WorldWideScience

Sample records for hlw partitioning technologies

  1. Study on systematic integration technology of design and safety assessment for HLW geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Yoshinao; Fukui, Hiroshi; Sagawa, Hiroshi; Matsunaga, Kenichi; Ito, Takaya; Kohanawa, Osamu; Kuwayama, Yuki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    2002-03-01

    The present study was carried out relating to basic design of the Geological Disposal Technology Integration System' that will be systematized as knowledge base for analysis and assessment of geological disposal by integrating organically and hierarchically analysis and evaluation method in three study field. The key conclusions are summarized as follows: (1) The examination to construct the virtual geological disposal system which contained the geological environment on the computer was executed aiming at the development of integration and the analysis systems which became working common basic to execute the design and the performance assessment of the geological disposal system. (2) Technological information (I/O information) which became the base was associated with work (evaluation) item of 'Disposal technology (design)' and 'Performance assessment' in the Second Progress Report by JNC, and the evaluation flow by which a series of work concerning the design and the safety assessment of the geological disposal system was brought together was made. (3) The subject concerning the detailed model development in the R and D activity of the geological disposal system in the future was extracted aiming at the systematization of the performance and safety assessment, and was arranged as information to take these detailed models into the 'Geological Disposal Technology Integration System'. (author)

  2. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  3. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    Energy Technology Data Exchange (ETDEWEB)

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  4. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  5. Database and Interim Glass Property Models for Hanford HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

    2001-07-24

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  6. HLW Tank Space Management, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.S.; Abell, G.; Garrett, R.; d' Entremont, P.; Fowler, J.R.; Mahoney, M.; Poe, L.

    1999-09-20

    The HLW Tank Space Management Team (SM Team) was chartered to select and recommend an HLW Tank Space Management Strategy (Strategy) for the HLW Management Division of Westinghouse Savannah River Co. (WSRC) until an alternative salt disposition process is operational. Because the alternative salt disposition process will not be available to remove soluble radionuclides in HLW until 2009, the selected Strategy must assure that it safely receives and stores HLW at least until 2009 while continuing to supply sludge slurry to the DWPF vitrification process.

  7. Development of long-lived radionuclide partitioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Eil Hee; Kim, Kwang Wook; Yang, Han Beom; Chung, Dong Yong; Lim, Jae Kwan; Shin, Young Jun; Kim, Heung Ho; Kown, Sun Gil; Kim, Young Hwan; Hwang, Doo Seung

    1996-07-01

    This study has been focused on the development of unit processes for partitioning in the 1st stage, and experimentally carried out to examine the separation characteristics and operation conditions on the following unit processes. (1) Removal of a small amount of uranium by extraction with TBP, (2) Removal of Zr and Mo and destruction of nitric acid by uranium by denitration with formic acid, (3) Co-precipitation of Am, Np and RE oxalic acid, (4) Dissolution and destruction of oxalate by hydrogen peroxide, (5) Co-extraction of Am, Np and RE by nitric acid, (8) Back-extraction of Np by oxalic acid, (9) Adsorption and elution of Cs and Sr by zeolite, and (10) Advanced separation of radionuclide by electrochemical REDOX method. The results obtained from each unit process will be use as the basic materials for the establishment of optimal partitioning and design of process equipment. (author). 46 refs., 54 tabs., 222 figs.

  8. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  9. Defense HLW Glass Degradation Model

    Energy Technology Data Exchange (ETDEWEB)

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  10. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  11. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    Energy Technology Data Exchange (ETDEWEB)

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, {sup 90}Sr, {sup 99}Tc, {sup 129}I, and {sup 137}Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello.

  12. Development of long-lived radionuclide partitioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Eil Hee; Kwon, Sun Gil; Kim, Heung Ho; Yang, Han Beom; Kim, Kwang Wook; Chung, Dong Yong; Lim, Jae Kwan; Kim, Young Hwan; Hwang, Doo Seong; Lee, Kue Il; Park, Won Seok; Gu, Je Hue

    1997-09-01

    This study has been performed with focus on the modification of the process, advancement of separation efficiency, adaptability check for another separation technology and optimization of separation conditions. The works are summarized as follows : (1) Kinetics of denitration with formic acid by mathematical modeling, (2) Evaluation of a mutual separation process for MA and RE using DEHPA, (3) Preparation of Zr-DEHPA, and its extraction and selective stripping behaviors to separate MA form RE, (4) Adsorption and elution behaviors of RE by anion-exchange chromatography. (5) Selection of reducing agent for selective separation of Pd, and its separation condition, (6) Development of a liquid-liquid extraction device composed of a highly packed fiber bundle, and its extraction behavior by experimental and theoretical analysis. In addition, characteristics of in-situ stripping and separation of metal ions by electrolysis system of glassy carbon fiber, (7) Behavior of reductive precipitation of Eu by photochemical reaction. The results will be use as basic materials for the design and installationof the engineering test process which is scheduled to conduct in phase II. (author). 13 refs., 31 tabs., 92 figs.

  13. HLW Flexible jumper materials compatibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-13

    H-Tank Farm Engineering tasked SRNL/Materials Science & Technology (MS&T) to evaluate the compatibility of Goodyear Viper® chemical transfer hose with HLW solutions. The hose is proposed as a flexible Safety Class jumper for up to six months service. SRNL/MS&T performed various tests to evaluate the effects of radiation, high pH chemistry and elevated temperature on the hose, particularly the inner liner. Test results suggest an upper dose limit of 50 Mrad for the hose. Room temperature burst pressure values at 50 Mrad are estimated at 600- 800 psi, providing a safety factor of 4.0-5.3X over the anticipated operating pressure of 150 psi and a safety factor of 3.0-4.0X over the working pressure of the hose (200 psi), independent of temperature effects. Radiation effects are minimal at doses less than 10 Mrad. Doses greater than 50 Mrad may be allowed, depending on operating conditions and required safety factors, but cannot be recommended at this time. At 250 Mrad, burst pressure values are reduced to the hose working pressure. At 300 Mrad, burst pressures are below 150 psi. At a bounding continuous dose rate of 57,870 rad/hr, the 50 Mrad dose limit is reached within 1.2 months. Actual dose rates may be lower, particularly during non-transfer periods. Refined dose calculations are therefore recommended to justify longer service. This report details the tests performed and interpretation of the results. Recommendations for shelf-life/storage, component quality verification, and post-service examination are provided.

  14. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal.

  15. COMSOL Multiphysics Model for HLW Canister Filling

    Energy Technology Data Exchange (ETDEWEB)

    Kesterson, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-11

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. Wastes containing high concentrations of Al2O3 and Na2O can contribute to nepheline (generally NaAlSiO4) crystallization, which can sharply reduce the chemical durability of high level waste (HLW) glass. Nepheline crystallization can occur during slow cooling of the glass within the stainless steel canister. The purpose of this work was to develop a model that can be used to predict temperatures of the glass in a WTP HLW canister during filling and cooling. The intent of the model is to support scoping work in the laboratory. It is not intended to provide precise predictions of temperature profiles, but rather to provide a simplified representation of glass cooling profiles within a full scale, WTP HLW canister under various glass pouring rates. These data will be used to support laboratory studies for an improved understanding of the mechanisms of nepheline crystallization. The model was created using COMSOL Multiphysics, a commercially available software. The model results were compared to available experimental data, TRR-PLT-080, and were found to yield sufficient results for the scoping nature of the study. The simulated temperatures were within 60 ºC for the centerline, 0.0762m (3 inch) from centerline, and 0.2286m (9 inch) from centerline thermocouples once the thermocouples were covered with glass. The temperature difference between the experimental and simulated values reduced to 40 ºC, 4 hours after the thermocouple was covered, and down to 20 ºC, 6 hours after the thermocouple was covered

  16. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases

  17. Final Report - Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1, Rev. 0, dated 6/18/09

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Wang, C.; Gan, H.; Pegg, I. L.; Chaudhuri, M.; Kot, W.; Feng, Z.; Viragh, C.; McKeown, D. A.; Joseph, I.; Muller, I. S.; Cecil, R.; Zhao, W.

    2013-11-13

    The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated melters with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of

  18. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  19. Regional Geologic Evaluations for Disposal of HLW and SNF: The Pierre Shale of the Northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Richard E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    The DOE Spent Fuel and Waste Technology (SWFT) R&D Campaign is supporting research on crystalline rock, shale (argillite) and salt as potential host rocks for disposal of HLW and SNF in a mined geologic repository. The distribution of these three potential repository host rocks is limited to specific regions of the US and to different geologic and hydrologic environments (Perry et al., 2014), many of which may be technically suitable as a site for mined geologic disposal. This report documents a regional geologic evaluation of the Pierre Shale, as an example of evaluating a potentially suitable shale for siting a geologic HLW repository. This report follows a similar report competed in 2016 on a regional evaluation of crystalline rock that focused on the Superior Province of the north-central US (Perry et al., 2016).

  20. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  1. Conceptual design requirements for Korean Reference HLW disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Hahn, Pil Son; Lee, Jong Youl; Kim, Kyung Soo; Kim, Sung Ki; Cho, Dong Keun; Lee, Yang

    2005-05-15

    This report outlined the requirements for the conceptual design of KRS(Korean Reference HLW disposal System). The site for the disposal of high-level radioactive wastes has not yet been selected in Korea. Since the KRS should be designed under these circumstances, the necessary requirements which should be determined are studied in the report. The amounts of spent fuels from the nuclear power plants in the long-term national power development plan are projected. With this estimation the disposal rates of CANDU and PWR spent fuels are analyzed and determined. The national and international regulations regarding the disposal of HLW are summarized. The functions of the underground facilities are defined. The representative geological conditions are determined since no site is yet decided in Korea.

  2. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  3. Carabidae population dynamics and temporal partitioning: response to coupled neonicotinoid-transgenic technologies in maize.

    Science.gov (United States)

    Leslie, T W; Biddinger, D J; Mullin, C A; Fleischer, S J

    2009-06-01

    Insecticidal Bt crops and seed treatments represent additional pest management tools for growers, prompting ecological studies comparing their impact on farm system inputs and effects to nontarget organisms compared with conventional practices. Using high taxonomic and temporal resolution, we contrast the dominance structure of carabids and dynamics of the most abundant species in maize (both sweet and field corn) agroecosystems using pest management tactics determined by the purchase of seed and application of pyrethroid insecticides. In the seed-based treatments, sweet corn contained Cry1Ab/c proteins, whereas field corn contained the coupled technology of Cry3Bb1 proteins for control of corn rootworm and neonicotinoid seed treatments aimed at secondary soil-borne pests. The insecticide treatments involved foliar pyrethroids in sweet corn and at-planting pyrethroids in field corn. The carabid community, comprised of 49 species, was dominated by four species, Scarites quadriceps Chaudoir, Poecilus chalcites Say, Pterostichus melanarius Illiger, and Harpalus pensylvanicus DeGeer, that each occupied a distinct temporal niche during the growing season. Two species, Pt. melanarius and H. pensylvanicus, exhibited differences between treatments over time. Only H. pensylvanicus had consistent results in both years, in which activity densities in field corn were significantly higher in the control in July and/or August. These results, along with laboratory bioassays, led us to hypothesize that lower adult captures resulted from decrease in prey availability or exposure of H. pensylvanicus larvae to soil-directed insecticides-either the neonicotinoid seed treatment in the transgenic field corn or an at-planting soil insecticide in the conventional field corn.

  4. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  5. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Vince [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  6. Development of Radiochemical Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Kim, K. W.; Yang, H. B. (and others)

    2007-06-15

    This project of the second phase was aimed at the development of basic unit technologies for advanced partitioning, and the application tests of pre-developed partitioning technologies for separation of actinides by using a simulated multi-component radioactive waste containing Am, Np, Tc, U and so on. The goals for recovery yield of TRU, and for purity of Tc are high than 99% and about 99%, respectively. The work scopes and contents were as follows. 1). For the development of basic unit technologies for advanced partitioning. 1. Development of technologies for co-removal of TRU and for mutual separation of U and TRU with a reduction-complexation reaction. 2. Development of extraction system for high-acidity co-separation of An(+3) and Ln(+3) and its radiolytic evaluation. 3. Synthesis of extractants for the selective separation of An(+3) and its relevant extraction system development. 4. Development of a hybrid system for the recovery of noble metals and its continuous separation tests. 5. Development of electrolytic system for the decompositions of N-NO3 and N-NH3 compounds to nitrogen gas. 2). For the application test of pre-developed partitioning technologies for the separation of actinide elements in a simulated multi-component solution equivalent to HLW level. 1. Co-separation of Tc, Np and U by a (TBP-TOA)/NDD system. 2. Mutual-separation of Am, Cm and RE elements by a (Zr-DEHPA)/NDD system. All results will be used as the fundamental data for the development of advanced partitioning process in the future.

  7. Melter Throughput Enhancements for High-Iron HLW

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gan, Hoa [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Chaudhuri, Malabika [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States)

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  8. Status of Progress Made Toward Safety Analysis and Technical Site Evaluations for DOE Managed HLW and SNF.

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gross, Michael B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mariner, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.

  9. Demonstration of pyrometallurgical processing for metal fuel and HLW

    Energy Technology Data Exchange (ETDEWEB)

    Tadafumi, Koyama; Kensuke, Kinoshita; Takatoshi, Hizikata; Tadashi, Inoue [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan); Ougier, M.; Rikard, Malmbeck; Glatz, J.P.; Lothar, Koch [European Commission JRC, Institute fuer Transuranium Elements, Karlsruhe (Germany)

    2001-07-01

    CRIEPI and JRC-ITU have started a joint study on pyrometallurgical processing to demonstrate the capability of this type of process for separating actinide elements from spent fuel and HLW. The equipment dedicated for this experiments has been developed and installed in JRC-ITU. The stainless steel box equipped with tele-manipulators is operated under pure Ar atmosphere, and prepared for later installation in a hot cell. Experiments on pyro-processing of un-irradiated U-Pu-Zr metal alloy fuel by molten salt electrorefining has been carried out. Recovery of U and Pu from this type alloy fuel was first demonstrated with using solid iron cathode and liquid Cd cathode, respectively. (author)

  10. Use of a Combined Technology of Ultrasonication, Three-Phase Partitioning, and Aqueous Enzymatic Oil Extraction for the Extraction of Oil from Spirogyra sp.

    Directory of Open Access Journals (Sweden)

    Adisheshu Reddy

    2014-01-01

    Full Text Available Algal oil from Spirogyra sp. was extracted using a combined technology of ultrasonication, three-phase partitioning, and aqueous enzymatic oil extraction. Ultrasonication was done to rupture the cell wall and papain was used for an easier release of the trapped oil. The salt concentration for three-phase partitioning, preincubation period with (or without the protease, and its operational temperature were optimized for a maximum possible yield of the oil and the effect of ultrasonication, and three-phase partitioning with (or without the protease were studied. It was found that under optimized conditions at 50% ammonium sulphate concentration using tert-butanol (in 1 : 1, v/v ratio a presonicated and papain treated algal suspension could produce 24% (w/w, dry weight oil within few hours which was ten times higher as compared to the oil obtained by Soxhlet extraction using hexane and two times higher than the oil obtained without using the protease.

  11. Development of long-lived radionuclides partitioning technology - Experimental/theoretical study of phase equilibria for multicomponent multiphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Soo; Lee, Se Il; Sim, Yeon Sik; Park, Sung Bin; Yang, Sung Oh; Park, Ji Yong [Korea University, Seoul (Korea, Republic of)

    1995-08-01

    In various partitioning processes, rare earth elements and actinide elements are separated from other elements in the first stage. They are then separated into rare earth groups and actinde groups. The first stage is accomplished by solvent extraction using DEHPA, by precipitation using oxalic= acid, or by cation exchange. The second stage is carried out by selective back-extraction or by selective elution using DTPA. In these processes the equilibria is governed by the concentrations of nitric acid, of solvents, and of precipitants among others. In this study various distribution coefficients in partitioning processes were experimentally determined. And thermodynamic models were proposed to calculate distribution coefficients with experimentally determined equilibrium constants. 32 refs., 11 tabs., 23 figs. (author)

  12. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics, glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.

  13. Public Perspectives in the Japanese HLW Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Inatsugu, Shigefumi; Takeuchi, Mitsuo; Kato, Toshiaki [Nuclear Waste Management Organization of Japan (NUNIO), Tokyo (Japan)

    2006-09-15

    Following legislation entitled the 'Specified Radioactive Waste Final Disposal Act', the Nuclear Waste Management Organization of Japan (NUMO) was established in October 2000 as the implementing organization for geological disposal of vitrified high-level waste (HLW). Implementation of NUMO's disposal project will be based on three principles: 1) respecting public initiative and opinion, 2) adopting a stepwise approach and 3) ensuring transparency in information disclosure. NUMO has decided to adopt an open solicitation approach to finding volunteer municipalities for Preliminary Investigation Areas (PIAs). The official announcement of the start of the open solicitation program was made in 2002. Although no official applications had been received from volunteer municipalities by the end of 2005, NUMO has been continuing to carry out various activities aimed specifically at public communication and encouraging dialogue about the deep geological disposal project This paper summarizes the results obtained and lessons learned so far and identifies the issues that NUMO must tackle immediately in the areas of communication and dialogue.

  14. Development of pyrometallurgical partitioning technology for TRU in high level radioactive wastes. Vitrification process for salt wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sakamura, Yoshiharu; Inoue, Tadashi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Shimizu, Takafumi; Kobayashi, Kuniaki

    1997-12-31

    A vitrification process for chloride wastes generated in the pyrometallurgical partitioning of TRUs from high level radioactive wastes is being developed. In the process, chlorides are reduced to metals by molten salt electrolysis. The metals are oxidized by air and then vitrified. Lithium metal and chlorine gas are recycled. The behaviors of lithium, sodium and fission products during molten salt electrolysis were studied by using various compositions of salts and cathode materials. It was shown that every metal can be recovered into a liquid lead cathode, and that a liquid cadmium cathode and a solid cathode are suitable for recovering lithium and sodium metal, respectively. Based on the experimental results the process flow sheet was discussed. (author)

  15. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  16. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  17. Modelling spent fuel and HLW behaviour in repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, A. M.; Esteban, J. A.

    2003-07-01

    The aim of this report is to give the reader an overall insight of the different models, which are used to predict the long-term behaviour of the spent fuels and HLW disposed in a repository. The models must be established on basic data and robust kinetics describing the mechanisms controlling spent fuel alteration/dissolution in a repository. The UO2 matrix, or source term, contains embedded in it the , majority of radionuclides of the spent fuel (some are in the gap cladding). For this reason the SF radionuclides release models play a significant role in the performance assessment of radioactive waste disposal. The differences existing between models published in the literature are due to the conceptual understanding of the processes and the degree of the conservatism used with the parameter values, and the boundary conditions. They mainly differ in their level of simplification and their final objective. Sometimes are focused the show compliance with regulatory requirements, other to support decision making, to increase the level of confidence of public and scientific community, could be empirical, semi-empirical or analytical. The models take into account the experimental results from radionuclides releases and their extrapolation to the very long term. Its necessary a great statistics for have a representative dissolution rate, due at the number of experimental results is not very high and many of them show a great scatter, independently of theirs different compositions by axial and radial variations, due to linear power or local burnup. On the other hand, it is difficult to predict the spent fuel behaviour over the long term, based in short term experiments. In this report is given a little description of the radionuclides distribution in the spent fuel and also in the cladding/pellet gap, grain boundary, cracks and rim zones (the matrix rim zone can be considered with an especial characteristics very different to the rest of the spent fuel), and structural

  18. Support for HLW Direct Feed - Phase 2, VSL-15R3440-1

    Energy Technology Data Exchange (ETDEWEB)

    Matlack, K. S. [The Catholic Univ. of America, Washington, DC (United States); Pegg, I. [The Catholic Univ. of America, Washington, DC (United States); Joseph, I. [EnergySolutions, Columbia, MD (United States); Kot, W. K. [The Catholic Univ. of America, Washington, DC (United States)

    2017-03-20

    This report describes work performed to develop and test new glass and feed formulations originating from a potential flow-sheet for the direct vitrification of High Level Waste (HLW) with minimal or no pretreatment. In the HLW direct feed option that is under consideration for early operations at the Hanford Tank Waste Treatment and Immobilization Plant (WTP), the pretreatment facility would be bypassed in order to support an earlier start-up of the vitrification facility. For HLW, this would mean that the ultrafiltration and caustic leaching operations that would otherwise have been performed in the pretreatment facility would either not be performed or would be replaced by an interim pretreatment function (in-tank leaching and settling, for example). These changes would likely affect glass formulations and waste loadings and have impacts on the downstream vitrification operations. Modification of the pretreatment process may result in: (i) Higher aluminum contents if caustic leaching is not performed; (ii) Higher chromium contents if oxidative leaching is not performed; (iii) A higher fraction of supernate in the HLW feed resulting from the lower efficiency of in-tank washing; and (iv) A higher water content due to the likely lower effectiveness of in-tank settling compared to ultrafiltration. The HLW direct feed option has also been proposed as a potential route for treating HLW streams that contain the highest concentrations of fast-settling plutoniumcontaining particles, thereby avoiding some of the potential issues associated with such particles in the WTP Pretreatment facility [1]. In response, the work presented herein focuses on the impacts of increased supernate and water content on wastes from one of the candidate source tanks for the direct feed option that is high in plutonium.

  19. Comparison of radiation hazard of HLW in several spent nuclear fuel reprocessing scenarios

    Directory of Open Access Journals (Sweden)

    Gladilov D.

    2012-10-01

    Full Text Available Radiation hazard of radionuclide has been calculated as a product of Aε where A is an activity of radionuclide and ε is a dose coefficient through ingestion. The values Aε of 18 radionuclide in spent fuel of WWER-440 are calculated. Because the full division of americium and curium from HLW is very complicated a separation americium from curium is considered. It is shown that a separation of americium in a special fraction allows decreasing the radiation hazard of HLW by 97.6% after 1000 years.

  20. TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1 REV 0 12/13/10

    Energy Technology Data Exchange (ETDEWEB)

    MATLACK KS; KRUGER AA; JOSEPH I; GAN H; KOT WK; CHAUDHURI M; MOHR RK; MCKEOWN DA; BARDAKEI T; GONG W; BUECCHELE AC; PEGG IL

    2011-01-05

    This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was

  1. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  2. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D' ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the

  3. Corrosion Behavior of Simulated HLW Glass in the Presence of Magnesium Ion

    Directory of Open Access Journals (Sweden)

    Toshikatsu Maeda

    2011-01-01

    Full Text Available Static leach tests were conducted for simulated HLW glass in MgCl2 solution for up to 92 days to investigate the dissolution mechanism of HLW glass under coastal repository condition. Under the condition that magnesium ion exists in leachate, the dissolution rate of the glass did not decrease with time during leaching, while the rate decreased when the magnesium ion depleted in the leachate. In addition, altered layer including magnesium and silica was observed at the surface of the glass after the leach tests. The present results imply that dissolution of the glass is accompanied with formation of magnesium silicate consuming silica, a glass network former. As a consequence, the glass dissolved with an initial high dissolution rate.

  4. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; James Marra, J

    2007-09-17

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  5. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Callow, Richard A. [The Catholic University of America, Washington, DC (United States); Abramowitz, Howard [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Brandys, Marek [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-11-13

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.

  6. DOE-Managed HLW and SNF Research: FY15 EBS and Thermal Analysis Work Package Status.

    Energy Technology Data Exchange (ETDEWEB)

    Matteo, Edward N. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report examines the technical elements necessary to evaluate EBS concepts and perform thermal analysis of DOE-Managed SNF and HLW in the disposal settings of primary interest – argillite, crystalline, salt, and deep borehole. As the disposal design concept is composed of waste inventory, geologic setting, and engineered concept of operation, the engineered barrier system (EBS) falls into the last component of engineered concept of operation. The waste inventory for DOE-Managed HLW and SNF is closely examined, with specific attention to the number of waste packages, the size of waste packages, and the thermal output per package. As expected, the DOE-Managed HLW and SNF inventory has a much smaller volume, and hence smaller number of canisters, as well a lower thermal output, relative to a waste inventory that would include commercial spent nuclear fuel (CSNF). A survey of available data and methods from previous studies of thermal analysis indicates that, in some cases, thermo-hydrologic modeling will be necessary to appropriately address the problem. This report also outlines scope for FY16 work -- a key challenge identified is developing a methodology to effectively and efficiently evaluate EBS performance in each disposal setting on the basis of thermal analyses results.

  7. Recovery of small bioparticles by interfacial partitioning.

    Science.gov (United States)

    Jauregi, P; Hoeben, M A; van der Lans, R G J M; Kwant, G; van der Wielen, L A M

    2002-05-20

    In this article, a qualitative study of the recovery of small bioparticles by interfacial partitioning in liquid-liquid biphasic systems is presented. A range of crystallised biomolecules with varying polarities have been chosen such as glycine, phenylglycine and ampicillin. Liquid-liquid biphasic systems in a range of polarity differences were selected such as an aqueous two-phase system (ATPS), water-butanol and water-hexanol. The results indicate that interfacial partitioning of crystals occurs even when their density exceeds that of the individual liquid phases. Yet, not all crystals partition to the same extent to the interface to form a stable and thick interphase layer. This indicates some degree of selectivity. From the analysis of these results in relation to the physicochemical properties of the crystals and the liquid phases, a hypothetical mechanism for the interfacial partitioning is deduced. Overall these results support the potential of interfacial partitioning as a large scale separation technology. Copyright 2002 Wiley Periodicals, Inc.

  8. Radioactive waste generated from JAERI partitioning-transmutation cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Shinichi, Nakayama; Yasuji, Morita; Kenji, Nishihara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI processes. Long-lived radionuclides such as {sup 14}C and {sup 59}Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (author)

  9. Partitioning Breaks Communities

    OpenAIRE

    Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2011-01-01

    Considering a clique as a conservative definition of community structure, we examine how graph partitioning algorithms interact with cliques. Many popular community-finding algorithms partition the entire graph into non-overlapping communities. We show that on a wide range of empirical networks, from different domains, significant numbers of cliques are split across the separate partitions produced by these algorithms. We then examine the largest connected component of the subgraph formed by ...

  10. Are We Serious in the US about the Disposal of HLW? - 13561

    Energy Technology Data Exchange (ETDEWEB)

    Neill, Robert H. [New Mexico Environmental Evaluation Group (EEG), 9409 Thornton Ave., N.E., Albuquerque, New Mexico 87109 (United States)

    2013-07-01

    Since all efforts to date to dispose of HLW in the US have been unsuccessful, the following specific actions need to be taken if we are serious about such disposal: - The requirement in the EPA environmental radiation protection standards to predict the behavior of these unwanted residuals for one million years is meaningless. The Standards must be revisited. - Characterize two sites. There are myriad ways a site can be found to be unacceptable. Additionally, the existing HLW inventory requires a second repository. - Congress should specify incentives to states under consideration for a site. Perhaps 5% of total cost would be appropriate. - An independent technical review group should be established in such states to evaluate a proposed repository similar to the New Mexico Environmental Evaluation Group (EEG) for the WIPP Project because the state's interests are not necessarily the same as DOE's. - Acceptance or rejection of a proposed site should be based on technical issues, not social ones. Professionals in this field should present papers identifying the merits of HLW disposal in their own state. The scarcity of such research suggests Not In My Back Yard (NIMBY) syndrome. - Medical diagnostic ionizing radiation exposure to the US public is now 8,000 times greater than radiation exposure from nuclear energy. People accept this believing the benefits outweigh any risks. A major effort needs to focus on both benefits as well as risks of radioactive waste disposal. - DOE needs to announce preferences of host rock formations, incentives for states, and potential consequences should we fail to act. (author)

  11. HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

    2010-01-04

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

  12. Partitioning ecosystems for sustainability.

    Science.gov (United States)

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.

  13. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  14. Combinatorics of set partitions

    CERN Document Server

    Mansour, Toufik

    2012-01-01

    Focusing on a very active area of mathematical research in the last decade, Combinatorics of Set Partitions presents methods used in the combinatorics of pattern avoidance and pattern enumeration in set partitions. Designed for students and researchers in discrete mathematics, the book is a one-stop reference on the results and research activities of set partitions from 1500 A.D. to today. Each chapter gives historical perspectives and contrasts different approaches, including generating functions, kernel method, block decomposition method, generating tree, and Wilf equivalences. Methods and d

  15. Summary of International Waste Management Programs (LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW)

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Harris R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blink, James A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Halsey, William G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sutton, Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-08-11

    The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned; the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.

  16. Linked Partitions and Linked Cycles

    OpenAIRE

    Chen, William Y. C.; Wu, Susan Y. J.; Yan, Catherine H.

    2006-01-01

    The notion of noncrossing linked partition arose from the study of certain transforms in free probability theory. It is known that the number of noncrossing linked partitions of [n+1] is equal to the n-th large Schroder number $r_n$, which counts the number of Schroder paths. In this paper we give a bijective proof of this result. Then we introduce the structures of linked partitions and linked cycles. We present various combinatorial properties of noncrossing linked partitions, linked partit...

  17. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  18. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  19. Effect of composition on peraluminous glass properties: An application to HLW containment

    Science.gov (United States)

    Piovesan, V.; Bardez-Giboire, I.; Perret, D.; Montouillout, V.; Pellerin, N.

    2017-01-01

    Part of the Research and Development program concerning high level nuclear waste (HLW) glasses aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of thermal stability, chemical durability, and process ability. This study focuses on peraluminous glasses of the SiO2 - Al2O3 - B2O3 - Na2O - Li2O - CaO - La2O3 system, defined by an excess of aluminum ions Al3+ in comparison with modifier elements such as Na+, Li+ or Ca2+. To understand the effect of composition on physical properties of glasses (viscosity, density, Tg), a Design Of Experiments (DOE) approach was applied to investigate the peraluminous glass domain. The influence of each oxide was quantified to build predictive models for each property. Lanthanum and lithium oxides appear to be the most influential factors on peraluminous glass properties.

  20. Drop Calculations of HLW Canister and Pu Can-in-Canister

    Energy Technology Data Exchange (ETDEWEB)

    Sreten Mastilovic

    2001-07-31

    The objective of this calculation is to determine the structural response of the standard high-level waste (HLW) canister and the canister containing the cans of immobilized plutonium (Pu) (''can-in-canister'' [CIC] throughout this document) subjected to drop DBEs (design basis events) during the handling operation. The evaluated DBE in the former case is 7-m (23-ft) vertical (flat-bottom) drop. In the latter case, two 2-ft (0.61-m) corner (oblique) drops are evaluated in addition to the 7-m vertical drop. These Pu CIC calculations are performed at three different temperatures: room temperature (RT) (20 C ), T = 200 F = 93.3 C , and T = 400 F = 204 C ; in addition to these the calculation characterized by the highest maximum stress intensity is performed at T = 750 F = 399 C as well. The scope of the HLW canister calculation is limited to reporting the calculation results in terms of: stress intensity and effective plastic strain in the canister, directional residual strains at the canister outer surface, and change of canister dimensions. The scope of Pu CIC calculation is limited to reporting the calculation results in terms of stress intensity, and effective plastic strain in the canister. The information provided by the sketches from Reference 26 (Attachments 5.3,5.5,5.8, and 5.9) is that of the potential CIC design considered in this calculation, and all obtained results are valid for this design only. This calculation is associated with the Plutonium Immobilization Project and is performed by the Waste Package Design Section in accordance with Reference 24. It should be noted that the 9-m vertical drop DBE, included in Reference 24, is not included in the objective of this calculation since it did not become a waste acceptance requirement. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document.

  1. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    The purpose of the high-level waste (HLW) glass melt rate study is two-fold: (1) to gain a better understanding of the impact of feed chemistry on melt rate through bench-scale testing, and (2) to develop a predictive tool for melt rate in support of the on-going frit development efforts for the Defense Waste Processing Facility (DWPF). In particular, the focus is on predicting relative melt rates, not the absolute melt rates, of various HLW glass formulations solely based on feed chemistry, i.e., the chemistry of both waste and glass-forming frit for DWPF. Critical to the successful melt rate modeling is the accurate determination of the melting rates of various HLW glass formulations. The baseline procedure being used at the Savannah River National Laboratory (SRNL) is to; (1) heat a 4 inch-diameter stainless steel beaker containing a mixture of dried sludge and frit in a furnace for a preset period of time, (2) section the cooled beaker along its diameter, and (3) measure the average glass height across the sectioned face using a ruler. As illustrated in Figure 1-1, the glass height is measured for each of the 16 horizontal segments up to the red lines where relatively large-sized bubbles begin to appear. The linear melt rate (LMR) is determined as the average of all 16 glass height readings divided by the time during which the sample was kept in the furnace. This 'visual' method has proved useful in identifying melting accelerants such as alkalis and sulfate and further ranking the relative melt rates of candidate frits for a given sludge batch. However, one of the inherent technical difficulties of this method is to determine the glass height in the presence of numerous gas bubbles of varying sizes, which is prevalent especially for the higher-waste-loading glasses. That is, how the red lines are drawn in Figure 1-1 can be subjective and, therefore, may influence the resulting melt rates significantly. For example, if the red lines are drawn too low

  2. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  3. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  4. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  5. Goldbach Partitions and Sequences

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Goldbach Partitions and Sequences. Subhash Kak. General Article Volume 19 Issue 11 November 2014 pp 1028-1037. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/019/11/1028-1037 ...

  6. Goldbach Partitions and Sequences

    Indian Academy of Sciences (India)

    IAS Admin

    There is another version of the conjecture that states that every odd number greater than 7 is a sum of three odd primes. This is called the 'weak' Goldbach con- jecture. Computer experiments have shown that the conjectures are true for n ≤ 4 × 10. 18 . A representation of a number as a sum of primes is a prime partition.

  7. FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  8. Euler’s Partition Theorem

    Directory of Open Access Journals (Sweden)

    Pąk Karol

    2015-06-01

    Full Text Available In this article we prove the Euler’s Partition Theorem which states that the number of integer partitions with odd parts equals the number of partitions with distinct parts. The formalization follows H.S. Wilf’s lecture notes [28] (see also [1].

  9. Final Report - Testing of Optimized Bubbler Configuration for HLW Melter VSL-13R2950-1, Rev. 0, dated 6/12/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Callow, R. A.; Joseph, I.; Matlack, K. S.; Kot, W. K.

    2013-11-13

    The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACT testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.

  10. HLW Feed Delivery AZ101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements [Initial Release at Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, G.P.

    2000-02-28

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

  11. Final Report - Sulfate Solubility in RPP-WTP HLW Glasses, VSL-06R6780-1, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Feng, A.; Gan, H.; Kot, W. K.

    2013-12-03

    This report describes the results of work and testing specified by Test Specifications 24590-HLW-TSP-RT-01-006 Rev 1, Test Plans VSL-02T7800-1 Rev 1 and Test Exceptions 24590-HLW-TEF-RT-05-00007. The work and any associated testing followed established quality assurance requirements and were conducted as authorized. The descriptions provided in this report are an accurate account of both the conduct of the work and the data collected. Results required by the Test Plans are reported. Also reported are any unusual or anomalous occurrences that are different from the starting hypotheses. The test results and this report have been reviewed and verified.

  12. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  13. Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency.

  14. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  15. BKP plane partitions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2007-01-15

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.

  16. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Feng, Z.; Gan, H; Joseph, I.; Matlack, K. S.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without the formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.

  17. Development of geological disposal system; localization of element cost data and cost evaluation on the HLW repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Sik; Kim, Kil Jung; Yang, Young Jin; Kim, Sung Chun [KOPEC, Taejeon (Korea)

    2002-03-01

    To estimate Total Life Cycle Cost (TSLCC) for Korea HLW Repository through localization of element cost data, we review and re-organize each basic element cost data for reference repository system, localize various element cost and finally estimate TSLCC considering economic parameters. As results of the study, TSLCC is estimated as 17,167,689 million won, which includes costs for site preparation, surface facilities, underground facilities and management/integration. Since HLW repository Project is an early stage of pre-conceptual design at present, the information of design and project information are not enough to perform cost estimate and cost localization for the Project. However, project cost structure is re-organized based on the local condition and Total System Life Cycle Cost is estimated using the previous cost data gathered from construction experience of the local nuclear power plant. Project results can be used as basic reference data to assume total construction cost for the local HLW repository and should be revised to more reliable cost data with incorporating detail project design information into the cost estimate in a future. 20 refs. (Author)

  18. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, WA (United States); Rodriguez, C. A. [Pacific Northwest National Laboratory, Richland, WA (United States); Matyas, J. [Pacific Northwest National Laboratory, Richland, WA (United States); Owen, A. T. [Pacific Northwest National Laboratory, Richland, WA (United States); Jansik, D. P. [Pacific Northwest National Laboratory, Richland, WA (United States); Lang, J. B. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  19. IMPACT OF PARTICLE AGGLOMERATION ON ACCUMULATION RATES IN THE GLASS DISCHARGE RISER OF HLW MELTER

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Jansik, Danielle P.; Owen, Antionette T.; Rodriguez, Carmen P.; Lang, Jesse B.; Kruger, Albert A.

    2013-08-05

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with X-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185±155 µm, and produced >3 mm thick layer after 120 h at 850 °C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  20. Final Report - Glass Formulation Development and Testing for DWPF High AI2O3 HLW Sludges, VSL-10R1670-1, Rev. 0, dated 12/20/10

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Kot, W. K.; Gan, H.; Matlack, K. S.

    2013-11-13

    The principal objective of the work described in this Final Report is to develop and identify glass frit compositions for a specified DWPF high-aluminum based sludge waste stream that maximizes waste loading while maintaining high production rate for the waste composition provided by ORP/SRS. This was accomplished through a combination of crucible-scale, vertical gradient furnace, and confirmation tests on the DM100 melter system. The DM100-BL unit was selected for these tests. The DM100-BL was used for previous tests on HLW glass compositions that were used to support subsequent tests on the HLW Pilot Melter. It was also used to process compositions with waste loadings limited by aluminum, bismuth, and chromium, to investigate the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition, to process glass formulations at compositional and property extremes, and to investigate crystal settling on a composition that exhibited one percent crystals at 963{degrees}C (i.e., close to the WTP limit). The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. The tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Specific objectives for the melter tests are as follows: Determine maximum glass production rates without bubbling for a simulated SRS Sludge Batch 19 (SB19). Demonstrate a feed rate equivalent to 1125 kg/m{sup 2}/day glass production using melt pool bubbling. Process a high waste loading glass composition with the simulated SRS SB19 waste and measure the quality of the glass product. Determine the effect of argon as a bubbling gas on waste processing and the glass product including feed processing rate, glass redox, melter emissions, etc.. Determine differences in feed processing and glass characteristics for SRS SB19 waste simulated by the co-precipitated and direct

  1. Engineering for Operation of a Future Belgian Deep Geological Repository for ILW and HLW - 12379

    Energy Technology Data Exchange (ETDEWEB)

    Haverkamp, B.; Biurrun, E.; Nieder-Westermann, G.H. [DBE TECHNOLOGY GmbH, Peine (Germany); Van Humbeeck, H. [ONDRAF/NIRAS, Brussels (Belgium); Van Cotthem, Alain [Tractebel Engineering SA, Brussels (Belgium)

    2012-07-01

    In Belgium, an advanced conceptual design is being elaborated for deep geologic disposal of high level waste (HLW) and for low and intermediate level waste (LILW) not amenable for surface disposal. The concept is based on a shielded steel and concrete container for disposal of HLW, i.e., the Super-container. LILW will be disposed of in separately designed concrete caissons. The reference host rock is the Boom Clay, a poorly indurated clay formation in northeastern Belgium. Investigations into the potential host rock are conducted at the HADES underground research laboratory in Mol, Belgium. In 2009 the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) initiated a four year research project aimed at confirming the fundamental feasibility of building and operating a repository. The goal of the program is to demonstrate at a detailed conceptual level that the proposed geologic disposal system can be safely constructed, operated, and progressively closed. Part of the broader research efforts being conducted includes evaluations optimization of the waste transportation shaft, subsurface transportation system, ventilation system, and evaluation of backfilling and sealing concepts for the repository design. The potential for implementation of a waste retrieval strategy encompassing the first 100 years after emplacement is also considered. In the framework of a four year research program aimed at confirming the fundamental feasibility of building and operating a repository in poorly indurated clay design studies have been underway to optimize the waste transportation shaft, subsurface transportation system, and ventilation system. Additionally backfilling and sealing concepts proposed for the potential repository have been reviewed in conjunction with impacts related to the potential future inclusion of a retrievability requirement in governing regulations. The main engineering challenges in the Belgian repository concept are

  2. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1996-04-26

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 {degree}C, 30 {degree}C, 40 {degree}C, and 50 {degree}C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  3. Need for USA high level waste (HLW) alternate geological repository (AGR) and for a different methodology to enhance its acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Salomon, E-mail: slevy112@aol.co [3425 South Bascom Avenue, Suite 225, Campbell, CA 95008 (United States)

    2010-10-15

    In early February 2010, the administration stopped work and withdrew the Department of Energy (DOE) application for a construction permit for the Yucca Mountain geological repository from the Nuclear Regulatory Commission (NRC). Also, a 'blue ribbon' Commission was appointed to explore alternatives for storage, processing, and disposal, including evaluation of advanced fuel cycles and to provide a final report in 24 months. That decision, however, failed to recognize that: (1) the U.S. will need an early alternate geological repository (AGR) for its HLW irrespective of the findings of the 'blue ribbon' Commission; (2) the once-through spent fuel inventory from commercial nuclear power reactors will continue to rise and so will the damages against the government for its failure to remove spent fuel from reactors sites, as specified in contracts; (3) there are prepackaged DOE and nuclear weapons HLW ready for shipment to a repository which must be taken into account because of government penalties for failure to do so; (4) the current Nuclear Waste Policy Act (NWPA) needs to be modified to allow the early search and approval of Alternate Geological Repository (AGR) and for an interim centralized HLW storage facility to reduce government liabilities; and (5) the methodology used to license Yucca Mountain needs to undergo serious modifications, including a different non-politicized management and siting credo. This paper reviews and discusses all the preceding shortcomings and proposes significant changes to pursue AGR as soon as possible and to get site approval by the NRC first under a formal, stepwise, well-structured risk-informed decision approach as recommended.

  4. Dose Calculations for the Co-Disposal WP-of HLW-Glass and the Triga SNF

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulescu

    1999-08-02

    This calculation is prepared by the Monitored Geologic Repository (MGR) Waste Package Operations (WPO). The purpose of this calculation is to determine the surface dose rates of a codisposal waste package (WP) containing a centrally located Department of Energy (DOE) standardized 18-in. spent nuclear fuel (SNF) canister, loaded with the TRIGA (Training, Research, Isotopes, General Atomics) SNF. This canister is surrounded by five 3-m long canisters, loaded with Savannah River Site (SRS) high-level waste (HLW) glass. The results are to support the WP design and radiological analyses.

  5. An Investigation of Document Partitions.

    Science.gov (United States)

    Shaw, W. M., Jr.

    1986-01-01

    Empirical significance of document partitions is investigated as a function of index term-weight and similarity thresholds. Results show the same empirically preferred partitions can be detected by two independent strategies: an analysis of cluster-based retrieval analysis and an analysis of regularities in the underlying structure of the document…

  6. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    with a power-law energy spectrum, is analogous to ps(n), that is, the number of ways of partitioning an ... of states of a pseudofermion-like system in a power-law energy spectrum. The name pseudofermion is ..... [3] G E Andrews, The theory of partitions (Addison-Wesley Publishing Company, Read- ing, Mass, 1976) p. 1.

  7. Nested partitions method, theory and applications

    CERN Document Server

    Shi, Leyuan

    2009-01-01

    There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...

  8. Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments

    Science.gov (United States)

    Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.

  9. FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; BARDAKCI T; D' ANGELO NA; GONG W; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test success criteria), along with how they were met, are outlined in a table.

  10. Solubilities of significant compounds in HLW tank supernate solutions - FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1996-09-30

    The solubilities of two sodium salts of organic acids that are thought to exist in high-level waste at the Hanford Site were measured in tank supernate simulant solutions during FY1996 This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium butyrate and trisodium N-(2-hydroxyethyl)ethylenediaminetriacetate were measured in simulated waste supernate solutions at 25 {degrees}C, 30 {degrees}C, 40 {degrees}C, and 50 {degrees}C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. Two types of tank supernate simulants were used - a 4.O M sodium nitrate - 0.97 M sodium nitrite solution with sodium hydroxide concentrations ranging from O.00003 M to 2.O M and a 2.O M sodium nitrite solution saturated with crystalline sodium nitrate with sodium hydroxide concentrations ranging from 0.1 M to 2. 0 M. The solubilities of sodium butyrate and trisodium N-(2-hydroxyethyl)ethylene- diaminetriacetate in both types of HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. The solubilities of these compounds are similar (in terms of total organic carbon) to sodium glycolate, succinate, caproate, dibutylphosphate, citrate, formate, ethylenediaminetetraacetate, and nitrilotriacetate which were measured previously. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (TOC) of actual tank supernates are generaly much lower than the TOC ranges for the simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is true even if all the dissolved carbon in a given tank supernate is due to only one of these eight soluble

  11. Site selection process for a HLW geological repository in France. A convergence approach

    Energy Technology Data Exchange (ETDEWEB)

    Solente, N.; Ouzounian, G.; Miguez, R.; Tison, J-L. [ANDRA Agence Nationale pour la Gestion des Dechets Radioactifs, Chatenay-Malabry (France)

    2011-07-01

    On December 1991, the French National Assembly passed the French Waste Management Research Act, authorizing and initiating a 15 year research program along three options for HLW long term solution: separation and/or transmutation, long-term storage, and geologic disposal. On June 2006, the 'Planning Act on the sustainable management of radioactive materials and waste' sets a new framework and new aims to the above mentioned options. This paper deals only with the geologic disposal research program. In a step by step approach, this program has been broken down into three phases, each having intermediate objectives: site selection for an Underground research Laboratory (URL), disposal feasibility demonstration, reversible disposal design. The first step of the research program aimed at URL site selection. From 1994 to 1996, Andra carried out geological characterization surveys in four French districts, leading to the Request for Licensing and Operation of laboratory facilities on three sites. During this phase, boreholes, 2D seismic campaigns and outcrops geologic studies were the main sources of data. The result was the selection of Bure area, the most suitable site for the implementation of an underground laboratory. Main results on Bure URL will be presented in the paper. In the second phase the research program targeted the safety and technical feasibility of a reversible disposal site, located in Meuse or Haute Marne districts, as selected by the government in 1998. Andra conducted geologic survey during the URL shaft sinking and experiments in drifts at depths of 445 and 490 m. This program allowed consolidating the knowledge already acquired: geological environment, stability of the rock and the regional geology, and containment properties. The 2005 Progress Report presents the results of this phase. The main conclusion is that a potential disposal facility may be safely constructed over a zone with geological characteristics similar to those

  12. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been

  13. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    system was reconfigured to enable testing of the baseline HLW or LAW off-gas trains to perform off-gas emissions testing with both LAW and HLW simulants in the present work. During 2002 and 2003, many of these off-gas components were tested individually and in an integrated manner with the DM1200 Pilot Melter. Data from these tests are being used to support engineering design confirmation and to provide data to support air permitting activities. In fiscal year 2004, the WTP Project was directed by the Office of River Protection (ORP) to comply with Environmental Protection Agency (EPA) Maximum Achievable Control Technology (MACT) requirements for organics. This requires that the combined melter and off-gas system have destruction and removal efficiency (DRE) of >99.99% for principal organic dangerous constituents (PODCs). In order to provide confidence that the melter and off-gas system are able to achieve the required DRE, testing has been directed with both LAW and HLW feeds. The tests included both 'normal' and 'challenge' WTP melter conditions in order to obtain data for the potential range of operating conditions for the WTP melters and off-gas components. The WTP Project, Washington State Department of Ecology, and ORP have agreed that naphthalene will be used for testing to represent semi-volatile organics and allyl alcohol will be used to represent volatile organics. Testing was also performed to determine emissions of halides, metals, products of incomplete combustion (PICs), dioxins, furans, coplanar PCBs, total hydrocarbons, and COX and NOX, as well as the particle size distribution (PSD) of particulate matter discharged at the end of the off-gas train. A description of the melter test requirements and analytical methods used is provided in the Test Plan for this work. Test Exceptions were subsequently issued which changed the TCO catalyst, added total organic emissions (TOE) to exhaust sampling schedule, and allowing modification of the

  14. BENEFITS OF VIBRATION ANALYSIS FOR DEVELOPMENT OF EQUIPMENT IN HLW TANKS - 12341

    Energy Technology Data Exchange (ETDEWEB)

    Stefanko, D.; Herbert, J.

    2012-01-10

    Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely

  15. Hawk: A Runtime System for Partitioned Objects

    NARCIS (Netherlands)

    Ben Hassen, S.; Bal, H.E.; Tanenbaum, A.S.

    1997-01-01

    Hawk is a language-independent runtime system for writing data-parallel programs using partitioned objects. A partitioned object is a multidimensional array of elements that can be partitioned and distributed by the programmer. The Hawk runtime system uses the user-defined partitioning of objects

  16. A Timing-Driven Partitioning System for Multiple FPGAs

    Directory of Open Access Journals (Sweden)

    Kalapi Roy

    1996-01-01

    Full Text Available Field-programmable systems with multiple FPGAs on a PCB or an MCM are being used by system designers when a single FPGA is not sufficient. We address the problem of partitioning a large technology mapped FPGA circuit onto multiple FPGA devices of a specific target technology. The physical characteristics of the multiple FPGA system (MFS pose additional constraints to the circuit partitioning algorithms: the capacity of each FPGA, the timing constraints, the number of I/Os per FPGA, and the pre-designed interconnection patterns of each FPGA and the package. Existing partitioning techniques which minimize just the cut sizes of partitions fail to satisfy the above challenges. We therefore present a timing driven N-way partitioning algorithm based on simulated annealing for technology-mapped FPGA circuits. The signal path delays are estimated during partitioning using a timing model specific to a multiple FPGA architecture. The model combines all possible delay factors in a system with multiple FPGA chips of a target technology. Furthermore, we have incorporated a new dynamic net-weighting scheme to minimize the number of pin-outs for each chip. Finally, we have developed a graph-based global router for pin assignment which can handle the pre-routed connections of our MFS structure. In order to reduce the time spent in the simulated annealing phase of the partitioner, clusters of circuit components are identified by a new linear-time bottom-up clustering algorithm. The annealing-based N-way partitioner executes four times faster using the clusters as opposed to a flat netlist with improved partitioning results. For several industrial circuits, our approach outperforms the recursive min-cut bi-partitioning algorithm by 35% in terms of nets cut. Our approach also outperforms an industrial FPGA partitioner by 73% on average in terms of unroutable nets. Using the performance optimization capabilities in our approach we have successfully partitioned the

  17. Thermo-hydro-mechanical processes in the nearfield around a HLW repository in argillaceous formations. Vol. I. Laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang; Czaikowski, Oliver; Rothfuchs, Tilmann; Wieczorek, Klaus

    2013-06-15

    All over the world, clay formations are being investigated as host medium for geologic disposal of radioactive waste because of their favourable properties, such as very low hydraulic conductivity against fluid transport, good sorption capacity for retardation of radionuclides, and high potential of self-sealing of fractures. The construction of a repository, the disposal of heat-emitting high-level radioactive waste (HLW), the backfilling and sealing of the remaining voids, however, will inevitably induce mechanical (M), hydraulic (H), thermal (T) and chemical (C) disturbances to the host formation and the engineered barrier system (EBS) over very long periods of time during the operation and post-closure phases of the repository. The responses and resulting property changes of the clay host rock and engineered barriers are to be well understood, characterized, and predicted for assessing the long-term performance and safety of the repository.

  18. Comparison of sodium zirconium phosphate-structured HLW forms and synroc for high-level nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Zyryanov, V.N. [Argonne National Lab., IL (United States); Vance, E.R. [ANSTO, Menai (Australia). Materials Division

    1996-12-31

    The incorporation of (a) Cs/Sr as simulated heat-generating isotopes contained in Purex reprocessing waste, (b) simulated actinides, and (c) simulated Purex waste in sodium zirconium phosphate (NZP) has been studied. The samples were prepared by sintering, by hot pressing and by hot isostatic pressing in metal bellows containers. The short-term chemical durability of the phosphate-based material containing Purex waste was within an order of magnitude of that for Synroc-C, as measured by 7-day MCC-1 tests at 90{degrees}C. The dissolution behavior showed evidence of re-precipitation phenomena, even after times as short as 28 days. Potential for improvement of NZP-based ceramics for HLW management is discussed. 19 refs., 4 figs., 3 tabs.

  19. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.

    2013-01-16

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur

  20. Survey and analysis of the domestic technology level for the concept development of high level waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byung Su; Song, Jae Hyok [Seoul National University, Seoul (Korea); Park, Kwang Hon; Hwang, Ju Ho; Park, Sung Hyun; Lee, Jae Min [Kyunghee University, Seoul (Korea); Han, Joung Sang; Kim, Ku Young [Yonsei University, Seoul (Korea); Lee, Jae Ki; Chang, Jae Kwon [Hangyang University, Seoul (Korea)

    1998-09-01

    The objectives of this study are the analysis of the status of HLW disposal technology and the investigation of the domestic technology level. The study has taken two years to complete with the participation of forty five researchers. The study was mainly carried out through means of literature surveys, collection of related data, visits to research institutes, and meetings with experts in the specific fields. During the first year of this project, the International Symposium on the Concept Development of the High Level Waste Disposal System was held in Taejon, Korea in October, 1997. Eight highly professed foreign experts whose fields of expertise projected to the area of high level waste disposal were invited to the symposium. This study is composed of four major areas; disposal system design/construction, engineered barrier characterization, geologic environment evaluation and performance assessment and total safety. A technical tree scheme of HLW disposal has been illustrated according to the investigation and an analysis for each technical area. For each detailed technology, research projects, performing organization/method and techniques that are to be secured in the order of priority are proposed, but the suggestions are merely at a superfluous level of propositional idea due to the reduction of the budget in the second year. The detailed programs on HLW disposal are greatly affected by governmental HLW disposal policy and in this study, the primary decisions to be made in each level of HLW disposal enterprise and a rough scheme are proposed. (author). 20 refs., 97 figs., 33 tabs.

  1. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter

    2014-12-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  2. Asymptotic prime partitions of integers

    Science.gov (United States)

    Bartel, Johann; Bhaduri, R. K.; Brack, Matthias; Murthy, M. V. N.

    2017-05-01

    In this paper, we discuss P (n ) , the number of ways a given integer n may be written as a sum of primes. In particular, an asymptotic form Pas(n ) valid for n →∞ is obtained analytically using standard techniques of quantum statistical mechanics. First, the bosonic partition function of primes, or the generating function of unrestricted prime partitions in number theory, is constructed. Next, the density of states is obtained using the saddle-point method for Laplace inversion of the partition function in the limit of large n . This gives directly the asymptotic number of prime partitions Pas(n ) . The leading term in the asymptotic expression grows exponentially as √{n /ln(n ) } and agrees with previous estimates. We calculate the next-to-leading-order term in the exponent, proportional to ln[ln(n )]/ln(n ) , and we show that an earlier result in the literature for its coefficient is incorrect. Furthermore, we also calculate the next higher-order correction, proportional to 1 /ln(n ) and given in Eq. (43), which so far has not been available in the literature. Finally, we compare our analytical results with the exact numerical values of P (n ) up to n ˜8 ×106 . For the highest values, the remaining error between the exact P (n ) and our Pas(n ) is only about half of that obtained with the leading-order approximation. But we also show that, unlike for other types of partitions, the asymptotic limit for the prime partitions is still quite far from being reached even for n ˜107 .

  3. Image segmentation by graph partitioning

    Science.gov (United States)

    Torres, Ana Sofia; Monteiro, Fernando C.

    2012-09-01

    In this paper we propose an hybrid method for the image segmentation which combines the edge-based, region-based and the morphological techniques in conjunction through the spectral based clustering approach. An initial partitioning of the image into atomic regions is set by applying a watershed method to the image gradient magnitude. This initial partition is the input to a computationally efficient region segmentation process which produces the final segmentation. We have applied our approach on several images of the Berkeley Segmentation Dataset. The results reveal the accuracy of the propose method.

  4. Analysis of load balance in hybrid partitioning | Talib | Botswana ...

    African Journals Online (AJOL)

    In information retrieval systems, there are three types of index partitioning schemes - term partitioning, document partitioning, and hybrid partitioning. The hybrid-partitioning scheme combines both term and document partitioning schemes. Term partitioning provides high concurrency, which means that queries can be ...

  5. Derived Requirements for Double Shell Tank (DST) High Level Waste (HLW) Auxiliary Solids Mobilization

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-02-28

    The potential need for auxiliary double-shell tank waste mixing and solids mobilization requires an evaluation of optional technologies. This document formalizes those operating and design requirements needed for further engineering evaluations.

  6. The optimal graph partitioning problem

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros; Holm, Søren

    1993-01-01

    In this paper we consider the problem of partitioning the set of nodes in a graph in at most p classes, such that the sum of node weights in any class is not greater than the class capacity b, and such that the sum of edge weights, for edges connecting nodes in the same class, is maximal. This pr...

  7. Partitioning of a DRM receiver

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Smit, L.T.

    In this article we present the results of partitioning the OFDM baseband processing of a DRM receiver into smaller independent processes. Furthermore, we give a short introduction into the relevant parts of the DRM standard. Based on the number of multiplications and additions we can map individual

  8. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    In a recent paper (Tran et al, Ann. Phys. 311, 204 (2004)), some asymptotic number theoretical results on the partitioning of an integer were derived exploiting its connection to the quantum density of states of a many-particle system. We generalise these results to obtain an asymptotic formula for the restricted or coloured ...

  9. Gait Partitioning Methods: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2016-01-01

    Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  10. Final Report - Effects of High Spinel and Chromium Oxide Crystal Contents on Simulated HLW Vitrification in DM100 Melter Tests, VSL-09R1520-1, Rev. 0, dated 6/22/09

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Matlack, K. S.; Kot, W.; Pegg, I. L.; Chaudhuri, M.; Lutze, W.

    2013-11-13

    The principal objective of the work was to evaluate the effects of spinel and chromium oxide particles on WTP HLW melter operations and potential impacts on melter life. This was accomplished through a combination of crucible-scale tests, settling and rheological tests, and tests on the DM100 melter system. Crucible testing was designed to develop and identify HLW glass compositions with high waste loadings that exhibit formation of crystalline spinel and/or chromium oxide phases up to relatively high crystal contents (i.e., > 1 vol%). Characterization of crystal settling and the effects on melt rheology was performed on the HLW glass formulations. Appropriate candidate HLW glass formulations were selected, based on characterization results, to support subsequent melter tests. In the present work, crucible melts were formulated that exhibit up to about 4.4 vol% crystallization.

  11. APPLICATION OF MECHANICAL ACTIVATION TO PRODUCTION OF PYROCHLORE CERAMIC CONTAINING SIMULATED RARE-EARTH ACTINIDE FRACTION OF HLW

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V.; Kirjanova, O.I.; Chizhevskaya, S.V.; Yudintsev, S.V.; Nikonov, B.S.

    2003-02-27

    Samples of zirconate pyrochlore ceramic (REE)2(Zr,U)2O7 (REE = La-Gd) containing simulated REE-An fraction of HLW were synthesized by two routes: (1) conventional cold compaction of oxide mixtures in pellets under pressure of 200 MPa and sintering of the pellets at 1550 C for 24 hours; and (2) using preliminary mechanical activation of oxide powders in a linear inductive rotator (LIV-0.5E) and a planetary mill - activator with hydrostatic yokes (AGO-2U) for 5 or 10 min. All the samples sintered at 1550 C were monolithic and dense with high mechanical integrity. As follows from X-ray diffraction (XRD) data, the ceramic sample produced without mechanical activation is composed of pyrochlore as major phase but contains also minor unreacted oxides. The samples prepared from pre-activated mixtures are composed of the pyrochlore structure phase only. Scanning electron microscopy (SEM) data also show higher structural and compositional homogeneity of the samples prepared from mechanically activated batches. The samples produced from oxide mixtures mechanically activated in the LIV for 10 min were slightly contaminated with iron resulting in formation of minor perovskite structure phase not detected by XRD but seen on SEM-images of the samples. Comparison of the samples prepared from non-activated and activated batches showed higher density, lower open porosity, water uptake, and elemental leaching for the samples fabricated from mechanically activated oxide mixtures.

  12. Spectral partitioning in equitable graphs

    Science.gov (United States)

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  13. Hanford Supplemental Treatment: Literature and Modeling Review of SRS HLW Salt Dissolution and Fractional Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S.; Flach, G. P.; Martino, C. J.; Zamecnik, J. R.; Harris, M. K.; Wilmarth, W. R.; Calloway, T. B.

    2005-03-23

    In order to accelerate waste treatment and disposal of Hanford tank waste by 2028, the Department of Energy (DOE) and CH2M Hill Hanford Group (CHG), Inc. are evaluating alternative technologies which will be used in conjunction with the Waste Treatment Plant (WTP) to safely pretreat and immobilize the tank waste. Several technologies (Bulk Vitrification and Steam Reforming) are currently being evaluated for immobilizing the pretreated waste. Since the WTP does not have sufficient capacity to pretreat all the waste going to supplemental treatment by the 2028 milestone, two technologies (Selective Dissolution and Fractional Crystallization) are being considered for pretreatment of salt waste. The scope of this task was to: (1) evaluate the recent Savannah River Site (SRS) Tank 41 dissolution campaign and other literature to provide a more complete understanding of selective dissolution, (2) provide an update on the progress of salt dissolution and modeling activities at SRS, (3) investigate SRS experience and outside literature sources on industrial equipment and experimental results of previous fractional crystallization processes, and (4) evaluate recent Hanford AP104 boildown experiments and modeling results and recommend enhancements to the Environmental Simulation Program (ESP) to improve its predictive capabilities. This report provides a summary of this work and suggested recommendations.

  14. The k partition-distance problem.

    Science.gov (United States)

    Chen, Yen Hung

    2012-04-01

    Many applications of data partitioning (clustering) have been well studied in bioinformatics. Consider, for instance, a set N of organisms (elements) based on DNA marker data. A partition divides all elements in N into two or more disjoint clusters that cover all elements, where a cluster contains a non-empty subset of N. Different partitioning algorithms may produce different partitions. To compute the distance and find the consensus partition (also called consensus clustering) between two or more partitions are important and interesting problems that arise frequently in bioinformatics and data mining, in which different distance functions may be considered in different partition algorithms. In this article, we discuss the k partition-distance problem. Given a set of elements N with k partitions of N, the k partition-distance problem is to delete the minimum number of elements from each partition such that all remaining partitions become identical. This problem is NP-complete for general k > 2 partitions, and no algorithms are known at present. We design the first known heuristic and approximation algorithms with performance ratios 2 to solve the k partition-distance problem in O(k · ρ · |N|) time, where ρ is the maximum number of clusters of these k partitions and |N| is the number of elements in N. We also present the first known exact algorithm in O(ℓ · 2(ℓ)·k(2) · |N|(2)) time, where ℓ is the partition-distance of the optimal solution for this problem. Performances of our exact and approximation algorithms in testing the random data with actual sets of organisms based on DNA markers are compared and discussed. Experimental results reveal that our algorithms can improve the computational speed of the exact algorithm for the two partition-distance problem in practice if the maximum number of elements per cluster is less than ρ. From both theoretical and computational points of view, our solutions are at most twice the partition

  15. Thermo-hydro-mechanical processes in the nearfield around a HLW repository in argillaceous formations. Vol. II. In-situ-investigations and interpretative modelling. May 2007 to May 2013

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang; Czaikowski, Oliver; Komischke, Michael; Wieczorek, Klaus

    2014-06-15

    Deep disposal of heat-emitting high-level radioactive waste (HLW) in clay formations will inevitably induce thermo-hydro-mechanical-chemical disturbances to the host rock and engineered barriers over very long periods of time. The responses and resulting property changes of the natural and engineered barriers are to be well understood, characterized, and predicted for assessing the long-term performance and safety of the repositories. In accordance with the R and D programme defined by the German Federal Ministry of Economics and Technology (BMWi), GRS has intensively performed site-independent research work on argillaceous rocks during the last decade. Most of the investigations have been carried out on the Callovo-Oxfordian argillite and the Opalinus clay by par-ticipation in international research projects conducted at the underground research laboratories at Bure in France (MHM-URL) and Mont-Terri in Switzerland (MT-URL). The THM-TON project, which was funded by BMWi under contract number 02E10377, in-vestigated the THM behaviours of the clay host rock and clay-based backfill/sealing materials with laboratory tests, in situ experiments and numerical modelling.

  16. High-level waste management technology program plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  17. Combinatorial set theory partition relations for cardinals

    CERN Document Server

    Erdös, P; Hajnal, A; Rado, P

    2011-01-01

    This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel''skii''s famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of

  18. Remaining porosity and permeability of compacted crushed rock salt backfill in a HLW repository. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Mueller, C.; Schirmer, S.

    2015-11-15

    filling of the pore spaces with solution. In this context, the porosity range of < 3% has special significance. The relevant processes influencing the hydraulic parameters of the crushed salt backfill are still not described in sufficient detail. For the compaction of dry crushed salt, various theoretical constitutive approaches have been developed (Spiers et al., 1989, Hein, 1991, Zhang et al., 1993, Heemann, 2004) and verified within the scope of the BAMBUS project (Bechthold, 2004) where the porosity range 10%<φ<35% has been calibrated. The contribution of DBE TECHNOLOGY GmbH to the project consisted mainly of microstructural investigations and by applying discrete element computer codes to evaluate their applicability to simulate compaction processes. This work is described in this report.

  19. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and

  20. SRS tank closure. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-08-01

    High-level waste (HLW) tank closure technology is designed to stabilize any remaining radionuclides and hazardous constituents left in a tank after bulk waste removal. Two Savannah River Site (SRS) HLW tanks were closed after cleansing and then filling each tank with three layers of grout. The first layer consists of a chemically reducing grout. The fill material has chemical properties that retard the movement of some radionuclides and chemical constituents. A layer of controlled low-strength material (CLSM), a self-leveling fill material, is placed on top of the reducing grout. CLSM provides sufficient strength to support the overbearing weight. The final layer is a free-flowing, strong grout similar to normal concrete. After the main tank cavity is filled, risers are filled with grout, and all waste transfer piping connected to the tank is isolated. The tank ventilation system is dismantled, and the remaining systems are isolated. Equipment that remains with the tank is filled with grout. The tank and ancillary systems are left in a state requiring only limited surveillance. Administrative procedures are in place to control land use and access. DOE eventually plans to remove all of its HLW storage tanks from service. These tanks are located at SRS, Hanford, and Idaho National Engineering and Environmental Laboratory. Low-activity waste storage tanks at Oak Ridge Reservation are also scheduled for closure.

  1. Partition functions of pure spinors

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, P.A. [Centro Studi e Ricerche E. Fermi, Compendio Viminale, I-00184 Rome (Italy) and DISTA, Universita del Piemonte Orientale, Via Bellini 25/g, Alessandria 15100 (Italy) and INFN, Sezione di Torino (Italy) and CERN, Theory Unit, CH-1211 Geneva 23 (Switzerland)]. E-mail: pgrassi@insti.physics.sunysb.edu; Morales Morera, J.F. [CERN, Theory Unit, CH-1211 Geneva 23 (Switzerland)]. E-mail: fmorales@cern.ch

    2006-09-04

    We compute partition functions describing multiplicities and charges of massless and first massive string states of pure-spinor superstrings in 3, 4, 6, 10 dimensions. At the massless level we find a spin-one gauge multiplet of minimal supersymmetry in d dimensions. At the first massive string level we find a massive spin-two multiplet. The result is confirmed by a direct analysis of the BRST cohomology at ghost number one. The central charges of the pure spinor systems are derived in a manifestly SO(d) covariant way confirming that the resulting string theories are critical. A critical string model with N=(2,0) supersymmetry in d=2 is also described.

  2. HPAM: Hirshfeld partitioned atomic multipoles

    Science.gov (United States)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio

  3. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol...

  4. Generating Milton Babbitt's all-partition arrays

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms of a t...

  5. Compactified webs and domain wall partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2017-04-15

    In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)

  6. DELPHI's central partition

    Energy Technology Data Exchange (ETDEWEB)

    Barao, F.; Gaspar, C.; Martin, B.; Pimenta, M.; Reis, M.; Varela, J. (LIP, Lisbon (Portugal)); Gavillet, P.; Moreau, P. (European Organization for Nuclear Research, Geneva (Switzerland)); Laugier, J.P. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires)

    1989-12-01

    We describe the software involved in the central partition of the data acquisition for the DELPHI experiment at CERN. The central partition is responsible for collecting the data from the fourteen subdetectors of DELPHI, perform the fourth level trigger and prepare the data to be stored on magnetic tape. (orig.).

  7. Partitions of sets and the Riemann integral

    OpenAIRE

    Ungar, Š.

    2006-01-01

    We will discuss the definition of the Riemann integral using general partitions and give an elementary explication, without resorting to nets, generalized sequences and such, of what is meant by saying that "the Riemann integral is the limit of Darboux sums when the mesh of the partition approaches zero".

  8. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn

  9. Data Partitioning Technique for Improved Video Prioritization

    Directory of Open Access Journals (Sweden)

    Ismail Amin Ali

    2017-07-01

    Full Text Available A compressed video bitstream can be partitioned according to the coding priority of the data, allowing prioritized wireless communication or selective dropping in a congested channel. Known as data partitioning in the H.264/Advanced Video Coding (AVC codec, this paper introduces a further sub-partition of one of the H.264/AVC codec’s three data-partitions. Results show a 5 dB improvement in Peak Signal-to-Noise Ratio (PSNR through this innovation. In particular, the data partition containing intra-coded residuals is sub-divided into data from: those macroblocks (MBs naturally intra-coded, and those MBs forcibly inserted for non-periodic intra-refresh. Interactive user-to-user video streaming can benefit, as then HTTP adaptive streaming is inappropriate and the High Efficiency Video Coding (HEVC codec is too energy demanding.

  10. Two nouns in partitives: evidence from Japanese

    Directory of Open Access Journals (Sweden)

    Uli Sauerland

    2017-02-01

    Full Text Available We consider the proposal that partitives always contain two positions for nouns which may be filled by silent material from the perspective of Japanese. We argue that it provides a novel account for cases of quantificational expressions that are frequently marked with genitive case in Japanese. Genitive case attached to nouns marks possession or partitivity, but on quantifiers it has been previously regarded as purely morphological. We show that genitive case on quantifiers can be analyzed as regular genitive case, and identify two distinct structures based on the two noun partitive structure. Specifically, we claim that the genitive suffix can be stranded by NP ellipsis, but when it can attach to a preceeding quantifier the structure remains grammatical. Our analysis therefore supports an analysis of partitives assuming two noun positions where ellipsis can target one or both of those two nouns. This article is part of Special Collection: Partitives

  11. Purification of biomaterials by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  12. Spectral partitioning in diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K; Chambers, D H; Candy, J V

    1999-06-14

    The scattering mechanism of diffraction tomography is described by the integral form of the Helmholtz equation. The goal of diffraction tomography is to invert this equation in order to reconstruct the object function from the measured scattered fields. During the forward propagation process, the spatial spectrum of the object under investigation is ''smeared,'' by a convolution in the spectral domain, across the propagating and evanescent regions of the received field. Hence, care must be taken in performing the reconstruction, as the object's spectral information has been moved into regions where it may be considered to be noise rather than useful information. This will reduce the quality and resolution of the reconstruction. We show haw the object's spectrum can be partitioned into resolvable and non-resolvable parts based upon the cutoff between the propagating and evanescent fields. Operating under the Born approximation, we develop a beam-forming on transmit approach to direct the energy into either the propagating or evanescent parts of the spectrum. In this manner, we may individually interrogate the propagating and evanescent regions of the object spectrum.

  13. Influence of residual surfactants on DNAPL characterization using partitioning tracers

    Science.gov (United States)

    Cho, Jaehyun; Annable, Michael D.; Rao, P. Suresh C.

    2004-08-01

    The partitioning tracer technique is among the DNAPL source-zone characterization methods being evaluated, while surfactant in-situ flushing is receiving attention as an innovative technology for enhanced source-zone cleanup. Here, we examine in batch and column experiments the magnitude of artifacts introduced in estimating DNAPL content when residual surfactants are present. The batch equilibrium tests, using residual surfactants ranging from 0.05 to 0.5 wt.%, showed that as the surfactant concentrations increased, the tracer partition coefficients decreased linearly for sodium hexadecyl diphenyl oxide disulfonate (DowFax 8390), increased linearly for polyoxyethylene (10) oleyl ether (Brij 97), and decreased slightly or exhibited no observable trend for sodium dihexyl sulfosuccinate (AMA 80). Results from column tests using clean sand with residual DowFax 8390 and Tetrachloroethylene (PCE) were consistent with those of batch tests. In the presence of DowFax 8390 (less than 0.5 wt.%), the PCE saturations were underestimated by up to 20%. Adsorbed surfactants on a loamy sand with positively charged oxides showed false indications of PCE saturation based on partitioning tracers in the absence of PCE. Using no surfactant (background soil) gave a false PCE saturation of 0.0004, while soil contacted by AMA 80, Brij 97, and DowFax 8390 gave false PCE saturations of 0.0024, 0.043, and 0.23, respectively.

  14. OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS BRADLEY W. JACKSON*, JEFFREY D. SCARGLE, AND CHRIS CUSANZA, DAVID BARNES, DENNIS KANYGIN, RUSSELL SARMIENTO, SOWMYA...

  15. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    origin regions to specific subcellular sites (i.e. the poles or quarter-cell positions). Two types of partitioning ATPases are known: the Walker-type ATPases encoded by the par/sop gene family (type I partitioning loci) and the actin-like ATPase encoded by the par locus of plasmid R1 (type II...... partitioning locus). A phylogenetic analysis of the large family of Walker type of partitioning ATPases yielded a surprising pattern: most of the plasmid-encoded ATPases clustered into distinct subgroups. Surprisingly, however, the par loci encoding these distinct subgroups have different genetic organizations...... and thus divide the type I loci into types Ia and Ib. A second surprise was that almost all chromosome-encoded ATPases, including members from both Gram-negative and Gram-positive Bacteria and Archaea, clustered into one distinct subgroup. The phylogenetic tree is consistent with lateral gene transfer...

  16. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  17. Cell Partition in Two Polymer Aqueous Phases

    Science.gov (United States)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  18. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...

  19. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  20. Advanced Coarsening Schemes for Graph Partitioning

    OpenAIRE

    Safro, Ilya; Sanders, Peter; Schulz, Christian

    2012-01-01

    The graph partitioning problem is widely used and studied in many practical and theoretical applications. The multilevel strategies represent today one of the most effective and efficient generic frameworks for solving this problem on large-scale graphs. Most of the attention in designing the multilevel partitioning frameworks has been on the refinement phase. In this work we focus on the coarsening phase, which is responsible for creating structurally similar to the original but smaller grap...

  1. Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Baljit Singh Khehra

    2015-03-01

    Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.

  2. INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; FENG Z; GAN H; PEGG IL

    2009-11-05

    Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

  3. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29

    This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and

  4. Partitioning and transmutation (P and T) 1997. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Gudowski, W.; Wallenius, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  5. Japan-Australia co-operative program on research and development of technology for the management of high level radioactive wastes. Final report 1985 to 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hart, K.; Vance, E.; Lumpkin, G. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Mitamura, H.; Banba, T. [Japan Atomic Energy Research Inst. Tokai, Ibaraki (Japan)

    1998-12-01

    The overall aim of the Co-operative Program has been to promote the exchange of information on technology for the management of High-Level Wastes (HLW) and to encourage research and development relevant to such technology. During the 13 years that the Program has been carried out, HLW management strategies have matured and developed internationally, and Japan has commenced construction of a domestic reprocessing and vitrification facility for HLW. The HLW management strategy preferred is a national decision. Many countries are using vitrification, direct disposal of spent fuel or a combination of both to handle their existing wastes whereas others have deferred the decision. The work carried out in the Co-operative Program provides strong scientific evidence that the durability of ceramic waste forms is not significantly affected by radiation damage and that high loadings of actinide elements can be incorporated into specially designed ceramic waste forms. Moreover, natural minerals have been shown to remain as closed systems for U and Th for up to 2.5 b y. All of these results give confidence in the ability of second generation waste forms, such as Synroc, to handle future waste arisings that may not be suitable for vitrification 87 refs., 15 tabs., 22 figs.

  6. Multi-A Graph Patrolling and Partitioning

    Science.gov (United States)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  7. Screening of pesticides for environmental partitioning tendency.

    Science.gov (United States)

    Gramatica, Paola; Di Guardo, Antonio

    2002-06-01

    The partitioning tendency of chemicals, in this study pesticides in particular, into different environmental compartments depends mainly on the concurrent relevance of the physico-chemical properties of the chemical itself. To rank the pesticides according to their distribution tendencies in the different environmental compartments we propose a multivariate approach: the combination, by principal component analysis, of those physico-chemical properties like organic carbon partition coefficient (Koc), n-octanol/water partition coefficient (Kow), water solubility (Sw), vapour pressure and Henry's law constant (H) that are more relevant to the determination of environmental partitioning. The resultant macrovariables, the PC1 and PC2 scores here named leaching index (LIN) and volatality index (VIN), are proposed as preliminary environmental partitioning indexes in different media. These two indexes are modeled by theoretical molecular descriptors with satisfactory predictive power. Such an approach allows a rapid pre-determination and screening of the environmental distribution of pesticides starting only from the molecular structure of the pesticide, without any a priori knowledge of the physico-chemical properties.

  8. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  9. VLSI PARTITIONING ALGORITHM WITH ADAPTIVE CONTROL PARAMETER

    Directory of Open Access Journals (Sweden)

    P. N. Filippenko

    2013-03-01

    Full Text Available The article deals with the problem of very large-scale integration circuit partitioning. A graph is selected as a mathematical model describing integrated circuit. Modification of ant colony optimization algorithm is presented, which is used to solve graph partitioning problem. Ant colony optimization algorithm is an optimization method based on the principles of self-organization and other useful features of the ants’ behavior. The proposed search system is based on ant colony optimization algorithm with the improved method of the initial distribution and dynamic adjustment of the control search parameters. The experimental results and performance comparison show that the proposed method of very large-scale integration circuit partitioning provides the better search performance over other well known algorithms.

  10. Combinatorics and complexity of partition functions

    CERN Document Server

    Barvinok, Alexander

    2016-01-01

    Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. .

  11. Pseudo-periodic partitions of biological sequences.

    Science.gov (United States)

    Li, Lugang; Jin, Renchao; Kok, Poh-Lin; Wan, Honghui

    2004-02-12

    Algorithm development for finding typical patterns in sequences, especially multiple pseudo-repeats (pseudo-periodic regions), is at the core of many problems arising in biological sequence and structure analysis. In fact, one of the most significant features of biological sequences is their high quasi-repetitiveness. Variation in the quasi-repetitiveness of genomic and proteomic texts demonstrates the presence and density of different biologically important information. It is very important to develop sensitive automatic computational methods for the identification of pseudo-periodic regions of sequences through which we can infer, describe and understand biological properties, and seek precise molecular details of biological structures, dynamics, interactions and evolution. We develop a novel, powerful computational tool for partitioning a sequence to pseudo-periodic regions. The pseudo-periodic partition is defined as a partition, which intuitively has the minimal bias to some perfect-periodic partition of the sequence based on the evolutionary distance. We devise a quadratic time and space algorithm for detecting a pseudo-periodic partition for a given sequence, which actually corresponds to the shortest path in the main diagonal of the directed (acyclic) weighted graph constructed by the Smith-Waterman self-alignment of the sequence. We use several typical examples to demonstrate the utilization of our algorithm and software system in detecting functional or structural domains and regions of proteins. A big advantage of our software program is that there is a parameter, the granularity factor, associated with it and we can freely choose a biological sequence family as a training set to determine the best parameter. In general, we choose all repeats (including many pseudo-repeats) in the SWISS-PROT amino acid sequence database as a typical training set. We show that the granularity factor is 0.52 and the average agreement accuracy of pseudo-periodic partitions

  12. Partition functions for supersymmetric black holes

    CERN Document Server

    Manschot, Jan

    2008-01-01

    This dissertation presents recent discoveries on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view within string theory and M-theory. The results are applied to two central research topics in modern theoretical physics, namely (1) the correspondence between the physics (including gravity) within an Anti-de Sitter space and conformal field theory, and (2) the relation between black holes and topological strings.

  13. Partitioning and transmutation. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aa.; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1997-12-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.

  14. Cochlear implant in incomplete partition type I.

    Science.gov (United States)

    Berrettini, S; Forli, F; De Vito, A; Bruschini, L; Quaranta, N

    2013-02-01

    In this investigation, we report on 4 patients affected by incomplete partition type I submitted to cochlear implant at our institutions. Preoperative, surgical, mapping and follow-up issues as well as results in cases with this complex malformation are described. The cases reported in the present study confirm that cochlear implantation in patients with incomplete partition type I may be challenging for cochlear implant teams. The results are variable, but in many cases satisfactory, and are mainly related to the surgical placement of the electrode and residual neural nerve fibres. Moreover, in some cases the association of cochlear nerve abnormalities and other disabilities may significantly affect results.

  15. Subsets of configurations and canonical partition functions

    DEFF Research Database (Denmark)

    Bloch, J.; Bruckmann, F.; Kieburg, M.

    2013-01-01

    We explain the physical nature of the subset solution to the sign problem in chiral random matrix theory: the subset sum over configurations is shown to project out the canonical determinant with zero quark charge from a given configuration. As the grand canonical chiral random matrix partition...

  16. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  17. Scheduling Driven Partitioning of Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1998-01-01

    In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared b...

  18. Integral complete r-partite graphs

    NARCIS (Netherlands)

    Wang, Ligong; Li, Xueliang; Hoede, C.

    2004-01-01

    A graph is called integral if all the eigenvalues of its adjacency matrix are integers. In this paper, we give a useful sufficient and necessary condition for complete r-partite graphs to be integral, from which we can construct infinite many new classes of such integral graphs. It is proved that

  19. Fair partitions of polygons: An elementary introduction

    Indian Academy of Sciences (India)

    Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 3, August 2012, pp. 459–467. c Indian Academy of Sciences. Fair partitions of polygons: An elementary introduction. R NANDAKUMAR1 and N RAMANA ... uses only elementary topology and is essentially a constructive one, could still be of non- trivial interest and have updated [9] ...

  20. Hashing for Statistics over K-Partitions

    DEFF Research Database (Denmark)

    Dahlgaard, Soren; Knudsen, Mathias Baek Tejs; Rotenberg, Eva

    2015-01-01

    In this paper we analyze a hash function for k-partitioning a set into bins, obtaining strong concentration bounds for standard algorithms combining statistics from each bin. This generic method was originally introduced by Flajolet and Martin [FOCS'83] in order to save a factor Ω(k) of time per...

  1. Thirring model partition functions and harmonic differentials

    Science.gov (United States)

    Freedman, D. Z.; Pilch, K.

    1988-10-01

    The partition function of the Thirring model on a Riemann surface is calculated using the representation of the model as a fermion interacting with an auxiliary vector potential. The Hodge decomposition of the potential is used and the integral over the harmonic forms is shown to reproduce exactly the soliton sum in the bosonic version of the theory.

  2. Set Partitions and the Multiplication Principle

    Science.gov (United States)

    Lockwood, Elise; Caughman, John S., IV

    2016-01-01

    To further understand student thinking in the context of combinatorial enumeration, we examine student work on a problem involving set partitions. In this context, we note some key features of the multiplication principle that were often not attended to by students. We also share a productive way of thinking that emerged for several students who…

  3. Protium, an infrastructure for partitioned applications

    NARCIS (Netherlands)

    Mullender, Sape J.; Young, C.; Szymanski, T.; Reppy, J.; Presotto, D.; Pike, R.; Narlikar, G.

    Remote access feels different from local access. The major issues are consistency (machines vary in GUIs, applications, and devices) and responsiveness (the user must wait for network and server delays). Protium attacks these by partitioning programs into local viewers that connect to remote

  4. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  5. Isotope fractionation of benzene during partitioning - Revisited.

    Science.gov (United States)

    Kopinke, F-D; Georgi, A; Imfeld, G; Richnow, H-H

    2017-02-01

    Isotope fractionation between benzene-D0 and benzene-D6 caused by multi-step partitioning of the benzenes between water and two organic solvents, n-octane and 1-octanol, as well as between water and the gas phase, was measured. The obtained fractionation factors αH = KH/KD are αH = 1.080 ± 0.015 and αH = 1.074 ± 0.015 for extraction into n-octane and 1-octanol, respectively, and αH = 1.049 ± 0.010 for evaporation from aqueous solution. The comparison of solvent- and gas-phase partitioning reveals that about 2/3 of the driving force of fractionation is due to different interactions in the aqueous phase, whereas 1/3 is due to different interactions in the organic phase. The heavy benzene isotopologue behaves more 'hydrophilically' and the light one more 'hydrophobically'. This synergistic alignment gives rise to relatively large fractionation effects in partitioning between water and non-polar organic matter. In contrast to a previous study, there is no indication of strong fractionation by specific interactions between benzene and octanol. Partitioning under non-equilibrium conditions yields smaller apparent fractionation effects due to opposite trends of thermodynamic and kinetic fractionation parameters, i.e. partition and diffusion coefficients of the isotopologues. This may have consequences which should be taken into account when considering isotope fractionation due to sorption in environmental compartments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was

  7. Partitioning and solubility of C60 fullerene in lipid membranes

    Science.gov (United States)

    Rossi, G.; Barnoud, J.; Monticelli, L.

    2013-05-01

    Carbon nanoparticles (CNPs) are considered to be among the most promising nanomaterials, with applications in many different areas of technology. Most CNPs can enter both artificial lipid membranes and living cells, and are biologically active. The interaction of CNPs with lipid membranes is of great interest because biological activity requires crossing or breaking lipid membranes. Moreover, lipid bilayers have been proposed to be efficient solubilizing agents for C60 and C70 fullerenes. In this comment, we review the literature on fullerene partitioning and dispersion in lipid membranes, considering both the experimental and the simulation literature, and highlighting similarities and differences. Both experiments and simulations confirm that fullerenes partition to the membrane interior, although experimental information on the location of fullerene molecules is only qualitative. On the other hand, the fullerene dispersion state is difficult to assess experimentally, and appears to depend on the details of the methodology used for the preparation of fullerene-loaded liposomes. Although some degree of aggregation is confirmed by most experiments, the extent of the aggregation is uncertain. Large aggregates observed in the presence of lipid membranes are unlikely to be found within the membrane, as they are orders of magnitude larger than the membrane thickness. Simulations carried out so far yielded contrasting results. Both atomistic and some coarse-grained simulations indicated that fullerene dimerization in lipid membranes should be significantly less favorable than that in bulk alkanes, but the physical reasons for this are still unclear.

  8. Open software tools for eddy covariance flux partitioning

    Science.gov (United States)

    Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...

  9. Partitioning of biocides between water and inorganic phases of render

    DEFF Research Database (Denmark)

    Urbanczyk, Michal; Bollmann, Ulla E.; Bester, Kai

    , the partitioning of biocides between water and inorganic phases of render was studied. In this study the partitioning constants of benzoisothiazolinone, carbendazim, dichlorooctylisothiazolinone, diuron, iodocarb, isoproturon, irgarol, mecoprop, methylisothiazolinone, octylisothiazolinone, terbutryn...

  10. Optimising query execution time in LHCb Bookkeeping System using partition pruning and Partition-Wise joins

    Science.gov (United States)

    Mathe, Zoltan; Charpentier, Philippe

    2014-06-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used.

  11. Dynamic State Space Partitioning for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami; Kristensen, Lars Michael

    2009-01-01

    We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different ...... partitions, and thereby limit the amount of disk access and network communication. We report on several experiments made with our verification platform ASAP that implements the dynamic partitioning scheme proposed in this paper....

  12. Influence of Partitioning Process on the Microstructure and Mechanical Properties of High Deformability Oil-Gas Pipeline

    Directory of Open Access Journals (Sweden)

    Jing Ma

    2014-11-01

    Full Text Available Multiphase structure of bainite and M/A constituent can be obtained for X80 oil-gas pipeline through a novel heat online partitioning (HOP technology. The effects of partitioning temperature on the microstructure and mechanical properties of the experimental steels were researched by means of mechanical properties test, microscopic analysis, and X-ray diffraction. The results show that with the increase of the partitioning temperature, the strength of the experimental steel decreases and the ductility increases because of the increase of bainite lath width, the decrease of dislocation density, the increase of retained austenite content, and carbides coarsening. The decrease of the volume content and stability of retained austenite is the key factor, which leads to the increase of strength and the decrease of plasticity in a high range of partitioning temperature.

  13. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows...

  14. GPU Acceleration of Graph Matching, Clustering, and Partitioning

    NARCIS (Netherlands)

    Fagginger Auer, B.O.|info:eu-repo/dai/nl/326659072

    2013-01-01

    We consider sequential algorithms for hypergraph partitioning and GPU (i.e., fine-grained shared-memory parallel) algorithms for graph partitioning and clustering. Our investigation into sequential hypergraph partitioning is concerned with the efficient construction of high-quality matchings for

  15. RESIDENTIAL BUILDING DESIGN CONSIDERING THE BRAZILIAN PERFORMANCE STANDARD: ANALYSES TO WALL PARTITION

    Directory of Open Access Journals (Sweden)

    Luciana Alves Oliveira

    2012-06-01

    Full Text Available In many countries, the design begins by the performance definition of the building parts. The data are then used as a reference to select the viable construction technologies. In Brazil, this practice is still uncommon, mostly in residential projects, because, first, it is defined the architectural characteristics, technological solutions and cost for after consider the technical performance requirements. However, this scenario tends to change due to the publication of the Brazilian performance standard ABNT NBR 15575 (2008 that establishes requirements and quantitative parameters to the five main residential building subsystems (structure, floors, wall partition, envelope and covering, and hydraulic installations, besides to the general requirements for all building. The current version contains requirements for structural performance, fire safety, watertightness, thermal and acoustic performances, functionality, accessibility, environmental impact, durability and maintenance. This standard also considers the concepts of Service Life, Design Life and guaranties periods. The aim of this paper is to present some considerations which must be included to the design process of wall partition for the accomplishment of the performance requirements of ABNT NBR 15575-4 (2008. The considerations are designed to wall partitions, but they can be used as an example to the others building subsystems. This paper was developed based on the bibliographical research and on four case studies, which illustrate how the design process of the wall partition needs to change and what needs to be worked on in order to attend the performance concept and requirements of NBR 15575 (2008.

  16. Separation of a binary mixture by sequential centrifugal partition chromatography.

    Science.gov (United States)

    Hopmann, Elisabeth; Minceva, Mirjana

    2012-03-16

    Sequential centrifugal partition chromatography (sCPC) is a novel continuous cyclic liquid-liquid chromatographic separation technology. Each cycle of the process comprises two steps, which differ by the liquid phase used as mobile phase (upper or lower phase) and its flow direction. The feed is introduced continuously in the unit and two product streams are collected alternately, in each step of the cycle. In this work, the sCPC was modeled using the stage (cell) model. The model was used to simulate a separation of a model binary mixture consisting of pyrocatechol and hydroquinone. The solutes distribution constants, system hydrodynamics and mass transfer parameters were determined experimentally and implemented in the model. Furthermore, a parameter study (variation of the feed concentration and step times) was performed by experiments and simulation. A recently developed method was used to select the operating parameters of the sCPC unit. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The Benefits of Adaptive Partitioning for Parallel AMR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steensland, Johan [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Advanced Software Research and Development

    2008-07-01

    Parallel adaptive mesh refinement methods potentially lead to realistic modeling of complex three-dimensional physical phenomena. However, the dynamics inherent in these methods present significant challenges in data partitioning and load balancing. Significant human resources, including time, effort, experience, and knowledge, are required for determining the optimal partitioning technique for each new simulation. In reality, scientists resort to using the on-board partitioner of the computational framework, or to using the partitioning industry standard, ParMetis. Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal partitioning technique at run-time, based on the current state of the computer and application. In theory, adaptive partitioning automatically delivers superior performance and eliminates the need for repeatedly spending valuable human resources for determining the optimal static partitioning technique. In practice, however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary research challenges. This paper presents a study of a simple implementation of adaptive partitioning and discusses implied potential benefits from the perspective of common groups of users within computational science. The study is based on a large set of data derived from experiments including six real-life, multi-time-step adaptive applications from various scientific domains, five complementing and fundamentally different partitioning techniques, a large set of parameters corresponding to a wide spectrum of computing environments, and a flexible cost function that considers the relative impact of multiple partitioning metrics and diverse partitioning objectives. The results show that even a simple implementation of adaptive partitioning can automatically generate results statistically equivalent to the best static partitioning. Thus, it is possible to effectively eliminate the problem of determining the

  18. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue...... expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing...... metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute...

  19. Solute Partitioning and Hindered Diffusion in Hydrogels

    OpenAIRE

    Liu, David Ezra

    2016-01-01

    Solute uptake and release govern the efficacy of hydrogels in controlled drug delivery, tissue engineering, and chromatographic separations. In soft contact lenses, uptake and release of wetting, packaging, and care-solution agents is extensively employed to improve on-eye lens performance. Key physical parameters are the equilibrium solute partition coefficient and the solute diffusion coefficient in the gel that dictate the amounts and rates of uptake/release, respectively. To investigate t...

  20. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  1. Deformed Topological Partition Function and Nekrasov Backgrounds

    CERN Document Server

    Antoniadis, I; Narain, K S; Taylor, T R

    2010-01-01

    A deformation of the N=2 topological string partition function is analyzed by considering higher dimensional F-terms of the type W^{2g}*Upsilon^n, where W is the chiral Weyl superfield and each Upsilon factor stands for the chiral projection of a real function of N=2 vector multiplets. These terms generate physical amplitudes involving two anti-self-dual Riemann tensors, 2g-2 anti-self-dual graviphoton field strengths and 2n self-dual field strengths from the matter vector multiplets. Their coefficients F_{g,n} generalizing the genus g partition function F_{g,0} of the topological twisted type II theory, can be used to define a generating functional by introducing deformation parameters besides the string coupling. Choosing all matter field strengths to be that of the dual heterotic dilaton supermultiplet, one obtains two parameters that we argue should correspond to the deformation parameters of the Nekrasov partition function in the field theory limit, around the conifold singularity. Its perturbative part ...

  2. Diversity partitioning during the Cambrian radiation.

    Science.gov (United States)

    Na, Lin; Kiessling, Wolfgang

    2015-04-14

    The fossil record offers unique insights into the environmental and geographic partitioning of biodiversity during global diversifications. We explored biodiversity patterns during the Cambrian radiation, the most dramatic radiation in Earth history. We assessed how the overall increase in global diversity was partitioned between within-community (alpha) and between-community (beta) components and how beta diversity was partitioned among environments and geographic regions. Changes in gamma diversity in the Cambrian were chiefly driven by changes in beta diversity. The combined trajectories of alpha and beta diversity during the initial diversification suggest low competition and high predation within communities. Beta diversity has similar trajectories both among environments and geographic regions, but turnover between adjacent paleocontinents was probably the main driver of diversification. Our study elucidates that global biodiversity during the Cambrian radiation was driven by niche contraction at local scales and vicariance at continental scales. The latter supports previous arguments for the importance of plate tectonics in the Cambrian radiation, namely the breakup of Pannotia.

  3. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the ...

    Science.gov (United States)

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it accounts for the varying bioavailability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms.  This equilibrium partitioning sediment benchmark (ESB) document was prepared by scientists from the Atlantic Ecology Division, Mid-Continent Ecology Division, and Western Ecology Division, the Office of Water, and private consultants. The document describes procedures to determine the interstitial water concentrations of nonionic organic chemicals in contaminated sediments. Based on these concentrations, guidance is provided on the derivation of toxic units to assess whether the sediments are likely to cause adverse effects to benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it is based on the concentrations of chemical(s) that are known to be harmful and bioavailable in the environment.  This document, and five others published over the last nine years, will be useful for the Program Offices, including Superfund, a

  4. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2012-12-04

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.

  5. Polyacrylate–water partitioning of biocidal compounds: Enhancing the understanding of biocide partitioning between render and water

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Ou, Yi; Mayer, Philipp

    2014-01-01

    the materials from biological deterioration. However, the biocides need to be present in the water phase in order to be active and, hence, they are flushed of the material by rain water. In order to increase the knowledge about the partitioning of biocides from render into the water phase, partition constants...... between the polymer - in this case polyacrylate - and water were studied using glass fibre filters coated with polyacrylate. The polyacrylate-water partition constants (logKAcW) of ten biocides used in construction material varied between 1.66 (isoproturon) and 3.57 (dichloro......-N-octylisothiazolinone). The correlation of the polyacrylate-water partition constants with the octanol-water partition constants is significant, but the polyacrylate-water partition constants were predominantly below octanol-water partition constants (Kow). The comparison with render-water distribution constants showed that estimating...

  6. LHCb: Optimising query execution time in LHCb Bookkeeping System using partition pruning and partition wise joins

    CERN Multimedia

    Mathe, Z

    2013-01-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as rang...

  7. A brief history of partitions of numbers, partition functions and their modern applications

    Science.gov (United States)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  8. GIS spatial data partitioning method for distributed data processing

    Science.gov (United States)

    Zhou, Yan; Zhu, Qing; Zhang, Yeting

    2007-11-01

    Spatial data partitioning strategy plays an important role in GIS spatial data distributed storage and processing, its key problem is how to partition spatial data to distributed nodes in network environment. Existing main spatial data partitioning methods doesn't consider spatial locality and unstructured variable length characteristics of spatial data, these methods simply partition spatial data based on one or more attributes value that could result in storage capacity imbalance between distributed processing nodes. Aiming at these, we point out the two basic principles that spatial data partitioning should meet to in this paper. We propose a new spatial data partitioning method based on hierarchical decomposition method of low order Hilbert space-filling curve, which could avoid excessively intensive space partitioning by hierarchically decomposing subspaces. The proposed method uses Hilbert curve to impose a linear ordering on the multidimensional spatial objects, and partition the spatial objects according to this ordering. Experimental results show the proposed spatial data partitioning method not only achieves better storage load balance between distributed nodes, but also keeps well spatial locality of data objects after partitioning.

  9. Boron, beryllium, and lithium, partitioning in olivine

    Energy Technology Data Exchange (ETDEWEB)

    Neroda, Elizabeth [Lawrence Livermore National Lab., CA (United States)

    1996-05-01

    A one atmosphere experimental study was performed to determine the mineral/melt partition coefficients for B, Be, and Li in forsteritic olivine. Two compositions were chosen along the 1350{degrees}C isotherm, 1b (Fo{sub 17.3} Ab{sub 82.7} An{sub 0} by weight) and 8c (Fo{sub 30} Ab{sub 23.3} An{sub 47.8}, by weight) were then combined in equal amounts to form a composition was doped with 25ppm Li, B, Yb, Nb, Zr, Sr, and Hf, 50ppm Sm, and 100ppm Be, Nd, Ce, and Rb. Electron and ion microprobe analyses showed that the olivine crystals and surrounding glasses were homogeneous with respect to major and trace elements. Partition coefficients calculated from these analyses are as follows: 1b: D{sub B} = 4.41 ({+-} 2.3) E-03, D{sub Be} = 2.86 ({+-} 0.45) E-03, D{sub Li} = 1.54 ({+-} 0.21) E-01, 50/50: D{sub B} = 2.86 ({+-} 0.5) E-03, D{sub Be} = 2.07 ({+-} 0.09) E-03, D{sub Li} = 1.51 ({+-} 0.18) E-01, 8c: D{sub B} = 6.05 ({+-} 1.5) E-03, D{sub Be} = 1.81 ({+-} 0.03) E-03, D{sub Li} = 1.31 ({+-} 0.09) E-01. The results of this study will combined with similar data for other minerals as part of a larger study to understand the partitioning behavior of B, Be, and Li in melting of the upper mantle at subduction zones.

  10. Adaptive MCMC in Bayesian phylogenetics: an application to analyzing partitioned data in BEAST.

    Science.gov (United States)

    Baele, Guy; Lemey, Philippe; Rambaut, Andrew; Suchard, Marc A

    2017-06-15

    Advances in sequencing technology continue to deliver increasingly large molecular sequence datasets that are often heavily partitioned in order to accurately model the underlying evolutionary processes. In phylogenetic analyses, partitioning strategies involve estimating conditionally independent models of molecular evolution for different genes and different positions within those genes, requiring a large number of evolutionary parameters that have to be estimated, leading to an increased computational burden for such analyses. The past two decades have also seen the rise of multi-core processors, both in the central processing unit (CPU) and Graphics processing unit processor markets, enabling massively parallel computations that are not yet fully exploited by many software packages for multipartite analyses. We here propose a Markov chain Monte Carlo (MCMC) approach using an adaptive multivariate transition kernel to estimate in parallel a large number of parameters, split across partitioned data, by exploiting multi-core processing. Across several real-world examples, we demonstrate that our approach enables the estimation of these multipartite parameters more efficiently than standard approaches that typically use a mixture of univariate transition kernels. In one case, when estimating the relative rate parameter of the non-coding partition in a heterochronous dataset, MCMC integration efficiency improves by > 14-fold. Our implementation is part of the BEAST code base, a widely used open source software package to perform Bayesian phylogenetic inference. guy.baele@kuleuven.be. Supplementary data are available at Bioinformatics online.

  11. Partitioned coupling strategies for multi-physically coupled radiative heat transfer problems

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Gunnar; Erbts, Patrick, E-mail: patrick.erbts@tuhh.de; Düster, Alexander

    2015-11-01

    This article aims to propose new aspects concerning a partitioned solution strategy for multi-physically coupled fields including the physics of thermal radiation. Particularly, we focus on the partitioned treatment of electro–thermo-mechanical problems with an additional fourth thermal radiation field. One of the main goals is to take advantage of the flexibility of the partitioned approach to enable combinations of different simulation software and solvers. Within the frame of this article, we limit ourselves to the case of nonlinear thermoelasticity at finite strains, using temperature-dependent material parameters. For the thermal radiation field, diffuse radiating surfaces and gray participating media are assumed. Moreover, we present a robust and fast partitioned coupling strategy for the fourth field problem. Stability and efficiency of the implicit coupling algorithm are improved drawing on several methods to stabilize and to accelerate the convergence. To conclude and to review the effectiveness and the advantages of the additional thermal radiation field several numerical examples are considered to study the proposed algorithm. In particular we focus on an industrial application, namely the electro–thermo-mechanical modeling of the field-assisted sintering technology.

  12. Implementation of spectral clustering with partitioning around medoids (PAM) algorithm on microarray data of carcinoma

    Science.gov (United States)

    Cahyaningrum, Rosalia D.; Bustamam, Alhadi; Siswantining, Titin

    2017-03-01

    Technology of microarray became one of the imperative tools in life science to observe the gene expression levels, one of which is the expression of the genes of people with carcinoma. Carcinoma is a cancer that forms in the epithelial tissue. These data can be analyzed such as the identification expressions hereditary gene and also build classifications that can be used to improve diagnosis of carcinoma. Microarray data usually served in large dimension that most methods require large computing time to do the grouping. Therefore, this study uses spectral clustering method which allows to work with any object for reduces dimension. Spectral clustering method is a method based on spectral decomposition of the matrix which is represented in the form of a graph. After the data dimensions are reduced, then the data are partitioned. One of the famous partition method is Partitioning Around Medoids (PAM) which is minimize the objective function with exchanges all the non-medoid points into medoid point iteratively until converge. Objectivity of this research is to implement methods spectral clustering and partitioning algorithm PAM to obtain groups of 7457 genes with carcinoma based on the similarity value. The result in this study is two groups of genes with carcinoma.

  13. Language Constructs for Data Partitioning and Distribution

    Directory of Open Access Journals (Sweden)

    P. Crooks

    1995-01-01

    Full Text Available This article presents a survey of language features for distributed memory multiprocessor systems (DMMs, in particular, systems that provide features for data partitioning and distribution. In these systems the programmer is freed from consideration of the low-level details of the target architecture in that there is no need to program explicit processes or specify interprocess communication. Programs are written according to the shared memory programming paradigm but the programmer is required to specify, by means of directives, additional syntax or interactive methods, how the data of the program are decomposed and distributed.

  14. Partitioning-based mechanisms under personalized differential privacy.

    Science.gov (United States)

    Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian

    2017-05-01

    Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t-round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms.

  15. On the partition dimension of two-component graphs

    Indian Academy of Sciences (India)

    Abstract. In this paper, we continue investigating the partition dimension for disconnected graphs. We determine the partition dimension for some classes of disconnected graphs G consisting of two components. If G = G 1 ∪ G 2 , then we give the bounds of the partition dimension of G for G 1 = P n or G 1 = C n and also for p ...

  16. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2017-02-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  17. New parallel SOR method by domain partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Dexuan [Courant Inst. of Mathematical Sciences New York Univ., NY (United States)

    1996-12-31

    In this paper, we propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning together with an interprocessor data-communication technique. For the 5-point approximation to the Poisson equation on a square, we show that the ordering of the PSOR based on the strip partition leads to a consistently ordered matrix, and hence the PSOR and the SOR using the row-wise ordering have the same convergence rate. However, in general, the ordering used in PSOR may not be {open_quote}consistently ordered{close_quotes}. So, there is a need to analyze the convergence of PSOR directly. In this paper, we present a PSOR theory, and show that the PSOR method can have the same asymptotic rate of convergence as the corresponding sequential SOR method for a wide class of linear systems in which the matrix is {open_quotes}consistently ordered{close_quotes}. Finally, we demonstrate the parallel performance of the PSOR method on four different message passing multiprocessors (a KSR1, the Intel Delta, an Intel Paragon and an IBM SP2), along with a comparison with the point Red-Black and four-color SOR methods.

  18. Vertical partitioning of relational OLTP databases using integer programming

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen

    2010-01-01

    for relational row- store OLTP databases with an H-store-like architecture, meaning that we would like to maximize the number of single-sited transactions. We present a model for the vertical partitioning problem that, given a schema together with a vertical partitioning and a workload, estimates the costs......A way to optimize performance of relational row store databases is to reduce the row widths by vertically partition- ing tables into table fractions in order to minimize the number of irrelevant columns/attributes read by each transaction. This pa- per considers vertical partitioning algorithms...

  19. Partitions of AG(4,3) into Maximal Caps

    OpenAIRE

    Follett, Michael; Kalail, Kyle; McMahon, Elizabeth; Pelland, Catherine; Won, Robert

    2013-01-01

    In a geometry, a maximal cap is a collection of points of largest size containing no lines. In AG(4,3), maximal caps contain 20 points. The 81 points of AG(4,3) can be partitioned into 4 mutually disjoint maximal caps together with a single point P, where every pair of points that makes a line with P lies entirely inside one of those caps. The caps in a partition can be paired up so that both pairs are either in exactly one partition or they are both in two different partitions. This differen...

  20. Strong ion exchange in centrifugal partition extraction (SIX-CPE): effect of partition cell design and dimensions on purification process efficiency.

    Science.gov (United States)

    Hamzaoui, Mahmoud; Hubert, Jane; Reynaud, Romain; Marchal, Luc; Foucault, Alain; Renault, Jean-Hugues

    2012-07-20

    The aim of this article was to evaluate the influence of the column design of a hydrostatic support-free liquid-liquid chromatography device on the process efficiency when the strong ion-exchange (SIX) development mode is used. The purification of p-hydroxybenzylglucosinolate (sinalbin) from a crude aqueous extract of white mustard seeds (Sinapis alba L.) was achieved on two types of devices: a centrifugal partition chromatograph (CPC) and a centrifugal partition extractor (CPE). They differ in the number, volume and geometry of their partition cells. The SIX-CPE process was evaluated in terms of productivity and sinalbin purification capability as compared to previously optimized SIX-CPC protocols that were carried out on columns of 200 mL and 5700 mL inner volume, respectively. The objective was to determine whether the decrease in partition cell number, the increase in their volume and the use of a "twin cell" design would induce a significant increase in productivity by applying higher mobile phase flow rate while maintaining a constant separation quality. 4.6g of sinalbin (92% recovery) were isolated from 25 g of a crude white mustard seed extract, in only 32 min and with a purity of 94.7%, thus corresponding to a productivity of 28 g per hour and per liter of column volume (g/h/LV(c)). Therefore, the SIX-CPE process demonstrates promising industrial technology transfer perspectives for the large-scale isolation of ionized natural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  2. General moment theorems for nondistinct unrestricted partitions

    Science.gov (United States)

    Coons, Michael; Kirsten, Klaus

    2009-01-01

    A well-known result from Hardy and Ramanujan ["Aysmptotic formulae in combinatory analysis," Proc. Lond. Math. Soc. 17, 75 (1918)] gives an asymptotic expression for the number of possible ways to express an integer as the sum of smaller integers. In this vein, we consider the general partitioning problem of writing an integer n as a sum of summands from a given sequence Λ of nondecreasing integers. Under suitable assumptions on the sequence Λ, we obtain results using associated zeta functions and saddle-point techniques. We also calculate higher moments of the sequence Λ as well as the expected number of summands. Applications are made to various sequences, including those of Barnes and Epstein types. These results are of potential interest in statistical mechanics in the context of Bose-Einstein condensation.

  3. Yoink: An interaction-based partitioning API.

    Science.gov (United States)

    Zheng, Min; Waller, Mark P

    2018-01-05

    Herein, we describe the implementation details of our interaction-based partitioning API (application programming interface) called Yoink for QM/MM modeling and fragment-based quantum chemistry studies. Interactions are detected by computing density descriptors such as reduced density gradient, density overlap regions indicator, and single exponential decay detector. Only molecules having an interaction with a user-definable QM core are added to the QM region of a hybrid QM/MM calculation. Moreover, a set of molecule pairs having density-based interactions within a molecular system can be computed in Yoink, and an interaction graph can then be constructed. Standard graph clustering methods can then be applied to construct fragments for further quantum chemical calculations. The Yoink API is licensed under Apache 2.0 and can be accessed via yoink.wallerlab.org. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Analysis of Tsallis' classical partition function's poles

    Science.gov (United States)

    Plastino, A.; Rocca, M. C.

    2017-12-01

    When one integrates the q-exponential function of Tsallis' so as to get the partition function Z, a gamma function inevitably emerges. Consequently, poles arise. We investigate here the thermodynamic significance of these poles in the case of n classical harmonic oscillators (HO). Given that this is an exceedingly well known system, any new feature that may arise can safely be attributed to the poles' effect. We appeal to the mathematical tools used in Plastino et al. (2016) and Plastino and Rocca (2017), and obtain both bound and unbound states. In the first case, we are then faced with a classical Einstein crystal. We also detect what might be interpreted as pseudo gravitational effects.

  5. Pepper injury and partitioning response to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.P.; Oshima, R.J.; Lippert, L.F.

    1977-08-01

    Pepper plants (Capsicum annuum L.) grown in containers and exposed intermittently to 0.12 or 0.20 ppm ozone (O/sub 3/) while they grew to final yield, increased in plant height and total number of leaves in spite of the formation of chlorotic leaves. On an absolute basis, root, stem and leaf dry weights were not significantly affected by O/sub 3/, but fruit dry matter fell by as much as 54%. However, on a relative basis, dry matter partitioning to fruit was not constant and a significant alteration of the expected dry matter distribution was observed in the O/sub 3/ treatment. O/sub 3/ also significantly accentuated the inverse relationship between crown fruit and leaf production. A conceptual model for whole plant response to O/sub 3/ was developed.

  6. Discrete and Continuous Models for Partitioning Problems

    KAUST Repository

    Lellmann, Jan

    2013-04-11

    Recently, variational relaxation techniques for approximating solutions of partitioning problems on continuous image domains have received considerable attention, since they introduce significantly less artifacts than established graph cut-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider in depth the consequences of a recent theoretical result concerning the optimality of solutions obtained using a particular relaxation method. Since the employed regularizer is quite tight, the considered relaxation generally involves a large computational cost. We propose a method to significantly reduce these costs in a fully automatic way for a large class of metrics including tree metrics, thus generalizing a method recently proposed by Strekalovskiy and Cremers (IEEE conference on computer vision and pattern recognition, pp. 1905-1911, 2011). © 2013 Springer Science+Business Media New York.

  7. IAEA activities in the area of partitioning and transmutation

    Science.gov (United States)

    Stanculescu, Alexander

    2006-06-01

    Four major challenges are facing the long-term development of nuclear energy: improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptance. Meeting the sustainability criteria is the driving force behind the topic of this paper. In this context, sustainability has two aspects: natural resources and waste management. IAEA's activities in the area of Partitioning and Transmutation (P&T) are mostly in response to the latter. While not involving the large quantities of gaseous products and toxic solid wastes associated with fossil fuels, radioactive waste disposal is today's dominant public acceptance issue. In fact, small waste quantities permit a rigorous confinement strategy, and mined geological disposal is the strategy followed by some countries. Nevertheless, political opposition arguing that this does not yet constitute a safe disposal technology has largely stalled these efforts. One of the primary reasons cited is the long life of many of the radioisotopes generated from fission. This concern has led to increased R&D efforts to develop a technology aimed at reducing the amount and radio-toxicity of long-lived radioactive waste through transmutation in fission reactors or sub-critical systems. In the frame of the Project on Technology Advances in Fast Reactors and Accelerator-Driven Systems (ADS), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long-lived radioactive waste, ADS, and deuterium-tritium plasma-driven sub-critical systems. The paper presents past accomplishments, current status and planned activities of this IAEA project.

  8. Facet-defining inequalities for the simple graph partitioning polytope

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    2007-01-01

    The simple graph partitioning problem is to partition an edge-weighted graph into mutually node-disjoint subgraphs, each containing at most b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we provide several classes of facet-defining inequalities...

  9. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  10. Post-Processing Partitions to Identify Domains of Modularity Optimization.

    Science.gov (United States)

    Weir, William H; Emmons, Scott; Gibson, Ryan; Taylor, Dane; Mucha, Peter J

    2017-09-01

    We introduce the Convex Hull of Admissible Modularity Partitions (CHAMP) algorithm to prune and prioritize different network community structures identified across multiple runs of possibly various computational heuristics. Given a set of partitions, CHAMP identifies the domain of modularity optimization for each partition-i.e., the parameter-space domain where it has the largest modularity relative to the input set-discarding partitions with empty domains to obtain the subset of partitions that are "admissible" candidate community structures that remain potentially optimal over indicated parameter domains. Importantly, CHAMP can be used for multi-dimensional parameter spaces, such as those for multilayer networks where one includes a resolution parameter and interlayer coupling. Using the results from CHAMP, a user can more appropriately select robust community structures by observing the sizes of domains of optimization and the pairwise comparisons between partitions in the admissible subset. We demonstrate the utility of CHAMP with several example networks. In these examples, CHAMP focuses attention onto pruned subsets of admissible partitions that are 20-to-1785 times smaller than the sets of unique partitions obtained by community detection heuristics that were input into CHAMP.

  11. Predicting blood:air partition coefficients using basic physicochemical properties

    NARCIS (Netherlands)

    Buist, H.E.; Wit-Bos, L. de; Bouwman, T.; Vaes, W.H.J.

    2012-01-01

    Quantitative Property Property Relationships (QPPRs) for human and rat blood:air partition coefficients (PBAs) have been derived, based on vapour pressure (Log(VP)), the octanol:water partition coefficient (Log(K_OW)) and molecular weight (MW), using partial least squares multilinear modelling.

  12. On the partition dimension of two-component graphs

    Indian Academy of Sciences (India)

    D O Haryeni

    2017-11-17

    Nov 17, 2017 ... Partition dimension; disconnected graph; component. 2010 Mathematics Subject Classification. 05C12, 05C15. 1. Introduction. The study of the partition dimension for graphs was initiated by Chartrand et al. [2] aimed at finding a new way to solve the problem in metric dimensions of graphs. Many results.

  13. Smoothed analysis of partitioning algorithms for Euclidean functionals

    NARCIS (Netherlands)

    Bläser, Markus; Manthey, Bodo; Rao, B.V. Raghavendra

    2013-01-01

    Euclidean optimization problems such as TSP and minimum-length matching admit fast partitioning algorithms that compute near-optimal solutions on typical instances. In order to explain this performance, we develop a general framework for the application of smoothed analysis to partitioning

  14. Smoothed analysis of partitioning algorithms for Euclidean functionals

    NARCIS (Netherlands)

    Bläser, Markus; Manthey, Bodo; Rao, B.V. Raghavendra; Dehne, F.; Iacono, J.; Sack, J.-R.

    2011-01-01

    Euclidean optimization problems such as TSP and minimum-length matching admit fast partitioning algorithms that compute near-optimal solutions on typical instances. We develop a general framework for the application of smoothed analysis to partitioning algorithms for Euclidean optimization problems.

  15. Functional integrals for the partition functions of dual strings

    CERN Document Server

    Nahm, W

    1977-01-01

    The partition functions and helicity partition functions of the known dual strings can be obtained from functional integrals. These integrals are defined using a cut-off which is essentially equivalent to Ramanujan's definition of divergent sums. This leads to a very compact algorithm. (13 refs).

  16. Prediction of octanol/water partition coefficient of selected ferrocene ...

    African Journals Online (AJOL)

    Our prediction of obtained theoretical partition coefficients values of logP for all studied substituted ferrocene was confirmed by comparison with known experimental values obtained mainly from literature. The results obtained show that calculated partition coefficients are in good agreement with experimental values.

  17. Electrophoretic Partitioning of Proteins in Two-Phase Microflows

    DEFF Research Database (Denmark)

    Münchow, G.; Hardt, S.; Kutter, Jörg Peter

    2007-01-01

    This work reports on protein transport phenomena discovered in partitioning experiments with a novel setup for continuous-flow two-phase electrophoresis consisting of a microchannel in which a phase boundary is formed in flow direction. Proteins can be partitioned exploiting their affinity to dif...

  18. Partition function of nearest neighbour Ising models: Some new ...

    Indian Academy of Sciences (India)

    The partition function for one-dimensional nearest neighbour Ising models is estimated by summing all the energy terms in the Hamiltonian for N sites. The algebraic expression for the partition function is then employed to deduce the eigenvalues of the basic 2 × 2 matrix and the corresponding Hermitian Toeplitz matrix is ...

  19. Accelerated partitioned fluid-structure interaction using space-mapping

    NARCIS (Netherlands)

    Scholcz, T.P.; Van Zuijlen, A.H.; Bijl, H.

    2012-01-01

    The focus of this paper is on acceleration of strong partitioned coupling algorithms for fluid-structure interaction. Strong partitioned coupling requires the solution of a coupled problem at each time step during the simulation. Hereto, an interface residual is defined such that the kinematic and

  20. DOES NITROGEN PARTITIONING PROMOTE SPECIES DIVERSITY IN ARCTIC TUSSOCK TUNDRA?

    Science.gov (United States)

    We used 15N soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most productive species were well differentiated with respect ...

  1. Random skew plane partitions with a piecewise periodic back wall

    DEFF Research Database (Denmark)

    Boutillier, Cedric; Mkrtchyan, Sevak; Reshetikhin, Nicolai

    Random skew plane partitions of large size distributed according to an appropriately scaled Schur process develop limit shapes. In the present work we consider the limit of large random skew plane partitions where the inner boundary approaches a piecewise linear curve with non-lattice slopes. Much...

  2. Nutrient partitioning and response to insulin challenge at different ...

    African Journals Online (AJOL)

    Unknown

    Differences in the partitioning of nutrients represent the most important mechanism that determines differences in production rate in animals fed at equal planes of nutrition. Genetic selection appears to alter nutrient partitioning such that the selected characteristic is “protected” against nutritional deprivation at the expense of ...

  3. A conjugate gradient method for the spectral partitioning of graphs

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.

    1997-01-01

    The partitioning of graphs is a frequently occurring problem in science and engineering. The spectral graph partitioning method is a promising heuristic method for this class of problems. Its main disadvantage is the large computing time required to solve a special eigenproblem. Here a simple and

  4. Parallel greedy graph matching using an edge partitioning approach

    NARCIS (Netherlands)

    Patwary, M.M.A.; Bisseling, R.H.; Manne, F.

    2010-01-01

    We present a parallel version of the Karp-Sipser graph matching heuristic for the maximum cardinality problem. It is bulksynchronous, separating computation and communication, and uses an edge-based partitioning of the graph, translated from a twodimensional partitioning of the corresponding

  5. On Compatible Normal Odd Partitions in Cubic Graphs

    CERN Document Server

    Fouquet, Jean-Luc

    2012-01-01

    A normal odd partition T of the edges of a cubic graph is a partition into trails of odd length (no repeated edge) such that each vertex is the end vertex of exactly one trail of the partition and internal in some trail. For each vertex v, we can distinguish the edge for which this vertex is pending. Three normal odd partitions are compatible whenever these distinguished edges are distinct for each vertex. We examine this notion and show that a cubic 3 edge-colorable graph can always be provided with three compatible normal odd partitions. The Petersen graph has this property and we can construct other cubic graphs with chromatic index four with the same property. Finally, we propose a new conjecture which, if true, would imply the well known Fan and Raspaud Conjecture

  6. On Efficient Data Reduction for Network Partition Forecasting in WSNs

    Directory of Open Access Journals (Sweden)

    Faisal Karim Shaikh

    2011-04-01

    Full Text Available WSNs (Wireless Sensor Networks are generally deployed for long-lived missions. However, they rely on finite energy resources which lead to network partitioning. Network partitioning limits the dependability of WSN by making relevant spatial regions disconnected thus requiring the maintenance of the network. The network maintenance necessitates early warning and consequently forecasting of the network partitioning such that some early action can be taken to mitigate the problem. There exist approaches allowing for detection of network partitioning but none for its forecasting. We present an efficient approach for a proactive network ParFor (Partition Forecasting based on energy maps. ParFor implements spatial and temporal suppression mechanisms such that from energy weak regions only a few nodes report short alarms to the sink. Using these alarms the forecasting is done centrally at the sink. Using simulations we highlight the efficiency and accuracy of ParFor.

  7. Estimating octanol-air partition coefficients with octanol-water partition coefficients and Henry's law constants.

    Science.gov (United States)

    Meylan, William M; Howard, Philip H

    2005-11-01

    The octanol-air partition coefficient (K(OA)) is useful for predicting the partitioning behavior of organic compounds between air and environmental matrices such as soil, vegetation, and aerosol particles. At present, experimentally determined K(OA) values are available for only several hundred compounds. Therefore, the ability to estimate K(OA) is necessary for screening level evaluation of most chemicals. Although it is possible to estimate K(OA) from the octanol-water partition coefficient (K(OW)) and Henry's law constant (HLC), various concerns have been raised in regard to the usability of this estimation methodology. This work examines the accuracy and usability of K(OW) and HLC in application to a comprehensive database set of K(OA) values for screening level environmental assessment. Results indicate that K(OW) and HLC can be used to accurately predict K(OA) even when estimated K(OW) and HLC values are used. For an experimental dataset of 310log K(OA) values for different compounds, the K(OW)-HLC method was statistically accurate as follows: correlation coefficient (r2): 0.972, standard deviation: 0.526, absolute mean error: 0.358 using predominantly experimental K(OW) and HLC values. When K(OW) and HLC values were estimated (using the KOWWIN and HENRYWIN programs), the statistical accuracy was: correlation coefficient (r2): 0.957, standard deviation: 0.668, absolute mean error: 0.479.

  8. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    Science.gov (United States)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  9. Efficient Partitioning of Algorithms for Long Convolutions and their Mapping onto Architectures

    NARCIS (Netherlands)

    Bierens, L.; Deprettere, E.

    1998-01-01

    We present an efficient approach for the partitioning of algorithms implementing long convolutions. The dependence graph (DG) of a convolution algorithm is locally sequential globally parallel (LSGP) partitioned into smaller, less complex convolution algorithms. The LSGP partitioned DG is mapped

  10. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  11. Nitrogen partitioning during core-mantle differentiation

    Science.gov (United States)

    Speelmanns, I. M.; Schmidt, M. W.; Liebske, C.

    2016-12-01

    This study investiagtes nitrogen partitioing between metal and silicate melts as relevant for core segregation during the accretion of planetesimals into the Earth. On present day Earth, N belongs to the most important elements, as it is one of the key constituents of our atmosphere and forms the basis of life. However, the geochemistry of N, i.e. its distribution and isotopic fractionation between Earth's deep reservoirs is not well constrained. In order to determine the partitioning behaviour of N, a centrifuging piston cylinder was used to euqilibrate and then gravitationally separate metal-silicate melt pairs at 1250 °C, 1 GPa over the range of oxygen fugacities thought to have prevailied druing core segreagtion (IW-4 to IW). Complete segregation of the two melts was reached within 3 hours at 1000 g, the interface showing a nice meniscus The applied double capsule technique, using an outer metallic and inner non-metallic (mostly graphite) capsule, minimizes volatile loss over the course of the experiment compared to single non-metallic capsules. The two quenched melts were cut apart, cleaned at the outside and N concentrations of the melts were analysed on bulk samples by an elemental analyser. Nevertheless, the low amount of sample material and the N yield in the high pressure experiments required the developement of new analytical routines. Despite these experimental and analytical difficulties, we were able to determine a DNmetal/silicateof 13±0.25 at IW-1, N partitioning into the core froming metal. The few availible literature data [1],[2] suggest that N changes its compatibility favoring the silicate melt or magma ocean at around IW-2.5. In order to asses how much N may effectively be contained in the core and the silicate Earth, experiments characterizing N behaviour over the entire range of core formation condtitions are well under way. [1] Kadik et al., (2011) Geochemistry International 49.5: 429-438. [2] Roskosz et al., (2013) GCA 121: 15-28.

  12. Wirelength Minimization in Partitioning and Floorplanning Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    I. Hameem Shanavas

    2011-01-01

    Full Text Available Minimizing the wirelength plays an important role in physical design automation of very large-scale integration (VLSI chips. The objective of wirelength minimization can be achieved by finding an optimal solution for VLSI physical design components like partitioning and floorplanning. In VLSI circuit partitioning, the problem of obtaining a minimum delay has prime importance. In VLSI circuit floorplanning, the problem of minimizing silicon area is also a hot issue. Reducing the minimum delay in partitioning and area in floorplanning helps to minimize the wirelength. The enhancements in partitioning and floorplanning have influence on other criteria like power, cost, clock speed, and so forth. Memetic Algorithm (MA is an Evolutionary Algorithm that includes one or more local search phases within its evolutionary cycle to obtain the minimum wirelength by reducing delay in partitioning and by reducing area in floorplanning. MA applies some sort of local search for optimization of VLSI partitioning and floorplanning. The algorithm combines a hierarchical design technique like genetic algorithm and constructive technique like Simulated Annealing for local search to solve VLSI partitioning and floorplanning problem. MA can quickly produce optimal solutions for the popular benchmark.

  13. Scheduling Independent Partitions in Integrated Modular Avionics Systems.

    Science.gov (United States)

    Chen, Jinchao; Du, Chenglie; Han, Pengcheng

    2016-01-01

    Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio.

  14. Isotope-based evapotranspiration partition in semi-arid environments

    Science.gov (United States)

    Wang, Lixin; Parkes, Stephen; McCabe, Matthew; Azcurra, Cecilia; Wang, Jin; Graham, Peter

    2013-04-01

    Evapotranspiration (ET) partitioning is important for quantifying the water budget and understanding vegetation control on water cycles in various ecosystems. With the development of spectroscopy-based techniques for in-situ isotope measurements, the use of stable isotope based ET partition is rising rapidly. The sub-daily scale ET partition, however, is still rarely seen in the literature. In this study, we conducted an intensive field campaign measuring ET partition using laser-based isotope and chamber techniques in a pasture system between May and June 2012 in eastern Australia. Six soil collars were used, three of which had natural vegetation and the other three were bare soil collars where vegetation was artificially removed. The vegetated and bare soil collars were used to determine the isotopic composition of ET and evaporation, respectively. The isotopic composition of the transpiration flux was determined using a Licor leaf chamber for grasses inside the vegetated collars. The diurnal patterns in dET, dE and dT are observed. In the morning, they are depleted and became more enriched and level off during mid-day. Overall the total ET flux is dominated by evaporation, though transpiration contributions are relatively higher between 10am and 12pm. D-excess is a conservative tracer of ET components and may not be useful in ET partition. This study demonstrated the use of chamber-based measurements for direct partitioning of ET at sub-daily scale and showed a rarely observed diurnal pattern of ET partition.

  15. Fat polygonal partitions with applications to visualization and embeddings

    Directory of Open Access Journals (Sweden)

    Mark de Berg

    2013-12-01

    Full Text Available Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high.We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes.We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in ℝd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space:  we give a polylog(Δ-approximation algorithm for embedding n-point ultrametrics into ℝd with minimum distortion, where Δ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

  16. Program Partitioning using Dynamic Trust Models

    DEFF Research Database (Denmark)

    Søndergaard, Dan; Probst, Christian W.; Jensen, Christian D.

    2006-01-01

    Developing distributed applications is a difficult task. It is further complicated if system-wide security policies shall be specified and enforced, or if both data and hosts are owned by principals that do not fully trust each other, as is typically the case in service-oriented or grid-based sce...... of the splitting framework, that is parametrised in the trust component, and show the result of specialising it with different trust models. We also develop a metric to measure the quality of the result of the partitioning process.......Developing distributed applications is a difficult task. It is further complicated if system-wide security policies shall be specified and enforced, or if both data and hosts are owned by principals that do not fully trust each other, as is typically the case in service-oriented or grid...... across a set of hosts, obeying both the annotations and the trust relation between the principals. The resulting applications guarantee \\$\\backslash\\$emph{by construction} that safety and confidentiality of both data and computations are ensured. In this work, we develop a generalised version...

  17. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  18. Comments on squashed-sphere partition functions

    Science.gov (United States)

    Bobev, Nikolay; Bueno, Pablo; Vreys, Yannick

    2017-07-01

    We study the partition function of odd-dimensional conformal field theories placed on spheres with a squashed metric. We establish that the round sphere provides a local extremum for the free energy which, in general, is not a global extremum. In addition, we show that the leading quadratic correction to the free energy around this extremum is proportional to the coefficient, C T , determining the two-point function of the energy-momentum tensor in the CFT. For three-dimensional CFTs, we compute explicitly this proportionality constant for a class of squashing deformations which preserve an SU(2) × U(1) isometry group on the sphere. In addition, we evaluate the free energy as a function of the squashing parameter for theories of free bosons, free fermions, as well as CFTs holographically dual to Einstein gravity with a negative cosmological constant. We observe that, after suitable normalization, the dependence of the free energy on the squashing parameter for all these theories is nearly universal for a large region of parameter space and is well approximated by a simple quadratic function arising from holography. We generalize our results to five-dimensional CFTs and, in this context, we also study theories holographically dual to six-dimensional Gauss-Bonnet gravity.

  19. Identifying Cognitive States Using Regularity Partitions.

    Science.gov (United States)

    Pappas, Ioannis; Pardalos, Panos

    2015-01-01

    Functional Magnetic Resonance (fMRI) data can be used to depict functional connectivity of the brain. Standard techniques have been developed to construct brain networks from this data; typically nodes are considered as voxels or sets of voxels with weighted edges between them representing measures of correlation. Identifying cognitive states based on fMRI data is connected with recording voxel activity over a certain time interval. Using this information, network and machine learning techniques can be applied to discriminate the cognitive states of the subjects by exploring different features of data. In this work we wish to describe and understand the organization of brain connectivity networks under cognitive tasks. In particular, we use a regularity partitioning algorithm that finds clusters of vertices such that they all behave with each other almost like random bipartite graphs. Based on the random approximation of the graph, we calculate a lower bound on the number of triangles as well as the expectation of the distribution of the edges in each subject and state. We investigate the results by comparing them to the state of the art algorithms for exploring connectivity and we argue that during epochs that the subject is exposed to stimulus, the inspected part of the brain is organized in an efficient way that enables enhanced functionality.

  20. Identifying Cognitive States Using Regularity Partitions.

    Directory of Open Access Journals (Sweden)

    Ioannis Pappas

    Full Text Available Functional Magnetic Resonance (fMRI data can be used to depict functional connectivity of the brain. Standard techniques have been developed to construct brain networks from this data; typically nodes are considered as voxels or sets of voxels with weighted edges between them representing measures of correlation. Identifying cognitive states based on fMRI data is connected with recording voxel activity over a certain time interval. Using this information, network and machine learning techniques can be applied to discriminate the cognitive states of the subjects by exploring different features of data. In this work we wish to describe and understand the organization of brain connectivity networks under cognitive tasks. In particular, we use a regularity partitioning algorithm that finds clusters of vertices such that they all behave with each other almost like random bipartite graphs. Based on the random approximation of the graph, we calculate a lower bound on the number of triangles as well as the expectation of the distribution of the edges in each subject and state. We investigate the results by comparing them to the state of the art algorithms for exploring connectivity and we argue that during epochs that the subject is exposed to stimulus, the inspected part of the brain is organized in an efficient way that enables enhanced functionality.

  1. Assimilate partitioning in avocado, Persea americana

    Energy Technology Data Exchange (ETDEWEB)

    Finazzo, S.; Davenport, T.L.

    1986-04-01

    Assimilate partitioning is being studied in avocado, Persea americana cv. Millborrow in relation to fruit set. Single leaves on girdled branches of 10 year old trees were radiolabeled for 1 hr with 13..mu..Ci of /sup 14/CO/sub 2/. The source leaves were sampled during the experiment to measure translocation rates. At harvest the sink tissues were dissected and the incorporated radioactivity was measured. The translocation of /sup 14/C-labelled compounds to other leaves was minimal. Incorporation of label into fruitlets varied with the tissue and the stage of development. Sink (fruitlets) nearest to the labelled leaf and sharing the same phyllotaxy incorporated the most /sup 14/C. Source leaves for single non-abscising fruitlets retained 3X more /sup 14/C-labelled compounds than did source leaves for 2 or more fruitlets at 31 hrs. post-labelling. Export of label decreased appreciably when fruitlets abscised. If fruitlets abscised within 4 days of labeling then the translocation pattern was similar to the pattern for single fruitlets. If the fruitlet abscised later, the translocation pattern was intermediate between the single and double fruitlet pattern.

  2. Multi-level spectral graph partitioning method

    Science.gov (United States)

    Talu, Muhammed Fatih

    2017-09-01

    In this article, a new method for multi-level and balanced division of non-directional graphs (MSGP) is introduced. Using the eigenvectors of the Laplacian matrix of graphs, the method has a spectral approach which has superiority over local methods (Kernighan-Lin and Fiduccia-Mattheyses) with a global division ability. Bisection, which is a spectral method, can divide the graph by using the Fiedler vector, while the recursive version of this method can divide into multiple levels. However, the spectral methods have two disadvantages: (1) high processing costs; (2) dividing the sub-graphs independently. With a better understanding of the eigenvectors of the whole graph, and by discovering the confidential information owned, MSGP can divide the graphs into balanced and multi-leveled without recursive processing. Inspired by Haar wavelets, it uses the eigenvectors with a binary heap tree. The comparison results in seven existing methods (some are community detection algorithms) on regular and irregular graphs which clearly demonstrate that MSGP works about 14,4 times faster than the others to produce a proper partitioning result.

  3. Partition Decomposition for Roll Call Data

    CERN Document Server

    Leibon, Greg; Rockmore, Daniel N; Savell, Robert

    2011-01-01

    In this paper we bring to bear some new tools from statistical learning on the analysis of roll call data. We present a new data-driven model for roll call voting that is geometric in nature. We construct the model by adapting the "Partition Decoupling Method," an unsupervised learning technique originally developed for the analysis of families of time series, to produce a multiscale geometric description of a weighted network associated to a set of roll call votes. Central to this approach is the quantitative notion of a "motivation," a cluster-based and learned basis element that serves as a building block in the representation of roll call data. Motivations enable the formulation of a quantitative description of ideology and their data-dependent nature makes possible a quantitative analysis of the evolution of ideological factors. This approach is generally applicable to roll call data and we apply it in particular to the historical roll call voting of the U.S. House and Senate. This methodology provides a...

  4. Partitioning taxonomic diversity of aquatic insect assemblages ...

    Science.gov (United States)

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feeding groups (FFG) in Neotropical Savanna (southeastern Brazilian Cerrado) streams. To do so, we considered three diversity components: stream site (α), among stream sites (β1), and among hydrologic units (β2). We also evaluated the association of EPT genera composition with heterogeneity in land use, instream physical habitat structure, and instream water quality variables. The percent of EPT taxonomic α diversity (20.7%) was lower than the β1 and β2 diversities (53.1% and 26.2%, respectively). The EPT FFG α diversity (26.5%) was lower than the β1 diversity (55.8%) and higher than the β2 (17.7%) diversity. The collector-gatherer FFG was predominant and had the greatest β diversity among stream sites (β1, 55.8%). Our findings support the need for implementing regional scale conservation strategies in the Cerrado biome, which has been degraded by anthropogenic activities. Using adaptations of the US EPA’s National Aquatic Resource Survey (NARS) designs and methods, Ferreira and colleagues examined the distribution of taxonomic and functional diversity of aquatic insects among basins, stream sites within basins, and within stream sample reaches. They sampled 160 low-order stre

  5. PARALLEL PROCESSING OF BIG POINT CLOUDS USING Z-ORDER-BASED PARTITIONING

    Directory of Open Access Journals (Sweden)

    C. Alis

    2016-06-01

    Full Text Available As laser scanning technology improves and costs are coming down, the amount of point cloud data being generated can be prohibitively difficult and expensive to process on a single machine. This data explosion is not only limited to point cloud data. Voluminous amounts of high-dimensionality and quickly accumulating data, collectively known as Big Data, such as those generated by social media, Internet of Things devices and commercial transactions, are becoming more prevalent as well. New computing paradigms and frameworks are being developed to efficiently handle the processing of Big Data, many of which utilize a compute cluster composed of several commodity grade machines to process chunks of data in parallel. A central concept in many of these frameworks is data locality. By its nature, Big Data is large enough that the entire dataset would not fit on the memory and hard drives of a single node hence replicating the entire dataset to each worker node is impractical. The data must then be partitioned across worker nodes in a manner that minimises data transfer across the network. This is a challenge for point cloud data because there exist different ways to partition data and they may require data transfer. We propose a partitioning based on Z-order which is a form of locality-sensitive hashing. The Z-order or Morton code is computed by dividing each dimension to form a grid then interleaving the binary representation of each dimension. For example, the Z-order code for the grid square with coordinates (x = 1 = 012, y = 3 = 112 is 10112 = 11. The number of points in each partition is controlled by the number of bits per dimension: the more bits, the fewer the points. The number of bits per dimension also controls the level of detail with more bits yielding finer partitioning. We present this partitioning method by implementing it on Apache Spark and investigating how different parameters affect the accuracy and running time of the k nearest

  6. A Partitioning Algorithm for Extracting Movement Epochs from Robot-Derived Kinematic Data

    Directory of Open Access Journals (Sweden)

    Alexander T. Beed

    2017-11-01

    Full Text Available Point-to-point exercising of the upper-limb, as elicited through the presentation of visual targets on a computer screen, is a ubiquitous paradigm in the robot-assisted rehabilitation of motor-impaired individuals. Kinematic data collected from the robot’s sensors can be used to assess motor function; these data allow objective quantification of motor performance, an approach that shows promise both for guiding therapy and documenting patient progress. It is imperative that these datasets be fully understood and that tools be continually developed to support analysis and proper interpretation of robot-generated data. It is our experience that data collected from kinematic robots and partitioned according to target achievement may be prone to errors in analysis and interpretation because the movements of highly spastic individuals rarely stop within the target. Here, we propose that it is preferable to partition serial movement data based on local minima in velocity rather than target achievement; this design reflects the convention that movement epochs start and end at low or zero velocity, an assumption that is prevalent even in severely impaired individuals. Using a commercially available robot (MIT-Manus, Interactive Motion Technologies, we recorded movements from 16 moderate to severely impaired chronic stroke patients. Data partitioned according to target presentation typically interrupted movements in mid-motion: velocity at file start was 32.6 ± 26.4% of the overall velocity range. By re-apportioning, we obtained velocity at file start of 7.4 ± 9.5% of total range. Across 3,200 movements, 12.4 ± 10.4% of data points were re-allocated on average. Thus, our routine is capable of re-partitioning to more accurately reflect observed behavior. Our study is thus the first to identify and propose a solution to the problem of high relevance to the community of robot-aided rehabilitation specialists, i.e., sub-optimal partitioning

  7. Parallel Processing of Big Point Clouds Using Z-Order Partitioning

    Science.gov (United States)

    Alis, C.; Boehm, J.; Liu, K.

    2016-06-01

    As laser scanning technology improves and costs are coming down, the amount of point cloud data being generated can be prohibitively difficult and expensive to process on a single machine. This data explosion is not only limited to point cloud data. Voluminous amounts of high-dimensionality and quickly accumulating data, collectively known as Big Data, such as those generated by social media, Internet of Things devices and commercial transactions, are becoming more prevalent as well. New computing paradigms and frameworks are being developed to efficiently handle the processing of Big Data, many of which utilize a compute cluster composed of several commodity grade machines to process chunks of data in parallel. A central concept in many of these frameworks is data locality. By its nature, Big Data is large enough that the entire dataset would not fit on the memory and hard drives of a single node hence replicating the entire dataset to each worker node is impractical. The data must then be partitioned across worker nodes in a manner that minimises data transfer across the network. This is a challenge for point cloud data because there exist different ways to partition data and they may require data transfer. We propose a partitioning based on Z-order which is a form of locality-sensitive hashing. The Z-order or Morton code is computed by dividing each dimension to form a grid then interleaving the binary representation of each dimension. For example, the Z-order code for the grid square with coordinates (x = 1 = 012, y = 3 = 112) is 10112 = 11. The number of points in each partition is controlled by the number of bits per dimension: the more bits, the fewer the points. The number of bits per dimension also controls the level of detail with more bits yielding finer partitioning. We present this partitioning method by implementing it on Apache Spark and investigating how different parameters affect the accuracy and running time of the k nearest neighbour algorithm

  8. Exact Cover Problem in Milton Babbitt's All-partition Array

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set......, A, and a collection of distinct subsets of this set, S, then a subset of S is an exact cover of A if it exhaustively and exclu- sively partitions A. We provide a backtracking algorithm for solving this problem in an all-partition array and compare the output of this algorithm with an analysis...

  9. Moving Clusters within a Memetic Algorithm for Graph Partitioning

    Directory of Open Access Journals (Sweden)

    Inwook Hwang

    2015-01-01

    Full Text Available Most memetic algorithms (MAs for graph partitioning reduce the cut size of partitions using iterative improvement. But this local process considers one vertex at a time and fails to move clusters between subsets when the movement of any single vertex increases cut size, even though moving the whole cluster would reduce it. A new heuristic identifies clusters from the population of locally optimized random partitions that must anyway be created to seed the MA, and as the MA runs it makes beneficial cluster moves. Results on standard benchmark graphs show significant reductions in cut size, in some cases improving on the best result in the literature.

  10. b-Tree Facets for the Simple Graph Partitioning Polytope

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    2000-01-01

    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we introduce a large class of facet defining inequalities...... for the simple graph partitioning polytopes P_n(b), b >= 3, associated with the complete graph on n nodes. These inequalities are induced by a graph configuration which is built upon trees of cardinality b. We provide a closed-form theorem that states all necessary and sufficient conditions for the facet...

  11. b-tree facets for the simple graph partitioning polytope

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    2004-01-01

    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we introduce a large class of facet defining inequalities...... for the simple graph partitioning polytopes P_n(b), b >= 3, associated with the complete graph on n nodes. These inequalities are induced by a graph configuration which is built upon trees of cardinality b. We provide a closed-form theorem that states all necessary and sufficient conditions for the facet...

  12. Exact partition functions for gauge theories on Rλ3

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Wallet

    2016-11-01

    Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  13. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph

    Science.gov (United States)

    Feng, Lv; Chunlin, Gao; Kaiyang, Ma

    2017-05-01

    With rapid development of computer performance and distributed technology, P2P-based resource sharing mode plays important role in Internet. P2P network users continued to increase so the high dynamic characteristics of the system determine that it is difficult to obtain the load of other nodes. Therefore, a dynamic load balance strategy based on hypergraph is proposed in this article. The scheme develops from the idea of hypergraph theory in multilevel partitioning. It adopts optimized multilevel partitioning algorithms to partition P2P network into several small areas, and assigns each area a supernode for the management and load transferring of the nodes in this area. In the case of global scheduling is difficult to be achieved, the priority of a number of small range of load balancing can be ensured first. By the node load balance in each small area the whole network can achieve relative load balance. The experiments indicate that the load distribution of network nodes in our scheme is obviously compacter. It effectively solves the unbalanced problems in P2P network, which also improve the scalability and bandwidth utilization of system.

  14. PARTITION OF ATENOLOL AND PROPRANOLOL TABLETS AND ITS POSSIBLE IMPLICATION IN THEIR THERAPEUTIC EFFECT.

    Directory of Open Access Journals (Sweden)

    A. S. Inhã

    2016-07-01

    Full Text Available A medicament is defined as a pharmaceutical product that is obtained or prepared technologically. It should contain one or more active ingredients with other substances with prophylactic, curative, palliative or diagnostic purposes. The pharmaceutical dosage form of oral tablets is relevant given the advantages it presents. The drugs are produced in pre-established doses, doses that are patterns of each pharmaceutical company and may not meet the needs of all patients. There is still a need to reduce the cost or achieve lower dosages that are sometimes found not commercially available and therefore, frequently some patients are instructed to cut the tablets. ANVISA reports that the practice of tablets partition in half is harmful to the patient, especially if the tablet has some special kinds of releasing its contents, in a given period or location in the body, before dissolving completely or whether they have coatings. This work aims to analyze the partition of propranolol and atenolol tablets, and if the process of partition can influence in the uniformity of the drug between the halves obtained after splitting using the employment tablet cutters. These tablets Propranolol 40mg and Atenolol 50mg were chosen due to their common use to control blood pressure. The assay methodology of these active ingredients has been adapted from Brazilian Pharmacopoeia (1988 using spectrophotometry. The results showed that there was a variation in the dosage of atenolol tablets parties from 70-142% and for propranolol half tablets the variation was obtained around 90 and 112% of the half dosage. Propranolol data may have been better since these tablet shave a facilitator who is the divisor groove. The data indicate that the partition tablets should not be encouraged because it can lead to loss of efficacy in the treatment.

  15. An ETL optimization framework using partitioning and parallelization

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem

    2015-01-01

    Extract-Transform-Load (ETL) handles large amounts of data and manages workload through dataflows. ETL dataflows are widely regarded as complex and expensive operations in terms of time and system resources. In order to minimize the time and the resources required by ETL dataflows, this paper...... presents an optimization framework using partitioning and parallelization. The framework first partitions an ETL dataflow into multiple execution trees according to the characteristics of ETL constructs, then within an execution tree pipelined parallelism and shared cache are used to optimize...... the partitioned dataflow. Furthermore, multi-threading is used in component-based optimization. The experimental results show that the proposed framework can achieve 4.7 times faster than the ordinary ETL dataflows (without using the proposed partitioning and optimization methods), and is comparable...

  16. Partition function of the two-dimensional nearest neighbour Ising ...

    Indian Academy of Sciences (India)

    Abstract. The partition function for two-dimensional nearest neighbour Ising model in a non-zero magnetic field have been derived for a finite square lattice of 16, 25, 36 and 64 sites with the help of ...

  17. User Partitioning for Less Overhead in MIMO Interference Channels

    CERN Document Server

    Peters, Steven W

    2010-01-01

    This paper presents a study on multiple-antenna interference channels, accounting for general overhead as a function of the number of users and antennas in the network. The model includes both perfect and imperfect channel state information based on channel estimation in the presence of noise. Three low complexity methods are proposed for reducing the impact of overhead in the sum network throughput by partitioning users into orthogonal groups. The first method allocates spectrum to the groups equally, creating an imbalance in the sum rate of each group. The second proposed method allocates spectrum unequally among the groups to provide rate fairness. Finally, geographic grouping is proposed for cases where some receivers do not observe significant interference from other transmitters. For each partitioning method, the optimal solution not only requires a brute force search over all possible partitions, but also requires full channel state information, thereby defeating the purpose of partitioning. We therefo...

  18. Gas/Aerosol partitioning: a simplified method for global modeling

    NARCIS (Netherlands)

    Metzger, S.M.

    2000-01-01

    The main focus of this thesis is the development of a simplified method to routinely calculate gas/aerosol partitioning of multicomponent aerosols and aerosol associated water within global atmospheric chemistry and climate models. Atmospheric aerosols are usually multicomponent mixtures,

  19. Phenotypic plasticity, clonal architecture and biomass partitioning in ...

    African Journals Online (AJOL)

    , clonal architecture and biomass partitioning for an aquatic clonal species ... The reduction in size, higher biomass allocations to belowground organs and a more compact growth form (reduced spacer lengths) in case of running water ...

  20. Multiphase flow modeling in centrifugal partition chromatography.

    Science.gov (United States)

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B

  1. Multimedia environmental chemical partitioning from molecular information.

    Science.gov (United States)

    Martínez, Izacar; Grifoll, Jordi; Giralt, Francesc; Rallo, Robert

    2010-12-15

    The prospect of assessing the environmental distribution of chemicals directly from their molecular information was analyzed. Multimedia chemical partitioning of 455 chemicals, expressed in dimensionless compartmental mass ratios, was predicted by SimpleBox 3, a Level III Fugacity model, together with the propagation of reported uncertainty for key physicochemical and transport properties, and degradation rates. Chemicals, some registered in priority lists, were selected according to the availability of experimental property data to minimize the influence of predicted information in model development. Chemicals were emitted in air or water in a fixed geographical scenario representing the Netherlands and characterized by five compartments (air, water, sediments, soil and vegetation). Quantitative structure-fate relationship (QSFR) models to predict mass ratios in different compartments were developed with support vector regression algorithms. A set of molecular descriptors, including the molecular weight and 38 counts of molecular constituents were adopted to characterize the chemical space. Out of the 455 chemicals, 375 were used for training and testing the QSFR models, while 80 were excluded from model development and were used as an external validation set. Training and test chemicals were selected and the domain of applicability (DOA) of the QSFRs established by means of self-organizing maps according to structural similarity. Best results were obtained with QSFR models developed for chemicals belonging to either the class [C] and [C; O], or the class with at least one heteroatom different than oxygen in the structure. These two class-specific models, with respectively 146 and 229 chemicals, showed a predictive squared coefficient of q(2) ≥ 0.90 both for air and water, which respectively dropped to q(2)≈ 0.70 and 0.40 for outlying chemicals. Prediction errors were of the same order of magnitude as the deviations associated to the uncertainty of the

  2. On the partition property of measures on Pℋλ

    Directory of Open Access Journals (Sweden)

    Donald H. Pelletier

    1982-01-01

    Full Text Available The partition property for measures on Pℋλ was formulated by analogy with a property which Rowbottom [1] proved was possessed by every normal measure on a measurable cardinal. This property has been studied in [2], [3], and [4]. This note summarizes [5] and [6], which contain results relating the partition property with the extendibility of the measure and with an auxiliary combinatorial property introduced by Menas in [4]. Detailed proofs will appear in [5] and [6].

  3. Partition function of beta-gamma system on orbifolds

    Science.gov (United States)

    Bhamidipati, Chandrasekhar; Ray, Koushik

    2013-11-01

    Partition function of beta-gamma systems on the orbifolds C 2/ Z N and C 3/ Z M × Z N are obtained as the invariant part of that on the respective affine spaces, by lifting the geometric action of the orbifold group to the fields. Interpreting the sum over roots of unity as an elementary contour integration, the partition function evaluates to a generalized Molien series counting invariant monomials composed of basic operators of the theory at each mass level.

  4. Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing

    Energy Technology Data Exchange (ETDEWEB)

    B. Hendrickson; T.G. Kolda

    1998-09-01

    A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.

  5. Review of partitioning proposals for spent nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, D.F.

    1976-07-01

    The initial phase of a study about recovery of valuable fission products from spent nuclear fuels has been to review various partitioning proposals. This report briefly describes the aqueous Purex process, the salt transport process, melt refining, fluoride volatility process, and gravimetric separations. All these processes appear to be possible technically, but further research will be necessary to determine which are most feasible. This review includes general recommendations for experimental research and development of several partitioning options.

  6. Hyperspectral image representation and processing with binary partition trees

    OpenAIRE

    Valero Valbuena, Silvia

    2012-01-01

    Premi extraordinari doctorat curs 2011-2012, àmbit Enginyeria de les TIC The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image processing tools. Therefore, under the title Hyperspectral image representation and Processing with Binary Partition Trees, this PhD thesis proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation: the Binary Partition Tree (BPT). This hierarc...

  7. A general method to study equilibrium partitioning of macromolecules

    DEFF Research Database (Denmark)

    data are used for the computation of partition coefficient and concentration profile for any confinement size. Our algorithm is versatile to the model and type of the macromolecule studied, and is capable of handling three types of confining geometries (slit, rectangular channel and rectangular box...... of this dimension rather than Rg (radius of gyration) or Rh (hydrodynamic radius) gives a better universality in the plot of the partition coefficient as a function of the chain dimension relative to the pore size....

  8. Multiplicity of summands in the random partitions of an integer

    Indian Academy of Sciences (India)

    Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, ... probability that there is a summand of multiplicity j in any randomly chosen partition or ... Introduction. 1.1 Integer partitions. Let n ≥ 1 be any integer and let n = a1 +a2 +···+am for some m ≥ 1 and some positive integers {ai }m i=1. We define the set {a1 ...

  9. Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning1

    OpenAIRE

    Martinez, Jennifer S.; Butler, Alison

    2007-01-01

    Marinobactins A-E are a suite of amphiphilic siderophores which have a common peptidic head group that coordinates Fe(III), and a fatty acid which varies in length and saturation. As a result of the amphiphilic properties of these siderophores it is difficult to study siderophore-mediated uptake of iron, because the amphiphilic siderophores partition indiscriminately in microbial and other membranes. An alternative method to distinguish amphiphilic siderophore partitioning versus siderophore-...

  10. Entanglement classification of four-partite states under the SLOCC

    Science.gov (United States)

    Zangi, S. M.; Li, Jun-Li; Qiao, Cong-Feng

    2017-08-01

    We present a practical classification scheme for the four-partite entangled states under stochastic local operations and classical communication (SLOCC). By transforming a four-partite state into a triple-state set composed of two tripartite states and a bipartite state, the entanglement classification is reduced to the classification of tripartite and bipartite entanglements. This reduction method has the merit of involving only the linear constrains, and meanwhile provides an insight into the entanglement character of the subsystems.

  11. A Conditional Density Estimation Partition Model Using Logistic Gaussian Processes

    OpenAIRE

    Payne, Richard D.; Guha, Nilabja; Ding, Yu; Mallick, Bani K.

    2017-01-01

    Conditional density estimation (density regression) estimates the distribution of a response variable y conditional on covariates x. Utilizing a partition model framework, a conditional density estimation method is proposed using logistic Gaussian processes. The partition is created using a Voronoi tessellation and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. The Markov chain Monte Carlo algorithm is made possible through a Laplace approximation on the ...

  12. A novel partitioning method for block-structured adaptive meshes

    Science.gov (United States)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  13. A novel partitioning method for block-structured adaptive meshes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-07-15

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  14. Spatial partitions systematize visual search and enhance target memory.

    Science.gov (United States)

    Solman, Grayden J F; Kingstone, Alan

    2017-02-01

    Humans are remarkably capable of finding desired objects in the world, despite the scale and complexity of naturalistic environments. Broadly, this ability is supported by an interplay between exploratory search and guidance from episodic memory for previously observed target locations. Here we examined how the environment itself may influence this interplay. In particular, we examined how partitions in the environment-like buildings, rooms, and furniture-can impact memory during repeated search. We report that the presence of partitions in a display, independent of item configuration, reliably improves episodic memory for item locations. Repeated search through partitioned displays was faster overall and was characterized by more rapid ballistic orienting in later repetitions. Explicit recall was also both faster and more accurate when displays were partitioned. Finally, we found that search paths were more regular and systematic when displays were partitioned. Given the ubiquity of partitions in real-world environments, these results provide important insights into the mechanisms of naturalistic search and its relation to memory.

  15. Crowdsourcing Big Trace Data Filtering: a Partition-And Model

    Science.gov (United States)

    Yang, X.; Tang, L.

    2016-06-01

    GPS traces collected via crowdsourcing way are low-cost and informative and being as a kind of new big data source for urban geographic information extraction. However, the precision of crowdsourcing traces in urban area is very low because of low-end GPS data devices and urban canyons with tall buildings, thus making it difficult to mine high-precision geographic information such as lane-level road information. In this paper, we propose an efficient partition-and-filter model to filter trajectories, which includes trajectory partitioning and trajectory filtering. For the partition part, the partition with position and angle constrain algorithm is used to partition a trajectory into a set of sub-trajectories based on distance and angle constrains. Then, the trajectory filtering with expected accuracy method is used to filter the sub-trajectories according to the similarity between GPS tracking points and GPS baselines constructed by random sample consensus algorithm. Experimental results demonstrate that the proposed partition-and-filtering model can effectively filter the high quality GPS data from various crowdsourcing trace data sets with the expected accuracy.

  16. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao

    2017-11-29

    In the latest Joint Video Exploration Team development, the quadtree plus binary tree (QTBT) block partitioning structure has been proposed for future video coding. Compared to the traditional quadtree structure of High Efficiency Video Coding (HEVC) standard, QTBT provides more flexible patterns for splitting the blocks, which results in dramatically increased combinations of block partitions and high computational complexity. In view of this, a confidence interval based early termination (CIET) scheme is proposed for QTBT to identify the unnecessary partition modes in the sense of rate-distortion (RD) optimization. In particular, a RD model is established to predict the RD cost of each partition pattern without the full encoding process. Subsequently, the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure by reducing 54.7% encoding time with only 1.12% increase in terms of bit rate. Moreover, the proposed scheme performs consistently well for the high resolution sequences, of which the video coding efficiency is crucial in real applications.

  17. Partitioning-based mechanisms under personalized differential privacy

    Science.gov (United States)

    Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian

    2017-01-01

    Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t-round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms. PMID:28932827

  18. Stability and performance of ant queue inspired task partitioning methods.

    Science.gov (United States)

    Scheidler, Alexander; Merkle, Daniel; Middendorf, Martin

    2008-06-01

    In this paper, we consider computing systems that have autonomous helper components which fulfill support functions and that possess reconfigurable hardware so that they can specialize to different types of service tasks. Several self-organized task partitioning methods are proposed that can be used by the helper components to decide how to reconfigure and which service tasks to execute. The proposed task partitioning methods are inspired by the so-called ant queue system that can be found in real ants for partitioning tasks between the individuals. The aim of this study is to investigate basic properties of the task partitioning methods, like stability and efficiency, in order to obtain basic insights into the design of task partitioning methods in self-organized service systems. More precisely, the investigations are threefold: (1) discrete event simulations are used to investigate systems, (2) for a simple version of the task partitioning system analytical stability results are obtained by means of delay differential equation systems and (3) by numerically solving initial value problems.

  19. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses.

    Science.gov (United States)

    Lanfear, Robert; Frandsen, Paul B; Wright, April M; Senfeld, Tereza; Calcott, Brett

    2017-03-01

    PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Preliminary assessment of candidate immobilization technologies for retrieved single-shell tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wiemers, K.D.; Mendel, J.E.; Kruger, A.A.; Bunnell, L.R.; Mellinger, G.B.

    1992-01-01

    This report describes the initial work that has been performed to select technologies for immobilization of wastes that may be retrieved from Hanford single-shell tanks (SSTs). Two classes of waste will require immobilization. One is the combined high-level waste/transuranic (HLW/TRU) fraction, the other the low-level waste (LLW) fraction. A number of potential immobilization technologies are identified for each class of waste. Immobilization technologies were initially selected based on a number of considerations, including (1) the waste loading that could likely be achieved within the constraint of producing acceptable waste forms, (2) process flexibility (primarily compatibility with anticipated waste variability), (3) process complexity, and (4) state of development. Immobilization technologies selected for further development include the following: for HLW/TRU waste -- borosilicate glass, lead-iron phosphate glass, glass-calcine composites, glass-ceramics, and cement based forms; for non-denitrated LLW -- grout, laxtex-modified concrete, and polyethylene; and for denitrated LLW -- silicate glass, phosphate glass, and clay calcination or tailored ceramic in various matrices.

  1. Partition functions:I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    OpenAIRE

    Popovas, Andrius; Jørgensen, Uffe Gråe

    2016-01-01

    Aims. In this work we rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods. Seven possible simplifications of various complexity are described, together with advantages and disadvantages of d...

  2. Partitioning of Nanoparticles into Organic Phases and Model Cells

    Energy Technology Data Exchange (ETDEWEB)

    Posner, J.D.; Westerhoff, P.; Hou, W-C.

    2011-08-25

    There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basic partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like

  3. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  4. Whole shoot mineral partitioning and accumulation in pea (Pisum sativum

    Directory of Open Access Journals (Sweden)

    Renuka P Sankaran

    2014-04-01

    Full Text Available Several grain legumes are staple food crops that are important sources of minerals for humans; unfortunately, our knowledge is incomplete with respect to the mechanisms of translocation of these minerals to the vegetative tissues and loading into seeds. Understanding the mechanism and partitioning of minerals in pea could help in developing cultivars with high mineral density. A mineral partitioning study was conducted in pea to assess whole-plant growth and mineral content and the potential source-sink remobilization of different minerals, especially during seed development. Shoot and root mineral content increased for all the minerals, although tissue-specific partitioning differed between the minerals. Net remobilization was observed for P, S, Cu, and Fe from both the vegetative tissues and pod wall, but the amounts remobilized were much below the total accumulation in the seeds. Within the mature pod, more minerals were partitioned to the seed fraction (>75% at maturity than to the pod wall for all the minerals except Ca, where only 21% was partitioned to the seed fraction. Although there was evidence for net remobilization of some minerals from different tissues into seeds, continued uptake and translocation of minerals to source tissues during seed fill is as important, if not more important, than remobilization of previously stored minerals.

  5. Whole shoot mineral partitioning and accumulation in pea (Pisum sativum).

    Science.gov (United States)

    Sankaran, Renuka P; Grusak, Michael A

    2014-01-01

    Several grain legumes are staple food crops that are important sources of minerals for humans; unfortunately, our knowledge is incomplete with respect to the mechanisms of translocation of these minerals to the vegetative tissues and loading into seeds. Understanding the mechanism and partitioning of minerals in pea could help in developing cultivars with high mineral density. A mineral partitioning study was conducted in pea to assess whole-plant growth and mineral content and the potential source-sink remobilization of different minerals, especially during seed development. Shoot and root mineral content increased for all the minerals, although tissue-specific partitioning differed between the minerals. Net remobilization was observed for P, S, Cu, and Fe from both the vegetative tissues and pod wall, but the amounts remobilized were much below the total accumulation in the seeds. Within the mature pod, more minerals were partitioned to the seed fraction (>75%) at maturity than to the pod wall for all the minerals except Ca, where only 21% was partitioned to the seed fraction. Although there was evidence for net remobilization of some minerals from different tissues into seeds, continued uptake and translocation of minerals to source tissues during seed fill is as important, if not more important, than remobilization of previously stored minerals.

  6. Time Domain Partitioning of Electricity Production Cost Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, C.; Hummon, M.; Jones, W.; Hale, E.

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  7. Heating performance investigation of a bidirectional partition fluid thermal diode

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiande; Xia, Lulu [Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, Jiangsu Province 210016 (China)

    2010-03-15

    A novel thermal diode, bidirectional partition fluid thermal diode (BPFTD) that is fabricated by integrating a thermal insulation partition and a movable control blade into a water tank, is proposed. The bidirectional configuration allows the BPFTD to serve both passive solar heating in winter and passive cooling in summer. BPFTD heating performances are tested with two side-by-side hot boxes and compared experimentally with a water-wall having optimum thickness. Two stages of experiments are conducted. The first stage is to investigate an appropriate position of BPFTD partition, and the second compares the BPFTD with the water-wall. The test results show that the BPFTD has much better heating performances than the water-wall. Analysis indicates that the BPFTD may increase heat supply by around 140% when a single glazing cover without night insulation is used and by around 70% in case of using a double glazing cover without night insulation. (author)

  8. Optimisation-Based Solution Methods for Set Partitioning Models

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel

    , and exact and optimisation-based heuristic solution methods for the model are described. All these methods are centered around the wellknown column generation technique. Di_erent practical applications of crew scheduling are presented, and some of these applications are considered in detail in four included...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...... scienti_c papers. It is shown how these applications all _t into a generalisation of the set partitioning model. Each of the four papers contribute a novel solution method for the speci_c application treated in the paper....

  9. Partitioning of the Transition Metals Mn, Fe, Co, Ni and Zn between Orthopyroxene and Silicate Melt : Ionic Size Effect to the Partitioning Behavior

    OpenAIRE

    Hashizume, Hideo; Hariya, Yu

    1992-01-01

    Partition coefficients of Mn2+, Fe2+, CO2+, Ni2+, and Zn2+ between orthopyroxene and silicate melt have been determined in the system Mg2SiO4-SiO2-H2O at pressures of 1 and 3 GPa and at a temperature of 1400℃. The partition coefficient was defined by the ratio of the concentration of an element in orthopyroxene to that of the element in silicate melt. Partition coefficients were plotted on a partition coefficient versus ionic radius (PC-IR) diagram. Partition coefficients were linearly relate...

  10. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.

  11. FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL

    2011-12-29

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of

  12. Particle Swarm Optimization for HW/SW Partitioning

    OpenAIRE

    Abdelhalim, M. B.; Habib, S. E. &#;D.

    2009-01-01

    In this chapter, the recent introduction of the Particle Swarm Optimization technique to solve the HW/SW partitioning problem is reviewed, along with its “re-exited PSO” modification. The re-exited PSO algorithm is a recently-introduced restarting technique for PSO. The Re-exited PSO proved to be highly effective for solving the HW/SW partitioning problem. Efficient cost function formulation is of a paramount importance for an efficient optimization algorithm. Each component in the design...

  13. Polyhedral Computations for the Simple Graph Partitioning Problem

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each containing no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we present a branch-and-cut algorithm for the problem...... that uses several classes of facet-defining inequalities as cuttingplanes. These are b-tree, clique, cycle with ear, multistar, and S, Tinequalities. Descriptions of the separation procedures that are used for these inequality classes are also given. In order to evaluate the usefulness of the inequalities...

  14. SVOC partitioning between the gas phase and settled dust indoors

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2010-01-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps...... than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients (K-oa) span more than five orders of magnitude. We use these data to test a simple equilibrium model...

  15. Time-partitioning simulation models for calculation on parallel computers

    Science.gov (United States)

    Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.

    1987-01-01

    A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.

  16. Time-partitioning simulation models for calculation of parallel computers

    Science.gov (United States)

    Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.

    1987-01-01

    A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.

  17. The part-frequency matrices of a partition

    Directory of Open Access Journals (Sweden)

    William J. Keith

    2016-09-01

    Full Text Available A new combinatorial object is introduced, the part-frequency matrix sequence of a partition, whichis elementary to describe and is naturally motivated by Glaisher’s bijection. We prove results thatsuggest surprising usefulness for such a simple tool, including the existence of a related statistic thatrealizes every possible Ramanujan-type congruence for the partition function. To further exhibit itsresearch utility, we give an easy generalization of a theorem of Andrews, Dixit and Yee [1] on the mocktheta functions. Throughout, we state a number of observations and questions that can motivate anarray of investigations.

  18. Spectral methods for community detection and graph partitioning.

    Science.gov (United States)

    Newman, M E J

    2013-10-01

    We consider three distinct and well-studied problems concerning network structure: community detection by modularity maximization, community detection by statistical inference, and normalized-cut graph partitioning. Each of these problems can be tackled using spectral algorithms that make use of the eigenvectors of matrix representations of the network. We show that with certain choices of the free parameters appearing in these spectral algorithms the algorithms for all three problems are, in fact, identical, and hence that, at least within the spectral approximations used here, there is no difference between the modularity- and inference-based community detection methods, or between either and graph partitioning.

  19. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius

    2011-01-01

    Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... with a high signal-to-noise (s/n) ratio. We demonstratesd this by reconstituting gA and α-hemolysin (α-HL) into BLM arrays. The improvement in membrane array lifetime and s/n ratio demonstrates that surface plasma polymerization of the supporting partition can be used to increase the stability of biomimetic...

  20. Partition functions of non-Abelian quantum Hall states

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea; Viola, Giovanni, E-mail: andrea.cappelli@fi.infn.it, E-mail: giovanni.viola@fi.infn.it [INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2011-02-18

    Partition functions of edge excitations are obtained for non-Abelian Hall states in the second Landau level, such as the anti-Read-Rezayi state, the Bonderson-Slingerland hierarchy and the Wen non-Abelian fluid, as well as for the non-Abelian spin-singlet state. The derivation is straightforward and unique starting from the non-Abelian conformal field theory data and solving the modular invariance conditions. The partition functions provide a complete account of the excitation spectrum and are used to describe experiments of Coulomb blockade and thermopower.

  1. Partition functions 1: Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    CERN Document Server

    Popovas, Andrius

    2016-01-01

    Aims. In this work we rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods. Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H$_2$ . Both equilibrium and normal hydrogen was taken into consideration. Results. Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hyd...

  2. Preliminary assessment of partitioning and transmutation as a radioactive waste management concept

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A. G.; Tedder, D. W.; Drago, J. P.; Blomeke, J. O.; Perona, J. J.

    1977-09-01

    Partitioning (separating) the actinide elements from nuclear fuel cycle wastes and transmuting (burning) them to fission products in power reactors represents a potentially advanced concept of radioactive waste management which could reduce the long-term (greater than 1000 years) risk associated with geologic isolation of wastes. The greatest uncertainties lie in the chemical separations technology needed to recover greater than 99 percent of the actinides during the reprocessing of spent fuels and their refabrication as fresh fuels or target elements. Preliminary integrated flowsheets based on modifications of the Purex process and supplementary treatment by oxalate precipitation and ion exchange indicate that losses of plutonium in reprocessing wastes might be reduced from about 2.0 percent to 0.1 percent, uranium losses from about 1.7 percent to 0.1 percent, neptunium losses from 100 percent to about 1.2 percent, and americium and curium from 100 percent to about 0.5 percent. Mixed oxide fuel fabrication losses may be reduced from about 0.5 percent to 0.06 percent for plutonium and from 0.5 percent to 0.04 percent for uranium. Americium losses would be about 5.5 percent for the reference system. Transmutation of the partitioned actinides at a rate of 5 to 7 percent per year is feasible in both fast and thermal reactors, but additional studies are needed to determine the most suitable strategy for recycling them to reactors and to assess the major impacts of implementing the concept on fuel cycle operations and costs. It is recommended that the ongoing program to evaluate the feasibility, impacts, costs, and incentives of implementing partitioning-transmutation be continued until a firm assessment of its potentialities can be made. At the present level of effort, achievement of this objective should be possible by 1980. 27 tables, 50 figures.

  3. Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes.

    Science.gov (United States)

    Gagaoua, Mohammed; Hafid, Kahina; Hoggas, Naouel

    2016-03-01

    This paper describes data related to a research article titled "Three Phase Partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes" (Gagaoua et al., 2015) [1]. Zingibain (EC 3.4.22.67), is a coagulant cysteine protease and a meat tenderizer agent that have been reported to produce satisfactory final products in dairy and meat technology, respectively. Zingibains were exclusively purified using chromatographic techniques with very low yield purification. This paper includes data of the effect of temperature, usual salts and organic solvents on the efficiency of the three phase partitioning (TPP) system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach.

  4. Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes

    Directory of Open Access Journals (Sweden)

    Mohammed Gagaoua

    2016-03-01

    Full Text Available This paper describes data related to a research article titled “Three Phase Partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes” (Gagaoua et al., 2015 [1]. Zingibain (EC 3.4.22.67, is a coagulant cysteine protease and a meat tenderizer agent that have been reported to produce satisfactory final products in dairy and meat technology, respectively. Zingibains were exclusively purified using chromatographic techniques with very low yield purification. This paper includes data of the effect of temperature, usual salts and organic solvents on the efficiency of the three phase partitioning (TPP system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach.

  5. Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes

    Science.gov (United States)

    Gagaoua, Mohammed; Hafid, Kahina; Hoggas, Naouel

    2016-01-01

    This paper describes data related to a research article titled “Three Phase Partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes” (Gagaoua et al., 2015) [1]. Zingibain (EC 3.4.22.67), is a coagulant cysteine protease and a meat tenderizer agent that have been reported to produce satisfactory final products in dairy and meat technology, respectively. Zingibains were exclusively purified using chromatographic techniques with very low yield purification. This paper includes data of the effect of temperature, usual salts and organic solvents on the efficiency of the three phase partitioning (TPP) system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach. PMID:26909379

  6. Partitioning and transmutation of nuclear wastes. Chances and risk in research and application; Partitionierung und Transmutation nuklearer Abfaelle. Chancen und Risiken in Forschung und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Glose, Evelyn (comp.)

    2014-07-01

    Partitioning and transmutation is focused on the transformation of long-lived radioisotopes in short-lived isotopes. The methodology could be a possibility to reduce the long.-term risk of heat developing nuclear waste in final repositories. During partitioning of spent fuel elements the uranium, plutonium and the minor actinides (neptunium, americium and curium) are separated. The remaining fission and activation products are vitrified and disposed in the final repository. During the partition process radioactive water from decontamination and washing is generated as secondary waste. The transmutation process includes the irradiation of plutonium and the minor actinides with fast neutrons resulting in stable or short-lived isotopes. The separated uranium can be used for fuel element production. The facility for transmutation is being developed and is supposed to be safer than the actual nuclear power plants. The potential risks of the technology are discussed.

  7. Partitioning and analyzing temporal variability of wash and bed ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7. Partitioning and analyzing temporal variability of wash and bed material loads in a forest watershed in Iran ... Keywords. Laser particle size distribution; sand and gravel mining; sediment dynamic; suspended sediment; watershed management.

  8. Energy partitioning for growth by rabbits fed groundnut and stylo ...

    African Journals Online (AJOL)

    Forty eight crossbred (California X New Zealand White) rabbits were used to evaluate energy partitioning of rabbits fed forages supplemented with concentrate. The rabbits were randomly allocated to three treatments consisting of sole Stylosanthes hamata (stylo),sole Arachis hypogea (groundnut) haulms and 50:50 mixture ...

  9. Market partitioning and the geometry of the resource space

    NARCIS (Netherlands)

    Peli, G; Nooteboom, B

    This article gives a new explanation for generalist and specialist organizations' coexistence in crowded markets. It addresses organizational ecology's resource-partitioning theory, which explains market histories with scale economies and crowding, and it shows that some main predictions of this

  10. Partitioning and interpolation based hybrid ARIMA–ANN model for ...

    Indian Academy of Sciences (India)

    Time series forecasting; ARIMA; ANN; partitioning and interpolation; Box–Jenkins methodology ... Further, on different experimental TSD like sunspots TSD and electricity price TSD, the proposed hybrid model is applied along with four existing state-of-the-art models and it is found that the proposed model outperforms all ...

  11. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  12. Partition function of the two-dimensional nearest neighbour Ising ...

    Indian Academy of Sciences (India)

    steps16 etc. As pointed out elsewhere17 'In terms of the number of papers published, Ising model ranks as probably the most celebrated model in mathematical ... canonical partition function is defined as19. Q (H, T) = 2N. ∑ i=1 e. − (HT )i. kT. ,. (2) where k denotes the Boltzmann constant, T being the absolute temperature.

  13. On solving energy-dependent partitioned eigenvalue problem by ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dependent partitioning scheme is explored for extracting a small number of eigenvalues of a real symmetric matrix with the help of genetic algorithm. The proposed method is tested with matrices of different sizes (30 × 30 to 1000 × 1000). Com- parison is made with Löwdin's strategy for solving the ...

  14. Splittings of free groups, normal forms and partitions of ends

    Indian Academy of Sciences (India)

    manifold. M = ♯kS2 ×S1. These can be represented in a normal form due to Hatcher. In this paper, we determine the normal form in terms of crossings of partitions of ends corresponding to normal spheres, using a graph of trees representation for ...

  15. A Partitioning and Bounded Variable Algorithm for Linear Programming

    Science.gov (United States)

    Sheskin, Theodore J.

    2006-01-01

    An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…

  16. Reproductive Interference and Niche Partitioning in Aphidophagous Insects

    Directory of Open Access Journals (Sweden)

    Suzuki Noriyuki

    2016-01-01

    Full Text Available The range and quality of prey species differ greatly among closely related species of predators. However, the factors responsible for this diversified niche utilization are unclear. This is because the predation and resource competition do not always prevent species coexistence. In this paper, we present evidence in support of reproductive interference as a driver of niche partitioning, focusing on aphidophagous insect. Firstly, we present closely related generalist and specialist species pairs in aphidophagous lacewings to compare the reproductive interference hypothesis with two other hypotheses that have been proposed to explain niche partitioning in lacewings and sympatric speciation through host race formation and sexual selection. Secondly, we present a case study that shows how reproductive interference can drive niche partitioning in sibling ladybird species. Thirdly, we show that many ladybird genera include species inhabiting the same region but having different food and habitat preferences, raising the possibility that reproductive interference might occur in these groups. Finally, we show that intraguild predation cannot always explain the niche partitioning in aphidophagous insects including hoverflies and parasitoids. On the basis of the evidence presented, we urge that future studies investigating predator communities should take account of the role of reproductive interference.

  17. Three phase partitioning for extraction of oil from soybean.

    Science.gov (United States)

    Sharma, Aparna; Khare, S K; Gupta, Munishwar N

    2002-12-01

    Three phase partitioning, a method generally used for protein separation, has been evaluated for extraction of oil from soybean. 82% oil was extracted within 1 h using this process which required simultaneous addition of t-butanol (1:1, v/v) and 30% ammonium sulphate to the soybean slurry.

  18. CREW PARTITIONING: ITS EFFECT(S) ON FEMALE DIRECTINGIN ...

    African Journals Online (AJOL)

    or that women in the literary universe were relegated. Crew partitioning in. Yorùbá video film .... and obvious. Instances are boy and girl; husband and wife; father and mother; man and woman; and most ..... that they have now realized that “women cultural representation is pivotal to the shaping and redefining of feminism,” ...

  19. On solving energy-dependent partitioned eigenvalue problem by ...

    Indian Academy of Sciences (India)

    An energy-dependent partitioning scheme is explored for extracting a small number of eigenvalues of a real symmetric matrix with the help of genetic algorithm. The proposed method is tested with matrices of different sizes (30 × 30 to 1000 × 1000). Comparison is made with Löwdin's strategy for solving the problem.

  20. Lipid partitioning at the nuclear envelope controls membrane biogenesis

    NARCIS (Netherlands)

    Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon

    2015-01-01

    Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly

  1. Estimation of high temperature metal-silicate partition coefficients

    Science.gov (United States)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.

    1992-12-01

    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  2. Spectral partitioning and swells in the black sea

    NARCIS (Netherlands)

    van Vledder, G.P.; Akpınar, Adem

    2016-01-01

    The swell climate of the Black Sea has been determined using a long-term 31-year wave hindcast with the thirdgeneration spectral wave model SWAN in combination with spectral partitioning. This technique enables decomposing wave spectra into individual wave systems representing wind seas or swells

  3. n-Alcohol/Water Partition Coefficients for Decachlorobiphenyl (PCB 209)

    Science.gov (United States)

    Measurements of n-octanol/water partition coefficients (Kow) for highly hydrophobic chemicals are extremely difficult and are rarely made, in part due to the large volumes of water typically needed to quantify these compounds in the aqueous phase. An extrapolation approach using ...

  4. Entanglement between particle partitions in itinerant many-particle states

    NARCIS (Netherlands)

    Haque, M.; Zozulya, O.S.; Schoutens, K.

    2009-01-01

    We review 'particle-partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum

  5. Virus spread in complete bi-partite graphs

    NARCIS (Netherlands)

    Omic, J.S.; Kooij, R.E.; Mieghem, P. van

    2007-01-01

    In this paper we study the spread of viruses on the complete bi-partite graph Km,n. Using mean field theory we first show that the epidemic threshold for this type of graph satifies Tc = 1/√MN, hence, confirming previous results from literature. Next, we find an expression for the average number of

  6. A Rademacher Type Formula for Partitions and Overpartitions

    Directory of Open Access Journals (Sweden)

    Andrew V. Sills

    2010-01-01

    Full Text Available A Rademacher-type convergent series formula which generalizes the Hardy-Ramanujan-Rademacher formula for the number of partitions of and the Zuckerman formula for the Fourier coefficients of 4(0∣−1 is presented.

  7. Nutrient partitioning and response to insulin challenge at different ...

    African Journals Online (AJOL)

    Unknown

    that the selected characteristic is “protected” against nutritional deprivation at the expense of other body functions/tissues. (Lobley, 1998). In times of nutrient scarcity, this re-direction of priorities for nutrient partitioning may result in depletion of endogenous reserves and lower reproduction rates in animals selected for high ...

  8. Experimental partition determination of octanol-water coefficients of ...

    African Journals Online (AJOL)

    An electrochemical method based on square wave voltammetry was developed for the measurement of octanol-water partition coefficient, LogP, for ten ferrocene derivatives. Measured LogP values ranged over two orders of magnitude, between 2.18 for 1- ferrocenylethanol and 4.38 for ferrocenyl-2-nitrophenyl.

  9. A Formal Model of Partitioning for Integrated Modular Avionics

    Science.gov (United States)

    DiVito, Ben L.

    1998-01-01

    The aviation industry is gradually moving toward the use of integrated modular avionics (IMA) for civilian transport aircraft. An important concern for IMA is ensuring that applications are safely partitioned so they cannot interfere with one another. We have investigated the problem of ensuring safe partitioning and logical non-interference among separate applications running on a shared Avionics Computer Resource (ACR). This research was performed in the context of ongoing standardization efforts, in particular, the work of RTCA committee SC-182, and the recently completed ARINC 653 application executive (APEX) interface standard. We have developed a formal model of partitioning suitable for evaluating the design of an ACR. The model draws from the mathematical modeling techniques developed by the computer security community. This report presents a formulation of partitioning requirements expressed first using conventional mathematical notation, then formalized using the language of SRI'S Prototype Verification System (PVS). The approach is demonstrated on three candidate designs, each an abstraction of features found in real systems.

  10. Cost efficient CFD simulations: Proper selection of domain partitioning strategies

    Science.gov (United States)

    Haddadi, Bahram; Jordan, Christian; Harasek, Michael

    2017-10-01

    Computational Fluid Dynamics (CFD) is one of the most powerful simulation methods, which is used for temporally and spatially resolved solutions of fluid flow, heat transfer, mass transfer, etc. One of the challenges of Computational Fluid Dynamics is the extreme hardware demand. Nowadays super-computers (e.g. High Performance Computing, HPC) featuring multiple CPU cores are applied for solving-the simulation domain is split into partitions for each core. Some of the different methods for partitioning are investigated in this paper. As a practical example, a new open source based solver was utilized for simulating packed bed adsorption, a common separation method within the field of thermal process engineering. Adsorption can for example be applied for removal of trace gases from a gas stream or pure gases production like Hydrogen. For comparing the performance of the partitioning methods, a 60 million cell mesh for a packed bed of spherical adsorbents was created; one second of the adsorption process was simulated. Different partitioning methods available in OpenFOAM® (Scotch, Simple, and Hierarchical) have been used with different numbers of sub-domains. The effect of the different methods and number of processor cores on the simulation speedup and also energy consumption were investigated for two different hardware infrastructures (Vienna Scientific Clusters VSC 2 and VSC 3). As a general recommendation an optimum number of cells per processor core was calculated. Optimized simulation speed, lower energy consumption and consequently the cost effects are reported here.

  11. Random skew plane partitions and the Pearcey process

    DEFF Research Database (Denmark)

    Reshetikhin, Nicolai; Okounkov, Andrei

    2007-01-01

    We study random skew 3D partitions weighted by q vol and, specifically, the q → 1 asymptotics of local correlations near various points of the limit shape. We obtain sine-kernel asymptotics for correlations in the bulk of the disordered region, Airy kernel asymptotics near a general point...

  12. Partitioning clustering algorithms for protein sequence data sets

    Directory of Open Access Journals (Sweden)

    Fayech Sondes

    2009-04-01

    Full Text Available Abstract Background Genome-sequencing projects are currently producing an enormous amount of new sequences and cause the rapid increasing of protein sequence databases. The unsupervised classification of these data into functional groups or families, clustering, has become one of the principal research objectives in structural and functional genomics. Computer programs to automatically and accurately classify sequences into families become a necessity. A significant number of methods have addressed the clustering of protein sequences and most of them can be categorized in three major groups: hierarchical, graph-based and partitioning methods. Among the various sequence clustering methods in literature, hierarchical and graph-based approaches have been widely used. Although partitioning clustering techniques are extremely used in other fields, few applications have been found in the field of protein sequence clustering. It is not fully demonstrated if partitioning methods can be applied to protein sequence data and if these methods can be efficient compared to the published clustering methods. Methods We developed four partitioning clustering approaches using Smith-Waterman local-alignment algorithm to determine pair-wise similarities of sequences. Four different sets of protein sequences were used as evaluation data sets for the proposed methods. Results We show that these methods outperform several other published clustering methods in terms of correctly predicting a classifier and especially in terms of the correctness of the provided prediction. The software is available to academic users from the authors upon request.

  13. Mechanisms of trophic partitioning within two fish communities ...

    African Journals Online (AJOL)

    Epipelagic fish species are segregated in three trophic guilds composed by species foraging on a limited range of prey. This observation is not consistent with the general view that these high trophic level species are opportunistic and generalist. The habitat seems to be the main driver of deep-sea fishes feeding partitioning ...

  14. Partitioning Behavior of Petrodiesel/Biodiesel Blends in Water

    Science.gov (United States)

    The partitioning behavior of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100, where B100 is 100% unblended biodiesel) in water was investigated at various oil loads by the 10-fold dilution method. Five fatty acid methyl esters (FAMEs), C10 - C20 n

  15. Xenon tissue/blood partition coefficient for pig urinary bladder

    DEFF Research Database (Denmark)

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...

  16. The Endogenous-Exogenous Partition in Attribution Theory

    Science.gov (United States)

    Kruglanski, Arie W.

    1975-01-01

    Within lay explanation of actions, several significant inferences are assumed to follow from the partition between endogenous and exogenous attributions. An endogenous action is judged to constitute an end in itself; an exogenous action is judged to serve as a means to some further end. (Editor/RK)

  17. Efficient Partitioning of Large Databases without Query Statistics

    Directory of Open Access Journals (Sweden)

    Shahidul Islam KHAN

    2016-11-01

    Full Text Available An efficient way of improving the performance of a database management system is distributed processing. Distribution of data involves fragmentation or partitioning, replication, and allocation process. Previous research works provided partitioning based on empirical data about the type and frequency of the queries. These solutions are not suitable at the initial stage of a distributed database as query statistics are not available then. In this paper, I have presented a fragmentation technique, Matrix based Fragmentation (MMF, which can be applied at the initial stage as well as at later stages of distributed databases. Instead of using empirical data, I have developed a matrix, Modified Create, Read, Update and Delete (MCRUD, to partition a large database properly. Allocation of fragments is done simultaneously in my proposed technique. So using MMF, no additional complexity is added for allocating the fragments to the sites of a distributed database as fragmentation is synchronized with allocation. The performance of a DDBMS can be improved significantly by avoiding frequent remote access and high data transfer among the sites. Results show that proposed technique can solve the initial partitioning problem of large distributed databases.

  18. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    2007-06-28

    Jun 28, 2007 ... We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression ...

  19. Separation methods for estimating octanol-water partition coefficients.

    Science.gov (United States)

    Poole, Salwa K; Poole, Colin F

    2003-11-25

    Separation methods for the indirect estimation of the octanol-water partition coefficient (logP) are reviewed with an emphasis on high throughput methods with a wide application range. The solvation parameter model is used to identify suitable separation systems for estimating logP in an efficient manner that negates the need for empirical trial and error experiments. With a few exceptions, systems based on reversed-phase chromatography employing chemically bonded phases are shown to be unsuitable for estimating logP for compounds of diverse structure. This is because the fundamental properties responsible for chromatographic retention tend to be different to those responsible for partition between octanol and water, especially the contribution from hydrogen bonding interactions. On the other hand, retention in several micellar and microemulsion electrokinetic chromatography systems is shown to be highly correlated with the octanol-water partition coefficient. These systems are suitable for the rapid, high throughput determination of logP for neutral, weakly acidic, and weakly basic compounds. For compounds with a permanent charge, electrophoretic migration and electrostatic interactions with the stationary phase results in inaccurate estimation of partition coefficients. The experimental determination of solute descriptors offers an alternative approach for estimating logP, and other biopartitioning properties. A distinct advantage of this approach is that once the solute descriptors are known, solute properties can be estimated for any distribution or transport system for which a solvation parameter model has been established.

  20. Raster Data Partitioning for Supporting Distributed GIS Processing

    Science.gov (United States)

    Nguyen Thai, B.; Olasz, A.

    2015-08-01

    In the geospatial sector big data concept also has already impact. Several studies facing originally computer science techniques applied in GIS processing of huge amount of geospatial data. In other research studies geospatial data is considered as it were always been big data (Lee and Kang, 2015). Nevertheless, we can prove data acquisition methods have been improved substantially not only the amount, but the resolution of raw data in spectral, spatial and temporal aspects as well. A significant portion of big data is geospatial data, and the size of such data is growing rapidly at least by 20% every year (Dasgupta, 2013). The produced increasing volume of raw data, in different format, representation and purpose the wealth of information derived from this data sets represents only valuable results. However, the computing capability and processing speed rather tackle with limitations, even if semi-automatic or automatic procedures are aimed on complex geospatial data (Kristóf et al., 2014). In late times, distributed computing has reached many interdisciplinary areas of computer science inclusive of remote sensing and geographic information processing approaches. Cloud computing even more requires appropriate processing algorithms to be distributed and handle geospatial big data. Map-Reduce programming model and distributed file systems have proven their capabilities to process non GIS big data. But sometimes it's inconvenient or inefficient to rewrite existing algorithms to Map-Reduce programming model, also GIS data can not be partitioned as text-based data by line or by bytes. Hence, we would like to find an alternative solution for data partitioning, data distribution and execution of existing algorithms without rewriting or with only minor modifications. This paper focuses on technical overview of currently available distributed computing environments, as well as GIS data (raster data) partitioning, distribution and distributed processing of GIS algorithms

  1. PARTITIONING OF GADOLINIUM IN THE CHEMICAL PROCESSING CELL

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Best, D.; Stone, M.; Click, D.

    2011-04-27

    A combination of short-term beaker tests and longer-duration Sludge Receipt and Adjustment Tank (SRAT) simulations were performed to investigate the relative partitioning behaviors of gadolinium and iron under conditions applicable to the Chemical Processing Cell (CPC). The testing was performed utilizing non-radioactive simple Fe-Gd slurries, non-radioactive Sludge Batch 6 simulant slurries, and a radioactive real-waste slurry representative of Sludge Batch 7 material. The testing focused on the following range of conditions: (a) Fe:Gd ratios of 25-100; (b) pH values of 2-6; (c) acidification via addition of nitric, formic, and glycolic acids; (d) temperatures of {approx}93 C and {approx}22 C; and (e) oxalate concentrations of <100 mg/kg and {approx}10,000 mg/kg. The purpose of the testing was to provide data for assessing the potential use of gadolinium as a supplemental neutron poison when dispositioning excess plutonium. Understanding of the partitioning behavior of gadolinium in the CPC was the first step in assessing gadolinium's potential applicability. Significant fractions of gadolinium partitioned to the liquid-phase at pH values of 4.0 and below, regardless of the Fe:Gd ratio. In SRAT simulations targeting nitric and formic acid additions of 150% acid stoichiometry, the pH dropped to a minimum of 3.5-4.0, and the maximum fractions of gadolinium and iron partitioning to solution were both {approx}20%. In contrast, in a SRAT simulation utilizing a nitric and formic acid addition under atypical conditions (due to an anomalously low insoluble solids content), the pH dropped to a minimum of 3.7, and the maximum fractions of gadolinium and iron partitioning to solution were {approx}60% and {approx}70%, respectively. When glycolic acid was used in combination with nitric and formic acids at 100% acid stoichiometry, the pH dropped to a minimum of 3.6-4.0, and the maximum fractions of gadolinium and iron partitioning to solution were 60-80% and 3

  2. Partitioning and Transmutation. Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sofie; Drouet, Francois; Ekberg, Christian; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2005-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 129}I, {sup 99}Tc, {sup 135}Cs, {sup 93}Zr and {sup 126}Sn and activation products ({sup 14}C and {sup 36}Cl). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. This separation is necessary to obtain the desired efficiency in the transmutation process in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union sixth framework program project EUROPART. This is a continuation of the projects we participated in within the fourth and fifth framework programmes NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development.

  3. Many-body formalism for fermions: The partition function

    Science.gov (United States)

    Watson, D. K.

    2017-09-01

    The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli

  4. Item Anomaly Detection Based on Dynamic Partition for Time Series in Recommender Systems.

    Science.gov (United States)

    Gao, Min; Tian, Renli; Wen, Junhao; Xiong, Qingyu; Ling, Bin; Yang, Linda

    2015-01-01

    In recent years, recommender systems have become an effective method to process information overload. However, recommendation technology still suffers from many problems. One of the problems is shilling attacks-attackers inject spam user profiles to disturb the list of recommendation items. There are two characteristics of all types of shilling attacks: 1) Item abnormality: The rating of target items is always maximum or minimum; and 2) Attack promptness: It takes only a very short period time to inject attack profiles. Some papers have proposed item anomaly detection methods based on these two characteristics, but their detection rate, false alarm rate, and universality need to be further improved. To solve these problems, this paper proposes an item anomaly detection method based on dynamic partitioning for time series. This method first dynamically partitions item-rating time series based on important points. Then, we use chi square distribution (χ2) to detect abnormal intervals. The experimental results on MovieLens 100K and 1M indicate that this approach has a high detection rate and a low false alarm rate and is stable toward different attack models and filler sizes.

  5. Item Anomaly Detection Based on Dynamic Partition for Time Series in Recommender Systems.

    Directory of Open Access Journals (Sweden)

    Min Gao

    Full Text Available In recent years, recommender systems have become an effective method to process information overload. However, recommendation technology still suffers from many problems. One of the problems is shilling attacks-attackers inject spam user profiles to disturb the list of recommendation items. There are two characteristics of all types of shilling attacks: 1 Item abnormality: The rating of target items is always maximum or minimum; and 2 Attack promptness: It takes only a very short period time to inject attack profiles. Some papers have proposed item anomaly detection methods based on these two characteristics, but their detection rate, false alarm rate, and universality need to be further improved. To solve these problems, this paper proposes an item anomaly detection method based on dynamic partitioning for time series. This method first dynamically partitions item-rating time series based on important points. Then, we use chi square distribution (χ2 to detect abnormal intervals. The experimental results on MovieLens 100K and 1M indicate that this approach has a high detection rate and a low false alarm rate and is stable toward different attack models and filler sizes.

  6. Data partitioning enables the use of standard SOAP Web Services in genome-scale workflows.

    Science.gov (United States)

    Sztromwasser, Pawel; Puntervoll, Pål; Petersen, Kjell

    2011-07-26

    Biological databases and computational biology tools are provided by research groups around the world, and made accessible on the Web. Combining these resources is a common practice in bioinformatics, but integration of heterogeneous and often distributed tools and datasets can be challenging. To date, this challenge has been commonly addressed in a pragmatic way, by tedious and error-prone scripting. Recently however a more reliable technique has been identified and proposed as the platform that would tie together bioinformatics resources, namely Web Services. In the last decade the Web Services have spread wide in bioinformatics, and earned the title of recommended technology. However, in the era of high-throughput experimentation, a major concern regarding Web Services is their ability to handle large-scale data traffic. We propose a stream-like communication pattern for standard SOAP Web Services, that enables efficient flow of large data traffic between a workflow orchestrator and Web Services. We evaluated the data-partitioning strategy by comparing it with typical communication patterns on an example pipeline for genomic sequence annotation. The results show that data-partitioning lowers resource demands of services and increases their throughput, which in consequence allows to execute in-silico experiments on genome-scale, using standard SOAP Web Services and workflows. As a proof-of-principle we annotated an RNA-seq dataset using a plain BPEL workflow engine.

  7. Measurement and partitioning of evapotranspiration (ET) for application to vadose zone studies

    Science.gov (United States)

    Partitioning evapotranspiration (ET) into its constituent components, soil evaporation (E) and plant transpiration (T), is important for vadose zone studies because E and T are often parameterized separately. However, partitioning ET is challenging, and many longstanding approaches have significant ...

  8. A Multivariate Model of Partitioned Country-Of-Origin on Consumer Quality Perceptions

    National Research Council Canada - National Science Library

    Humayun Kabir Chowdhury

    2009-01-01

      A Multivariate Model of Partitioned Country-of-Origin on Consumer Quality Perceptions Abstract This paper deals with the effects of partitioned country-of-origin associations on consumer product quality evaluations...

  9. Partitioning and Transmutation. Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sofie; Ekberg, Christian; Fermvik, Anna; Hervieux, Nadege; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93}Zr, {sup 94}N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work.

  10. Partitioning and Transmutation. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Isabelle; Englund, Sofie; Fermvik, Anna; Liljenzin, Jan-Olov; Neumayer, Denis; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2007-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93} Zr, {sup 94} To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW, respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work. Work is progressing in relation to a proposal for the 7th framework programme. This proposal will be aiming at a pilot plant for separation for transmutation purposes.

  11. Partitioning and transmutation. Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Englund, Sofie; Fermvik, Anna; Foreman, Mark St. J.; Liljenzin, Jan-Olov; Retegan, Teodora; Skarnemark, Gunnar; Wald, Karin (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (SE))

    2007-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT now in the 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since a further investigation on basic understanding of the chemical behaviour is required, we have our main focus on the chemical processes and understanding of how they work. Due to new recruitments we will now also work on ligand design and development. This will decrease the response time between new ligands and their evaluation.

  12. Asymptotics of Pattern Avoidance in the Klazar Set Partition and Permutation-Tuple Settings

    OpenAIRE

    Gunby, Benjamin; Pálvölgyi, Dömötör

    2017-01-01

    We consider asymptotics of set partition pattern avoidance in the sense of Klazar. Our main result derives the asymptotics of the number of set partitions avoiding a given set partition within an exponential factor, which leads to a classification of possible growth rates of set partition pattern classes. We further define a notion of permutation-tuple avoidance, which generalizes notions of Aldred et al. and the usual permutation pattern setting, and similarly determine the number of permuta...

  13. Partitioning and transmutation. Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Naestren, Catharina; Retegan, Teodora; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high cross sections for neutron capture of some elements, like the lanthanides. Other reasons may be the unintentional making of other long lived isotopes. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. Due to new recruitments we will now also work

  14. Partitioning and transmutation. Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Loefstroem-Engdahl, Elin; Retegan, Teodora; Skarnemark, Gunnar; Spendlikova, Irena (Nuclear Chemistry, Department of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2010-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I and 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects range from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. We have proposed a novel process

  15. RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology.

    Directory of Open Access Journals (Sweden)

    Namhee Kim

    Full Text Available Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2 corresponding to the second eigenvalues (λ2 associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2's components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2's components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼ 220 nucleotides. While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs

  16. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors

  17. Partitions, Compartments and Portals: Cave Development in internally impounded karst masses.

    Directory of Open Access Journals (Sweden)

    Osborne R. Armstrong L.

    2005-07-01

    Full Text Available Dykes and other vertical bodies can act as aquicludes within bodies of karst rock. These partitions separate isolated bodies of solublerock called compartments. Speleogenetically each compartment will behave as a small impounded-karst until the partition becomesbreached. Breaches through partitions, portals, allow water, air and biota including humans to pass between sections of caves thatwere originally isolated.

  18. Integer Programming Formulation of the Problem of Generating Milton Babbitt's All-partition Arrays

    DEFF Research Database (Denmark)

    Tanaka, Tsubasa; Bemman, Brian; Meredith, David

    2016-01-01

    Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted for creating the all-partition array. The problem of generating an all-partition array involves finding a rectangular array of pitch-class integers that can be partitioned into regions, each of which represents a distinct...

  19. Partitions, Compartments and Portals: Cave Development in internally impounded karst masses.

    OpenAIRE

    Osborne R. Armstrong L.

    2005-01-01

    Dykes and other vertical bodies can act as aquicludes within bodies of karst rock. These partitions separate isolated bodies of solublerock called compartments. Speleogenetically each compartment will behave as a small impounded-karst until the partition becomesbreached. Breaches through partitions, portals, allow water, air and biota including humans to pass between sections of caves thatwere originally isolated.

  20. Fluorescent solute-partitioning characterization of layered soft contact lenses.

    Science.gov (United States)

    Dursch, T J; Liu, D E; Oh, Y; Radke, C J

    2015-03-01

    Partitioning of aqueous packaging, wetting, and care-solution agents into and out of soft contact lenses (SCLs) is important for improving wear comfort and also for characterizing lens physico-chemical properties. We illustrate both features of partitioning by application of fluorescent-solute partitioning into DAILIES TOTAL1® (delefilcon A) water-gradient SCLs, which exhibit a layered structure of a silicone-hydrogel (SiHy) core sandwiched between thin surface-gel layers. Two-photon fluorescence confocal laser-scanning microscopy and attenuated total-reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) characterize the lens and assess uptake profiles of six prototypical fluorescent solutes. Comparison of solute uptake in a SiHy-core prototype lens (i.e., O2OPTIX(TM)) validates the core SiHy structure of DAILIESTOTAL1®. To establish surface-layer charge, partition coefficients and water contents are obtained for aqueous pH values of 4 and 7.4. Solute fluorescence-intensity profiles clearly confirm a layered structure for the DAILIES TOTAL1® lenses. In all cases, aqueous solute partition coefficients are greater in the surface layers than in the SiHy core, signifying higher water in the surface gels. ATR-FTIR confirms surface-layer mass water contents of 82±3%. Water uptake and hydrophilic-solute uptake at pH 4 compared with that at pH 7.4 reveal that the surface-gel layers are anionic at physiologic pH 7.4, whereas both the SiHy core and O2OPTIX™ (lotrafilcon B) are nonionic. We successfully confirm the layered structure of DAILIES TOTAL1®, consisting of an 80-μm-thick SiHy core surrounded by 10-μm-thick polyelectrolyte surface-gel layers of significantly greater water content and aqueous solute uptake compared with the core. Accordingly, fluorescent-solute partitioning in SCLs provides information on gel structure and composition, in addition to quantifying uptake and release amounts and rates. Copyright © 2014 Acta Materialia Inc. Published by

  1. Global distribution and Gas-particle Partitioning of Polycyclic Aromatic Hydrocarbons - a Modelling Study

    Science.gov (United States)

    Lammel, G.; Sehili, A. M.

    2009-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted in all combustion processes. Some undergo re-volatilisation (multi-hopping). Little is known about degradation pathways and the processes determining gas-particle partitioning (Lohmann & Lammel, 2004). Distribution and fate have no been studied on the global scale so far (except for emissions in Europe and Russia; Sehili & Lammel, 2007). Anthracene (ANT), fluoranthene (FLT) and benzo[a]pyrene (BAP) have been studied under present-day climate and each 3 scenarios of atmospheric degradation and gas-particle partitioning using an atmospheric general circulation model with embedded dynamic aerosol submodel, ECHAM-HAM (Stier et al., 2005) and re-volatilization from ground compartments (Semeena et al., 2006). 10 years were simulated with a time-step of 30 min and 2.8°x2.8° and 19 levels. Emissions were compiled based on emission factors in 27 major types of combustion technologies, scaled to 141 combustion technologies and their global distribution as of 1996 (1°x1°) according to fuel type and the PM1 emission factor (Bond et al., 2004). The emissions were entried uniformly throughout the entire simulation time. Scenarios tested: AD = adsorption (according to the Junge empirical relationship; Pankow, 1987), OB = absorption in organic matter and adsorption to soot (Lohmann & Lammel, 2004) without and DP = with degradation in the atmospheric particulate phase. Gas-particle partitioning in air influences drastically the atmospheric cycling, total environmental fate (e.g. compartmental distributions) and the long-range transport potential (LRTP) of the substances studied. The LRTP is mostly regional. Comparison with observed levels indicate that degradation in the particulate phase must be slower than in the gas-phase. Furthermore, the levels of semivolatile PAHs (ANT and FLT) at high latitudes and a European mid latitude site cannot be explained by partitioning due to adsorption alone, but point to both absorption into

  2. Partitioning characteristics and particle size distributions of heavy metals in the O{sub 2}/RFG waste incineration system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jyh-Cherng, E-mail: jcchen@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, HungKuang University, No. 34, Chung-Chie Rd., Shalu, Taichung County 43302, Taiwan (China); Huang, Jian-Sheng [Department of Safety, Health and Environmental Engineering, HungKuang University, No. 34, Chung-Chie Rd., Shalu, Taichung County 43302, Taiwan (China)

    2009-12-30

    This study applies the oxygen/recycled flue gas (O{sub 2}/RFG) combustion technology for waste incineration and investigates the effects of different RFG rates on the concentrations of gas pollutants as well as the partitioning characteristics and particle size distributions of five heavy metals (Cr, Cu, Pb, Zn, and Cd). Experimental results show that the combustion efficiency can be improved and the concentration of CO{sub 2} is increased by appropriately controlling the RFG rate in the O{sub 2}/RFG incineration system. The partitioning characteristics and size distributions of heavy metals in O{sub 2}/RFG combustion system are different from those in general air combustion system. Under O{sub 2}/RFG combustion system, the partitioning percentages of heavy metals in sand bed, bottom ash, and collected ash are increased. The particle size distributions of heavy metals display the triple-peak curves. As the RFG rate rises, the concentrations of volatile heavy metals are increased in small-size (<1 {mu}m) fly ash, decreased in medium-size (1-10 {mu}m) fly ash and increased in large-size (>10 {mu}m) fly ash. These phenomena will benefit to increase the overall control efficiency of heavy metals in the incineration system.

  3. Regulation of assimilate partitioning by daylength and spectral quality

    Energy Technology Data Exchange (ETDEWEB)

    Britz, S.J. [USDA-Climate Stress Lab., Beltsville, MD (United States)

    1994-12-31

    Photosynthesis is the process by which plants utilize light energy to assimilate and transform carbon dioxide into products that support growth and development. The preceding review provides an excellent summary of photosynthetic mechanisms and diurnal patterns of carbon metabolism with emphasis on the importance of gradual changes in photosynthetically-active radiation at dawn and dusk. In addition to these direct effects of irradiance, there are indirect effects of light period duration and spectral quality on carbohydrate metabolism and assimilate partitioning. Both daylength and spectral quality trigger developmental phenomena such as flowering (e.g., photoperiodism) and shade avoidance responses, but their effects on partitioning of photoassimilates in leaves are less well known. Moreover, the adaptive significance to the plants of such effects is sometimes not clear.

  4. An information theoretic derivation of spectral graph partitioning

    Science.gov (United States)

    Middendorf, Manuel; Ziv, Etay; Wiggins, Chris

    2005-03-01

    At the APS meeting in 2004, we introduced an information-theoretic algorithm called the ``network information bottleneck" (NIB) for clustering nodes of a network into modules (cf. arxiv.org/q-bio/0411033). Numerical experiments show that, although the modules are found by minimizing a free energy with no references to normalized edge-cuts or numbers of edges between modules, the resulting partitions are both information-modular and edge-modular (exhibiting low normalized edge-cuts). Moreover, the resulting partioning algorithm is competitive both in accuracy and efficiency with methods popular in the physics community. These numerical results along with asymptotic equivalence between the information-optimal and edge-optimal partitionings are presented.

  5. Paths of specified length in random k-partite graphs

    Directory of Open Access Journals (Sweden)

    C. R. Subramanian

    2001-12-01

    Full Text Available Fix positive integers k and l. Consider a random k-partite graph on n vertices obtained by partitioning the vertex set into V i, (i=1, …,k each having size Ω(n and choosing each possible edge with probability p. Consider any vertex x in any V i and any vertex y. We show that the expected number of simple paths of even length l between x and y differ significantly depending on whether y belongs to the same V i (as x does or not. A similar phenomenon occurs when l is odd. This result holds even when k,l vary slowly with n. This fact has implications to coloring random graphs. The proof is based on establishing bijections between sets of paths.

  6. SPACE PARTITIONING FOR PRIVACY ENABLED 3D CITY MODELS

    Directory of Open Access Journals (Sweden)

    Y. Filippovska

    2016-10-01

    For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.

  7. PACE: A dynamic programming algorithm for hardware/software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper presents the PACE partitioning algorithm which is used in the LYCOS co-synthesis system for partitioning control/dataflow graphs into hardware and software parts. The algorithm is a dynamic programming algorithm which solves both the problem of minimizing system execution time...... communication model and thus attempts to minimize communication overhead. The time-complexity of the algorithm is O(n2·𝒜) and the space-complexity is O(n·𝒜) where 𝒜 is the total area of the hardware chip and n the number of code fragments which may be placed in either hardware or software...... with a hardware area constraint and the problem of minimizing hardware area with a system execution time constraint. The target architecture consists of a single microprocessor and a single hardware chip (ASIC, FPGA, etc.) which are connected by a communication channel. The algorithm incorporates a realistic...

  8. Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning.

    Science.gov (United States)

    Martinez, Jennifer S; Butler, Alison

    2007-11-01

    Marinobactins A-E are a suite of amphiphilic siderophores which have a common peptidic head group that coordinates Fe(III), and a fatty acid which varies in length and saturation. As a result of the amphiphilic properties of these siderophores it is difficult to study siderophore-mediated uptake of iron, because the amphiphilic siderophores partition indiscriminately in microbial and other membranes. An alternative method to distinguish amphiphilic siderophore partitioning versus siderophore-mediated active uptake for Fe(III)-marinobactin E has been developed. In addition, a new member of the marinobactin family of siderophores is also reported, marinobactin F, which has a C(18) fatty acid with one double bond and which is substantially more hydrophobic that marinobactins A-E.

  9. Multi-view predictive partitioning in high dimensions

    OpenAIRE

    McWilliams, Brian; Montana, Giovanni

    2012-01-01

    Many modern data mining applications are concerned with the analysis of datasets in which the observations are described by paired high-dimensional vectorial representations or "views". Some typical examples can be found in web mining and genomics applications. In this article we present an algorithm for data clustering with multiple views, Multi-View Predictive Partitioning (MVPP), which relies on a novel criterion of predictive similarity between data points. We assume that, within each clu...

  10. Enumerating set partitions according to the number of descents of ...

    Indian Academy of Sciences (India)

    Abstract. Let P(n, k) denote the set of partitions of {1, 2,..., n} having exactly k blocks. In this paper, we find the generating function which counts the members of. P(n, k) according to the number of descents of size d or more, where d ≥ 1 is fixed. An explicit expression in terms of Stirling numbers of the second kind may be ...

  11. The total position-spread tensor: Spin partition

    Energy Technology Data Exchange (ETDEWEB)

    El Khatib, Muammar, E-mail: elkhatib@irsamc.ups-tlse.fr; Evangelisti, Stefano, E-mail: stefano@irsamc.ups-tlse.fr; Leininger, Thierry, E-mail: Thierry.Leininger@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantiques - LCPQ/IRSAMC, Université de Toulouse (UPS) et CNRS (UMR-5626), 118, Route de Narbonne, 31062 Toulouse Cedex (France); Brea, Oriana, E-mail: oriana.brea@uam.es [Laboratoire de Chimie et Physique Quantiques - LCPQ/IRSAMC, Université de Toulouse (UPS) et CNRS (UMR-5626), 118, Route de Narbonne, 31062 Toulouse Cedex (France); Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Fertitta, Edoardo [Institut für Chemie und Biochemie - Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Bendazzoli, Gian Luigi, E-mail: gianluigi.bendazzoli@unibo.it [Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I–40136 Bologna (Italy)

    2015-03-07

    The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H{sub n} (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.

  12. Partitioning heritability by functional category using GWAS summary statistics

    DEFF Research Database (Denmark)

    Finucane, Hilary K.; Bulik-Sullivan, Brendan; Gusev, Alexander

    2015-01-01

    in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new...... type-specific enrichments, including significant enrichment of central nervous system cell types in the heritability of body mass index, age at menarche, educational attainment and smoking behavior....

  13. In-vitro red blood cell partitioning of doxycycline

    OpenAIRE

    P.V. Deshmukh; Badgujar, P.C.; Gatne, M. M.

    2009-01-01

    Objective: In-vitro red blood cell (RBC) partitioning of doxycycline was studied to determine whether doxycycline penetrates RBC and its concentration was assayed keeping in view its high lipophilicity. Materials and Methods: Standardization of doxycycline was performed in whole blood and plasma of cattle by microbiological assay using Bacillus subtillis ATCC 6633 as indicator organizm. Actual concentration of the drug was obtained by comparing zone inhibition with standard graph and the exte...

  14. Methodology for optimally sized centrifugal partition chromatography columns.

    Science.gov (United States)

    Chollet, Sébastien; Marchal, Luc; Jérémy Meucci; Renault, Jean-Hugues; Legrand, Jack; Foucault, Alain

    2015-04-03

    Centrifugal Partition Chromatography (CPC) is a separation process based on the partitioning of solutes between two partially miscible liquid phases. There is no solid support for the stationary phase. The centrifugal acceleration is responsible for both stationary phase retention and mobile phase dispersion. CPC is thus a process based on liquid-liquid mass transfer. The separation efficiency is mainly influenced by the hydrodynamics of the phases in each cell of the column. Thanks to a visualization system, called "Visual CPC", it was observed that the mobile phase can flow through the stationary phase as a sheet, or a spray. Hydrodynamics, which directly governs the instrument efficiency, is directly affected during scale changes, and non-linear phenomena prevent the successful achievement of mastered geometrical scale changes. In this work, a methodology for CPC column sizing is proposed, based on the characterization of the efficiency of advanced cell shapes, taking into account the hydrodynamics. Knowledge about relationship between stationary phase volume, cell efficiency and separation resolution in CPC allowed calculating the optimum cell number for laboratory and industrial scale CPC application. The methodology is highlighted with results on five different geometries from 25 to 5000 mL, for two applications: the separation of alkylbenzene by partitioning with heptane/methanol/water biphasic system; and the separation of peptides by partitioning with n-butanol/acetic acid/water (4/1/5) biphasic system. With this approach, it is possible to predict the optimal CPC column length leading to highest productivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Speeding Up FPGA Placement via Partitioning and Multithreading

    Directory of Open Access Journals (Sweden)

    Cristinel Ababei

    2009-01-01

    placement subproblems are created by partitioning and then processed concurrently by multiple worker threads that are run on multiple cores of the same processor. Our main goal is to investigate the speedup that can be achieved with this simple approach compared to previous approaches that were based on distributed computing. The new hybrid parallel placement algorithm achieves an average speedup of 2.5× using four worker threads, while the total wire length and circuit delay after routing are minimally degraded.

  16. The partition function of a ferromagnet up to three loops

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, C P, E-mail: christoph@ucol.mx [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima 28045 (Mexico)

    2011-04-01

    The low-temperature behavior of ferromagnets with a spontaneously broken symmetry O(3) {yields} O(2) is analyzed within the perspective of effective Lagrangians. The leading coefficients of the low-temperature expansion for the partition function are calculated up to three loops and the manifestation of the spin-wave interaction in this series is discussed. The effective field theory method has the virtue of being completely systematic and model-independent.

  17. Spectral methods for network community detection and graph partitioning

    OpenAIRE

    Newman, M.E.J.

    2013-01-01

    We consider three distinct and well studied problems concerning network structure: community detection by modularity maximization, community detection by statistical inference, and normalized-cut graph partitioning. Each of these problems can be tackled using spectral algorithms that make use of the eigenvectors of matrix representations of the network. We show that with certain choices of the free parameters appearing in these spectral algorithms the algorithms for all three problems are, in...

  18. Improving Coarsening Schemes for Hypergraph Partitioning by Exploiting Community Structure

    OpenAIRE

    Heuer, Tobias; Schlag, Sebastian

    2017-01-01

    We present an improved coarsening process for multilevel hypergraph partitioning that incorporates global information about the community structure. Community detection is performed via modularity maximization on a bipartite graph representation. The approach is made suitable for different classes of hypergraphs by defining weights for the graph edges that express structural properties of the hypergraph. We integrate our approach into a leading multilevel hypergraph partitioner with strong lo...

  19. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    Science.gov (United States)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  20. Plate Coupling and Strain Partitioning in the Northeastern Caribbean

    Science.gov (United States)

    Manaker, D.; Calais, E.; Jansma, P.; Mattioli, G.

    2006-12-01

    Major strike-slip faults commonly found on the margin of overriding plates in oblique subduction zone settings facilitate the partitioning of strain into trench-parallel and trench-normal tectonics. Their development has been proposed to be controlled by factors such as convergence obliquity, basal tractions, magnitude of slab-pull force, or strength of interplate coupling. In the northeastern Caribbean, the direction of GPS velocities and earthquake slip vectors suggests low coupling along the Puerto Rico and Lesser Antilles trenches, but strong coupling to the west along the Hispaniola margin, while the convergence obliquity remains constant. Coincidentally, large strike-slip faults in the overriding plate only develop in Hispaniola, which is also the locus of the largest historical subduction earthquakes in the Caribbean (M8.0, 1946-53 sequence). We investigate interplate coupling at the Caribbean-North American plate boundary using a model that allows for block rotations and elastic strain accumulation on partially coupled faults. Model parameters (block rotations and coupling on interplate faults) are derived from an inversion of earthquake slip vectors and new GPS data covering Haiti, the Dominican Republic, Puerto Rico and the Virgin Islands, and the Lesser Antilles. We find that intraplate coupling is high in the western half of the domain, coincident with the development of large and fast-slipping strike-slip faults in the upper plate that partition the Carribean/North America plate motion, but low in its eastern half, along the Puerto Rico and Lesser Antilles subductions, that show little to no strain partitioning. This suggests that strain partitioning occur only if interplate coupling is large enough to effectively transfer shear stresses to the overriding plate.

  1. Yield Strength Enhancement by Carbon Trapping in Ferrite of the Quenching and Partitioning Steel

    Science.gov (United States)

    Chen, P.; Wang, G. D.; Ceguerra, A. V.; Breen, A. J.; Ringer, S. P.; Xiong, X. C.; Lu, Q.; Wang, J. F.; Yi, H. L.

    2018-01-01

    The split quenching and partitioning (S-QP) process allows researchers to investigate microstructure and properties separately, i.e., before and after partitioning. After the partitioning process, the yield strength increases by approximately 300 MPa in the ferrite-bearing δ-quenching and partitioning ( δ-QP) steel. We propose that carbon trapping in dislocations at the ferrite grain boundaries during partitioning process is responsible for the yield strength enhancement of ferrite. Combined transmission electron microscopy and 3D atom probe tomography observations demonstrate carbon atoms segregating in dislocations. The mechanisms for the high yield strength of ferrite presented QP steels are clarified for the first time in this research.

  2. What controls DOM/POM partitioning in rivers?

    Science.gov (United States)

    Hernes, P.; Spencer, R.; Matiasek, S. J.; Dyda, R. Y.

    2016-12-01

    Dissolved and particulate organic matter (DOM and POM) in rivers are generally treated as separate pools of carbon with minimal interactions, hence infrequently studied simultaneously. While it is undoubtedly true that there are river systems in which sorption/desorption has little impact on either DOM or POM compositions, it is also undoubtedly true that partitioning is extremely important in others. For example, dissolved lignin in an agricultural catchment in California was strongly correlated to total suspended sediments, while it is well-known that organic-poor minerals eroded in the Bolivian highlands sorbs large amount of DOM upon entering the Amazon River system. This presentation will explore partitioning in rivers primarily through the lens of molecular-level lignin data. In general, POM lignin has lower acid:aldehyde ratios than DOM, lower S:V and C:V ratios, but higher carbon-normalized yields. Factors that influence the relative amount of partitioning include mineralogy, DOC:POM ratios in rivers, OM-loading of sediment entering the streams, and composition of both DOM and POM.

  3. Utility Independent Privacy Preserving Data Mining - Horizontally Partitioned Data

    Directory of Open Access Journals (Sweden)

    E Poovammal

    2010-06-01

    Full Text Available Micro data is a valuable source of information for research. However, publishing data about individuals for research purposes, without revealing sensitive information, is an important problem. The main objective of privacy preserving data mining algorithms is to obtain accurate results/rules by analyzing the maximum possible amount of data without unintended information disclosure. Data sets for analysis may be in a centralized server or in a distributed environment. In a distributed environment, the data may be horizontally or vertically partitioned. We have developed a simple technique by which horizontally partitioned data can be used for any type of mining task without information loss. The partitioned sensitive data at 'm' different sites are transformed using a mapping table or graded grouping technique, depending on the data type. This transformed data set is given to a third party for analysis. This may not be a trusted party, but it is still allowed to perform mining operations on the data set and to release the results to all the 'm' parties. The results are interpreted among the 'm' parties involved in the data sharing. The experiments conducted on real data sets prove that our proposed simple transformation procedure preserves one hundred percent of the performance of any data mining algorithm as compared to the original data set while preserving privacy.

  4. Tensor Spectral Clustering for Partitioning Higher-order Network Structures.

    Science.gov (United States)

    Benson, Austin R; Gleich, David F; Leskovec, Jure

    2015-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.

  5. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  6. A partition function approximation using elementary symmetric functions.

    Directory of Open Access Journals (Sweden)

    Ramu Anandakrishnan

    Full Text Available In statistical mechanics, the canonical partition function [Formula: see text] can be used to compute equilibrium properties of a physical system. Calculating [Formula: see text] however, is in general computationally intractable, since the computation scales exponentially with the number of particles [Formula: see text] in the system. A commonly used method for approximating equilibrium properties, is the Monte Carlo (MC method. For some problems the MC method converges slowly, requiring a very large number of MC steps. For such problems the computational cost of the Monte Carlo method can be prohibitive. Presented here is a deterministic algorithm - the direct interaction algorithm (DIA - for approximating the canonical partition function [Formula: see text] in [Formula: see text] operations. The DIA approximates the partition function as a combinatorial sum of products known as elementary symmetric functions (ESFs, which can be computed in [Formula: see text] operations. The DIA was used to compute equilibrium properties for the isotropic 2D Ising model, and the accuracy of the DIA was compared to that of the basic Metropolis Monte Carlo method. Our results show that the DIA may be a practical alternative for some problems where the Monte Carlo method converge slowly, and computational speed is a critical constraint, such as for very large systems or web-based applications.

  7. Consecutive partitions of social networks between rivaling leaders

    CERN Document Server

    Krawczyk, Malgorzata J; Holyst, Janusz A

    2016-01-01

    A model algorithm is proposed to study subsequent partitions of complex networks describing social structures. The partitions are supposed to appear as actions of rivaling leaders corresponding to nodes with large degrees. The condition of a partition is that the distance between two leaders is at least three links. This ensures that the layer of nearest neighbours of each leader remains attached to him. As a rule, numerically calculated size distribution of fragments of scale-free Albert-Barabasi networks reveals one large fragment which contains the original leader (hub of the network), and a number of small fragments with opponents that are described by two Weibull distributions. Numerical simulations and mean-field theory reveal that size of the larger fragment scales as the square root of the initial network size. The algorithm is applied to the data on political blogs in U.S. (L. Adamic and N. Glance, Proc. WWW-2005). The obtained fragments are clearly polarized; either they belong to Democrats, or to t...

  8. Extending the Concept of Diversity Partitioning to Characterize Phenotypic Complexity.

    Science.gov (United States)

    Marion, Zachary H; Fordyce, James A; Fitzpatrick, Benjamin M

    2015-09-01

    Most components of an organism's phenotype can be viewed as the expression of multiple traits. Many of these traits operate as complexes, where multiple subsidiary parts function and evolve together. As trait complexity increases, so does the challenge of describing complexity in intuitive, biologically meaningful ways. Traditional multivariate analyses ignore the phenomenon of individual complexity and provide relatively abstract representations of variation among individuals. We suggest adopting well-known diversity indices from community ecology to describe phenotypic complexity as the diversity of distinct subsidiary components of a trait. Using a hierarchical framework, we illustrate how total trait diversity can be partitioned into within-individual complexity (α diversity) and between-individual components (β diversity). This approach complements traditional multivariate analyses. The key innovations are (i) addition of individual complexity within the same framework as between-individual variation and (ii) a group-wise partitioning approach that complements traditional level-wise partitioning of diversity. The complexity-as-diversity approach has potential application in many fields, including physiological ecology, ecological and community genomics, and transcriptomics. We demonstrate the utility of this complexity-as-diversity approach with examples from chemical and microbial ecology. The examples illustrate biologically significant differences in complexity and diversity that standard analyses would not reveal.

  9. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts

    Science.gov (United States)

    Aubaud, Cyril; Hauri, Erik H.; Hirschmann, Marc M.

    2004-10-01

    We have measured hydrogen partition coefficients between nominally anhydrous minerals (olivine, pyroxenes) and basaltic melts in 13 hydrous melting experiments performed at upper mantle P-T conditions (1-2 GPa and 1230-1380°C). Resulting liquids have 3.1-6.4 wt.% H2O and average mineral/melt partition coefficients as follows: DHol/melt = 0.0017 +/- 0.0005 (n = 9), DHopx/melt = 0.019 +/- 0.004 (n = 8), and DHcpx/melt = 0.023 +/- 0.005 (n = 2). Mineral/mineral partition coefficients are DHol/opx = 0.11 +/- 0.01 (n = 4), DHol/cpx = 0.08 +/- 0.01 (n = 2) and DHcpx/opx = 1.4 +/- 0.3 (n = 1). These measurements confirm that water behaves similarly to Ce during mantle melting (DHperidotite/melt is ~0.009). For mantle water concentrations of 50-200 ppm, the onset of melting is 5-20 km deeper than the dry solidus, less than previous estimates.

  10. A parallel genetic algorithm for the set partitioning problem

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D. [Argonne National Lab., IL (United States). Mathematics and Computer Science Division.

    1994-05-01

    In this dissertation the author reports on his efforts to develop a parallel genetic algorithm and apply it to the solution of set partitioning problem -- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. He developed a distributed steady-state genetic algorithm in conjunction with a specialized local search heuristic for solving the set partitioning problem. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. The authors found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulation found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749 integer variables, respectively. A notable limitation they found was the difficulty solving problems with many constraints.

  11. Choosing the best partition of the output from a large-scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Chelsea Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casleton, Emily Michele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    Data partitioning becomes necessary when a large-scale simulation produces more data than can be feasibly stored. The goal is to partition the data, typically so that every element belongs to one and only one partition, and store summary information about the partition, either a representative value plus an estimate of the error or a distribution. Once the partitions are determined and the summary information stored, the raw data is discarded. This process can be performed in-situ; meaning while the simulation is running. When creating the partitions there are many decisions that researchers must make. For instance, how to determine once an adequate number of partitions have been created, how are the partitions created with respect to dividing the data, or how many variables should be considered simultaneously. In addition, decisions must be made for how to summarize the information within each partition. Because of the combinatorial number of possible ways to partition and summarize the data, a method of comparing the different possibilities will help guide researchers into choosing a good partitioning and summarization scheme for their application.

  12. In-Situ Characterization of Dense Non-Aqueous Phase Liquids Using Partitioning Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Gary A. Pope; Daene C. McKinney; Akhil Datta Gupta; Richard E. Jackson; Minquan Jin

    2000-03-20

    Majors advances have been made during the past three years in our research on interwell partitioning tracers tests (PITTs). These advances include (1) progress on the inverse problem of how to estimate the three-dimensional distribution of NAPL in aquifers from the tracer data, (2) the first ever partitioning tracer experiments in dual porosity media, (3) the first modeling of partitioning tracers in dual porosity media (4) experiments with complex NAPLs such as coal tar, (5) the development of an accurate and simple method to predict partition coefficients using the equivalent alkane carbon number approach, (6) partitioning tracer experiments in large model aquifers with permeability layers, (7) the first ever analysis of partitioning tracer data to estimate the change in composition of a NAPL before and after remediation (8) the first ever analysis of partitioning tracer data after a field demonstration of surfactant foam to remediate NAPL and (9) experiments at elevated temperatures .

  13. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    Science.gov (United States)

    Jakobtorweihen, S.; Zuniga, A. Chaides; Ingram, T.; Gerlach, T.; Keil, F. J.; Smirnova, I.

    2014-07-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  14. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    Science.gov (United States)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when

  15. FINAL REPORT DURAMELTER 100 HLW SIMULANT VALIDATION TESTS WITH C-106/AY-102 FEEDS VSL-05R5710-1 REV 0 6/2/05

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; GONG W; PEGG IL

    2011-12-29

    The principal objectives of the DM100 tests were to determine the processing characteristics of several C-106/AY102 feeds derived from simulants prepared by different methods, which result in different physical characteristics of the feed. The VSL simulant used in a previous test was prepared by the direct hydroxide method, which was the method used for feed preparation in the bulk of previous VSL melter testing. The NOAH Technologies Corporation modified-rheology simulant was prepared to the same composition as the VSL simulant using a method that resulted in rheological properties closer to those of certain actual waste samples. The SIPP simulant was produced by processing a co-precipitated waste simulant through a non-radioactive pilot scale semi-integrated pretreatment facility. The general intent of these tests was to provide a basis for determining whether the variations in rheology or other feed physical characteristics arising from the different methods of simulant preparation have significant effects on the processing characteristics of the feed in the melter. Completion of the test objectives is detailed in a table.

  16. Gas/Aerosol partitioning: a simplified method for global modeling

    Science.gov (United States)

    Metzger, S. M.

    2000-09-01

    The main focus of this thesis is the development of a simplified method to routinely calculate gas/aerosol partitioning of multicomponent aerosols and aerosol associated water within global atmospheric chemistry and climate models. Atmospheric aerosols are usually multicomponent mixtures, partly composed of acids (e.g. H2SO4, HNO3), their salts (e.g. (NH4)2SO4, NH4NO3, respectively), and water. Because these acids and salts are highly hygroscopic, water, that is associated with aerosols in humid environments, often exceeds the total dry aerosol mass. Both the total dry aerosol mass and the aerosol associated water are important for the role of atmospheric aerosols in climate change simulations. Still, multicomponent aerosols are not yet routinely calculated within global atmospheric chemistry or climate models. The reason is that these particles, especially volatile aerosol compounds, require a complex and computationally expensive thermodynamical treatment. For instance, the aerosol associated water depends on the composition of the aerosol, which is determined by the gas/liquid/solid partitioning, in turn strongly dependent on temperature, relative humidity, and the presence of pre-existing aerosol particles. Based on thermodynamical relations such a simplified method has been derived. This method is based on the assumptions generally made by the modeling of multicomponent aerosols, but uses an alternative approach for the calculation of the aerosol activity and activity coefficients. This alternative approach relates activity coefficients to the ambient relative humidity, according to the vapor pressure reduction and the generalization of Raoult s law. This relationship, or simplification, is a consequence of the assumption that the aerosol composition and the aerosol associated water are in thermodynamic equilibrium with the ambient relative humidity, which determines the solute activity and, hence, activity coefficients of a multicomponent aerosol mixture

  17. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage.

    Science.gov (United States)

    Kleinhans, Kelsey L; Jackson, Alicia R

    2017-03-01

    A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

  18. Partitioned learning of deep Boltzmann machines for SNP data.

    Science.gov (United States)

    Hess, Moritz; Lenz, Stefan; Blätte, Tamara J; Bullinger, Lars; Binder, Harald

    2017-10-15

    Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen the joint distribution of SNPs, followed by training several DBMs on SNP partitions that were identified by the screening. Aggregate features representing SNP patterns and the corresponding SNPs are extracted from the DBMs by a combination of statistical tests and sparse regression. In simulated case-control data, we show how this can uncover complex SNP patterns and augment results from univariate approaches, while maintaining type 1 error control. Time-to-event endpoints are considered in an application with acute myeloid leukemia patients, where SNP patterns are modeled after a pre-screening based on gene expression data. The proposed approach identified three SNPs that seem to jointly influence survival in a validation dataset. This indicates the added value of jointly investigating SNPs compared to standard univariate analyses and makes partitioned learning of DBMs an interesting complementary approach when analyzing SNP data. A Julia package is provided at 'http://github.com/binderh/BoltzmannMachines.jl'. binderh@imbi.uni-freiburg.de. Supplementary data are available at Bioinformatics online.

  19. Surface smoothing and template partitioning for cranial implant CAD

    Science.gov (United States)

    Min, Kyoung-june; Dean, David

    2005-04-01

    Employing patient-specific prefabricated implants can be an effective treatment for large cranial defects (i.e., > 25 cm2). We have previously demonstrated the use of Computer Aided Design (CAD) software that starts with the patient"s 3D head CT-scan. A template is accurately matched to the pre-detected skull defect margin. For unilateral cranial defects the template is derived from a left-to-right mirrored skull image. However, two problems arise: (1) slice edge artifacts generated during isosurface polygonalization are inherited by the final implant; and (2) partitioning (i.e., cookie-cutting) the implant surface from the mirrored skull image usually results in curvature discontinuities across the interface between the patient"s defect and the implant. To solve these problems, we introduce a novel space curve-to-surface partitioning algorithm following a ray-casting surface re-sampling and smoothing procedure. Specifically, the ray-cast re-sampling is followed by bilinear interpolation and low-pass filtering. The resulting surface has a highly regular grid-like topological structure of quadrilaterally arranged triangles. Then, we replace the regions to be partitioned with predefined sets of triangular elements thereby cutting the template surface to accurately fit the defect margin at high resolution and without surface curvature discontinuities. Comparisons of the CAD implants for five patients against the manually generated implant that the patient actually received show an average implant-patient gap of 0.45mm for the former and 2.96mm for the latter. Also, average maximum normalized curvature of interfacing surfaces was found to be smoother, 0.043, for the former than the latter, 0.097. This indicates that the CAD implants would provide a significantly better fit.

  20. Abiotic partitioning of clothianidin under simulated rice field conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Parikh, Sanjai J; Tjeerdema, Ronald S

    2015-10-01

    Clothianidin is registered for pre- and post-flood application in Californian rice fields for control of the rice seed midge, Cricotopus sylvestris, and the rice water weevil, Lissorhoptrus oryzophilus. The objective was to characterize air-water and soil-water partitioning of clothianidin under simulated Californian rice field conditions. Clothianidin was confirmed to be non-volatile (from water) via the gas purge method, as no loss from the aqueous phase was observed at 22 and 37 °C; an upper-limit KH value was calculated at 2.9 × 10(-11) Pa m(3) mol(-1) (20 °C). Soil-water partitioning was determined by the batch equilibrium method using four soils collected from rice fields in the Sacramento Valley, and sorption affinity (Kd ), sorbent capacity, desorption and organic-carbon-normalized distribution (Koc ) were determined. Values for pH, cation exchange capacity and organic matter content ranged from 4.5 to 6.6, from 5.9 to 37.9 and from 1.25 to 1.97% respectively. The log Koc values (22 and 37 °C) ranged from 2.6 to 2.7, while sorption capacity was low at 22 °C and decreased further at 37 °C. Hysteresis was observed in soils at both temperatures, suggesting that bound residues do not readily desorb. Soil-water and air-water partitioning will not significantly reduce offsite transport of clothianidin from flooded rice fields via drainage. © 2014 Society of Chemical Industry.

  1. Generalised partition functions: inferences on phase space distributions

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-06-01

    Full Text Available It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the

  2. Non-Perturbative Nekrasov Partition Function from String Theory

    CERN Document Server

    Antoniadis, Ignatios; Hohenegger, Stefan; Narain, K S; Assi, Ahmad Zein

    2014-01-01

    We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3xT2 and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general {\\Omega}-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the {\\Omega}-background.

  3. Chains, antichains, and complements in infinite partition lattices

    DEFF Research Database (Denmark)

    Avery, James Emil; Moyen, Jean-Yves; Simonsen, Jakob Grue

    2017-01-01

    We consider the partition lattice $\\Pi_\\kappa$ on any set of transfinite cardinality $\\kappa$, and properties of $\\Pi_\\kappa$ whose analogues do not hold for finite cardinalities. Assuming the Axiom of Choice we prove: (I) the cardinality of any maximal well-ordered chain is between the cofinality...... $\\mathrm{cf}(\\kappa)$ and $\\kappa$, and $\\kappa$ always occurs as the cardinality of a maximal well-ordered chain; (II) there are maximal chains in $\\Pi_\\kappa$ of cardinality $> \\kappa$; (III) if, for every ordinal $\\delta$ with $|\\delta| $ 2$....

  4. Metaheuristic ILS with path relinking for the number partitioning problem

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Souza de Oliveira

    2017-07-01

    Full Text Available This study brings an implementation of a metaheuristic procedure to solve the Number Partitioning Problem (NPP, which is a classic NP-hard combinatorial optimization problem. The presented problem has applications in different areas, such as: logistics, production and operations management, besides important relationships with other combinatorial problems. This paper aims to perform a comparative analysis between the proposed algorithm with others metaheuristics using a group of instances available on the literature. Implementations of constructive heuristics, local search and metaheuristics ILS with path relinking as mechanism of intensification and diversification were made in order to improve solutions, surpassing the others algorithms.

  5. Data Partitioning Technique to Enhance DBSCAN Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Safaa O. Al-Mamory

    2017-02-01

    Full Text Available Among density- based clustering techniques ,DBSCAN is a typical one because it can detect clusters with widely different shapes and sizes, but it fails to find clusters with different densities and for that we propose a new technique to enhance the performance of DBSCAN on data with different densities ,the new solution contains two novel tech¬niques ,one is the separation (partitioning technique that separate data into sparse and dense regions, and the other is the sampling technique that produce data with only one density distribution. the experimental results on synthetic data show that the new tech¬nique has a clustering

  6. Energy decompositions according to physical space partitioning schemes

    Science.gov (United States)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Bochicchio, Roberto C.

    2005-02-01

    This work describes simple decompositions of the energy of molecular systems according to schemes that partition the three-dimensional space. The components of those decompositions depend on one and two atomic domains thus providing a meaningful chemical information about the nature of different bondings among the atoms which compose the system. Our algorithms can be applied at any level of theory (correlated or uncorrelated wave functions). The results reported here, obtained at the Hartree-Fock level in selected molecules, show a good agreement with the chemical picture of molecules and require a low computational cost in comparison with other previously reported decompositions.

  7. Identification of plasmid partition function in coryneform bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kurusu, Yasurou; Satoh, Yukie; Inui, Masayuki; Kohama, Keiko; Kobayashi, Miki; Terasawa, Masato; Yukawa, Hideaki (Mitsubishi Petrochemical Co., Ltd., Ibaraki (Japan))

    1991-03-01

    The authors have identified and characterized a partition function that is required for stable maintenance of plasmids in the coryneform bacteria Brevibacterium flavum MJ233 and Corynebacterium glutamicum ATCC 31831. This function is localized to a HindIII-NspV fragment (673 bp) adjacent to the replication region of the plasmid, named pBY503, from Brevibacterium stationis IFO 12144. The function was independent of copy number control and was not associated directly with plasmid replication functions. This fragment was able to stabilize the unstable plasmids in cis but not in trans.

  8. Partitioning and Scheduling DSP Applications with Maximal Memory Access Hiding

    Directory of Open Access Journals (Sweden)

    Sha Edwin Hsing-Mean

    2002-01-01

    Full Text Available This paper presents an iteration space partitioning scheme to reduce the CPU idle time due to the long memory access latency. We take into consideration both the data accesses of intermediate and initial data. An algorithm is proposed to find the largest overlap for initial data to reduce the entire memory traffic. In order to efficiently hide the memory latency, another algorithm is developed to balance the ALU and memory schedules. The experiments on DSP benchmarks show that the algorithms significantly outperform the known existing methods.

  9. Starch synthesis and carbon partitioning in developing endosperm.

    Science.gov (United States)

    Emes, M J; Bowsher, C G; Hedley, C; Burrell, M M; Scrase-Field, E S F; Tetlow, I J

    2003-01-01

    The biosynthesis of starch is the major determinant of yield in cereal grains. In this short review, attention is focused on the synthesis of the soluble substrate for starch synthesis, ADPglucose (ADPG). Consideration is given to the pathway of ADPG production, its subcellular compartmentation, and the role of metabolite transporters in mediating its delivery to the site of starch synthesis. As ADPG is an activated sugar, the dependence of its production on respiration, changes which occur during development, and the constraints which ATP production may place on carbon partitioning into different end-products are discussed.

  10. Parallel implementation of RX anomaly detection on multi-core processors: impact of data partitioning strategies

    Science.gov (United States)

    Molero, Jose M.; Garzón, Ester M.; García, Inmaculada; Plaza, Antonio

    2011-11-01

    Anomaly detection is an important task for remotely sensed hyperspectral data exploitation. One of the most widely used and successful algorithms for anomaly detection in hyperspectral images is the Reed-Xiaoli (RX) algorithm. Despite its wide acceptance and high computational complexity when applied to real hyperspectral scenes, few documented parallel implementations of this algorithm exist, in particular for multi-core processors. The advantage of multi-core platforms over other specialized parallel architectures is that they are a low-power, inexpensive, widely available and well-known technology. A critical issue in the parallel implementation of RX is the sample covariance matrix calculation, which can be approached in global or local fashion. This aspect is crucial for the RX implementation since the consideration of a local or global strategy for the computation of the sample covariance matrix is expected to affect both the scalability of the parallel solution and the anomaly detection results. In this paper, we develop new parallel implementations of the RX in multi-core processors and specifically investigate the impact of different data partitioning strategies when parallelizing its computations. For this purpose, we consider both global and local data partitioning strategies in the spatial domain of the scene, and further analyze their scalability in different multi-core platforms. The numerical effectiveness of the considered solutions is evaluated using receiver operating characteristics (ROC) curves, analyzing their capacity to detect thermal hot spots (anomalies) in hyperspectral data collected by the NASA's Airborne Visible Infra- Red Imaging Spectrometer system over the World Trade Center in New York, five days after the terrorist attacks of September 11th, 2001.

  11. Biocompatibility of low molecular weight polymers for two-phase partitioning bioreactors.

    Science.gov (United States)

    Harris, Jesse; Daugulis, Andrew J

    2015-12-01

    Two phase partitioning bioreactors (TPPBs) improve the efficiency of fermentative processes by limiting the exposure of microorganisms to toxic solutes by sequestering them into a non-aqueous phase (NAP). A potential limitation of this technology, when using immiscible organic solvents as the NAP, is the cytoxicity that these materials may exert on the microbes. An improved TPPB configuration is one in which polymeric NAPs are used to replace organic solvents in order to take advantage of their low cost, improved handling qualities, and biocompatibility. A recent study has shown that low molecular weight polymers may confer improved solute uptake relative to high molecular weight polymers (i.e., have higher partition coefficients), but it is unknown whether sufficiently low molecular weight polymers may inhibit cell growth. This study has investigated the biocompatibility of a range of low molecular weight polymers, and compared trends in biocompatibility to the well-established "critical log P" concept. This was achieved by determining the biocompatibility of polypropylene glycol polymers over a molecular weight (MW) range of 425-4,000 to Saccharomyces cerevisiae and Pseudomonas putida, two organisms which have been previously used in TPPB systems. The lower MW polymers were shown to have lower average log P values, and showed more cytotoxicity than polymers of the same structure but with higher molecular weight. Since polymers are generally polydisperse (i.e., polymer samples contain a distribution of MWs), removal of the lower MW fractions via water washing was found to result in improved polymer biocompatibility. These results suggest that the critical log P concept remains useful for describing the toxicity of polymeric substances of different MWs, although it is complicated by the presence of the low MW fractions in the polymers arising from polydispersity. © 2015 Wiley Periodicals, Inc.

  12. Element partitioning in combustion- and gasification-based waste-to-energy units

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Umberto, E-mail: umberto.arena@unina2.it [Department of Environmental, Pharmaceutical and Biological Sciences and Technologies – Second University of Naples, Via Vivaldi, 43, 81100 Caserta (Italy); AMRA s.c.a r.l., Via Nuova Agnano, 11, 80125 Napoli (Italy); Di Gregorio, Fabrizio [Department of Environmental, Pharmaceutical and Biological Sciences and Technologies – Second University of Naples, Via Vivaldi, 43, 81100 Caserta (Italy)

    2013-05-15

    Highlights: ► Element partitioning of waste-to-energy units by means of a substance flow analysis. ► A comparison between moving grate combustors and high temperature gasifiers. ► Classification of key elements according to their behavior during WtE processes. ► Slags and metals from waste gasifiers are completely and immediately recyclable. ► Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  13. A Critical Assessment of Recent Work on the Application of Gas/Particle Partitioning Theories to Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Lauterbach JH

    2014-12-01

    Full Text Available In the August 1997 issue of Environmental Science&Technology (ES&T, PANKOW and co-workers at the Oregon Graduate Institute reported that the addition of ammonia-containing additives to cigarette tobacco increased the amount of unprotonated nicotine in cigarette mainstream smoke (MSS and thus increased the bioavailability of nicotine to the smoker. Articles about PANKOW's work also appeared in other publications along with allegations that ammonia-containing additives are used to manipulate nicotine deliveries. However, initial review of PANKOW's research and that reported on environmental tobacco smoke (ETS in an earlier paper showed that potentially serious issues existed with PANKOW's experimental data and conclusions. Consequently, a critical assessment of PANKOW's research and the underlying theories of gas/particle partitioning was undertaken. This assessment confirmed that PANKOW and his co-workers made a number of errors not only in their determinations of the gas/particle partitioning coefficients for nicotine in MSS and ETS but also in the interpretations of the data. During the preparation of this assessment, data from other researchers became public. These data showed that there was no correlation between tobacco ammonia (including residual ammonia from the use of ammonia-containing additives and MSS ammonia deliveries and MSS smoke pH, and that the amount of unprotonated nicotine in the undiluted MSS of a full flavor (FF American filter cigarette was less than 0.1%. These new data fully substantiated the findings of this assessment, and it can be safely concluded that the assertions made by PANKOW and his co-workers were incorrect. However, this assessment also showed that there is significant merit in the application of PANKOW's theory of absorptive partitioning for the estimation of the gas/particle partitioning of semivolatile components in MSS and ETS. Application of PANKOW's theory along with data from recent tobacco related

  14. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol M. [Savannah River National Lab., Aiken SC (United States); Lee, William E. [Imperial College, London (United Kingdom). Dept. of Materials; Ojovan, Michael I. [Univ. of Sheffield (United Kingdom). Dept. of Materials Science and Engineering

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate

  15. Almost all Almost Regular c-partite Tournaments with c ≥ 5 are Vertex Pancyclic

    DEFF Research Database (Denmark)

    Tewes, Meike; Volkmann, Lutz; Yeo, Anders

    2002-01-01

    ) indegree of D are denoted by + ( +) and - ( -), respectively. In addition, we define =min{ +, -} and =max{ +, -}. A digraph is regular when = and almost regular when - =c>=5, and that all, except possibly...... a finite number, regular 4-partite tournaments are vertex pancyclic. Clearly, in a regular multipartite tournament, each partite set has the same cardinality. As a supplement of Yeo's result we prove first that an almost regular c-partite tournament with c>=5 is vertex pancyclic, if all partite sets have...... the same cardinality. Second, we show that all almost regular c-partite tournaments are vertex pancyclic when c>=8, and third that all, except possibly a finite number, almost regular c-partite tournaments are vertex pancyclic when c>=5....

  16. Managing for Caribou Survival in a Partitioned Habitat

    Directory of Open Access Journals (Sweden)

    H.G. Cumming

    1996-01-01

    Full Text Available Forest management guidelines for woodland caribou (Rangifer tarandus caribou in Ontario need to be re-examined in light of the finding that caribou partition habitat with moose (Alces alces, partly to find virtual refuges from predation by gray wolves (Canis lupus. Forest-wide guidelines seem inappropriate for a species that is widely scattered and little known. Management should concentrate on and around currently used virtual refuges to ensure their continued habitability. Cutting these areas may force the caribou into places with higher densities of predators; winter use of roads might bring poachers, increased wolf entry, and accidents. A proposal for 100 km2 clear-cuts scheduled over 60+ years across the forest landscape would probably minimize moose/wolf densities in the long run as intended, but because of habitat partitioning might forfeit any benefits to caribou in the short-term. Sharply reducing moose densities near areas where caribou have sought refuge might incline wolves to switch to caribou. Cutting beyond caribou winter refuge areas should aim at maintaining current moose densities to prevent wolves from switching prey species. Operations level manipulation of the forest around each wintering area should provide winter habitat for the future, while treatment replications with controls across the whole forest would provide reliable knowledge about which approaches work best. The remainder of the forest should be managed to maintain suitable densities of all other species.

  17. Large N techniques for Nekrasov partition functions and AGT conjecture

    Science.gov (United States)

    Bourgine, Jean-Emile

    2013-05-01

    The AGT conjecture relates {N} = 2 4d SUSY gauge theories to 2d CFTs. Matrix model techniques can be used to investigate both sides of this relation. The large N limit refers here to the size of Young tableaux in the expression of the gauge theory partition function. It corresponds to the vanishing of Ω-background equivariant deformation parameters, and should not be confused with the t'Hooft expansion at large number of colors. In this paper, a saddle point approach is employed to study the Nekrasov-Shatashvili limit of the gauge theory, leading to define β-deformed, or quantized, Seiberg-Witten curve and differential form. Then this formalism is compared to the large N limit of the Dijkgraaf-Vafa β-ensemble. A transformation law relating the wave functions appearing at both sides of the conjecture is proposed. It implies a transformation of the Seiberg-Witten 1-form in agreement with the definition specified earlier. As a side result, a remarkable property of {N} = 2 theories emerged: the instanton contribution to the partition function can be determined from the perturbative term analysis.

  18. Threshold partitioning of sparse matrices and applications to Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hwajeong; Szyld, D.B. [Temple Univ., Philadelphia, PA (United States)

    1996-12-31

    It is well known that the order of the variables and equations of a large, sparse linear system influences the performance of classical iterative methods. In particular if, after a symmetric permutation, the blocks in the diagonal have more nonzeros, classical block methods have a faster asymptotic rate of convergence. In this paper, different ordering and partitioning algorithms for sparse matrices are presented. They are modifications of PABLO. In the new algorithms, in addition to the location of the nonzeros, the values of the entries are taken into account. The matrix resulting after the symmetric permutation has dense blocks along the diagonal, and small entries in the off-diagonal blocks. Parameters can be easily adjusted to obtain, for example, denser blocks, or blocks with elements of larger magnitude. In particular, when the matrices represent Markov chains, the permuted matrices are well suited for block iterative methods that find the corresponding probability distribution. Applications to three types of methods are explored: (1) Classical block methods, such as Block Gauss Seidel. (2) Preconditioned GMRES, where a block diagonal preconditioner is used. (3) Iterative aggregation method (also called aggregation/disaggregation) where the partition obtained from the ordering algorithm with certain parameters is used as an aggregation scheme. In all three cases, experiments are presented which illustrate the performance of the methods with the new orderings. The complexity of the new algorithms is linear in the number of nonzeros and the order of the matrix, and thus adding little computational effort to the overall solution.

  19. Coulomb gas partition function of a layered loop model

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hirohiko, E-mail: shimada@dice.c.u-tokyo.ac.j [Department of Basic Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902 (Japan)

    2010-12-03

    We consider a two-dimensional bi-layered loop model with a certain interlayer coupling and study its spectrum on a torus. Each layer consists of an O(n) model on a honeycomb lattice with periodic boundary conditions; these layers are stacked such that the links of the lattice intersect each other. A complex Boltzmann weight {lambda} with unit modulus is assigned to each intersection of two loops each from each layer. The model is reduced to an inhomogeneous vertex model at a special point of parameters. The continuum partition function is represented, based on the idea of the Coulomb gas, by a path integral over two compact bosonic fields. The modular invariance of the partition function follows naturally. Further, because of the topological nature of the interlayer coupling, the fluctuation of loops decomposes into a local and a global part. The existence of the latter leads to a sum over all the pairs of torus knots, which can be Poisson resummed by the Moebius inversion formula. This reveals the operator content of the theory. The multiplicity of each operator is explicitly given by a combination of two Ramanujan sums. We calculate each scaling dimension as a function of {lambda}. We present the flow of dimensions which connects the decoupled-O(1) models at {lambda} = 1 and the layered-O(1) model with the non-trivial coupling {lambda} = -1. The lower spectrum in the latter model is related to that of a known coset model.

  20. Coulomb gas partition function of a layered loop model

    Science.gov (United States)

    Shimada, Hirohiko

    2010-12-01

    We consider a two-dimensional bi-layered loop model with a certain interlayer coupling and study its spectrum on a torus. Each layer consists of an O(n) model on a honeycomb lattice with periodic boundary conditions; these layers are stacked such that the links of the lattice intersect each other. A complex Boltzmann weight λ with unit modulus is assigned to each intersection of two loops each from each layer. The model is reduced to an inhomogeneous vertex model at a special point of parameters. The continuum partition function is represented, based on the idea of the Coulomb gas, by a path integral over two compact bosonic fields. The modular invariance of the partition function follows naturally. Further, because of the topological nature of the interlayer coupling, the fluctuation of loops decomposes into a local and a global part. The existence of the latter leads to a sum over all the pairs of torus knots, which can be Poisson resummed by the Möbius inversion formula. This reveals the operator content of the theory. The multiplicity of each operator is explicitly given by a combination of two Ramanujan sums. We calculate each scaling dimension as a function of λ. We present the flow of dimensions which connects the decoupled-O(1) models at λ = 1 and the layered-O(1) model with the non-trivial coupling λ = -1. The lower spectrum in the latter model is related to that of a known coset model.

  1. Tundra permafrost thaw causes significant shifts in energy partitioning

    Directory of Open Access Journals (Sweden)

    Christian Stiegler

    2016-04-01

    Full Text Available Permafrost, a key component of the arctic and global climate system, is highly sensitive to climate change. Observed and ongoing permafrost degradation influences arctic hydrology, ecology and biogeochemistry, and models predict that rapid warming is expected to significantly reduce near-surface permafrost and seasonally frozen ground during the 21st century. These changes raise concern of how permafrost thaw affects the exchange of water and energy with the atmosphere. However, associated impacts of permafrost thaw on the surface energy balance and possible feedbacks on the climate system are largely unknown. In this study, we show that in northern subarctic Sweden, permafrost thaw and related degradation of peat plateaus significantly change the surface energy balance of three peatland complexes by enhancing latent heat flux and, to less degree, also ground heat flux at the cost of sensible heat flux. This effect is valid at all radiation levels but more pronounced at higher radiation levels. The observed differences in flux partitioning mainly result from the strong coupling between soil moisture availability, vegetation composition, albedo and surface structure. Our results suggest that ongoing and predicted permafrost degradation in northern subarctic Sweden ultimately result in changes in land–atmosphere coupling due to changes in the partitioning between latent and sensible heat fluxes. This in turn has crucial implications for how predictive climate models for the Arctic are further developed.

  2. Environmental constraints drive the partitioning of the soundscape in fishes.

    Science.gov (United States)

    Ruppé, Laëtitia; Clément, Gaël; Herrel, Anthony; Ballesta, Laurent; Décamps, Thierry; Kéver, Loïc; Parmentier, Eric

    2015-05-12

    The underwater environment is more and more being depicted as particularly noisy, and the inventory of calling fishes is continuously increasing. However, it currently remains unknown how species share the soundscape and are able to communicate without misinterpreting the messages. Different mechanisms of interference avoidance have been documented in birds, mammals, and frogs, but little is known about interference avoidance in fishes. How fish thus partition the soundscape underwater remains unknown, as acoustic communication and its organization have never been studied at the level of fish communities. In this study, passive acoustic recordings were used to inventory sounds produced in a fish community (120 m depth) in an attempt to understand how different species partition the acoustic environment. We uncovered an important diversity of fish sounds, and 16 of the 37 different sounds recorded were sufficiently abundant to use in a quantitative analysis. We show that sonic activity allows a clear distinction between a diurnal and a nocturnal group of fishes. Moreover, frequencies of signals made during the day overlap, whereas there is a clear distinction between the different representatives of the nocturnal callers because of a lack of overlap in sound frequency. This first demonstration, to our knowledge, of interference avoidance in a fish community can be understood by the way sounds are used. In diurnal species, sounds are mostly used to support visual display, whereas nocturnal species are generally deprived of visual cues, resulting in acoustic constraints being more important.

  3. A parallel genetic algorithm for the set partitioning problem

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.

    1996-12-31

    This paper describes a parallel genetic algorithm developed for the solution of the set partitioning problem- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their own subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. We found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high- quality integer feasible solutions were found for problems with 36, 699 and 43,749 integer variables, respectively. A notable limitation we found was the difficulty solving problems with many constraints.

  4. Partitioned key-value store with atomic memory operations

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2017-02-07

    A partitioned key-value store is provided that supports atomic memory operations. A server performs a memory operation in a partitioned key-value store by receiving a request from an application for at least one atomic memory operation, the atomic memory operation comprising a memory address identifier; and, in response to the atomic memory operation, performing one or more of (i) reading a client-side memory location identified by the memory address identifier and storing one or more key-value pairs from the client-side memory location in a local key-value store of the server; and (ii) obtaining one or more key-value pairs from the local key-value store of the server and writing the obtained one or more key-value pairs into the client-side memory location identified by the memory address identifier. The server can perform functions obtained from a client-side memory location and return a result to the client using one or more of the atomic memory operations.

  5. Contemporary Neuroradiographic Assessment of the Cochleo-Carotid Partition.

    Science.gov (United States)

    Shoman, Nael M; Samy, Ravi N; Pensak, Myles L

    2016-01-01

    The cochleo-carotid partition (CCP) describes the intimate anatomic relationship between the petrous carotid artery and the cochlear basal turn. This partition bears significant surgical and unique clinical relevance. The purpose of this paper is to radiographically assess the CCP and discuss its clinical implications. A total of 155 consecutive fine-cut temporal bone CT scans were retrospectively reviewed, and study scans were digitally analyzed in both axial and coronal views. The shortest distance between the petrous carotid canal and the cochlear basal turn was measured. In all, 310 temporal bones were studied, with a mean CCP of 1.9 mm (range 0.2-8.5, SD 1.1). The following CCP measurements were obtained: ≤1.0 mm [n = 46 (14.8%)]; 1.1-2.0 mm [n = 161 (51.9%)]; 2.1-3.0 mm [n = 29 (9.4%)], and ≥4.0 mm [n = 12 (4.2%)]. One temporal bone (0.3%) had complete CCP dehiscence. There was a positive correlation between each patient's right and left CCP measures (p ear window in patients with audiovestibular symptoms, and pathophysiology of new-onset tinnitus following cochlear implantation. © 2016 S. Karger AG, Basel.

  6. Minimal models on Riemann surfaces: The partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (Katholieke Univ. Nijmegen (Netherlands). Inst. voor Theoretische Fysica)

    1990-06-04

    The Coulomb gas representation of the A{sub n} series of c=1-6/(m(m+1)), m{ge}3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius){sup 2} of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.).

  7. Colour-independent partition functions in coloured vertex models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O., E-mail: omar.foda@unimelb.edu.au [Dept. of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 (Australia); Wheeler, M., E-mail: mwheeler@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 (France); Université Pierre et Marie Curie – Paris 6, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2013-06-11

    We study lattice configurations related to S{sub n}, the scalar product of an off-shell state and an on-shell state in rational A{sub n} integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A{sub n} models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S{sub 2} (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S{sub 2}, which depends on two sets of Bethe roots, {b_1} and {b_2}, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b_1}→∞, and/or {b_2}→∞, into a product of determinants, 2. Each of the latter determinants is an A{sub 1} vertex-model partition function.

  8. Stable isotope measurements of evapotranspiration partitioning in a maize field

    Science.gov (United States)

    Hogan, Patrick; Parajka, Juraj; Oismüller, Markus; Strauss, Peter; Heng, Lee; Blöschl, Günter

    2017-04-01

    Evapotranspiration (ET) is one of the most important processes in describing land surface - atmosphere interactions as it connects the energy and water balances. Furthermore knowledge of the individual components of evapotranspiration is important for ecohydrological modelling and agriculture, particularly for irrigation efficiency and crop productivity. In this study, we tested the application of the stable isotope method for evapotranspiration partitioning to a maize crop during the vegetative stage, using sap flow sensors as a comparison technique. Field scale ET was measured using an eddy covariance device and then partitioned using high frequency in-situ measurements of the isotopic signal of the canopy water vapor. The fraction of transpiration (Ft) calculated with the stable isotope method showed good agreement with the sap flow method. High correlation coefficient values were found between the two techniques, indicating the stable isotope method can successfully be applied in maize. The results show the changes in transpiration as a fraction of evapotranspiration after rain events and during the subsequent drying conditions as well as the relationship between transpiration and solar radiation and vapor pressure deficit.

  9. Experimental study of radium partitioning between anorthite and melt at 1 atm

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S; Burnett, D; Asimow, P; Phinney, D; Hutcheon, I

    2007-03-08

    We present the first experimental radium mineral/melt partitioning data, specifically between anorthite and a CMAS melt at atmospheric pressure. Ion microprobe measurement of coexisting anorthite and glass phases produces a molar D{sub Ra} = 0.040 {+-} 0.006 and D{sub Ra}/D{sub Ba} = 0.23 {+-} 0.05 at 1400 C. Our results indicate that lattice strain partitioning models fit the divalent (Ca, Sr, Ba, Ra) partition coefficient data of this study well, supporting previous work on crustal melting and magma chamber dynamics that has relied on such models to approximate radium partitioning behavior in the absence of experimentally determined values.

  10. Comparison of Heuristics for Generating All-partition Arrays in the Style of Milton Babbitt

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    aggregate or an incomplete one that can be made complete by adding OARPs. It is noteworthy that, when constructing an all-partition array, Babbitt started out with a non-self-contained sequence of partitions. In this paper, we use a known self-contained sequence as a basis for forming two heuristics...... that select integer partitions likely to have been chosen by Babbitt. We suggest these heuristics will select integer partitions more likely to produce a self-contained sequence and we present it as a means for efficiently searching the space of possible sequences. We apply our heuristics to both types...

  11. Comparative study of shortwave heating patterns in phantoms with polyethylene and silk partitions.

    Science.gov (United States)

    Moon, C Y; Kantor, G; Athey, T W; Ho, H S

    1988-01-01

    Specific absorption rate (SAR) and effective depths of heating patterns induced by a shortwave, pancake diathermy applicator in fat-muscle phantom are measured. Midplane partitions of polyethylene and silk screen with and without contact chemicals are used. Thermographically obtained SAR data show nearly the same value for silk-screen partitions with and without contact chemicals and slightly lower values with polyethylene partitions, provided that the partition midplanes are tightly pressed against each other. Thermometry data indicate that for low-power exposures the major error in thermographic measurements obtained after termination of heating is due to thermal diffusion and not evaporative cooling in the opened midplane of the phantom.

  12. Numerical thermal analysis of the vertical external partition made as the frame thin-walled steel structure

    Directory of Open Access Journals (Sweden)

    Major Maciej

    2017-01-01

    Full Text Available The article presents numerical thermal analysis of the vertical external partitions made in the lightweight steel framing technology. Steel posts that perform the structural role lead to the formation of linear thermal bridges and have a negative effect on the level of thermal transmittance U. Therefore, optimal solutions are being explored for such technologies. One of the solutions is to use perforated Thermo sections. The effect of perforated Thermo sections on energy loss was verified through comparison to the wall made of solid sections. Furthermore, the calculations analysed the effect of linear thermal bridges that are formed on wall connections in the corner. Computer simulation was employed to emphasize the significant differences in the temperature distribution in both analysed wall structures that resulted from constructional solutions.

  13. Highly Reducing Partitioning Experiments Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury

  14. Strain Partitioning and the Geometry of Oblique Plate Convergence

    Science.gov (United States)

    Guzman-Speziale, M.

    2004-05-01

    Strain partitioning occurs at convergent margins where oblique subduction takes place, a fact that has been known for a number of years. The geometry of plate subduction controls strain-partitioning mode in the forearc region. Deformation in the forearc depends on the direction of relative plate convergence, earthquake slip vectors, and trench-normal direction. Two basic angles are derived from these vectors: obliquity of plate convergence, the angle of plate motion direction and trench normal, and slip partitioning which is the angle between the earthquake slip vector and trench normal. Traditionally, oblique convergence models consider the trench (convergent margin) a straight line on a flat Earth. This is correct for small-scale (in the order of a few kilometers) models. However, earthquakes along convergent margins often have fault lengths of tens and even hundreds (for magnitude 7 or greater) of kilometers. On the other hand, the direction normal to the trench is usually calculated averaging contiguous points along the deepest part of the digitized bathymetry, yielding the local trend of the trench. The direction normal to the trench thus calculated varies greatly along a specific trench. In this work we propose an alternate treatment of the geometry of the trench. On a spherical Earth, trench segments form arcs of small circles. Usually, a trench of interest will contain a few (three-five) such segments, which can be fitted (in a least-squares sense) with small circles with a known center of curvature (or pole) on the surface of the Earth. Also known are the initial and final points. Instead of the standard direction normal to the trench, we use the average azimuth from the segment of small circle to its corresponding pole. We use this direction instead of trench normal and calculate obliquity of plate convergence. We test our model along the western Sunda arc, from the eastern Himalayan sintaxis to Sumatra. Five contiguos small circles were fitted to the

  15. Indoor Place Categorization based on Adaptive Partitioning of Texture Histograms

    Directory of Open Access Journals (Sweden)

    Sven Eberhardt

    2014-12-01

    Full Text Available How can we localize ourselves within a building solely using visual information, i.e., when no data about prior location or movement are available? Here, we define place categorization as a set of three distinct image classification tasks for view matching, location matching, and room matching. We present a novel image descriptor built on texture statistics and dynamic image partitioning that can be used to solve all tested place classification tasks. We benchmark the descriptor by assessing performance of regularization on our own dataset as well as the established Indoor Environment under Changing conditionS dataset, which varies lighting condition, location, and viewing angle on photos taken within an office building. We show improvement on both the datasets against a number of baseline algorithms.

  16. Edge-partitioning graphs into regular and locally irregular components

    DEFF Research Database (Denmark)

    Bensmail, Julien; Stevens, Brett

    2016-01-01

    -partition into χ'irr(G) classes, each of which induces a locally irregular graph. In particular, they conjectured that χ'irr(G) ≤3 for every G, unless G belongs to a well-characterized family of non-decomposable graphs. This conjecture is far from being settled, as notably (1) no constant upper bound on χ'irr(G......A graph is locally irregular if every two adjacent vertices have distinct degrees. Recently, Baudon et al. introduced the notion of decomposition into locally irregular subgraphs. They conjectured that for almost every graph G, there exists a minimum integer χ'irr(G) such that G admits an edge......) is known for G bipartite, and (2) no satisfactory general upper bound on χ'irr(G) is known. We herein investigate the consequences on this question of allowing a decomposition to include regular components as well. As a main result, we prove that every bipartite graph admits such a decomposition...

  17. GRADUAL TRANSITION DETECTION FOR VIDEO PARTITIONING USING MORPHOLOGICAL OPERATORS

    Directory of Open Access Journals (Sweden)

    Valery Naranjo

    2011-05-01

    Full Text Available Temporal segmentation of video data for partitioning the sequence into shots is a prerequisite in many applications: automatic video indexing and editing, old flm restoration, perceptual coding, etc. The detection of abrupt transitions or cuts has been thoroughly studied in previous works. In this paper we present a scheme to identify the most common gradual transitions, i.e., dissolves and wipes, which relies on mathematical morphology operators. The approach is restricted to fast techniques which require low computation (without motion estimation and adapted to compressed sequences and are able to cope with random brightness variations (often occurring in old flms. The present study illustrates how the morphological operators can be used to analyze temporal series for detecting particular events, either working directly on the 1D signal or building an intermediate 2D image from the 1D signals to take advantage of the spatial operators.

  18. Nonparametric Binary Recursive Partitioning for Deterioration Prediction of Infrastructure Elements

    Directory of Open Access Journals (Sweden)

    Mariza Pittou

    2009-01-01

    Full Text Available This paper introduces binary recursive partitioning (BRP as a method for estimating bridge deck deterioration and treats it as a classification and decision problem. The proposed BRP method is applied to the Indiana bridge inventory database containing 25 years of detailed information on approximately 5,500 bridges on state-maintained highways. Classification trees are separately created for 4 and 2 prediction classes and relatively high degrees of success are achieved for deck condition prediction. The significant variables identified as the most influential include current deck condition and deck age. The proposed method offers an alternative nonparametric approach for bridge deck condition prediction and could be used for cross comparisons of models calibrated using the widely applied parametric approaches.

  19. Fast Graph Partitioning Active Contours for Image Segmentation Using Histograms

    Directory of Open Access Journals (Sweden)

    Sumit K. Nath

    2009-01-01

    Full Text Available We present a method to improve the accuracy and speed, as well as significantly reduce the memory requirements, for the recently proposed Graph Partitioning Active Contours (GPACs algorithm for image segmentation in the work of Sumengen and Manjunath (2006. Instead of computing an approximate but still expensive dissimilarity matrix of quadratic size, (Ns2Ms2/(nsms, for a 2D image of size Ns×Ms and regular image tiles of size ns×ms, we use fixed length histograms and an intensity-based symmetric-centrosymmetric extensor matrix to jointly compute terms associated with the complete NsMs×NsMs dissimilarity matrix. This computationally efficient reformulation of GPAC using a very small memory footprint offers two distinct advantages over the original implementation. It speeds up convergence of the evolving active contour and seamlessly extends performance of GPAC to multidimensional images.

  20. Fast Graph Partitioning Active Contours for Image Segmentation Using Histograms

    Directory of Open Access Journals (Sweden)

    Nath SumitK

    2009-01-01

    Full Text Available Abstract We present a method to improve the accuracy and speed, as well as significantly reduce the memory requirements, for the recently proposed Graph Partitioning Active Contours (GPACs algorithm for image segmentation in the work of Sumengen and Manjunath (2006. Instead of computing an approximate but still expensive dissimilarity matrix of quadratic size, , for a 2D image of size and regular image tiles of size , we use fixed length histograms and an intensity-based symmetric-centrosymmetric extensor matrix to jointly compute terms associated with the complete dissimilarity matrix. This computationally efficient reformulation of GPAC using a very small memory footprint offers two distinct advantages over the original implementation. It speeds up convergence of the evolving active contour and seamlessly extends performance of GPAC to multidimensional images.

  1. Automatic Generation of Partitioned Matrix Expressions for Matrix Operations

    Science.gov (United States)

    Fabregat-Traver, Diego; Bientinesi, Paolo

    2010-09-01

    We target the automatic generation of formally correct algorithms and routines for linear algebra operations. Given the broad variety of architectures and configurations with which scientists deal, there does not exist one algorithmic variant that is suitable for all scenarios. Therefore, we aim to generate a family of algorithmic variants to attain high-performance for a broad set of scenarios. One of the authors has previously demonstrated that automatic derivation of a family of algorithms is possible when the Partitioned Matrix Expression (PME) of the target operation is available. The PME is a recursive definition that states the relations between submatrices in the input and the output operands. In this paper we describe all the steps involved in the automatic derivation of PMEs, thus making progress towards a fully automated system.

  2. Atom-partitioned multipole expansions for electrostatic potential boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M., E-mail: michael.s.lee131.civ@mail.mil [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Leiter, K. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Eisner, C. [Secure Mission Solutions, a Parsons Company (United States); Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Knap, J. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2017-01-01

    Applications such as grid-based real-space density functional theory (DFT) use the Poisson equation to compute electrostatics. However, the expected long tail of the electrostatic potential requires either the use of a large and costly outer domain or Dirichlet boundary conditions estimated via multipole expansion. We find that the oft-used single-center spherical multipole expansion is only appropriate for isotropic mesh domains such as spheres and cubes. In this work, we introduce a method suitable for high aspect ratio meshes whereby the charge density is partitioned into atomic domains and multipoles are computed for each domain. While this approach is moderately more expensive than a single-center expansion, it is numerically stable and still a small fraction of the overall cost of a DFT calculation. The net result is that when high aspect ratio systems are being studied, form-fitted meshes can now be used in lieu of cubic meshes to gain computational speedup.

  3. Structural and functional partitioning of bread wheat chromosome 3B.

    Science.gov (United States)

    Choulet, Frédéric; Alberti, Adriana; Theil, Sébastien; Glover, Natasha; Barbe, Valérie; Daron, Josquin; Pingault, Lise; Sourdille, Pierre; Couloux, Arnaud; Paux, Etienne; Leroy, Philippe; Mangenot, Sophie; Guilhot, Nicolas; Le Gouis, Jacques; Balfourier, Francois; Alaux, Michael; Jamilloux, Véronique; Poulain, Julie; Durand, Céline; Bellec, Arnaud; Gaspin, Christine; Safar, Jan; Dolezel, Jaroslav; Rogers, Jane; Vandepoele, Klaas; Aury, Jean-Marc; Mayer, Klaus; Berges, Hélène; Quesneville, Hadi; Wincker, Patrick; Feuillet, Catherine

    2014-07-18

    We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. Copyright © 2014, American Association for the Advancement of Science.

  4. Pore Space Partition in Metal-Organic Frameworks.

    Science.gov (United States)

    Zhai, Quan-Guo; Bu, Xianhui; Zhao, Xiang; Li, Dong-Sheng; Feng, Pingyun

    2017-02-21

    Metal-organic framework (MOF) materials have emerged as one of the favorite crystalline porous materials (CPM) because of their compositional and geometric tunability and many possible applications. In efforts to develop better MOFs for gas storage and separation, a number of strategies including creation of open metal sites and implantation of Lewis base sites have been used to tune host-guest interactions. In addition to these chemical factors, the geometric features such as pore size and shape, surface area, and pore volume also play important roles in sorption energetics and uptake capacity. For efficient capture of small gas molecules such as carbon dioxide under ambient conditions, large surface area or high pore volume are often not needed. Instead, maximizing host-guest interactions or the density of binding sites by encaging gas molecules in snug pockets of pore space can be a fruitful approach. To put this concept into practice, the pore space partition (PSP) concept has been proposed and has achieved a great experimental success. In this account, we will highlight many efforts to implement PSP in MOFs and impact of PSP on gas uptake performance. In the synthetic design of PSP, it is helpful to distinguish between factors that contribute to the framework formation and factors that serve the purpose of PSP. Because of the need for complementary structural roles, the synthesis of MOFs with PSP often involves multicomponent systems including mixed ligands, mixed inorganic nodes, or both. It is possible to accomplish both framework formation and PSP with a single type of polyfunctional ligands that use some functional groups (called framework-forming group) for framework formation and the remaining functional groups (called pore-partition group) for PSP. Alternatively, framework formation and PSP can be shouldered by different chemical species. For example, in a mixed-ligand system, one ligand (called framework-forming agent) can play the role of the

  5. A hybrid nested partitions algorithm for banking facility location problems

    KAUST Repository

    Xia, Li

    2010-07-01

    The facility location problem has been studied in many industries including banking network, chain stores, and wireless network. Maximal covering location problem (MCLP) is a general model for this type of problems. Motivated by a real-world banking facility optimization project, we propose an enhanced MCLP model which captures the important features of this practical problem, namely, varied costs and revenues, multitype facilities, and flexible coverage functions. To solve this practical problem, we apply an existing hybrid nested partitions algorithm to the large-scale situation. We further use heuristic-based extensions to generate feasible solutions more efficiently. In addition, the upper bound of this problem is introduced to study the quality of solutions. Numerical results demonstrate the effectiveness and efficiency of our approach. © 2010 IEEE.

  6. Obesity, a disorder of nutrient partitioning: the MONA LISA hypothesis.

    Science.gov (United States)

    Bray, G A

    1991-08-01

    The mechanisms underlying different types of obesity have been gradually clarified. Animal models with hypothalamic, genetic or dietary obesity have been examined with a feedback model. Four common final pathways are involved in this model. One of these final common pathways is the sympathetic nervous system. Most Obesities kNown Are Low In Sympathetic Activity states the MONA LISA Hypothesis. A second common pathway is the endocrine system involving adrenal glucocorticosteroids. The third common pathway is hyperphagia. Although not essential for most obesities, hyperphagia may be essential in animals with injury to the hypothalamic paraventricular nucleus. The final pathway is reduced physical activity. The tonic activity of these systems and their response to changes in the diet affect nutrient partitioning between fat and protein. This framework has been used to review genetic obesity, hypothalamic obesity and dietary obesity.

  7. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    Science.gov (United States)

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.

  8. H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping of polyploids.

    Science.gov (United States)

    Xie, Minzhu; Wu, Qiong; Wang, Jianxin; Jiang, Tao

    2016-12-15

    Some economically important plants including wheat and cotton have more than two copies of each chromosome. With the decreasing cost and increasing read length of next-generation sequencing technologies, reconstructing the multiple haplotypes of a polyploid genome from its sequence reads becomes practical. However, the computational challenge in polyploid haplotyping is much greater than that in diploid haplotyping, and there are few related methods. This article models the polyploid haplotyping problem as an optimal poly-partition problem of the reads, called the Polyploid Balanced Optimal Partition model. For the reads sequenced from a k-ploid genome, the model tries to divide the reads into k groups such that the difference between the reads of the same group is minimized while the difference between the reads of different groups is maximized. When the genotype information is available, the model is extended to the Polyploid Balanced Optimal Partition with Genotype constraint problem. These models are all NP-hard. We propose two heuristic algorithms, H-PoP and H-PoPG, based on dynamic programming and a strategy of limiting the number of intermediate solutions at each iteration, to solve the two models, respectively. Extensive experimental results on simulated and real data show that our algorithms can solve the models effectively, and are much faster and more accurate than the recent state-of-the-art polyploid haplotyping algorithms. The experiments also show that our algorithms can deal with long reads and deep read coverage effectively and accurately. Furthermore, H-PoP might be applied to help determine the ploidy of an organism. https://github.com/MinzhuXie/H-PoPG CONTACT: xieminzhu@hotmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Scalable partitioning and exploration of chemical spaces using geometric hashing.

    Science.gov (United States)

    Dutta, Debojyoti; Guha, Rajarshi; Jurs, Peter C; Chen, Ting

    2006-01-01

    Virtual screening (VS) has become a preferred tool to augment high-throughput screening(1) and determine new leads in the drug discovery process. The core of a VS informatics pipeline includes several data mining algorithms that work on huge databases of chemical compounds containing millions of molecular structures and their associated data. Thus, scaling traditional applications such as classification, partitioning, and outlier detection for huge chemical data sets without a significant loss in accuracy is very important. In this paper, we introduce a data mining framework built on top of a recently developed fast approximate nearest-neighbor-finding algorithm(2) called locality-sensitive hashing (LSH) that can be used to mine huge chemical spaces in a scalable fashion using very modest computational resources. The core LSH algorithm hashes chemical descriptors so that points close to each other in the descriptor space are also close to each other in the hashed space. Using this data structure, one can perform approximate nearest-neighbor searches very quickly, in sublinear time. We validate the accuracy and performance of our framework on three real data sets of sizes ranging from 4337 to 249 071 molecules. Results indicate that the identification of nearest neighbors using the LSH algorithm is at least 2 orders of magnitude faster than the traditional k-nearest-neighbor method and is over 94% accurate for most query parameters. Furthermore, when viewed as a data-partitioning procedure, the LSH algorithm lends itself to easy parallelization of nearest-neighbor classification or regression. We also apply our framework to detect outlying (diverse) compounds in a given chemical space; this algorithm is extremely rapid in determining whether a compound is located in a sparse region of chemical space or not, and it is quite accurate when compared to results obtained using principal-component-analysis-based heuristics.

  10. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Science.gov (United States)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  11. Partition, orientation and mobility of ubiquinones in a lipid bilayer.

    Science.gov (United States)

    Galassi, Vanesa Viviana; Arantes, Guilherme Menegon

    2015-12-01

    Ubiquinone is the universal mobile charge carrier involved in biological electron transfer processes. Its redox properties and biological function depend on the molecular partition and lateral diffusion over biological membranes. However, ubiquinone localization and dynamics within lipid bilayers are long debated and still uncertain. Here we present molecular dynamics simulations of several ubiquinone homologs with variable isoprenoid tail lengths complexed to phosphatidylcholine bilayers. Initially, a new force-field parametrization for ubiquinone is derived from and compared to high level quantum chemical data. Free energy profiles for ubiquinone insertion in the lipid bilayer are obtained with the new force-field. The profiles allow for the determination of the equilibrium location of ubiquinone in the membrane as well as for the validation of the simulation model by direct comparison with experimental partition coefficients. A detailed analysis of structural properties and interactions shows that the ubiquinone polar head group is localized at the water-bilayer interface at the same depth of the lipid glycerol groups and oriented normal to the membrane plane. Both the localization and orientation of ubiquinone head groups do not change significantly when increasing the number of isoprenoid units. The isoprenoid tail is extended and packed with the lipid acyl chains. For ubiquinones with long tails, the terminal isoprenoid units have high flexibility. Calculated ubiquinone diffusion coefficients are similar to that found for the phosphatidylcholine lipid. These results may have further implications for the mechanisms of ubiquinone transport and binding to respiratory and photosynthetic protein complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Niche partitioning in a sympatric cryptic species complex.

    Science.gov (United States)

    Scriven, Jessica J; Whitehorn, Penelope R; Goulson, Dave; Tinsley, Matthew C

    2016-03-01

    Competition theory states that multiple species should not be able to occupy the same niche indefinitely. Morphologically, similar species are expected to be ecologically alike and exhibit little niche differentiation, which makes it difficult to explain the co-occurrence of cryptic species. Here, we investigated interspecific niche differentiation within a complex of cryptic bumblebee species that co-occur extensively in the United Kingdom. We compared the interspecific variation along different niche dimensions, to determine how they partition a niche to avoid competitive exclusion. We studied the species B. cryptarum, B. lucorum, and B. magnus at a single location in the northwest of Scotland throughout the flight season. Using mitochondrial DNA for species identification, we investigated differences in phenology, response to weather variables and forage use. We also estimated niche region and niche overlap between different castes of the three species. Our results show varying levels of niche partitioning between the bumblebee species along three niche dimensions. The species had contrasting phenologies: The phenology of B. magnus was delayed relative to the other two species, while B. cryptarum had a relatively extended phenology, with workers and males more common than B. lucorum early and late in the season. We found divergent thermal specialisation: In contrast to B. cryptarum and B. magnus, B. lucorum worker activity was skewed toward warmer, sunnier conditions, leading to interspecific temporal variation. Furthermore, the three species differentially exploited the available forage plants: In particular, unlike the other two species, B. magnus fed predominantly on species of heather. The results suggest that ecological divergence in different niche dimensions and spatio-temporal heterogeneity in the environment may contribute to the persistence of cryptic species in sympatry. Furthermore, our study suggests that cryptic species provide distinct

  13. DETERMINATION OF CHANGE OF AERODYNAMIC CHARACTERISTICS FROM INSTALLATION OF PARTITIONS ON PROFILED PLATE WITH FLAP

    Directory of Open Access Journals (Sweden)

    P. V. Erokhin

    2014-01-01

    Full Text Available In this paper numerical investigation of airodynamic characteristics (Суа, Сха, mz, K of non-modified (without partitions and modified (with partitions profiled plate with flap are presented. Different pitch angles of flap were considered. Comparison of results showed increase of pitching moment and lift coefficient for modified plate.

  14. Using soil-specific partition coefficients to improve accuracy of the ...

    African Journals Online (AJOL)

    A soil screening value (SSV1) for the protection of groundwater resources is proposed which is based on a 2-phase (stage) equilibrium partitioning and dilution model which includes a dilution factor and partitioning coefficient (Kd), converting the water quality guideline to a total soil screening value. The appropriateness of ...

  15. The relationship between elimination rates and partition coefficients of chemical compounds.

    NARCIS (Netherlands)

    Kooijman, S.A.L.M.; Jager, D.T.; Kooi, B.W.

    2004-01-01

    Rate constants for uptake and elimination of chemicals in organisms are often related to partition coefficients (typically the octanol-water partition coefficient). We show that the well-mixed one-compartment model for toxico-kinetics implies that the elimination rate is inversely proportional to

  16. Zeta Function Expression of Spin Partition Functions on Thermal AdS3

    Directory of Open Access Journals (Sweden)

    Floyd L.Williams

    2015-07-01

    Full Text Available We find a Selberg zeta function expression of certain one-loop spin partition functions on three-dimensional thermal anti-de Sitter space. Of particular interest is the partition function of higher spin fermionic particles. We also set up, in the presence of spin, a Patterson-type formula involving the logarithmic derivative of zeta.

  17. A new class of lattice paths and partitions with n copies of n

    Indian Academy of Sciences (India)

    However, the main advantage of our associated lattice paths is that they provide a graphical representation for partitions with ... However, the main advantage of this switch to new lattice paths is that we obtain a graphical representation of all partitions ..... 1 (ν) = D1(ν) are found in the literature (cf. [1,10]) while the remaining ...

  18. What are the structural features that drive partitioning of proteins in aqueous two-phase systems?

    Science.gov (United States)

    Wu, Zhonghua; Hu, Gang; Wang, Kui; Zaslavsky, Boris Yu; Kurgan, Lukasz; Uversky, Vladimir N

    2017-01-01

    Protein partitioning in aqueous two-phase systems (ATPSs) represents a convenient, inexpensive, and easy to scale-up protein separation technique. Since partition behavior of a protein dramatically depends on an ATPS composition, it would be highly beneficial to have reliable means for (even qualitative) prediction of partitioning of a target protein under different conditions. Our aim was to understand which structural features of proteins contribute to partitioning of a query protein in a given ATPS. We undertook a systematic empirical analysis of relations between 57 numerical structural descriptors derived from the corresponding amino acid sequences and crystal structures of 10 well-characterized proteins and the partition behavior of these proteins in 29 different ATPSs. This analysis revealed that just a few structural characteristics of proteins can accurately determine behavior of these proteins in a given ATPS. However, partition behavior of proteins in different ATPSs relies on different structural features. In other words, we could not find a unique set of protein structural features derived from their crystal structures that could be used for the description of the protein partition behavior of all proteins in all ATPSs analyzed in this study. We likely need to gain better insight into relationships between protein-solvent interactions and protein structure peculiarities, in particular given limitations of the used here crystal structures, to be able to construct a model that accurately predicts protein partition behavior across all ATPSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Partitioning the vertices of a graph into two total dominating sets ...

    African Journals Online (AJOL)

    A total dominating set in a graph G is a set S of vertices of G such that every vertex in G is adjacent to a vertex of S. We study graphs whose vertex set can be partitioned into two total dominating sets. In particular, we develop several sufficient conditions for a graph to have a vertex partition into two total dominating sets.

  20. Lower bound of multipartite concurrence based on sub-partite quantum systems

    Science.gov (United States)

    Chen, Wei; Zhu, Xue-Na; Fei, Shao-Ming; Zheng, Zhu-Jun

    2017-12-01

    We study the concurrence of arbitrary dimensional multipartite quantum systems. An explicit analytical lower bound of concurrence for four-partite mixed states is obtained in terms of the concurrences of tripartite mixed states. Detailed examples are given to show that our lower bounds improve the existing lower bounds of concurrence. The approach is generalized to five-partite quantum systems.

  1. Constraint Programming Approach to the Problem of Generating Milton Babbitt's All-partition Arrays

    DEFF Research Database (Denmark)

    Tanaka, Tsubasa; Bemman, Brian; Meredith, David

    2016-01-01

    Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted for creating the all-partition array. One part of the problem in generating an all-partition array requires finding a covering of a pitch-class matrix by a collection of sets, each forming a region containing 12 distinct ...

  2. Short-term carbon partitioning fertilizer responses vary among two full-sib loblolly pine clones

    Science.gov (United States)

    Jeremy P. Stovall; John R. Seiler; Thomas R. Fox

    2012-01-01

    We investigated the effects of fertilizer application on the partitioning of gross primary productivity (GPP) between contrasting full-sib clones of Pinus taeda (L.). Our objective was to determine if fertilizer growth responses resulted from similar short-term changes to partitioning. A modeling approach incorporating respiratory carbon (C) fluxes,...

  3. Affinity partitioning of human antibodies in aqueous two-phase systems

    NARCIS (Netherlands)

    Rosa, P. A. J.; Azevedo, A. M.; Ferreira, I. F.; de Vries, J.; Korporaal, R.; Verhoef, H. J.; Visser, T. J.; Aires-Barros, M. R.

    2007-01-01

    The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the

  4. Simulating the partitioning of biomass and nitrogen between roots and shoot in crop and grass plants

    NARCIS (Netherlands)

    Yin, X.; Schapendonk, A.H.C.M.

    2004-01-01

    Quantification of the assimilate partitioning between roots and shoot has been one of the components that need improvement in crop growth models. In this study we derived two equations for root-shoot partitioning of biomass and nitrogen (N) that hold for crops grown under steady-state conditions.

  5. Human Rights and Peace Audit on Partition in South Asia - Phase I ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Human Rights and Peace Audit on Partition in South Asia - Phase I. With reference to the recent history of South Asia, this grant will allow the South Asia Forum for Human Rights (SAFHR) to examine the efficacy of partition as a ... Trauma, Development and Peacebuilding : Toward an Integrated Psychological Approach.

  6. Human Rights and Peace Audit on Partition in South Asia - Phase II ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    3 févr. 2009 ... Human Rights and Peace Audit on Partition in South Asia - Phase II. In South Asia, people's social, political and cultural aspirations often get articulated as movements for territorially defined political change. Very often, these movements find resolution in partition or in an ethnic group/nationality getting ...

  7. Hypergraph partitioning implementation for parallelizing matrix-vector multiplication using CUDA GPU-based parallel computing

    Science.gov (United States)

    Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.

    2017-07-01

    Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).

  8. An Adaptation of the Kernighan-Lin Heuristic to the Simple Graph Partitioning Problem

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    1999-01-01

    The simple graph partitioning problem is to partition a simple, edge weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we describe and evaluate an adaptation to this pr......The simple graph partitioning problem is to partition a simple, edge weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we describe and evaluate an adaptation...... results show that among all instances with known optimal values the best partition values found by a randomized version of this heuristic lie well within 1% off the optimum....

  9. Protein partitioning in poly(ethylene glycol)/sodium polyacrylate aqueous two-phase systems.

    Science.gov (United States)

    Johansson, Hans-Olof; Magaldi, Flavio Musa; Feitosa, Eloi; Pessoa, Adalberto

    2008-01-18

    The partition of hemoglobin, lysozyme and glucose-6-phosphate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na(2)SO(4), pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively.

  10. Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haoran [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044 (China); Gao, Guhui, E-mail: gaogh@bjtu.edu.cn [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044 (China); Gui, Xiaolu [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044 (China); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical and Materials Engineering, University of Texas at El Paso, TX 79968-0520 (United States); Bai, Bingzhe [Tsinghua University, Key Laboratory of Advanced Material, School of Material Science & Engineering, Beijing 100084 (China)

    2016-06-14

    The impact of bainite transformation during initial quenching and partitioning steps on the microstructural evolution was studied in a Fe-0.4C-2.0Mn-1.7Si-0.4Cr (wt%) steel. By optimizing quenching cooling rate and partitioning time, the final microstructure comprised of initial-quenched bainite, carbon-depleted martensite, bainite formed during partitioning, and final-quenched martensite, together with retained austenite. High volume fraction of retained austenite with desired carbon-content was obtained by prolonging the partitioning time to 2700 s The initial-quenched bainite, bainite formed during partitioning, and martensite provided carbon atoms to austenite, leading to the formation of retained austenite with different degree of stability. Consequently, a good combination of strength and elongation (ultimate tensile strength: 1688 MPa, total elongation: 25.2%) was obtained.

  11. Research of partition function on optical properties and temperature diagnosis of air plasma

    Science.gov (United States)

    Qiu, Dechuan; Gao, Guoqiang; Wei, Wenfu; Hu, Haixing; Li, Chunmao; Wu, Guangning

    2017-08-01

    The relationship between partition function, particle density, refractive index, and temperature for atmospheric plasma is calculated based on thermodynamics and chemical equilibrium. Taking into account the contribution of hydrogen-like levels to the atomic partition function, a compact method to calculate the atomic partition function is first used with the Eindhoven model to deduce the plasma's refractive index. Results calculated by the new approach and two other traditional simplified methods are compared and analyzed. For a better understanding on the temperature measurement accuracy deduced by different partition function disposal approaches, moiré deflectometry is employed as the experimental scheme to acquire the refractive index-position curve. Finally, applicability of different partition function disposal approaches are discussed, and results indicate that the optical properties deduced in this paper are well suited for the refractive index-based plasma diagnosis.

  12. The role of branch architecture in assimilate production and partitioning: the example of apple (Malus domestica).

    Science.gov (United States)

    Fanwoua, Julienne; Bairam, Emna; Delaire, Mickael; Buck-Sorlin, Gerhard

    2014-01-01

    Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning.

  13. Sharing-aware horizontal partitioning for exploiting correlations during query processing

    DEFF Research Database (Denmark)

    Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.

    2010-01-01

    Optimization of join queries based on average selectivities is suboptimal in highly correlated databases. In such databases, relations are naturally divided into partitions, each partition having substantially different statistical characteristics. It is very compelling to discover such data...... partitions during query optimization and create multiple plans for a given query, one plan being optimal for a particular combination of data partitions. This scenario calls for the sharing of state among plans, so that common intermediate results are not recomputed. We study this problem in a setting...... with a routing-based query execution engine based on eddies [1]. Eddies naturally encapsulate horizontal partitioning and maximal state sharing across multiple plans. We define the notion of a conditional join plan, a novel representation of the search space that enables us to address the problem in a principled...

  14. Parallel file system with metadata distributed across partitioned key-value store c

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron

    2017-09-19

    Improved techniques are provided for storing metadata associated with a plurality of sub-files associated with a single shared file in a parallel file system. The shared file is generated by a plurality of applications executing on a plurality of compute nodes. A compute node implements a Parallel Log Structured File System (PLFS) library to store at least one portion of the shared file generated by an application executing on the compute node and metadata for the at least one portion of the shared file on one or more object storage servers. The compute node is also configured to implement a partitioned data store for storing a partition of the metadata for the shared file, wherein the partitioned data store communicates with partitioned data stores on other compute nodes using a message passing interface. The partitioned data store can be implemented, for example, using Multidimensional Data Hashing Indexing Middleware (MDHIM).

  15. Programmable partitioning for high-performance coherence domains in a multiprocessor system

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Salapura, Valentina [Chappaqua, NY

    2011-01-25

    A multiprocessor computing system and a method of logically partitioning a multiprocessor computing system are disclosed. The multiprocessor computing system comprises a multitude of processing units, and a multitude of snoop units. Each of the processing units includes a local cache, and the snoop units are provided for supporting cache coherency in the multiprocessor system. Each of the snoop units is connected to a respective one of the processing units and to all of the other snoop units. The multiprocessor computing system further includes a partitioning system for using the snoop units to partition the multitude of processing units into a plurality of independent, memory-consistent, adjustable-size processing groups. Preferably, when the processor units are partitioned into these processing groups, the partitioning system also configures the snoop units to maintain cache coherency within each of said groups.

  16. Spent Fuel and Waste Management Technology Development Program. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.W.

    1994-01-01

    This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

  17. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how the varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.

  18. Element partitioning in combustion- and gasification-based waste-to-energy units.

    Science.gov (United States)

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-01

    A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    Science.gov (United States)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  20. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning

    Science.gov (United States)

    Hirschmann, Marc M.; Tenner, Travis; Aubaud, Cyril; Withers, A. C.

    2009-09-01

    The onset of dehydration melting of nominally anhydrous peridotite can be calculated by combination of appropriate mineral/melt partition coefficients for H 2O, DHmin/liq, and a parameterization of the influence of the H 2O content of melt on the solidus of peridotite. Thermodynamic models predict that olivine/melt partitioning, DHol/liq, should increase with pressure, and though direct experimental determinations of DHol/liq from 0.5 to 3 GPa do not show the predicted pressure dependence, storage capacity experiments suggest increases in DHol/liq at pressures above 8 GPa and particularly at 12-14 GPa, near the base of the upper mantle. Calculations using experimental values of DHmin/liq and ignoring the likely effect of pressure on DHol/liq indicate that DHperid/liq increases from 0.006 at 1 GPa up to 0.009 at the onset of garnet stability at 2.8 GPa and then diminishes with further increases in pressure owing to decreasing pyroxene mode and decreasing Al in pyroxene. Because these calculations ignore the likely pressure effect on DHol/liq, they represent minima. Incipient partial melts of mantle with 100 ppm H 2O have 1-2 wt.% H 2O from 1 to 5 GPa, and this modest H 2O concentration limits the stability of hydrous partial melts to temperatures approaching the dry solidus. The influence of H 2O on the melting behavior of peridotite can be quantified using a simple cryoscopic approach benchmarked against experiments on hydrous peridotite. Along a mantle adiabat with a potential temperature of 1323 °C, calculations indicate that dehydration partial melting of peridotite with 100 ppm H 2O begins at 80 km, or about 15 km deeper than would be the case for truly dry peridotite. However, decreases in DHperid/liq related to the onset of the stability of garnet mean that mantle modestly enriched in H 2O will begin melting significantly deeper, i.e., at 104 km for 200 ppm H 2O. In the low velocity zone (LVZ) beneath mature (50 Ma) oceanic lithosphere, incipient partial

  1. A stable and accurate partitioned algorithm for conjugate heat transfer

    Science.gov (United States)

    Meng, F.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.

    2017-09-01

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in an implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems together with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode theory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized-Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and diffusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS

  2. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  3. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    Science.gov (United States)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms

  4. Towards a global mean partitioning of solar absorption

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Schaepmann-Strub, Gabriela

    2014-05-01

    In a previous study, we have estimated the mean-state partitioning of absorbed solar radiation over Europe through the combination of surface-based and space-born observations of solar radiation, which yielded best estimates of European land annual mean surface and atmospheric absorption of 117 ±6 Wm¯² (42 ±2 % of TOA incident irradiance) and 65 ±3 Wm¯² (23 ±1 %). The fractional atmospheric absorption of 23% was found to be largely unaffected by variations in latitude and season. Here, we extend this study to the global scale, again by combining in-situ measurements of surface solar radiation (BSRN, GEBA) with satellite-based surface albedo (MODIS), and top-of-atmosphere net incoming solar radiation (CERES EBAF, 1° grid ). Preliminary results are in line with the European mean with fractional atmospheric absorption of around 22-24% found in various regions of the globe where direct observations are available. The partitioning as represented by the CERES EBAF dataset is validated against our reference dataset and supports the finding of a spatially and seasonally fairly robust fractional atmospheric absorption, making it a potentially useful quantity for first order validation of global climate models. To obtain best possible reference estimates and associated uncertainties, we study the spatial representativeness of the point observations for their collocated 1° CERES EBAF grid cells, using a high-resolution satellite-derived surface solar radiation product (CM SAF). This product is spatially limited, hence only regions covered by the METEOSAT disk can be analyzed with respect to sub-grid variability and point representativeness. The so-called spatial sampling errors and associated uncertainty are of similar magnitude as the uncertainty of monthly mean pyranometer measurements. Other sources of uncertainty arise mostly from the measurements themselves, in particular surface albedo and ground-based solar radiation. Uncertainties due to the multiplicative

  5. Partition of biocides between water and inorganic phases of renders with organic binder.

    Science.gov (United States)

    Urbanczyk, Michal M; Bollmann, Ulla E; Bester, Kai

    2016-12-15

    The use of biocides as additives for building materials has gained importance in the recent years. These biocides are applied, e.g., to renders and paints to prevent them from microbial spoilage. However, these biocides can leach out into the environment. In order to better understand this leaching, the partition of biocides between water and inorganic phases of render with organic binder was investigated. The partition constants of carbendazim, diuron, iodocarb, isoproturon, cybutryn (irgarol), octylisothiazolinone, terbutryn, and tebuconazole towards minerals typically used in renders, e.g. barite, calcium carbonate, marble, kaolinite, and talc were determined. Partition constants for calcium carbonate varied between 0.2mLg(-1) (diuron) and 5.2mLg(-1) (iodocarb), respectively. The results for barite and kaolinite were in a similar range and usually the compounds with high partition constants for one mineral also had high values for the other mineral. No sorption to marble at all was found. From all minerals investigated, only talc showed high partition for all studied biocides. Partition constants for talc varied from 21.3mLg(-1) (iodocarb) to 683.7mLg(-1) (tebuconazole), respectively. The comparison with render-water distribution constants of two artificially made renders showed that the distribution constants can be estimated based on partition constants of compounds for individual components of the render. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. On the partition dimension of comb product of path and complete graph

    Science.gov (United States)

    Darmaji, Alfarisi, Ridho

    2017-08-01

    For a vertex v of a connected graph G(V, E) with vertex set V(G), edge set E(G) and S ⊆ V(G). Given an ordered partition Π = {S1, S2, S3, …, Sk} of the vertex set V of G, the representation of a vertex v ∈ V with respect to Π is the vector r(v|Π) = (d(v, S1), d(v, S2), …, d(v, Sk)), where d(v, Sk) represents the distance between the vertex v and the set Sk and d(v, Sk) = min{d(v, x)|x ∈ Sk}. A partition Π of V(G) is a resolving partition if different vertices of G have distinct representations, i.e., for every pair of vertices u, v ∈ V(G), r(u|Π) ≠ r(v|Π). The minimum k of Π resolving partition is a partition dimension of G, denoted by pd(G). Finding the partition dimension of G is classified to be a NP-Hard problem. In this paper, we will show that the partition dimension of comb product of path and complete graph. The results show that comb product of complete grapph Km and path Pn namely p d (Km⊳Pn)=m where m ≥ 3 and n ≥ 2 and p d (Pn⊳Km)=m where m ≥ 3, n ≥ 2 and m ≥ n.

  7. Cell-autonomous-like silencing of GFP-partitioned transgenic Nicotiana benthamiana.

    Science.gov (United States)

    Sohn, Seong-Han; Frost, Jennifer; Kim, Yoon-Hee; Choi, Seung-Kook; Lee, Yi; Seo, Mi-Suk; Lim, Sun-Hyung; Choi, Yeonhee; Kim, Kook-Hyung; Lomonossoff, George

    2014-08-01

    We previously reported the novel partitioning of regional GFP-silencing on leaves of 35S-GFP transgenic plants, coining the term "partitioned silencing". We set out to delineate the mechanism of partitioned silencing. Here, we report that the partitioned plants were hemizygous for the transgene, possessing two direct-repeat copies of 35S-GFP. The detection of both siRNA expression (21 and 24 nt) and DNA methylation enrichment specifically at silenced regions indicated that both post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) were involved in the silencing mechanism. Using in vivo agroinfiltration of 35S-GFP/GUS and inoculation of TMV-GFP RNA, we demonstrate that PTGS, not TGS, plays a dominant role in the partitioned silencing, concluding that the underlying mechanism of partitioned silencing is analogous to RNA-directed DNA methylation (RdDM). The initial pattern of partitioned silencing was tightly maintained in a cell-autonomous manner, although partitioned-silenced regions possess a potential for systemic spread. Surprisingly, transcriptome profiling through next-generation sequencing demonstrated that expression levels of most genes involved in the silencing pathway were similar in both GFP-expressing and silenced regions although a diverse set of region-specific transcripts were detected.This suggests that partitioned silencing can be triggered and regulated by genes other than the genes involved in the silencing pathway. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Theoretical versus observed gas-particle partitioning of carbonyl emissions from motor vehicles.

    Science.gov (United States)

    Chen, Jianjun; Jakober, Chris; Clegg, Simon; Kleeman, Michael J

    2010-10-01

    A state-of-the-science thermodynamic model describing gas-particle absorption processes was used to predict the gas-particle partitioning of mixtures of approximately 60 carbonyl compounds emitted from low-emission gasoline-powered vehicles, three-way catalyst gasoline-powered vehicles, heavy-duty diesel vehicles under the idle-creep condition (HDDV idle), and heavy-duty diesel vehicles under the five-mode test (HDDV 5-mode). Exhaust was diluted by a factor of 120-580 with a residence time of approximately 43 sec. The predicted equilibrium absorption partitioning coefficients differed from the measured partitioning coefficients by several orders of magnitude. Time scales to reach equilibrium in the dilution sampling system were close to the actual residence time during the HDDV 5-mode test and much longer than the actual residence time during the other vehicle tests. It appears that insufficient residence time in the sampling system cannot uniformly explain the failure of the absorption mechanism to explain the measured partitioning. Other gas-particle partitioning mechanisms (e.g., heterogeneous reactions, capillary adsorption) beyond the simple absorption theory are needed to explain the discrepancy between calculated carbonyl partitioning coefficients and observed partitioning. Both of these alternative partitioning mechanisms imply great challenges for the measurement and modeling of semi-volatile primary organic aerosol (POA) species from motor vehicles. Furthermore, as emitted particle concentrations from newer vehicles approach atmospheric background levels, dilution sampling systems must fundamentally change their approach so that they use realistic particle concentrations in the dilution air to approximately represent real-world conditions. Samples collected with particle-free dilution air yielding total particulate matter concentrations below typical ambient concentrations will not provide a realistic picture of partitioning for semi-volatile compounds.

  9. Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.

    Science.gov (United States)

    Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E

    2007-11-01

    Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of

  10. Partitioning of mercury in the north Saskatchewan River

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Mercury levels in fish, water and sediments were determined during 1982 along a 600 km stretch of the North Saskatchewan River (NSR) in the province of Alberta. Migratory fish species such as goldeye, walleye, and sauger in the NSR were found to contain total mercury levels ranging from 0.104 to 1.553 mg/kg (mean greater than or equal to 0 5 mg/kg). Northern pike, white sucker, longnose sucker and northern redhorse sucker had total mercury levels ranging from 0.003 to 1.003 mg/kg. Regression analysis of the data revealed that neither the sex of the fish nor the location of the sampling site contributed significantly to the mercury burden in fish in the entire study section of the river. Sediment analysis showed a low and more or less uniform concentration of mercury in Alberta. The total mercury in NSR water averaged 0.09 ..mu..g/L in upstream Edmonton and was found to elevate in downstream NSR (0.22 ..mu..g/L) near industrial discharge sites and agriculture runoff areas. Calculated partition coefficients seem to group the fish into two categories, (i) goldeye, walleye, and sauger (bioconcentration factor (BCF) = 3-3.7x10/sup 3/) and (ii) northern pike, longnose sucker, white sucker and northern redhorse sucker (BCF=1.2-1.8x10/sup 3/).

  11. Restoration of lost connectivity of partitioned wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Virender Ranga

    2016-05-01

    Full Text Available The lost connectivity due to failure of large scale nodes plays major role to degrade the system performance by generating unnecessary overhead or sometimes totally collapse the active network. There are many issues and challenges to restore the lost connectivity in an unattended scenario, i.e. how many recovery nodes will be sufficient and on which locations these recovery nodes have to be placed. A very few centralized and distributed approaches have been proposed till now. The centralized approaches are good for a scenario where information about the disjoint network, i.e. number of disjoint segments and their locations are well known in advance. However, for a scenario where such information is unknown due to the unattended harsh environment, a distributed approach is a better solution to restore the partitioned network. In this paper, we have proposed and implemented a semi-distributed approach called Relay node Placement using Fermat Point (RPFP. The proposed approach is capable of restoring lost connectivity with small number of recovery relay nodes and it works for any number of disjoint segments. The simulation experiment results show effectiveness of our approach as compared to existing benchmark approaches.

  12. DTN routing in body sensor networks with dynamic postural partitioning.

    Science.gov (United States)

    Quwaider, Muhannad; Biswas, Subir

    2010-11-01

    This paper presents novel store-and-forward packet routing algorithms for Wireless Body Area Networks (WBAN) with frequent postural partitioning. A prototype WBAN has been constructed for experimentally characterizing on-body topology disconnections in the presence of ultra short range radio links, unpredictable RF attenuation, and human postural mobility. On-body DTN routing protocols are then developed using a stochastic link cost formulation, capturing multi-scale topological localities in human postural movements. Performance of the proposed protocols are evaluated experimentally and via simulation, and are compared with a number of existing single-copy DTN routing protocols and an on-body packet flooding mechanism that serves as a performance benchmark with delay lower-bound. It is shown that via multi-scale modeling of the spatio-temporal locality of on-body link disconnection patterns, the proposed algorithms can provide better routing performance compared to a number of existing probabilistic, opportunistic, and utility-based DTN routing protocols in the literature.

  13. Taxonomy-based partitioning of the Gene Ontology.

    Science.gov (United States)

    Kuśnierczyk, Wacław

    2008-04-01

    The Gene Ontology (GO) project is a collaborative effort to construct ontologies which facilitate biologically meaningful annotation of gene products. In some situations, only a generic or a species-specific subset of all GO terms is required to annotate and analyze the results of a particular biomedical experiment. We show that by defining explicit links between terms in the GO and terms in the Taxonomy of Species (TS) it is possible to automatically create partitions of the GO according to various taxonomic criteria. Our framework is based on three logically defined relations--validity, specificity, and relevance--used to link terms in the Gene Ontology with terms in the Taxonomy. The major advantages of this approach, as compared to the traditional GO slims methodology, are: unambiguous semantics of GO-TS annotations, significant reduction of the effort needed to manually select GO terms appropriate for a particular taxonomic context, ability to generate views of the GO even for taxa for which no explicit links with GO terms exist, logical consistency of such views, and automated updates of TS-dependent GO subsets. Incorporation of the proposed framework into the GO may improve the usability of the ontology for those scientists who focus their research on a particular species or a specific class of organisms.

  14. Toward an Experimental Quantum Chemistry: Exploring a New Energy Partitioning.

    Science.gov (United States)

    Rahm, Martin; Hoffmann, Roald

    2015-08-19

    Following the work of L. C. Allen, this work begins by relating the central chemical concept of electronegativity with the average binding energy of electrons in a system. The average electron binding energy, χ̅, is in principle accessible from experiment, through photoelectron and X-ray spectroscopy. It can also be estimated theoretically. χ̅ has a rigorous and understandable connection to the total energy. That connection defines a new kind of energy decomposition scheme. The changing total energy in a reaction has three primary contributions to it: the average electron binding energy, the nuclear-nuclear repulsion, and multielectron interactions. This partitioning allows one to gain insight into the predominant factors behind a particular energetic preference. We can conclude whether an energy change in a transformation is favored or resisted by collective changes to the binding energy of electrons, the movement of nuclei, or multielectron interactions. For example, in the classical formation of H2 from atoms, orbital interactions dominate nearly canceling nuclear-nuclear repulsion and two-electron interactions. While in electron attachment to an H atom, the multielectron interactions drive the reaction. Looking at the balance of average electron binding energy, multielectron, and nuclear-nuclear contributions one can judge when more traditional electronegativity arguments can be justifiably invoked in the rationalization of a particular chemical event.

  15. Efficient coding unit partition strategy for HEVC intracoding

    Science.gov (United States)

    Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Wang, Yi; Yu, Daoyin

    2017-07-01

    As the newest international video compression standard, high efficiency video coding (HEVC) achieves a higher compression ratio and better video quality, compared with the previous standard, H.264/advanced video coding. However, higher compression efficiency is obtained at the cost of extraordinary computational load, which obstructs the implementation of the HEVC encoder for real-time applications and mobile devices. Intracoding is one of the high computational stages due to the flexible coding unit (CU) sizes and high density of angular prediction modes. This paper presents an intraencoding technique to speed up the process, which is composed of an early coding tree unit (CTU) depth interval prediction and an efficient CU partition method. The encoded CU depth information in the already encoded surrounding CTUs is utilized to predict the encoding CU search depth interval of the current CTU. By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. The experimental results indicate that the proposed algorithm outperforms the reference software HM16.7 by decreasing the coding time up to 53.67% with a negligible bit rate increase of 0.52%, and peak signal-to-noise ratio losses lower 0.06 dB, respectively.

  16. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  17. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  18. Potency-scaled partitioning in descriptor spaces with increasing dimensionality.

    Science.gov (United States)

    Bajorath, Jürgen

    2005-01-01

    Partitioning algorithms are described that operate in chemical reference spaces formed by combinations of binary-transformed molecular descriptors and aim at the identification of potent hits in ligand-based virtual screening. One of these approaches depends on mapping of consensus positions of compound activity sets in descriptor spaces followed by step-wise extension of the dimensionality of these spaces and re-mapping of activity-dependent consensus positions. Dimension extension is carried out to increase the discriminatory power of descriptor combinations and distinguish database compounds from potential hits. This method was originally named Dynamic Mapping of Consensus positions (DMC) and subsequently extended in order to take different potency levels of known active molecules into account and increase the probability of recognizing potent database hits. The extension was accomplished by adding potency scaling to DMC calculations, and the resulting approach was termed POT-DMC. Results of comparisons of DMC and POT-DMC calculations on different classes of active compounds with substantially varying potency levels support the validity of the POT-DMC approach.

  19. Microbial minorities modulate methane consumption through niche partitioning

    Science.gov (United States)

    Bodelier, Paul LE; Meima-Franke, Marion; Hordijk, Cornelis A; Steenbergh, Anne K; Hefting, Mariet M; Bodrossy, Levente; von Bergen, Martin; Seifert, Jana

    2013-01-01

    Microbes catalyze all major geochemical cycles on earth. However, the role of microbial traits and community composition in biogeochemical cycles is still poorly understood mainly due to the inability to assess the community members that are actually performing biogeochemical conversions in complex environmental samples. Here we applied a polyphasic approach to assess the role of microbial community composition in modulating methane emission from a riparian floodplain. We show that the dynamics and intensity of methane consumption in riparian wetlands coincide with relative abundance and activity of specific subgroups of methane-oxidizing bacteria (MOB), which can be considered as a minor component of the microbial community in this ecosystem. Microarray-based community composition analyses demonstrated linear relationships of MOB diversity parameters and in vitro methane consumption. Incubations using intact cores in combination with stable isotope labeling of lipids and proteins corroborated the correlative evidence from in vitro incubations demonstrating γ-proteobacterial MOB subgroups to be responsible for methane oxidation. The results obtained within the riparian flooding gradient collectively demonstrate that niche partitioning of MOB within a community comprised of a very limited amount of active species modulates methane consumption and emission from this wetland. The implications of the results obtained for biodiversity–ecosystem functioning are discussed with special reference to the role of spatial and temporal heterogeneity and functional redundancy. PMID:23788331

  20. SPCC- Software Elements for Security Partition Communication Controller

    Science.gov (United States)

    Herpel, H. J.; Willig, G.; Montano, G.; Tverdyshev, S.; Eckstein, K.; Schoen, M.

    2016-08-01

    Future satellite missions like Earth Observation, Telecommunication or any other kind are likely to be exposed to various threats aiming at exploiting vulnerabilities of the involved systems and communications. Moreover, the growing complexity of systems coupled with more ambitious types of operational scenarios imply increased security vulnerabilities in the future. In the paper we will describe an architecture and software elements to ensure high level of security on-board a spacecraft. First the threats to the Security Partition Communication Controller (SPCC) will be addressed including the identification of specific vulnerabilities to the SPCC. Furthermore, appropriate security objectives and security requirements are identified to be counter the identified threats. The security evaluation of the SPCC will be done in accordance to the Common Criteria (CC). The Software Elements for SPCC has been implemented on flight representative hardware which consists of two major elements: the I/O board and the SPCC board. The SPCC board provides the interfaces with ground while the I/O board interfaces with typical spacecraft equipment busses. Both boards are physically interconnected by a high speed spacewire (SpW) link.