations except 0.0625 µg/mL. According to these results, rosuvastatin is cytotoxic and clastogenic/aneugenic in human peripheral lymphocytes. Further studies should be conducted in other test systems to evaluate the full genotoxic potential of rosuvastatin.

  2. Hypocholesterolemic mechanism of phenolics-enriched extract from Moringa oleifera leaves in HepG2 cell lines

    Directory of Open Access Journals (Sweden)

    Peera Tabboon

    2016-04-01

    Full Text Available Previous studies have demonstrated the hypolipidemic activity of Moringa oleifera (MO leaves via lowering serum levels of cholesterol, but the mechanism of action is unknown. In this study, we demonstrated the hypocholesterolemic mechanism of a phenolics-enriched extract of Moringa oleifera leaf (PMO in HepG2 cells. When compared to the control treatment, PMO significantly decreased total intracellular cholesterol, inhibited the activity of HMG CoA reductase in a dosedependent manner and enhanced LDL receptor binding activity. Moreover, PMO also significantly increased the genetic expressions of HMG CoA reductase and LDL receptor.

  3. A cost per live birth comparison of HMG and rFSH randomized trials.

    Science.gov (United States)

    Connolly, Mark; De Vrieze, Kathleen; Ombelet, Willem; Schneider, Dirk; Currie, Craig

    2008-12-01

    To help inform healthcare treatment practices and funding decisions, an economic evaluation was conducted to compare the two leading gonadotrophins used for IVF in Belgium. Based on the results of a recently published meta-analysis, a simulated decision tree model was constructed with four states: (i) fresh cycle, (ii) cryopreserved cycle, (iii) live birth and (iv) treatment withdrawal. Gonadotrophin costs were based on highly purified human menopausal gonadotrophin (HP-HMG; Menopur) and recombinant FSH (rFSH) alpha (Gonal-F). After one fresh and one cryopreserved cycle the average treatment cost with HP-HMG was lower than with rFSH (HP-HMG euro3635; rFSH euro4103). The average cost saving per person started on HP-HMG when compared with rFSH was euro468. Additionally, the average costs per live birth of HP-HMG and rFSH were found to be significantly different: HP-HMG euro9996; rFSH euro13,009 (P cost-saving even after key parameters in the model were varied in the probabilistic sensitivity analysis. Treatment with HP-HMG was found to be the dominant treatment strategy in IVF because of improved live birth rates and lower costs. Within a fixed healthcare budget, the cost-savings achieved using HP-HMG would allow for the delivery of additional IVF cycles.

  4. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  5. Potential of tocotrienols in the prevention and therapy of Alzheimer's disease.

    Science.gov (United States)

    Xia, Weiming; Mo, Huanbiao

    2016-05-01

    Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An insight into structural and functional characteristics of 3-hydoxy 3-methyl glutarylCoA reductase from Ocimum species

    Directory of Open Access Journals (Sweden)

    Shilpi Bansal

    2017-10-01

    Full Text Available Secondary metabolites, the biological compounds secreted by plants as an aid to support their growth and development under stress conditions or as a part of their defense mechanism, now hold equal importance for mankind who employs it immensely for medication, flavorings, aroma, etc. Wide applicability of these compounds instigates one to understand the biosynthesis, structure and regulation of these bioactive molecules. Terpenoids form the largest group of secondary metabolites which comprise of a wide range of structurally and functionally distinct metabolites synthesized either via mevalonate pathway or non-mevalonate pathway. Targeting a key regulatory enzyme of this pathway, modulation of which would alter the carbon flux would be beneficial to enhance our knowledge about the above issue. For this the transcriptome (from SRA of different Ocimum species was mined out for important pathway genes using various bioinformatics approaches. Amongst them 3-hydoxy 3-methyl glutaryl CoA reductase (HMGR was selected which is the rate limiting enzyme in mevalonate pathway which controls the conversion of HMG-CoA to mevalonic acid. Isolation, cloning, protein expression, purification, etc. would be discussed in detail in the meeting. Full length protein was also characterized through bioinformatics tools to study its structure, properties, conserved domains, etc. Increase in secondary metabolite production by alteration of HMGR pool along with transcript modulation studies in planta revealed that HMGR gene governs the biosynthesis of secondary metabolites. Transcriptome mapping of different HMGR homologs which on comparison within member of same genus revealed its divergent nature which could account to its multifunctional role in different plants. Besides, providing a deep insight about the enzyme function combination of such molecular, transgenic and bioinformatics tools would help to develop strategies to engineer the HMGR mediated flux and also

  7. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    Science.gov (United States)

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Is it Simvastatin harmful in children? A case report

    Directory of Open Access Journals (Sweden)

    Mara Pisani

    2014-09-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the most common liver disease in children living in Western countries. Hyperlipidemia, obesity and insulin resistance are common components of the metabolic syndrome, which is frequently associated with NAFLD. Since patients with NAFLD are at high risk to develop cardiovascular disease (CVD, statins are frequently prescribed to patients with NAFLD and hyperlipidemia. The 3-Hydroxy-3-methyl-coenzyme A reductase (HMG-CoA reductase is the rate limiting enzyme in cholesterol biosynthesis. Simvastatin is a lactone that is readily hydrolyzed in vivo to the corresponding β-hydroxyacid, a potent inhibitor of HMG-CoA reductase. Under treatment with simvastatin, an improvement of enzymatic antioxidant parameters has been described in subjects with hypercholesterolemia. The safety and effectivity of statins in pediatric patients with NAFLD or non-alcoholic steatohepatitis (NASH, and their effect on hepatic fat infiltration or the extent of hepatic fibrosis are not known. Also, no evidences of the effects of a non therapeutic ingestion of this drug on the glutathione homeostasis and in children have been reported. We describe the case of a obese 4-year-old girl in whom an accidental overdose of simvastatin led to decrease levels of glutathione in blood with increase of the GSSG/GSH ratio. No adverse reactions were registered. All laboratory test were normal during the follow up. Only a 35% decrease of Glutathione was observed  such as a possible mechanism of mithocondrial toxicity and depletion of the glutathione pool after the intake of excessive dose of HMG-CoA reductase inhibitors.  Further  RCTs are needed in order to establish the safety and efficacy to use of statin for pediatric NAFLD or NASH.

  9. A randomized placebo-controlled trial of fluvastatin for prevention of restenosis after successful coronary balloon angioplasty; final results of the fluvastatin angiographic restenosis (FLARE) trial

    NARCIS (Netherlands)

    J. Shepherd; H. Suryapranata (Harry); P.J. Pfister; P.J. de Feyter (Pim); G.A. van Es (Gerrit Anne); R. Melkert (Rein); G. Jackson (Graham); J.J.R.M. Bonnier (Hans); C.M. Miguel (Carlos); M.C. Vrolix (Mathias); A. Branzi (Angelo); P.W.J.C. Serruys (Patrick); D.P. Foley (David)

    1999-01-01

    textabstractBACKGROUND: The 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitors competitively inhibit biosynthesis of mevalonate, a precursor of non-sterol compounds involved in cell proliferation. Experimental evidence suggests that fluvastatin may, independent of

  10. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower propo...

  11. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Justin R. Prigge

    2017-06-01

    Full Text Available Energetic nutrients are oxidized to sustain high intracellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1 disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1 and glutathione reductase (Gsr, respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

  12. Statin-Associated Autoimmune Myopathy: A Systematic Review of 100 Cases.

    Science.gov (United States)

    Nazir, Salik; Lohani, Saroj; Tachamo, Niranjan; Poudel, Dilliram; Donato, Anthony

    2017-04-01

    Statins are a group of drugs that reduce the levels of triglycerides and cholesterol in blood by inhibiting HMG-CoA reductase, an enzyme involved in rate limiting step in cholesterol synthesis. About 2-20% patients on statins develop toxic myopathies, which usually resolve on discontinuation of statin. More recently, an immune-mediated necrotizing myopathy has been found to be associated with statin use which in most cases requires treatment with immunosuppressants. To perform a systematic review on published case reports and case series of statin-associated autoimmune myopathy. A comprehensive search of PUBMED, EMBASE, Cochrane library and ClinicalTrials.gov databases was performed for relevant articles from inception until March 19, 2016 to identify cases of statin-associated necrotizing myopathy and characterize their symptoms, evaluation and response to treatment. A total of 16 articles describing 100 patients with statin-associated autoimmune myopathy were identified. The mean age of presentation was 64.72 years, and 54.44% were males. The main presenting clinical feature was proximal muscle weakness, which was symmetric in 83.33% of patients. The mean creatine kinase (CK) was 6853 IU/l. Anti-HMG-CoA reductase antibody was positive in all cases tested (n = 57/57, 100%). In patients with no anti-HMG-CoA antibody results, diagnosis was established by findings of necrotizing myopathy on biopsy. Among the 83 cases where muscle biopsy information was available, 81.48% had necrosis, while 18.51% had combination of necrosis and inflammation. Most (83.82%) patients received two or more immunosuppressants to induce remission. Ninety-one percent had resolution of symptoms after treatment. Statin-associated necrotizing myopathy is a symmetric proximal muscle weakness associated with extreme elevations of CK. It is common in males and can occur after months of statin use. It is associated with necrosis on muscle biopsy and the presence of anti-HMG-CoA reductase antibodies

  13. Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: A possible role in statin-induced hepatotoxicity?

    International Nuclear Information System (INIS)

    Tavintharan, S.; Ong, C.N.; Jeyaseelan, K.; Sivakumar, M.; Lim, S.C.; Sum, C.F.

    2007-01-01

    Lowering of low-density lipoprotein cholesterol is well achieved by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins). Statins inhibit the conversion of HMG-CoA to mevalonate, a precursor for cholesterol and coenzyme Q10 (CoQ 10 ). In HepG2 cells, simvastatin decreased mitochondrial CoQ 10 levels, and at higher concentrations was associated with a moderately higher degree of cell death, increased DNA oxidative damage and a reduction in ATP synthesis. Supplementation of CoQ 10 , reduced cell death and DNA oxidative stress, and increased ATP synthesis. It is suggested that CoQ 10 deficiency plays an important role in statin-induced hepatopathy, and that CoQ 10 supplementation protects HepG2 cells from this complication

  14. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    Science.gov (United States)

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  15. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  16. PCSK9 genetic variants and risk of type 2 diabetes : a mendelian randomisation study

    NARCIS (Netherlands)

    Schmidt, Amand F.; Swerdlow, Daniel I; Holmes, Michael V; Patel, Riyaz S.; Fairhurst-Hunter, Zammy; Lyall, Donald M; Hartwig, Fernando Pires; Horta, Bernardo Lessa; Hyppönen, Elina; Power, Christine; Moldovan, Max; van Iperen, Erik Pa; Hovingh, G. Kees; Demuth, Ilja; Norman, Kristina; Steinhagen-Thiessen, Elisabeth; Demuth, Juri; Bertram, Lars; Liu, Tian; Coassin, Stefan; Willeit, Johann; Kiechl, Stefan; Willeit, Karin; Mason, Dan; Wright, John; Morris, Richard W; Wanamethee, Goya; Whincup, Peter H; Ben-Shlomo, Yoav; McLachlan, Stela; Price, Jackie F; Kivimaki, Mika; Welch, Catherine; Sanchez-Galvez, Adelaida; Marques-Vidal, Pedro; Nicolaides, Andrew N.; Panayiotou, Andrie G.; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Matullo, Giuseppe; Fiorito, Giovanni; Guarrera, Simonetta; Sacerdote, Carlotta; Wareham, Nicholas J.; Langenberg, Claudia; Scott, Robert A; Luan, Jian'an; Bobak, Martin; Malyutina, Sofia; Pająk, Andrzej; Kubinova, Ruzena; Tamosiunas, Abdonas; Pikhart, Hynek; Husemoen, Lise Lotte Nystrup; Grarup, Niels; Pedersen, Oluf; Hansen, Torben; Linneberg, Allan; Simonsen, Kenneth Starup; Cooper, Jackie A; Humphries, Steve E; Brilliant, Murray H; Kitchner, Terrie; Hakonarson, Hakon; Carrell, David S; McCarty, Catherine A; Kirchner, H Lester; Larson, Eric B; Crosslin, David R; de Andrade, Mariza; Roden, Dan M; Denny, Joshua C; Carty, Cara; Hancock, Stephen; Attia, John; Holliday, Elizabeth G.; O'Donnell, Martin; Yusuf, Salim; Chong, Michael; Pare, Guillaume; van der Harst, Pim; Said, M Abdullah; Eppinga, Ruben N; Verweij, Niek; Snieder, Harold; Christen, Tim; Mook-Kanamori, Dennis O; Gustafsson, Stefan; Lind, Lars; Ingelsson, Erik; Pazoki, Raha; Franco, Oscar H.; Hofman, Albert; Uitterlinden, Andre G.; Dehghan, Abbas; Teumer, Alexander; Baumeister, Sebastian; Dörr, Marcus; Lerch, Markus M; Völker, Uwe; Völzke, Henry; Ward, Joey; Pell, Jill P; Smith, Daniel J; Meade, Tom; Maitland-van der Zee, Anke H; Baranova, Ekaterina V; Young, Robin; Ford, Ian; Campbell, Archie; Padmanabhan, Sandosh; Bots, Michiel L.; Grobbee, Diederick E; Froguel, Philippe; Thuillier, Dorothée; Balkau, Beverley; Bonnefond, Amélie; Cariou, Bertrand; Smart, Melissa; Bao, Yanchun; Kumari, Meena; Mahajan, Anubha; Ridker, Paul M; Chasman, Daniel I; Reiner, Alex P; Lange, Leslie A; Ritchie, Marylyn D; Asselbergs, Folkert W; Casas, Juan Pablo; Keating, Brendan J; Preiss, David; Hingorani, Aroon D; Sattar, Naveed

    BACKGROUND: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2

  17. PCSK9 genetic variants and risk of type 2 diabetes: A mendelian randomisation study

    NARCIS (Netherlands)

    Schmidt, A.F. (Amand F.); D.I. Swerdlow (Daniel); M.V. Holmes (Michael); R.S. Patel (Riyaz); Fairhurst-Hunter, Z. (Zammy); Lyall, D.M. (Donald M.); Hartwig, F.P. (Fernando Pires); Horta, B.L. (Bernardo Lessa); E. Hypponen (Elina); C. Power (Christopher); Moldovan, M. (Max); E.P.A. van Iperen (Erik); G. Kees Hovingh; I. Demuth (Ilja); Norman, K. (Kristina); E. Steinhagen-Thiessen (Elisabeth); Demuth, J. (Juri); L. Bertram (Lars); Liu, T. (Tian); S. Coassin (Stefan); J. Willeit (Johann); S. Kiechl (Stefan); Willeit, K. (Karin); Mason, D. (Dan); J. Wright (Juliet); R. Morris (Richard); Wanamethee, G. (Goya); P.H. Whincup (Peter); Y. Ben-Shlomo; S. McLachlan (Stela); J.F. Price (Jackie F.); M. Kivimaki (Mika); Welch, C. (Catherine); Sanchez-Galvez, A. (Adelaida); P. Marques-Vidal (Pedro); A.N. Nicolaides (Andrew); A.G. Panayiotou (Andrie); Onland-Moret, N.C. (N Charlotte); Y.T. van der Schouw (Yvonne); G. Matullo; Fiorito, G. (Giovanni); S. Guarrera (Simonetta); C. Sacerdote (Carlotta); N.J. Wareham (Nick); C. Langenberg (Claudia); Scott, R. (Robert); Luan, J. (Jian'an); M. Bobak (Martin); S. Malyutina; Pajak, A. (Andrzej); R. Kubinova; A. Tamosiunas (Abdonas); H. Pikhart (Hynek); L.L.N. Husemoen (Lise Lotte); N. Grarup (Niels); O. Pedersen (Oluf); T. Hansen (T.); A. Linneberg (Allan); Simonsen, K.S. (Kenneth Starup); J. Cooper (Jim); S.E. Humphries (Steve); M.H. Brilliant (Murray H.); T.E. Kitchner (Terrie E.); H. Hakonarson (Hakon); D.S. Carrell (David); McCarty, C.A. (Catherine A.); Kirchner, H.L. (H Lester); E.B. Larson (Eric B.); D.R. Crosslin (David); de Andrade, M. (Mariza); Roden, D.M. (Dan M.); J.C. Denny (Joshua C.); C. Carty (Cara); Hancock, S. (Stephen); J. Attia (John); E.G. Holliday (Elizabeth); Donnell, M.O.'. (Martin O'); Yusuf, S. (Salim); Chong, M. (Michael); G. Pare (Guillame); P. van der Harst (Pim); Said, M.A. (M Abdullah); Eppinga, R.N. (Ruben N.); N. Verweij (Niek); H. Snieder (Harold); Christen, T. (Tim); D.O. Mook-Kanamori (Dennis); S. Gustafsson (Stefan); W.H.L. Kao (Wen); E. Ingelsson (Erik); Pazoki, R. (Raha); O.H. Franco (Oscar); A. Hofman (Albert); A.G. Uitterlinden (André); A. Dehghan (Abbas); A. Teumer (Alexander); S.E. Baumeister (Sebastian); M. Dörr (Marcus); Lerch, M.M. (Markus M.); U. Völker (Uwe); H. Völzke (Henry); Ward, J. (Joey); J.P. Pell (Jill P.); Smith, D.J. (Daniel J.); Meade, T. (Tom); A-H. Maitland-van der Zee (Anke-Hilse); Baranova, E.V. (Ekaterina V.); Young, R. (Robin); I. Ford (Ian); A. Campbell (Archie); S. Padmanabhan (Sandosh); M.L. Bots (Michiel); Grobbee, D.E. (Diederick E.); P. Froguel (Philippe); D. Thuillier (Dorothee); B. Balkau (Beverley); A. Bonnefond (Amélie); Cariou, B. (Bertrand); Smart, M. (Melissa); Bao, Y. (Yanchun); M. Kumari (Meena); A. Mahajan (Anubha); P.M. Ridker (Paul); D.I. Chasman (Daniel I.); A. Reiner (Alexander); L.A. Lange (Leslie); M.D. Ritchie (Marylyn D.); F.W. Asselbergs (Folkert); J.P. Casas (Juan); J. Keating (John); Preiss, D. (David); A. Hingorani (Aroon); N. Sattar (Naveed)

    2016-01-01

    textabstractBackground: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of

  18. PCSK9 genetic variants and risk of type 2 diabetes : A mendelian randomisation study

    NARCIS (Netherlands)

    Schmidt, Amand F.; Swerdlow, Daniel I.; Holmes, Michael V.; Patel, Riyaz S.; Fairhurst-Hunter, Zammy; Lyall, Donald M.; Hartwig, Fernando Pires; Horta, Bernardo Lessa; Hyppönen, Elina; Power, Christine; Moldovan, Max; van Iperen, Erik; Hovingh, G. Kees; Demuth, Ilja; Norman, Kristina; Steinhagen-Thiessen, Elisabeth; Demuth, Juri; Bertram, Lars; Liu, Tian; Coassin, Stefan; Willeit, Johann; Kiechl, Stefan; Willeit, Karin; Mason, Dan; Wright, John; Morris, Richard; Wanamethee, Goya; Whincup, Peter; Ben-Shlomo, Yoav; McLachlan, Stela; Price, Jackie F.; Kivimaki, Mika; Welch, Catherine; Sanchez-Galvez, Adelaida; Marques-Vidal, Pedro; Nicolaides, Andrew; Panayiotou, Andrie G.; Onland-Moret, N. Charlotte; van der Schouw, Yvonne T.; Matullo, Giuseppe; Fiorito, Giovanni; Guarrera, Simonetta; Sacerdote, Carlotta; Wareham, Nicholas J.; Langenberg, Claudia; Scott, Robert; Luan, Jian'an; Bobak, Martin; Malyutina, Sofia; Pajak, Andrzej; Kubinova, Ruzena; Tamosiunas, Abdonas; Pikhart, Hynek; Husemoen, Lise Lotte Nystrup; Grarup, Niels; Pedersen, Oluf; Hansen, Torben; Linneberg, Allan; Simonsen, Kenneth Starup; Cooper, Jackie; Humphries, Steve E.; Brilliant, Murray; Kitchner, Terrie; Hakonarson, Hakon; Carrell, David S.; McCarty, Catherine A.; Kirchner, H. Lester; Larson, Eric B.; Crosslin, David R.; de Andrade, Mariza; Roden, Dan M.; Denny, Joshua C.; Carty, Cara; Hancock, Stephen; Attia, John; Holliday, Elizabeth; Donnell, Martin O.; Yusuf, Salim; Chong, Michael; Pare, Guillaume; van der Harst, Pim; Said, M. Abdullah; Eppinga, Ruben N.; Verweij, Niek; Snieder, Harold; Christen, Tim; Mook-Kanamori, Dennis O.; Gustafsson, Stefan; Lind, Lars; Ingelsson, Erik; Pazoki, Raha; Franco, Oscar; Hofman, Albert; Uitterlinden, Andre; Dehghan, Abbas; Teumer, Alexander; Baumeister, Sebastian; Dörr, Marcus; Lerch, Markus M.; Völker, Uwe; Völzke, Henry; Ward, Joey; Pell, Jill P.; Smith, Daniel J.; Meade, Tom; Maitland-van der Zee, Anke H.; Baranova, Ekaterina V.; Young, Robin; Ford, Ian; Campbell, Archie; Padmanabhan, Sandosh; Bots, Michiel L.; Grobbee, Diederick E.; Froguel, Philippe; Thuillier, Dorothée; Balkau, Beverley; Bonnefond, Amélie; Cariou, Bertrand; Smart, Melissa; Bao, Yanchun; Kumari, Meena; Mahajan, Anubha; Ridker, Paul M.; Chasman, Daniel I.; Reiner, Alex P.; Lange, Leslie A.; Ritchie, Marylyn D.; Asselbergs, Folkert W.; Casas, Juan Pablo; Keating, Brendan J.; Preiss, David; Hingorani, Aroon D.; Sattar, Naveed

    BACKGROUND: Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2

  19. Investigation of Solid Dispersion of Atorvastatin Calcium in ...

    African Journals Online (AJOL)

    ATC), a poorly watersoluble 3-hydroxy 3-methyl glutaryl CoA (HMG-CoA) reductase inhibitor, by a solid dispersion technique using polyethylene glycol 6000 (PEG 6000) or polyvinylpyrrolidone k30 (PVP K30). Methods: The solid dispersions were ...

  20. Optimization, Validation and Application of Spectrophotometric ...

    African Journals Online (AJOL)

    ... 3Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071, ... Methods: Spectrophotometric HMG-CoA reductase detection in male Wistar ... protein expression in various regulatory ... reagents were analytical grade.

  1. Enzymes involved in cholesterol homeostasis in outer vs inner cortices of the guinea pig adrenal

    International Nuclear Information System (INIS)

    Brody, R.I.

    1988-01-01

    Adrenocortical cells require cholesterol for steroid hormone synthesis. Intracellular free cholesterol levels are maintained by the actions of three key enzymes: HMG CoA reductase, a rate limiting enzyme of cholesterol biosynthesis, acyl CoA:cholesterol acyltransferase (ACAT), which esterifies cholesterol to fatty acids, and cholesterol ester hydrolase (CEH), which releases stored cholesterol by clearing the ester bond. The guinea pig adrenal cortex, which can be separated into a lipid-rich outer zone and a lipid-poor inner zone, provides a good model in which to determine whether the morphological differences in these regions correlate with functional distinctions in enzymes of cholesterol homeostasis. These studies have shown that there are great differences in these enzymes in the outer and inner zones of the guinea pig adrenal cortex. The cholesterol-rich outer zone possesses greater activities of ACAT and CEH than the inner zone, and, in untreated animals, these enzymes are nearly maximally stimulated. Both zones had substantial levels of HMG CoA reductase, as measured by enzyme assay and ELISA, and these levels increased following ACTH stimulation. However, only the outer zone incorporated 14 C-acetate into steroids and cholesterol to any great degree in vitro, and only in this zone was incorporation increased following incubation of cultures with ACTH. The discrepancies between HMG CoA reductase levels and 14 C-acetate incorporation in the inner zone indicate that cholesterol synthesis must be regulated differently in this zone

  2. Study of HMG-CoA Reductase Inhibition Activity of the Hydrolyzed Product of Snakehead Fish (Channa striata) Skin Collagen with 50 kDa Collagenase from Bacillus licheniformis F11.4.

    Science.gov (United States)

    Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent.

  3. Human Mitochondrial HMG-CoA Synthase Deficiency: Role of Enzyme Dimerization Surface and Characterization of Three New Patients

    Directory of Open Access Journals (Sweden)

    Beatriz Puisac

    2018-03-01

    Full Text Available Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency (mitochondrial HMG-CoA synthase deficiency or mHS deficiency, OMIM #605911 is an inborn error of metabolism that affects ketone body synthesis. Acute episodes include vomiting, lethargy, hepatomegaly, hypoglycemia and dicarboxylic aciduria. The diagnosis is difficult due to the relatively unspecific clinical and biochemical presentation, and fewer than 30 patients have been described. This work describes three new patients with mHS deficiency and two missense mutations c.334C>T (p.R112W and c.430G>T (p.V144L previously not reported. We developed a new method to express and measure the activity of the enzyme and in this work the study is extended to ten new missense variants including those of our patients. Enzymatic assays showed that three of the mutant proteins retained some but seven completely lacked activity. The identification of a patient homozygous for a mutation that retains 70% of enzyme activity opens the door to a new interpretation of the disease by demonstrating that a modest impairment of enzyme function can actually produce symptoms. This is also the first study employing molecular dynamics modelling of the enzyme mutations. We show that the correct maintenance of the dimerization surface is crucial for retaining the structure of the active center and therefore the activity of the enzyme.

  4. The 21st century form of vitamin E--tocotrienol.

    Science.gov (United States)

    Bardhan, Jayeeta; Chakraborty, Runu; Raychaudhuri, Utpal

    2011-01-01

    Vitamin E family constitutes of tocopherol and tocotrienol. Each form has several isomers: alpha,beta, gamma, delta, desmo and didesmo. Although tocopherol is known much earlier, tocotrienol has been discovered more recently.Tocotrienol has higher antioxidant potential than tocopherol. Research shows that tocotrienol can inhibit the induced oxidative damage to lipids and proteins. Cholesterol biosynthesis pathway requires HMG Co A reductase. Tocotrienol degrades HMG Co A reductase protein and in turn lowers cholesterol synthesis. Tocotrienol can reverse ischemia-reperfusion which mediates cardiac dysfunction and induces c-Src protein expression. Tocotrienol prevents oxytosis and offers protection against Alzheimer's disease, Parkinson's disease, Hungtington's disease. Tocotrienol exerts anticancer property through cell cycle arrest, induction of apoptosis, inhibition of angiogenesis; antitumor activity. Tocotrienol also possesses anti-inflammatory, antidiabetic, antiadipogenic and antiatherogenic effect.

  5. In Silico and Wet Lab Studies Reveal the Cholesterol Lowering Efficacy of Lauric Acid, a Medium Chain Fat of Coconut Oil.

    Science.gov (United States)

    Lekshmi Sheela, Devi; Nazeem, Puthiyaveetil Abdulla; Narayanankutty, Arunaksharan; Manalil, Jeksy Jos; Raghavamenon, Achuthan C

    2016-12-01

    The coconut oil (CO) contains 91 % of saturated fatty acids in which 72 % are medium chain fatty acids (MCFAs) like lauric, capric and caprylic acids. In contrast to animal fat, coconut oil has no cholesterol. Despite this fact, CO is sidelined among other vegetable oils due to the health hazards attributed to the saturated fatty acids. Though various medicinal effects of CO have been reported including the hypolipidemic activity, people are still confused in the consumption of this natural oil. In silico analyses and wet lab experiments have been carried out to identify the hypolipidemic properties of MCFAs and phenolic acids in CO by using different protein targets involved in cholesterol synthesis. The molecular docking studies were carried out using CDOCKER protocol in Accelery's Discovery Studio, by taking different proteins like HMG- CoA reductase and cholesterol esterase as targets and the different phytocompounds in coconut as ligands. Molecular docking highlighted the potential of lauric acid in inhibiting the protein targets involved in hyperlipidemics. Further, validation of in silico results was carried out through in vivo studies. The activity of key enzymes HMG- CoA reductase and lipoprotein lipase were found reduced in animals fed with lauric acid and CO.

  6. Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    National Research Council Canada - National Science Library

    Archer, Michael

    2000-01-01

    ...) can be accounted for by their inhibitory effect on the cholesterol biosynthesis (mevalonate) pathway. In Task 1, we have shown that the decrease in mammary gland HMG-CoA reductase seen in LDL-R -/- mice compared...

  7. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.

    Science.gov (United States)

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-10-01

    Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

  8. Alcohol depletes coenzyme-Q10 associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells

    International Nuclear Information System (INIS)

    Vidyashankar, Satyakumar; Nandakumar, Krishna S.; Patki, Pralhad S.

    2012-01-01

    Highlights: ► Ethanol induced cytotoxicity in HepG2 cells in absence of lipogenesis. ► Ethanol inhibited HMG-CoA reductase activity. ► Ethanol induced HMG-CoA reductase inhibition is due to decreased cell viability. ► Incubation with mevalonate could not increase the cholesterol. ► Cytotoxicity brought about by CoQ10 depletion and increased TNF-alpha. -- Abstract: Alcohol consumption has been implicated to cause severe hepatic steatosis which is mediated by alcohol dehydrogenase (ADH) activity and CYP 450 2E1 expression. In this context, the effect of ethanol was studied for its influence on lipogenesis in HepG2 cell which is deficient of ADH and does not express CYP 450 2E1. The results showed that ethanol at 100 mM concentration caused 40% cytotoxicity at 72 h as determined by MTT assay. The incorporation of labeled [2- 14 C] acetate into triacylglycerol and phospholipid was increased by 40% and 26% respectively upon 24 h incubation, whereas incorporation of labeled [2- 14 C] acetate into cholesterol was not significantly increased. Further, ethanol inhibited HMG-CoA reductase which is a rate-limiting enzyme in the cholesterol biosynthesis. It was observed that, HMG-CoA reductase inhibition was brought about by ethanol as a consequence of decreased cell viability, since incubation of HepG2 cells with mevalonate could not increase the cholesterol content and increase the cell viability. Addition of ethanol significantly increased TNF-alpha secretion and depleted mitochondrial coenzyme-Q 10 which is detrimental for cell viability. But vitamin E (10 mM) could partially restore coenzyme-Q 10 and glutathione content with decreased TNF-alpha secretion in ethanol treated cells. Further, lipid peroxidation, glutathione peroxidase and superoxide dismutase enzyme activities remained unaffected. Ethanol decreased glutathione content while, GSH/GSSG ratio was significantly higher compared to other groups showing cellular pro-oxidant and antioxidant balance remained

  9. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Elmelund-Præstekær, Louise Cathrine Braun; Kurth, Caroline

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  10. ;:::,!,lj

    African Journals Online (AJOL)

    The potential effect of the ... coenzyme A (HMG-CoA) reductase inhibitors, drugs which have been shown to be .... The Ras family of small GTP-binding proteins act as important ... Defects in this switching mechanism give rise to disease.

  11. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, Andrea; Flores, Carmen-Lisset

    2004-01-01

    3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial and eu...

  12. CoQ10 and L-carnitine for statin myalgia?

    Science.gov (United States)

    DiNicolantonio, James J

    2012-10-01

    Statins are a standard of care in many clinical settings such as acute myocardial infarction and for patients having or at risk of cardiovascular (CV) disease. This is based on a plethora of data showing reductions in CV events and mortality. The CV benefit of statins can be partly explained by their ability to inhibit of HMG-CoA reductase, which subsequently lowers cholesterol and decreases the formation of mevalonate. However, the inhibition of the mevalonate pathway decreases the formation of coenzyme Q10 (CoQ10) within the body. It has been a long-standing theory that statin-associated muscle pain (myalgia) is caused, or at least partly contributed by, a reduction in CoQ10 levels in muscle mitochondria. One of the main side effects of statins is myalgia, which causes the patient to either stop their statin or significantly reduce the dose of their statin. The question of whether CoQ10 can help treat statin myopathy is a common one encountered by clinicians in current day practice.

  13. Characterization of developmental and stress mediated expression of cinnamoyl-CoA reductase (CCR) in kenaf (Hibiscus cannabinus L.)

    Science.gov (United States)

    Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L.), which contains a 1,020-bp open reading frame (ORF), enco...

  14. Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins.

    Science.gov (United States)

    Banfi, Cristina; Baetta, Roberta; Gianazza, Erica; Tremoli, Elena

    2017-06-01

    Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Review of the Effective Factors for Lovastatin Production by Aspergillus Terreus Atcc 20542 in Liquid Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    F Jaberi Ansari

    2016-12-01

    Full Text Available BACKGROUND AND OBJECTIVE: Deposition of cholesterol in the arteries is the one of the main causes of cardiovascular disease. Lovastatin is a blood cholesterol-lowering drug that inhibits 3-Hydroxy 3-methyl glutaryl-CoA reductase (HMG-CoA reductase enzyme. The aim of this study was to evaluate the effective factors for lovastatin production by Aspergillus terreus ATCC 20542. METHODS: This study is a literature review, In order to gather information, articles containing one of the words in their text, including: Cardiovascular disease, Lovastatin, HMG-CoA reductase, Liquid submerged fermentation, Aspergillus terreus were searched between 1960 and 2016 in PUBMED, NATURE, SCIENCE DIRECT and WHO databases. FINDINGS: A total of 180 papers found that of these, 70 were diagnosed article suitable for this study. According to the results, lactose as the best carbon source, soya been and yeast extract as the nitrogen source, C/N ratio of 41.3, the 107 spores/ml, the pH equal to 6.5, Fe, Zn, Mn as mineral elements and inducer such as linoleic acid at a optimum concentration causes the highest amount of lovastatin. CONCLUSION: The study shows, the source of carbon and nitrogen, the C/N, the amount and type of inoculation, pH, minerals and inducer are the most important factors affecting the morphology and oxygen uptake by the, Aspergillus terreus and hence also affect the production of lovastatin

  16. Effect of statin use on mobility disability and its prevention in at-risk older adults: the LIFE study

    Science.gov (United States)

    BACKGROUND: HMG-CoA reductase inhibitors (statins) are among the most commonly prescribed classes of medications. Although their cardiovascular benefits and myalgia risks are well documented, their effects on older adults initiating an exercise training program are less understood. METHODS: 1,635 s...

  17. Current and future pharmacologic options for the management of patients unable to achieve low-density lipoprotein-cholesterol goals with statins

    NARCIS (Netherlands)

    El Harchaoui, Karim; Akdim, Fatima; Stroes, Erik S. G.; Trip, Mieke D.; Kastelein, John J. P.

    2008-01-01

    Low-density lipoprotein-cholesterol (LDL-C) lowering is the mainstay of the current treatment guidelines in the management of cardiovascular risk. HMG-CoA reductase inhibitors (statins) are Currently the most effective LDL-C-lowering drugs. However, a substantial number of patients do not reach

  18. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  19. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  20. An economic evaluation of highly purified HMG and recombinant FSH based on a large randomized trial.

    Science.gov (United States)

    Wechowski, Jaroslaw; Connolly, Mark; McEwan, Philip; Kennedy, Richard

    2007-11-01

    Public funding for IVF is increasingly being challenged by health authorities in an attempt to minimize health service costs. In light of treatment rationing, the need to consider costs in relation to outcomes is paramount. To assess the cost implications of gonadotrophin treatment options, an economic evaluation comparing highly purified human menopausal gonadotrophin (HP-HMG) and recombinant FSH (rFSH) has been conducted. The analysis is based on individual patient data from a large randomized controlled trial (n = 731) in a long agonist IVF protocol. The economic evaluation uses a discrete event simulation model to assess treatment costs in relation to live births for both treatments based on published UK costs. After one cycle the mean costs per IVF treatment for HP-HMG and rFSH were pound2396 (95% CI pound2383-2414) and pound2633 ( pound2615-2652), respectively. The average cost-saving of pound237 per IVF cycle using HP-HMG allows one additional cycle to be delivered for every 10 cycles. With maternal and neonatal costs applied, the median cost per IVF baby delivered with HP-HMG was pound8893 compared with pound11,741 for rFSH (P cost-saving potential of HP-HMG in IVF was still apparent after varying critical cost parameters in the probabilistic sensitivity analysis.

  1. Methods for providing intermediates in the synthesis of atorvastatin.

    NARCIS (Netherlands)

    Dömling, Alexander Stephan Siegfried

    2016-01-01

    The invention relates to the field of medicinal chemistry, In particular, it relates to methods for providing intermediates in the synthesis of Atorvastatin, a competitive inhibitor of HMG-Co A reductase. Provided is a process for providing a compound having a Formula (I) or a pharmaceutically

  2. Antihyperlipidemic effect of Scoparia dulcis (sweet broomweed) in streptozotocin diabetic rats.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan

    2006-01-01

    We have investigated Scoparia dulcis, an indigenous plant used in Ayurvedic medicine in India, for its possible antihyperlipidemic effect in rats with streptozotocin-induced experimental diabetes. Oral administration of an aqueous extract of S. dulcis plant (200 mg/kg of body weight) to streptozotocin diabetic rats for 6 weeks resulted in a significant reduction in blood glucose, serum and tissue cholesterol, triglycerides, free fatty acids, phospholipids, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and very low-density lipoprotein and low-density lipoprotein cholesterol levels. The decreased serum high-density lipoprotein cholesterol, anti-atherogenic index, and HMG-CoA reductase activity in diabetic rats were also reversed towards normalization after the treatment. Similarly, the administration of S. dulcis plant extract (SPEt) to normal animals resulted in a hypolipidemic effect. The effect was compared with glibenclamide (600 microg/kg of body weight). The results showed that SPEt had antihyperlipidemic action in normal and experimental diabetic rats in addition to its antidiabetic effect.

  3. Risk Factor for Diabetes Mellitus and High Blood Glucose With HMG-CoA Reductase Inhibitors Using a Postmarketing Surveillance Database in Japan.

    Science.gov (United States)

    Hashiguchi, Masayuki; Maruyama, Junya; Shimizu, Mikiko; Takahashi, Daichi; Shiga, Tsuyoshi

    2018-02-20

    To investigate whether 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor (statin) use is associated with an increased risk of diabetes mellitus and hyperglycemia, we performed a nested case-control study using a postmarketing surveillance database in Japan. The database cohort included 26,849 cases of statin use and 5308 cases of other lipid-lowering drug use in patients with hyperlipidemia. Participants received at least 1 type of statin, had a clear medication history of statin use, and had no complications of diabetes mellitus. Cases were defined as onset of diabetes mellitus or hyperglycemia during statin intake. For each case, 20 controls were randomly selected and matched by time point. The factors associated with an increased risk of diabetes mellitus and hyperglycemia during statin intake examined included sex, age, body mass index, statin use duration, complications, concomitant medication, and clinical laboratory tests. Statin-associated diabetes mellitus or hyperglycemia was identified based on abnormal elevation of blood glucose concentrations beyond the reference range. A total of 19,868 patients met the inclusion criteria, of whom 24 were patients in the case group. Two complicating factors, fatty liver (adjusted odds ratio 16.10) and hyperuricemia (adjusted odds ratio 28.96), were extracted for onset of diabetes mellitus or hyperglycemia. Nonalcoholic fatty liver was associated with diabetes mellitus, obesity, and insulin resistance, and hyperuricemia was associated with lifestyle. This study suggested that the onset of diabetes mellitus or hyperglycemia might be increased with statin use in patients with complications of fatty liver and hyperuricemia. © 2018, The American College of Clinical Pharmacology.

  4. Entendendo o processo químico de bioativação da sinvastatina por métodos experimentais e computacionais: uma aula prática

    Directory of Open Access Journals (Sweden)

    Maurício Temotheo Tavares

    2016-05-01

    Full Text Available Cholesterol is a lipid which in high concentration can be an important risk factor for coronary diseases and atherosclerotic lesions. This lipid presents an endogenous biosynthesis that involves several steps; one of them is modulated by the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase. HMG-CoA reductase is inhibited by statins, such as simvastatin, in order to reduce seric become active. The structure of simvastatin has a lactone ring that undergoes enzymatic hydrolysis giving the 3,5-dihydroxy-heptanoate metabolite. This group is essential for simvastatin antilipemic activity, but significantly increases their water solubility. Make students understand the influence of chemical groups and organic functions on physicochemical properties and pharmacokinetic profiles of drugs, as simvastatin, is not an easy task. In this context, combine practical strategies and theoretical presentations of the concepts involved on drug biotransformation certainly could improve the teaching learning process. This manuscript correlates organic strategies and in silico techniques throught simvastatin hydrolysis followed by comparative ClogP measurement. This approach intends to allow students to have contact with a cross-platform and multidisciplinary learning, making it ludic, easier and more interesting than theoretical classes.

  5. Lovastatin in Aspergillus terreus: fermented rice straw extracts interferes with methane production and gene expression in Methanobrevibacter smithii.

    Science.gov (United States)

    Faseleh Jahromi, Mohammad; Liang, Juan Boo; Ho, Yin Wan; Mohamad, Rosfarizan; Goh, Yong Meng; Shokryazdan, Parisa; Chin, James

    2013-01-01

    Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3 methyl glutaryl CoA) reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE) can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen). By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P < 0.01) the expression of HMG-CoA reductase gene (hmg). In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants.

  6. Lovastatin in Aspergillus terreus: Fermented Rice Straw Extracts Interferes with Methane Production and Gene Expression in Methanobrevibacter smithii

    Directory of Open Access Journals (Sweden)

    Mohammad Faseleh Jahromi

    2013-01-01

    Full Text Available Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3methyl glutaryl CoA reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen. By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P<0.01 the expression of HMG-CoA reductase gene (hmg. In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants.

  7. Statin-Associated Side Effects.

    Science.gov (United States)

    Thompson, Paul D; Panza, Gregory; Zaleski, Amanda; Taylor, Beth

    2016-05-24

    Hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are well tolerated, but associated with various statin-associated symptoms (SAS), including statin-associated muscle symptoms (SAMS), diabetes mellitus (DM), and central nervous system complaints. These are "statin-associated symptoms" because they are rare in clinical trials, making their causative relationship to statins unclear. SAS are, nevertheless, important because they prompt dose reduction or discontinuation of these life-saving mediations. SAMS is the most frequent SAS, and mild myalgia may affect 5% to 10% of statin users. Clinically important muscle symptoms, including rhabdomyolysis and statin-induced necrotizing autoimmune myopathy (SINAM), are rare. Antibodies against HMG-CoA reductase apparently provoke SINAM. Good evidence links statins to DM, but evidence linking statins to other SAS is largely anecdotal. Management of SAS requires making the possible diagnosis, altering or discontinuing the statin treatment, and using alternative lipid-lowering therapy. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. A comparative study of efficacy of atorvastatin, rosuvastatin, and atorvastatin + fibrates as lipid lowering agents

    OpenAIRE

    Karunasree Nagarur; Yamini Vadlamannati; Narasimha Rao Raja

    2016-01-01

    Background: Hypercholesterolemia patients are at high risk of coronary heart disease. National cholesterol education programme (NCEP) Adult Treatment Panel III guidelines provide the option of aggressively lowering Low-density cholesterol in them. Presently the standard therapy of hypercholesterolemia is by HMG co-A reductase inhibitors. Present study shows that Rosuvastatin is better than Atorvastatin, Atorvastatin and Fibrate is better than Atorvastatin monotherapy in management of hypercho...

  9. High mobility group protein number17 cross-links primarily to histone H2A in the reconstituted HMG 17 - nucleosome core particle complex

    International Nuclear Information System (INIS)

    Cook, G.R.; Yau, P.; Yasuda, H.; Traut, R.R.; Bradbury, E.M.

    1986-01-01

    The neighbor relationship of lamb thymus High Mobility Group (HMG) protein 17 to native HeLa nucleosome core particle histones in the reconstituted complex has been studied. 125 I-labeled HMG 17 was cross-linking to core histones using the protein-protein cross-linking reagent 2-iminothiolane. Specific cross-linked products were separated on a two-dimensional Triton-acid-urea/SDS gel system, located by autoradiography, excised and quantified. Disulfide bonds in the cross links were then cleaved and the protein constituents were identified by SDS gel electrophoresis. HMG 17 cross-linked primarily to histone H2A while lower levels of cross-linking occurred between HMG 17 and the other histones. In contrast, cross-linking between two HMG 17 molecules bound on the same nucleosome was relatively rare. It is concluded that the same nucleosome was relatively rare. It is concluded that H2A comprises part of the HMG 17 binding site but that HMG 17 is sufficiently elongated and mobile to permit cross-linking to the other histones and to a second HMG 17 molecule. These results are in agreement with the current model for the structure of the nucleosome and the proposed binding sites for HMG 17

  10. 14CO2-fixation and nitrate reductase activity in vivo in relation to hybrid vigour in maize

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Shanthakumari, P.; Sinha, S.K.

    1977-01-01

    Dry matter accumulation in maize shoots, leaf area, 14 CO 2 -fixation and nitrate reductase activity in vivo were measured in the field grown heterotic hybrid CM 400x CM 300 and its inbred parents CM 300 and CM 400 from seedling to maturity. Rates of dry matter accumulation and leaf area development were higher in the hybrid during the initial vegetative phase than in the inbreds. The hybrid had more absolute level of 14 CO 2 -fixation and nitrate reductase activity, although the rates of these processes on unit weight basis were not higher than those of inbreds. It is concluded that the rapid development of leaf area in hybrids during the early stages of vegetative growth is probably important for hybrid vigour. (author)

  11. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  12. Differential effects of amlodipine and atorvastatin treatment and their combination on atherosclerosis in ApoE*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Delsing, D.J.; Jukema, J.W.; van de Wiel, M.A.; Emeis, J.; van der Laarse, A.; Havekes, L.M.; Princen, H.M.G.

    2003-01-01

    This study was designed to investigate the potential antiatherosclerotic effects of the calcium antagonist amlodipine as compared with the HMG-CoA reductase inhibitor atorvastatin and the combination of both in ApoE*3-Leiden transgenic mice. Four groups of 15 ApoE*3-Leiden mice were put on a

  13. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence and cellular fitness

    Directory of Open Access Journals (Sweden)

    Zheng eWang

    2013-12-01

    Full Text Available Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA has been demonstrated to increase stress resistance, persistence and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly repressed in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  14. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness.

    Science.gov (United States)

    Wang, Zheng; Lin, Baochuan; Mostaghim, Anahita; Rubin, Robert A; Glaser, Evan R; Mittraparp-Arthorn, Pimonsri; Thompson, Janelle R; Vuddhakul, Varaporn; Vora, Gary J

    2013-01-01

    Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA) has been demonstrated to increase stress resistance, persistence, and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism, and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia, and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid, and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly less abundant in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.

  15. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge

    OpenAIRE

    Elam, Marshall B.; Majumdar, Gipsy; Mozhui, Khyobeni; Gerling, Ivan C.; Vera, Santiago R.; Fish-Trotter, Hannah; Williams, Robert W.; Childress, Richard D.; Raghow, Rajendra

    2017-01-01

    Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate change...

  16. Cloning and analysis of an HMG gene from the lamprey Lampetra fluviatilis

    DEFF Research Database (Denmark)

    Sharman, A C; Hay-Schmidt, Anders; Holland, P W

    1997-01-01

    Evolution has shaped the organisation of vertebrate genomes, including the human genome. To shed further light on genome history, we have cloned and analysed an HMG gene from lamprey, representing one of the earliest vertebrate lineages. Genes of the HMG1/2 family encode chromosomal proteins...

  17. Membrane remodeling, an early event in benzo[α]pyrene-induced apoptosis

    International Nuclear Information System (INIS)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence; Catheline, Daniel; Sergent, Odile; Rioux, Vincent; Legrand, Philippe; Holme, Jorn A.; Dimanche-Boitrel, Marie-Therese; Lagadic-Gossmann, Dominique

    2010-01-01

    Benzo[α]pyrene (B[α]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[α]P-induced apoptotic process. In this study, we report that B[α]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[α]P exposure. B[α]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[α]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[α]P-related H 2 O 2 formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[α]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[α]P altered the composition of plasma membrane microstructures through AhR and H 2 O 2 dependent-regulation of lipid biosynthesis. In F258 cells, the B[α]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.

  18. A 6-month trial of simvastatin (HMG-CoA reductase inhibitor) in the ...

    African Journals Online (AJOL)

    1991-06-01

    Jun 1, 1991 ... minations the neutral fat kit, also from Boehringer Mannheim, was used. ..... burn, abdominal discomfort, flatulence, constipation and loose stools. Many of these .... reported participating in regular heavy physical exercise. No.

  19. Enhanced poly(3-hydroxybutyrate) production in transgenic tobacco BY-2 cells using engineered acetoacetyl-CoA reductase.

    Science.gov (United States)

    Yokoo, Toshinori; Matsumoto, Ken'ichiro; Ooba, Takashi; Morimoto, Kenjiro; Taguchi, Seiichi

    2015-01-01

    Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.

  20. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  1. Effects of 2,3-iminosqualene in cultured cells

    International Nuclear Information System (INIS)

    Popjak, G.; Meenan, A.; Nes, W.D.

    1987-01-01

    2,3-Iminosqualene added to culture media 10 ug/ml) of rat hepatoma (H4-II-E-C3) or Chinese hamster ovary (CHO) cells irreversibly inactivates the squalene-oxide: lanosterol cyclase, but it does not inhibit general polyprenyl synthesis either from [ 14 C]acetate or [ 14 C]mevalonate. Isq added to lipoprotein-containing media of H4 cells causes in 24 hr an over twofold rise in HMG-CoA reductase and abolishes the repressive effect of mevalonate (MVA) on the reductase. H4 cells synthesize from [2- 14 C]-MVA labelled squalene, squalene-2,3-oxide, squalene-2,3-22,23-dioxide, but very little sterol. The conversion of MVA to these polyprenyls in the presence of Isq is as efficient as its conversion to squalene and cholesterol in control cells. They conclude that the repressor of HMG-CoA reductase derived from MVA is a sterol - whatever might be the nature of that sterol - and not a nonsteroidal derivative of MVA metabolism. H4 cells exposed to Isq in lipid-depleted media die in 48-72 hr, but can be rescued by LDL, but not by free cholesterol or MVA. CHO cells are more resistant than H4 cells and succumb only after 8-9 days' exposure to Isq

  2. Rapamycin down-regulates LDL-receptor expression independently of SREBP-2

    International Nuclear Information System (INIS)

    Sharpe, Laura J.; Brown, Andrew J.

    2008-01-01

    As a key regulator of cholesterol homeostasis, sterol-regulatory element binding protein-2 (SREBP-2) up-regulates expression of genes involved in cholesterol synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) Reductase) and uptake (the low density lipoprotein (LDL)-receptor). Previously, we showed that Akt, a critical kinase in cell growth and proliferation, contributes to SREBP-2 activation. However, the specific Akt target involved is unknown. A potential candidate is the mammalian target of rapamycin, mTOR. Rapamycin can cause hyperlipidaemia clinically, and we hypothesised that this may be mediated via an effect of mTOR on SREBP-2. Herein, we found that SREBP-2 activation and HMG-CoA Reductase gene expression were unaffected by rapamycin treatment. However, LDL-receptor gene expression was decreased by rapamycin, suggesting that this may contribute to the hyperlipidaemia observed in rapamycin-treated patients. Rapamycin did not affect mRNA stability, so the decrease in LDL-receptor gene expression is likely to be occurring at the transcriptional level, although independently of SREBP-2

  3. Severe Rhabdomyolysis Associated with the Cerivastatin-Gemfibrozil Combination Therapy

    Science.gov (United States)

    Lau, Theodore K.; Leachman, D. Richard; Lufschanowski, Roberto

    2001-01-01

    Cerivastatin is the new 3rd-generation of the synthetic 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, the 1st drugs of choice for treating hypercholesterolemia. A potent inhibitor of HMG-CoA reductase, it possesses a high affinity for liver tissue and decreases plasma low-density lipoprotein cholesterol at microgram doses. Cerivastatin produces reductions in low-density lipoprotein cholesterol of 31.3% and 36.1% at doses of 0.3 and 0.4 mg/day, respectively. It is an uncomplicated agent with regard to its pharmacokinetic profile, low potential for interaction with other drugs, and suitability for use in those with impaired renal function. Most other statins have been implicated in causing rhabdomyolysis, either as mono-therapy or in combination with other agents. We report what to our knowledge is the most profound case yet in the literature of rhabdomyolysis in association with ceriva-statin-gemfibrozil combination therapy, in regard both to the extreme elevation in serum creatinine kinase and to the patient's near-paralytic weakness. PMID:11453128

  4. Pleiotropic effects of statins

    Directory of Open Access Journals (Sweden)

    Narasaraju Kavalipati

    2015-01-01

    Full Text Available Statins or 3-hydroxy-methylglutaryl coenzyme A (HMG CoA reductase inhibitors not only prevents the synthesis of cholesterol biosynthesis but also inhibits the synthesis of essential isoprenoid intermediates such as farnesyl pyrophosphate, geranylgeranyl pyrophosphate, isopentanyl adenosine, dolichols and polyisoprenoid side chains of ubiquinone, heme A, and nuclear lamins. These isoprenoid intermediates are required for activation of various intracellular/signaling proteins- small guanosine triphosphate bound protein Ras and Ras-like proteins like Rho, Rab, Rac, Ral, or Rap which plays an indispensible role in multiple cellular processes. Reduction of circulating isoprenoids intermediates as a result of HMG CoA reductase inhibition by statins prevents activation of these signalling proteins. Hence, the multiple effects of statins such as antiinflammatory effects, antioxidant effects, antiproliferative and immunomodulatory effects, plaque stability, normalization of sympathetic outflow, and prevention of platelet aggregation are due to reduction of circulating isoprenoids and hence inactivation of signalling proteins. These multiple lipid-independent effects of statins termed as statin pleiotropy would potentially open floodgates for research in multiple treatment domains catching attentions of researchers and clinician across the globe.

  5. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    Sox is a large gene family which encodes Sry-related transcription factors and contains a HMG box that is responsible for the sequence-specific DNA binding. In this paper, we obtained ten clones representing HMG box-containing Sox genes (BmSox1a, BmSox1b, BmSox3a, BmSox3b, BmSox3c, BmSox11a, BmSox11b, ...

  6. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins.

    Directory of Open Access Journals (Sweden)

    Yunjiu Cheng

    Full Text Available To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.

  7. Ketopantoyl lactone reductase is a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-03-01

    Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.

  8. Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Møller, Kasper; Nielsen, Jens

    2005-01-01

    The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl Co......A, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the precise analysis of the intracellular concentration of acetoacetyl CoA, acetyl CoA and HMG CoA; and we...... used this method for quantification of these metabolites in Saccharomyces cerevisiae, both during batch growth on glucose and on galactose and in glucose-limited chemostat cultures operated at three different dilution rates. The level of the metabolites changed depending on the growth phase...

  9. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  11. HMG CoA reductase inhibitors (statins for people with chronic kidney disease not requiring dialysis

    Directory of Open Access Journals (Sweden)

    Suetonia C. Palmer

    Full Text Available ABSTRACT BACKGROUND: Cardiovascular disease (CVD is the most frequent cause of death in people with early stages of chronic kidney disease (CKD, for whom the absolute risk of cardiovascular events is similar to people who have existing coronary artery disease. This is an update of a review published in 2009, and includes evidence from 27 new studies (25,068 participants in addition to the 26 studies (20,324 participants assessed previously; and excludes three previously included studies (107 participants. This updated review includes 50 studies (45,285 participants; of these 38 (37,274 participants were meta-analysed. OBJECTIVES: To evaluate the benefits (such as reductions in all-cause and cardiovascular mortality, major cardiovascular events, MI and stroke; and slow progression of CKD to end-stage kidney disease (ESKD and harms (muscle and liver dysfunction, withdrawal, and cancer of statins compared with placebo, no treatment, standard care or another statin in adults with CKD who were not on dialysis. METHODS: Search methods: We searched the Cochrane Renal Group's Specialised Register to 5 June 2012 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. Selection criteria: Randomised controlled trials (RCTs and quasi-RCTs that compared the effects of statins with placebo, no treatment, standard care, or other statins, on mortality, cardiovascular events, kidney function, toxicity, and lipid levels in adults with CKD not on dialysis were the focus of our literature searches. Data collection and analysis: Two or more authors independently extracted data and assessed study risk of bias. Treatment effects were expressed as mean difference (MD for continuous outcomes (lipids, creatinine clearance and proteinuria and risk ratio (RR for dichotomous outcomes (major cardiovascular events, all-cause mortality, cardiovascular mortality, fatal or non-fatal myocardial infarction (MI, fatal or non-fatal stroke

  12. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie [Nankai; (Chinese Aca. Sci.)

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  13. Highly purified HMG versus recombinant FSH for ovarian stimulation in IVF cycles

    DEFF Research Database (Denmark)

    Platteau, P.; Nyboe, Andersen A.; Loft, A.

    2008-01-01

    The objective of this study was to compare the live birth rates resulting from ovarian stimulation with highly purified human menopausal gonadotrophin (HP-HMG), which combines FSH and human chorionic gonadotrophin-driven LH activities, or recombinant FSH (rFSH) alone in women undergoing IVF cycles....... An integrated analysis was performed of the raw data from two randomized controlled trials that were highly comparable in terms of eligibility criteria and post-randomization treatment regimens with either HP-HMG or rFSH for ovarian stimulation in IVF, following a long down-regulation protocol. All randomized...... subjects who received at least one dose of gonadotrophin in an IVF cycle (HP-HMG, n = 491; rFSH, n = 495) were included in the analysis. Subjects who underwent intracytoplasmic sperm injection cycles were excluded. The superiority of one gonadotrophin preparation over the other was tested using...

  14. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE for 5α-reductase isoform II inhibition using a cell-free in vitro test system

    Directory of Open Access Journals (Sweden)

    Pais P

    2016-04-01

    Full Text Available Pilar Pais, Agustí Villar, Santiago Rull Euromed, Barcelona, Spain Background: The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen – 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH. The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive – some have shown significant results, and others have not – possibly the result of varying bioactivities of the SPEs used in the studies. Purpose: To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE, an inhibitor of the 5α-reductase isoenzyme type II. Materials and methods: The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. Results: By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 µg/mL, SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%–75% inhibition of 5α-reductase type II. Conclusion: SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The

  15. Autophagy contributes to apoptosis in A20 and EL4 lymphoma cells treated with fluvastatin.

    Science.gov (United States)

    Qi, Xu-Feng; Kim, Dong-Heui; Lee, Kyu-Jae; Kim, Cheol-Su; Song, Soon-Bong; Cai, Dong-Qing; Kim, Soo-Ki

    2013-11-08

    Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. However, the relationship between apoptosis and autophagy in lymphoma cells exposed to statins remains unclear. The objective of this study was to elucidate the potential involvement of autophagy in fluvastatin-induced cell death of lymphoma cells. We found that fluvastatin treatment enhanced the activation of pro-apoptotic members such as caspase-3 and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells. The process was accompanied by increases in numbers of annexin V alone or annexin V/PI double positive cells. Furthermore, both autophagosomes and increases in levels of LC3-II were also observed in fluvastatin-treated lymphoma cells. However, apoptosis in fluvastatin-treated lymphoma cells could be blocked by the addition of 3-methyladenine (3-MA), the specific inhibitor of autophagy. Fluvastatin-induced activation of caspase-3, DNA fragmentation, and activation of LC3-II were blocked by metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggest that autophagy contributes to fluvastatin-induced apoptosis in lymphoma cells, and that these regulating processes require inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.

  16. HMG versus rFSH for ovulation induction in developing countries: a cost-effectiveness analysis based on the results of a recent meta-analysis.

    Science.gov (United States)

    Al-Inany, Hesham G; Abou-Setta, Ahmed M; Aboulghar, Mohamed A; Mansour, Ragaa T; Serour, Gamal I

    2006-02-01

    Both cost and effectiveness should be considered conjointly to aid judgments about drug choice. Therefore, based on the results of a recent published meta-analysis, a Markov model was developed to conduct a cost-effectiveness analysis for estimation of the cost of an ongoing pregnancy in IVF/intracytoplasmic sperm injection (ICSI) cycles. In addition, Monte Carlo micro-simulation was used to examine the potential impact of assumptions and other uncertainties represented in the model. The results of the study reveal that the estimated average cost of an ongoing pregnancy is 13,946 Egyptian pounds (EGP), and 18,721 EGP for a human menopausal gonadotrophin (HMG) and rFSH cycle respectively. On performing a sensitivity analysis on cycle costs, it was demonstrated that the rFSH price should be 0.61 EGP/IU to be as cost-effective as HMG at the price of 0.64 EGP/IU (i.e. around 60% reduction in its current price). The difference in cost between HMG and rFSH in over 100,000 cycles would result in an additional 4565 ongoing pregnancies if HMG was used. Therefore, HMG was clearly more cost-effective than rFSH. The decision to adopt a more expensive, cost-ineffective treatment could result in a lower number of cycles of IVF/ICSI treatment undertaken, especially in the case of most developing countries.

  17. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    Science.gov (United States)

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cholesterol metabolism: use of D2O for determination of synthesis rate in cell culture

    International Nuclear Information System (INIS)

    Esterman, A.L.; Cohen, B.I.; Javitt, N.B.

    1985-01-01

    Cholesterol synthesis in cell culture in the presence of D 2 O yields a spectrum of enriched molecules having a relative abundance that indicates random substitution of deuterium for hydrogen. Quantitation of the absolute rate of cholesterol synthesis is obtained by isotope ratio mass spectrometry. Mevinolin and 26-hydroxycholesterol both decrease cholesterol synthesis rate but have a discordant effect on HMG-CoA reductase activity

  19. Isoprenoids responsible for protein prenylation modulate the biological effects of statins on pancreatic cancer cells

    Czech Academy of Sciences Publication Activity Database

    Gbelcová, H.; Rimpelová, S.; Knejzlík, Z.; Šáchová, Jana; Kolář, Michal; Strnad, Hynek; Repiska, V.; D'Acunto, C.W.; Ruml, T.; Vítek, L.

    2017-01-01

    Roč. 16, zima (2017), č. článku 250. ISSN 1476-511X R&D Projects: GA MZd(CZ) NT13112 Institutional support: RVO:68378050 Keywords : Farmesyl pyrophosphate * Gene expression * Geranylgeranyl pyrophosphate * HMG-CoA reductase inhibitors * Isoprenoids * K-Ras oncogene * Mevalonate * Pncreatic cancer * Prenylation * Statins Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.073, year: 2016

  20. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase

    OpenAIRE

    Ralph, John; Hatfield, Ronald D.; Piquemal, Joël; Yahiaoui, Nabila; Pean, Michel; Lapierre, Catherine; Boudet, Alain M.

    1998-01-01

    Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR....

  1. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis.

    Science.gov (United States)

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V; Mühlemann, Joëlle K; Bomati, Erin K; Bowman, Marianne E; Dudareva, Natalia; Dixon, Richard A; Noel, Joseph P; Wang, Xiaoqiang

    2014-09-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. © 2014 American Society of Plant Biologists. All rights reserved.

  2. Characterization and functional assay of a fatty acyl-CoA reductase gene in the scale insect, Ericerus pela Chavannes (Hemiptera: Coccoidae).

    Science.gov (United States)

    Hu, Yan-Hong; Chen, Xiao-Ming; Yang, Pu; Ding, Wei-Feng

    2018-04-01

    Ericerus pela Chavannes (Hemiptera: Coccoidae) is an economically important scale insect because the second instar males secrete a harvestable wax-like substance. In this study, we report the molecular cloning of a fatty acyl-CoA reductase gene (EpFAR) of E. pela. We predicted a 520-aa protein with the FAR family features from the deduced amino acid sequence. The EpFAR mRNA was expressed in five tested tissues, testis, alimentary canal, fat body, Malpighian tubules, and mostly in cuticle. The EpFAR protein was localized by immunofluorescence only in the wax glands and testis. EpFAR expression in High Five insect cells documented the recombinant EpFAR reduced 26-0:(S) CoA and to its corresponding alcohol. The data illuminate the molecular mechanism for fatty alcohol biosynthesis in a beneficial insect, E. pela. © 2017 Wiley Periodicals, Inc.

  3. Lovastatin-Enriched Rice Straw Enhances Biomass Quality and Suppresses Ruminal Methanogenesis

    Directory of Open Access Journals (Sweden)

    Mohammad Faseleh Jahromi

    2013-01-01

    Full Text Available The primary objective of this study was to test the hypothesis that solid state fermentation (SSF of agro-biomass (using rice straw as model; besides, breaking down its lignocellulose content to improve its nutritive values also produces lovastatin which could be used to suppress methanogenesis in the rumen ecosystem. Fermented rice straw (FRS containing lovastatin after fermentation with Aspergillus terreus was used as substrate for growth study of rumen microorganisms using in vitro gas production method. In the first experiment, the extract from the FRS (FRSE which contained lovastatin was evaluated for its efficacy for reduction in methane (CH4 production, microbial population, and activity in the rumen fluid. FRSE reduced total gas and CH4 productions (P<0.01. It also reduced (P<0.01 total methanogens population and increased the cellulolytic bacteria including Ruminococcus albus, Fibrobacter succinogenes (P<0.01, and Ruminococcus flavefaciens (P<0.05. Similarly, FRS reduced total gas and CH4 productions, methanogens population, but increased in vitro dry mater digestibility compared to the non-fermented rice straw. Lovastatin in the FRSE and the FRS significantly increased the expression of HMG-CoA reductase gene that produces HMG-CoA reductase, a key enzyme for cell membrane production in methanogenic Archaea.

  4. Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum

    Science.gov (United States)

    Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby

    2013-01-01

    Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578

  5. HP-HMG versus rFSH in treatments combining fresh and frozen IVF cycles: success rates and economic evaluation.

    Science.gov (United States)

    Wex-Wechowski, Jaro; Abou-Setta, Ahmed M; Kildegaard Nielsen, Sandy; Kennedy, Richard

    2010-08-01

    The economic implications of the choice of gonadotrophin influence decision making but their cost-effectiveness in frozen-embryo transfer cycles has not been adequately studied. An economic evaluation was performed comparing highly purified human menopausal gonadotrophin (HP-HMG) and recombinant FSH (rFSH) using individual patient data (n=986) from two large randomized controlled trials using a long agonist IVF protocol. The simulation model incorporated live birth data and published UK costs of IVF-related medical resources. After treatment for up-to-three cycles (one fresh and up to two subsequent fresh or frozen cycles conditional on availability of cryopreserved embryos), the cumulative live birth rate was 53.7% (95% CI 49.3-58.1%) for HP-HMG and 44.6% (40.2-49.0%) for rFSH (OR 1.44, 95% CI 1.12-1.85; Pcosts per IVF treatment for HP-HMG and rFSH were pound5393 ( pound5341-5449) and pound6269 ( pound6210-6324), respectively (number needed to treat to fund one additional treatment was seven; Pcosts applied, the median cost per IVF baby delivered with HP-HMG was pound11,157 ( pound11,089-11,129) and pound14,227 ( pound14,183-14,222) with rFSH (Pcost saving using HP-HMG remained after varying model parameters in a probabilistic sensitivity analysis. 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    Science.gov (United States)

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  7. Modified hMG stimulated: an effective option in endometrial preparation for frozen-thawed embryo transfer in patients with normal menstrual cycles.

    Science.gov (United States)

    Huang, Pinxiu; Wei, Lihong; Li, Xinlin; Lin, Zhong

    2018-04-20

    To evaluate the clinical efficacy of modified human menopausal gonadotropin (hMG) stimulated, hormone replacement therapy (HRT), natural cycling and letrozole ovulation induction during endometrial preparation for frozen-thawed embryo transfer (FET) in patients with normal menstrual cycles. This retrospective analysis included a total of 5070 cycles of patients with normal menstrual patterns who underwent FET between October 2009 and September 2015. The patients were divided into four groups according to the method of endometrial preparation for FET: 1838 cycles were natural, 1666 underwent HRT, 340 underwent letrozole ovulation induction and 1226 underwent modified hMG stimulated. Reproduction-related clinical outcomes in the four groups were compared. The clinical pregnancy rates and live birth rates of patients in the modified hMG stimulated group were significantly higher than that in the other groups p .05). Modified hMG stimulated resulted in a higher pregnancy rate compared to the other treatment groups. Therefore, modified hMG stimulated may be an effective option in endometrial preparation for FET in patients with normal menstrual cycles.

  8. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE) for 5α-reductase isoform II inhibition using a cell-free in vitro test system.

    Science.gov (United States)

    Pais, Pilar; Villar, Agustí; Rull, Santiago

    2016-01-01

    The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen - 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE) has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive - some have shown significant results, and others have not - possibly the result of varying bioactivities of the SPEs used in the studies. To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE), an inhibitor of the 5α-reductase isoenzyme type II. The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 μg/mL), SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%-75% inhibition of 5α-reductase type II. SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The bioactivity of SPSE corresponds favorably to that reported for the hexane extract used in a large number of positive BPH clinical trials, as well as to finasteride

  9. Early effects of dietary orotic acid upon liver lipid synthesis and bile cholesterol secretion in rats

    International Nuclear Information System (INIS)

    Tokmakjian, S.D.; Haines, D.S.

    1985-01-01

    Dietary orotic acid is known to cause impaired fatty acid synthesis and increased cholesterol synthesis in rats. The authors found that the impaired fatty acid synthesis occurs during the first day of orotic acid feeding and, in studies with albumin-bound [1- 14 C]palmitic acid, an associated decrease in the rate of esterification of this fatty acid into triacylglycerol, phospholipid, and cholesteryl ester was observed. These changes may result from the known decreases in liver levels of adenine nucleotides or, as reported here, from decreased liver CoASH levels in orotic acid-fed rats. The increase in hepatic cholesterol synthesis occurred during the second day of orotic acid feeding. It was detected by increased incorporation of [1,2- 14 C]acetate into cholesterol by liver slices and by a 7-fold increase in HMG-CoA reductase activity. At the same time the biliary output of cholesterol was increased 2-fold and studies using 3 H 2 O revealed that the output of newly synthesized cholesterol in bile was increased 5-fold. The content of cholesteryl ester in hepatic microsomes decreased during orotic acid feeding but free cholesterol was unchanged. The findings are interpreted to suggest that the increased bile cholesterol secretion caused by orotic acid is a result of impaired hepatic cholesterol esterification and that the increase in HMG-CoA reductase activity is a result of diminished negative feedback due to the depleted content of cholesteryl ester in the hepatic microsomes

  10. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials

    Science.gov (United States)

    Swerdlow, Daniel I; Preiss, David; Kuchenbaecker, Karoline B; Holmes, Michael V; Engmann, Jorgen E L; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C D; Scott, Robert A; Leusink, Maarten; Verweij, Niek; Sharp, Stephen J; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, KaWah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A; Drenos, Fotios; Li, Yun R; Lowe, Gordon; Gallacher, John; Stewart, Marlene C W; Tzoulaki, Ioanna; Buxbaum, Sarah G; van der A, Daphne L; Forouhi, Nita G; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Schnabel, Renate B; Hubacek, Jaroslav A; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Romanvan; Stepaniak, Urszula; Malyutina, Sofia; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; de Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J Wouter; Westendorp, Rudi G J; de Borst, Gert Jan; de Jong, Pim A; Algra, Ale; Spiering, Wilko; der Zee, Anke H Maitland-van; Klungel, Olaf H; de Boer, Anthonius; Doevendans, Pieter A; Eaton, Charles B; Robinson, Jennifer G; Duggan, David; Kjekshus, John; Downs, John R; Gotto, Antonio M; Keech, Anthony C; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S; Poulter, Neil R; Waters, David D; Pedersen, Terje R; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J V; Lewsey, James D; Chasman, Daniel I; Ridker, Paul M; Maggioni, Aldo P; Tavazzi, Luigi; Ray, Kausik K; Seshasai, Sreenivasa Rao Kondapally; Manson, JoAnn E; Price, Jackie F; Whincup, Peter H; Morris, Richard W; Lawlor, Debbie A; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J; Fornage, Myriam; Siscovick, David S; Cushman, Mary; Kumari, Meena; Wareham, Nick J; Verschuren, W M Monique; Redline, Susan; Patel, Sanjay R; Whittaker, John C; Hamsten, Anders; Delaney, Joseph A; Dale, Caroline; Gaunt, Tom R; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A; van der Harst, Pim; Brunner, Eric J; Tybjaerg-Hansen, Anne; Marmot, Michael G; Krauss, Ronald M; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C; Psaty, Bruce M; Lange, Leslie A; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E; Talmud, Philippa J; Kivimäki, Mika; Timpson, Nicholas J; Langenberg, Claudia; Asselbergs, Folkert W; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G; Reiner, Alex P; Keating, Brendan J; Hingorani, Aroon D; Sattar, Naveed

    2015-01-01

    Summary Background Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. Methods We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis. Findings Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05–0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18–0·43), waist circumference (0·32 cm, 0·16–0·47), plasma insulin concentration (1·62%, 0·53–2·72), and plasma glucose concentration (0·23%, 0·02–0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00–1·05); the rs12916-T allele association was consistent (1·06, 1·03–1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18–1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10–0·38 in all trials; 0·33 kg, 95% CI 0·24–0·42 in placebo or standard care controlled trials and −0·15 kg, 95% CI −0·39 to 0·08 in intensive

  11. Cloning and analysis of the HMG domains of ten Sox genes from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... Sox is a large gene family which encodes Sry-related transcription factors and ..... Gene orthology are boxed drawing by straight line and dotted line. .... HMG Box Functions as a Kinetic Clamp to Augment DNA Bending. J. Mol.

  12. Polysaccharide from fuzi (FPS) prevents hypercholesterolemia in rats.

    Science.gov (United States)

    Huang, Xiongqing; Tang, Juan; Zhou, Qin; Lu, Hanping; Wu, Yiling; Wu, Weikang

    2010-01-28

    Polysaccharide from fuzi (FPS), a Chinese herbal medicine extract, has been demonstrated to exert lipid lowering affects. In this study we examined potential mechanisms underlying this affect, specifically alterations in expression of the LDL-receptor (LDL-R), 3-hydroxy-3-methyl glutaryl (HMG)-CoA reductase and cytochrome P450 7alpha-1 (CYP7alpha-1), using a rat model of hypercholesterolemia. Male rats were fed either a normal or high cholesterol (HC) diet for two-weeks. Half of the rats on the HC diet were orally gavaged with FPS (224 mg/kg, 448 mg/kg or 896 mg/kg diet) daily. Serum lipid levels were quantified at end of the study period as were liver levels of LDL-R protein and mRNA expression of CYP7alpha-1 and HMG-CoA. Serum cholesterol and LDL-C concentrations were significantly elevated from control in HC rats, but not in those treated with FPS (P FPS group (P FPS group compared to both other groups (P FPS in hypercholesteremic rats is caused at least in part by increased hepatic LDL-R and CYP7alpha-1 expression and decreased HMG-CoA expression. Further study is needed to determine precisely where and how FPS exerts these effects. FPS offers potential as a therapeutic agent for the treatment of hypercholesterolemia.

  13. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A

    1997-01-01

    of the genes described from eukaryotic organisms and the deduced amino acid sequence could be aligned with the C-terminal half of animal and plant reductases exhibiting pronounced similarity to other eukaryotic counterparts. Further examination of the 5' flanking region by cDNA analysis and establishment...

  14. Pectin isolated from prickly pear (Opuntia SSP) modifies LDL metabolism in cholesterol-fed guinea pigs

    International Nuclear Information System (INIS)

    Fernandez, M.L.; McNamara, D.J.

    1990-01-01

    The effects of dietary pectin on plasma and hepatic cholesterol (CH) levels, plasma lipoprotein profiles, hepatic 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase activity, and low density lipoprotein (LDL) binding to hepatic membranes were investigated by feeding 1% pectin to guinea pigs on a high CH diet. Animals were fed either chow + 0.25% CH (HC diet) or the CH diet + 1% prickly pear pectin (HC-P diet) for 25 days. Plasma CH levels were decreased 26% by the HC-P with 33% decreases in LDL and KDL. LDL peak density shifted from 1.040 to 1.055 g/ml with pectin. Hepatic total, free and esterified CH levels were reduced 60, 40 and 85% respectively by the HC-P diet. In contrast, HMG-CoA reductase activity was unaffected. 125 I-LDL binding to hepatic membranes was increased by intake of the HC-P diet compared to the HC diet. The affinity of the apo B/E receptor for LDL was not affected by dietary pectin while the receptor number was increased 1.5-fold in animals on the HC-P diet. These data suggest that the parameters of HC metabolism affected by dietary pectin are consistent with an increased demand on the hepatic CH pools which possibly results from increased fecal excretion of bile acids

  15. Purification, crystallization and preliminary X-ray diffraction analysis of the HMG domain of Sox17 in complex with DNA

    International Nuclear Information System (INIS)

    Ng, Calista Keow Leng; Palasingam, Paaventhan; Venkatachalam, Rajakannan; Baburajendran, Nithya; Cheng, Jason; Jauch, Ralf; Kolatkar, Prasanna R.

    2008-01-01

    Crystals of the Sox17 HMG domain bound to LAMA1 enhancer DNA-element crystals that diffracted to 2.75 Å resolution were obtained. Sox17 is a member of the SRY-related high-mobility group (HMG) of transcription factors that have been shown to direct endodermal differentiation in early mammalian development. The LAMA1 gene encoding the α-chain of laminin-1 has been reported to be directly bound and regulated by Sox17. This paper describes the details of initial crystallization attempts with the HMG domain of mouse Sox17 (mSox17-HMG) with a 16-mer DNA element derived from the LAMA1 enhancer and optimization strategies to obtain a better diffracting crystal. The best diffracting crystal was obtained in a condition containing 0.1 M Tris–HCl pH 7.4, 0.2 M MgCl 2 , 30% PEG 3350 using the hanging-drop vapour-diffusion method. A highly redundant in-house data set was collected to 2.75 Å resolution with 99% completeness. The presence of the mSox17-HMG–DNA complex within the crystals was confirmed and Matthews analysis indicated the presence of one complex per asymmetric unit

  16. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-02-24

    Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC 1.1.1.168) was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.

  17. Is the high-risk strategy to prevent cardiovascular disease equitable?

    DEFF Research Database (Denmark)

    Wallach Kildemoes, Helle; Diderichsen, Finn; Krasnik, Allan

    2012-01-01

    ABSTRACT: BACKGROUND: Statins are increasingly prescribed to prevent cardiovascular disease (CVD) in asymptomatic individuals. Yet, it is unknown whether those at higher CVD risk - i.e. individuals in lower socio-economic position (SEP) - are adequately reached by this high-risk strategy. Aim......: To examine whether the Danish implementation of the strategy to prevent cardiovascular disease (CVD) by initiating statin (HMG-CoA reductase inhibitor) therapy in high-risk individuals is equitable across socioeconomic groups. METHODS: Design: Cohort study. Setting and participants: Applying individual...

  18. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; El-Kabbani, Ossama; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2017-08-15

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E 2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC 50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC 50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the K i values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  20. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    Science.gov (United States)

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  1. N-terminus determines activity and specificity of styrene monooxygenase reductases.

    Science.gov (United States)

    Heine, Thomas; Scholtissek, Anika; Westphal, Adrie H; van Berkel, Willem J H; Tischler, Dirk

    2017-12-01

    Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH 2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s -1 , one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis.

    Science.gov (United States)

    Tomita, Hiroya; Imanaka, Tadayuki; Atomi, Haruyuki

    2013-10-01

    Coenzyme A (CoA) biosynthesis in bacteria and eukaryotes is regulated primarily by feedback inhibition towards pantothenate kinase (PanK). As most archaea utilize a modified route for CoA biosynthesis and do not harbour PanK, the mechanisms governing regulation of CoA biosynthesis are unknown. Here we performed genetic and biochemical studies on the ketopantoate reductase (KPR) from the hyperthermophilic archaeon Thermococcus kodakarensis. KPR catalyses the second step in CoA biosynthesis, the reduction of 2-oxopantoate to pantoate. Gene disruption of TK1968, whose product was 20-29% identical to previously characterized KPRs from bacteria/eukaryotes, resulted in a strain with growth defects that were complemented by addition of pantoate. The TK1968 protein (Tk-KPR) displayed reductase activity specific for 2-oxopantoate and preferred NADH as the electron donor, distinct to the bacterial/eukaryotic NADPH-dependent enzymes. Tk-KPR activity decreased dramatically in the presence of CoA and KPR activity in cell-free extracts was also inhibited by CoA. Kinetic studies indicated that CoA inhibits KPR by competing with NADH. Inhibition of ketopantoate hydroxymethyltransferase, the first enzyme of the pathway, by CoA was not observed. Our results suggest that CoA biosynthesis in T. kodakarensis is regulated by feedback inhibition of KPR, providing a feasible regulation mechanism of CoA biosynthesis in archaea. © 2013 John Wiley & Sons Ltd.

  3. Sterol-induced Dislocation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase from Endoplasmic Reticulum Membranes into the Cytosol through a Subcellular Compartment Resembling Lipid Droplets*

    Science.gov (United States)

    Hartman, Isamu Z.; Liu, Pingsheng; Zehmer, John K.; Luby-Phelps, Katherine; Jo, Youngah; Anderson, Richard G. W.; DeBose-Boyd, Russell A.

    2010-01-01

    Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets. PMID:20406816

  4. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hain, D.; Valenzuela, A.; Branes, M. C.; Fuenzalida, M.; Videla, L. A.

    2012-07-01

    Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP), in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg1 of butyric acid esterified policosanol (BAEP), or 164 mg kg1 of oleic acid esterified policosanol (OAEP). Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red) phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05) in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis. (Author) 49 refs.

  5. Tobacco rattle virus (TRV) based silencing of cotton enoyl-CoA reductase (ECR) gene and the role of very long chain fatty acids in normal leaf development and resistance to wilt disease

    Science.gov (United States)

    A Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of Enoyl-CoA reductase (GhECR) in pathogen defense. Amino acid sequence al...

  6. Are pleiotropic effects of statins real?

    Directory of Open Access Journals (Sweden)

    Alberto Corsini

    2007-11-01

    Full Text Available Alberto Corsini, Nicola Ferri, Michele CortellaroDepartment of Pharmacological Sciences and Department of Clinical Sciences, “Luigi Sacco”, University of Milan, Milan, ItalyAbstract: The clinical benefits of statins are strongly related to their low density lipoproteincholesterol (LDL-C lowering properties. However, because mevalonic acid (MVA, the product of 3-hydroxy-3-methyl-3-glutaryl coenzyme A (HMG-CoA reductase reaction, is the precursor not only of cholesterol but also of nonsteroidal isoprenoid compounds, the inhibition of HMG-CoA reductase may result in pleiotropic effects, independent of their hypocholesterolemic properties. The discrimination between the pleiotropic from LDL-C lowering effects may potentially be more evident during the early phase of treatment since plasma MVA levels drop up to 70% within 1–2 hours while a reduction of LDL-C, detectable after 24 hours, became significant after 6–7 days. Therefore, the deprivation of circulating MVA-derived isoprenoids in the early phase of treatment could be the main mechanism responsible for the atheroprotective effect of statins. This early window of protection in the absence of LDL-C lowering suggests that the anti-inflammatory and the pleiotropic properties of statins may have clinical importance. Therefore, acute coronary syndromes could represent a clinical condition for addressing the early benefits of statins therapy, ie, within 24 h of the event, independent of LDL-C lowering.Keywords: anti-inflammatory effects of statins, mevalonate pathway, LDL lowering, acute coronary syndrome, prenylated proteins

  7. Bayesian statistic methods and theri application in probabilistic simulation models

    Directory of Open Access Journals (Sweden)

    Orietta Zaniolo

    2006-03-01

    Full Text Available Significant advances in the management of hypercholesterolemia have been made possible by the development of statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA reductase inhibitors. More recently, statins have demonstrated benefit in primary and secondary prevention of cardiovascular disease also in patients without hypercholesterolemia. Therefore statins help to reduce the impact of cardiovascular disease on morbility, mortality and social costs. Statins inhibit HMG-CoA reductase competitively, reduce LDL levels more than other cholesterol-lowering drugs, and lower triglyceride levels in hypertriglyceridemic patients. Prescribing statins as first line therapy in management of hypercholesterolemia as a part of a more comprehensive prevention program of cardiovascular disease is widely recommended by international guidelines (e.g. National Cholesterol Education Program - NCEP - Adult Treatment Panel - ATP- III reports. Currently in Italy there are five available statins: atorvastatin, fluvastatin, pravastatin, rosuvastatin and simvastatin; each of them presents some differences in physical and chemical characteristics (solubility, pharmacokinetics (absorption, proteic binding, metabolism and excretion and pharmacodinamics (pleiotropic effects. Compared to other statins, fluvastatin extended-release (RP 80 mg provides an equal efficacy in lowering total cholesterol and low-density lipoprotein cholesterol (LDL-C, with an important action on triglyceride (TG levels and superior increases in HDL-C levels, reducing the incidence of major adverse cardiac events (MACE. Aim of this study is to outline an updated therapeutic and pharmacoeconomic profile of fluvastatin, particularly regarding extended-release (RP 80 mg formulation.

  8. Complementary Cholesterol-Lowering Response of a Phytosterol/α-Lipoic Acid Combination in Obese Zucker Rats.

    Science.gov (United States)

    Rideout, Todd C; Carrier, Bradley; Wen, Shin; Raslawsky, Amy; Browne, Richard W; Harding, Scott V

    2016-01-01

    To investigate the cholesterol-lowering effectiveness of a phytosterol/α-lipoic acid (PS/αLA) therapy, thirty-two male Zucker rats were randomly assigned to 1 of 4 diets for 30 days: (i) high fat diet (HF, 40% energy from fat); (ii) HF diet supplemented with 3% phytosterols; (iii) HF diet supplemented with 0.25% αLA; or (iv) HF diet supplemented with PS (3%) and αLA (0.25%, PS/αLA). Compared with the HF diet, combination PS/αLA proved more effective in reducing non-HDL cholesterol (-55%) than either the PS (-24%) or the αLA (-25%) therapies alone. PS supplementation did not affect LDL particle number, however, αLA supplementation reduced LDL particle number when supplemented alone (-47%) or in combination with PS (-54%). Compared with the HF-fed animals, evidence of increased HDL-particle number was evident in all treatment groups to a similar extent (21-22%). PS-mediated interruption of intestinal cholesterol absorption was evident by increased fecal cholesterol loss (+52%) and compensatory increase in HMG-CoA reductase mRNA (1.6 fold of HF), however, αLA supplementation did not affect fecal cholesterol loss. Hepatic mRNA and protein expression patterns suggested that αLA modulated multiple aspects of cholesterol homeostasis including reduced synthesis (HMG-CoA reductase mRNA, 0.7 fold of HF), reduced bile acid synthesis (CYP7a1 expression, 0.17 of HF), and increased cholesterol clearance (reduced PCSK9 mRNA, 0.5 fold of HF; increased LDLr protein, 2 fold of HF). Taken together, this data suggests that PS and αLA work through unique and complementary mechanisms to provide a superior and more comprehensive cholesterol lowering response than either therapy alone.

  9. Role of phytosterols in drought stress tolerance in rice.

    Science.gov (United States)

    Kumar, M S Sujith; Ali, Kishwar; Dahuja, Anil; Tyagi, Aruna

    2015-11-01

    Phytosterols are integral components of the membrane lipid bilayer in plants. They regulate membrane fluidity to influence its properties, functions and structure. An increase in accumulation of phytosterols namely campesterol, stigmasterol and β-sitosterol was observed in rice as seedlings matured. The levels of the major phytosterol, β-sitosterol in N22 (drought tolerant) rice seedlings was found to increase proportionately with severity of drought stress. Its levels were 145, 216, 345 and 364 μg/g FW after subjecting to water stress for 3, 6, 9 and 12 days respectively, while for IR64 (drought susceptible), levels were 137, 198, 227 and 287 μg/g FW at the same stages. Phytosterols were also found to increase with maturity as observed at 30, 50 and 75 days after planting. The activity of HMG-CoA reductase (EC 1.1.1.34) which is considered to be a key limiting enzyme in the biosynthesis of phytosterols was 0.55, 0.56, 0.78 and 0.85 μmol/min/L at 3, 6, 9 and 12 days of water stress in N22 and 0.31, 0.50, 0.54 and 0.65 μmol/min/L in case of IR64 respectively. The elevation in the levels of phytosterols as well as the activity of HMG-CoA reductase during drought stress indicates the role of phytosterols in providing tolerance to stress. Copyright © 2015. Published by Elsevier Masson SAS.

  10. [Side effects of the HMG-CoA reductase inhibitors (statins). Lupus erythematosus induced by Atorvastatin therapy].

    Science.gov (United States)

    Hydzik, Piotr; Szpak, Dorota

    2011-01-01

    The paper describes the case of 56 years old woman admitted to the Toxicology Department because of skin lesions, joint and muscle pain and elevated activity of transaminases and creatine phosfokinase as well in biochemical analysis. The symptoms occurred after 6 days of the Atorvastatin therapy. The clinical picture indicated side effects of the hipolipemic therapy, but the presence of the skin lesions suggested drug induced collagenosis (lupus erythrematosus, dermatomyositis). Immunological studies confirmed association with antinuclear antibodies (ANA) and anti-Mi-2 autoantibodies in the serum. Immunosuppressive therapy was ordered with clinical and biochemical improvement.

  11. Structure and mechanism of dimethylsulfoxide reductase, a molybdopterin-containing enzyme of DMSO reductase family

    International Nuclear Information System (INIS)

    McEwan, A.G.; Ridge, J.P.; McDevitt, C.A.; Hanson, G.R.

    2001-01-01

    Full text: Apart from nitrogenase, enzymes containing molybdenum are members of a superfamily, the molybdopterin-containing enzymes. Most of these enzymes catalyse an oxygen atom transfer and two electron transfer reaction. During catalysis the Mo at the active site cycles between the Mo(VI) and Mo(IV) states. The DMSO reductase family of molybdopterin-containing enzymes all contain a bis(molybdopterin guanine dinucleotide)Mo cofactor and over thirty examples have now been described. Over the last five years crystal structures of dimethylsulfoxide (DMSO) reductase and four other enzymes of the DMSO reductase family have revealed that enzymes of this family have a similar tertiary structure. The Mo atom at the active site is coordinated by four thiolate ligands provided by the dithiolene side chains of the two MGD molecules of the bis(MGD)Mo cofactor as well as a ligand provided by an amino acid side chain. In addition, an oxygen atom in the form of an oxo, hydroxo or aqua group is also coordinated to the Mo atom. In the case of dimethylsulfoxide reductase X-ray crystallography of the product-reduced species and Raman spectroscopy has demonstrated that the enzyme contains a single exchangeable oxo group that is H-bonded to W116

  12. Modulation of morphine antinociceptive tolerance and physical dependence by co-administration of simvastatin.

    Science.gov (United States)

    Mansouri, Mohammad Taghi; Khodayar, Mohammad Javad; Tabatabaee, Amirhossein; Ghorbanzadeh, Behnam; Naghizadeh, Bahareh

    2015-10-01

    Statins, 3-hydroxy-3-methylglutaryl co-enzyme A (HMG-CoA) reductase inhibitors, are widely used in the management of different diseases beyond their primary indication for lowering cholesterol. Previous studies have demonstrated the neuroprotective effects of simvastatin in different animal models. In the present study, we examined the effects of simvastatin (30, 60, 100 and 300mg/kg, p.o.) on the development and expression of morphine-induced tolerance and dependence in mice. For the induction of morphine tolerance and dependence, mice were twice daily treated with morphine (10mg/kg, s.c.) for 5 consecutive days. Tolerance was evaluated by the hot-plate test and physical dependence by naloxone challenge, on the sixth day. The results showed that oral administration of simvastatin produced antinociceptive activity in a dose-dependent way. Co-administration of simvastatin with morphine did not affect the acute morphine-induced analgesia (10mg/kg, s.c.). However, repeated co-administration of simvastatin with morphine significantly attenuated the development of tolerance to the analgesic effect of morphine and inhibited the naloxone (5mg/kg, s.c.)-precipitated withdrawal signs (jumping and body weight loss). Also, simvastatin at doses of 100 and 300mg/kg attenuated the expression of morphine-induced tolerance and dependence. These data indicated that, while simvastatin can alleviate both development and expression of morphine-induced tolerance, it cannot enhance morphine-induced antinociception. Taken together, simvastatin may be used as an adjutant therapeutic agent in combination with morphine and or other opioids in patients with severe chronic pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Characterization of Developmental- and Stress-Mediated Expression of Cinnamoyl-CoA Reductase in Kenaf (Hibiscus cannabinus L.)

    Science.gov (United States)

    Lim, Hyoun-Sub; Park, Sang-Un; Bae, Hyeun-Jong; Natarajan, Savithiry

    2014-01-01

    Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L.), which contains a 1,020-bp open reading frame (ORF), encoding 339 amino acids of 37.37 kDa, with an isoelectric point (pI) of 6.27 (JX524276, HcCCR2). BLAST result found that it has high homology with other plant CCR orthologs. Multiple alignment with other plant CCR sequences showed that it contains two highly conserved motifs: NAD(P) binding domain (VTGAGGFIASWMVKLLLEKGY) at N-terminal and probable catalytic domain (NWYCYGK). According to phylogenetic analysis, it was closely related to CCR sequences of Gossypium hirsutum (ACQ59094) and Populus trichocarpa (CAC07424). HcCCR2 showed ubiquitous expression in various kenaf tissues and the highest expression was detected in mature flower. HcCCR2 was expressed differentially in response to various stresses, and the highest expression was observed by drought and NaCl treatments. PMID:24723816

  14. Characterization of Developmental- and Stress-Mediated Expression of Cinnamoyl-CoA Reductase in Kenaf (Hibiscus cannabinus L.

    Directory of Open Access Journals (Sweden)

    Ritesh Ghosh

    2014-01-01

    Full Text Available Cinnamoyl-CoA reductase (CCR is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L., which contains a 1,020-bp open reading frame (ORF, encoding 339 amino acids of 37.37 kDa, with an isoelectric point (pI of 6.27 (JX524276, HcCCR2. BLAST result found that it has high homology with other plant CCR orthologs. Multiple alignment with other plant CCR sequences showed that it contains two highly conserved motifs: NAD(P binding domain (VTGAGGFIASWMVKLLLEKGY at N-terminal and probable catalytic domain (NWYCYGK. According to phylogenetic analysis, it was closely related to CCR sequences of Gossypium hirsutum (ACQ59094 and Populus trichocarpa (CAC07424. HcCCR2 showed ubiquitous expression in various kenaf tissues and the highest expression was detected in mature flower. HcCCR2 was expressed differentially in response to various stresses, and the highest expression was observed by drought and NaCl treatments.

  15. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U RNA.

    Directory of Open Access Journals (Sweden)

    Tiago Antonio de Souza

    Full Text Available Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC, a translin-associated factor X (CsTRAX, a VirE2-interacting protein (CsVIP2, a high mobility group (CsHMG and two poly(A-binding proteins (CsPABP1 and 2, interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.

  16. Oxidation of a [Cu2S] complex by N2O and CO2: insights into a role of tetranuclearity in the CuZ site of nitrous oxide reductase.

    Science.gov (United States)

    Bagherzadeh, Sharareh; Mankad, Neal P

    2018-01-25

    Oxidation of a [Cu 2 (μ-S)] complex by N 2 O or CO 2 generated a [Cu 2 (μ-SO 4 )] product. In the presence of a sulfur trap, a [Cu 2 (μ-O)] species also formed from N 2 O. A [Cu 2 (μ-CS 3 )] species derived from CS 2 modeled initial reaction intermediates. These observations indicate that one role of tetranuclearity in the Cu Z catalytic site of nitrous oxide reductase is to protect the crucial S 2- ligand from oxidation.

  17. Cloning and expression analysis of cinnamoyl-CoA reductase (CCR) genes in sorghum.

    Science.gov (United States)

    Li, Jieqin; Fan, Feifei; Wang, Lihua; Zhan, Qiuwen; Wu, Peijin; Du, Junli; Yang, Xiaocui; Liu, Yanlong

    2016-01-01

    Cinnamoyl-CoA reductase (CCR) is the first enzyme in the monolignol-specific branch of the lignin biosynthetic pathway. In this research, three sorghum CCR genes including SbCCR1, SbCCR2-1 and SbCCR2-2 were cloned and characterized. Analyses of the structure and phylogeny of the three CCR genes showed evolutionary conservation of the functional domains and divergence of function. Transient expression assays in Nicotiana benthamiana leaves demonstrated that the three CCR proteins were localized in the cytoplasm. The expression analysis showed that the three CCR genes were induced by drought. But in 48 h, the expression levels of SbCCR1 and SbCCR2-2 did not differ between CK and the drought treatment; while the expression level of SbCCR2-1 in the drought treatment was higher than in CK. The expression of the SbCCR1 and SbCCR2-1 genes was not induced by sorghum aphid [Melanaphis sacchari (Zehntner)] attack, but SbCCR2-2 was significantly induced by sorghum aphid attack. It is suggested that SbCCR2-2 is involved in the process of pest defense. Absolute quantitative real-time PCR revealed that the three CCR genes were mainly expressed in lignin deposition organs. The gene copy number of SbCCR1 was significantly higher than those of SbCCR2-1 and SbCCR2-2 in the tested tissues, especially in stem. The results provide new insight into the functions of the three CCR genes in sorghum.

  18. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1

    International Nuclear Information System (INIS)

    Sueoka, Keigo; Yamazaki, Teruaki; Hiyama, Tetsuo; Nakamoto, Hitoshi

    2009-01-01

    An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H 2 O 2 . These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.

  19. Atorvastatin treatment does not affect gonadal and adrenal hormones in type 2 diabetes patients with mild to moderate hypercholesterolemia.

    Science.gov (United States)

    Santini, Stefano A; Carrozza, Cinzia; Lulli, Paola; Zuppi, Cecilia; CarloTonolo, Gian; Musumeci, Salvatore

    2003-01-01

    Atorvastatin, a second generation synthetic 3-hydroxy 3-methylglutaryl-coenzyme-A (HMG-CoA) reductase inhibitor used in the treatment of hypercholesterolemia, reduces both intracellular cholesterol synthesis and serum cholesterol levels, and this could have a potential negative impact on gonadal and adrenal steroidogenesis. Hypercholesterolemia in type 2 diabetes, even when mild, must be treated in an aggressive way, due to the more strict therapeutic goals than in the non diabetic population. Since the wide use of 3-hydroxy 3-methylglutaryl-coenzyme-A (HMG-CoA) reductase inhibitor (statins) in type 2 diabetes, the main aim of our study was to evaluate the effects of "therapeutic" doses of atorvastatin on gonadal and adrenal hormones in 24 type 2 diabetic patients (16 males and 8 postmenopausal females), with mild to moderate hypercholesterolemia (LDL-cholesterol = 150.1 +/- 32.0 and 189.9 +/- 32.9 mg/dl, respectively) studied before and after a 3 months treatment with atorvastatin (20 mg/day). In all patients, lipids and serum cortisol, dehydroepiandrosterone sulphate (DHEA-S), androstendione and sex hormone binding globulin (SHBG) were measured, with the addition, only in males, of testosterone and free testosterone index. After atorvastatin treatment a significant decrease in total and LDL cholesterol was observed (p < 0.05), while HDL-cholesterol did not significantly change ( p = N.S.), as no significant difference was found between steroid hormones measured before and after atorvastatin either in male and females. In conclusion, our data suggest that, in type 2 diabetic patients, the use of atorvastatin has no clinically important effects on either gonadal or adrenal steroid hormones.

  20. Hypocholesterolemic Effects of the Cauliflower Culinary-Medicinal Mushroom, Sparassis crispa (Higher Basidiomycetes), in Diet-Induced Hypercholesterolemic Rats.

    Science.gov (United States)

    Hong, Ki Bae; Hong, Sung-Yong; Joung, Eun Young; Kim, Byung Hee; Bae, Song-Hwan; Park, Yooheon; Suh, Hyung Joo

    2015-01-01

    The cauliflower culinary-medicinal mushroom, Sparassis crispa, possesses various biological activities that have been widely reported to have therapeutic applications. We examined the effects of S. crispa on serum cholesterol, hepatic enzymes related to cholesterol metabolism, and fecal sterol excretion in rats fed a cholesterol-rich diet for 4 weeks. Male Sprague-Dawley rats (8 weeks old) were randomly divided into 5 groups (n = 6 mice per group): normal diet (normal control [NC]), cholesterol-rich diet (cholesterol control [CC]), cholesterol-rich diet plus S. crispa fruiting body (SC), cholesterol-rich diet plus S. crispa extract (SCE), and cholesterol-rich diet plus S. crispa residue (SCR). SCE supplementation significantly enhanced hepatic cholesterol catabolism through the upregulation of cholesterol 7α-hydroxylase (CYP7A1) messenger RNA (mRNA) expression (2.55-fold compared with that in the NC group; P < 0.05) and the downregulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA expression (0.57-fold compared with that in the NC group; P < 0.05). Additionally, the SCE diet resulted in the highest fecal excretion of cholesterol and bile acid in hypercholesterolemic rats. In conclusion, mRNA expression of CYP7A1 and HMG-CoA reductase were significantly modulated by the absorption of SCE samples. Also, SCE samples had a significant effect on fecal bile acid and cholesterol excretion. These results suggest that SCE samples can induce hypocholesterolic effects through cholesterol metabolism and the reduction of circulating cholesterol levels.

  1. Isoprenoid Pathway And Neurological And Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    1999-01-01

    Full Text Available The coexistence of neuronal degeneration, psychiatric manifestation, immune activation and malignant transformation has been documented in literature, suggesting a central dysfunction in the pathophysiology of these disorders. The isoprenoid pathway may be candidate in this respect, in view of the changes in the concentration of some products of this pathway in many of these disorders, however, no detailed study has been carried out in this respect. In view of this, a study was undertaken on the isoprenoid pathway in some of these disorders - primary generalized epilepsy, Parkinson’s disease (PD, schizophrenia, manic depressive psychosis (MDP, CNS glioma, multiple sclerosis, subacute sclerosing panencephalitis (SSPEand a familial group with familial coexistence of schizophrenia, PD, primary generalized epilepsy, malignant neoplasia, rheumatoid arthritis and syndrome-X over three generations. The following parameters were studied in the patients of these disorders as compared to age and sex matched control subjects - ubiquinone dolichol, digoxin, activity of HMG CoA reductase in the plasma and erthyorcyte membrane Na -K--ATpase. Increase in the activity of HMG CoA reductase and in the concentration of plasma digoxin and dolichol was observed in most of these cases. On the other hand, there was decrease in the concentration of plasma ubiquinone. Decrease in the activity of erythrocyte membrane Na-K- ATpase activity for which digoxin is an inhibitor was also observed in all the cases studied. These results indicate an upregulation of the isoprenoid pathway in the neurological and psychiatric disorders studied. The implications of this change is discussed in details.

  2. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize.

    Science.gov (United States)

    Félix-Urquídez, Dalmira; Pérez-Urquiza, Melina; Valdez Torres, José-Benigno; León-Félix, Josefina; García-Estrada, Raymundo; Acatzi-Silva, Abraham

    2016-01-05

    Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%-100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio.

  3. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize

    Science.gov (United States)

    2015-01-01

    Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%–100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio. PMID:26605751

  4. CoQ10 Augments Rosuvastatin Neuroprotective Effect in a Model of Global Ischemia via Inhibition of NF-κB/JNK3/Bax and Activation of Akt/FOXO3A/Bim Cues

    Directory of Open Access Journals (Sweden)

    Sarah A. Abd El-Aal

    2017-10-01

    Full Text Available Statins were reported to lower the Coenzyme Q10 (CoQ10 content upon their inhibition of HMG-CoA reductase enzyme and both are known to possess neuroprotective potentials; therefore, the aim is to assess the possible use of CoQ10 as an adds-on therapy to rosuvastatin to improve its effect using global I/R model. Rats were allocated into sham, I/R, rosuvastatin (10 mg/kg, CoQ10 (10 mg/kg and their combination. Drugs were administered orally for 7 days before I/R. Pretreatment with rosuvastatin and/or CoQ10 inhibited the hippocampal content of malondialdehyde, nitric oxide, and boosted glutathione and superoxide dismutase. They also opposed the upregulation of gp91phox, and p47phox subunits of NADPH oxidase. Meanwhile, both agents reduced content/expression of TNF-α, iNOS, NF-κBp65, ICAM-1, and MPO. Besides, all regimens abated cytochrome c, caspase-3 and Bax, but increased Bcl-2 in favor of cell survival. On the molecular level, they increased p-Akt and its downstream target p-FOXO3A, with the inhibition of the nuclear content of FOXO3A to downregulate the expression of Bim, a pro-apoptotic gene. Additionally, both treatments downregulate the JNK3/c-Jun signaling pathway. The effect of the combination regimen overrides that of either treatment alone. These effects were reflected on the alleviation of the hippocampal damage in CA1 region inflicted by I/R. Together, these findings accentuate the neuroprotective potentials of both treatments against global I/R by virtue of their rigorous multi-pronged actions, including suppression of hippocampal oxidative stress, inflammation, and apoptosis with the involvement of the Akt/FOXO3A/Bim and JNK3/c-Jun/Bax signaling pathways. The study also nominates CoQ10 as an adds-on therapy with statins.

  5. Effects of elevated CO2 on the photosynthesis and nitrate reductase activity of Pyropia haitanensis (Bangiales, Rhodophyta) grown at different nutrient levels

    Science.gov (United States)

    Liu, Chunxiang; Zou, Dinghui

    2015-03-01

    Pyropia haitanensis, a commercially important species, was cultured at two CO2 concentrations (390×10-6 and 700×10-6 (parts per million)) and at low and high nutrient levels, to explore the effect of elevated CO2 on the species under nutrient enrichment. Results show that in CO2-enriched thalli, relative growth rate (RGR) was enhanced under nutrient enrichment. Elevated CO2 decreased phycobiliprotein (PB) contents, but increased the contents of soluble carbohydrates. Nutrient enrichment increased the contents of chlorophyll a (Chl a) and PB, while soluble carbohydrate content decreased. CO2 enrichment enhanced the relative maximum electronic transport rate and light saturation point. In nutrient-enriched thalli the activity of nitrate reductase (NRA) increased under elevated CO2. An instantaneous pH change in seawater (from 8.1 to 9.6) resulted in reduction of NRA, and the thalli grown under both elevated CO2 and nutrient enrichment exhibited less pronounced reduction than in algae grown at the ambient CO2. The thermal optima of NRA under elevated CO2 and/or nutrient enrichment shifted to a lower temperature (10-15°C) compared to that in ambient conditions (20°C). We propose that accelerated photosynthesis could result in growth increment. N assimilation remained high in acidified seawater and reflected increased temperature sensitivity in response to elevated CO2 and eutrophication.

  6. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight

    DEFF Research Database (Denmark)

    Swerdlow, Daniel I; Preiss, David; Kuchenbaecker, Karoline B

    2015-01-01

    . Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were...... gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes...... assessed using meta-analysis. FINDINGS: Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05-0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18-0·43), waist circumference (0·32 cm, 0...

  7. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  8. Measurement of rates of cholesterol synthesis using tritiated water

    International Nuclear Information System (INIS)

    Dietschy, J.M.; Spady, D.K.

    1984-01-01

    Rates of sterol synthesis in various tissues commonly are assessed by assaying levels of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase on isolated microsomes or by measuring the rates of incorporation of various 14 C-labeled substrates or [ 3 H]water into cholesterol by whole cell preparations in vitro or by the tissues of the whole animal in vivo. While measurement of activities of HMG-CoA reductase or rates of incorporation of 14 C-labeled substrates into cholesterol give useful relative rates of sterol production, neither method yields absolute rates of cholesterol synthesis. The use of [ 3 H]water circumvents the problem of variable and unknown dilution of the specific activity of the precursor pool encountered when 14 C-labeled substrates are used and does yield absolute rates of cholesterol synthesis provided that the 3 H/C incorporation ratio is known for a particular tissue. In 12 different experimental situations it has been found that from 21 to 27 micrograms atoms of 3 H are incorporated into cholesterol from [ 3 H]water in different tissues of several animal species, so that the 3 H/C incorporation ratio is similar under nearly all experimental conditions and varies from 0.78 to 1.00. When administered in vivo, [ 3 H]water rapidly equilibrates with intracellular water and is incorporated into sterols within the various organs at rates that are linear with respect to time. From such data it is possible to obtain absolute rates of cholesterol synthesis in the whole animal and in the various organs of the animal. Current data suggest, therefore, that use of [ 3 H]water yields the most accurate rates of cholesterol synthesis both in vitro and in vivo

  9. Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species

    NARCIS (Netherlands)

    Kremer, D.R.; Veenhuis, M.; Fauque, G.; Peck Jr., H.D.; LeGall, J.; Lampreia, J.; Moura, J.J.G.; Hansen, T.A.

    1988-01-01

    The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were

  10. Drug-enhanced carbon monoxide production from heme by cytochrome P450 reductase

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2017-01-01

    Full Text Available Carbon monoxide (CO formed endogenously is considered to be cytoprotective, and the vast majority of CO formation is attributed to the degradation of heme by heme oxygenases-1 and -2 (HO-1, HO-2. Previously, we observed that brain microsomes containing HO-2 produced many-fold more CO in the presence of menadione and its congeners; herein we explored these observations further. We determined the effects of various drugs on CO production of rat brain microsomes and recombinant human cytochrome P450 reductase (CPR; CO was measured by gas chromatography with reductive detection. Brain microsomes of Sprague-Dawley rats or recombinant human cytochrome P450 reductase (CPR were incubated with NADPH and various drugs in closed vials in phosphate buffer at pH 7.4 and 37°C. After 15 minutes, the reaction was stopped by cooling in dry ice, and the headspace gas was analyzed for CO production using gas chromatography with reductive (mercuric oxide detection. We observed drug-enhanced CO production in the presence of both microsomes and recombinant CPR alone; the presence of HO was not required. A range of structurally diverse drugs were capable of amplifying this CO formation; these molecules had structures consistent with redox cycling capability. The addition of catalase to a reaction mixture, that contained activating drugs, inhibited the production of CO. Drug-enhanced CO formation can be catalyzed by CPR. The mechanism of CPR activation was not through classical drug-receptor mediation. Redox cycling may be involved in the drug-induced amplification of CO production by CPR through the production of reactive oxygen species.

  11. Molecular Characterization of Two Fatty Acyl-CoA Reductase Genes From Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Li, Xiaolong; Zheng, Tianxiang; Zheng, Xiaowen; Han, Na; Chen, Xuexin; Zhang, Dayu

    2016-01-01

    Fatty acyl-CoA reductases (FARs) are key enzymes involved in fatty alcohol synthesis. Here, we cloned and characterized full-length cDNAs of two FAR genes from the cotton mealybug, Phenacoccus solenopsis. The results showed PsFAR I and PsFAR II cDNAs were 1,584 bp and 1,515 bp in length respectively. Both PsFAR I and PsFAR II were predicted to be located in the endoplasmic reticulum by Euk-mPLoc 2.0 approach. Both of them had a Rossmann folding region and a FAR_C region. Two conservative motifs were discovered in Rossmann folding region by sequence alignment including a NADPH combining motif, TGXXGG, and an active site motif, YXXXK. A phylogenetic tree made using MEGA 6.06 indicated that PsFAR I and PsFAR II were placed in two different branches. Gene expression analysis performed at different developmental stages showed that the expression of PsFar I is significantly higher than that of PsFar II in first and second instar nymphs and in male adults. Spirotetramat treatment at 125 mg/liter significantly increased the expression of PsFar I in third instar nymphs, but there was no effect in the expression of PsFar II Our results indicated these two FAR genes showed different expression patterns during insect development and after pesticide treatment, suggesting they play different roles in insect development and detoxification against pesticides. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  12. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala.

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    Full Text Available A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR, thioredoxin-glutathione reductase (TGR, and a putative thioredoxin reductase (TrxR was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.

  13. Controlled ovarian stimulation with r-FSH plus r-LH vs. HMG plus r-FSH in patients candidate for IVF/ICSI cycles: An RCT

    Directory of Open Access Journals (Sweden)

    Ensieh Shahrokh Tehraninejad

    2017-08-01

    Full Text Available Background: Different combination of gonadotropin preparation has been introduced with no definite superiority of one over others in in vitro fertilization (IVF, but individualized regimens for each patient are needed. Objective: The aim of the present study was to investigate the effect of controlled ovarian stimulation with recombinant- follicle stimulating hormone (r-FSH plus recombinant-luteinizing hormone (rLH versus human menopausal gonadotropin (HMG plus r-FSH on fertility outcomes in IVF patients. Materials and Methods: This is a randomized clinical trial study that was performed from October 2014-April 2016 on 140 infertile patients with a set of inclusion criteria that referred to infertility clinics in Vali- asr and Gandhi Hospital in Tehran. The women were randomly divided into two treatment groups. The first group (n=70 received rFSH from the second day of cycle and was added HMG in 6th day and the 2nd group (n=70, received rFSH from the second day of cycle and was added recombinant-LH in 6th day. Then ovum Pick-Up and embryo transfer were performed. In this study, we assessed the outcomes such as; chemical and clinical pregnancy rate, live birth and abortion rate. Results: Number of follicles in ovaries, total number of oocytes or M2 oocytes and quality of fetuses has no significant differences between two groups (p>0.05. Total number of fetuses were significantly higher in patients who received rFSH + HMG (p=0.02. Fertility outcomes consisted of: live birth rate, chemical pregnancy and clinical pregnancy rate were higher in rFSH + HMG group in comparison to rFSH +r-LH group (p<0.05. Conclusion: It seems that in IVF patients, HMG + rFSH used for controlled ovarian hyperstimulation have better effects on fertility outcomes, but in order to verify the results, it is recommended to implement studies on more patients.

  14. Corifollitropin alfa compared to daily rFSH or HP-HMG in GnRH antagonist controlled ovarian stimulation protocol for patients undergoing assisted reproduction.

    Science.gov (United States)

    Souza, Priscila Morais Galvão; Carvalho, Bruno Ramalho de; Nakagawa, Hitomi Miura; Rassi, Thalita Reis Esselin; Barbosa, Antônio César Paes; Silva, Adelino Amaral

    2017-06-01

    This study aimed to compare the outcomes of controlled ovarian stimulation (COS) with corifollitropin alfa versus daily recombinant follicle-stimulating hormone (rRFSH) or highly purified human menopausal gonadotropin (HP-HMG) in patients undergoing in vitro fertilization (IVF) cycles based on gonadotropin-releasing hormone (GnRH) antagonist protocols. The primary endpoints were total number of oocytes and mature oocytes. This retrospective study looked into 132 controlled ovarian stimulation cycles from IVF or oocyte cryopreservation performed in a private human reproduction center between January 1 and December 31, 2014. Enrollment criteria: women aged 0.05). There were no significant differences in fertilization (76.9% vs. 76.8%, p=1.0), biochemical pregnancy (66.7% vs. 47.2%, p=0.1561) or embryo implantation rates (68.7% vs. 50%, p=0.2588) between the groups using corifollitropin alfa and rFSH or HMG, respectively. Corifollitropin alfa seems to be as effective as rFSH or HP-HMG when used in the first seven days of ovulation induction for patients undergoing assisted reproduction in GnRH antagonist protocols.

  15. Statin treatment in multiple sclerosis

    DEFF Research Database (Denmark)

    Pihl-Jensen, Gorm; Tsakiri, Anna; Frederiksen, Jette Lautrup

    2015-01-01

    BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease that leads to progressive disability. Statins [hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors] are widely prescribed drugs in hypercholesterolemia. They exert immunomodulatory and neurotrophic effects and are attractive...... candidates for MS treatment due to reliable safety profiles and favorable costs. Studies of statins in a murine MS model and in open-label trials in MS have shown decreased disease severity. OBJECTIVE: Our objective was to assess current evidence to support statin treatment in MS and clinically isolated......)-β treatment in RRMS, one of statin monotherapy in CIS, one of statin monotherapy in optic neuritis (ON)/CIS, and one of statin monotherapy in secondary progressive MS (SPMS)]. Three trials with eligible characteristics had not been published in peer-reviewed journals and were therefore not included. Due...

  16. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    Science.gov (United States)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  17. Phytochemical and in vitro screening of some Ficus and Morus spp. for hypolipidaemic and antioxidant activities and in vivo assessment of Ficus mysorensis (Roth).

    Science.gov (United States)

    Awad, Nagwa E; Seida, Ahmed A; Hamed, Manal A; Mahmoud, Ahlam H; Elbatanony, Marwa M

    2012-01-01

    Phytochemical screening of air-dried leaves and fruit juice of certain Ficus and Morus spp. have been studied. In an in vitro study, the ethanol and hexane extracts of the investigated plants were evaluated against hyperlipidaemia by estimating the rate limiting enzyme of cholesterol biothenysis; β-hydroxy-β-methylglutaryl coenzyme A reductase (HMG-CoA reductase). The antioxidant activity was evaluated by reduction of DPPH(-) free radical. Extra phytochemical screening of Ficus extracts was undertaken, which recorded potent hypolipidaemic and antioxidant activities. The more pronounced extract, Ficus mysorensis (hexane extract), was evaluated in vivo by estimation of the lipid profile and certain antioxidant parameters in hypercholesterolemic rats. The hexane fraction was chromatographed and six isolated compounds were identified. Furthermore, its saponifiable fraction was identified by a MS/MS technique. In conclusion, F. mysorensis recorded hypolipidaemic and antioxidant effects. Detailed studies of the isolated compounds must be undertaken for an evaluation against hypercholesterolemia and free radical elevation.

  18. Lipid Metabolism in Vascular Smooth Muscle Cells Infuenced by HCMV Infection

    Directory of Open Access Journals (Sweden)

    Lingfang Li

    2016-10-01

    Full Text Available Background: The present study was designed to observe the infection of human cytomegalovirus (HCMV to human vascular smooth muscle cells (VSMCs, and the effect of viral infection on lipid metabolism in VSMCs. Methods: The cytopathic effects were observed by inverted microscopy and viral infection were examined by electron microscopy and RT-PCR. The lipid metabolism related gene profiling of VSMCs after HCMV infection was assayed by cDNA assay and the abnormal expression of genes were validated by quantitative RT-PCR. The content of cholesterol in VSMCs after HCMV infection was assayed by cholesterol detection kit. Results: VSMCs showed obvious cytopathic effects after HCMV infection. Intact viral particles could be detected in VSMCs using electron microscope. By use of RT-PCR technology, IE gene of HCMV could be amplified from VSMCs. The expression of cell lipid metabolism related gene profiling showed obvious disorders. The expression levels of HMG-CoA synthase and HMG-CoA reductase after infection increased significantly. The cellular cholesterol content (µmol/106 cells was significantly higher than that of mock infected group at 72h post infection. Conclusion: HCMV can infect VSMCs and the infection can affect cellular lipid metabolism related gene expression, which get involved in the occurrence and development of atherosclerosis (AS.

  19. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    Science.gov (United States)

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  20. The aldo-keto reductase superfamily homepage.

    Science.gov (United States)

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  1. Superiority of dietary safflower oil over olive oil in lowering serum cholesterol and increasing hepatic mRnas for the LDL receptor and cholesterol 7alpha-hydroxylase in exogenously hypercholesterolemic (exHC) rats.

    Science.gov (United States)

    Sato, M; Yoshida, S; Nagao, K; Imaizumi, K

    2000-06-01

    The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) and 3-hydroxyl-3methylglutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7alpha-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7alpha-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of serum cholesterol.

  2. Euterpe oleracea Mart.-Derived Polyphenols Protect Mice from Diet-Induced Obesity and Fatty Liver by Regulating Hepatic Lipogenesis and Cholesterol Excretion.

    Science.gov (United States)

    de Oliveira, Paola Raquel B; da Costa, Cristiane A; de Bem, Graziele F; Cordeiro, Viviane S C; Santos, Izabelle B; de Carvalho, Lenize C R M; da Conceição, Ellen Paula S; Lisboa, Patrícia Cristina; Ognibene, Dayane T; Sousa, Pergentino José C; Martins, Gabriel R; da Silva, Antônio Jorge R; de Moura, Roberto S; Resende, Angela C

    2015-01-01

    The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1) on adiposity and hepatic steatosis in mice that were fed a high-fat (HF) diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control), 10% fat + ASE (ASE), 60% fat (HF), and 60% fat + ASE (HF + ASE) for 12 weeks. We evaluated the food intake, body weight gain, serum glucose and lipid profile, hepatic cholesterol and triacyglycerol (TG), hepatic expression of pAMPK, lipogenic proteins (SREBP-1c, pACC, ACC, HMG-CoA reductase) and cholesterol excretion transporters, ABCG5 and ABCG8. We also evaluated the steatosis in liver sections and oxidative stress. ASE reduced body weight gain, food intake, glucose levels, accumulation of cholesterol and TG in the liver, which was associated with a reduction of hepatic steatosis. The increased expressions of SREBP-1c and HMG-CoA reductase and reduced expressions of pAMPK and pACC/ACC in HF group were antagonized by ASE. The ABCG5 and ABCG8 transporters expressions were increased by the extract. The antioxidant effect of ASE was demonstrated in liver of HF mice by restoration of SOD, CAT and GPx activities and reduction of the increased levels of malondialdehyde and protein carbonylation. In conclusion, ASE substantially reduced the obesity and hepatic steatosis induced by HF diet by reducing lipogenesis, increasing cholesterol excretion and improving oxidative stress in the liver, providing a nutritional resource for prevention of obesity-related adiposity and hepatic steatosis.

  3. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    Science.gov (United States)

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  4. Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells.

    Science.gov (United States)

    Laureys, F; Dewitte, W; Witters, E; Van Montagu, M; Inzé, D; Van Onckelen, H

    1998-04-10

    The importance of N6-isoprenoid cytokinins in the G2-M transition of Nicotiana tabacum BY-2 cells was investigated. Both cytokinin biosynthesis and entry in mitosis were partially blocked by application at early or late G2 of lovastatin (10 microM), an inhibitor of mevalonic acid synthesis. LC-MS/MS quantification of endogenous cytokinins proved that lovastatin affects cytokinin biosynthesis by inhibiting HMG-CoA reductase. Out of eight different aminopurines and a synthetic auxin tested for their ability to override lovastatin inhibition of mitosis, only zeatin was active. Our data point to a key role for a well-defined cytokinin (here, zeatin) in the G2-M transition of tobacco BY-2 cells.

  5. Bark Extracts of Ceylon Cinnamon Possess Antilipidemic Activities and Bind Bile Acids In Vitro

    Directory of Open Access Journals (Sweden)

    Walimuni Prabhashini Kaushalya Mendis Abeysekera

    2017-01-01

    Full Text Available Ethanol (95% and dichloromethane : methanol (1 : 1 bark extracts of authenticated Ceylon cinnamon were investigated for range of antilipidemic activities (ALA: HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities and bile acids binding in vitro. Individual compounds in bark extracts were also evaluated. Bark extracts showed ALA in all the assays studied. The IC50 (μg/mL values ranged within 153.07±8.38–277.13±32.18, 297.57±11.78–301.09±4.05, 30.61±0.79–34.05±0.41, and 231.96±9.22–478.89±9.27, respectively, for HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities. The bile acids binding (3 mg/mL for taurocholate, glycodeoxycholate, and chenodeoxycholate ranged within 19.74±0.31–20.22±0.31, 21.97±2.21–26.97±1.61, and 16.11±1.42–19.11±1.52%, respectively. The observed ALA were moderate compared to the reference drugs studied. Individual compounds in bark extracts ranged within 2.14±0.28–101.91±3.61 and 0.42±0.03–49.12±1.89 mg/g of extract. Cinnamaldehyde and gallic acid were the highest and the lowest among the tested compounds. The ethanol extract had highest quantity of individual compounds and ALA investigated. Properties observed indicate usefulness of Ceylon cinnamon bark in managing hyperlipidemia and obesity worldwide. Further, this study provides scientific evidence for the traditional claim that Ceylon cinnamon has antilipidemic activities.

  6. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.

    Science.gov (United States)

    Lochmeyer, C; Koch, J; Fuchs, G

    1992-06-01

    The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.

  7. An enhanceosome containing the Jun B/Fra-2 heterodimer and the HMG-I(Y) architectural protein controls HPV 18 transcription.

    Science.gov (United States)

    Bouallaga, I; Massicard, S; Yaniv, M; Thierry, F

    2000-11-01

    Recent studies have reported new mechanisms that mediate the transcriptional synergy of strong tissue-specific enhancers, involving the cooperative assembly of higher-order nucleoprotein complexes called enhanceosomes. Here we show that the HPV18 enhancer, which controls the epithelial-specific transcription of the E6 and E7 transforming genes, exhibits characteristic features of these structures. We used deletion experiments to show that a core enhancer element cooperates, in a specific helical phasing, with distant essential factors binding to the ends of the enhancer. This core sequence, binding a Jun B/Fra-2 heterodimer, cooperatively recruits the architectural protein HMG-I(Y) in a nucleoprotein complex, where they interact with each other. Therefore, in HeLa cells, HPV18 transcription seems to depend upon the assembly of an enhanceosome containing multiple cellular factors recruited by a core sequence interacting with AP1 and HMG-I(Y).

  8. LDL-C levels in older people: Cholesterol homeostasis and the free radical theory of ageing converge.

    Science.gov (United States)

    Mc Auley, Mark T; Mooney, Kathleen M

    2017-07-01

    The cardiovascular disease (CVD) risk factor, low density lipoprotein cholesterol (LDL-C) increases with age, up until the midpoint of life in males and females. However, LDL-C can decrease with age in older men and women. Intriguingly, a recent systematic review also revealed an inverse association between LDL-C levels and cardiovascular mortality in older people; low levels of LDL-C were associated with reduced risk of mortality. Such findings are puzzling and require a biological explanation. In this paper a hypothesis is proposed to explain these observations. We hypothesize that the free radical theory of ageing (FRTA) together with disrupted cholesterol homeostasis can account for these observations. Based on this hypothesis, dysregulated hepatic cholesterol homeostasis in older people is characterised by two distinct metabolic states. The first state accounts for an older person who has elevated plasma LDL-C. This state is underpinned by the FRTA which suggests there is a decrease in cellular antioxidant capacity with age. This deficiency enables hepatic reactive oxidative species (ROS) to induce the total activation of HMG-CoA reductase, the key rate limiting enzyme in cholesterol biosynthesis. An increase in cholesterol synthesis elicits a corresponding rise in LDL-C, due to the downregulation of LDL receptor synthesis, and increased production of very low density lipoprotein cholesterol (VLDL-C). In the second state of dysregulation, ROS also trigger the total activation of HMG-CoA reductase. However, due to an age associated decrease in the activity of cholesterol-esterifying enzyme, acyl CoA: cholesterol acyltransferase, there is restricted conversion of excess free cholesterol (FC) to cholesterol esters. Consequently, the secretion of VLDL-C drops, and there is a corresponding decrease in LDL-C. As intracellular levels of FC accumulate, this state progresses to a pathophysiological condition akin to nonalcoholic fatty liver disease. It is our

  9. Isolated Poly(3-Hydroxybutyrate) (PHB) Granules Are Complex Bacterial Organelles Catalyzing Formation of PHB from Acetyl Coenzyme A (CoA) and Degradation of PHB to Acetyl-CoA▿

    OpenAIRE

    Uchino, Keiichi; Saito, Terumi; Gebauer, Birgit; Jendrossek, Dieter

    2007-01-01

    Poly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) from Ralstonia eutropha catalyzed formation of PHB from 14C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and active in isolated nPHB granules in vitro. nPHB granules also catalyzed thiolytic cleavage of PHB in the presence of added CoA, resulting in...

  10. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells.

    Science.gov (United States)

    Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo

    2014-02-01

    Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.

  11. Statins and protein prenylation in cancer cell biology and therapy.

    Science.gov (United States)

    Garcia-Ruiz, Carmen; Morales, Albert; Fernandez-Checa, Jose C

    2012-05-01

    The use of statins has scaled up to become one of the most prescribed medicines in the world and have been very useful in the manegement of cardiovascular diseases and related mortality. The disclosure of their chemical structure similar to that of hydroxy methyl glutaryl-CoA (HMG-CoA) revealed their ability to compete with and inhibit the rate-limiting enzyme HMG-CoA reductase that catalyzes the synthesis of mevalonate, which then serves as the precursor for isoprenoids and cholesterol in the mevalonate pathway. While most of the effects of statins are associated with the lowering of cellular cholesterol levels, it is clear that they also blunt the non-sterol branch of the mevalonate pathway, decreasing formation of isoprenoids and altering protein-prenylation, a critical event in the posttranslational modulation of proteins involved in the regulation of cell cycle progression, proliferation and signaling pathways. Randomized controlled trials for the prevention of cardiovascular diseases indicated that statins elicited provocative and unexpected benefits for reducing a number of different types of cancers, including colorectal carcinoma, melanoma, prostate and hepatocellular carcinoma, although in other cancer types the preclinical expectations of statins were dissapointing. In this review, we will describe the evidence and mechanisms underlying the potential beneficial use of statins and the role of protein prenylation in cancer prevention. Of relevance, the combination of statins with other anti cancer drugs may be a significant asset in malignancies resistant to current therapy.

  12. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second 14 CO 2 pulse, the total 14 C incorporation of the mutant leaves was approximately 20 5 of that of the control. The 14 C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second 14 CO 2 pulse followed by a 60 second chase with normal CO 2 , 14 C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus

  13. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  14. The crystal structure of the Sox4 HMG domain-DNA complex suggests a mechanism for positional interdependence in DNA recognition.

    Science.gov (United States)

    Jauch, Ralf; Ng, Calista K L; Narasimhan, Kamesh; Kolatkar, Prasanna R

    2012-04-01

    It has recently been proposed that the sequence preferences of DNA-binding TFs (transcription factors) can be well described by models that include the positional interdependence of the nucleotides of the target sites. Such binding models allow for multiple motifs to be invoked, such as principal and secondary motifs differing at two or more nucleotide positions. However, the structural mechanisms underlying the accommodation of such variant motifs by TFs remain elusive. In the present study we examine the crystal structure of the HMG (high-mobility group) domain of Sox4 [Sry (sex-determining region on the Y chromosome)-related HMG box 4] bound to DNA. By comparing this structure with previously solved structures of Sox17 and Sox2, we observed subtle conformational differences at the DNA-binding interface. Furthermore, using quantitative electrophoretic mobility-shift assays we validated the positional interdependence of two nucleotides and the presence of a secondary Sox motif in the affinity landscape of Sox4. These results suggest that a concerted rearrangement of two interface amino acids enables Sox4 to accommodate primary and secondary motifs. The structural adaptations lead to altered dinucleotide preferences that mutually reinforce each other. These analyses underline the complexity of the DNA recognition by TFs and provide an experimental validation for the conceptual framework of positional interdependence and secondary binding motifs.

  15. Association of Cognitive Impairment in Patients on 3-Hydroxy-3-Methyl-Glutaryl-CoA Reductase Inhibitors.

    Science.gov (United States)

    Roy, Satyajeet; Weinstock, Joshua Louis; Ishino, Allyse Sachiko; Benites, Jefferson Felix; Pop, Samantha Rachel; Perez, Christopher David; Gumbs, Edvard Adrian; Rosenbaum, Jennifer Ann; Roccato, Mary Kate; Shah, Hely; Contino, Gabriela; Hunter, Krystal

    2017-07-01

    Atherosclerotic cardiovascular diseases are the leading cause of death in the United States. A reduction in cholesterol with 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statin) significantly reduces mortality and morbidity. Statins may be associated with cognitive impairment or dementia. Our aim was to study the association of cognitive impairment or dementia in patients who were on a statin. Electronic medical records of 3,500 adult patients in our suburban internal medicine office were reviewed. There were 720 (20.6%) patients in the statin treatment group. Dementia or cognitive impairment was an associated comorbid condition in 7.9% patients in the statin treatment group compared to 3.1% patients in the non-statin group (P impairment or dementia showed that among the age ranges of 51 years through 100 years, the patients in the statin treatment group had a higher prevalence of cognitive impairment or dementia compared to the non-statin group. In the statin treatment group, we found significantly higher prevalence of hyperlipidemia (86.3%), hypertension (69.6%), diabetes mellitus (36.0%), osteoarthritis (31.5%), coronary artery disease (26.1%), hypothyroidism (21.5%) and depression (19.3%) compared to the non-statin group (P impairment were on statin therapy compared to 18.9% patients who had no dementia or cognitive impairment and were on statin therapy (P impairment with each year increase in age (1.3 times), in women (2.2 times), African American race (2.7 times), non-consumption of moderate amount of alcohol (two times), diabetes mellitus (1.6 times), hypothyroidism (1.7 times), cerebrovascular accident (3.2 times), and other rheumatological diseases (1.8 times). The association of dementia or cognitive impairment was significantly higher in the patients who were on statin therapy compared to the patients who were not on a statin.

  16. Whole-cell bioreduction of aromatic α-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Egger Sigrid

    2008-12-01

    Full Text Available Abstract Background Whole cell-catalyzed biotransformation is a clear process option for the production of chiral alcohols via enantioselective reduction of precursor ketones. A wide variety of synthetically useful reductases are expressed heterologously in Escherichia coli to a high level of activity. Therefore, this microbe has become a prime system for carrying out whole-cell bioreductions at different scales. The limited capacity of central metabolic pathways in E. coli usually requires that reductase coenzyme in the form of NADPH or NADH be regenerated through a suitable oxidation reaction catalyzed by a second NADP+ or NAD+ dependent dehydrogenase that is co-expressed. Candida tenuis xylose reductase (CtXR was previously shown to promote NADH dependent reduction of aromatic α-keto esters with high Prelog-type stereoselectivity. We describe here the development of a new whole-cell biocatalyst that is based on an E. coli strain co-expressing CtXR and formate dehydrogenase from Candida boidinii (CbFDH. The bacterial system was evaluated for the synthesis of ethyl R-4-cyanomandelate under different process conditions and benchmarked against a previously described catalyst derived from Saccharomyces cerevisiae expressing CtXR. Results Gene co-expression from a pETDuet-1 vector yielded about 260 and 90 units of intracellular CtXR and CbFDH activity per gram of dry E. coli cell mass (gCDW. The maximum conversion rate (rS for ethyl 4-cyanobenzoylformate by intact or polymyxin B sulphate-permeabilized cells was similar (2 mmol/gCDWh, suggesting that the activity of CbFDH was partly rate-limiting overall. Uncatalyzed ester hydrolysis in substrate as well as inactivation of CtXR and CbFDH in the presence of the α-keto ester constituted major restrictions to the yield of alcohol product. Using optimized reaction conditions (100 mM substrate; 40 gCDW/L, we obtained ethyl R-4-cyanomandelate with an enantiomeric excess (e.e. of 97.2% in a yield of 82

  17. Direct antioxidant properties of bilirubin andbiliverdin. Is there a role for biliverdin reductase?

    Directory of Open Access Journals (Sweden)

    Thomas eJansen

    2012-03-01

    Full Text Available Reactive oxygen species (ROS and signaling events are involved in the pathogenesis of endothelial dysfunction and represent a major contribution to vascular regulation. Molecular signaling is highly dependent on reactive oxygen species. But depending on the amount of ROS production it might have toxic or protective effects. Despite a large number of negative outcomes in large clinical trials (e.g. HOPE, HOPE-TOO, antioxidant molecules and agents are important players to influence the critical balance between production and elimination of RONS. However, chronic systemic antioxidant therapy lacks clinical efficacy, probably by interfering with important physiological redox signaling pathways. Therefore, it may be a much more promising attempt to induce intrinsic antioxidant pathways in order to increase the antioxidants not systemically but at the place of oxidative stress and complications. Among others, heme oxygenase (HO has been shown to be important for attenuating the overall production of ROS in a broad range of disease states through its ability to degrade heme and to produce carbon monoxide (CO, biliverdin/bilirubin, and the release of free iron with subsequent ferritin induction. With the present review we would like to highlight the important antioxidant role of the heme oxygenase system and especially discuss the contribution of the biliverdin, bilirubin and biliverdin reductase to these beneficial effects. The bilierdin reductase was reported to confer an antioxidant redox amplification cycle by which low, physiological bilirubin concentrations confer potent antioxidant protection via recycling of biliverdin from oxidized bilirubin by the biliverdin reductase, linking this sink for oxidants to the NADPH pool. To date the existence and role of this antioxidant redox cycle is still under debate and we present and discuss the pros and cons as well as our own findings on this topic.

  18. Analytical Methods for the Determination of Rosuvastatin in Pharmaceutical Formulations and Biological Fluids: A Critical Review.

    Science.gov (United States)

    Ângelo, Marilene Lopes; Moreira, Fernanda de Lima; Morais Ruela, André Luís; Santos, Ana Laura Araújo; Salgado, Hérida Regina Nunes; de Araújo, Magali Benjamim

    2018-07-04

    Rosuvastatin calcium (ROS), ( Figure 1 ) belongs to the "statins" group, which is the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor. This drug is indicated for dyslipidemias treatment and can help to decrease the level of "bad cholesterol" and can consequently reduce the development of atherosclerosis and the risk of heart diseases. ROS was developed by Astra-Zeneca and it was approved in 2003 by the FDA in the United States. In 2015, under the trade name Crestor®, it was the fourth largest selling drug in the United States with sales above $5 billion. This study presents a literature review of analytical methods for the quantification of ROS in pharmaceutical preparations and biological fluids. The major analytical methods described in this study for ROS were spectrophotometry, high-performance liquid chromatography (HPLC) coupled to ultraviolet (UV) detection, and tandem mass spectrometry (LC-MS/MS).

  19. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanandan, Saravanan; Moovarkumudalvan, Balasubramanian; Lescar, Julien; Kolatkar, Prasanna R.

    2015-10-30

    Sox9 is a fundamental sex-determining gene and the master regulator of chondrogenesis, and is involved in the development of various vital organs such as testes, kidney, heart and brain, and in skeletal development. Similar to other known Sox transcription factors, Sox9 recognizes and binds DNA with the consensus sequence C(T/A)TTG(T/A)(T/A) through the highly conserved HMG domain. Nonetheless, the molecular basis of the functional specificity of Sox9 in key developmental processes is still unclear. As an initial step towards a mechanistic understanding of Sox9 transcriptional regulation, the current work describes the details of the purification of the mouse Sox9 HMG domain (mSox9HMG), its crystallization in complex with a ChIP-Seq-identified FOXP2 promoter DNA element and the X-ray diffraction data analysis of this complex. The mSox9HMG–FOXP2 promoter DNA complex was crystallized by the hanging-drop vapour-diffusion method using 20% PEG 3350 in 200 mMsodium/potassium phosphate with 100 mMbis-tris propane at pH 8.5. The crystals diffracted to 2.7 Å resolution and the complex crystallized in the tetragonal space groupP41212, with unit-cell parametersa=b= 99.49,c= 45.89 Å. Crystal-packing parameters revealed that asymmetric unit contained one mSox9HMG–FOXP2 promoter DNA complex with an estimated solvent content of 64%.

  20. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Cindy [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Mueller, Uwe [Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Sun, Lianli [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Zhao, Yu [Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China)

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  1. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    International Nuclear Information System (INIS)

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222 1 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å

  2. Calmodulin-dependent nuclear import of HMG-box family nuclear factors: importance of the role of SRY in sex reversal.

    Science.gov (United States)

    Kaur, Gurpreet; Delluc-Clavieres, Aurelie; Poon, Ivan K H; Forwood, Jade K; Glover, Dominic J; Jans, David A

    2010-08-15

    The HMG (high-mobility group)-box-containing chromatin-remodelling factor SRY (sex-determining region on the Y chromosome) plays a key role in sex determination. Its role in the nucleus is critically dependent on two NLSs (nuclear localization signals) that flank its HMG domain: the C-terminally located 'beta-NLS' that mediates nuclear transport through Impbeta1 (importin beta1) and the N-terminally located 'CaM-NLS' which is known to recognize the calcium-binding protein CaM (calmodulin). In the present study, we examined a number of missense mutations in the SRY CaM-NLS from human XY sex-reversed females for the first time, showing that they result in significantly reduced nuclear localization of GFP (green fluorescent protein)-SRY fusion proteins in transfected cells compared with wild-type. The CaM antagonist CDZ (calmidazolium chloride) was found to significantly reduce wild-type SRY nuclear accumulation, indicating dependence of SRY nuclear import on CaM. Intriguingly, the CaM-NLS mutants were all resistant to CDZ's effects, implying a loss of interaction with CaM, which was confirmed by direct binding experiments. CaM-binding/resultant nuclear accumulation was the only property of SRY found to be impaired by two of the CaM-NLS mutations, implying that inhibition of CaM-dependent nuclear import is the basis of sex reversal in these cases. Importantly, the CaM-NLS is conserved in other HMG-box-domain-containing proteins such as SOX-2, -9, -10 and HMGN1, all of which were found for the first time to rely on CaM for optimal nuclear localization. CaM-dependent nuclear translocation is thus a common mechanism for this family of important transcription factors.

  3. [3-hydroxy-3-methylglutaric aciduria and recurrent Reye-like syndrome].

    Science.gov (United States)

    Eirís, J; Ribes, A; Fernández-Prieto, R; Rodríguez-García, J; Rodríguez-Segade, S; Castro-Gago, M

    1998-06-01

    3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMG-CoA lyase) is an inborn error of ketogenesis and Leucine catabolism. HMG-CoA lyase catalyses the final step in leucine degradation, converting HMG-CoA to acetyl-CoA and acetoacetic acid. Clinical manifestations include hepatomegaly, lethargy or coma and apnoea. Biochemically there is a characteristic absence of ketosis with hypoglycemia, acidosis, hipertransaminasemia and variable hyperammoniemia. The urinary organic acid profile includes elevated concentrations of 3-hydroxy-3-isovaleric, 3-hydroxy-3-methylglutaric, 3-methylglutaconic and 3-methylglutaric acids. Here, we report the case of a 17-year-old girl who presented in both ten months and five years of age a clinical picture characterized by lethargy leading to apnea and coma, hepatomegaly, hypoglycemia, metabolic acidosis, hyperammoniemia, elevated serum transaminases and absence of ketonuria. Diagnostic of Reye syndrome was suggested by hystopathologic finding of hepatic steatosis and clinical and biochemical data. As of 11 years old, laboratory investigations revealed carnitine deficiency and characteristic aciduria. Confirmatory enzyme diagnosis revealing deficiency of HMG-CoA lyase was made in cultured fibroblasts. Our report constitutes an example of the presentation of HMG-CoA lyase deficiency as recurrent Reye-like syndrome.

  4. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  5. The Chemical Composition of Achillea wilhelmsii C. Koch and Its Desirable Effects on Hyperglycemia, Inflammatory Mediators and Hypercholesterolemia as Risk Factors for Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Elian Khazneh

    2016-03-01

    Full Text Available This study was done to identify the content compounds of Achillea wilhelmsii (A. wilhelmsii and to evaluate its hypoglycemic and anti-hypercholesterolemic activity and effect on inflammatory mediators. The extracts and fractions of A. wilhelmsii were thoroughly analyzed using high performance liquid chromatography (HPLC, and the total content of phenols and flavonoids was determined. The hypoglycemic activity was evaluated in vivo using alloxan-induced diabetic mice. The effect upon inflammatory mediators was evaluated in vitro using the human monocytic leukemia cell line (THP-1. The anti-hypercholesterolemic activity was evaluated in vitro using the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA reductase assay kit. The water extract (WE-treated group showed the highest reduction in the fasting blood glucose levels (FBGL. The chloroform fraction (CF and ethyl acetate fraction (EAF both showed a significant ability to reduce the secretion of tumor necrosis factor alpha (TNF-α. The EAF, however, also attenuated the levels of matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9. The CF showed the most significant 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR inhibition activity. The five main compounds in the CF were isolated and identified. Out of the five compounds in the CF, 1β,10β-epoxydesacetoxymatricarin (CP1 and leucodin (CP2 showed the highest anti-hypercholesterolemic potential. A molecular docking study provided corresponding results.

  6. Forward genetic screening for regulators involved in cholesterol synthesis using validation-based insertional mutagenesis.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available Somatic cell genetics is a powerful approach for unraveling the regulatory mechanism of cholesterol metabolism. However, it is difficult to identify the mutant gene(s due to cells are usually mutagenized chemically or physically. To identify important genes controlling cholesterol biosynthesis, an unbiased forward genetics approach named validation-based insertional mutagenesis (VBIM system was used to isolate and characterize the 25-hydroxycholesterol (25-HC-resistant and SR-12813-resistant mutants. Here we report that five mutant cell lines were isolated. Among which, four sterol-resistant mutants either contain a truncated NH2-terminal domain of sterol regulatory element-binding protein (SREBP-2 terminating at amino acids (aa 400, or harbor an overexpressed SREBP cleavage-activating protein (SCAP. Besides, one SR-12813 resistant mutant was identified to contain a truncated COOH-terminal catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase. This study demonstrates that the VBIM system can be a powerful tool to screen novel regulatory genes in cholesterol biosynthesis.

  7. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  8. Cholesterol Contributes to Diabetic Nephropathy through SCAP-SREBP-2 Pathway

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2013-01-01

    Full Text Available Diabetic nephropathy (DN has been associated with the presence of lipid deposition. We hypothesized that the disruption of intracellular cholesterol feedback may contribute to DN. Diabetes was induced by high fat/sucrose diet and low-dose intraperitoneal injection of streptozocin (STZ in male Sprague-Dawley rats. Then diabetic rats were randomly divided into two groups: untreated diabetic group (DM and atorvastatin-treated group (DM + AT. We found that the levels of serum blood urea nitrogen and creatinine, as well as 24-hour urine protein and urinary neutrophil gelatinase-associated lipocalin, were significantly increased in diabetic rats. This result indicated that the diabetic rats suffered from functional renal damage. We also observed lipid droplet accumulation and increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR, low density lipoprotein receptor (LDLr, sterol regulatory element binding protein-2 (SREBP-2, and SREBP-cleavage activating protein (SCAP in the kidneys of diabetic rats. However, atorvastatin ameliorated renal lipid accumulation and improved the renal function of diabetic rats despite an increase in mRNA and protein expressions of HMG-CoAR, LDLr, and SREBP-2. These results demonstrated that intracellular cholesterol feedback regulation is disrupted in rats with type 2 diabetes, thereby causing renal cholesterol accumulation. Atorvastatin ameliorated renal cholesterol accumulation by reducing renal cholesterol synthesis.

  9. Substrate and cofactor binding to nitrile reductase : A mass spectrometry based study

    NARCIS (Netherlands)

    Gjonaj, L.; Pinkse, M.W.H.; Fernandez Fueyo, E.; Hollmann, F.; Hanefeld, U.

    2016-01-01

    Nitrile reductases catalyse a two-step reduction of nitriles to amines. This requires the binding of two NADPH molecules during one catalytic cycle. For the nitrile reductase from E. coli (EcoNR) mass spectrometry studies of the catalytic mechanism were performed. EcoNR is dimeric and has no Rossman

  10. Prevention of LDL-suppression of HMG-CoA reductase (HMGR) activity by progesterone (PG): evidence for cytochrome P-450 involvement

    International Nuclear Information System (INIS)

    Sexton, R.C.; Gupta, A.; Panini, S.R.; Rudney, H.

    1987-01-01

    Incubation of rat intestinal epithelial cells (IEC-6) with PG has been reported by us to prevent the suppression of HMGR activity by LDL. In the present study, addition of LDL and PG to IEC-6 cells resulted in a 2 fold increase in cellular free cholesterol (CH) in 24 h, while HMGR activity remained elevated. PG did not affect the internalization and degradation of [ 125 I] LDL nor the accumulation of free [ 3 H] CH in cells incubated with [ 3 H-cholesteryl linoleate]-LDL. Also, PG did not affect the intracellular transport of LDL-derived [ 3 H] CH to the plasma membrane nor the efflux of the [ 3 H] CH into medium containing human high density lipoprotein. Addition of LDL to cells, in which the cellular CH was radiolabeled from [ 3 H] acetate, resulted in an increased formation of radiolabeled oxysterols, detected by HPLC, and a corresponding decrease in HMGR activity. PG attenuated both the LDL-induced formation of oxysterols and suppression of HMGR activity. PG inhibited cytochrome P-450 dependent oxidation of benzphetamine, aminopyrine and aniline by liver microsomes from phenobarbitol treated rats. These results suggest PG may prevent LDL suppression of HMGR activity in IEC-6 cells by inhibiting cytochrome P-450 dependent formation of regulatory oxysterols

  11. Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide.

    Science.gov (United States)

    Sarangi, Abhipsa; Krishnan, Chandraraj

    2016-02-01

    Leucobacter sp. belongs to the metal stressed community and possesses higher tolerance to metals including chromium and can detoxify toxic hexavalent chromium by reduction to less toxic trivalent chromium. But, the mechanism of reduction of hexavalent chromium by Leucobacter sp. has not been studied. Understanding the enzyme catalyzing reduction of chromium is important to improve the species for application in bioremediation. Hence, a soluble reductase catalyzing the reduction of hexavalent chromium was purified from a Leucobacter sp. and characterized. The pure chromate reductase was obtained from the cell-free extract through hydrophobic interaction and gel filtration column chromatographic methods. It was a monomeric enzyme and showed similar molecular weights in both gel filtration (∼68 KDa) and SDS-PAGE (64 KDa). It reduced Cr(VI) using both NADH and NADPH as the electron donor, but exhibited higher activity with NADH. The optimal activity was found at pH 5.5 and 30 °C. The K(m) and V(max) for Cr(VI) reduction with NADH were 46.57 μM and 0.37 μmol min(-1) (mg protein) (-1), respectively. The activity was inhibited by p-hydroxy mercury benzoate, Ag(2+) and Hg(2+) indicating the role of thiol groups in the catalysis. The spectrophotometric analysis of the purified enzyme showed the absence of bound flavin in the enzyme. The N-terminal amino acid sequence and LC/MS analysis of trypsin digested purified enzyme showed similarity to dihydrolipoyl dehydrogenase. The purified enzyme had dihydrolipoyl dehydrogenase activity with dihydrolipoamide as the substrate, which suggested that Leucobacter sp. uses reductase with multiple substrate specificity for reduction of Cr(VI) detoxification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  13. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    Directory of Open Access Journals (Sweden)

    Dillon J Lieber

    Full Text Available Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis. A crosslinking-mass spectrometry (XL-MS strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr, an essential enzyme in all methane-producing archaea (methanogens. In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS, and F420-dependent methylene-H4MPT reductase (Mer. ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  14. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  15. Hydroxymethylglutaryl-CoA Reductase Inhibitors in Older Persons with Acute Myocardial Infarction: Evidence for an Age–Statin Interaction

    Science.gov (United States)

    Foody, JoAnne Micale; Rathore, Saif S.; Galusha, Deron; Masoudi, Frederick A.; Havranek, Edward P.; Radford, Martha J.; Krumholz, Harlan M.

    2009-01-01

    OBJECTIVES To characterize the relationship between hydroxymethylglutaryl-CoA reductase inhibitors (statins) and outcomes in older persons with acute myocardial infarction (AMI). DESIGN Observational study. SETTING Acute care hospitals in the United States from April 1998 to June 2001. PARTICIPANTS Medicare patients aged 65 and older with a principal discharge diagnosis of AMI (N = 65,020) who did and did not receive a discharge prescription for statins. MEASUREMENTS The primary outcome of interest was all-cause mortality at 3 years after discharge. RESULTS Of 23,013 patients with AMI assessed, 5,513 (24.0%) were receiving a statin at discharge. Nearly 40% of eligible patients (n =8,452) were aged 80 and older, of whom 1,310 (15.5%) were receiving a statin at discharge. In a multivariable model taking into account demographic, clinical, physician and hospital characteristics, and propensity score, discharge statin therapy was associated with significantly lower 3-year mortality (hazard ratio (HR) =0.89 (95% confidence interval (CI) =0.83–0.96)). In an analysis stratified by age, discharge statins were associated with lower mortality in patients younger than 80 (HR =0.84, 95% CI =0.76–0.92) but not in those aged 80 and older (HR =0.97, 95% CI =0.87–1.09). CONCLUSION Statin therapy is associated with lower mortality in older patients with AMI younger than 80 but not in those aged 80 and older, as a group. This finding questions whether statin efficacy data in younger patients can be broadly applied to the very old and indicates the need for further study of this group. PMID:16551308

  16. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    Science.gov (United States)

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Two modes of regulation of the fatty acid elongase ELOVL6 by the 3-ketoacyl-CoA reductase KAR in the fatty acid elongation cycle.

    Directory of Open Access Journals (Sweden)

    Tatsuro Naganuma

    Full Text Available Fatty acids (FAs are diverse molecules, and such diversity is important for lipids to exert their functions under several environmental conditions. FA elongation occurs at the endoplasmic reticulum and produces a variety of FA species; the FA elongation cycle consists of four distinct enzyme reactions. For this cycle to be driven efficiently, there must exist coordinated regulation of protein components of the FA elongation machinery. However, such regulation is poorly understood. In the present study, we performed biochemical analyses using the FA elongase ELOVL6 and the 3-ketoacyl-CoA reductase KAR, which catalyze the first and second steps of the FA elongation cycle, respectively. In vitro FA elongation assays using membrane fractions demonstrated that ELOVL6 activity was enhanced ∼10-fold in the presence of NADPH, although ELOVL6 itself did not require NADPH for its catalysis. On the other hand, KAR does use NADPH as a reductant in its enzyme reaction. Activity of purified ELOVL6 was enhanced by ∼3-fold in the presence of KAR. This effect was KAR enzyme activity-independent, since it was observed in the absence of NADPH and in the KAR mutant. However, ELOVL6 enzyme activity was further enhanced in a KAR enzyme activity-dependent manner. Therefore, KAR regulates ELOVL6 via two modes. In the first mode, KAR may induce conformational changes in ELOVL6 to become structure that can undergo catalysis. In the second mode, conversion of 3-ketoacyl-CoA to 3-hydroxyacyl-CoA by KAR may facilitate release of the product from the presumed ELOVL6-KAR complex.

  18. Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile.

    Science.gov (United States)

    Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio

    2013-12-20

    Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.

  19. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance

    International Nuclear Information System (INIS)

    Martirosyan, Anna; Clendening, James W; Goard, Carolyn A; Penn, Linda Z

    2010-01-01

    Ovarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action. The effect of lovastatin on ovarian cancer cell lines was evaluated alone and in combination with cisplatin and doxorubicin using several assays (MTT, TUNEL, fixed PI, PARP cleavage) and synergy determined by evaluating the combination index. The mechanisms of action were evaluated using functional, molecular, and pharmacologic approaches. We demonstrate that lovastatin induces apoptosis of ovarian cancer cells in a p53-independent manner and synergizes with doxorubicin, a chemotherapeutic agent used to treat recurrent cases of ovarian cancer. Lovastatin drives ovarian tumor cell death by two mechanisms: first, by blocking HMG-CoA reductase activity, and second, by sensitizing multi-drug resistant cells to doxorubicin by a novel mevalonate-independent mechanism. This inhibition of drug transport, likely through inhibition of P-glycoprotein, potentiates both DNA damage and tumor cell apoptosis. The results of this research provide pre-clinical data to warrant further evaluation of statins as potential anti-cancer agents to treat ovarian carcinoma. Many statins are inexpensive, off-patent generic drugs that are immediately available for use as anti-cancer agents. We provide evidence that lovastatin triggers apoptosis of ovarian cancer cells as a single agent by a mevalonate-dependent mechanism. Moreover, we also show lovastatin synergizes

  20. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase.

    Science.gov (United States)

    Ralph, J; Hatfield, R D; Piquemal, J; Yahiaoui, N; Pean, M; Lapierre, C; Boudet, A M

    1998-10-27

    Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl-SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl-SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies.

  1. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  2. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  3. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  4. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala.

    Science.gov (United States)

    Srivastava, Sameer; Vishwakarma, Rishi K; Arafat, Yasir Ali; Gupta, Sushim K; Khan, Bashir M

    2015-04-01

    Aboitic stress such as drought and salinity are class of major threats, which plants undergo through their lifetime. Lignin deposition is one of the responses to such abiotic stresses. The gene encoding Cinnamoyl CoA Reductase (CCR) is a key gene for lignin biosynthesis, which has been shown to be over-expressed under stress conditions. In the present study, developing seedlings of Leucaena leucocephala (Vernacular name: Subabul, White popinac) were treated with 1 % mannitol and 200 mM NaCl to mimic drought and salinity stress conditions, respectively. Enzyme linked immunosorbant assay (ELISA) based expression pattern of CCR protein was monitored coupled with Phlorogucinol/HCl activity staining of lignin in transverse sections of developing L. leucocephala seedlings under stress. Our result suggests a differential lignification pattern in developing root and stem under stress conditions. Increase in lignification was observed in mannitol treated stems and corresponding CCR protein accumulation was also higher than control and salt stress treated samples. On the contrary CCR protein was lower in NaCl treated stems and corresponding lignin deposition was also low. Developing root tissue showed a high level of CCR content and lignin deposition than stem samples under all conditions tested. Overall result suggested that lignin accumulation was not affected much in case of developing root however developing stems were significantly affected under drought and salinity stress condition.

  5. Characterization of recombinant glyoxylate reductase from thermophile Thermus thermophilus HB27.

    Science.gov (United States)

    Ogino, Hiroyasu; Nakayama, Hitoshi; China, Hideyasu; Kawata, Takuya; Doukyu, Noriyuki; Yasuda, Masahiro

    2008-01-01

    A glyoxylate reductase gene from the thermophilic bacterium Thermus thermophilus HB27 (TthGR) was cloned and expressed in Escherichia coli cells. The recombinant enzyme was highly purified to homogeneity and characterized. The purified TthGR showed thermostability up to 70 degrees C. In contrast, the maximum reaction condition was relatively mild (45 degrees C and pH 6.7). Although the kcat values against co-enzyme NADH and NADPH were similar, the Km value against co-enzyme NADH was approximately 18 times higher than that against NADPH. TthGR prefers NADPH rather than NADH as an electron donor. These results indicate that a phosphate group of a co-enzyme affects the binding affinity rather than the reaction efficiency, and TthGR demands appropriate amount of phosphate for a high activity. Furthermore, it was found that the half-lives of TthGR in the presence of 25% dimethyl sulfoxide and diethylene glycol were significantly longer than that in the absence of an organic solvent.

  6. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  7. Elucidation of mechanisms of actions of thymoquinone-enriched methanolic and volatile oil extracts from Nigella sativa against cardiovascular risk parameters in experimental hyperlipidemia.

    Science.gov (United States)

    Ahmad, Shafeeque; Beg, Zafarul H

    2013-06-13

    Nigella sativa belonging to the Ranunculaceae family has been reported to use for thousands of years as protective and curative traditional medicine against a number of diseases. GC-MS analysis of methanolic extract (ME) and volatile oil (VO) extracted from Nigella sativa seed oil was performed by two different mass spectrometry libraries, WIlEY8 and NIST05s. The cholesterol lowering and antioxidant actions of VO and ME fractions were investigated in atherogenic suspension fed rats. In this study, four groups of male Wistar rats were used: normolipidemic control (NLP-C), hyperlipidemic control (HLP-C), methanolic extract (HLP-ME) and volatile oil treated (HLP-VO) groups for 30 days of duration. P value < 0.05 was assumed as significant data in groups. Administration of atherogenic suspension to male Wistar rats for 30 days resulted in a marked increase of plasma triglycerides and total cholesterol, and significant change in plasma lipoprotein levels along with a decrease in antioxidant arylesterase activity in hyperlipidemic control (HLP-C) group. The oral feeding of 100 mg ME or 20 mg VO per rat/day effectively reduced the plasma triglycerides to near normal level, while high density lipoprotein cholesterol and its subfraction along with arylesterase activity levels were significantly increased. The test fractions elicited a significant decrease in hepatic HMG-CoA reductase activity. The fractions significantly blocked the ex vivo basal and in vitro maximal formation of conjugated diene and malondialdehyde, and lengthened the lag times of low density lipoprotein, small dense low density lipoprotein and large buoyant low density lipoprotein. ME possessing ω-6 linoleic acid along with palmitic acid active compounds was more effective than VO extract containing thymol and isothymol phenolic antioxidant compounds, thymoquinone phenolic compound common to the both extracts, via reduction in hepatic HMG-CoA reductase activity as well as antioxidant mechanisms. The both

  8. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5.

    Science.gov (United States)

    Zhang, Cheng; Zong, Hong; Zhuge, Bin; Lu, Xinyao; Fang, Huiying; Zhuge, Jian

    2015-07-01

    Efficient bioconversion of D-xylose into various biochemicals is critical for the developing lignocelluloses application. In this study, we compared D-xylose utilization in Candida glycerinogenes WL2002-5 transformants expressing xylose reductase (XYL1) in D-xylose metabolism. C. glycerinogenes WL2002-5 expressing XYL1 from Schefferomyces stipitis can produce xylitol. Xylitol production by the recombinant strains was evaluated using a xylitol fermentation medium with glucose as a co-substrate. As glucose was found to be an insufficient co-substrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best co-substrate. The effects of glycerol on the xylitol production rate by a xylose reductase gene (XYL1)-overexpressed mutant of C. glycerinogenes WL2002-5 were investigated. The XYL1-overexpressed mutant produced xylitol from D-xylose using glycerol as a co-substrate for cell growth and NAD (P) H regeneration: 100 g/L D-xylose was completely converted into xylitol when at least 20 g/L glycerol was used as a co-substrate. XYL1 overexpressed mutant grown on glycerol as co-substrate accumulated 2.1-fold increased xylitol concentration over those cells grown on glucose as co-substrate. XYL1 overexpressed mutant produced xylitol with a volumetric productivity of 0.83 g/L/h, and a xylitol yield of 98 % xylose. Recombinant yeast strains obtained in this study are promising candidates for xylitol production. This is the first report of XYL1 gene overexpression of C. glycerinogenes WL2002-5 for enhancing the efficiency of xylitol production.

  9. New Mutation Identified in the SRY Gene High Mobility Group (HMG

    Directory of Open Access Journals (Sweden)

    Feride İffet Şahin

    2013-06-01

    Full Text Available Mutations in the SRY gene prevent the differentiation of the fetal gonads to testes and cause developing female phenotype, and as a result sex reversal and pure gonadal dysgenesis (Swyer syndrome can be developed. Different types of mutations identified in the SRY gene are responsible for 15% of the gonadal dysgenesis. In this study, we report a new mutation (R132P in the High Mobility Group (HMG region of SRY gene was detected in a patient with primary amenorrhea who has 46,XY karyotype. This mutation leads to replacement of the polar and basic arginine with a nonpolar hydrophobic proline residue at aminoacid 132 in the nuclear localization signal region of the protein. With this case report we want to emphasize the genetic approach to the patients with gonadal dysgenesis. If Y chromosome is detected during cytogenetic analysis, revealing the presence of the SRY gene and identification of mutations in this gene by sequencing analysis is become important in.

  10. Implementation of the 2013 American College of Cardiology/American Heart Association Blood Cholesterol Guideline Including Data From the Improved Reduction of Outcomes: Vytorin Efficacy International Trial

    Science.gov (United States)

    Ziaeian, Boback; Dinkler, John; Watson, Karol

    2015-01-01

    Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of morbidity and mortality in developed countries. The management of blood cholesterol through use of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors (statins) in at-risk patients is a pillar of medical therapy for the primary and secondary prevention of cardiovascular disease. The recent 2013 American College of Cardiology/American Heart Association guideline on managing blood cholesterol provides an important framework for the effective implementation of risk-reduction strategies. The guideline identifies four cohorts of patients with proven benefits from statin therapy and streamlines the dosing and monitoring recommendations based on evidence from published, randomized controlled trials. Primary care physicians and cardiologists play key roles in identifying populations at elevated ASCVD risk. In providing a practical management overview of the current blood cholesterol guideline, we facilitate more informed discussions on treatment options between healthcare providers and their patients. PMID:26198559

  11. 77 FR 10953 - Amendment to Existing Validated End-User Authorizations for Applied Materials (China), Inc...

    Science.gov (United States)

    2012-02-24

    ... Lam Research International Sarl (Wuxi EPZ Bonded Warehouse), c/o HMG WHL Logistic (Wuxi) Co., Ltd., F1..., China 100176 Lam Research International Sarl (Wuhan TSS), c/o HMG Wuhan Logistic Co., Ltd., 1st--2nd.... Rulemaking Requirements 1. Executive Orders 13563 and 12866 direct agencies to assess all costs and benefits...

  12. Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease

    DEFF Research Database (Denmark)

    Poulsen, Sarah S.; Saber, Anne T.; Mortensen, Alicja

    2015-01-01

    has led to concerns that inhalation exposure to MWCNTs might pose similar risks. We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18,54 or 162 mu...... levels correlated strongly with pulmonary Saa3 levels. Analysis of global gene expression revealed perturbation of the same biological processes and pathways in liver, including the HMG-CoA reductase pathway. Both MWCNTs induced similar histological hepatic changes, with a tendency towards greater...... response following CNTLarge exposure. Overall, we show that pulmonary exposure to two different MWCNTs induces similar systemic and hepatic responses, including changes in plasma APR, lipid composition, hepatic gene expression and liver morphology. The results link pulmonary exposure to MWCNTs with risk...

  13. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications.

    Science.gov (United States)

    Saraswat, Megha; Muthenna, P; Suryanarayana, P; Petrash, J Mark; Reddy, G Bhanuprakash

    2008-01-01

    Activation of polyol pathway due to increased aldose reductase activity is one of the several mechanisms that have been implicated in the development of various secondary complications of diabetes. Though numerous synthetic aldose reductase inhibitors have been tested, these have not been very successful clinically. Therefore, a number of common plant/ natural products used in Indian culinary have been evaluated for their aldose reductase inhibitory potential in the present study. The aqueous extracts of 22 plant-derived materials were prepared and evaluated for the inhibitory property against rat lens and human recombinant aldose reductase. Specificity of these extracts towards aldose reductase was established by testing their ability to inhibit a closely related enzyme viz, aldehyde reductase. The ex vivo incubation of erythrocytes in high glucose containing medium was used to underscore the significance in terms of prevention of intracellular sorbitol accumulation. Among the 22 dietary sources tested, 10 showed considerable inhibitory potential against both rat lens and human recombinant aldose reductase. Prominent inhibitory property was found in spinach, cumin, fennel, lemon, basil and black pepper with an approximate IC50 of 0.2 mg/mL with an excellent selectivity towards aldose reductase. As against this, 10 to 20 times higher concentrations were required for 50% inhibition of aldehyde reductase. Reduction in the accumulation of intracellular sorbitol by the dietary extracts further substantiated their in vivo efficacy. The findings reported here indicate the scope of adapting life-style modifications in the form of inclusion of certain common sources in the diet for the management of diabetic complications.

  14. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ke-Wu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Li, Jun [Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China); Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Tu, Peng-Fei, E-mail: pengfeitu@vip.163.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China)

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  15. 5α-reductase activity in rat adipose tissue

    International Nuclear Information System (INIS)

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-01-01

    We measured the 5 α-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [ 3 H] dihydrotestosterone from [ 3 H] testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5α-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10 -8 M), when added to the medium, caused a 90% decrease in 5α-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5α-reductase activity in each tissue studied

  16. Crystallization and diffraction analysis of thioredoxin reductase from Streptomyces coelicolor

    International Nuclear Information System (INIS)

    Koháryová, Michaela; Brynda, Jiří; Řezáčová, Pavlína; Kollárová, Marta

    2011-01-01

    Thioredoxin reductase from S. coelicolor was crystallized and diffraction data were collected to 2.4 Å resolution. Thioredoxin reductases are homodimeric flavoenzymes that catalyze the transfer of electrons from NADPH to oxidized thioredoxin substrate. Bacterial thioredoxin reductases represent a promising target for the development of new antibiotics. Recombinant thioredoxin reductase TrxB from Streptomyces coelicolor was crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from cryocooled crystals to 2.4 Å resolution using a synchrotron-radiation source. The crystals belonged to the primitive monoclinic space group P2 1 , with unit-cell parameters a = 82.9, b = 60.6, c = 135.4 Å, α = γ = 90.0, β = 96.5°

  17. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.

    Science.gov (United States)

    Wriessnegger, Tamara; Augustin, Peter; Engleder, Matthias; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Zellnig, Günther; Schwab, Helmut; Pichler, Harald

    2014-07-01

    The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Statins reduce the expressions of Tim-3 on NK cells and NKT cells in atherosclerosis.

    Science.gov (United States)

    Zhang, Na; Zhang, Min; Liu, Ru-Tao; Zhang, Peng; Yang, Chun-Lin; Yue, Long-Tao; Li, Heng; Li, Yong-Kang; Duan, Rui-Sheng

    2018-02-15

    3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors (statins) have an immuno-regulatory effect in addition to lowing-lipids. Accumulated evidence showed that the expressions of T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) on natural killer (NK) cells increased in atherosclerotic patients and animal models. In this study, 14 patients treated with rosuvastatin and 12 patients with atorvastatin for more than 3 months were included and 20 patients without statins treatment as control. Both statins treatment reduced the expressions of Tim-3 on NK cells and their subtypes, natural killer T (NKT) cells and CD3 + T cells, and increased the proportions of NKT cells among peripheral blood mononuclear cells, accompanied by the decreased levels of total cholesterol, low density lipoprotein, and increased ratios of high density lipoprotein to cholesterol. These may contribute to the functions of statins in the treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    The thioredoxin system has evolved in all kingdoms of life acting as a key antioxidant system in the defense against oxidative stress. The thioredoxin system utilizes reducing equivalents from NADPH to reduce protein disulfide targets. The reducing equivalents are shuttled via a flavin and redox...... active dithiol motif in thioredoxin reductase (TrxR) to reduce the small ubiquitous thioredoxin (Trx). Trx in turn regulates the protein dithiol/disulfide balance by reduction of protein disulfide targets in e.g. ribonucleotide reductase, peroxiredoxins and methionine sulfoxide reductase. The glutathione......, thus expected to rely mainly on the Trx system for thiol-disulfide control. L. lactis is an important industrial microorganism used as starter culture in the dairy production of cheese, buttermilk etc. and known to be sensitive to oxidative stress. The L. lactis TrxR (LlTrxR) is a homodimeric...

  20. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Leonora F Ciufo

    Full Text Available Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C(29 and C(28 yielding cholesterol (C(27. The final step of this dealkylation pathway involves desmosterol reductase (DHCR24-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735. Following PCR-based cloning of the cDNA (1.6 kb and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD-dependent reaction.Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250 kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation.

  1. Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori

    Science.gov (United States)

    Ciufo, Leonora F.; Murray, Patricia A.; Thompson, Anu; Rigden, Daniel J.; Rees, Huw H.

    2011-01-01

    Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction. Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation. PMID:21738635

  2. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Rebecca S Bart

    2010-09-01

    Full Text Available Rice NH1 (NPR1 homolog 1 is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo, constitutive expression of defense related genes and enhanced benzothiadiazole (BTH- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

  3. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors

    International Nuclear Information System (INIS)

    Tilton, R.G.; Chang, K.; Pugliese, G.; Eades, D.M.; Province, M.A.; Sherman, W.R.; Kilo, C.; Williamson, J.R.

    1989-01-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on (1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and (2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic change

  4. Amo 1618 effects on incorporation of 14C-MVA and 14C-acetate into sterols in Nicotiana and Digitalis seedlings and cell-free preparations from Nicotiana

    International Nuclear Information System (INIS)

    Douglas, T.J.; Paleg, L.G.

    1978-01-01

    Incorporation of radioactivity from acetate-[ 14 C] and MVA-[ 14 C] into sterols and sterol precursors in tobacco was inhibited by Amo 1618; differing patterns of accumulation were obtained with the two precursors, suggesting more than one point of inhibition. This was borne out with cell-free preparations with which it was demonstrated that both HMG-CoA reductase and squalene-2,3-epoxide cyclase were inhibited, the latter more strongly than the former. GLC analysis of gross sterol and hydrocarbon fractions confirmed previous indications that incorporation of radioactivity into individual sterols was inhibited by Amo 1618. Finally, incorporation of MVA-[ 14 C] into sterols and sterol precursors of Digitalis was significantly altered by the retardant, thus expanding the generality of the relationship between sterol (particularly 4-desmethylsterol) biosynthesis inhibition and retardant effect. (author)

  5. Endogenous sodium potassium ATPase inhibition related biochemical cascade and the acquired immunodeficiency syndrome -Neural regulation of viral replication and immune response to the virus

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    2001-11-01

    Full Text Available The isoprenoid pathway and its metabolites - digoxin, dolichol and ubiquinone were assessed in acquired immunodeficiency syndrome. Digoxin is an endogenous regulator of membrane Na+-K+ ATPase secreted by the human hypothalamus. The HMG CoA reductase activity was increased with increased digoxin and dolichol levels and reduced ubiquinone levels in AIDS. Membrane Na+-K+ ATPase activity and serum magnesium levels were reduced. The tryptophan catabolites were increased and the tyrosine catabolites were reduced. The glycoconjugate metabolites were increased and lysosomal stability was reduced. There was reduced incorporation of glycoconjugates into membranes and increased membrane cholesterol: phospholipid ratio. Lipid peroxidation products and NO were increased while free radical scavenging enzymes and reduced glutathione were reduced. The role of the isoprenoid pathway related cascade in the pathogenesis of AIDS is discussed.

  6. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    International Nuclear Information System (INIS)

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-01-01

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC 50 - and K i -values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin reductases.

  7. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells.

    Science.gov (United States)

    Sakai, Chika; Tomitsuka, Eriko; Esumi, Hiroyasu; Harada, Shigeharu; Kita, Kiyoshi

    2012-05-01

    Recent research on respiratory chain of the parasitic helminth, Ascaris suum has shown that the mitochondrial NADH-fumarate reductase system (fumarate respiration), which is composed of complex I (NADH-rhodoquinone reductase), rhodoquinone and complex II (rhodoquinol-fumarate reductase) plays an important role in the anaerobic energy metabolism of adult parasites inhabiting hosts. The enzymes in these parasite-specific pathways are potential target for chemotherapy. We isolated a novel compound, nafuredin, from Aspergillus niger, which inhibits NADH-fumarate reductase in helminth mitochondria at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep indicating that mitochondrial complex I is a promising target for chemotherapy. In addition to complex I, complex II is a good target because its catalytic direction is reverse of succinate-ubiquionone reductase in the host complex II. Furthermore, we found atpenin and flutolanil strongly and specifically inhibit mitochondrial complex II. Interestingly, fumarate respiration was found not only in the parasites but also in some types of human cancer cells. Analysis of the mitochondria from the cancer cells identified an anthelminthic as a specific inhibitor of the fumarate respiration. Role of isoforms of human complex II in the hypoxic condition of cancer cells and fetal tissues is a challenge. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Kinetics of carbonyl reductase from human brain.

    OpenAIRE

    Bohren, K M; von Wartburg, J P; Wermuth, B

    1987-01-01

    Initial-rate analysis of the carbonyl reductase-catalysed reduction of menadione by NADPH gave families of straight lines in double-reciprocal plots consistent with a sequential mechanism being obeyed. The fluorescence of NADPH was increased up to 7-fold with a concomitant shift of the emission maximum towards lower wavelength in the presence of carbonyl reductase, and both NADPH and NADP+ caused quenching of the enzyme fluorescence, indicating formation of a binary enzyme-coenzyme complex. D...

  9. Evidence that steroid 5alpha-reductase isozyme genes are differentially methylated in human lymphocytes.

    Science.gov (United States)

    Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A

    2002-03-01

    The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.

  10. Identification of the iron-sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism.

    Science.gov (United States)

    Lancaster, J R; Vega, J M; Kamin, H; Orme-Johnson, N R; Orme-Johnson, W H; Krueger, R J; Siegel, L M

    1979-02-25

    EPR spectroscopic and chemical analyses of spinach nitrite reductase show that the enzyme contains one reducible iron-sulfur center, and one site for binding either cyanide or nitrite, per siroheme. The heme is nearly all in the high spin ferric state in the enzyme as isolated. The extinction coefficient of the enzyme has been revised to E386 = 7.6 X 10(4) cm-1 (M heme)-1. The iron-sulfur center is reduced with difficulty by agents such as reduced methyl viologen (equilibrated with 1 atm of H2 at pH 7.7 in the presence of hydrogenase) or dithionite. Complexation of the enzyme with CO (a known ligand for nitrite reductase heme) markedly increases the reducibility of the iron-sulfur center. New chemical analyses and reinterpretation of previous data show that the enzyme contains 6 mol of iron and 4 mol of acid-labile S2-/mol of siroheme. The EPR spectrum of reduced nitrite reductase in 80% dimethyl sulfoxide establishes clearly that the enzyme contains a tetranuclear iron-sulfur (Fe4S4) center. The ferriheme and Fe4S4 centers are reduced at similar rates (k = 3 to 4 s-1) by dithionite. The dithionite-reduced Fe4S4 center is rapidly (k = 100 s-1) reoxidized by nitrite. These results indicate a role for the Fe4S4 center in catalysis.

  11. Expression and site-directed mutagenesis of human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-05-17

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 ..-->.. Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by ..cap alpha..-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme.

  12. Expression and site-directed mutagenesis of human dihydrofolate reductase

    International Nuclear Information System (INIS)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-01-01

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 → Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by α-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme

  13. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hintzpeter, Jan, E-mail: hintzpeter@toxi.uni-kiel.de [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Seliger, Jan Moritz [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Hofman, Jakub [Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove (Czech Republic); Martin, Hans-Joerg [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Wsol, Vladimir [Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove (Czech Republic); Maser, Edmund [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany)

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC{sub 50}- and K{sub i}-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin

  14. The role of biliverdin reductase in colorectal cancer

    International Nuclear Information System (INIS)

    Bauer, M.

    2010-01-01

    In recent years, the effects of biliverdin and bilirubin have been studied extensively, and an inhibitory effect of bile pigments in cancer progression has been proposed. In this study we focused on the effects of biliverdin reductase, the enzyme that converts biliverdin to bilirubin, in colorectal cancer. For in vitro experiments we used a human colorectal carcinoma cell line and transfected it with an expression construct of shRNA specific for biliverdin reductase, to create cells with stable knock-down of enzyme expression. Cell proliferation was analyzed using the CASY model TT cell counting device. Western blot protein analysis was performed to study intracellular signaling cascades. Samples of human colorectal cancer were analyzed using immunohistochemistry. We were able to confirm the antiproliferative effects of bile pigments on cancer cells in vitro. However, this effect was attenuated in biliverdin reductase knock down cells. ERK and Akt activation seen under biliverdin and bilirubin treatment was also reduced in biliverdin reductase deficient cells. Immunohistochemical analysis of tumor samples from patients with colorectal cancer showed elevated biliverdin reductase levels. High enzyme expression was associated with lower overall and disease free patient survival. We conclude that BVR is required for bile pigment mediated effects regarding cancer cell proliferation and modulation of intracellular signaling cascades. The role of BVR overexpression in vivo and its exact influence on cancer progression and patient survival need to be further investigated. (author) [de

  15. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    Science.gov (United States)

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  16. Immunological comparison of the NADH:nitrate reductase from different cucumber tissues

    Directory of Open Access Journals (Sweden)

    Jolanta Marciniak

    2014-01-01

    Full Text Available Soluble nitrate reductase from cucumber roots (Cucumis sativus L. was isolated and purified with blue-Sepharose 4B. Specific antibodies against the NR protein were raised by immunization of a goat. Using polyclonal antibodies anti-NR properties of the nitrate reductase from various cucumber tissues were examined. Experiments showed difference in immuno-logical properties of nitrate reductase (NR from cotyledon roots and leaves.

  17. Histochemical Localization of Glutathione Dependent NBT-Reductase in Mouse Skin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. Methods The fresh frozen tissue sections (8m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. Results  The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. Conclusion The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  18. Variability in statin-induced changes in gene expression profiles of pancreatic cancer

    Czech Academy of Sciences Publication Activity Database

    Gbelcová, H.; Rimpelová, S.; Ruml, T.; Fenclova, M.; Kosek, V.; Hajslova, J.; Strnad, Hynek; Kolář, Michal; Vítek, L.

    2017-01-01

    Roč. 7, jaro (2017), č. článku 44219. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1304 Institutional support: RVO:68378050 Keywords : hmg-coa reductase * lipid droplets * rho-gtpases * cell-death * in-vitro * risk * protein * association * simvastatin * apoptosis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Pharmacology and pharmacy Impact factor: 4.259, year: 2016

  19. Characterization of a cultured human T-cell line with genetically altered ribonucleotide reductase activity. Model for immunodeficiency.

    Science.gov (United States)

    Waddell, D; Ullman, B

    1983-04-10

    From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.

  20. Functional characterization and stability improvement of a ‘thermophilic-like’ ene-reductase from Rhodococcus opacus 1CP

    Directory of Open Access Journals (Sweden)

    Anika eRiedel

    2015-10-01

    Full Text Available Ene-reductases are widely applied for the asymmetric synthesis of relevant industrial chemicals. A novel ene-reductase OYERo2 was found within a set of 14 putative Old Yellow Enzymes (OYEs obtained by genome mining of the actinobacterium Rhodococcus opacus 1CP. Multiple sequence alignment suggested that the enzyme belongs to the group of ‘thermophilic-like’ OYEs. OYERo2 was produced in Escherichia coli and biochemically characterized. The enzyme is strongly NADPH dependent and uses non-covalently bound FMNH2 for the reduction of activated α,β-unsaturated alkenes. In the active form OYERo2 is a dimer. Optimal catalysis occurs at pH 7.3 and 37 °C. OYERo2 showed highest specific activities (4550 U mg-1 on maleimides, which are efficiently converted to the corresponding succinimides. The OYERo2-mediated reduction of prochiral alkenes afforded the (R-products with excellent optical purity (ee > 99%. OYERo2 is not as thermo-resistant as related OYEs. Introduction of a characteristic intermolecular salt bridge by site-specific mutagenesis raised the half-life of enzyme inactivation at 32 °C from 28 min to 87 min and improved the tolerance towards organic co-solvents. The suitability of OYERo2 for application in industrial biocatalysis is discussed.

  1. Nitrate reductase activity and its relationship with applied nitrogen in soybean

    International Nuclear Information System (INIS)

    Ge Wenting; Jin Xijun; Ma Chunmei; Dong Shoukun; Gong Zhenping; Zhang Lei

    2011-01-01

    Field experiments were conducted to study the nitrate reductase activity and its relationship to nitrogen by using frame tests (pot without bottom), sand culture and 15 N-urea at transplanting in soybean variety Suinong 14. Results showed that the activity of nitrate reductase in leaf changed as a signal peak curve with the soybean growth, lower in vegetative growth phase, higher in reproductive growth period and reached the peak in blooming period, then decreased gradually. Nitrogen application showed obvious effect on the nitrate reductase activity. The activities of nitrate reductase in leaves followed the order of N 135 > N 90 > N 45 > N 0 in vegetative growth stage, no clear regularity was found during the whole reproductive growth period. The activities of nitrate reductase in leaves were accorded with the order of upper leaves > mid leaves > lower leaves, and it was very significant differences (P 15 N labeling method during beginning seed stage and full seed stage shown that 15 N abundance in various organs at different node position also followed the same order, suggesting that high level of nitrate reductase activity at upper leaves of soybean promoted the assimilation of NO 3 - . (authors)

  2. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (Purdue); (Colorado); (UIC)

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  3. Human HMG box transcription factor HBP1: a role in hCD2 LCR function.

    Science.gov (United States)

    Zhuma, T; Tyrrell, R; Sekkali, B; Skavdis, G; Saveliev, A; Tolaini, M; Roderick, K; Norton, T; Smerdon, S; Sedgwick, S; Festenstein, R; Kioussis, D

    1999-01-01

    The locus control region (LCR) of the human CD2 gene (hCD2) confers T cell-specific, copy-dependent and position-independent gene expression in transgenic mice. This LCR consists of a strong T cell-specific enhancer and an element without enhancer activity (designated HSS3), which is required for prevention of position effect variegation (PEV) in transgenic mice. Here, we identified the HMG box containing protein-1 (HBP1) as a factor binding to HSS3 of the hCD2 LCR. Within the LCR, HBP1 binds to a novel TTCATTCATTCA sequence that is higher in affinity than other recently reported HBP1-binding sites. Mice transgenic for a hCD2 LCR construct carrying a deletion of the HBP1-binding sequences show a propensity for PEV if the transgene integrates in a heterochromatic region of the chromosome such as the centromere or telomere. We propose that HBP1 plays an important role in chromatin opening and remodelling activities by binding to and bending the DNA, thus allowing DNA-protein and/or protein-protein interactions, which increase the probability of establishing an active locus. PMID:10562551

  4. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.

    Directory of Open Access Journals (Sweden)

    Changshui Liu

    Full Text Available The formation of fusion protein in biosynthetic pathways usually improves metabolic efficiency either channeling intermediates and/or colocalizing enzymes. In the metabolic engineering of biochemical pathways, generating unnatural protein fusions between sequential biosynthetic enzymes is a useful method to increase system efficiency and product yield. Here, we reported a special case. The malonyl-CoA reductase (MCR of Chloroflexus aurantiacus catalyzes the conversion of malonyl-CoA to 3-hydroxypropionate (3HP, and is a key enzyme in microbial production of 3HP, an important platform chemical. Functional domain analysis revealed that the N-terminal region of MCR (MCR-N; amino acids 1-549 and the C-terminal region of MCR (MCR-C; amino acids 550-1219 were functionally distinct. The malonyl-CoA was reduced into free intermediate malonate semialdehyde with NADPH by MCR-C fragment, and further reduced to 3HP by MCR-N fragment. In this process, the initial reduction of malonyl-CoA was rate limiting. Site-directed mutagenesis demonstrated that the TGXXXG(AX(1-2G and YXXXK motifs were important for enzyme activities of both MCR-N and MCR-C fragments. Moreover, the enzyme activity increased when MCR was separated into two individual fragments. Kinetic analysis showed that MCR-C fragment had higher affinity for malonyl-CoA and 4-time higher K cat/K m value than MCR. Dissecting MCR into MCR-N and MCR-C fragments also had a positive effect on the 3HP production in a recombinant Escherichia coli strain. Our study showed the feasibility of protein dissection as a new strategy in biosynthetic systems.

  5. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus.

    Science.gov (United States)

    Frey, Jasmin; Rusche, Hendrik; Schink, Bernhard; Schleheck, David

    2016-11-25

    The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO 2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD + but not NADPH/NADP + as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C 3 - C 5 -aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg -1 protein), butanal to butanol (300 ± 24 mU mg -1 ), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg -1 ), however, the enzyme also oxidized 3-hydroxybutanal with NAD + to acetoacetaldehyde (83 ± 18 mU mg -1 ). The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.

  6. Hypolipidemic effect of hemicellulose component of coconut fiber.

    Science.gov (United States)

    Sindhurani, J A; Rajamohan, T

    1998-08-01

    The neutral detergent fiber (NDF) isolated from coconut kernel was digested with cellulase and hemicellulase and the residual fiber rich in hemicellulose (without cellulose) and cellulose (with out hemicellulose) were fed to rats and compared with a fiber free group. The results indicate that hemicellulose rich fiber showed decreased concentration of total cholesterol, LDL + VLDL cholesterol and increased HDL cholesterol, while cellulose rich fiber showed no significant alteration. There was increased HMG CoA reductase activity and increased incorporation of labeled acetate into free cholesterol. Rats fed hemicellulose rich coconut fiber produced lower concentration of triglycerides and phospholipids and lower release of lipoproteins into circulation. There was increased concentration of hepatic bile acids and increased excretion of faecal sterols and bile acids. These results indicate that the hemicellulose component of coconut fiber was responsible for the observed hypolipidemic effect.

  7. Ensayos cristalográficos de complejos de ADN con proteínas HMG-box y fármacos

    OpenAIRE

    Gomez Jimenez, Fabiola Alejandra

    2016-01-01

    Las HMGB son proteínas nucleares que presentan el motivo “HMG-box”, con el que se unen al surco estrecho del ADN. Producen cambios estructurales en el mismo y están implicadas en diferentes enfermedades por lo que el estudio estructural de dichas proteínas unidas a ADN es de importancia en el desarrollo de estrategias terapéuticas. Por otra parte, los compuestos derivados de difenilo bisimidazolinio también se unen al surco estrecho del ADN, específicamente en zonas ricas en AT...

  8. Perchlorate-Coupled Carbon Monoxide (CO Oxidation: Evidence for a Plausible Microbe-Mediated Reaction in Martian Brines

    Directory of Open Access Journals (Sweden)

    Marisa R. Myers

    2017-12-01

    Full Text Available The presence of hydrated salts on Mars indicates that some regions of its surface might be habitable if suitable metabolizable substrates are available. However, several lines of evidence have shown that Mars’ regolith contains only trace levels of the organic matter needed to support heterotrophic microbes. Due to the scarcity of organic carbon, carbon monoxide (CO at a concentration of about 700 parts per million (about 0.4 Pa might be the single most abundant readily available substrate that could support near-surface bacterial activity. Although a variety of electron acceptors can be coupled to CO oxidation, perchlorate is likely the most abundant potential oxidant in Mars’ brines. Whether perchlorate, a potent chaotrope, can support microbial CO oxidation has not been previously documented. We report here the first evidence for perchlorate-coupled CO oxidation based on assays with two distinct euryarchaeal extreme halophiles. CO oxidation occurred readily in 3.8 M NaCl brines with perchlorate concentrations from 0.01 to 1 M. Both isolates were able to couple CO with perchlorate or chlorate under anaerobic conditions with or without nitrate as an inducer for nitrate reductase, which serves as a perchlorate reductase in extreme halophiles. In the presence of perchlorate, CO concentrations were reduced to levels well below those found in Mars’ atmosphere. This indicates that CO could contribute to the survival of microbial populations in hydrated salt formations or brines if water activities are suitably permissive.

  9. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.

    Science.gov (United States)

    Shelke, Rupesh U; Degani, Mariam S; Raju, Archana; Ray, Mukti Kanta; Rajan, Mysore G R

    2016-08-01

    Fragment-based drug design was used to identify Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitors. Screening of ligands against the Mtb DHFR enzyme resulted in the identification of multiple fragment hits with IC50 values in the range of 38-90 μM versus Mtb DHFR and minimum inhibitory concentration (MIC) values in the range of 31.5-125 μg/mL. These fragment scaffolds would be useful for anti-tubercular drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Henritzi, Sandra; Fischer, Manuel; Grininger, Martin; Oreb, Mislav; Boles, Eckhard

    2018-01-01

    The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the β-oxidation pathway. The previously engineered short-chain acyl-CoA producing yeast Fas1 R1834K /Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L -1 in a 72-h fermentation. The additional accumulation of 90 mg L -1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L -1 . However, in growth tests concentrations even lower than 50.0 mg L -1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to

  11. Successful pregnancy following low-dose hCG administration in addition to hMG in a patient with hypothalamic amenorrhea due to weight loss.

    Science.gov (United States)

    Tsutsumi, Ryo; Fujimoto, Akihisa; Osuga, Yutaka; Harada, Miyuki; Takemura, Yuri; Koizumi, Minako; Yano, Tetsu; Taketani, Yuji

    2012-06-01

    We describe successful ovulation induction with low-dose hCG administration in addition to hMG in a patient with refractory hypothalamic amenorrhea. A 24-year-old woman with weight loss-related amenorrhea underwent ovulation induction and intracytoplasmic sperm injection (ICSI). Administration of exogenous gonadotropins was ineffective in ovulation induction. Supplementation with low-dose hCG in order to increase luteinizing hormone (LH) activity in the late follicular phase produced late folliculogenesis and steroidogenesis, and ovulation was then successfully induced. This report reacknowledges the critical role that LH plays cooperatively with follicle-stimulating hormone in both folliculogenesis and steroidogenesis.

  12. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... Alexander et al., 2005) and heme-type nitrite reductase gene (Smith and ... owing to a genotype-dependent response (Zhang et al.,. 1991; Sakhanokho et al., ..... Improvement of cell culture conditions for rice. Jpn. Agric. Res.

  13. Association between methylenetetrahydrofolate reductase (MTHFR ...

    African Journals Online (AJOL)

    Association between methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and risk of ischemic stroke in North Indian population: A hospital based case–control study. Amit Kumar, Shubham Misra, Anjali Hazarika, Pradeep Kumar, Ram Sagar, Abhishek Pathak, Kamalesh Chakravarty, Kameshwar ...

  14. Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Seyednejad, Hajar; Vermonden, Tina; Fedorovich, Natalja E; van Eijk, Roel; van Steenbergen, Mies J; Dhert, Wouter J A; van Nostrum, Cornelus F; Hennink, Wim E

    2009-11-09

    The aim of this study was to develop new hydrophilic polyesters for tissue engineering applications. In our approach, poly(benzyloxymethyl glycolide-co-epsilon-caprolactone)s (pBHMG-CLs) were synthesized through melt copolymerization of epsilon-caprolactone (CL) and benzyl-protected hydroxymethyl glycolide (BHMG). Deprotection of the polymers yielded copolymers with pendant hydroxyl groups, poly(hydroxymethylglycolide-co-epsilon-caprolactone) (pHMG-CL). The synthesized polymers were characterized by GPC, NMR, and DSC techniques. The resulting copolymers consisting of up to 10% of HMG monomer were semicrystalline with a melting temperature above body temperature. Water contact angle measurements of polymeric films showed that increasing HMG content resulted in higher surface hydrophilicity, as evidenced from a decrease in receding contact angle from 68 degrees for PCL to 40 degrees for 10% HMG-CL. Human mesenchymal stem cells showed good adherence onto pHMG-CL films as compared to the more hydrophobic PCL surfaces. The cells survived and were able to differentiate toward osteogenic lineage on pHMG-CL surfaces. This study shows that the aforementioned hydrophilic polymers are attractive candidates for the design of scaffolds for tissue engineering applications.

  15. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.

    Science.gov (United States)

    Pais, Pilar

    2010-08-01

    The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to

  16. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Directory of Open Access Journals (Sweden)

    Haim, D.

    2012-10-01

    Full Text Available Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP, in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg–1 of butyric acid esterified policosanol (BAEP, or 164 mg kg–1 of oleic acid esterified policosanol (OAEP. Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05 in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis.

    Los Policosanoles están formados por una mezcla de alcoholes alifáticos de cadena larga y se obtienen de las ceras de la caña de azúcar. Más de cincuenta estudios indican que los policosanoles reducen el colesterol sérico, mientras que otros no logran reproducir este efecto. El objetivo de esta investigación fue evaluar la biodisponibilidad de policosanoles esterificados y no esterificados

  17. Cell death by SecTRAPs: thioredoxin reductase as a prooxidant killer of cells.

    Directory of Open Access Journals (Sweden)

    Karin Anestål

    Full Text Available BACKGROUND: SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins can be formed from the selenoprotein thioredoxin reductase (TrxR by targeting of its selenocysteine (Sec residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function. PRINCIPAL FINDINGS: Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS and consequently antioxidants could protect against the cell killing by SecTRAPs. CONCLUSIONS: We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity.

  18. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  19. A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast.

    Directory of Open Access Journals (Sweden)

    Tomonori Takami

    Full Text Available Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, ergosterol (a final sterol product, and squalene (an intermediate pathway product, were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level.

  20. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  1. In vivo photoinactivation of Escherichia coli ribonucleoside reductase by near-ultraviolet light

    International Nuclear Information System (INIS)

    Peters, J.

    1977-01-01

    Some experimental work is described showing that near-U.V. irradiation of E.coli cells selectively destroys RDP-reductase (ribonucleoside diphosphate reductase) activity in vivo are providing evidence relating the loss of RDP-reductase to loss of cellular visibility and the inactivity of irrdiated cells to support the replication of DNA phages. The data are consistent with the interpretation that the principal cause in the killing of exponentially growing E.coli cells by near-U.V., and the loss of ability of irradiated host cells to support the replication of DNA phages, is the photoinactivation of the RDP-reductase complex. (U.K.)

  2. In vivo photoinactivation of Escherichia coli ribonucleoside reductase by near-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J [California Univ., Irvine (USA)

    1977-06-09

    Some experimental work is described showing that near-uv irradiation of E.coli cells selectively destroys RDP-reductase (ribonucleoside diphosphate reductase) activity in vivo are providing evidence relating the loss of RDP-reductase to loss of cellular visibility and the inactivity of irrdiated cells to support the replication of DNA phages. The data are consistent with the interpretation that the principal cause in the killing of exponentially growing E.coli cells by near-uv, and the loss of ability of irradiated host cells to support the replication of DNA phages, is the photoinactivation of the RDP-reductase complex.

  3. Investigations on the effect of flavonoids from banana, Musa paradisiaca L. on lipid metabolism in rats.

    Science.gov (United States)

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2009-01-01

    Oral administration of flavonoids extracted from unripe fruits of Musa paradisiaca showed significant hypolipidemic activities in male rats (Sprague Dawley strain) at a dose of 1 mg/100 g body weight (BW)/day. Concentrations of cholesterol, phospholipids, free fatty acids, and triglycerides showed significant decrease in the serum, liver, kidney, and brain of experimental animals. HMG CoA reductase activity was found to be enhanced, while activities of glucose-6-phosphate dehydrogenase and malate dehydrogenase were significantly reduced. Activities of lipoprotein lipase and plasma LCAT showed significant enhancement. A significant increase in the concentrations of hepatic and fecal bile acids and fecal neutral sterols was also observed indicating a higher rate of degradation of cholesterol. The present study indicates that although there is an increase in the rate of synthesis of cholesterol in the liver, the process of degradation exceeds the rate of synthesis.

  4. Novel Hedgehog pathway targets against basal cell carcinoma

    International Nuclear Information System (INIS)

    Tang, Jean Y.; So, P.-L.; Epstein, Ervin H.

    2007-01-01

    The Hedgehog signaling pathway plays a key role in directing growth and patterning during embryonic development and is required in vertebrates for the normal development of many structures, including the neural tube, axial skeleton, skin, and hair. Aberrant activation of the Hedgehog (Hh) pathway in adult tissue is associated with the development of basal cell carcinoma (BCC), medulloblastoma, and a subset of pancreatic, gastrointestinal, and other cancers. This review will provide an overview of what is known about the mechanisms by which activation of Hedgehog signaling leads to the development of BCCs and will review two recent papers suggesting that agents that modulate sterol levels might influence the Hh pathway. Thus, sterols may be a new therapeutic target for the treatment of BCCs, and readily available agents such as statins (HMG-CoA reductase inhibitors) or vitamin D might be helpful in reducing BCC incidence

  5. Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field

    Directory of Open Access Journals (Sweden)

    Lívia Brenelli de Paiva

    2013-09-01

    Full Text Available Ferulic acid is a phenolic acid widely distributed in the plant kingdom. It presents a wide range of potential therapeutic effects useful in the treatments of cancer, diabetes, lung and cardiovascular diseases, as well as hepatic, neuro and photoprotective effects and antimicrobial and anti-inflammatory activities. Overall, the pharmaceutical potential of ferulic acid can be attributed to its ability to scavenge free radicals. However, recent studies have revealed that ferulic acid presents pharmacological properties beyond those related to its antioxidant activity, such as the ability to competitively inhibit HMG-CoA reductase and activate glucokinase, contributing to reduce hypercholesterolemia and hyperglycemia, respectively. The present review addresses ferulic acid dietary sources, the pharmacokinetic profile, antioxidant action mechanisms and therapeutic effects in the treatment and prevention of various diseases, in order to provide a basis for understanding its mechanisms of action as well as its pharmaceutical potential.

  6. [MVK gene abnormality and new approach to treatment of hyper IgD syndrome and periodic fever syndrome].

    Science.gov (United States)

    Naruto, Takuya

    2007-04-01

    Hyper IgD and periodic fever syndrome (HIDS; OMIM 260920) is one of the hereditary autoinflammatory syndromes characterized by recurrent episodes of fever and inflammation.. HIDS is an autosomal recessive disorder characterized by recurrent fever attacks in early childhood. HIDS caused by mevalonate kinase (MK) mutations, also that is the gene of mevalonic aciduria (OMIM 251170). During febrile episodes, urinary mevalonate concentrations were found to be significantly elevated in patients. Diagnosis of HIDS was retrieving gene or measurement of the enzyme activity in peripheral blood lymphocyte in general. This of HIDS is an activity decline of MK, and a complete deficiency of MK becomes a mevalonic aciduria with a nervous symptom. The relation between the fever and inflammation of mevalonate or isoprenoid products are uncertain. The therapy attempt with statins, which is inhibited the next enzyme after HMG-CoA reductase, or inhibit the proinflammatory cytokines.

  7. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Science.gov (United States)

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C2221 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å. PMID:17142919

  8. Genome sequence analysis of predicted polyprenol reductase gene from mangrove plant kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Sagami, H.; Baba, S.; Oku, H.

    2018-03-01

    It has been previously reported that dolichols but not polyprenols were predominated in mangrove leaves and roots. Therefore, the occurrence of larger amounts of dolichol in leaves of mangrove plants implies that polyprenol reductase is responsible for the conversion of polyprenol to dolichol may be active in mangrove leaves. Here we report the early assessment of probably polyprenol reductase gene from genome sequence of mangrove plant Kandelia obovata. The functional assignment of the gene was based on a homology search of the sequences against the non-redundant (nr) peptide database of NCBI using Blastx. The degree of sequence identity between DNA sequence and known polyprenol reductase was confirmed using the Blastx probability E-value, total score, and identity. The genome sequence data resulted in three partial sequences, termed c23157 (700 bp), c23901 (960 bp), and c24171 (531 bp). The c23157 gene showed the highest similarity (61%) to predicted polyprenol reductase 2- like from Gossypium raimondii with E-value 2e-100. The second gene was c23901 to exhibit high similarity (78%) to the steroid 5-alpha-reductase Det2 from J. curcas with E-value 2e-140. Furthermore, the c24171 gene depicted highest similarity (79%) to the polyprenol reductase 2 isoform X1 from Jatropha curcas with E- value 7e-21.The present study suggested that the c23157, c23901, and c24171, genes may encode predicted polyprenol reductase. The c23157, c23901, c24171 are therefore the new type of predicted polyprenol reductase from K. obovata.

  9. The demand for statin: the effect of copay on utilization and compliance.

    Science.gov (United States)

    Thiebaud, Patrick; Patel, Bimal V; Nichol, Michael B

    2008-01-01

    Increasing drug costs in the US have prompted employers and insurers alike to turn to higher drug copays for cost containment. The effect of rising copays on compliance with statins (HMG-CoA reductase inhibitors) treatment has received surprisingly little attention in the applied literature. This paper uses pharmacy claims data from a commercially insured adult population to determine the effect of copay change on compliance at the individual level. Fixed effect logit and Poisson regressions estimate the effect of copays on monthly likelihood of high compliance and average monthly days of supply respectively. Higher copays reduce compliance among statin users, with less compliant patients responding more strongly to copay change than compliant patients. These results suggest that specific financial incentives given to less compliant patients could improve compliance with statin treatment at a relatively low cost. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    Science.gov (United States)

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  11. Bioinformatics analysis of the predicted polyprenol reductase genes in higher plants

    Science.gov (United States)

    Basyuni, M.; Wati, R.

    2018-03-01

    The present study evaluates the bioinformatics methods to analyze twenty-four predicted polyprenol reductase genes from higher plants on GenBank as well as predicted the structure, composition, similarity, subcellular localization, and phylogenetic. The physicochemical properties of plant polyprenol showed diversity among the observed genes. The percentage of the secondary structure of plant polyprenol genes followed the ratio order of α helix > random coil > extended chain structure. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide in plant polyprenol reductase genes. The possibility of the potential transit peptide showed variation among the plant polyprenol reductase, suggested the importance of understanding the variety of peptide components of plant polyprenol genes. To clarify this finding, a phylogenetic tree was drawn. The phylogenetic tree shows several branches in the tree, suggested that plant polyprenol reductase genes grouped into divergent clusters in the tree.

  12. Light-to-moderate ethanol feeding augments AMPK-α phosphorylation and attenuates SREBP-1 expression in the liver of rats.

    Science.gov (United States)

    Nammi, Srinivas; Roufogalis, Basil D

    2013-01-01

    Fatty liver disease, a hepatic manifestation of metabolic syndrome, is one of the major causes of chronic liver diseases. Epidemiological studies suggest that regular light-to-moderate ethanol consumption lowers the risk of developing metabolic disorders including dislipidemia, insulin resistance, type 2 diabetes and fatty liver disease. However, the mechanism(s) of the protective effect of light-to-moderate ethanol consumption on the liver remains unknown. In the present study, we investigated the effects of light (6%, 0.94 g/kg/day) and moderate (12%, 1.88 g/kg/day) ethanol feeding in rats for 3 weeks on the circulating and hepatic biochemical profiles and on the hepatic protein expression and phosphorylation status of adenosine monophosphate-activated protein kinase-α (AMPK-α) and other down-stream targets of this enzyme including sterol regulatory element-binding protein-1 (SREBP-1), SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase). Despite no significant difference in food-intake among the groups, light ethanol treatment significantly increased the body weight compared to control rats. Serum glucose, insulin, total cholesterol, triglycerides, phospholipids and hepatic cholesterol and triglycerides were not significantly different among the groups. However, serum free fatty acids were significantly reduced with light ethanol treatment. Both light and moderate ethanol treatment significantly increased the hepatic levels of phosphorylated AMPK-α protein and this was associated with significant reduction of SREBP-1 protein expression, suggesting an enhanced fatty acid oxidation. In addition, light ethanol treatment significantly decreased the SCAP protein expression in the liver. However, liver HMG-CoA protein expression was not significantly different with ethanol consumption. Chronic light-to-moderate ethanol consumption increased AMPK activation which was associated with decreased expression of SREBP

  13. Identification of a Novel Epoxyqueuosine Reductase Family by Comparative Genomics.

    Science.gov (United States)

    Zallot, Rémi; Ross, Robert; Chen, Wei-Hung; Bruner, Steven D; Limbach, Patrick A; de Crécy-Lagard, Valérie

    2017-03-17

    The reduction of epoxyqueuosine (oQ) is the last step in the synthesis of the tRNA modification queuosine (Q). While the epoxyqueuosine reductase (EC 1.17.99.6) enzymatic activity was first described 30 years ago, the encoding gene queG was only identified in Escherichia coli in 2011. Interestingly, queG is absent from a large number of sequenced genomes that harbor Q synthesis or salvage genes, suggesting the existence of an alternative epoxyqueuosine reductase in these organisms. By analyzing phylogenetic distributions, physical gene clustering, and fusions, members of the Domain of Unknown Function 208 (DUF208) family were predicted to encode for an alternative epoxyqueuosine reductase. This prediction was validated with genetic methods. The Q modification is present in Lactobacillus salivarius, an organism missing queG but harboring the duf208 gene. Acinetobacter baylyi ADP1 is one of the few organisms that harbor both QueG and DUF208, and deletion of both corresponding genes was required to observe the absence of Q and the accumulation of oQ in tRNA. Finally, the conversion oQ to Q was restored in an E. coli queG mutant by complementation with plasmids harboring duf208 genes from different bacteria. Members of the DUF208 family are not homologous to QueG enzymes, and thus, duf208 is a non-orthologous replacement of queG. We propose to name DUF208 encoding genes as queH. While QueH contains conserved cysteines that could be involved in the coordination of a Fe/S center in a similar fashion to what has been identified in QueG, no cobalamin was identified associated with recombinant QueH protein.

  14. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    Science.gov (United States)

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  15. Identification of 5α-reductase isoenzymes in canine skin.

    Science.gov (United States)

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  16. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  17. CE: Triglycerides: Do They Matter?

    Science.gov (United States)

    Scordo, Kristine; Pickett, Kim Anne

    2017-01-01

    : Since the introduction of HMG-CoA reductase inhibitors, also known as statins, as an adjunct to diet in the treatment of hyperlipidemia and the greater emphasis placed on reducing low-density lipoprotein (LDL) cholesterol levels in the prevention of atherosclerosis and cardiovascular disease (CVD), there has been less focus on the value of lowering serum triglyceride levels. Many patients are aware of their "good" and "bad" cholesterol levels, but they may not be aware of their triglyceride level or of the association between high triglycerides and the development of CVD. In recent years, however, in light of the increasing incidences of obesity, insulin resistance, and type 2 diabetes, lowering triglyceride levels has gained renewed interest. In addition to the focus on lowering LDL cholesterol levels in CVD prevention, clinicians need to be aware of the role of triglycerides-their contribution to CVD, and the causes and treatment of hypertriglyceridemia.

  18. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Alpha 1-blockers vs 5 alpha-reductase inhibitors in benign prostatic hyperplasia. A comparative review

    DEFF Research Database (Denmark)

    Andersen, J T

    1995-01-01

    During recent years, pharmacological treatment of symptomatic benign prostatic hyperplasia (BPH) has become the primary treatment choice for an increasing number of patients. The 2 principal drug classes employed are alpha 1-blockers and 5 alpha-reductase inhibitors. Current information from...... of patients who will respond well to alpha 1-blockers have yet to be identified, and data concerning the long term effects of these drugs are not yet available. 5 alpha-Reductase inhibitors have a slow onset of effect, but treatment leads to improvement in symptoms, reduction of the size of the prostate gland...... and improvement in objective parameters for bladder outflow obstruction. Approximately 30 to 50% of patients will respond to treatment with 5 alpha-reductase inhibitors. The definitive role of pharmacological treatment in symptomatic BPH remains to be established, although it seems that patients unfit...

  20. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    Science.gov (United States)

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  1. Linoleic acid enhance the production of moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PkA pathway.

    Science.gov (United States)

    Huang, Jing; Liao, NanQing; Li, HaoMing

    2018-04-01

    Monacolin K, an inhibitor of HMG-CoA reductase, is a secondary metabolite synthesized by polyketide synthases (PKS) from Monascus ruber. The mokH gene encoding Zn(II)2Cys6 binding protein and mokA gene encoding polyketide synthase are presumed to activate monacolin K production. In this study, linoleic acid could be a quorum sensing signaling molecule to increase monacolin K production in the cyclic AMP(cAMP)-protein kinase A(PKA) signaling pathway. Analysis of the PKA activity and the cAMP concentration shows that linoleic acid could increase cAMP concentration and activate PKA. Analysis of the RT-qPCR products demonstrates that 256μM and 512μM linoleic acid can up-regulate mokH and mokA gene transcript levels. Especially with 512μM linoleic acid addition, linoleic acid increase 1.35 folds of monacolin K production, but 64μM linoleic acid increase 1.94 folds of red pigment production in Monascus ruber. These results show the cAMP-PkA pathway activity can up-regulate mokA and mokH gene, which enhance the yield of Monacolin K. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Impact of HMG-CoA reductase inhibitors on the incidence of polyomavirus-associated nephropathy in renal transplant recipients with human BK polyomavirus viremia.

    Science.gov (United States)

    Gabardi, S; Ramasamy, S; Kim, M; Klasek, R; Carter, D; Mackenzie, M R; Chandraker, A; Tan, C S

    2015-08-01

    Up to 20% of renal transplant recipients (RTR) will develop human BK polyomavirus (BKPyV) viremia. BKPyV viremia is a pre-requisite of polyomavirus-associated nephropathy (PyVAN). Risk of BKPyV infections increases with immunosuppression. Currently, the only effective therapy against PyVAN is reductions in immunosuppression, but this may increase the risk of rejection. In vitro data have shown that pravastatin dramatically decreased caveolin-1 expression in human renal proximal tubular epithelial cells (HRPTEC) and suppressed BKPyV infection in these cells. Based on these data, we postulated that statin therapy may prevent the progression of BKPyV viremia to PyVAN. A multicenter, retrospective study was conducted in adult RTR transplanted between July 2005 and March 2012. All patients with documented BKPyV viremia (viral load >500 copies/mL on 2 consecutive tests) were included. Group I consisted of patients taking a statin before the BKPyV viremia diagnosis (n = 32), and Group II had no statin exposure before or after the BKPyV viremia diagnosis (n = 36). The primary endpoint was the incidence of PyVAN. Demographic data, transplant characteristics, and the degree of immunosuppression (i.e., induction/maintenance therapies, rejection treatment) were similar between the groups, with the exception of more diabetics in Group I. The incidence of PyVAN was comparable between the 2 groups (Group I = 28.1% vs. Group II = 41.7%; P = 0.312). Despite the proven in vitro effectiveness of pravastatin preventing BKPyV infection in HRPTEC, statins at doses maximized for cholesterol lowering, in RTR with BKPyV viremia, did not prevent progression to PyVAN. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  4. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression. ...

  5. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  6. Investigating the effects of statins on cellular lipid metabolism using a yeast expression system.

    Directory of Open Access Journals (Sweden)

    Agata Leszczynska

    Full Text Available In humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR, the key enzyme of the sterol synthesis pathway. Since yeast Saccharomyces cerevisiae harbours many counterparts of mammalian enzymes involved in lipid-synthesizing pathways, conclusions drawn from research with this single cell eukaryotic organism can be readily applied to higher eukaryotes. Using a yeast strain with deletions of both HMG1 and HMG2 genes (i.e. completely devoid of HMGR activity with introduced wild-type or mutant form of human HMGR (hHMGR gene we investigated the effects of statins on the lipid metabolism of the cell. The relative quantification of mRNA demonstrated a different effect of simvastatin on the expression of the wild-type and mutated hHMGR gene. GC/MS analyses showed a significant decrease of sterols and enhanced conversion of squalene and sterol precursors into ergosterol. This was accompanied by the mobilization of ergosterol precursors localized in lipid particles in the form of steryl esters visualized by confocal microscopy. Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the hHMGR gene. HPLC/MS analyses indicated a reduced level of phospholipids not connected with the mevalonic acid pathway. We detected two significant phenomena. First, cells treated with simvastatin develop an adaptive response compensating the lower activity of HMGR. This includes enhanced conversion of sterol precursors into ergosterol, mobilization of steryl esters and increased expression of the hHMGR gene. Second, statins cause a substantial drop in the level of glycerophospholipids.

  7. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Kirkwood, John; Sander, Cindy; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2018-02-01

    The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFRα levels in GBM cells, that was enhanced by sodium valproate. Knock down of Beclin1 or of ATG5 prevented neratinib and neratinib combined with sodium valproate / AR42 from reducing the expression of mutant N-RAS in established PDX and fresh PDX models of ovarian cancer and melanoma, respectively. Neratinib and the drug combinations caused the co-localization of mutant RAS proteins and ERBB2 with Beclin1 and cathepsin B. The drug combination activated the AMP-dependent protein kinase that was causal in enhancing HMG Co A reductase phosphorylation. Collectively, our data reinforce the concept that the irreversible ERBB1/2/4 inhibitor neratinib has the potential for use in the treatment of tumors expressing mutant RAS proteins.

  8. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    Science.gov (United States)

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-04

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Grover

    2013-01-01

    Full Text Available Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β, Tumor Necrosis Factor-α (TNF-α, and Interleukin-6 (IL-6, which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs. Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties . All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics.

  10. The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?

    Science.gov (United States)

    Grover, Harpreet Singh; Luthra, Shailly; Maroo, Shruti; Maroo, Niteeka

    2013-03-01

    Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS) that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6), which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs). Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA) reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties. All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics.

  11. Exploitation of Aspergillus terreus for the Production of Natural Statins

    Directory of Open Access Journals (Sweden)

    Mishal Subhan

    2016-04-01

    Full Text Available The fungus Aspergillus (A. terreus has dominated the biological production of the “blockbuster” drugs known as statins. The statins are a class of drugs that inhibit HMG-CoA reductase and lead to lower cholesterol production. The statins were initially discovered in fungi and for many years fungi were the sole source for the statins. At present, novel chemically synthesised statins are produced as inspired by the naturally occurring statin molecules. The isolation of the natural statins, compactin, mevastatin and lovastatin from A. terreus represents one of the great achievements of industrial microbiology. Here we review the discovery of statins, along with strategies that have been applied to scale up their production by A. terreus strains. The strategies encompass many of the techniques available in industrial microbiology and include the optimization of media and fermentation conditions, the improvement of strains through classical mutagenesis, induced genetic manipulation and the use of statistical design.

  12. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    Science.gov (United States)

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.

  13. Reconstitution of FMN-free NADPH-cytochrome P-450 reductase with a phosphorothioate analog of FMN: 31P NMR studies of the reconstituted protein

    International Nuclear Information System (INIS)

    Krum, D.P.; Otvos, J.D.; Calhoun, J.P.; Miziorko, H.M.; Masters, B.S.S.

    1987-01-01

    A phosphorothioate analog of FMN (FMNS) has been synthesized and shown to be completely competent in reconstituting the FMN-free form of NADPH-cytochrome P-450 reductase as evidenced by flavin determinations and cytochrome c reductase activity assays. The FMNS-reconstituted FMN-free reductase gives rise to an air-stable semiquinone, and the fluorescence of FMNS is quenched upon addition of FMN-free reductase. 31 P NMR spectra of the FMN-free reductase reveal only two resonances (-7.3 and -11.3 ppm), which are attributable to FAD. This result confirms the assignments of Otvos et al, and demonstrates unequivocally that there are no phosphate residues other than those of FMN and FAD attached to the steapsin-solubilized reductase. The addition of FMN to the FMN-free reductase resulted in the appearance of one additional resonance at 3.9 ppm. Addition of FMNS to the FMN-free reductase caused no change, surprisingly, in the 31 P NMR spectrum until Mn(II) was added, after which a peak centered at ∼ 45 ppm was observed. This unexpected result may be explained if the T 1 for the phosphate of FMNS is significantly longer than that of FMN, and suggests that the sulfur atom of FMNS may perturb the interaction of the phosphate with its protein environment. These results demonstrate the utility of phosphorothioate analogs as mechanistic probes for proteins containing nucleotide cofactors

  14. Active-site-directed inhibition of 3-hydroxy-3-methylglutaryl coenzyme A synthase by 3-chloropropionyl coenzyme A

    International Nuclear Information System (INIS)

    Miziorko, H.M.; Behnke, C.E.

    1985-01-01

    3-Chloropropionyl coenzyme A (3-chloropropionyl-CoA) irreversibly inhibits avian liver 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase). Enzyme inactivation follows pseudo-first-order kinetics and is retarded in the presence of substrates, suggesting that covalent labeling occurs at the active site. A typical rate saturation effect is observed when inactivation kinetics are measured as a function of 3-chloropropionyl-CoA concentration. These data indicate a Ki = 15 microM for the inhibitor and a limiting kinact = 0.31 min-1. [1- 14 C]-3-Chloropropionyl-CoA binds covalently to the enzyme with a stoichiometry (0.7 per site) similar to that measured for acetylation of the enzyme by acetyl-CoA. While the acetylated enzyme formed upon incubation of HMG-CoA synthase with acetyl-CoA is labile to performic acid oxidation, the adduct formed upon 3-chloropropionyl-CoA inactivation is stable to such treatment. Therefore, such an adduct cannot solely involve a thio ester linkage. Exhaustive Pronase digestion of [ 14 C]-3-chloropropionyl-CoA-labeled enzyme produces a radioactive compound which cochromatographs with authentic carboxyethylcysteine using reverse-phase/ion-pairing high-pressure liquid chromatography and both silica and cellulose thin-layer chromatography systems. This suggests that enzyme inactivation is due to alkylation of an active-site cysteine residue

  15. SREBP inhibits VEGF expression in human smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Motoyama, Koka [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Fukumoto, Shinya [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Koyama, Hidenori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Emoto, Masanori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Shimano, Hitoshi [Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki (Japan); Maemura, Koji [Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Nishizawa, Yoshiki [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan)

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  16. SREBP inhibits VEGF expression in human smooth muscle cells

    International Nuclear Information System (INIS)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-01-01

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs

  17. Antinociception induced by atorvastatin in different pain models.

    Science.gov (United States)

    Garcia, G G; Miranda, H F; Noriega, V; Sierralta, F; Olavarría, L; Zepeda, R J; Prieto, J C

    2011-11-01

    Atorvastatin is a statin that inhibits the 3-hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase. Several landmark clinical trials have demonstrated the beneficial effects of statin therapy for primary and secondary prevention of cardiovascular disease. It is assumed that the beneficial effects of statin therapy are entirely due to cholesterol reduction. Statins have an additional activity (pleiotropic effect) that has been associated to their anti-inflammatory effects. The aim of the present study was to assess the antinociceptive activity of atorvastatin in five animal pain models. The daily administration of 3-100mg/kg of atorvastatin by oral gavage induced a significant dose-dependent antinociception in the writhing, tail-flick, orofacial formalin and formalin hind paw tests. However, this antinociceptive activity of atorvastatin was detectable only at high concentrations in the hot plate assay. The data obtained in the present study demonstrates the effect of atorvastatin to reduce nociception and inflammation in different animal pain models. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Mechanisms and assessment of statin-related muscular adverse effects

    Science.gov (United States)

    Moßhammer, Dirk; Schaeffeler, Elke; Schwab, Matthias; Mörike, Klaus

    2014-01-01

    Statin-associated muscular adverse effects cover a wide range of symptoms, including asymptomatic increase of creatine kinase serum activity and life-threatening rhabdomyolysis. Different underlying pathomechanisms have been proposed. However, a unifying concept of the pathogenesis of statin-related muscular adverse effects has not emerged so far. In this review, we attempt to categorize these mechanisms along three levels. Firstly, among pharmacokinetic factors, it has been shown for some statins that inhibition of cytochrome P450-mediated hepatic biotransformation and hepatic uptake by transporter proteins contribute to an increase of systemic statin concentrations. Secondly, at the myocyte membrane level, cell membrane uptake transporters affect intracellular statin concentrations. Thirdly, at the intracellular level, inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase results in decreased intracellular concentrations of downstream metabolites (e.g. selenoproteins, ubiquinone, cholesterol) and alteration of gene expression (e.g. ryanodine receptor 3, glycine amidinotransferase). We also review current recommendations for prescribers. PMID:25069381

  19. Hypercholesterolemia, Stroke And Statins

    Directory of Open Access Journals (Sweden)

    Prabhakar S

    2005-01-01

    Full Text Available The link between serum cholesterol levels and the incidence of stroke still remain to be established. There are conflicting reports from a series of observational cohort studies. However, clinical trials with HMG CoA reductase inhibitors (also called statins have shown that cholesterol lowering therapy used in the primary and secondary prevention of myocardial infarction significantly reduced cardiovascular events including strokes. Meta analysis of trials with statins have shown a relative risk reduction in stroke of 12 to 48% in patients with coronary heart disease after MI. It has been postulated that the clinical action of statins is the result of pleiotropic / antiatherogenic effects rather than simply a reduction in cholesterol. The putative beneficial effect of statins in stroke involve blocking of macrophage and platelet activation, improvement of endothelial cell vasomotor function, enhancement of endothelial fibrinolytic function, immunosuppressive and anti-inflammatory action, inhibition of smooth muscle cell proliferation and particularly enhancement of endothelial nitric oxide synthase (eNOS.

  20. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  1. Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs

    Directory of Open Access Journals (Sweden)

    Hajjaj H

    2004-02-01

    Full Text Available Abstract Introduction There has been renewed interest in mushroom medicinal properties. We studied cholesterol lowering properties of Ganoderma lucidum (Gl, a renowned medicinal species. Results Organic fractions containing oxygenated lanosterol derivatives inhibited cholesterol synthesis in T9A4 hepatocytes. In hamsters, 5% Gl did not effect LDL; but decreased total cholesterol (TC 9.8%, and HDL 11.2%. Gl (2.5 and 5% had effects on several fecal neutral sterols and bile acids. Both Gl doses reduced hepatic microsomal ex-vivo HMG-CoA reductase activity. In minipigs, 2.5 Gl decreased TC, LDL- and HDL cholesterol 20, 27, and 18%, respectively (P Conclusions Overall, Gl has potential to reduce LDL cholesterol in vivo through various mechanisms. Next steps are to: fully characterize bioactive components in lipid soluble/insoluble fractions; evaluate bioactivity of isolated fractions; and examine human cholesterol lowering properties. Innovative new cholesterol-lowering foods and medicines containing Gl are envisioned.

  2. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    International Nuclear Information System (INIS)

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-01

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells

  3. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mistafa, Oras; Hoegberg, Johan [Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm (Sweden); Stenius, Ulla [Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm (Sweden)

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  4. Hypolipidemic activity of Phellinus rimosus against triton WR-1339 and high cholesterol diet induced hyperlipidemic rats.

    Science.gov (United States)

    Rony, K A; Ajith, T A; Nima, N; Janardhanan, K K

    2014-03-01

    Patients with the risk for atherosclerotic disease will be targeted to reduce the existing hyperlipidemia. The hypolipidemic activity of Phellinus rimosus was studied using triton WR-1339 and high cholesterol diet (HCD) induced models. The triton induced elevated lipid profile was attenuated by P. rimosus or standard drug atorvastatin. Similarly, administration of P. rimosus along with HCD significantly decline serum triglyceride, total cholesterol, low-density lipoprotein, with elevating the high-density lipoprotein. Thiobarbituric acid reacting substances in heart and liver significantly decreased; where as activity of enzymatic antioxidants and level of reduced glutathione were significantly increased. In both models, P. rimosus extract showed a significant ameliorative effect on the elevated atherogenic index as well as LDL/HDL-C ratio. The hypolipidemic activity of P. rimosus can be ascribed to its inhibitory effect on the liver HMG CoA reductase activity. The results suggest the possible therapeutic potential of this fungus as hypolipidemic agent. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  6. Supplementation with an insoluble fiber obtained from carob pod (Ceratonia siliqua L.) rich in polyphenols prevents dyslipidemia in rabbits through SIRT1/PGC-1α pathway.

    Science.gov (United States)

    Valero-Muñoz, María; Ballesteros, Sandra; Ruiz-Roso, Baltasar; Pérez-Olleros, Lourdes; Martín-Fernández, Beatriz; Lahera, Vicente; de Las Heras, Natalia

    2017-12-22

    To investigate the mechanism implicated in the effect of an insoluble fiber (obtained from carob pod) rich in polyphenols (IFCP) in lipid metabolism in the liver. Male New Zealand rabbits were fed with the following diets for 8 weeks: control diet (CT group), dyslipidemic diet supplemented with 0.5% cholesterol + 14% coconut oil (DL group) and dyslipidemic diet containing 0.5% cholesterol + 14% coconut oil plus 3% IFCP (DL + IFCP group). Dyslipidemic diet with IFCP was able to reduce development of mixed dyslipidemia, liver relative weight and collagen I protein expression compared to DL rabbits. Analyses of the main enzymes implicated in cholesterol and triglycerides metabolism revealed that IFCP increased hepatic concentration of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and cytochrome P450, family 7, subfamily a, polypeptide 1C (CYP7A1) (82.34, 114.42%, respectively) as well as protein expression of LDL receptor (42.48%) in DL rabbits. Importantly, IFCP also increased hepatic lipase (HL) levels (91.43%) and decreased glycerol phosphate acyltransferase (GPAT) and sterol regulatory element-binding protein 1C (SREBP1c) liver expression levels (20.38 and 41.20%, respectively). Finally, sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α) hepatic expression increased in DL + IFCP group compared with DL (159.81 and 48.00%, respectively). These findings show that IFCP is able to abrogate the deleterious effects of hepatic dyslipidemia by modulating SIRT1 and PGC-1α pathways.

  7. Ebselen: A thioredoxin reductase-dependent catalyst for α-tocopherol quinone reduction

    International Nuclear Information System (INIS)

    Fang Jianguo; Zhong Liangwei; Zhao Rong; Holmgren, Arne

    2005-01-01

    The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, is a powerful protein disulfide reductase system with a broad substrate specificity. Recently the selenazol drug ebselen was shown to be a substrate for both mammalian TrxR and Trx. We examined if α-tocopherol quinone (TQ), a product of α-tocopherol oxidation, is reduced by ebselen in the presence of TrxR, since TQ was not a substrate for the enzyme itself. Ebselen reduction of TQ in the presence of TrxR was caused by ebselen selenol, generated from fast reduction of ebselen by the enzyme. TQ has no intrinsic antioxidant activity, while the product of reduction of TQ, α-tocopherolhydroquinone (TQH 2 ), is a potent antioxidant. The thioredoxin system dependence of ebselen to catalyze reduction of other oxidized species, such as hydrogen peroxide, dehydroascorbate, and peroxynitrite, is discussed. The ability of ebselen to reduce TQ via the thioredoxin system is a novel mechanism to explain the effects of the drug as an antioxidant in vivo

  8. Synthesis and Activity of a New Series of(Z-3-Phenyl-2-benzoylpropenoic Acid Derivatives as Aldose Reductase Inhibitors

    Directory of Open Access Journals (Sweden)

    Shao-Jie Wang

    2007-04-01

    Full Text Available During the course of studies directed towards the discovery of novel aldose reductase inhibitors for the treatment of diabetic complications, we synthesized a series of new (Z-3-phenyl-2-benzoylpropenoic acid derivatives and tested their in vitro inhibitory activities on rat lens aldose reductase. Of these compounds, (Z-3-(3,4-dihydroxyphenyl-2-(4-methylbenzoylpropenoicacid(3k was identified as the most potent inhibitor, with an IC50 of 0.49μM. The theoretical binding mode of 3k was obtained by simulation of its docking into the active site of the human aldose reductase crystal structure.

  9. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kiyota, Eduardo [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Sousa, Sylvia Morais de [Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Santos, Marcelo Leite dos; Costa Lima, Aline da [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Menossi, Marcelo [Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Yunes, José Andrés [Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP (Brazil); Aparicio, Ricardo, E-mail: aparicio@iqm.unicamp.br [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil)

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  10. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    International Nuclear Information System (INIS)

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-01-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR

  11. Inhibition of Candida albicans by Fluvastatin Is Dependent on pH

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2009-01-01

    Full Text Available The cholesterol-lowering drug fluvastatin (FS has an inhibitory effect on the growth of the pathogenic yeast Candida albicans that is dependent on the pH of the medium. At the low pH value of the vagina, FS is growth inhibitory at low and at high concentrations, while at intermediate concentrations (1–10 mM, it has no inhibitory effect. Examination of the effect of the common antifungal drug fluconazole in combination with FS demonstrates drug interactions in the low concentration range. Determination of intracellular stress and the activity of the FS target enzyme HMG-CoA reductase confirm our hypothesis that in the intermediate dose range adjustments to the sterol biosynthesis pathway can compensate for the action of FS. We conclude that the pH dependent uptake of FS across yeast membranes might make FS combination therapy an attractive possibility for treatment of vaginal C. albicans infections.

  12. Ameliorative Effects of Herbal Combinations in Hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Nishant P. Visavadiya

    2011-01-01

    Full Text Available The roots of Glycyrrhiza glabra, Withania somnifera, Asparagus racemosus, and Chlorophytum borivilianum and seeds of Sesamum indicum are ayurvedic medicinal plants used in India to treat several ailments. Our previous studies indicated that these plants possess hypolipidemic and antioxidant potential. The present study was aimed at investigating the composite effects of these plants on hypercholesterolemic rats. Three different combinations (5 gm%, given for four weeks used in this study effectively reduced plasma and hepatic lipid profiles and increased fecal excretion of cholesterol, neutral sterol, and bile acid along with increasing the hepatic HMG-CoA reductase activity and bile acid content in hypercholesterolemic rats. Further, all three combinations also improved the hepatic antioxidant status (catalase, SOD, and ascorbic acid levels and plasma total antioxidant capacity with reduced hepatic lipid peroxidation. Overall, combination I had the maximum effect on hypercholesterolemic rats followed by combinations II and III due to varying concentrations of the different classes of phytocomponents.

  13. BIOLOGICAL ROLE OF ALDO-KETO REDUCTASES IN RETINOIC ACID BIOSYNTHESIS AND SIGNALING

    Directory of Open Access Journals (Sweden)

    F. Xavier eRuiz

    2012-04-01

    Full Text Available Several aldo-keto reductase (AKR enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3, as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

  14. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    Directory of Open Access Journals (Sweden)

    Yeon Bok Kim

    2014-01-01

    Full Text Available Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  15. YqhD. A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Laura R. [Iowa State Univ., Ames, IA (United States). Dept. of Chemical and Biological Engineering

    2011-01-15

    The Escherichia coli NADPH-dependent aldehyde reductase YqhD has contributed to a variety of metabolic engineering projects for production of biorenewable fuels and chemicals. As a scavenger of toxic aldehydes produced by lipid peroxidation, YqhD has reductase activity for a broad range of short-chain aldehydes, including butyraldehyde, glyceraldehyde, malondialdehyde, isobutyraldehyde, methylglyoxal, propanealdehyde, acrolein, furfural, glyoxal, 3-hydroxypropionaldehyde, glycolaldehyde, acetaldehyde, and acetol. This reductase activity has proven useful for the production of biorenewable fuels and chemicals, such as isobutanol and 1,3- and 1,2-propanediol; additional capability exists for production of 1-butanol, 1-propanol, and allyl alcohol. A drawback of this reductase activity is the diversion of valuable NADPH away from biosynthesis. This YqhD-mediated NADPH depletion provides sufficient burden to contribute to growth inhibition by furfural and 5-hydroxymethyl furfural, inhibitory contaminants of biomass hydrolysate. The structure of YqhD has been characterized, with identification of a Zn atom in the active site. Directed engineering efforts have improved utilization of 3-hydroxypropionaldehyde and NADPH. Most recently, two independent projects have demonstrated regulation of yqhD by YqhC, where YqhC appears to function as an aldehyde sensor. (orig.)

  16. Soy compared with milk protein in a Western diet changes fecal microbiota and decreases hepatic steatosis in obese OLETF rats.

    Science.gov (United States)

    Panasevich, Matthew R; Schuster, Colin M; Phillips, Kathryn E; Meers, Grace M; Chintapalli, Sree V; Wankhade, Umesh D; Shankar, Kartik; Butteiger, Dustie N; Krul, Elaine S; Thyfault, John P; Rector, R Scott

    2017-08-01

    Soy protein is effective at preventing hepatic steatosis; however, the mechanisms are poorly understood. We tested the hypothesis that soy vs. dairy protein-based diet would alter microbiota and attenuate hepatic steatosis in hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Male OLETF rats were randomized to "Western" diets containing milk protein isolate (MPI), soy protein isolate (SPI) or 50:50 MPI/SPI (MS) (n=9-10/group; 21% kcal protein) for 16 weeks. SPI attenuated (Pcontent, and hepatic 16:1 n-7 and 18:1 n-7 PUFA concentrations) (Pbacterial 16S rRNA analysis revealed SPI-intake elicited increases (P<.05) in Lactobacillus and decreases (P<.05) in Blautia and Lachnospiraceae suggesting decreases in fecal secondary bile acids in SPI rats. SPI and MS exhibited greater (P<.05) hepatic Fxr, Fgfr4, Hnf4a, HmgCoA reductase and synthase mRNA expression compared with MPI. Overall, dietary SPI compared with MPI decreased hepatic steatosis and diacylglycerols, changed microbiota populations and altered bile acid signaling and cholesterol homeostasis in a rodent model of obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2008-10-01

    Full Text Available Abstract Lowering plasma low density lipoprotein-cholesterol (LDL-C, blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a β blocker, and an angiotensin converting enzyme (ACE inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by ~80%. Essential fatty acids (EFAs and their long-chain metabolites: γ-linolenic acid (GLA, dihomo-GLA (DGLA, arachidonic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA and other products such as prostaglandins E1 (PGE1, prostacyclin (PGI2, PGI3, lipoxins (LXs, resolvins, protectins including neuroprotectin D1 (NPD1 prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-γ ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of ω-3 and ω-6 fatty acids and the co

  18. Constitutive non-inducible expression of the Arabidopsis thaliana Nia 2 gene in two nitrate reductase mutants of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Kaye, C; Crawford, N M; Malmberg, R L

    1997-04-01

    We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase. Nitrate reductase mutants were isolated from hNP 588 protoplasts upon UV irradiation. Two of these nitrate reductase-deficient cell lines, nia 3 and nia 25, neither of which contained any detectable nitrate reductase activity, were selected for complementation studies. A cloned Arabidopsis thaliana nitrate reductase gene Nia 2 was introduced into each of the two mutants resulting in 56 independent kanamycin-resistant cell lines. Thirty of the 56 kanamycin-resistant cell lines were able to grow on nitrate as the sole nitrogen source. Eight of these were further analyzed for nitrate reductase enzyme activity and nitrate reductase mRNA production. All eight lines had detectable nitrate reductase activity ranging from 7% to 150% of wild-type hNP 588 callus. The enzyme activity levels were not influenced by the nitrogen source in the medium. The eight lines examined expressed a constitutive, non-inducible 3.2 kb mRNA species that was not present in untransformed controls.

  19. Long-term effect of medium-chain triglyceride on hepatic enzymes catalyzing lipogenesis and cholesterogenesis in rats

    International Nuclear Information System (INIS)

    Takase, Sachiko; Morimoto, Ayami; Nakanishi, Mayumi; Muto, Yasutoshi.

    1977-01-01

    This study was conducted to investigate the long-term effect of dietary medium-chain triglyceride (MCT) as compared with that of corn oil feeding on lipid metabolism in rats. Both serum cholesterol and triglyceride levels in MCT-fed rats showed significant decrease during the experimental period of eight weeks, although liver cholesterol and triglyceride contents were not distinguishable between the two groups. Significant elevation of the activity of lipogenic enzymes, such as fatty acid synthetase (FAS) and malic enzyme (ME) of the liver, was observed in MCT-fed rats without any fat accumulation of the liver (fatty liver). The increase of lipogenic enzyme activity was accompanied by a significant reduction of essential fatty acids (EFA) such as 18:2 (ωsigma) and 20:4 (ωsigma) in total liver lipid. In contrast, hepatic β-hydroxy-β-methylglutaryl CoA(HMG-CoA) reductase activity was significantly decreased in MCT-fed rats, that would play an important role in achieving hypocholesterolemia. From these results obtained in a long-term experiment, it is concluded that exogenous MCT depresses the key enzyme catalyzing cholesterol synthesis with a concomitant elevation of lipogenic enzyme activity in the rat liver. (auth.)

  20. Hypolipidemic activity of Moringa oleifera Lam., Moringaceae, on high fat diet induced hyperlipidemia in albino rats Atividade hipolipidemica de Moringa oleifera Lam., Moringaceae, na hiperlipidemia induzida por dieta rica em gordura em ratos albinos

    Directory of Open Access Journals (Sweden)

    Pankaj G. Jain

    2010-12-01

    Full Text Available The leaves of Moringa oleifera Lam., Moringaceae, are used by the Indians in their herbal medicine as a hypolipidemic agent in obese patients. Albino Wistar rats were fed with methanolic extract of M. oleifera (150, 300 and 600 mg/kg, p.o. and simvastatin (4 mg/kg, p.o. along with hyperlipidemic diet for 30 days. Moringa oleifera and simvastatin were found to lower the serum cholesterol, triacylglyceride, VLDL, LDL, and atherogenic index, but were found to increase the HDL as compared to the corresponding high fed cholesterol diet group (control. The Moringa oleifera methanolic extract was also investigated for its mechanism of action by estimating HMG CO-A reductase activity. Moringa oleifera was found to increase the excretion of fecal cholesterol. Thus, the study demonstrates that M. oleifera possesses a hypolipidemic effect.As folhas de Moringa oleifera Lam., Moringaceae, são usados na medicina natural da Índia como um agente hipolipemiante em pacientes obesos. Ratos albinos Wistar foram alimentados com extrato metanólico de M. oleifera (150, 300 e 600 mg/kg, p.o. e sinvastatina (4 mg/kg, p.o., juntamente com dieta hiperlipídica por 30 dias. Moringa oleifera e sinvastatina reduziram o colesterol, triacilglicerídeoss, VLDL, LDL e índice aterogênico, mas não aumentaram o HDL em comparação com o grupo controle, com dieta rica em colesterol. O mecanismo de ação do extrato metanólico de Moringa oleifera foi também investigado estimando atividade de HMG CO-A redutase. Moringa oleifera aumentou a excreção fecal de colesterol. Assim, o estudo demonstra que a M. oleifera parece ter efeito hipolipemiante.

  1. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies.

    Science.gov (United States)

    Moureaux, T; Leydecker, M T; Meyer, C

    1989-02-15

    Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).

  2. Modulation of biosynthesis and regulatory action of 24(S),25-epoxycholesterol (S-EC) in cultured cells by progesterone (PG)

    International Nuclear Information System (INIS)

    Panini, S.R.; Gupta, A.K.; Sexton, R.C.; Parish, E.J.; Rudney, H.

    1987-01-01

    Treatment of IEC-6 cells with PG caused a strong inhibition of cholesterol biosynthesis at the level of desmosterol reductase. In addition, two new products were observed in PG-treated cells. The first compound was designated as cholesta-5,7,24-trien-3β-ol based on its HPLC chromatographic properties. The second compound was identified as S-EC based on (1) a comparison of its chromatographic properties with those of authentic EC and (2) by its conversion to 25-hydroxycholesterol (HC) upon reduction with LiAlH 4 . In spite of cellular accumulation of S-EC in the presence of PG, the activity of HMG-CoA reductase (HMGR) which is known to be sensitive to oxysterols, was elevated rather than suppressed. On the other hand, when PG-treated cells were refed fresh medium without PG, HMGR activity was suppressed. Exogenous S-EC was a potent suppressor of HMGR in untreated IEC-6 cells. Suppression of HMGR by S-EC but not by HC could be prevented by progesterone. Exogenous [ 3 H]S-EC was not metabolized by IEC-6 cells. These results support the hypothesis that S-EC plays a normal regulatory role in sterol biosynthesis and indicate that enhanced S-EC synthesis observed in the presence of PG may be due to interference with this regulatory action

  3. Molecular Pathogenesis of Liver Steatosis Induced by Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Cheng Jun

    2012-09-01

    Full Text Available Liver steatosis is a pathological hallmark in patients with chronic hepatitis C (CHC. Increased lipid uptake, decreased lipid secretion, increased lipid synthesis and decreased lipid degradation are all involved in pathogenesis of steatosis induced by hepatitic C virus (HCV infection. Level of low density lipoprotein receptor (LDL-R and activity of peroxisome proliferator-activated receptor (PPAR α is related to liver uptake of lipid from circulation, and affected by HCV. Secretion via microsomal triglyceride transfer protein (MTTP, and formation of very low density lipoprotein (VLDL have been hampered by HCV infection. Up-regulation of lipid synthesis related genes, such as sterol regulatory element-binding protein (SREBP-1, SREBP-2, SREBP-1c, fatty acid synthase (FASN, HMG CoA reductase (HMGCR, liver X receptor (LXR, acetyl-CoA carboxylase 1 (ACC1, hepatic CB (1 receptors, retinoid X receptor (RXR α, were the main stay of liver steatosis pathogenesis. Degradation of lipid in liver is decreased in patients with CHC. There is strong evidence that heterogeneity of HCV core genes of different genotypes affect their effects of liver steatosis induction. A mechanism in which steatosis is involved in HCV life cycle is emerging.

  4. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas; Bang, Maria Blanner; Rykær, Martin

    2017-01-01

    The NADPH-dependent homodimeric flavoenzyme thioredoxin reductase (TrxR) provides reducing equivalents to thioredoxin, a key regulator of various cellular redox processes. Crystal structures of photo-inactivated thioredoxin reductase (TrxR) from the Gram-positive bacterium Lactococcus lactis have...

  5. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR - plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After 14 CO 2 pulse and chase experiments. The total 14 C incorporation of the mutant leaves was approximately 20% of that of the control. The NR - leaves mainly accumulated 14 C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system

  6. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-04-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR/sup -/ plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After /sup 14/CO/sub 2/ pulse and chase experiments. The total /sup 14/C incorporation of the mutant leaves was approximately 20% of that of the control. The NR/sup -/ leaves mainly accumulated /sup 14/C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system.

  7. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization.

    Science.gov (United States)

    Fu, Yuan; Lin, Hongyu; Wisitpitthaya, Somsinee; Blessing, William A; Aye, Yimon

    2014-11-24

    Human ribonucleotide reductase (hRNR) is a target of nucleotide chemotherapeutics in clinical use. The nucleotide-induced oligomeric regulation of hRNR subunit α is increasingly being recognized as an innate and drug-relevant mechanism for enzyme activity modulation. In the presence of negative feedback inhibitor dATP and leukemia drug clofarabine nucleotides, hRNR-α assembles into catalytically inert hexameric complexes, whereas nucleotide effectors that govern substrate specificity typically trigger α-dimerization. Currently, both knowledge of and tools to interrogate the oligomeric assembly pathway of RNR in any species in real time are lacking. We therefore developed a fluorimetric assay that reliably reports on oligomeric state changes of α with high sensitivity. The oligomerization-directed fluorescence quenching of hRNR-α, covalently labeled with two fluorophores, allows for direct readout of hRNR dimeric and hexameric states. We applied the newly developed platform to reveal the timescales of α self-assembly, driven by the feedback regulator dATP. This information is currently unavailable, despite the pharmaceutical relevance of hRNR oligomeric regulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Normal bone density in male pseudohermaphroditism due to 5a- reductase 2 deficiency

    Directory of Open Access Journals (Sweden)

    Costa Elaine Maria Frade

    2001-01-01

    Full Text Available Bone is an androgen-dependent tissue, but it is not clear whether the androgen action in bone depends on testosterone or on dihydrotestosterone. Patients with 5alpha-reductase 2 deficiency present normal levels of testosterone and low levels of dihydrotestosterone, providing an in vivo human model for the analysis of the effect of testosterone on bone. OBJECTIVE: To analyze bone mineral density in 4 adult patients with male pseudohermaphroditism due to 5alpha-reductase 2 deficiency. RESULTS: Three patients presented normal bone mineral density of the lumbar column (L1-L4 and femur neck, and the other patient presented a slight osteopenia in the lumbar column. CONCLUSION: Patients with dihydrotestosterone deficiency present normal bone mineral density, suggesting that dihydrotestosterone is not the main androgen acting in bone.

  9. In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-12-01

    Full Text Available The primary objective of this study was to investigate the aldose reductase inhibitory activity of flavonoids using in silico docking studies. In this perspective, flavonoids like biochanin, butein, esculatin, fisetin and herbacetin were selected. Epalrestat, a known aldose reductase inhibitor was used as the standard. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -9.33 kcal/mol to -7.23 kcal/mol when compared with that of the standard (-8.73 kcal/mol. Inhibition constant (144.13 µM to 4.98 µM and intermolecular energy (-11.42 kcal/mol to -7.83 kcal/mol of the flavonoids also coincide with the binding energy. All the selected flavonoids contributed aldose reductase inhibitory activity because of its structural properties. These molecular docking analyses could lead to the further development of potent aldose reductase inhibitors for the treatment of diabetes.

  10. [Removal of low density lipoproteins on dextrans sulfate in 2 patients with familial monogenic hypercholesterolemia].

    Science.gov (United States)

    Aubert, I; Bombail, D; Erlich, D; Goy-Loeper, J; Chanu, B; Bussel, A; Rouffy, J

    1988-01-01

    Two patients-a 32 year old man with severe heterozygote familial hyperlipoproteinemia (FH) and a 9 years old girl with homozygote FH-were treated over eight months by LDL apheresis using dextran sulfate cellulose column (Liposorber, Kaneka, Japon). Plasma was separated from blood cells by filtration (TPE Cobe) or centrifugation (2,997 Cobe) through peripheral veins. An IV bolus of 10 IU/kg heparin was given together with local anti-coagulation with 55 g/l sodium citrate, 20 g/l citric acid at a ratio 1:25. Albumin supply was unnecessary. Plasma was removed every 2 weeks through liposorber LA 40 in the adult, and every week through liposorber LA 40 then 2 LA 15 in the child, mean plasma volume exchanged being 1.2 litres in the adult and 1.5 litres par session in the child. the DSC column removed on the average 60 p. 100 of total cholesterol (TC) and 65 p. 100 of LDL.C. Apoproteins B levels were reduced by 58 p. 100. After each procedure there was a rapid increase in lipid levels to about the 80 to 90 p. 100 of pretreatment value. In the adult, we obtained levels of TC of less than 300 mg/dl with exchanges every 2 weeks combined with an HMG CoA reductase inhibitor (40 mg/day); in the child, with exchanges every week the same inhibitor did not permit a prolongation of the interval between 2 aphereses. this was confirmed by elution of DSC column bound lipoproteins by 0.1 mol/l NaCl solution. However, the average removal of HDL.C and apoprotein A1 was respectively 31 p. 100 and 32 p. 100. Triglycerides levels were also reduced (48 p. 100). this was good in both cases. Using the filtration technic, hypotension was reported; this side effect did not appear with centrifugation. In the child, we observed immediate type reactions: nasal obstruction, headache and abdominal pain. The change in plasma protein concentration was caused by dilution and/or non specific absorption. LDL apheresis alone or combined with an HMG CoA reductase inhibitor is a safe technic, simple to

  11. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction. So, polymorphism in genes involved in folate metabolism may have a role in vascular disease. This study was designed to evaluate the relationship between methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

  12. Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in-vivo function of reductase and thioredoxin domains

    Directory of Open Access Journals (Sweden)

    Jouni eToivola

    2013-10-01

    Full Text Available Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC contains both reductase (NTRd and thioredoxin (TRXd domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive thioredoxin domain, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modelling of the 3-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protected pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for

  13. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Shahpiri, Azar

    2013-01-01

    The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer...... dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent...

  14. Methylenetetrahydrofolate reductase (MTHFR) deficiency presenting as a rash.

    LENUS (Irish Health Repository)

    Crushell, Ellen

    2012-09-01

    We report on the case of a 2-year-old girl recently diagnosed with Methylenetetrahydrofolate reductase (MTHFR) deficiency who originally presented in the neonatal period with a distinctive rash. At 11 weeks of age she developed seizures, she had acquired microcephaly and developmental delay. The rash deteriorated dramatically following commencement of phenobarbitone; both rash and seizures abated following empiric introduction of pyridoxine and folinic acid as treatment of possible vitamin responsive seizures. We postulate that phenobarbitone in combination with MTHFR deficiency may have caused her rash to deteriorate and subsequent folinic acid was helpful in treating the rash and preventing further acute neurological decline as commonly associated with this condition.

  15. Genomic Analysis of Circulating Cells: A Window into Atherosclerosis

    Science.gov (United States)

    Kang, Ju-Gyeong; Patino, Willmar D.; Matoba, Satoaki; Hwang, Paul M.

    2006-01-01

    Translational studies using genomic techniques in cardiovascular diseases are still in their infancy. Access to disease-associated cardiovascular tissues from patients has been a major impediment to progress in contrast to the diagnostic advances made by oncologists using gene expression on readily available tumor samples. Nonetheless, progress is being made for atherosclerosis by carefully designed experiments using diseased tissue or surrogate specimens. This review details the rationale and findings of a study using freshly isolated blood mononuclear cells from patients undergoing carotid endarterectomy due to atherosclerotic stenosis and from matched normal subjects. Using this cardiovascular tissue surrogate, the mRNA levels of the Finkel-Biskis-Jinkins osteosarcoma (FOS) gene in circulating monocytes were found to correlate with atherosclerosis severity in patients, and with HMG CoA reductase inhibitor (statin) therapy in normal subjects. The major finding of this investigation is discussed in relation to observations from other human atherosclerosis gene expression studies. These distinct studies converge to demonstrate the unequivocal importance of inflammation in atherosclerosis. Although the clinical utility of the specific findings remains open, the identification of similar genes by different investigations serves to validate their reports. They also provide us with insights into pathogenesis that may impact future translational applications. PMID:16781950

  16. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  17. A New Type of YumC-Like Ferredoxin (Flavodoxin) Reductase Is Involved in Ribonucleotide Reduction

    DEFF Research Database (Denmark)

    Chen, Jun; Shen, Jing; Solem, Christian

    2015-01-01

    . subtilis but that the addition of deoxynucleosides cannot compensate for the lethal phenotype displayed by the B. subtilis yumC knockout mutant. Ferredoxin (flavodoxin) reductase (FdR) is involved in many important reactions in both eukaryotes and prokaryotes, such as photosynthesis, nitrate reduction, etc. The recently...... ribonucleotide reductase, which represents the workhorse for the bioconversion of nucleotides to deoxynucleotides in many prokaryotes and eukaryotic pathogens under aerobic conditions. As the partner of the flavodoxin (NrdI), the key FdR is missing in the current model describing the class Ib system...

  18. Prevalence of methylenetetrahydrofolate reductase ( MTHFR ) and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase (MTHFR) and Cytosolic serine hydroxymethyltransferase (cSHMT) are enzymes involve in folate regulation in human. The C to T transition of the cSHMT and MTHFR genes at the 1420 as well as 677 nucleotides both carries TT genotype respectively. These enzymes have direct and ...

  19. Nitrite-reductase and peroxynitrite isomerization activities of Methanosarcina acetivorans protoglobin.

    Directory of Open Access Journals (Sweden)

    Paolo Ascenzi

    Full Text Available Within the globin superfamily, protoglobins (Pgb belong phylogenetically to the same cluster of two-domain globin-coupled sensors and single-domain sensor globins. Multiple functional roles have been postulated for Methanosarcina acetivorans Pgb (Ma-Pgb, since the detoxification of reactive nitrogen and oxygen species might co-exist with enzymatic activity(ies to facilitate the conversion of CO to methane. Here, the nitrite-reductase and peroxynitrite isomerization activities of the CysE20Ser mutant of Ma-Pgb (Ma-Pgb* are reported and analyzed in parallel with those of related heme-proteins. Kinetics of nitrite-reductase activity of ferrous Ma-Pgb* (Ma-Pgb*-Fe(II is biphasic and values of the second-order rate constant for the reduction of NO2- to NO and the concomitant formation of nitrosylated Ma-Pgb*-Fe(II (Ma-Pgb*-Fe(II-NO are k(app1= 9.6 ± 0.2 M(-1 s(-1 and k(app2 = 1.2 ± 0.1 M(-1 s(-1 (at pH 7.4 and 20 °C. The k(app1 and k(app2 values increase by about one order of magnitude for each pH unit decrease, between pH 8.3 and 6.2, indicating that the reaction requires one proton. On the other hand, kinetics of peroxynitrite isomerization catalyzed by ferric Ma-Pgb* (Ma-Pgb*-Fe(III is monophasic and values of the second order rate constant for peroxynitrite isomerization by Ma-Pgb*-Fe(III and of the first order rate constant for the spontaneous conversion of peroxynitrite to nitrate are h(app = 3.8 × 10(4 M(-1 s(-1 and h0 = 2.8 × 10(-1 s(-1 (at pH 7.4 and 20 °C. The pH-dependence of hon and h0 values reflects the acid-base equilibrium of peroxynitrite (pKa = 6.7 and 6.9, respectively; at 20 °C, indicating that HOONO is the species that reacts preferentially with the heme-Fe(III atom. These results highlight the potential role of Pgbs in the biosynthesis and scavenging of reactive nitrogen and oxygen species.

  20. Stimulatory interactions between human coronary smooth muscle cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Sara Paccosi

    Full Text Available Despite inflammatory and immune mechanisms participating to atherogenesis and dendritic cells (DCs driving immune and non-immune tissue injury response, the interactions between DCs and vascular smooth muscle cells (VSMCs possibly relevant to vascular pathology including atherogenesis are still unclear. To address this issue, immature DCs (iDCs generated from CD14+ cells isolated from healthy donors were matured either with cytokines (mDCs, or co-cultured (ccDCs with human coronary artery VSMCs (CASMCs using transwell chambers. Co-culture induced DC immunophenotypical and functional maturation similar to cytokines, as demonstrated by flow cytometry and mixed lymphocyte reaction. In turn, factors from mDCs and ccDCs induced CASMC migration. MCP-1 and TNFα, secreted from DCs, and IL-6 and MCP-1, secreted from CASMCs, were primarily involved. mDCs adhesion to CASMCs was enhanced by CASMC pre-treatment with IFNγ and TNFα ICAM-1 and VCAM-1 were involved, since the expression of specific mRNAs for these molecules increased and adhesion was inhibited by neutralizing antibodies to the counter-receptors CD11c and CD18. Adhesion was also inhibited by CASMC pre-treatment with the HMG-CoA-reductase inhibitor atorvastatin and the PPARγ agonist rosiglitazone, which suggests a further mechanism for the anti-inflammatory action of these drugs. Adhesion of DCs to VSMCs was shown also in vivo in rat carotid 7 to 21 days after crush and incision injury. The findings indicate that DCs and VSMCs can interact with reciprocal stimulation, possibly leading to perpetuate inflammation and vascular wall remodelling, and that the interaction is enhanced by a cytokine-rich inflammatory environment and down-regulated by HMGCoA-reductase inhibitors and PPARγ agonists.

  1. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    RBCs in physiological saline at normal Pco2 and pH. After initial loading of oxygenated RBCs with nitrite (partly oxidizing Hb to metHb), the nitrite is removed by three washes of the RBCs in nitrite-free physiological saline to enable the detection of RBC metHb reductase activity in the absence......Hb reductase activity in fish offsets their higher Hb autoxidation and higher likelihood of encountering elevated nitrite. Deoxygenation significantly raised the rates of RBC metHb reduction, and more so in rainbow trout than in carp. The temperature sensitivity of metHb reduction in rainbow trout RBCs...

  2. The differences in the incidence of diabetes mellitus and prediabetes according to the type of HMG-CoA reductase inhibitors prescribed in Korean patients.

    Science.gov (United States)

    Kim, Tong Min; Kim, Hyunah; Jeong, Yoo Jin; Baik, Sun Jung; Yang, So Jung; Lee, Seung-Hwan; Cho, Jae-Hyoung; Lee, Hyunyong; Yim, Hyeon Woo; Choi, In Young; Yoon, Kun-Ho; Kim, Hun-Sung

    2017-10-01

    Very few studies conducted in Korea have investigated the relationship between statins and the incidence of diabetes. Therefore, we analyzed the progression from normal blood glucose to prediabetes and then to diabetes mellitus (DM) according to the type, intensity, and dose of statin prescribed. Data of patients who were first prescribed statins between 2009 and 2011 were extracted from electronic medical records. Patients with normal blood glucose or prediabetes were observed for 4 years after initiation of statin therapy. A total of 2890 patients were included in our study and analyzed on the basis of the first statin they were prescribed. The incidence rate of DM in patients with prediabetes was 1.72 times that of patients with normal glucose levels (odds ratio = 1.72, 95% confidence interval = 1.41-2.10, P prediabetes, the incidence rate of prediabetes was significantly lower in patients prescribed pitavastatin (odds ratio = 0.62, 95% confidence interval = 0.40-0.96, P = .031) compared to that in patients prescribed atorvastatin. Regarding the progression from normal blood glucose or prediabetes to DM, there were no significant differences among all statins. Lower DM incidence in patients prescribed pitavastatin appears to be primarily because of the lower rate of progression from normal blood glucose to prediabetes. These findings indicate that avoiding statins because of DM risk is unjustified and that clinicians should prescribe statins from the appropriate potency group. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Identification of Multiple Soluble Fe(III Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    Directory of Open Access Journals (Sweden)

    Subrata Pal

    2014-01-01

    Full Text Available Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III and Cr(VI anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs, thioredoxin reductase (Trx, NADP(H-nitrite reductase (Ntr, and thioredoxin disulfide reductase (Tdr were determined to be responsible for Fe(III reductase activity. Amino acid sequence and three-dimensional (3D structural similarity analyses of the T. indiensis Fe(III reductases were carried out with Cr(VI reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI reduction as well.

  4. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene .... proteins with reversed coenzyme preference from NADPH to NADH ..... 399–404. Hasper A A, Visser J and de Graaff L H 2000 The Aspergillus.

  5. Reduction of azo dyes by flavin reductase from Citrobacter freundii A1

    Directory of Open Access Journals (Sweden)

    Mohd Firdaus Abdul-Wahab

    2012-12-01

    Full Text Available Citrobacter freundii A1 isolated from a sewage treatment facility was demonstrated to be able to effectively decolorize azo dyes as pure and mixed culture. This study reports on the investigation on the enzymatic systems involved. An assay performed suggested the possible involvement of flavin reductase (Fre as an azo reductase. A heterologouslyexpressed recombinant Fre from C. freundii A1 was used to investigate its involvement in the azo reduction process. Three model dyes were used, namely Acid Red 27 (AR27, Direct Blue 15 (DB15 and Reactive Black 5 (RB5. AR27 was found to be reduced the fastest by Fre, followed by RB5, and lastly DB15. Redox mediators nicotinamide adenine dinucleotide (NADH and riboflavin enhance the reduction, suggesting the redox activity of the enzyme. The rate and extent of reduction of the model dyes correlate well with the reduction potentials (Ep. The data presented here strongly suggest that Fre is one of the enzymes responsible for azo reduction in C. freundii A1, acting via an oxidation-reduction reaction.

  6. Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.

    Science.gov (United States)

    Willies, Simon; Isupov, Misha; Littlechild, Jennifer

    2010-09-01

    Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.

  7. Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA.

    Science.gov (United States)

    Weichler, Maria-Teresa; Kurteva-Yaneva, Nadya; Przybylski, Denise; Schuster, Judith; Müller, Roland H; Harms, Hauke; Rohwerder, Thore

    2015-07-01

    The recent discovery of a coenzyme B12-dependent acyl-coenzyme A (acyl-CoA) mutase isomerizing 3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in the mesophilic bacterium Aquincola tertiaricarbonis L108 (N. Yaneva, J. Schuster, F. Schäfer, V. Lede, D. Przybylski, T. Paproth, H. Harms, R. H. Müller, and T. Rohwerder, J Biol Chem 287:15502-15511, 2012, http://dx.doi.org/10.1074/jbc.M111.314690) could pave the way for a complete biosynthesis route to the building block chemical 2-hydroxyisobutyric acid from renewable carbon. However, the enzyme catalyzes only the conversion of the stereoisomer (S)-3-hydroxybutyryl-CoA at reasonable rates, which seriously hampers an efficient combination of mutase and well-established bacterial poly-(R)-3-hydroxybutyrate (PHB) overflow metabolism. Here, we characterize a new 2-hydroxyisobutyryl-CoA mutase found in the thermophilic knallgas bacterium Kyrpidia tusciae DSM 2912. Reconstituted mutase subunits revealed highest activity at 55°C. Surprisingly, already at 30°C, isomerization of (R)-3-hydroxybutyryl-CoA was about 7,000 times more efficient than with the mutase from strain L108. The most striking structural difference between the two mutases, likely determining stereospecificity, is a replacement of active-site residue Asp found in strain L108 at position 117 with Val in the enzyme from strain DSM 2912, resulting in a reversed polarity at this binding site. Overall sequence comparison indicates that both enzymes descended from different prokaryotic thermophilic methylmalonyl-CoA mutases. Concomitant expression of PHB enzymes delivering (R)-3-hydroxybutyryl-CoA (beta-ketothiolase PhaA and acetoacetyl-CoA reductase PhaB from Cupriavidus necator) with the new mutase in Escherichia coli JM109 and BL21 strains incubated on gluconic acid at 37°C led to the production of 2-hydroxyisobutyric acid at maximal titers of 0.7 mM. Measures to improve production in E. coli, such as coexpression of the chaperone MeaH and repression of

  8. Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases

    International Nuclear Information System (INIS)

    Andersson, S.; Russell, D.W.

    1990-01-01

    The microsomal enzyme steroid 5α-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5α-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5α-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5α-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5α-reductases

  9. Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase.

    Science.gov (United States)

    Chakraborty, Saumen; Reed, Julian; Ross, Matthew; Nilges, Mark J; Petrik, Igor D; Ghosh, Soumya; Hammes-Schiffer, Sharon; Sage, J Timothy; Zhang, Yong; Schulz, Charles E; Lu, Yi

    2014-02-24

    A major barrier to understanding the mechanism of nitric oxide reductases (NORs) is the lack of a selective probe of NO binding to the nonheme FeB center. By replacing the heme in a biosynthetic model of NORs, which structurally and functionally mimics NORs, with isostructural ZnPP, the electronic structure and functional properties of the FeB nitrosyl complex was probed. This approach allowed observation of the first S=3/2 nonheme {FeNO}(7) complex in a protein-based model system of NOR. Detailed spectroscopic and computational studies show that the electronic state of the {FeNO}(7) complex is best described as a high spin ferrous iron (S=2) antiferromagnetically coupled to an NO radical (S=1/2) [Fe(2+)-NO(.)]. The radical nature of the FeB -bound NO would facilitate N-N bond formation by radical coupling with the heme-bound NO. This finding, therefore, supports the proposed trans mechanism of NO reduction by NORs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol.

    Science.gov (United States)

    Smeriglio, Antonella; Giofrè, Salvatore V; Galati, Enza M; Monforte, Maria T; Cicero, Nicola; D'Angelo, Valeria; Grassi, Gianpaolo; Circosta, Clara

    2018-02-07

    Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important. The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications. Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes. Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro. A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions. The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors. The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity. These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  12. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities

    DEFF Research Database (Denmark)

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne

    2008-01-01

    nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation......Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour...... with hexanal content, and may be used as predictive tools. Overall, nitrite- and nitrate-reductase activities of Staphylococcus strains in nitrite-cured sausages were of limited importance regarding colour development, while in nitrate-cured sausages strains with higher nitrate reductase activity were crucial...

  13. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  14. Cloning and sequence of the human adrenodoxin reductase gene

    International Nuclear Information System (INIS)

    Lin, Dong; Shi, Y.; Miller, W.L.

    1990-01-01

    Adrenodoxin reductase is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. The authors cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G+C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of housekeeping genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon

  15. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  16. Brevetoxin-2, is a unique inhibitor of the C-terminal redox center of mammalian thioredoxin reductase-1.

    Science.gov (United States)

    Chen, Wei; Tuladhar, Anupama; Rolle, Shantelle; Lai, Yanhao; Rodriguez Del Rey, Freddy; Zavala, Cristian E; Liu, Yuan; Rein, Kathleen S

    2017-08-15

    Karenia brevis, the Florida red tide dinoflagellate produces a suite of neurotoxins known as the brevetoxins. The most abundant of the brevetoxins PbTx-2, was found to inhibit the thioredoxin-thioredoxin reductase system, whereas the PbTx-3 has no effect on this system. On the other hand, PbTx-2 activates the reduction of small disulfides such as 5,5'-dithio-bis-(2-nitrobenzoic acid) by thioredoxin reductase. PbTx-2 has an α, β-unsaturated aldehyde moiety which functions as an efficient electrophile and selenocysteine conjugates are readily formed. PbTx-2 blocks the inhibition of TrxR by the inhibitor curcumin, whereas curcumin blocks PbTx-2 activation of TrxR. It is proposed that the mechanism of inhibition of thioredoxin reduction is via the formation of a Michael adduct between selenocysteine and the α, β-unsaturated aldehyde moiety of PbTx-2. PbTx-2 had no effect on the rates of reactions catalyzed by related enzymes such as glutathione reductase, glutathione peroxidase or glutaredoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterization of human warfarin reductase

    OpenAIRE

    Sokolová, Simona

    2016-01-01

    Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Simona Sokolová Supervisor: PharmDr. Petra Malátková, Ph.D. Title of diploma thesis: Characterization of human warfarin reductase Warfarin is widely used anticoagulant drug. Considering the narrow therapeutic window of warfarin, it is important to fully understand its metabolism in human body. Oxidative, reductive and conjugation reactions are involved in warfarin metabolism. Howev...

  18. Expression, purification, crystallization and preliminary X-ray diffraction analysis of carbonyl reductase from Candida parapsilosis ATCC 7330

    International Nuclear Information System (INIS)

    Aggarwal, Nidhi; Mandal, P. K.; Gautham, Namasivayam; Chadha, Anju

    2013-01-01

    The expression, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies on C. parapsilosis carbonyl reductase are reported. The NAD(P)H-dependent carbonyl reductase from Candida parapsilosis ATCC 7330 catalyses the asymmetric reduction of ethyl 4-phenyl-2-oxobutanoate to ethyl (R)-4-phenyl-2-hydroxybutanoate, a precursor of angiotensin-converting enzyme inhibitors such as Cilazapril and Benazepril. The carbonyl reductase was expressed in Escherichia coli and purified by GST-affinity and size-exclusion chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to 1.86 Å resolution. The asymmetric unit contained two molecules of carbonyl reductase, with a solvent content of 48%. The structure was solved by molecular replacement using cinnamyl alcohol dehydrogenase from Saccharomyces cerevisiae as a search model

  19. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase.

    Science.gov (United States)

    Liew, Li Phing; Lim, Zun Yi; Cohen, Matan; Kong, Ziqing; Marjavaara, Lisette; Chabes, Andrei; Bell, Stephen D

    2016-11-01

    In many organisms, hydroxyurea (HU) inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan.

    Science.gov (United States)

    Liu, Xinyu; Walsh, Christopher T

    2009-09-15

    The fungal neurotoxin alpha-cyclopiazonic acid (CPA), a nanomolar inhibitor of Ca2+-ATPase, has a pentacyclic indole tetramic acid scaffold that arises from one molecule of tryptophan, acetyl-CoA, malonyl-CoA, and dimethylallyl pyrophosphate by consecutive action of three enzymes, CpaS, CpaD, and CpaO. CpaS is a hybrid, two module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) that makes and releases cyclo-acetoacetyl-L-tryptophan (cAATrp), the tetramic acid that serves as substrate for subsequent prenylation and oxidative cyclization to the five ring CPA scaffold. The NRPS module in CpaS has a predicted four-domain organization of condensation, adenylation, thiolation, and reductase* (C-A-T-R*), where R* lacks the critical Ser-Tyr-Lys catalytic triad of the short chain dehydrogenase/reductase (SDR) superfamily. By heterologous overproduction in Escherichia coli of the 56 kDa Aspergillus flavus CpaS TR* didomain and the single T and R* domains, we demonstrate that CpaS catalyzes a Dieckmann-type cyclization on the N-acetoacetyl-Trp intermediate bound in thioester linkage to the phosphopantetheinyl arm of the T domain to form and release cAATrp. This occurs without any participation of NAD(P)H, so R* does not function as a canonical SDR family member. Use of the T and R* domains in in trans assays enabled multiple turnovers and evaluation of specific mutants. Mutation of the D3803 residue in the R* domain, conserved in other fungal tetramate synthetases, abolished activity both in in trans and in cis (TR*) activity assays. It is likely that cyclization of beta-ketoacylaminoacyl-S-pantetheinyl intermediates to released tetramates represents a default cyclization/release route for redox-incompetent R* domains embedded in NRPS assembly lines.

  1. Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity.

    Science.gov (United States)

    Kato, A; Yasuko, H; Goto, H; Hollinshead, J; Nash, R J; Adachi, I

    2009-03-01

    Aldose reductase inhibitors have considerable potential for the treatment of diabetic complications, without increased risk of hypoglycemia. Search for components inhibiting aldose reductase led to the discovery of active compounds contained in Evodia rutaecarpa Bentham (Rutaceae), which is the one of the component of Kampo-herbal medicine. The hot water extract from the E. rutaecarpa was subjected to distribution or gel filtration chromatography to give an active compound, N2-(2-methylaminobenzoyl)tetrahydro-1H-pyrido[3,4-b]indol-1-one (rhetsinine). It inhibited aldose reductase with IC(50) values of 24.1 microM. Furthermore, rhetsinine inhibited sorbitol accumulation by 79.3% at 100 microM. These results suggested that the E. rutaecarpa derived component, rhetsinine, would be potentially useful in the treatment of diabetic complications.

  2. X-Ray crystal structure of GarR—tartronate semialdehyde reductase from Salmonella typhimurium

    OpenAIRE

    Osipiuk, J.; Zhou, M.; Moy, S.; Collart, F.; Joachimiak, A.

    2009-01-01

    Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of D-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related β-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determi...

  3. Effect of cystamine on rat tissue GSH level and glutathione reductase activity

    International Nuclear Information System (INIS)

    Kovarova, H.; Pulpanova, J.

    1979-01-01

    Reduced glutathione (GSH) level and glutathione reductase activity were determined by means of the spectrophotometric method in various rat tissues after i.p. administration of cystamine (50 mg/kg and 20 mg/kg). GSH amount dropped in the spleen and kidney at 10 and 20 min; following this interval, an increase of GSH level was observed in the liver at 20-30 min, in the spleen and kidney at 60 min after the treatment with a radioprotective cystamine dose (50 mg/kg). The changes in GSH level induced by a non-radioprotective cystamine dose (20 mg/kg) had an opposite tendency. The activity of glutathione reductase was decreased in all tissues studied. As to the mechanism of the radioprotective action, both the inactivation of glutathione reductase activity and the changes in GSH level seem to be the factors contributing to the radioprotective effect of cystamine by strengthening the cellular radioresistance. (orig.) 891 MG/orig. 892 RKD [de

  4. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Lan, Ethan I; Chuang, Derrick S; Shen, Claire R; Lee, Annabel M; Ro, Soo Y; Liao, James C

    2015-09-01

    Photosynthetic conversion of CO2 to chemicals using cyanobacteria is an attractive approach for direct recycling of CO2 to useful products. 3-Hydroxypropionic acid (3 HP) is a valuable chemical for the synthesis of polymers and serves as a precursor to many other chemicals such as acrylic acid. 3 HP is naturally produced through glycerol metabolism. However, cyanobacteria do not possess pathways for synthesizing glycerol and converting glycerol to 3 HP. Furthermore, the latter pathway requires coenzyme B12, or an oxygen sensitive, coenzyme B12-independent enzyme. These characteristics present major challenges for production of 3 HP using cyanobacteria. To overcome such difficulties, we constructed two alternative pathways in Synechococcus elongatus PCC 7942: a malonyl-CoA dependent pathway and a β-alanine dependent pathway. Expression of the malonyl-CoA dependent pathway genes (malonyl-CoA reductase and malonate semialdehyde reductase) enabled S. elongatus to synthesize 3 HP to a final titer of 665 mg/L. β-Alanine dependent pathway expressing S. elongatus produced 3H P to final titer of 186 mg/L. These results demonstrated the feasibility of converting CO2 into 3 HP using cyanobacteria. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Photoaffinity labeling of steroid 5 alpha-reductase of rat liver and prostate microsomes

    International Nuclear Information System (INIS)

    Liang, T.; Cheung, A.H.; Reynolds, G.F.; Rasmusson, G.H.

    1985-01-01

    21-Diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione (Diazo-MAPD) inhibits steroid 5 alpha-reductase in liver microsomes of female rats with a K/sub i/ value of 8.7 +/- 1.7 nM, and the inhibition is competitive with testosterone. It also inhibits the binding of a 5 alpha-reductase inhibitor, [ 3 H] 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([ 3 H]4-MA), to the enzyme in liver microsomes. The inhibition of 5 alpha-reductase activity and of inhibitor binding activity by diazo-MAPD becomes irreversible upon UV irradiation. [1,2- 3 H]Diazo-MAPD binds to a single high affinity site in liver microsomes of female rats, and this binding requires NADPH. Without UV irradiation, this binding is reversible, and it becomes irreversible upon UV irradiation. Both the initial reversible binding and the subsequent irreversible conjugation after UV irradiation are inhibited by inhibitors (diazo-MAPD and 4-MA) and substrates (progesterone and testosterone) of 5 alpha-reductase, but they are not inhibited by 5 alpha-reduced steroids. Photoaffinity labeled liver microsomes of female rats were solubilized and fractionated by high performance gel filtration. The radioactive conjugate eluted in one major peak at Mr 50,000

  6. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  7. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  8. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... in prostate cancer patients: a potential factor implicated ... reductase alpha polypeptides 1 and 2 in a set of 601 prostate cancer patients from four ..... tion in the key androgen-regulating genes androgen receptor, cytochrome ...

  9. Medication reconciliation in acute care: ensuring an accurate drug regimen on admission and discharge.

    Science.gov (United States)

    Rodehaver, Claire; Fearing, Deb

    2005-07-01

    Several factors contribute to the potential for patient confusion regarding his or her medication regimen, including multiple names for a single drug and formulary variations when the patient receives medications from more than one pharmacy. A 68-year-old woman was discharged from the hospital on a HMG-CoA reductase inhibitor (statin) and resumed her home statin. Eleven days later she returned to the hospital with a diagnosis of severe rhabdomyolysis due to statin overdose. IMPLEMENTING SOLUTIONS: Miami Valley Hospital, Dayton, Ohio, implemented a reconciliation process and order form at admission and discharge to reduce the likelihood that this miscommunication would recur. Initial efforts were trialed on a 44-bed orthopedic unit, with spread of the initiative to the cardiac units and finally to the remaining 22 nursing units. The team successfully implemented initiation of the order sheet, yet audits indicated the need for improvement in reconciling the medications within 24 hours of admission and in reconciling the home medications at the point of discharge. Successful implementation of the order sheet to drive reconciliation takes communication, perseverance, and a multidisciplinary team approach.

  10. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    International Nuclear Information System (INIS)

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-01

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL

  11. Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5

    Science.gov (United States)

    Zhang, Duanwu; Tomisato, Wataru; Su, Lijing; Sun, Lei; Choi, Jin Huk; Zhang, Zhao; Wang, Kuan-wen; Zhan, Xiaoming; Choi, Mihwa; Li, Xiaohong; Tang, Miao; Castro-Perez, Jose M.; Hildebrand, Sara; Murray, Anne R.; Moresco, Eva Marie Y.; Beutler, Bruce

    2017-01-01

    The recessive N-ethyl-N-nitrosourea–induced phenotype toku is characterized by delayed hair growth, progressive hair loss, and excessive accumulation of dermal cholesterol, triglycerides, and ceramides. The toku phenotype was attributed to a null allele of Gk5, encoding glycerol kinase 5 (GK5), a skin-specific kinase expressed predominantly in sebaceous glands. GK5 formed a complex with the sterol regulatory element-binding proteins (SREBPs) through their C-terminal regulatory domains, inhibiting SREBP processing and activation. In Gk5toku/toku mice, transcriptionally active SREBPs accumulated in the skin, but not in the liver; they were localized to the nucleus and led to elevated lipid synthesis and subsequent hair growth defects. Similar defective hair growth was observed in kinase-inactive GK5 mutant mice. Hair growth defects of homozygous toku mice were partially rescued by treatment with the HMG-CoA reductase inhibitor simvastatin. GK5 exists as part of a skin-specific regulatory mechanism for cholesterol biosynthesis, independent of cholesterol regulation elsewhere in the body. PMID:28607088

  12. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  13. Research progress on the roles of aldose reductase in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Hong-Zhe Li

    2015-07-01

    Full Text Available Aldose reductase(ARbelonging to nicotinamide-adenine dinucleotide phosphate(NADPH-dependent aldehyde-keto reductase superfamily, is the key rate-limiting enzyme in the polyol pathway which plays an important role in the body's high-sugar metabolism. AR is widely present in the kidneys, blood vessels, lens, retina, heart, skeletal muscle and other tissues and organs, converts glucose to sorbitol which easy permeability of cell membranes, cause cell swelling, degeneration, necrosis, and have a close relationship with the development of chronic complications of diabetes mellitus. Diabetic retinopathy(DRis a multifactorial disease, the exact cause is currently unknown, but polyol pathway has been demonstrated to play an important role in the pathogenesis of DR. Clinical risk factors such as blood sugar control, blood pressure and other treatments for DR only play a part effect of remission or invalid, if we can find out DR genes associated with the disease, this will contribute to a better understanding of the pathological mechanisms and contribute to the development of new treatments and drugs. The current research progress of AR, AR gene polymorphism, Aldose reductase inhibitors to DR was reviewed in this article.

  14. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  15. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  16. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr). Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and ...

  17. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    Science.gov (United States)

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  18. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism.

    Science.gov (United States)

    Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris

    2015-05-01

    Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Investigations on the isoprenoid biosynthesis in the green alga Scenedesmus obliquus by using the 13C-labelling technique

    International Nuclear Information System (INIS)

    Schwender, J.

    1995-01-01

    The biosynthesis of several prenyllipids (isoprenoid lipids) of the green alga Scendesmus obliquus was investigated. The aim was to verify, whether the biosynthesis of isopentenyl diphosphate (IPP) in Scenedesmus proceeds according to the classical acetate mevalonate pathway or to an alternative pathway. An alternative pathway for IPP formation has recently been detected in some eubacteria by the group of Prof. M. Rohmer. Some inhibition tests were performed with mevinolin, a specific inhibitor of HMG-CoA reductase which yields mevalonic acid. Mevinolin should block the biosynthesis of such isoprenoids which are formed via the acetate mevalonate pathway. Scenedesmus was grown heterotrophically on 13 C-labelled glucose or acetate. After isolation and purification of 13 C-labelled phytol (side chains of chlorophylls), β-carotene, lutein, plastoquinone-9 and three sterol compounds, the enrichment of 13 C at different carbon-positions of the labelled compounds was determined. This was achieved by the 13 C-NMR technique in cooperation with Miriam Seemann of the group of Prof. M. Rohmer in Mullhouse/France. (orig.) [de

  20. Skin cancer associated with commonly prescribed drugs: tumor necrosis factor alpha inhibitors (TNF-αIs), angiotensin-receptor blockers (ARBs), phosphodiesterase type 5 inhibitors (PDE5Is) and statins -weighing the evidence.

    Science.gov (United States)

    Nardone, Beatrice; Orrell, Kelsey A; Vakharia, Paras P; West, Dennis P

    2018-02-01

    Skin cancers, including both malignant melanoma (MM) and nonmelanoma skin cancer (NMSC), are the most commonly diagnosed cancers in the US. The incidence of both MM and NMSC continues to rise. Areas covered: Current evidence for an association between four of the most commonly prescribed classes of drugs in the U.S. and risk for MM and NMSC is reported. Medline was searched (January 2000 to May 2017) for each drug in the classes and for 'basal cell carcinoma', 'squamous cell carcinoma', 'non-melanoma skin cancer', 'skin cancer' and 'melanoma'. Skin cancer risk information was reported for: tumor necrosis factor alpha inhibitors (TNF-αIs), angiotensin-receptor blockers (ARBs), phosphodiesterase type 5 inhibitors (PDE5Is) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)-reductase inhibitors (statins). Expert opinion: Since skin cancer risk is associated with all four classes of these commonly prescribed drugs that represent nearly 20% of the Top 100 drugs in the U.S., these important findings warrant enhanced education, especially for prescribers and those patients at high risk for skin cancer.

  1. Hypothalamic digoxin, hemispheric chemical dominance, and spirituality.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-03-01

    The isoprenoid pathway was assessed in atheistic and spiritually inclined individuals. The pathway was also assessed in individuals with differing hemispheric dominance to assess whether hemispheric dominance has a correlation with spiritual and atheistic tendency. HMG CoA reductase activity, serum digoxin, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, and tyrosine/tryptophan catabolic patterns were assessed in spiritual/atheistic individuals and in those differing hemispheric dominance. In spiritually-inclined individuals, there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in spiritually-inclined individuals correlated with right hemispheric chemical dominance. In atheistic individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolities (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in atheistic individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to spirituality or atheism.

  2. Ascorbic acid supplementation partially prevents the delayed reproductive development in juvenile male rats exposed to rosuvastatin since prepuberty.

    Science.gov (United States)

    Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Sanabria, Marciana; Dias, Ana Flávia Mota Gonçalves; Silva, Patrícia Villela E; Martins Junior, Airton da Cunha; Barbosa Junior, Fernando; Kempinas, Wilma De Grava

    2017-10-01

    Dyslipidemias are occurring earlier in the population due to the increase of obesity and bad eating habits. Rosuvastatin inhibits the enzyme HMG-CoA reductase, decreasing total cholesterol. Ascorbic acid is an important antioxidant compound for male reproductive system. This study aimed to evaluate whether ascorbic acid supplementation may prevent the reproductive damage provoked by rosuvastatin administration at prepuberty. Male pups were distributed into six experimental groups that received saline solution 0.9%, 3 or 10mg/kg/day of rosuvastatin, 150mg/day of ascorbic acid, or 150mg/day of ascorbic acid associated with 3 or 10mg/kg/day of rosuvastatin from post-natal day (PND) 23 until PND53. Rosuvastatin-treated groups showed delayed puberty installation, androgen depletion and impairment on testicular and epididymal morphology. Ascorbic acid partially prevented these reproductive damages. In conclusion, rosuvastatin exposure is a probable risk to reproductive development and ascorbic acid supplementation may be useful to prevent the reproductive impairment of rosuvastatin exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Assessment of Monacolin in the Fermented Products Using Monascus purpureus FTC5391

    Directory of Open Access Journals (Sweden)

    Zahra Ajdari

    2011-01-01

    Full Text Available Monacolins, as natural statins, form a class of fungal secondary metabolites and act as the specific inhibitors of HMG-CoA reductase. The interest in using the fermented products as the natural source of monacolins, instead of statin drugs, is increasing enormously with its increasing demand. In this study, the fermented products were produced by Monascus purpureus FTC5391 using submerged and solid state fermentations. Two commercial Monascus-fermented products were also evaluated for comparison. Improved methods of monacolins extraction and identification were developed for the assessment of monacolins in the fermented products. Methanol and ethanol were found to be the most favorable solvents for monacolins extraction due to their ability to extract higher amount of monacolin K and higher numbers of monacolin derivatives. Problem related to false-positive results during monacolins identification was solved by adding monacolin lactonization step in the assessment method. Using this improved method, monacolin derivatives were not detected in all Monascus-fermented products tested in this study, suggesting that their hypocholesterolemic effects may be due to other compounds other than monacolins.

  4. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-01-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP + reductase. Ferredoxin-NADP + reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source

  5. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Alessandro S.; Ferrarezi, Thiago [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil); Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A. [Facultad de Ciencias Bioquímicas y Farmacéuticas, Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario (Argentina); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil)

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  6. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  7. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    African Journals Online (AJOL)

    Aldose Reductase Inhibitory and Antiglycation Activities of Four Medicinal Plant Standardized Extracts and Their Main Constituents for the Prevention of ... levels in galactosemic condition by using reverse phase high pressure liquid chromatography (RP-HPLC) and gas liquid chromatography (GLC) was determined.

  8. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    Science.gov (United States)

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  10. A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline.

    Science.gov (United States)

    Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim

    2002-10-01

    A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.

  11. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    Science.gov (United States)

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  12. Purification of a NAD(P) reductase-like protein from the thermogenic appendix of the Sauromatum guttatum inflorescence.

    Science.gov (United States)

    Skubatz, Hanna; Howald, William N

    2013-03-01

    A NAD(P) reductase-like protein with a molecular mass of 34.146 ± 34 Da was purified to homogeneity from the appendix of the inflorescence of the Sauromatum guttatum. On-line liquid chromatography/electrospray ionization-mass spectrometry was used to isolate and quantify the protein. For the identification of the protein, liquid chromatography/electrospray ionization-tandem mass spectrometry analysis of tryptic digests of the protein was carried out. The acquired mass spectra were used for database searching, which led to the identification of a single tryptic peptide. The 12 amino acid tryptic peptide (FLPSEFGNDVDR) was found to be identical to amino acid residues at the positions 108-120 of isoflavone reductase in the Arabidopsis genome. A BLAST search identified this sequence region as unique and specific to a class of NAD(P)-dependent reductases involved in phenylpropanoid biosynthesis. Edman degradation revealed that the protein was N-terminally blocked. The amount of the protein (termed RL, NAD(P) reductase-like protein) increased 60-fold from D-4 (4 days before inflorescence-opening, designated as D-day) to D-Day, and declined the following day, when heat-production ceased. When salicylic acid, the endogenous trigger of heat-production in the Sauromatum appendix, was applied to premature appendices, a fivefold decrease in the amount of RL was detected in the treated section relative to the non-treated section. About 40 % of RL was found in the cytoplasm. Another 30 % was detected in Percoll-purified mitochondria and the rest, about 30 % was associated with a low speed centrifugation pellet due to nuclei and amyloplast localization. RL was also found in other thermogenic plants and detected in Arabidopsis leaves. The function of RL in thermogenic and non-thermogenic plants requires further investigation.

  13. Use of 5-alpha-reductase inhibitors did not increase the risk of cardiovascular diseases in patients with benign prostate hyperplasia: a five-year follow-up study.

    Directory of Open Access Journals (Sweden)

    Teng-Fu Hsieh

    Full Text Available This nationwide population-based study investigated the risk of cardiovascular diseases after 5-alpha-reductase inhibitor therapy for benign prostate hyperplasia (BPH using the National Health Insurance Research Database (NHIRD in Taiwan.In total, 1,486 adult patients newly diagnosed with BPH and who used 5-alpha-reductase inhibitors were recruited as the study cohort, along with 9,995 subjects who did not use 5-alpha-reductase inhibitors as a comparison cohort from 2003 to 2008. Each patient was monitored for 5 years, and those who subsequently had cardiovascular diseases were identified. A Cox proportional hazards model was used to compare the risk of cardiovascular diseases between the study and comparison cohorts after adjusting for possible confounding risk factors.The patients who received 5-alpha-reductase inhibitor therapy had a lower cumulative rate of cardiovascular diseases than those who did not receive 5-alpha-reductase inhibitor therapy during the 5-year follow-up period (8.4% vs. 11.2%, P=0.003. In subgroup analysis, the 5-year cardiovascular event hazard ratio (HR was lower among the patients older than 65 years with 91 to 365 cumulative defined daily dose (cDDD 5-alpha-reductase inhibitor use (HR=0.63, 95% confidence interval (CI 0.42 to 0.92; P=0.018, however there was no difference among the patients with 28 to 90 and more than 365 cDDD 5-alpha-reductase inhibitor use (HR=1.14, 95% CI 0.77 to 1.68; P=0.518 and HR=0.83, 95% CI 0.57 to 1.20; P=0.310, respectively.5-alpha-reductase inhibitor therapy did not increase the risk of cardiovascular events in the BPH patients in 5 years of follow-up. Further mechanistic research is needed.

  14. Mixed protocols: Multiple ratios of FSH and LH bioactivity using highly purified, human-derived FSH (BRAVELLE and highly purified hMG (MENOPUR are unaltered by mixing together in the same syringe

    Directory of Open Access Journals (Sweden)

    Raike Elizabeth

    2005-11-01

    Full Text Available Abstract Background The use of mixed or blended protocols, that utilize both FSH and hMG, for controlled ovarian hyperstimulation is increasing in use. To reduce the number of injections a patient must administer, many physicians instruct their patients to mix their FSH and hMG together to be given as a single injection. Therefore, the goal of this study was to definitively determine if the FSH and LH bioactivities of highly purified, human-derived FSH (Bravelle(R and highly purified hMG (Menopur(R were altered by reconstituting in 0.9% saline and mixing in the same syringe. Methods Bravelle(R and Menopur(R were reconstituted in 0.9% saline and mixed in a Becton Dickinson plastic syringe. The FSH and LH bioactivities of the products were determined after injecting female and male rats, respectively, with Bravelle(R, Menopur(R, or a mixture of Bravelle(R and Menopur(R. Ratios of FSH:LH activity tested were 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1 vial Bravelle(R: 3 vials of Menopur(R. Results There were no statistically significant changes in either FSH or LH bioactivity that occurred after mixing Bravelle(R with Menopur(R in the same syringe. The theoretical vs. actual FSH bioactivity for Bravelle(R and Menopur(R were 75 vs. 76.58 IU/mL and 75 vs. 76.0 IU/mL, respectively. For the 3 ratios of FSH:LH activity tested, 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1 vial Bravelle(R: 3 vials of Menopur(R tested, the theoretical vs. actual FSH bioactivities were 150 vs. 156.86 IU/mL, 300 vs. 308.69 IU/mL and 300 vs. 306.58 IU/mL, respectively. The theoretical vs. actual LH bioactivity for Menopur(R in the above mentioned ratios tested were 75 vs. 77.50 IU/mL. For the 3 ratios of FSH:LH activity tested, 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1

  15. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  16. Statins Promote Long-Term Recovery after Ischemic Stroke by Reconnecting Noradrenergic Neuronal Circuitry

    Directory of Open Access Journals (Sweden)

    Kyoung Joo Cho

    2015-01-01

    Full Text Available Inhibitors of HMG-CoA reductase (statins, widely used to lower cholesterol in coronary heart and vascular disease, are effective drugs in reducing the risk of stroke and improving its outcome in the long term. After ischemic stroke, cardiac autonomic dysfunction and psychological problems are common complications related to deficits in the noradrenergic (NA system. This study investigated the effects of statins on the recovery of NA neuron circuitry and its function after transient focal cerebral ischemia (tFCI. Using the wheat germ agglutinin (WGA transgene technique combined with the recombinant adenoviral vector system, NA-specific neuronal pathways were labeled, and were identified in the locus coeruleus (LC, where NA neurons originate. NA circuitry in the atorvastatin-treated group recovered faster than in the vehicle-treated group. The damaged NA circuitry was partly reorganized with the gradual recovery of autonomic dysfunction and neurobehavioral deficit. Newly proliferated cells might contribute to reorganizing NA neurons and lead anatomic and functional recovery of NA neurons. Statins may be implicated to play facilitating roles in the recovery of the NA neuron and its function.

  17. Hypothalamic digoxin, hemispheric chemical dominance, and creativity.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The human hypothalamus produces an endogenous membrane Na(+)-K+ ATPase inhibitor, digoxin, which regulates neuronal transmission. The digoxin status and neurotransmitter patterns were studied in creative and non-creative individuals, as well as in individuals with differing hemispheric dominance, in order to find out the role of cerebral dominance in this respect. The activity of HMG CoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in creative/non-creative individuals, and in individuals with differing hemispheric dominance. In creative individuals there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in creative individuals correlated with right hemispheric dominance. In non-creative individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in non-creative individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to creative tendency.

  18. Crystallization of purple nitrous oxide reductase from Pseudomonas stutzeri

    International Nuclear Information System (INIS)

    Pomowski, Anja; Zumft, Walter G.; Kroneck, Peter M. H.; Einsle, Oliver

    2010-01-01

    The physiologically active form of nitrous oxide reductase was isolated and crystallized under strict exclusion of dioxygen and diffraction data were collected from crystals belonging to two different space groups. Nitrous oxide reductase (N 2 OR) from Pseudomonas stutzeri catalyzes the final step in denitrification: the two-electron reduction of nitrous oxide to molecular dinitrogen. Crystals of the enzyme were grown under strict exclusion of dioxygen by sitting-drop vapour diffusion using 2R,3R-butanediol as a cryoprotectant. N 2 OR crystallized in either space group P1 or P6 5 . Interestingly, the key determinant for the resulting space group was the crystallization temperature. Crystals belonging to space group P1 contained four 130 kDa dimers in the asymmetric unit, while crystals belonging to space group P6 5 contained a single dimer in the asymmetric unit. Diffraction data were collected to resolutions better than 2 Å

  19. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    Faris Azzouni

    2012-01-01

    Full Text Available Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family.

  20. Overview of Catalytic Properties of Fungal Xylose Reductases and Molecular Engineering Approaches for Improved Xylose Utilisation in Yeast

    Directory of Open Access Journals (Sweden)

    Sk Amir Hossain

    2018-03-01

    Full Text Available Background and Objective: Xylose reductases belong to the aldo-keto reductase family of enzymes, which catalyse the conversion of xylose to xylitol. Yeast xylose reductases have been intensively studied in the last two decades due to their significance in biotechnological production of ethanol and xylitol from xylose. Due to its GRAS status and pronounced tolerance to harsh conditions, Saccharomyces cerevisiae is the ideal organism for industrial production of both xylitol and ethanol. However, Saccharomyces cerevisiae is unable to use xylose as the sole carbon source due to the lack of xylose specific transporters and insufficient activity of metabolic pathways for xylose utilisation. The aim of this paper is to give an overview of attempts in increasing biotechnological potential of xylose reductases and to highlight the prospective of this application. Results and Conclusion: In order to create strains with improved xylose utilization, different approaches were attempted including simultaneous overexpression of xylitol dehydrogenase, xylose reductase and pentose phosphate pathway enzymes, heterologous expression of putative xylose transporters or heterologous expression of genes coding for enzymes included in the xylose metabolism, respectively. Furthermore, number of attempts to genetically modify different xylose reductases is increasing. This review presents current knowledge about yeast xylose reductases and the different approaches applied in order to improve xylose metabolism in yeast.Conflict of interest: The authors declare no conflict of interest.

  1. A multidisciplinary program for achieving lipid goals in chronic hemodialysis patients

    Directory of Open Access Journals (Sweden)

    McMillan Robichaud J

    2002-11-01

    Full Text Available Abstract Background There is little information on how target lipid levels can be achieved in end stage renal disease (ESRD patients in a systematic, multidisciplinary fashion. Methods We retrospectively reviewed a pharmacist-directed hyperlipidemia management program for chronic hemodialysis (HD patients. All 26 adult patients on chronic HD at a tertiary care medical facility were entered into the program. A clinical pharmacist was responsible for laboratory monitoring, patient counseling, and the initiation and dosage adjustment of an appropriate 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA reductase inhibitor (statin using a dosing algorithm and monitoring guidelines. The low-density lipoprotein (LDL cholesterol goal was ≤ 100 mg/dl. A renal dietitian provided nutrition counseling and the nephrologist was notified of potential or existing drug interactions or adverse drug reactions (ADRs. Patients received a flyer containing lipid panel results to encourage compliance. Data was collected at program initiation and for 6 months thereafter. Results At the start of the program, 58% of patients were at target LDL cholesterol. At 6 months, 88% had achieved target LDL (p = 0.015. Mean LDL cholesterol decreased from 96 ± 5 to 80 ± 3 mg/dl (p Conclusions Our findings demonstrate both feasibility and efficacy of a multidisciplinary approach in management of hyperlipidemia in HD patients.

  2. The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes.

    Science.gov (United States)

    Grissa, Ibtissem; Bidard, Frédérique; Grognet, Pierre; Grossetete, Sandrine; Silar, Philippe

    2010-09-01

    Reactive Oxygen Species (ROS) are involved in plant biomass degradation by fungi and development of fungal structures. While the ROS-generating NADPH oxidases from filamentous fungi are under strong scrutiny, much less is known about the related integral Membrane (or Ferric) Reductases (IMRs). Here, we present a survey of these enzymes in 29 fungal genomes covering the entire available range of fungal diversity. IMRs are present in all fungal genomes. They can be classified into at least 24 families, underscoring the high diversity of these enzymes. Some are differentially regulated during colony or fruiting body development, as well as by the nature of the carbon source of the growth medium. Importantly, functional characterization of IMRs has been made on proteins belonging to only two families, while nothing or very little is known about the proteins of the other 22 families. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Boles Eckhard

    2006-04-01

    Full Text Available Abstract Background Fermentation of lignocellulosic biomass is an attractive alternative for the production of bioethanol. Traditionally, the yeast Saccharomyces cerevisiae is used in industrial ethanol fermentations. However, S. cerevisiae is naturally not able to ferment the pentose sugars D-xylose and L-arabinose, which are present in high amounts in lignocellulosic raw materials. Results We describe the engineering of laboratory and industrial S. cerevisiae strains to co-ferment the pentose sugars D-xylose and L-arabinose. Introduction of a fungal xylose and a bacterial arabinose pathway resulted in strains able to grow on both pentose sugars. Introduction of a xylose pathway into an arabinose-fermenting laboratory strain resulted in nearly complete conversion of arabinose into arabitol due to the L-arabinose reductase activity of the xylose reductase. The industrial strain displayed lower arabitol yield and increased ethanol yield from xylose and arabinose. Conclusion Our work demonstrates simultaneous co-utilization of xylose and arabinose in recombinant strains of S. cerevisiae. In addition, the co-utilization of arabinose together with xylose significantly reduced formation of the by-product xylitol, which contributed to improved ethanol production.

  4. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    Science.gov (United States)

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  5. DNA damage induction of ribonucleotide reductase.

    OpenAIRE

    Elledge, S J; Davis, R W

    1989-01-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidas...

  6. Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids.

    Science.gov (United States)

    Liang, T; Liao, S

    1992-01-01

    Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells. PMID:1637346

  7. Role of aldose reductase C-106T polymorphism among diabetic Egyptian patients with different microvascular complications

    Directory of Open Access Journals (Sweden)

    Nermine Hossam Zakaria

    2014-04-01

    Full Text Available The aldose reductase pathway proves that elevated blood glucose promotes cellular dysfunction. The polyol pathway converts excess intracellular glucose into alcohols via activity of the aldose reductase. This enzyme catalyzes the conversion of glucose to sorbitol which triggers variety of intracellular changes in the tissues. Among diabetes, activity is drastically increased in association with three main consequences inside the cells. The aim of this study was to detect the association of the C-106 T polymorphism of the aldose reductase gene and its frequency among a sample of 150 Egyptian adults with type 2 diabetic patients having diabetic microvascular. The detection of the aldose reductase C-106 T polymorphism gene was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. The genotype distribution of the C-106 T polymorphism showed that CC genotype was statistically significantly higher among patients with retinopathy compared to nephropathy. Patients with nephropathy had significant association with the TT genotype when compared with diabetic retinopathy patients. Follow up study after the genotype detection among recently diagnosed diabetic patients in order to give a prophylactic aldose reductase inhibitors; studying the microvascular complications and its relation to the genotype polymorphisms. The study may include multiple gene polymorphisms to make the relation between the gene and the occurrence of these complications more evident.

  8. Isoprostane 8-epi-PGF2alpha is frequently increased in patients with muscle pain and/or CK-elevation after HMG-Co-enzyme-A-reductase inhibitor therapy.

    Science.gov (United States)

    Sinzinger, H; Lupattelli, G; Chehne, F; Oguogho, A; Furberg, C D

    2001-08-01

    Muscle pains with or without CK-elevation are among the most frequently observed side-effects in patients with hyperlipoproteinemia on various statins. The pathophysiological background, however, remains obscure. We examined isoprostane 8-epi-PGF2alpha, a marker of in-vivo oxidation injury, in plasma, serum and urine in these patients at baseline, when muscle problems manifested and different time intervals after withdrawing the respective statin. A healthy control group and a group of untreated patients with hyperlipoproteinemia were run as controls. The majority of patients with muscular side-effects show elevated 8-epi-PGF2alpha in plasma and urine, whereas serum values were elevated only to a lesser extent. Stopping statin therapy or successfully changing to another member of this family of compounds resulted in a normalization of the values in all patients. These findings indicate a significant involvement of oxidative injury in the muscular side-effects of statins in patients suffering from hyperlipoproteinemia.

  9. Rosuvastatin reduces neointima formation in a rat model of balloon injury

    Directory of Open Access Journals (Sweden)

    Preusch MR

    2010-11-01

    Full Text Available Abstract Background Processes of restenosis, following arterial injury, are complex involving different cell types producing various cytokines and enzymes. Among those enzymes, smooth muscle cell-derived matrix metalloproteinases (MMPs are thought to take part in cell migration, degrading of extracellular matrix, and neointima formation. MMP-9, also known as gelatinase B, is expressed immediately after vascular injury and its expression and activity can be inhibited by statins. Using an established in vivo model of vascular injury, we investigated the effect of the HMG-CoA reductase inhibitor rosuvastatin on MMP-9 expression and neointima formation. Materials and methods 14-week old male Sprague Dawley rats underwent balloon injury of the common carotid artery. Half of the animals received rosuvastatin (20 mg/kg body weight/day via oral gavage, beginning 3 days prior to injury. Gelatinase activity and neointima formation were analyzed 3 days and 14 days after balloon injury, respectively. 14 days after vascular injury, proliferative activity was assessed by staining for Ki67. Results After 14 days, animals in the rosuvastatin group showed a decrease in total neointima formation (0.194 ± 0.01 mm2 versus 0.124 ± 0.02 mm2, p Conclusions Rosuvastatin attenuates neointima formation without affecting early MMP-9 activity in a rat model of vascular injury.

  10. A Rational Approach to Identify Inhibitors of Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase

    Czech Academy of Sciences Publication Activity Database

    Chhabria, M. T.; Parmar, K. B.; Brahmkshatriya, Pathik

    2013-01-01

    Roč. 19, č. 21 (2013), s. 3878-3883 ISSN 1381-6128 Institutional support: RVO:61388963 Keywords : mycobacterium tuberculosis * enoyl acyl carrier protein reductase * pharmacophore modeling * molecular docking * binding interactions Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.288, year: 2013

  11. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    International Nuclear Information System (INIS)

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    The NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra was expressed, purified, and crystallized and X-ray diffraction data of this crystal were collected to 2.2 Å resolution. (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P4 1 2 1 2, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%

  12. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions.

    Science.gov (United States)

    Kurakov, A V; Nosikov, A N; Skrynnikova, E V; L'vov, N P

    2000-08-01

    The fungus Fusarium oxysporum 11dn1 was found to be able to grow and produce nitrous oxide on nitrate-containing medium in anaerobic conditions. The rate of nitrous oxide formation was three to six orders of magnitude lower than the rates of molecular nitrogen production by common denitrifying bacteria. Acetylene and ammonia did not affect the release of nitrous oxide release. It was shown that under anaerobic conditions fast increase of nitrate reductase activity occurred, caused by the synthesis of enzyme de novo and protein dephosphorylation. Reverse transfer of the mycelium to aerobic conditions led to a decline in nitrate reductase activity and stopped nitrous oxide production. The presence of two nitrate reductases was shown, which differed in molecular mass, location, temperature optima, and activity in nitrate- and ammonium-containing media. Two enzymes represent assimilatory and dissimilatory nitrate reductases, which are active in aerobic and anaerobic conditions, respectively.

  13. Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis.

    Science.gov (United States)

    Hidalgo, A R; Akond, M A; Kita, K; Kataoka, M; Shimizu, S

    2001-12-01

    Two conjugated polyketone reductases (CPRs) were isolated from Candida parapsilosis IFO 0708. The primary structures of CPRs (C1 and C2) were analyzed by amino acid sequencing. The amino acid sequences of both enzymes had high similarity to those of several proteins of the aldo-keto-reductase (AKR) superfamily. However, several amino acid residues in the putative active sites of AKRs were not conserved in CPRs-C1 and -C2.

  14. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  15. A case of severe methylenetetrahydrofolate reductase deficiency presenting as neonatal encephalopathy, seizures, microcephaly and central hypoventilation

    NARCIS (Netherlands)

    Balasubramaniam, S.; Salomons, G.S.; Blom, H.J.

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme in the remethylation of homocysteine to methionine. S-adenosylmethionine, formed from methionine and adenosine triphosphate, is the methyl donor in crucial reactions for brain development and function. MTHFR deficiency is the

  16. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats.

    Directory of Open Access Journals (Sweden)

    Elnaz Karimian Azari

    Full Text Available PPAR-α plays a key role in lipid metabolism; it enhances fatty acid oxidation (FAO and ketogenesis. Pharmacological PPAR-α activation improves insulin sensitivity and reduces food intake, but its mechanisms of action remain unknown. We here report that intraperitoneal (IP administration of the PPAR-α agonist Wy-14643 (40 mg/kg BW reduced food intake in adult male rats fed a high-fat diet (HFD, 49% of the energy mainly through an increase in the latency to eat after injection, and without inducing a conditioned taste avoidance. Also, IP administered Wy-14643 caused an acute (the first 60 min decrease in the respiratory quotient (RQ and an increase in hepatic portal vein β-hydroxybutyrate level (at 35 min without affecting plasma non-esterified fatty acids. Given the known stimulatory effect of PPAR-α on FAO and ketogenesis, we measured the protein expression level of carnitine palmitoyltransferase-1 (CPT 1A and mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMG-CoAS2, two key enzymes for FAO and ketogenesis, respectively, in liver, duodenum and jejunum. Wy-14643 induced a significant increase in the expression of CPT 1A in the jejunum and duodenum and of HMG-CoAS2 in the jejunum, but neither CPT 1A nor HMG-CoAS2 expression was increased in the liver. The induction of CPT 1A and HMG-CoAS2 expression was associated with a decrease in the lipid droplet content selectively in the jejunum. Our findings indicate that Wy-14643 stimulates FAO and ketogenesis in the intestine, in particular in the jejunum, rather than in the liver, thus supporting the hypothesis that PPAR-α activation inhibits eating by stimulating intestinal FAO.

  17. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster.

    Science.gov (United States)

    Sgraja, Tanja; Ulschmid, Julia; Becker, Katja; Schneuwly, Stephan; Klebe, Gerhard; Reuter, Klaus; Heine, Andreas

    2004-10-01

    In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.

  18. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis

    OpenAIRE

    Murataliev, Marat B.; Guzov, Victor M.; Walker, F. Ann; Feyereisen, René

    2008-01-01

    The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylatio...

  19. Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Vincent, Steven R.

    2005-01-01

    Microsomal cytochrome P450 reductase catalyzes the one-electron transfer from NADPH via FAD and FMN to various electron acceptors, such as cytochrome P450s or to some anti-cancer quinone drugs. This results in generation of free radicals and toxic oxygen metabolites, which can contribute to the cytotoxicity of these compounds. Recently, a cytosolic NADPH-dependent flavin reductase, NR1, has been described which is highly homologous to the microsomal cytochrome P450 reductase. In this study, we show that over-expression of NR1 in human embryonic kidney cells enhances the cytotoxic action of the model quinone, menadione. Furthermore, we show that a novel human histidine triad protein DCS-1, which is expressed together with NR1 in many tissues, can significantly reduce menadione-induced cytotoxicity in these cells. We also show that DCS-1 binds NF1 and directly modulates its activity. These results suggest that NR1 may play a role in carcinogenicity and cell death associated with one-electron reductions

  20. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    OpenAIRE

    Almasi, Joel N.; Bushnell, Eric A.C.; Gauld, James W.

    2011-01-01

    Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM) ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein...

  1. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2011-10-01

    Full Text Available Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein environment have been examined via the use of the ONIOM(HF/6-31G(d:AMBER94 and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 methods within the mechanical embedding formulism and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 and ONIOM(MP2/6-311G(d,p//HF/6-31G(d:AMBER94 within the electronic embedding formulism. The results of the present study suggest that saccharopine reductase utilises a substrate-assisted catalytic pathway in which acid/base groups within the cosubstrates themselves facilitate the mechanistically required proton transfers. Thus, the enzyme appears to act most likely by binding the three required reactant molecules glutamate, α-aminoadipate-δ-semialdehyde and NADPH in a manner and polar environment conducive to reaction.

  2. Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily

    NARCIS (Netherlands)

    Machielsen, M.P.; Uria, A.R.; Kengen, S.W.M.; Oost, van der J.

    2006-01-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The gene, referred to as adhD, was functionally expressed in Escherichia coli and subsequently purified to homogeneity. The

  3. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  4. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    Full Text Available Abstract Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells-1 h-1 compared with 0.01 g (g cells-1 h-1

  5. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  6. Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway.

    Science.gov (United States)

    Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian

    2015-01-01

    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.

  7. Atomic Structure of Salutaridine Reductase from the Opium Poppy (Papaver somniferum)

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yasuhiro; Kutchan, Toni M.; Smith, Thomas J. (Danforth)

    2011-11-18

    The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of {approx}1.9 {angstrom} in the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265-279), on top of which lies a large 'flap'-like domain (residues 105-140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.

  8. Cloning, purification, crystallization and preliminary X-ray analysis of a chimeric NADPH-cytochrome P450 reductase

    International Nuclear Information System (INIS)

    Aigrain, Louise; Pompon, Denis; Truan, Gilles; Moréra, Solange

    2009-01-01

    A 2.5 Å resolution data set was collected from a crystal of a soluble chimeric form of NADPH-cytochrome P450 reductase (CPR) produced using a fusion gene composed of the yeast FMN and the human FAD domains. The chimeric protein was crystallized in a modified conformation compared with the previously solved structures. NADPH-cytochrome P450 reductase (CPR) is the favoured redox partner of microsomal cytochromes P450. This protein is composed of two flavin-containing domains (FMN and FAD) connected by a structured linker. An active CPR chimera consisting of the yeast FMN and human FAD domains has been produced, purified and crystallized. The crystals belonged to the monoclinic space group C2 and contained one molecule per asymmetric unit. Molecular replacement was performed using the published rat and yeast structures as search models. The initial electron-density maps revealed that the chimeric enzyme had crystallized in a conformation that differed from those of previously solved structures

  9. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.

    Science.gov (United States)

    Yan, Zhen; Wang, Mingyu; Ferry, James G

    2017-02-07

    Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2 -reducing methanogenic anaerobes (methanogens) from the domain Archaea Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420 (F 420 H 2 ) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420 H 2 and reduction of ferredoxin with the exergonic oxidation of F 420 H 2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. Discovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2

  10. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  11. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    Science.gov (United States)

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Caracemide, a site-specific irreversible inhibitor of protein R1 of Escherichia coli ribonucleotide reductase

    DEFF Research Database (Denmark)

    Larsen, I. K.; Cornett, Claus; Karlsson, M.

    1992-01-01

    The anticancer drug caracemide, N-acetyl-N,O-di(methylcarbamoyl)hydroxylamine, and one of its degradation products, N-acetyl-O-methylcarbamoyl-hydroxylamine, were found to inhibit the enzyme ribonucleotide reductase of Escherichia coli by specific interaction with its larger component protein R1....

  13. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  14. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Edman, J C; Edman, U; Cao, Mi-Mi

    1989-01-01

    Pneumocystis carinii dihydrofolate reductase (DHFR; 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) cDNA sequences have been isolated by their ability to confer trimethoprim resistance to Escherichia coli. Consistent with the recent conclusion that P. carinii is a member of the Fungi...

  15. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake:reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time, the basic differences in the two processes, and the differences in their measurement, the authors conclude that the NR activity measures the current nitrate-reducing potential, which relfects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling. Thus, considering the sampling time as a point of reference, the former is a measure of the past and the latter is a measure of the future

  16. Methylenetetrahydrofolate reductase homozygous mutation in a young boy with cerebellar infarction

    Directory of Open Access Journals (Sweden)

    Alberto Spalice

    2009-11-01

    Full Text Available Posterior circulation vascular occlusive disease in children is a rare and uncommonly reported event. Among the numerous risk factors, the methylenetetrahydrofolate reductase (MTHFR mutation is considered to be a common genetic cause of thrombosis in adults and children. Recently, a link between the MTHFR mutation and cerebrovascular disorders was reported in children. Diffusion tensor imaging (DTI is a great improvement on magnetic resonance imaging (MRI, making the in vivo anatomical and pathological study of the brain and its fibers possible. In our patient cerebellar infarction was associated with MTHFR mutation and, in a standard neurological examination, DTI revealed normal white matter tracts.

  17. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    Science.gov (United States)

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  18. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp PCC7120

    NARCIS (Netherlands)

    Sanchez-Riego, Ana M.; Mata-Cabana, Alejandro; Galmozzi, CarlaV.; Florencio, Francisco J.

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of

  19. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis.

    Science.gov (United States)

    Kim, Young Hwan; Cho, Kun; Yun, Sung-Ho; Kim, Jin Young; Kwon, Kyung-Hoon; Yoo, Jong Shin; Kim, Seung Il

    2006-02-01

    Proteomic analysis of Pseudomonas putida KT2440 cultured in monocyclic aromatic compounds was performed using 2-DE/MS and cleavable isotope-coded affinity tag (ICAT) to determine whether proteins involved in aromatic compound degradation pathways were altered as predicted by genomic analysis (Jiménez et al., Environ Microbiol. 2002, 4, 824-841). Eighty unique proteins were identified by 2-DE/MS or MS/MS analysis from P. putida KT2440 cultured in the presence of six different organic compounds. Benzoate dioxygenase (BenA, BenD) and catechol 1,2-dioxygenase (CatA) were induced by benzoate. Protocatechuate 3,4-dixoygenase (PcaGH) was induced by p-hydroxybenzoate and vanilline. beta-Ketoadipyl CoA thiolase (PcaF) and 3-oxoadipate enol-lactone hydrolase (PcaD) were induced by benzoate, p-hydroxybenzoate and vanilline, suggesting that benzoate, p-hydroxybenzoate and vanilline were degraded by different dioxygenases and then converged in the same beta-ketoadipate degradation pathway. An additional 110 proteins, including 19 proteins from 2-DE analysis, were identified by cleavable ICAT analysis for benzoate-induced proteomes, which complemented the 2-DE results. Phenylethylamine exposure induced beta-ketoacyl CoA thiolase (PhaD) and ring-opening enzyme (PhaL), both enzymes of the phenylacetate (pha) biodegradation pathway. Phenylalanine induced 4-hydroxyphenyl-pyruvate dioxygenase (Hpd) and homogentisate 1,2-dioxygenase (HmgA), key enzymes in the homogentisate degradation pathway. Alkyl hydroperoxide reductase (AphC) was induced under all aromatic compounds conditions. These results suggest that proteome analysis complements and supports predictive information obtained by genomic sequence analysis.

  20. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Serrano, L.M.; Molenaar, D.; Wels, M.W.W.; Teusink, B.; Bron, P.A.; Vos, de W.M.; Smid, E.J.

    2007-01-01

    Background - Thioredoxin (TRX) is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. Results - We have identified the

  1. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Serrano, L.M.; Molenaar, D; Sanders, M.W.W.; Teusink, B.; Bron, P.A.; Vos, W.M. de; Smid, E.J.

    2007-01-01

    ABSTRACT: BACKGROUND: Thioredoxin (TRX) is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. RESULTS: We have

  2. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  3. Influence of rete testis fluid deprivation on the kinetic parameters of goat epididymal 5 alpha-reductase.

    Science.gov (United States)

    Kelce, W R; Lubis, A M; Braun, W F; Youngquist, R S; Ganjam, V K

    1990-01-01

    A surgical technique to cannulate the rete testis of the goat was utilized to examine the effects of rete testis fluid (RTF) deprivation on the enzymatic activity of epididymal 5 alpha-reductase. Kinetic techniques were used to determine whether the regional enzymatic effect of RTF deprivation is to decrease the apparent number of 5 alpha-reductase active sites or the catalytic activity of each active site within the epididymal epithelium. Paired comparisons of (Vmax)app and (Km)app values between control and RTF-deprived epididymides indicated that RTF deprivation affected the value of (Vmax)app with no apparent change in the values of (Km)app in caput, corpus, and cauda epididymal regions. We conclude that RTF deprivation in the goat epididymis for 7 days results in a decreased number of apparent 5 alpha-reductase active sites within the epididymal epithelium.

  4. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    Science.gov (United States)

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-­quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P41212, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%. PMID:19478454

  5. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake: reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time the basic differences in the two processes, and the differences in their measurement, the authors conclude that the Nr activity measures the current nitrate-reducing potential, which reflects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling

  6. Proton Pump Inhibitors and Risk of Rhabdomyolysis.

    Science.gov (United States)

    Duncan, Scott J; Howden, Colin W

    2017-01-01

    Proton pump inhibitors (PPIs) have been associated with a variety of adverse events, although the level of evidence for many of these is weak at best. Recently, one national regulatory authority has mandated a change to the labeling of one PPI based on reports of possible associated rhabdomyolysis. Thus, in this review we summarize the available evidence linking PPI use with rhabdomyolysis. The level of evidence is insufficient to establish a causal relationship and is largely based on sporadic case reports. In general, patients with suspected PPI-associated rhabdomyolysis have not been re-challenged with a PPI after recovery. The mechanism whereby PPIs might have been associated with rhabdomyolysis is unclear but possibly related to interaction with concomitantly administered drugs such as HMG-CoA reductase inhibitors (statins). For patients with rhabdomyolysis, a careful search must be made for possible etiological factors. In patients who recover from an episode of possible PPI-related rhabdomyolysis but do not have a genuine requirement for PPI treatment, the PPI should not be re-introduced. For those with a definite indication for ongoing PPI treatment, the PPI can be re-introduced but should preferably not be administered with a statin.

  7. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp.

    Science.gov (United States)

    Deng, Peng; Tan, Xiaoqing; Wu, Ying; Bai, Qunhua; Jia, Yan; Xiao, Hong

    2015-03-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica , which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function.

  8. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp

    Science.gov (United States)

    DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG

    2015-01-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function. PMID:25667630

  9. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    ) as the level of reduction increased in both the WT and the His mutant. Equilibrium standard enthalpy and entropy changes and activation parameters of this ET process were determined. We concluded that negative cooperativity is a common feature among the cd(1) nitrite reductases, and we discuss this control...

  10. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Babu, P S; Srinivasan, K

    1997-01-01

    Streptozotocin-induced diabetic rats were maintained on 0.5% curcumin containing diet for 8 weeks. Blood cholesterol was lowered significantly by dietary curcumin in these diabetic animals. Cholesterol decrease was exclusively from LDL-VLDL fraction. Significant decrease in blood triglyceride and phospholipids was also brought about by dietary curcumin in diabetic rats. In a parallel study, wherein diabetic animals were maintained on a high cholesterol diet, the extents of hypercholesterolemia and phospholipidemia were still higher compared to those maintained on control diet. Curcumin exhibited lowering of cholesterol and phospholipid in these animals also. Liver cholesterol, triglyceride and phospholipid contents were elevated under diabetic conditions. Dietary curcumin showed a distinct tendency to counter these changes in lipid fractions of liver. This effect of curcumin was also seen in diabetic animals maintained on high cholesterol diet. Dietary curcumin also showed significant countering of renal cholesterol and triglycerides elevated in diabetic rats. In order to understand the mechanism of hypocholesterolemic action of dietary curcumin, activities of hepatic cholesterol-7a-hydroxylase and HMG CoA reductase were measured. Hepatic cholesterol-7a-hydroxylase activity was markedly higher in curcumin fed diabetic animals suggesting a higher rate of cholesterol catabolism.

  11. Update on Mechanisms of Renal Tubule Injury Caused by Advanced Glycation End Products

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2016-01-01

    Full Text Available Diabetic nephropathy (DN caused by advanced glycation end products (AGEs may be associated with lipid accumulation in the kidneys. This study was designed to investigate whether Nε-(carboxymethyl lysine (CML, a member of the AGEs family increases lipid accumulation in a human renal tubular epithelial cell line (HK-2 via increasing cholesterol synthesis and uptake and reducing cholesterol efflux through endoplasmic reticulum stress (ERS. Our results showed that CML disrupts cholesterol metabolism in HK-2 cells by activating sterol regulatory element-binding protein 2 (SREBP-2 and liver X receptor (LXR, followed by an increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR mediated cholesterol synthesis and low density lipoprotein receptor (LDLr mediated cholesterol uptake and a reduction in ATP-binding cassette transporter A1 (ABCA1 mediated cholesterol efflux, ultimately causing lipid accumulation in HK-2 cells. All of these responses could be suppressed by an ERS inhibitor, which suggests that CML causes lipid accumulation in renal tubule cells through ERS and that the inhibition of ERS is a potential novel approach to treating CML-induced renal tubular foam cell formation.

  12. The role of leucine in isoprenoid metabolism. Incorporation of [3-13C]leucine and of [2-3H,4-14C]-β,β-dimethyl-acrylic acid into phytosterols by tissue cultures of Andrographis paniculata

    International Nuclear Information System (INIS)

    Anastasis, P.; Freer, I.; Overton, K.; Rycroft, D.; Singh, S.B.

    1985-01-01

    [3- 13 C]Leucine is incorporated into phytosterols by tissue cultures of Andrographis paniculata by breakdown to acetyl-CoA and its subsequent incorporation via (3S)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) and mevalonic acid; [2- 3 H,4- 14 C]-β,β-dimethylacrylic acid also is not incorporated intact. (author)

  13. Nitrate reductase activity of Staphylococcus carnosus affecting the color formation in cured raw ham.

    Science.gov (United States)

    Bosse Née Danz, Ramona; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen

    2016-07-01

    The influence of the nitrate reductase activity of two Staphylococcus carnosus strains used as starter cultures on the formation of nitrate, nitrite and color pigments in cured raw ham was investigated. In this context, microbiological, chemical and multivariate image analyses were carried out on cured raw hams, which were injected with different brines containing either nitrite or nitrate, with or without the S. carnosus starter cultures. During processing and storage, the viable counts of staphylococci remained constant at 6.5logcfu/g in the hams inoculated with starter cultures, while the background microbiota of the hams processed without the starter cultures developed after 14days. Those cured hams inoculated with S. carnosus LTH 7036 (high nitrate reductase activity) showed the highest decrease in nitrate and high nitrite concentrations in the end product, but were still in the range of the legal European level. The hams cured with nitrate and without starter culture or with the other strain, S. carnosus LTH 3838 (low nitrate reductase activity) showed higher residual nitrate levels and a lower nitrite content in the end product. The multivariate image analysis identified spatial and temporal differences in the meat pigment profiles of the differently cured hams. The cured hams inoculated with S. carnosus LTH 3838 showed an uncured core due to a delay in pigment formation. Therefore, the selection of starter cultures based on their nitrate reductase activity is a key point in the formation of curing compounds and color pigments in cured raw ham manufacture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Potential savings from an evidence-based consumer-oriented public education campaign on prescription drugs.

    Science.gov (United States)

    Donohue, Julie M; Fischer, Michael A; Huskamp, Haiden A; Weissman, Joel S

    2008-10-01

    To estimate potential savings associated with the Consumer Reports Best Buy Drugs program, a national educational program that provides consumers with price and effectiveness information on prescription drugs. National data on 2006 prescription sales and retail prices paid for angiotensin-converting enzyme inhibitors (ACEIs), β-blockers, calcium channel blockers, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-coA) reductase inhibitors (statins). We converted national data on aggregate unit sales of drugs in the four classes to defined daily doses (DDD) and estimated a range of potential savings from generic and therapeutic substitution. We estimated that $2.76 billion, or 7.83 percent of sales, could be saved if use of the drugs recommended by the educational program was increased. The recommended drugs' prices were 15-65 percent lower per DDD than their therapeutic alternatives. The majority (57.4 percent) of potential savings would be achieved through therapeutic substitution. Substantial savings can be achieved through greater use of comparatively effective and lower cost drugs recommended by a national consumer education program. However, barriers to dissemination of consumer-oriented drug information must be addressed before savings can be realized. © Health Research and Educational Trust.

  15. The real code of leonardo da vinci.

    Science.gov (United States)

    Ose, Leiv

    2008-02-01

    Leonardo da Vinci was born in Italy. Among the researchers and scientists, he is favourably known for his remarkable efforts in scientific work. His investigations of atherosclerosis judiciously combine three separate fields of research. In 1506, he finished his masterpiece, painting of Mona Lisa. A careful clinical examination of the famous painting reveals a yellow irregular leather-like spot at the inner end of the left upper eyelid and a soft bumpy well-defined swelling of the dorsum of the right hand beneath the index finger about 3 cm long. This is probably the first case of familial hypercholesterolemia (FH). The FH code of Leonardo da Vinci was given immense consideration by scientists like Carl Muller, who described the xanthomas tuberosum and angina pectoris. On the contrary, Akira Endo searched for microbial metabolites that would inhibit HMG-CoA reductase, the rate-limiting enzyme in the synthesis of cholesterol and finally, Michael Brown and Joseph Goldstein published a remarkable series of elegant and insightful papers in the 70s and 80s. They established that the cellular uptake of low-density lipoprotein (LDL) essentially requires the LDL receptor. this was the real Code of Leonardo da Vinci.

  16. JTT-130, a microsomal triglyceride transfer protein (MTP inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs

    Directory of Open Access Journals (Sweden)

    Shrestha Sudeep

    2005-09-01

    Full Text Available Abstract Background Microsomal transfer protein inhibitors (MTPi have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG. However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. Methods Male guinea pigs (n = 10 per group were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control, 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. Results Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P Conclusion These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.

  17. 'Muscle-sparing' statins: preclinical profiles and future clinical use.

    Science.gov (United States)

    Pfefferkorn, Jeffrey A

    2009-03-01

    Coronary heart disease (CHD) is a leading cause of death in the US, and hypercholesterolemia is a key risk factor for this disease. The current standard of care for treating hypercholesterolemia is the use of HMG-CoA reductase inhibitors, also known as statins, which block the rate-limiting step of cholesterol biosynthesis. In widespread clinical use, statins have proven safe and effective for both primary prevention of CHD and secondary prevention of coronary events. Results from several recent clinical trials have demonstrated that increasingly aggressive cholesterol-lowering therapy might offer additional protection against CHD compared with less aggressive treatment standards. While higher doses of current statin therapies are capable of achieving these more aggressive treatment goals, in certain cases statin-induced myalgia, the muscle pain or weakness that sometimes accompanies high-dose statin therapy, limits patient compliance with a treatment regimen. To address this limitation, efforts have been undertaken to develop highly hepatoselective statins that are capable of delivering best-in-class efficacy with minimized risk of dose-limiting myalgia. In this review, the preclinical and early clinical data for these next generation statins are discussed.

  18. Dissolution Enhancement of Rosuvastatin Calcium by Liquisolid Compact Technique

    Directory of Open Access Journals (Sweden)

    V. J. Kapure

    2013-01-01

    Full Text Available In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT. The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR analysis, X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.

  19. Simvastatin Does Not Affect Vitamin D Status, but Low Vitamin D Levels Are Associated with Dyslipidemia: Results from a Randomised, Controlled Trial

    Directory of Open Access Journals (Sweden)

    Lars Rejnmark

    2010-01-01

    Full Text Available Objectives. Statin drugs act as inhibitors of the 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA reductase enzyme early in the mevalonate pathway, thereby reducing the endogenous cholesterol synthesis. In recent studies, it has been suggested from epidemiological data that statins also may improve vitamin D status, as measured by increased plasma 25-hydroxyvitamin D (25OHD levels. We now report the results from a randomised controlled trial on effects of simvastatin on plasma 25OHD levels. Design and Methods. We randomised 82 healthy postmenopausal women to one year of treatment with either simvastatin 40 mg/d or placebo and performed measurement at baseline and after 26 and 52 weeks of treatment. The study was completed by 77 subjects. Results. Compared with placebo, plasma levels of cholesterol and low-density lipoproteins decreased in response to treatment with simvastatin, but our study showed no effect of simvastatin on vitamin D status. However, plasma levels of triglycerides were inversely associated with tertiles of plasma 25OHD levels and changes in plasma triglycerides levels correlated inversely with seasonal changes in vitamin D status. Conclusion. Our data do not support a pharmacological effect of statins on vitamin D status, but do suggest that vitamin D may influence plasma lipid profile and thus be of importance to cardiovascular health.

  20. Lactococcus lactis Thioredoxin Reductase Is Sensitive to Light Inactivation

    DEFF Research Database (Denmark)

    Björnberg, Olof; Viennet, Thibault; Skjoldager, Nicklas

    2015-01-01

    Thioredoxin, involved in numerous redox pathways, is maintained in the dithiol state by the nicotinamide adenine dinucleotide phosphate-dependent flavoprotein thioredoxin reductase (TrxR). Here, TrxR from Lactococcus lactis is compared with the well-characterized TrxR from Escherichia coli. The two...... enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar kcat values (∼25 s-1) with their cognate thioredoxin. Remarkably, however, the L. lactis enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than E. coli Trx......-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass...