WorldWideScience

Sample records for hlm burnup analyzed

  1. Preparation of computer codes for analyzing sensitivity coefficients of burnup characteristics (2) (Contract research, translated document)

    International Nuclear Information System (INIS)

    Hanaki, Hiroshi; Sanda, Toshio; Ohashi, Masahisa

    2008-10-01

    To develop nuclear design of LMFBR cores, they are important subjects of research and development to improve the accuracy in nuclear design of large LMFBR cores and to design highly efficient core more rationally. The adjusted nuclear cross-sections library has been made by being reflected the result of critical experiment of the JUPITER, etc. effectively as much as possible. And the distinct improvement of the accuracy in nuclear design of large LMFBR cores has been achieved. In the design of large LMFBR cores, however, it is important to accurately estimate not only nuclear characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. Therefore, it is thought to improve the prediction accuracy for burnup characteristics using many burnup data of 'Joyo' effectively. It is thought the best way to adjust cross sections using sensitivity coefficients of burnup characteristics to utilize burnup data of 'Joyo'. It is able to know the accuracy quantitatively for burnup characteristics of large LMFBR by analyzing the sensitivity coefficients. Therefore in this work computer codes for analyzing sensitivity coefficients of burnup characteristics had been prepared since 1992. In 1992 cross-section adjustment was done by using the data of 'Joyo' and the effect was studied. In this year the adequacy of the codes was studied with a view of applying of design of large LMFBR cores. The results are as follows: (1) The computer codes which could analyze sensitivity coefficients of burnup characteristics taking into consideration plural cycles and refueling were prepared, therefore it came of be able to adjust cross sections using burnup data and to estimate the accuracy for design of large LMFBR cores. The characteristics are not only burnup reactivity loss, breeding ratio but also number density, criticality, reactivity worth, reaction rate ratio, and reaction rate

  2. Analyzing the BWR rod drop accident in high-burnup cores

    International Nuclear Information System (INIS)

    Diamond, D.J.; Neymotin, L.; Kohut, P.

    1995-01-01

    This study was undertaken for the US Nuclear Regulatory Commission to determine the fuel enthalpy during a rod drop accident (RDA) for cores with high burnup fuel. The calculations were done with the RAMONA-4B code which models the core with 3-dimensional neutron kinetics and multiple parallel coolant channels. The calculations were done with a model for a BWR/4 with fuel bundles having burnups up to 30 GWd/t and also with a model with bundle burnups to 60 GWd/t. This paper also discusses potential sources of uncertainty in calculations with high burnup fuel. One source is the ''rim'' effect which is the extra large peaking of the power distribution at the surface of the pellet. This increases the uncertainty in reactor physics and heat conduction models that assume that the energy deposition has a less peaked spatial distribution. Two other sources of uncertainty are the result of the delayed neutron fraction decreasing with burnup and the positive moderator temperature feedback increasing with burnup. Since these effects tend to increase the severity of the event, an RDA calculation for high burnup fuel will underpredict the fuel enthalpy if the effects are not properly taken into account. Other sources of uncertainty that are important come from the initial conditions chosen for the RDA. This includes the initial control rod pattern as well as the initial thermal-hydraulic conditions

  3. Analysis of SX farm leak histories - Historical leak model (HLM)

    International Nuclear Information System (INIS)

    Fredenburg, E.A.

    1998-01-01

    This report uses readily available historical information to better define the volume, chemical composition, and Cs-137/Sr-90 amounts for leaks that have occurred in the past for tanks SX-108, SX-109, SX-111, and SX-112. In particular a Historical Leak Model (HLM) is developed that is a month by month reconciliation of tank levels, fill records, and calculated boil-off rates for these tanks. The HLM analysis is an independent leak estimate that reconstructs the tank thermal histories thereby deriving each tank's evaporative volume loss and by difference, its unaccounted losses as well. The HLM analysis was meant to demonstrate the viability of its approach, not necessarily to establish the HLM leak estimates as being definitive. Past leak estimates for these tanks have invariably resorted to soil wetting arguments but the extent of soil contaminated by each leak has always been highly uncertain. There is also a great deal of uncertainty with the HLM that was not quantified in this report, but will be addressed later. These four tanks (among others) were used from 1956 to 1975 for storage of high-level waste from the Redox process at Hanford. During their operation, tank waste temperatures were often as high as 150 C (300 F), but were more typically around 130 C. The primary tank cooling was by evaporation of tank waste and therefore periodic replacement of lost volume with water was necessary to maintain each tank's inventory. This active reflux of waste resulted in very substantial turnovers in tank inventory as well as significant structural degradation of these tanks. As a result of the loss of structural integrity, each of these tanks leaked during their active periods of operation. Unfortunately, the large turnover in tank volume associated with their reflux cooling has made a determination of leak volumes very difficult. During much of these tanks operational histories, inventory losses because of evaporative cooling could have effectively masked any volume

  4. Development of a new measurement method for fast breeder reactor fuel burnup using a shielded ion microprobe analyzer

    International Nuclear Information System (INIS)

    Mizuno, M.; Enokido, Y.; Itaki, T.; Kono, K.; Unno, I.; Yamanouchi, S.

    1985-01-01

    A new method of burnup measurement using a shielded ion microprobe analyzer (SIMA) has been developed. The method is based on the isotope analysis of uranium, plutonium, and fission products in irradiated mixed oxide fuel by means of secondary ion mass spectrometry (SIMS). Fourteen samples irradiated in the Japanese experimental fast reactor JOYO were examined. The maximum local burnup of JOYO MK-I core fuels was about5.1 at. %. The axial burnup distribution of the fuel pin was in good agreement with that of the sibling pin in the same subassembly, measured by surface ionization mass spectrometry, which requires the chemical separation of fission products and heavy metals. The new method facilitates the rapid and accurate measurement of fast breeder reactor fuel burnup without human radiation exposure during sample preparation and analysis

  5. HLM in Cluster-Randomised Trials--Measuring Efficacy across Diverse Populations of Learners

    Science.gov (United States)

    Hegedus, Stephen; Tapper, John; Dalton, Sara; Sloane, Finbarr

    2013-01-01

    We describe the application of Hierarchical Linear Modelling (HLM) in a cluster-randomised study to examine learning algebraic concepts and procedures in an innovative, technology-rich environment in the US. HLM is applied to measure the impact of such treatment on learning and on contextual variables. We provide a detailed description of such…

  6. How to do Meta-Analysis using HLM software

    OpenAIRE

    Petscher, Yaacov

    2013-01-01

    This is a step-by-step presentation of how to run a meta-analysis using HLM software. Because it's a variance known model, it is not run through the GUI, but batch mode. These slides show how to prepare the data and run the analysis.

  7. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  8. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  9. Verify Super Double-Heterogeneous Spherical Lattice Model for Equilibrium Fuel Cycle Analysis AND HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis

    International Nuclear Information System (INIS)

    Gray S. Chang

    2005-01-01

    The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble/block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code--ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis

  10. Conservative axial burnup distributions for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Kang, C.; Lancaster, D.

    1997-11-01

    Unlike the fresh fuel approach, which assumes the initial isotopic compositions for criticality analyses, any burnup credit methodology must address the proper treatment of axial burnup distributions. A straightforward way of treating a given axial burnup distribution is to segment the fuel assembly into multiple meshes and to model each burnup mesh with the corresponding isotopic compositions. Although this approach represents a significant increase in modeling efforts compared to the uniform average burnup approach, it can adequately determine the reactivity effect of the axial burnup distribution. A major consideration is what axial burnup distributions are appropriate for use in light of many possible distributions depending on core operating conditions and histories. This paper summarizes criticality analyses performed to determine conservative axial burnup distributions. The conservative axial burnup distributions presented in this paper are included in the Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages, Revision 1 submitted in May 1997 by the US Department of Energy (DOE) to the US Nuclear Regulatory Commission (NRC). When approved by NRC, the conservative axial burnup distributions may be used to model PWR spent nuclear fuel for the purpose of gaining actinide only burnup credit

  11. Integrated burnup calculation code system SWAT

    International Nuclear Information System (INIS)

    Suyama, Kenya; Hirakawa, Naohiro; Iwasaki, Tomohiko.

    1997-11-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user's manual of SWAT. (author)

  12. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    Wagner, J.C.; DeHart, M.D.

    2000-01-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  13. Appropriate burnup measurements for transportation burnup credit

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.

    1997-01-01

    This paper addresses two of the measurement specifications used in analyzing spent fuel packages to gain burnup credit. The philosophy and calculation of rejection criteria and measurement accuracy are discussed. Any assembly for which the declared measured value and reactor record value deviate by more than 10% will be rejected. Measurement accuracy requirements are established for dependent and independent systems. The requirements have been tested and are achievable, ensuring safe operation without extra cost. 6 refs

  14. Burnup code for fuel assembly by Monte Carlo code. MKENO-BURN

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Suyama, Kenya; Masukawa, Fumihiro; Matsumoto, Kiyoshi; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1996-12-01

    The evaluation of neutron spectrum is so important for burnup calculation of the heterogeneous geometry like recent BWR fuel assembly. MKENO-BURN is a multi dimensional burnup code that based on the three dimensional monte carlo neutron transport code 'MULTI-KENO' and the routine for the burnup calculation of the one dimensional burnup code 'UNITBURN'. MKENO-BURN analyzes the burnup problem of arbitrary regions after evaluating the neutron spectrum and making one group cross section in three dimensional geometry with MULTI-KENO. It enables us to do three dimensional burnup calculation. This report consists of general description of MKENO-BURN and the input data. (author)

  15. Burnup code for fuel assembly by Monte Carlo code. MKENO-BURN

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Yoshitaka; Suyama, Kenya; Masukawa, Fumihiro; Matsumoto, Kiyoshi; Kurosawa, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Toshiyuki

    1996-12-01

    The evaluation of neutron spectrum is so important for burnup calculation of the heterogeneous geometry like recent BWR fuel assembly. MKENO-BURN is a multi dimensional burnup code that based on the three dimensional monte carlo neutron transport code `MULTI-KENO` and the routine for the burnup calculation of the one dimensional burnup code `UNITBURN`. MKENO-BURN analyzes the burnup problem of arbitrary regions after evaluating the neutron spectrum and making one group cross section in three dimensional geometry with MULTI-KENO. It enables us to do three dimensional burnup calculation. This report consists of general description of MKENO-BURN and the input data. (author)

  16. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    Suyama, Kenya; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu.

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  17. Benchmarking burnup reconstruction methods for dynamically operated research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sternat, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Charlton, William S. [Univ. of Nebraska, Lincoln, NE (United States). National Strategic Research Institute; Nichols, Theodore F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The burnup of an HEU fueled dynamically operated research reactor, the Oak Ridge Research Reactor, was experimentally reconstructed using two different analytic methodologies and a suite of signature isotopes to evaluate techniques for estimating burnup for research reactor fuel. The methods studied include using individual signature isotopes and the complete mass spectrometry spectrum to recover the sample’s burnup. The individual, or sets of, isotopes include 148Nd, 137Cs+137Ba, 139La, and 145Nd+146Nd. The storage documentation from the analyzed fuel material provided two different measures of burnup: burnup percentage and the total power generated from the assembly in MWd. When normalized to conventional units, these two references differed by 7.8% (395.42GWd/MTHM and 426.27GWd/MTHM) in the resulting burnup for the spent fuel element used in the benchmark. Among all methods being evaluated, the results were within 11.3% of either reference burnup. The results were mixed in closeness to both reference burnups; however, consistent results were achieved from all three experimental samples.

  18. Burnup calculation code system COMRAD96

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, `Cross Section Treatment`, `Generation and Depletion Calculation`, and `Post Process`. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the {gamma} Spectrum on a terminal. This report is the general description and user`s manual of COMRAD96. (author)

  19. Choosing the optimum burnup

    International Nuclear Information System (INIS)

    Geller, L.; Goldstein, L.; Franks, W.A.

    1986-01-01

    This paper reviews some of the considerations utilities must evaluate when going to higher discharge burnups. The advantages and disadvantages of higher discharge burnups are described, as well as a consistent approach for evaluating optimum discharge burnup and its comparison to current practice. When an analysis is performed over the life of the plant, the design of the terminal cycles has significant impact on the lifetime savings from higher burnups. Designs for high burnup cycles have a greater average inventory value in the core. As one goes to higher burnup, there is a greater likelihood of discarding a larger value in unused fuel unless the terminal cycles are designed carefully. This effect can be large enough in some cases to wipe out the lifetime cost savings relative to operating with a higher discharge burnup cycle

  20. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  1. Burn-up measurement in the HTR-module-reactor

    International Nuclear Information System (INIS)

    Gerhards, E.

    1993-05-01

    The burn-up status of spherical HTR-fuel elements is determined by a γ-spectrometric analysis of Cs-137 activity. The γ-spectrum recorded by a semiconductor detector up to now is analyzed by complex mathematical and time-consuming methods. For the operation of the HTR-Module-Reactor, however, a fast evaluation of the burn-up status is necessary. It is shown that this can be ensured by a comparison between the measured spectra and simulation results. Using the computer-program HTROGEN and the program system SPECCALC especially developed for this problem the γ-spectra are evaluated as a function of the burn-up status. The method is applied to results available from the operation of the AVR-reactor. The burn-up status determined with different methods corresponds very well within the limits of accuracy. (orig.)

  2. Isotopic biases for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Rahimi, M.; Lancaster, D.; Hoeffer, B.; Nichols, M.

    1997-01-01

    The primary purpose of this paper is to present the new methodology for establishing bias and uncertainty associated with isotopic prediction in spent fuel assemblies for burnup credit analysis. The analysis applies to the design of criticality control systems for spent fuel casks. A total of 54 spent fuel samples were modeled and analyzed using the Shielding Analyses Sequence (SAS2H). Multiple regression analysis and a trending test were performed to develop isotopic correction factors for 10 actinide burnup credit isotopes. 5 refs., 1 tab

  3. Systemization of burnup sensitivity analysis code

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2004-02-01

    To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this

  4. The Effects Of Gender, Engineering Identification, and Engineering Program Expectancy On Engineering Career Intentions: Applying Hierarchical Linear Modeling (HLM) In Engineering Education Research

    Science.gov (United States)

    Tendhar, Chosang; Paretti, Marie C.; Jones, Brett D.

    2017-01-01

    This study had three purposes and four hypotheses were tested. Three purposes: (1) To use hierarchical linear modeling (HLM) to investigate whether students' perceptions of their engineering career intentions changed over time; (2) To use HLM to test the effects of gender, engineering identification (the degree to which an individual values a…

  5. The Width of High Burnup Structure in LWR UO2 Fuel

    International Nuclear Information System (INIS)

    Koo, Yang-Hyun; Lee, Byung-Ho; Oh, Jae-Yong; Sohn, Dong-Seong

    2007-01-01

    The measured data available in the open literature on the width of high burnup structure (HBS) in LWR UO 2 fuel were analyzed in terms of pellet average burnup, enrichment, and grain size. Dependence of the HBS width on pellet average burnup was shown to be divided into three regions; while the HBS width is governed by accumulation of fission damage (i.e., burnup) for burnup below 60 GWd/tU, it seems to be restricted to some limiting value of around 1.5 mm for burnup above 75 GWd/tU due to high temperature which might have caused extensive annealing of irradiation damage. As for intermediate burnup between 60 and 75 GWd/tU, although temperature would not have been so high as to induce extensive annealing, the microstructural damage could have been partly annealed, resulting in the reduction of the HBS width. It was found that both enrichment and grain size also affects the HBS width. However, as long as the pellet average burnup is lower than about 75 GWd/tU, the effect does not appear to be significant for the enrichment and grain size that are typically used in current LWR fuel. (authors)

  6. Systemization of burnup sensitivity analysis code. 2

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2005-02-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For

  7. Development and Applications of a Prototypic SCALE Control Module for Automated Burnup Credit Analysis

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2001-01-01

    Consideration of the depletion phenomena and isotopic uncertainties in burnup-credit criticality analysis places an increasing reliance on computational tools and significantly increases the overall complexity of the calculations. An automated analysis and data management capability is essential for practical implementation of large-scale burnup credit analyses that can be performed in a reasonable amount of time. STARBUCS is a new prototypic analysis sequence being developed for the SCALE code system to perform automated criticality calculations of spent fuel systems employing burnup credit. STARBUCS is designed to help analyze the dominant burnup credit phenomena including spatial burnup gradients and isotopic uncertainties. A search capability also allows STARBUCS to iterate to determine the spent fuel parameters (e.g., enrichment and burnup combinations) that result in a desired k eff for a storage configuration. Although STARBUCS was developed to address the analysis needs for spent fuel transport and storage systems, it provides sufficient flexibility to allow virtually any configuration of spent fuel to be analyzed, such as storage pools and reprocessing operations. STARBUCS has been used extensively at Oak Ridge National Laboratory (ORNL) to study burnup credit phenomena in support of the NRC Research program

  8. Lattice cell burnup calculation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1977-01-01

    Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics

  9. Benefits of actinide-only burnup credit for shutdown PWRs

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.; Kang, C.; Rivard, D.

    1998-02-01

    Owners of PWRs that are shutdown prior to resolution of interim storage or permanent disposal issues have to make difficult decisions on what to do with their spent fuel. Maine Yankee is currently evaluating multiple options for spent fuel storage. Their spent fuel pool has 1,434 assemblies. In order to evaluate the value to a utility of actinide-only burnup credit, analysis of the number of canisters required with and without burnup credit was made. In order to perform the analysis, loading curves were developed for the Holtec Hi-Star 100/MPC-32. The MPC-32 is hoped to be representative of future burnup credit designs from many vendors. The loading curves were generated using the actinide-only burnup credit currently under NRC review. The canister was analyzed for full loading (32 assemblies) and with partial loadings of 30 and 28 assemblies. If no burnup credit is used the maximum capacity was assumed to be 24 assemblies. this reduced capacity is due to the space required for flux traps which are needed to sufficiently reduce the canister reactivity for the fresh fuel assumption. Without burnup credit the 1,343 assemblies would require 60 canisters. If all the fuel could be loaded into the 32 assembly canisters only 45 canisters would be required. Although the actinide-only burnup credit approach is very conservative, the total number of canisters required is only 47 which is only two short of the minimum possible number of canisters. The utility is expected to buy the canister and the storage overpack. A reasonable cost estimate for the canister plus overpack is $500,000. Actinide-only burnup credit would save 13 canisters and overpacks which is a savings of about $6.5 million. This savings is somewhat reduced since burnup credit requires a verification measurement of burnup. The measurement costs for these assemblies can be estimated as about $1 million. The net savings would be $5.5 million

  10. Conceptual cask design with burnup credit

    International Nuclear Information System (INIS)

    Lee, Seong Hee; Ahn, Joon Gi; Hwang, Hae Ryong

    2003-01-01

    Conceptual design has been performed for a spent fuel transport cask with burnup credit and a neutron-absorbing material to maximize transportation capacity. Both fresh and burned fuel are assumed to be stored in the cask and boral and borated stainless steel are selected for the neutron-absorbing materials. Three different sizes of cask with typical 14, 21 and 52 PWR fuel assemblies are modeled and analyzed with the SCALE 4.4 code system. In this analysis, the biases and uncertainties through validation calculations for both isotopic predictions and criticality calculation for the spent fuel have been taken into account. All of the reactor operating parameters, such as moderator density, soluble boron concentration, fuel temperature, specific power, and operating history, have been selected in a conservative way for the criticality analysis. Two different burnup credit loading curves are developed for boral and borated stainless steel absorbing materials. It is concluded that the spent fuel transport cask design with burnup credit is feasible and is expected to increase cask payloads. (author)

  11. Comparative study on plutonium and MA recycling in equilibrium burnup and standard burnup of PWR

    International Nuclear Information System (INIS)

    Waris, Abdul; Kurniadi, Rizal; Su'ud, Zaki; Permana, Sidik

    2005-01-01

    The equilibrium burnup model is a powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor. However, this method needs to be verified since the method is not a standard tool. The present study aimed to compare the characteristics of plutonium recycling and plutonium and minor actinides (MA) recycling in PWR with the equilibrium burnup and the standard burnup. In order to become more comprehensive study, an influence of moderator-to-fuel volume ratio (MFR) changes by changing the pin-pitch of fuel cell has been evaluated. The MFR ranges from 0.5 to 4.0. For the equilibrium burnup we used equilibrium cell-burnup code. We have employed 1368 nuclides in the equilibrium calculation with 129 of them are heavy metals (HMs). For standard burnup, SRAC2002 code has been utilized with 26 HMs and 66 fission products (FPs). The JENDL 3.2 library has been employed for both burnup schemes. The uranium, plutonium and MA vector, which resulted from the equilibrium burnup are directly used as fuel input composition for the standard burnup calculation. Both burnup results demonstrate that plutonium recycling and plutonium and MA recycling can be conducted safer in tight lattice core. They are also show the similar trend in neutron spectrum, which become harder with the increasing number of recycled heavy nuclides as well as the decreasing of the MFR values. However, there are some discrepancy on the effective multiplication factor and the conversion ratio, especially for the reactor core for MFR ≥ 2.0. (author)

  12. Improvements for Monte Carlo burnup calculation

    Energy Technology Data Exchange (ETDEWEB)

    Shenglong, Q.; Dong, Y.; Danrong, S.; Wei, L., E-mail: qiangshenglong@tsinghua.org.cn, E-mail: d.yao@npic.ac.cn, E-mail: songdr@npic.ac.cn, E-mail: luwei@npic.ac.cn [Nuclear Power Inst. of China, Cheng Du, Si Chuan (China)

    2015-07-01

    Monte Carlo burnup calculation is development trend of reactor physics, there would be a lot of work to be done for engineering applications. Based on Monte Carlo burnup code MOI, non-fuel burnup calculation methods and critical search suggestions will be mentioned in this paper. For non-fuel burnup, mixed burnup mode will improve the accuracy of burnup calculation and efficiency. For critical search of control rod position, a new method called ABN based on ABA which used by MC21 will be proposed for the first time in this paper. (author)

  13. High Burnup Effects Program

    International Nuclear Information System (INIS)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D.

    1990-04-01

    This is the final report of the High Burnup Effects Program (HBEP). It has been prepared to present a summary, with conclusions, of the HBEP. The HBEP was an international, group-sponsored research program managed by Battelle, Pacific Northwest Laboratories (BNW). The principal objective of the HBEP was to obtain well-characterized data related to fission gas release (FGR) for light water reactor (LWR) fuel irradiated to high burnup levels. The HBEP was organized into three tasks as follows: Task 1 -- high burnup effects evaluations; Task 2 -- fission gas sampling; and Task 3 -- parameter effects study. During the course of the HBEP, a program that extended over 10 years, 82 fuel rods from a variety of sources were characterized, irradiated, and then examined in detail after irradiation. The study of fission gas release at high burnup levels was the principal objective of the program and it may be concluded that no significant enhancement of fission gas release at high burnup levels was observed for the examined rods. The rim effect, an as yet unquantified contributor to athermal fission gas release, was concluded to be the one truly high-burnup effect. Though burnup enhancement of fission gas release was observed to be low, a full understanding of the rim region and rim effect has not yet emerged and this may be a potential area of further research. 25 refs., 23 figs., 4 tabs

  14. COMRAD96, Nuclear Fuel Burnup and Depletion Calculation System

    International Nuclear Information System (INIS)

    Suyama, K.; Masukawa, F.; Ido, M.; Enomoto, M.; Takyu, S.; Hara, T.

    2002-01-01

    1 - Description of program or function: Burn-up calculation of nuclear fuel. 2 - Methods: Matrix exponential method, Bateman Equation. 3 - Restrictions on the complexity of the problem: a) One-grouped cross section library should be prepared for the fuel system to be analyzed using UNITBURN. However, UNITBURN is not available now for UNIX systems. b) Gamma ray spectrometry calculation will fail using the attached piflib routine. This problem has already been rectified in the internal version. 4 - Typical running time: Two minutes for standard burn-up calculation on Sun ULTRA 30. 5 - Unusual features - a) Selection of Matrix exponential method, or Bateman Equation. b) JDDL, a detailed decay chain data based on ENSDF. 6 - Related or auxiliary programs: UNITBURN: Burnup calculation code unit cell system

  15. Comparison of scale/triton and helios burnup calculations for high burnup LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Mispagel, T.; Phlippen, P.W. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2009-07-01

    The presented analyses provide information about the suitability of the lattice burnup code HELIOS and the recently developed code SCALE/TRITON for the prediction of isotopic compositions of high burnup LWR fuel. The accurate prediction of the isotopic inventory of high burnt spent fuel is a prerequisite for safety analyses in and outside of the reactor core, safe loading of spent fuel into storage casks, design of next generation spent fuel casks and for any consideration of burnup credit. Depletion analyses are performed with both burnup codes for PWR and BWR fuel samples which were irradiated far beyond 50 GWd/t within the LWR-PROTEUS Phase II project. (orig.)

  16. High burnup issues and modelling strategies

    International Nuclear Information System (INIS)

    Dutta, B.K.

    2005-01-01

    The performance of high burnup fuel is affected by a number of phenomena, such as, conductivity degradation, modified radial flux profile, fission gas release from high burnup structures, PCMI, burnup dependent thermo-mechanical properties, etc. The modelling strategies of some of these phenomena are available in literature. These can be readily incorporated in a fuel modelling performance code. The computer code FAIR has been developed in BARC over the years to evaluate the fuel performance at extended burnup and modelling of the fuel rods for advanced fuel cycles. The present paper deals with the high burnup issues in the fuel pins, their modelling strategies and results of the case studies specifically involving high burnup fuel. (author)

  17. Burnup verification tests with the FORK measurement system-implementation for burnup credit

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. It was designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program and is well suited to verify burnup and cooling time records at commercial Pressurized Water Reactor (PWR) sites. This report deals with the application of the FORK system to burnup credit operations

  18. Detailed description and user`s manual of high burnup fuel analysis code EXBURN-I

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    EXBURN-I has been developed for the analysis of LWR high burnup fuel behavior in normal operation and power transient conditions. In the high burnup region, phenomena occur which are different in quality from those expected for the extension of behaviors in the mid-burnup region. To analyze these phenomena, EXBURN-I has been formed by the incorporation of such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding oxide layer growth to the basic structure of low- and mid-burnup fuel analysis code FEMAXI-IV. The present report describes in detail the whole structure of the code, models, and materials properties. Also, it includes a detailed input manual and sample output, etc. (author). 55 refs.

  19. DELIGHT-B/REDEL, point reactivity burnup code for high-temperature gas-cooled reactor cells

    International Nuclear Information System (INIS)

    Shindo, Ryuiti; Watanabe, Takashi.

    1977-03-01

    Code DELIGHT-2 was previously developed to analyze cell burnup characteristics and to produce few-group constants for core burnup calculation in high-temperature gas-cooled reactors. In the code, burnup dependency of the burnable poison, boron-10, is considered with the homogeneous model of space. In actuality, however, the burnable poison is used as homogeneous rods or uniform rods of small granular poison and graphite, to control the reactivity and power distribution. Precise analysis of the burnup characteristics is thus difficult because of the heterogeneity due to the configuration of poison rods. In cell burnup calculation, the DELIGHT-B, which is a modification of DELIGHT-2, takes into consideration this heterogeneous effect. The auxiliary code REDEL, a reduction of DELIGHT-B, used in combination with 3 dimensional diffusion code CITATION, is for core burnup calculation with the macro-scopic cross section model. (auth.)

  20. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  1. Value of burnup credit beyond actinides

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.; Kang, Chi.

    1997-01-01

    DOE has submitted a topical report to the NRC justifying burnup credit based only on actinide isotopes (U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241). When this topical report is approved, it will allow a great deal of the commercial spent nuclear fuel to be transported in significantly higher capacity casks. A cost savings estimate for shipping fuel in 32 assembly (burnup credit) casks as opposed to 24 assembly (non-burnup credit) casks was previously presented. Since that time, more detailed calculations have been performed using the methodology presented in the Actinide-Only Burnup Credit Topical Report. Loading curves for derated casks have been generated using actinide-only burnup credit and are presented in this paper. The estimates of cost savings due to burnup credit for shipping fuel utilizing 32, 30, 28, and 24 assembly casks where only the 24 assembly cask does not burnup credit have been created and are discussed. 4 refs., 2 figs

  2. Systemization of burnup sensitivity analysis code (2) (Contract research)

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2008-08-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion

  3. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  4. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Angelucci, Morena; Marinari, Ranieri [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Forgione, Nicola [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy)

    2016-04-15

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m{sup 2}. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals

  5. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    International Nuclear Information System (INIS)

    Di Piazza, Ivan; Angelucci, Morena; Marinari, Ranieri; Tarantino, Mariano; Forgione, Nicola

    2016-01-01

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m"2. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals for

  6. Burnup credit for storage and transportation casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1988-01-01

    The application of burnup credit to storage and transportation cask licensing results in a significant improvement in cask capacity and an associated reduction of the cost per kilogram of uranium in the cask contents. The issues for licensing with burnup credit deal primarily with the treatment of fission product poisons and methods of verification of burnup during cask operations. Other issues include benchmarking of cross-section sets and codes and the effect of spatial variation of burnup within an assembly. The licensing of burnup credit for casks will be complex, although the criticality calculations are not themselves difficult. Attention should be directed to the use of fission product poisons and the uncertainties that they introduce. Verification of burnup by measurements will remove some of the concerns for criticality safety. Calculations for burnup credit casks should consider rod-to-rod and axial variations of burnup, as well as variability of burnable poisons it they are used in the assembly. In spite of the complexity of cask burnup credit licensing issues, these issues appear to be resolvable within the current state of the art of criticality safety

  7. Application of burnup credit concept to transport

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Nakagome, Yoshihiro.

    1994-01-01

    For the design and safety assessment of the casks for transporting spent fuel, the fuel contained in them has been assumed to be new fuel. The reason is, it was difficult to evaluate the variation of the reactivity of fuel, and the research on the affecting factors and the method of measuring burnup were not much advanced. Recently, high burnup fuel has been adopted, and initial degree of enrichment rose. The research has been advanced for pursuing the economy of the casks for spent fuel, and burnup credit has become applicable to their design and safety assessment. As the result, the containing capacity increases by about 20%. When burnup credit is considered, it is necessary to confirm accurately the burnup of spent fuel. The burnup dependence of the concentration of fissile substances and neutron emissivity, the coolant void dependence of the concentration of fissile substances, and the relation of neutron multiplication rate with initial degree of enrichment or burnup are discussed. The conceptual design of casks considering burnup credit and its assessment, the merit, problem and the countermeasures to it when burnup credit is introduced are described. (K.I.)

  8. Reactivity effect of spent fuel depending on burn-up history

    International Nuclear Information System (INIS)

    Hayashi, Takafumi; Suyama, Kenya; Nomura, Yasushi

    2001-06-01

    It is well known that a composition of spent fuel depends on various parameter changes throughout a burn-up period. In this study we aimed at the boron concentration and its change, the coolant temperature and its spatial distribution, the specific power, the operation mode, and the duration of inspection, because the effects due to these parameters have not been analyzed in detail. The composition changes of spent fuel were calculated by using the burn-up code SWAT, when the parameters mentioned above varied in the range of actual variations. Moreover, to estimate the reactivity effect caused by the composition changes, the criticality calculations for an infinite array of spent fuel were carried out with computer codes SRAC95 or MVP. In this report the reactivity effects were arranged from the viewpoint of what parameters gave more positive reactivity effect. The results obtained through this study are useful to choose the burn-up calculation model when we take account of the burn-up credit in the spent fuel management. (author)

  9. A simplified burnup calculation strategy with refueling in static molten salt reactor

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Gupta, Anurag; Krishnani, P.D.

    2015-01-01

    Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233 Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)

  10. Threshold burnup for recrystallization and model for rim porosity in the high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Lee, Byung Ho; Koo, Yang Hyun; Sohn, Dong Seong

    1998-01-01

    Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75μm and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup

  11. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    International Nuclear Information System (INIS)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-01-01

    Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma

  12. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  13. 3D core burnup studies in 500 MWe Indian prototype fast breeder reactor to attain enhanced core burnup

    International Nuclear Information System (INIS)

    Choudhry, Nakul; Riyas, A.; Devan, K.; Mohanakrishnan, P.

    2013-01-01

    Highlights: ► Enhanced burnup potential of existing prototype fast breeder reactor core is studied. ► By increasing the Pu enrichment, fuel burnup can be increased in existing PFBR core. ► Enhanced burnup increase economy and reduce load of fuel fabrication and reprocessing. ► Beginning of life reactivity is suppressed by increasing the number of diluents. ► Absorber rod worth requirements can be achieved by increasing 10 B enrichment. -- Abstract: Fast breeder reactors are capable of producing high fuel burnup because of higher internal breeding of fissile material and lesser parasitic capture of neutrons in the core. As these reactors need high fissile enrichment, high fuel burnup is desirable to be cost effective and to reduce the load on fuel reprocessing and fabrication plants. A pool type, liquid sodium cooled, mixed (Pu–U) oxide fueled 500 MWe prototype fast breeder reactor (PFBR), under construction at Kalpakkam is designed for a peak burnup of 100 GWd/t. This limitation on burnup is purely due to metallurgical properties of structural materials like clad and hexcan to withstand high neutron fluence, and not by the limitation on the excess reactivity available in the core. The 3D core burnup studies performed earlier for approach to equilibrium core of PFBR is continued to demonstrate the burnup potential of existing PFBR core. To increase the fuel burnup of PFBR, plutonium oxide enrichment is increased from 20.7%/27.7% to 22.1%/29.4% of core-1/core-2 which resulted in cycle length increase from 180 to 250 effective full power days (efpd), so that the peak fuel burnup increases from 100 to 134 GWd/t, keeping all the core parameters under allowed safety limits. Number of diluents subassemblies is increased from eight to twelve at beginning of life core to bring down the initial core excess reactivity. PFBR refueling is revised to accommodate twelve diluents. Increase of 10 B enrichment in control safety rods (CSRs) and diverse safety rods (DSRs

  14. Burnup credit in Spain

    International Nuclear Information System (INIS)

    Conde, J.M.; Recio, M.

    2001-01-01

    The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analytical activities in the country are described, as well as international collaborations in this field. Perspectives for future research and development of new applications are finally resumed. (author)

  15. Core burn-up calculation method of JRR-3

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Yamashita, Kiyonobu

    2007-01-01

    SRAC code system is utilized for core burn-up calculation of JRR-3. SRAC code system includes calculation modules such as PIJ, PIJBURN, ANISN and CITATION for making effective cross section and calculation modules such as COREBN and HIST for core burn-up calculation. As for calculation method for JRR-3, PIJBURN (Cell burn-up calculation module) is used for making effective cross section of fuel region at each burn-up step. PIJ, ANISN and CITATION are used for making effective cross section of non-fuel region. COREBN and HIST is used for core burn-up calculation and fuel management. This paper presents details of NRR-3 core burn-up calculation. FNCA Participating countries are expected to carry out core burn-up calculation of domestic research reactor by SRAC code system by utilizing the information of this paper. (author)

  16. Technological and licensing challenges for high burnup fuel

    International Nuclear Information System (INIS)

    Gross, H.; Urban, P.; Fenzlein, C.

    2002-01-01

    Deregulation of electricity markets is driving electricity prices downward as well in the U.S. as in Europe. As a consequence high burnup fuel will be demanded by utilities using either the storage or the reprocessing option. At a minimum, burnups consistent with the current political enrichment limit of 5 w/o will be required for both markets.Significant progress has been achieved in the past by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges posed by the increased burnup are mainly related to the corrosion and hydrogen pickup of the clad, the high burnup properties of the fuel and the dimensional changes of the fuel assembly structure. Clad materials with increased corrosion resistance appropriate for high burnup have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity with burnup, the rim effect of the pellet and the increase of fission gas release with burnup can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. Materials with increased corrosion resistance are also helpful controlling the dimensional changes of the fuel assembly structure. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved - some of them are still in the process of verification - or the solutions are visible. This fact is largely acknowledged by regulators too. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)

  17. EPRI/DOE High-Burnup Fuel Sister Rod Test Plan Simplification and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanson, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shimskey, R. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, N. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacFarlan, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billone, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-15

    The EPRI/DOE High-Burnup Confirmatory Data Project (herein called the “Demo”) is a multi-year, multi-entity test with the purpose of providing quantitative and qualitative data to show if high-burnup fuel mechanical properties change in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of common cladding alloys from the North Anna Nuclear Power Plant, loading them in an NRC-licensed TN-32B cask, drying them according to standard plant procedures, and then storing them on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and the mechanical properties of the rods will be tested and analyzed.

  18. Calculation of pellet radial power distributions with a Monte Carlo burnup code

    International Nuclear Information System (INIS)

    Suzuki, Motomu; Yamamoto, Toru; Nakata, Tetsuo

    2010-01-01

    The Japan Nuclear Energy Safety Organization (JNES) has been working on an irradiation test program of high-burnup MOX fuel at Halden Boiling Water Reactor (HBWR). MOX and UO 2 fuel rods had been irradiated up to about 64 GWd/t (rod avg.) as a Japanese utilities research program (1st phase), and using those fuel rods, in-situ measurement of fuel pellet centerline temperature was done during the 2nd phase of irradiation as the JNES test program. As part of analysis of the temperature data, power distributions in a pellet radial direction were analyzed by using a Monte Carlo burnup code MVP-BURN. In addition, the calculated results of deterministic burnup codes SRAC and PLUTON for the same problem were compared with those of MVP-BURN to evaluate their accuracy. Burnup calculations with an assembly model were performed by using MVP-BURN and those with a pin cell model by using SRAC and PLUTON. The cell pitch and, therefore, fuel to moderator ratio in the pin cell calculation was determined from the comparison of neutron energy spectra with those of MVP-BURN. The fuel pellet radial distributions of burnup and fission reaction rates at the end of the 1st phase irradiation were compared between the three codes. The MVP-BURN calculation results show a large peaking in the burnup and fission rates in the pellet outer region for the UO 2 and MOX pellets. The SRAC calculations give very close results to those of the MVP-BURN. On the other hand, the PLUTON calculations show larger burnup for the UO 2 and lower burnup for the MOX pellets in the pellet outer region than those of MVP-BURN, which lead to larger fission rates for the UO 2 and lower fission rates for the MOX pellets, respectively. (author)

  19. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  20. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    International Nuclear Information System (INIS)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-01-01

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided

  1. 'CANDLE' burnup regime after LWR regime

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nagata, Akito

    2008-01-01

    CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) burnup strategy can derive many merits. From safety point of view, the change of excess reactivity along burnup is theoretically zero, and the core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. About 40% of natural or depleted uranium undergoes fission without the conventional reprocessing and enrichment. If the LWR produced energy of X Joules, the CANDLE reactor can produce about 50X Joules from the depleted uranium left at the enrichment facility for the LWR fuel. If we can say LWRs have produced energy sufficient for full 20 years, we can produce the energy for 1000 years by using the CANDLE reactors with depleted uranium. We need not mine any uranium ore, and do not need reprocessing facility. The burnup of spent fuel becomes 10 times. Therefore, the spent fuel amount per produced energy is also reduced to one-tenth. The details of the scenario of CANDLE burnup regime after LWR regime will be presented at the symposium. (author)

  2. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  3. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  4. Measurement of burnup in FBR MOX fuel irradiated to high burnup

    International Nuclear Information System (INIS)

    Koyama, Shin-ichi; Osaka, Masahiko; Sekine, Takashi; Morozumi, Katsufumi; Namekawa, Takashi; Itoh, Masahiko

    2003-01-01

    The burnup of fuel pins in the subassemblies irradiated at the range from 0.003 to 13.28% FIMA in the JOYO MK-II core were measured by the isotope dilution analysis. For the measurement, 75 and 51 specimens were taken from the fuel pins of driver fuel and irradiation test subassemblies, respectively. The data of burnup could be obtained within an experimental error of 4%, and were compared with the ones calculated by 3-dimensional neutron diffusion codes MAGI and ESPRIT-J, which are used for JOYO core management system. Both data of burnup almost agree with each other within an error of 5%. For the fuel pins loaded at the outer region of the subassembly in the 4th row, which was adjacent to reflectors, however, some of the calculation results were 15% less at most than the measured values. It is suggested from the calculation by a Monte Carlo code MCNP-4A that this difference between the calculated and the measured data attribute from the softening of neutron flux in the region adjacent to the reflector. (author)

  5. Issues for effective implementation of burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2001-01-01

    In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the technical issues related to the basic physics phenomena and parameters of importance are similar in each of these applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the implementation of burnup credit to each of these applications is dependent somewhat on the specific safety bases developed over the history of each operational area. This paper will briefly review the implementation status of burnup credit for each application area and explore some of the remaining issues associated with effective implementation of burnup credit. (author)

  6. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  7. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  8. Burnup calculation for a tokamak commercial hybrid reactor

    International Nuclear Information System (INIS)

    Feng Kaiming; Xie Zhongyou

    1990-08-01

    A computer code ISOGEN-III and its associated data library BULIB have been developed for fusion-fission hybrid reactor burnup calculations. These are used to calcuate burnup of a tokamak commercial hybrid reactor. The code and library are introduced briefly, and burnup calculation results are given

  9. Three dimensional Burn-up program parallelization using socket programming

    International Nuclear Information System (INIS)

    Haliyati R, Evi; Su'ud, Zaki

    2002-01-01

    A computer parallelization process was built with a purpose to decrease execution time of a physics program. In this case, a multi computer system was built to be used to analyze burn-up process of a nuclear reactor. This multi computer system was design need using a protocol communication among sockets, i.e. TCP/IP. This system consists of computer as a server and the rest as clients. The server has a main control to all its clients. The server also divides the reactor core geometrically to in parts in accordance with the number of clients, each computer including the server has a task to conduct burn-up analysis of 1/n part of the total reactor core measure. This burn-up analysis was conducted simultaneously and in a parallel way by all computers, so a faster program execution time was achieved close to 1/n times that of one computer. Then an analysis was carried out and states that in order to calculate the density of atoms in a reactor of 91 cm x 91 cm x 116 cm, the usage of a parallel system of 2 computers has the highest efficiency

  10. Burnup credit activities being conducted in the United States

    International Nuclear Information System (INIS)

    Lake, W.

    1998-01-01

    The paper describes burnup credit activities being conducted in the U.S. where burnup credit is either being used or being planned to be used for storage, transport, and disposal of spent nuclear fuel. Currently approved uses of burnup credit are for wet storage of PWR fuel. For dry storage of spent PWR fuel, burnup credit is used to supplement a principle of moderator exclusion. These storage applications have been pursued by the private sector. The Department of Energy (DOE) which is an organization of the U.S. Federal government is seeking approval for burnup credit for transport and disposal applications. For transport of spent fuel, regulatory review of an actinide-only PWR burnup credit method is now being conducted. A request by DOE for regulatory review of actinide and fission product burnup credit for disposal of spent BWR and PWR fuel is scheduled to occur in 1998. (author)

  11. COGEMA/TRANSNUCLEAIRE's experience with burnup credit

    International Nuclear Information System (INIS)

    Chanzy, Y.; Guillou, E.

    1998-01-01

    Facing a continuous increase in the fuel enrichments, COGEMA and TRANSNUCLEAIRE have implemented step by step a burnup credit programme to improve the capacity of their equipment without major physical modification. Many authorizations have been granted by the French competent authority in wet storage, reprocessing and transport since 1981. As concerns transport, numerous authorizations have been validated by foreign competent authorities. Up to now, those authorizations are restricted to PWR Fuel type assemblies made of enriched uranium. The characterization of the irradiated fuel and the reactivity of the systems are evaluated by calculations performed with well qualified French codes developed by the CEA (French Atomic Energy Commission): CESAR as a depletion code and APPOLO-MORET as a criticality code. The authorizations are based on the assurance that the burnup considered is met on the least irradiated part of the fuel assemblies. Besides, the most reactive configuration is calculated and the burnup credit is restricted to major actinides only. This conservative approach allows not to take credit for any axial profile. On the operational side, the procedures have been reevaluated to avoid misloadings and a burnup verification is made before transport, storage and reprocessing. Depending on the level of burnup credit, it consists of a qualitative (go/no-go) verification or of a quantitative measurement. Thus the use of burnup credit is now a common practice in France and Germany and new improvements are still in progress: extended qualifications of the codes are made to enable the use of six selected fission products in the criticality evaluations. (author)

  12. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    Tran, Viet-Phu; Tran, Hoai-Nam; Yamamoto, Akio; Endo, Tomohiro

    2017-01-01

    This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO_2 and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.

  13. Automated generation of burnup chain for reactor analysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Viet-Phu [VINATOM, Hanoi (Viet Nam). Inst. for Nuclear Science and Technology; Tran, Hoai-Nam [Duy Tan Univ., Da Nang (Viet Nam). Inst. of Research and Development; Yamamoto, Akio; Endo, Tomohiro [Nagoya Univ., Nagoya-shi (Japan). Dept. of Materials, Physics and Energy Engineering

    2017-05-15

    This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO{sub 2} and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.

  14. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enercon Services, Inc.

    2011-03-14

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  15. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    International Nuclear Information System (INIS)

    2011-01-01

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  16. Physical models for high burnup fuel

    International Nuclear Information System (INIS)

    Kanyukova, V.; Khoruzhii, O.; Likhanskii, V.; Solodovnikov, G.; Sorokin, A.

    2003-01-01

    In this paper some models of processes in high burnup fuel developed in Src of Russia Troitsk Institute for Innovation and Fusion Research are presented. The emphasis is on the description of the degradation of the fuel heat conductivity, radial profiles of the burnup and the plutonium accumulation, restructuring of the pellet rim, mechanical pellet-cladding interaction. The results demonstrate the possibility of rather accurate description of the behaviour of the fuel of high burnup on the base of simplified models in frame of the fuel performance code if the models are physically ground. The development of such models requires the performance of the detailed physical analysis to serve as a test for a correct choice of allowable simplifications. This approach was applied in the SRC of Russia TRINITI to develop a set of models for the WWER fuel resulting in high reliability of predictions in simulation of the high burnup fuel

  17. Burnup credit activities in the United States

    International Nuclear Information System (INIS)

    Lake, W.H.; Thomas, D.A.; Doering, T.W.

    2001-01-01

    This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)

  18. Current and future research on corrosion and thermalhydraulic issues of HLM cooled reactors and on LMR fuels for fast reactor systems

    International Nuclear Information System (INIS)

    Knebel, J.U.; Konings, R.J.M.

    2002-01-01

    Heavy liquid metals (HLM) such as lead (Pb) or lead-bismuth eutectic (Pb-Bi) are currently investigated world-wide as coolant for nuclear power reactors and for accelerator driven systems (ADS). Besides the advantages of HLM as coolant and spallation material, e.g. high boiling point, low reactivity with water and air and a high neutron yield, some technological issues, such as high corrosion effects in contact with steels and thermalhydraulic characteristics, need further experimental investigations and physical model improvements and validations. The paper describes some typical HLM cooled reactor designs, which are currently considered, and outlines the technological challenges related to corrosion, thermalhydraulic and fuel issues. In the first part of the presentation, the status of presently operated or planned test facilities related to corrosion and thermalhydraulic questions will be discussed. First approaches to solve the corrosion problem will be given. The approach to understand and model thermalhydraulic issues such as heat transfer, turbulence, two-phase flow and instrumentation will be outlined. In the second part of the presentation, an overview will be given of the advanced fuel types that are being considered for future liquid metal reactor (LMR) systems. Advantages and disadvantages will be discussed in relation to fabrication technology and fuel cycle considerations. For the latter, special attention will be given to the partitioning and transmutation potential. Metal, oxide and nitride fuel materials will be discussed in different fuel forms and packings. For both parts of the presentation, an overview of existing co-operations and networks will be given and the needs for future research work will be identified. (authors)

  19. Development of methods for burn-up calculations for LWR's

    International Nuclear Information System (INIS)

    Jaschik, W.

    1978-01-01

    This method is based on all burn-up depending data, namely particle densities and neutron spectra, being available in a burn-up library. This one is created by means of a small number of cell burn-up calculations which can easily be carried out and in which the heterogeneous cell structure and self-shielding effects can explicitly be accounted for. Then the cluster burn-up is simulated by adequate correlation of the burn-up data. The advantage of this method is given by - an exact determination of the real spectrum distribution in the individual fuel element clusters; - an exact determination of the burn-up related spectrum variations for each fuel rod and for each burn-up value obtained; - accounting for heterogeneity of the fuel rod cells and the self-shielding in the fuel; high accuracy of the results of a comparably low effort and - simple handling by largely automating the process of computation. Programed realization was achieved by establishing the RSYST modules ABRAJA, MITHOM, and SIMABB and their implementation within the code system. (orig./HP) [de

  20. PENBURN - A 3-D Zone-Based Depletion/Burnup Solver

    International Nuclear Information System (INIS)

    Manalo, Kevin; Plower, Thomas; Rowe, Mireille; Mock, Travis; Sjoden, Glenn E.

    2008-01-01

    PENBURN (Parallel Environment Burnup) is a general depletion/burnup solver which, when provided with zone-based reaction rates, computes time-dependent isotope concentrations for a set of actinides and fission products. Burnup analysis in PENBURN is performed with a direct Bateman-solver chain solution technique. Specifically, in tandem with PENBURN is the use of PENTRAN, a parallel multi-group anisotropic Sn code for 3-D Cartesian geometries. In PENBURN, the linear chain method is actively used to solve individual isotope chains which are then fully attributed by the burnup code to yield integrated isotope concentrations for each nuclide specified. Included with the discussion of code features, a single PWR fuel pin calculation with the burnup code is performed and detailed with a benchmark comparison to PIE (Post-Irradiation Examination) data within the SFCOMPO (Spent Fuel Composition / NEA) database, and also with burnup codes in SCALE5.1. Conclusions within the paper detail, in PENBURN, the accuracy of major actinides, flux profile behavior as a function of burnup, and criticality calculations for the PWR fuel pin model. (authors)

  1. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N. A.

    1998-01-01

    The REBUS-3 burnup code, used in the ANL RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult burnup analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented

  2. Implementation of burnup credit in spent fuel management systems

    International Nuclear Information System (INIS)

    Dyck, H.P.

    2001-01-01

    Improved calculational methods allow one to take credit for the reactivity reduction associated with fuel burnup. This means reducing the analysis conservatism while maintaining an adequate safety margin. The motivation for using burnup credit in criticality safety applications is based on economic considerations and additional benefits contributing to public health and safety and resource conservation. Interest in the implementation of burnup credit has been shown by many countries. In 1997, the International Atomic Energy Agency (IAEA) started a task to monitor the implementation of burnup credit in spent fuel management systems, to provide a forum to exchange information, to discuss the matter and to gather and disseminate information on the status of national practices of burnup credit implementation in the Member States. The task addresses current and future aspects of burnup credit. This task was continued during the following years. (author)

  3. Probabilistic assessment of dry transport with burnup credit

    International Nuclear Information System (INIS)

    Lake, W.H.

    2003-01-01

    The general concept of probabilistic analysis and its application to the use of burnup credit in spent fuel transport is explored. Discussion of the probabilistic analysis method is presented. The concepts of risk and its perception are introduced, and models are suggested for performing probability and risk estimates. The general probabilistic models are used for evaluating the application of burnup credit for dry spent nuclear fuel transport. Two basic cases are considered. The first addresses the question of the relative likelihood of exceeding an established criticality safety limit with and without burnup credit. The second examines the effect of using burnup credit on the overall risk for dry spent fuel transport. Using reasoned arguments and related failure probability and consequence data analysis is performed to estimate the risks of using burnup credit for dry transport of spent nuclear fuel. (author)

  4. HLM fuel pin bundle experiments in the CIRCE pool facility

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)

    2015-10-15

    Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and

  5. High burnup MOX fuel assembly

    International Nuclear Information System (INIS)

    Blanpain, P.; Brunel, L.

    1999-01-01

    From the outset, the MOX product was required to have the same performance as UO 2 in terms of burnup and operational flexibility. In fact during the first years the UO 2 managements could not be applied to MOX. The changeover to an AFA 2G type fuel allowed an improvement in NPP operational flexibility. The move to the AFA 3G design fuel will enable an increase in the burnup of the MOX assemblies to the level of the UO 2 ones ('MOX Parity' project). But the FRAMATOME fuel development objective does not stop at the obtaining of parity between the current MOX and UO 2 products: this parity must remain guaranteed and the MOX managements must evolve in the same way as the UO 2 managements. The goal of the MOX product development programmes underway with COGEMA and the CEA is the demonstration over the next 10 years of a fuel capable of reaching burnups of 70 GWD/T. The research programmes focus on the fission gas release aspect, with three issues explored: optimization of pellet microstructures and validation in experimental reactor ; build-up of experience feedback from fission gas release at elevated burnups in commercial reactors, both for current and experimental products; adaptation and qualification of the design models and tools, over the ranges and for the products concerned. The product arising from these development programmes should be offered on the market around 2010. While meeting safety requirements, it will cater for the needs of the utilities in terms of product reliability, personnel dosimetry and kWh output costs (increase in burnup, NPP maneuverability and availability, minimization of process waste). (authors)

  6. Burnup credit applications in a high-capacity truck cask

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1993-01-01

    The use of burnup credit in the criticality safety analysis of the GA-4 Cask increases the cask's capacity from three spent fuel assemblies to four, resulting in reduced public and occupational risk and reduced life cycle costs. GA's criticality calculations for burnup credit, including the associated uncertainties and analytical bias, establish the minimum burnup required as a function of initial enrichment to maintain K eff ≤ 0.95 under any conceivable condition. The minimum burnup requirement as a function of initial enrichment has been determined to be 15,000 MWd/MTU for 3.5 wt% U-235 fuel, 20,000 MWd/MTU for 4.0 wt% U-235 fuel and 25,000 MWd/MTU for 4.5 wt% U-235 fuel. The minimum burnup requirement as a function of enrichment is well below the typical burnup levels seen in the current and projected spent fuel inventory. (J.P.N.)

  7. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  8. Application of Candle burnup to small fast reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.; Satoshi, T.

    2004-01-01

    A new reactor burnup strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. An equilibrium state was obtained for a large fast reactor (core radius is 2 m and reflector thickness is 0.5 m) successfully by using a newly developed direct analysis code. However, it is difficult to apply this burnup strategy to small reactors, since its neutron leakage becomes large and neutron economy becomes worse. Fuel enrichment should be increased in order to sustain the criticality. However, higher enrichment of fresh fuel makes the CANDLE burnup difficult. We try to find some small reactor designs, which can realize the CANDLE burnup. We have successfully find a design, which is not the CANDLE burnup in the strict meaning, but satisfies qualitatively its characteristics mentioned at the top of this abstract. In the final paper, the general description of CANDLE burnup and some results on the obtained small fast reactor design are presented.(author)

  9. Burn-up measurements coupling gamma spectrometry and neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H.; Pin, P. [AREVA/CANBERRA, 1 rue des Herons, 78182 St Quentin-en-Yvelines Cedex (France); Lebrun, A. [IAEA, Wagramer Strasse 5, PO Box 100, Vienna (Austria); Oriol, L.; Saurel, N. [CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Gain, T. [AREVA/COGEMA Reprocessing Business Unit, La Hague, 50444 Beaumont Hague Cedex (France)

    2006-07-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  10. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    Toubon, H.; Pin, P.; Lebrun, A.; Oriol, L.; Saurel, N.; Gain, T.

    2006-01-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  11. Nuclide Importance and the Steady-State Burnup Equation

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nemoto, Atsushi

    2000-01-01

    Conventional methods for evaluating some characteristic values of nuclides relating to burnup in a given neutron spectrum are reviewed in a mathematically systematic way, and a new method based on the importance theory is proposed. In this method, these characteristic values of a nuclide are equivalent to the importances of the nuclide. By solving the equation adjoint to the steady-state burnup equation with a properly chosen source term, the importances for all nuclides are obtained simultaneously.The fission number importance, net neutron importance, fission neutron importance, and absorbed neutron importance are evaluated and discussed. The net neutron importance is a measure directly estimating neutron economy, and it can be evaluated simply by calculating the fission neutron importance minus the absorbed neutron importance, where only the absorbed neutron importance depends on the fission product. The fission neutron importance and absorbed neutron importance are analyzed separately, and detailed discussions of the fission product effects are given for the absorbed neutron importance

  12. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  13. Burnup calculations using Monte Carlo method

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2009-01-01

    In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code

  14. Estimation of the impact of manufacturing tolerances on burn-up calculations using Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bock, M.; Wagner, M. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Garching (Germany). Forschungszentrum

    2012-11-01

    In recent years, the availability of computing resources has increased enormously. There are two ways to take advantage of this increase in analyses in the field of the nuclear fuel cycle, such as burn-up calculations or criticality safety calculations. The first possible way is to improve the accuracy of the models that are analyzed. For burn-up calculations this means, that the goal to model and to calculate the burn-up of a full reactor core is getting more and more into reach. The second way to utilize the resources is to run state-of-the-art programs with simplified models several times, but with varied input parameters. This second way opens the applicability of the assessment of uncertainties and sensitivities based on the Monte Carlo method for fields of research that rely heavily on either high CPU usage or high memory consumption. In the context of the nuclear fuel cycle, applications that belong to these types of demanding analyses are again burn-up and criticality safety calculations. The assessment of uncertainties in burn-up analyses can complement traditional analysis techniques such as best estimate or bounding case analyses and can support the safety analysis in future design decisions, e.g. by analyzing the uncertainty of the decay heat power of the nuclear inventory stored in the spent fuel pool of a nuclear power plant. This contribution concentrates on the uncertainty analysis in burn-up calculations of PWR fuel assemblies. The uncertainties in the results arise from the variation of the input parameters. In this case, the focus is on the one hand on the variation of manufacturing tolerances that are present in the different production stages of the fuel assemblies. On the other hand, uncertainties that describe the conditions during the reactor operation are taken into account. They also affect the results of burn-up calculations. In order to perform uncertainty analyses in burn-up calculations, GRS has improved the capabilities of its general

  15. Disposal criticality analysis methodology's principal isotope burnup credit

    International Nuclear Information System (INIS)

    Doering, T.W.; Thomas, D.A.

    2001-01-01

    This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)

  16. Fission-product burnup chain model for research reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup; Lee, Jong Tai [Korea Atomic Energy Research Inst., Daeduk (Republic of Korea)

    1990-12-01

    A new fission-product burnup chain model was developed for use in research reactor analysis capable of predicting the burnup-dependent reactivity with high precision over a wide range of burnup. The new model consists of 63 nuclides treated explicitly and one fissile-independent pseudo-element. The effective absorption cross sections for the preudo-element and the preudo-element yield of actinide nuclides were evaluated in the this report. The model is capable of predicting the high burnup behavior of low-enriched uranium-fueled research reactors.(Author).

  17. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes

  18. Features of fuel performance at high fuel burnups

    International Nuclear Information System (INIS)

    Proselkov, V.N.; Scheglov, A.S.; Smirnov, A.V.; Smirnov, V.P.

    2001-01-01

    Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)

  19. TRIGA criticality experiment for testing burn-up calculations

    International Nuclear Information System (INIS)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    1999-01-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  20. Optimum Discharge Burnup and Cycle Length for PWRs

    International Nuclear Information System (INIS)

    Secker, Jeffrey R.; Johansen, Baard J.; Stucker, David L.; Ozer, Odelli; Ivanov, Kostadin; Yilmaz, Serkan; Young, E.H.

    2005-01-01

    This paper discusses the results of a pressurized water reactor fuel management study determining the optimum discharge burnup and cycle length. A comprehensive study was performed considering 12-, 18-, and 24-month fuel cycles over a wide range of discharge burnups. A neutronic study was performed followed by an economic evaluation. The first phase of the study limited the fuel enrichments used in the study to 235 U consistent with constraints today. The second phase extended the range of discharge burnups for 18-month cycles by using fuel enriched in excess of 5 wt%. The neutronic study used state-of-the-art reactor physics methods to accurately determine enrichment requirements. Energy requirements were consistent with today's high capacity factors (>98%) and short (15-day) refueling outages. The economic evaluation method considers various component costs including uranium, conversion, enrichment, fabrication and spent-fuel storage costs as well as the effect of discounting of the revenue stream. The resulting fuel cycle costs as a function of cycle length and discharge burnup are presented and discussed. Fuel costs decline with increasing discharge burnup for all cycle lengths up to the maximum discharge burnup considered. The choice of optimum cycle length depends on assumptions for outage costs

  1. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  2. Fundamental burn-up mode in a pebble-bed type reactor

    International Nuclear Information System (INIS)

    Chen, Xue-Nong; Kiefhaber, Edgar; Maschek, Werner

    2008-01-01

    This paper deals with a pebble-bed type reactor, in which the fuel is loaded from one side (top) and discharged from the other side (bottom). A boundary value problem of a single group diffusion equation coupled with simplified burn-up equations is studied, where the natural radioactive decay processes are neglected in the burn-up modelling. An asymptotic burning wave solution is found analytically in the one-dimensional case, which is called as fundamental burn-up mode. Among this solution family there are two particular cases, namely, a classic fundamental solution with a zero burn-up and a partial solitary burn-up wave solution with a highest burn-up. An example of Th-U conversion is considered and the solutions are presented in order to show the mechanism of the burning wave. (author)

  3. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES

    International Nuclear Information System (INIS)

    BSC

    2004-01-01

    Waste packages are loaded with commercial spent nuclear fuel (SNF) that satisfies the minimum burnup requirements of a criticality loading curve. The burnup value assigned by the originating nuclear utility to each SNF assembly (assigned burnup) is used to load waste packages in compliance with a criticality loading curve. The burnup provided by a nuclear utility has uncertainties, so conservative calculation methods are used to characterize those uncertainties for incorporation into the criticality loading curves. Procedural safety controls ensure that the correct assembly is loaded into each waste package to prevent a misload that could create a condition affecting the safety margins. Probabilistic analyses show that procedural safety controls can minimize the chance of a misload but can not completely eliminate the possibility. Physical measurements of burnup with instrumentation in the surface facility are not necessary due to the conservative calculation methods used to produce the criticality loading curves. The reactor records assigned burnup of a commercial SNF assembly contains about two percent uncertainty, which is increased to five-percent to ensure conservatism. This five-percent uncertainty is accommodated by adjusting the criticality loading curve. Also, the record keeping methods of nuclear utilities are not uniform and the level of detail required by the NRC has varied over the last several decades. Thus, some SNF assemblies may have assigned burnups that are averages for a batch of assemblies with similar characteristics. Utilities typically have access to more detailed core-follow records that allow the batch average burnup to be changed to an assembly specific burnup. Alternatively, an additional safety margin is incorporated into the criticality loading curve to accommodate SNF assemblies with batch average burnups or greater uncertainties due to the methodology used by the nuclear utility. The utility records provide the assembly identifier

  4. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  5. Preparation of data relevant to ''Equivalent Uniform Burnup'' and Equivalent Initial Enrichment'' for burnup credit evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murazaki, Minoru [Tokyo Nuclear Service Inc., Tokyo (Japan)

    2001-11-01

    Based on the PWR spent fuel composition data measured at JAERI, two kinds of simplified methods such as ''Equivalent Uniform Burnup'' and ''Equivalent Initial Enrichment'' have been introduced. And relevant evaluation curves have been prepared for criticality safety evaluation of spent fuel storage pool and transport casks, taking burnup of spent fuel into consideration. These simplified methods can be used to obtain an effective neutron multiplication factor for a spent fuel storage/transportation system by using the ORIGEN2.1 burnup code and the KENO-Va criticality code without considering axial burnup profile in spent fuel and other various factors introducing calculated errors. ''Equivalent Uniform Burnup'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis, in which the experimentally obtained isotopic composition together with a typical axial burnup profile and various factors such as irradiation history are considered on the conservative side. On the other hand, Equivalent Initial Enrichment'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis such as above when it is used in the so called fresh fuel assumption. (author)

  6. Light a CANDLE. An innovative burnup strategy of nuclear reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2005-11-01

    CANDLE is a new burnup strategy for nuclear reactors, which stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production. When this candle-like burnup strategy is adopted, although the fuel is fixed in a reactor core, the burning region moves, at a speed proportionate to the power output, along the direction of the core axis without changing the spatial distribution of the number density of the nuclides, neutron flux, and power density. Excess reactivity is not necessary for burnup and the shape of the power distribution and core characteristics do not change with the progress of burnup. It is not necessary to use control rods for the control of the burnup. This booklet described the concept of the CANDLE burnup strategy with basic explanations of excess neutrons and its specific application to a high-temperature gas-cooled reactor and a fast reactor with excellent neutron economy. Supplementary issues concerning the initial core and high burnup were also referred. (T. Tanaka)

  7. Burnup calculation in microcells of high conversion reactors

    International Nuclear Information System (INIS)

    Gomez, S.E.; Salvatore, M.; Patino, N.E.; Abbate, M.J.

    1991-01-01

    The development of high converter reactors (HCR) requires careful burnup calculations because their main goals are reach high discharge burnup levels (Up to 50 GWd/T) and a close to one conversion ratio. Then, it is necessary a revision of design elements used for this type of calculation. In this work, a burnup module (BUM) developed in order to use nuclear data directly from evaluated data files is presented; these was included in the AMPX system. (author)

  8. Burnup analysis of the power reactor, 2

    International Nuclear Information System (INIS)

    Ezure, Hideo

    1975-09-01

    In burnup analysis of JPDR-1 with FLARE, it was found to have problems. The program FLORA was developed for solution of the problems. By their bench mark tests FLORA was found to be useful for three-dimensional thermal-hydro-dynamic analysis of BWRs. It was applied to analysis of the burnup of JPDR-1. The input data and option of FLORA were corrected on referring to the results of gammer probe tests for JPDR-1. The void, source and burnup distributions were calculated each month during the operation. The burnup distribution in three assemblies revealed by a destructive test agrees better with that by FLORA than by FLARE. It was shown that the distortion of power distribution around the control rods by FLORA was smaller and closer to that by the gammer probe tests than by FLARE, and the connector of fuel assemblies and the plugs in the reflector had much influence on the power distribution. (auth.)

  9. Simulation of the behaviour of nuclear fuel under high burnup conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Lemes, Martin; González, Martin Emilio; Denis, Alicia; Romero, Luis

    2014-01-01

    Highlights: • Increasing the time of nuclear fuel into reactor generates high burnup structure. • We analyze model to simulate high burnup scenarios for UO 2 nuclear fuel. • We include these models in the DIONISIO 2.0 code. • Tests of our models are in very good agreement with experimental data. • We extend the range of predictability of our code up to 60 MWd/KgU average. - Abstract: In this paper we summarize all the models included in the latest version of the DIONISIO code related to the high burnup scenario. Due to the extension of nuclear fuels permanence under irradiation, physical and chemical modifications are developed in the fuel material, especially in the external corona of the pellet. The codes devoted to simulation of the rod behaviour under irradiation need to introduce modifications and new models in order to describe those phenomena and be capable to predict the behaviour in all the range of a general pressurized water reactor. A complex group of subroutines has been included in the code in order to predict the radial distribution of power density, burnup, concentration of diverse nuclides and porosity within the pellet. The behaviour of gadolinium as burnable poison also is modelled into the code. The results of some of the simulations performed with DIONISIO are presented to show the good agreement with the data selected for the FUMEX I/II/III exercises, compiled in the NEA data bank

  10. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    Tran Viet Phu; Tran Hoai Nam; Akio Yamamoto; Tomohiro Endo

    2015-01-01

    This paper presents the development of an automated generation of a new burnup chain for reactor analysis applications. The JENDL FP Decay Data File 2011 and Fission Yields Data File 2011 were used as the data sources. The nuclides in the new chain are determined by restrictions of the half-life and cumulative yield of fission products or from a given list. Then, decay modes, branching ratios and fission yields are recalculated taking into account intermediate reactions. The new burnup chain is output according to the format for the SRAC code system. Verification was performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Further development and applications are being planned with the burnup chain code. (author)

  11. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N.A.; Olson, A.P.; Pond, R.B.; Matos, J.E.

    1998-01-01

    The REBUS-3 burnup code, used in the anl RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented. (author)

  12. Burnup credit applications in a high-capacity truck cask

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1992-09-01

    General Atomics (GA) has designed two legal weight truck (LWT) casks, the GA-4 and GA-9, to carry four pressurized-water-reactor (PWR) and nine boiling-water-reactor (BWR) fuel assemblies, respectively. GA plans to submit applications for certification to the US Nuclear Regulatory Commission (NRC) for the two casks in mid-1993. GA will include burnup credit analysis in the Safety Analysis Report for Packaging (SARP) for the GA-4 Cask. By including burnup credit in the criticality safety analysis for PWR fuels with initial enrichments above 3% U-235, public and occupation risks are reduced and cost savings are realized. The GA approach to burnup credit analysis incorporates the information produced in the US Department of Energy Burnup Credit Program. This paper describes the application of burnup credit to the criticality control design of the GA-4 Cask

  13. EVOLUT - a computer program for fast burnup evaluation

    International Nuclear Information System (INIS)

    Craciunescu, T.; Dobrin, R.; Stamatescu, L.; Alexa, A.

    1999-01-01

    EVOLUT is a computer program for burnup evaluation. The input data consist on the one hand of axial and radial gamma-scanning profiles (for the experimental evaluation of the number of nuclei of a fission product - the burnup monitor - at the end of irradiation) and on the other hand of the history of irradiation (the time length and values proportional to the neutron flux for each step of irradiation). Using the equation of evolution of the burnup monitor the flux values are iteratively adjusted, by a multiplier factor, until the calculated number of nuclei is equal to the experimental one. The flux values are used in the equation of evolution of the fissile and fertile nuclei to determine the fission number and consequently the burnup. EVOLUT was successfully used in the analysis of several hundreds of CANDU and TRIGA-type fuel rods. We appreciate that EVOLUT is a useful tool in the burnup evaluation based on gamma spectrometry measurements. EVOLUT can be used on an usual AT computer and in this case the results are obtained in a few minutes. It has an original and user-friendly graphical interface and it provides also output in script MATLAB files for graphical representation and further numerical analysis. The computer program needs simple data and it is valuable especially when a large number of burnup analyses are required quickly. (authors)

  14. Sophistication of burnup analysis system for fast reactor

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Hyoudou, Hideaki; Tatsumi, Masahiro

    2010-02-01

    Improvement on prediction accuracy for neutronics property of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified constants library as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores, however, improvement of not only static properties but also burnup properties is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup properties using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous research, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for production systems. In the present study, we implemented functions for cell calculations and burnup calculations. With this, whole steps in analysis can be carried out with only this system. In addition, we modified the specification of user input to improve the convenience of this system. Since implementations being done so

  15. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  16. Time step length versus efficiency of Monte Carlo burnup calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Valtavirta, Ville

    2014-01-01

    Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy

  17. Burnup verification using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used to verify reactor site records for burnup and cooling time for many years. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. This report deals with the application of the FORK system to burnup credit operations based on measurements performed on spent fuel assemblies at the Oconee Nuclear Station of Duke Power Company

  18. A new approach to make collapsed cross section for burnup calculation of subcritical system

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Kondo, Keitaro; Miyamaru, Hiroyuki; Murata, Isao

    2008-01-01

    A general-purpose transport and burnup code system for precise analysis of subcritical reactors like a fusion-fission (FF) hybrid reactor was developed and used for analyzing their performance. The FF hybrid reactor is a subcritical system, which has a concept of fusion reactor with a blanket region containing nuclear fuel and has been under discussion by author's group for years because the present burnup calculation system mainly consists of a general-purpose Monte Carlo code MCNP-4B, a point burnup code ORIGEN2. JENDL-3.3 pointwise cross section library and JENDL Activation Cross Section File 96 were used as base cross section libraries to make group constant for burnup calculation. A new method has been proposed to make group constant for the burnup calculation as accurate as possible directly using output data of the neutron transport calculation by MCNP and evaluated nuclear data libraries. This method is strict and a general procedure to make one group cross sections in Monte Carlo calculations, while it takes very long computation time. Some speed-up techniques were discussed for the present group constant making process so as to decrease calculation time. Adoption of postprocessing to make group constant improved the calculation accuracy because of increasing number of cross sections to be updated in each burnup cycle. The present calculation system is capable of performing neutronics analysis of subcritical reactors more precise than our previous one. However, at the moment, it still takes long computation time to make group constants. Further speed-up techniques are now under investigation so as to apply the present system to neutronics design analysis for various subcritical systems. (author)

  19. A microcomputer program for coupled cycle burnup calculations

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Downar, T.J.; Taylor, E.L.

    1986-01-01

    A program, designated BRACC (Burnup, Reactivity, And Cycle Coupling), has been developed for fuel management scoping calculations, and coded in the BASIC language in an interactive format for use with microcomputers. BRACC estimates batch and cycle burnups for sequential reloads for a variety of initial core conditions, and permits the user to specify either reload batch properties (enrichment, burnable poison reactivity) or the target cycle burnup. Most important fuel management tactics (out-in or low-leakage loading, coastdown, variation in number of assemblies charged) can be simulated

  20. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  1. Fuel burnup analysis for the Moroccan TRIGA research reactor

    International Nuclear Information System (INIS)

    El Bakkari, B.; El Bardouni, T.; Nacir, B.; El Younoussi, C.; Boulaich, Y.; Boukhal, H.; Zoubair, M.

    2013-01-01

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  2. Burn-up function of fuel management code for aqueous homogeneous reactors and its validation

    International Nuclear Information System (INIS)

    Wang Liangzi; Yao Dong; Wang Kan

    2011-01-01

    Fuel Management Code for Aqueous Homogeneous Reactors (FMCAHR) is developed based on the Monte Carlo transport method, to analyze the physics characteristics of aqueous homogeneous reactors. FMCAHR has the ability of doing resonance treatment, searching for critical rod heights, thermal hydraulic parameters calculation, radiolytic-gas bubbles' calculation and bum-up calculation. This paper introduces the theory model and scheme of its burn-up function, and then compares its calculation results with benchmarks and with DRAGON's burn-up results, which confirms its bum-up computing precision and its applicability in the bum-up calculation and analysis for aqueous solution reactors. (authors)

  3. Burnup calculations for cadmium. A case study for HFR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Sciolla, C.M

    2000-09-11

    This report describes the pre-design burnup calculations performed for a cadmium shielded high fluence irradiation experiment in the HFR. The very high absorption cross section in cadmium causes problems in the calculations for two different reasons. Firstly, because of the large reaction rates the assumption that the flux and the cross sections remain piecewise constant is no longer true. Therefore the correct solution can only be obtained when using extremely small time steps which leads to excessive computing times. Secondly, the self-shielding in the cadmium becomes complete (black absorber) causing the depletion to progress in a shell-wise manner. As a consequence the depletion evolves nearly linear instead of exponential with time. Because of this the depletion codes are used in a regime for which these have not been designed leading to a systematic error. The analysis shows however that a good estimate for the burnup time can be obtained by extrapolation from calculations with practically sized time steps and a correction is derived to compensate the systematic error. The calculations were done using the OCTOPUS burnup code system, including the 3-D Monte-Carlo spectrum code MCNP-4B and the depletion code FISPACT-4.2. Verifications were performed with the WIMS code system. The first part of the report describes the study of the cadmium burnup calculations for a shielded steel sample with the emphasis on analyzing the requirements for obtaining the correct solution. The second part describes the time-dependent power production calculations with the steel replaced by lithium containing ceramic material such as to be used in the 'High Fluence Irradiation of Ceramics for Fusion' (HICU) experiment. 12 refs.

  4. Determination of axial profit performed burnup credit by SCALE 4.3-system

    International Nuclear Information System (INIS)

    Miro, R.; Verdu, G.; Munoz-Cobo, J. L.

    1998-01-01

    SCALE 4.3 is a modular code system designed for realizing standard computational analysis for licensing evaluation. Since now, spent fuel storage pools criticality analysis have been done considering this fuel as fresh, with its maximum enrichment. With burnup credit we can obtain cheaper and compact configurations. The procedure for calculating a spent fuel storage consists of a burnup calculation plus a criticality calculation. We can perform a conservative approximation for the burnup calculations using 1-D results, but, besides the geometry configurations for the 3-D criticality calculation. we need an appropriate approximation to model the burnup axial variation. We assume that for a burnup profile set, the most conservative profile is between the lower and the upper range of this profile, set. We consider only combinations of the maximum and minimum burnup in each axial region, for each burnup range. This gives an estimation of the different burnup shapes effect and the general characteristics of the most conservative shape. (Author) 6 refs

  5. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  6. Determination of burn-up of irradiated nuclear fuels using mass spectrometry

    International Nuclear Information System (INIS)

    Jagadish Kumar, S.; Telmore, V.M.; Shah, R.V.; Sasi Bhushan, K.; Paul, Sumana; Kumar, Pranaw; Rao, Radhika M.; Jaison, P.G.

    2017-01-01

    Burn-up defined as the atom percent fission, is a vital parameter used for assessing the performance of nuclear fuel during its irradiation in the reactor. Accurate data on the actinide isotopes are also essential for the reliable accountability of nuclear materials and for nuclear safeguards. Both destructive and non-destructive methods are employed in the post-irradiation analysis for the burn-up measurements. Though non-destructive methods are preferred from the point view of remote handling of irradiated fuels with high radioactivity, they do not provide the high accuracy as achieved by the chemical analysis methods. Thus destructive radiochemical and chemical analyses are still the established reference methods for accurate and reliable burn-up determination of irradiated nuclear fuels. In the destructive method, burn-up of irradiated nuclear fuel is determined by correlating the amount of a fission product formed during irradiation with that of heavy elements. Thus the destructive experimental determination of burn-up involves the dissolution of irradiated fuel samples followed by the separation and determination of heavy elements and fission product(s) to be used as burn-up monitor(s). Another approach for the experimental determination of burn-up is based on the changes in the abundances of the heavy element isotopes. A widely accepted method for burn-up determination is based on stable "1"4"8Nd and "1"3"9La as burn-up monitors. Several properties such as non-volatility, nearly same yields for thermal fissions of "2"3"5U and "2"3"9Pu etc justifies the selection of "1"4"8Nd as a burn-up monitor

  7. Monte Carlo burnup simulation of the TAKAHAMA-3 benchmark experiment

    International Nuclear Information System (INIS)

    Dalle, Hugo M.

    2009-01-01

    High burnup PWR fuel is currently being studied at CDTN/CNEN-MG. Monte Carlo burnup code system MONTEBURNS is used to characterize the neutronic behavior of the fuel. In order to validate the code system and calculation methodology to be used in this study the Japanese Takahama-3 Benchmark was chosen, as it is the single burnup benchmark experimental data set freely available that partially reproduces the conditions of the fuel under evaluation. The burnup of the three PWR fuel rods of the Takahama-3 burnup benchmark was calculated by MONTEBURNS using the simplest infinite fuel pin cell model and also a more complex representation of an infinite heterogeneous fuel pin cells lattice. Calculations results for the mass of most isotopes of Uranium, Neptunium, Plutonium, Americium, Curium and some fission products, commonly used as burnup monitors, were compared with the Post Irradiation Examinations (PIE) values for all the three fuel rods. Results have shown some sensitivity to the MCNP neutron cross-section data libraries, particularly affected by the temperature in which the evaluated nuclear data files were processed. (author)

  8. Modelling the high burnup UO2 structure in LWR fuel

    International Nuclear Information System (INIS)

    Lassmann, K.; Walker, C.T.; Laar, J. van de; Lindstroem, F.

    1995-01-01

    The concept of a burnup threshold for the formation of the high burnup UO 2 structure (HBS) is supported by experimental data, which also reveal that a transition zone exists between the normal UO 2 structure and the fully developed HBS. From the analysis of radial xenon profiles measured by EPMA a threshold burnup is obtained in the range 60-75 GW d/t U. The lower value is considered to be the threshold for the onset of the HBS and the higher value the threshold for the fully developed HBS. Xenon depletion in the transition zone and the fully developed HBS can be described by a simple model. At local burnups above 120 GW d/t U the xenon generated is in equilibrium with the xenon lost to the fission gas pores and the concentration does not fall below 0.25 wt%. The TRANSURANUS burnup model TUBRNP predicts reasonably well the penetration of the HBS and the associated xenon depletion up to a cross section average burnup of approximately 70 GW d/t U. (orig.)

  9. Simulation of High Burnup Structure in UO2 Using Potts Model

    International Nuclear Information System (INIS)

    Oh, Jae Yong; Koo, Yang Hyun; Lee, Byung Ho

    2009-01-01

    The evolution of a high burnup structure (HBS) in a light water reactor (LWR) UO 2 fuel was simulated using the Potts model. A simulation system for the Potts model was defined as a two-dimensional triangular lattice, for which the stored energy was calculated from both the irradiation damage of the UO 2 matrix and the formation of a grain boundary in the newly recrystallized small HBS grains. In the simulation, the evolution probability of the HBS is calculated by the system energy difference between before and after the Monte Carlo simulation step. The simulated local threshold burnup for the HBS formation was 62 MWd/kgU, consistent with the observed threshold burnup range of 60-80 MWd/kgU. The simulation revealed that the HBS was heterogeneously nucleated on the intergranular bubbles in the proximity of the threshold burnup and then additionally on the intragranular bubbles for a burnup above 86 MWd/kgU. In addition, the simulation carried out under a condition of no bubbles indicated that the bubbles played an important role in lowering the threshold burnup for the HBS formation, thereby enabling the HBS to be observed in the burnup range of conventional high burnup fuels

  10. An economic evaluation of a storage system for casks with burnup credit

    International Nuclear Information System (INIS)

    Mimura, Masahiro; Tsuda, Kazuaki; Yamada, Nobuyuki; O-iwa, Akio.

    1993-01-01

    It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)

  11. Whole core burnup calculations using `MCNP`

    Energy Technology Data Exchange (ETDEWEB)

    Haran, O; Shaham, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors).

  12. Whole core burnup calculations using 'MCNP'

    International Nuclear Information System (INIS)

    Haran, O.; Shaham, Y.

    1996-01-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors)

  13. Analysis of variation in few-group cross section behavior subjected to burnup and boron concentration

    International Nuclear Information System (INIS)

    Zhang Zongyao; Li Dongsheng.

    1986-01-01

    The paper analyzes the variations of few-group cross section behavior in neutron diffusion subjected to fuel burnup and critical boron concentration in a core. The influences of the behavior on the core excess reactivity, crirical boron concentration, power distribution and the yield of isotopes are also analyzed. A reactor core of samll-medium-sized nuclear power plant is analyzed as an example

  14. Status of burnup credit implementation in Switzerland

    International Nuclear Information System (INIS)

    Grimm, P.

    1998-01-01

    Burnup credit is currently not used for the storage of spent fuel in the reactor pools in Switzerland, but credit is taken for integral burnable absorbers. Interest exists to take credit of burnup in future for the storage in a central away-from-reactor facility presently under construction. For spent fuel transports to foreign reprocessing plants the regulations of the receiving countries must be applied in addition to the Swiss licensing criteria. Burnup credit has been applied by one Swiss PWR utility for such transports in a consistent manner with the licensing practice in the receiving countries. Measurements of reactivity worths of small spent fuel samples in a Swiss zero-power research reactor are at an early stage of planning. (author)

  15. Two dimensional burn-up calculation of TRIGA core

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Slavic, S.

    1996-01-01

    TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)

  16. Impact of extended burnup on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-04-01

    The Advisory Group Meeting was held in Vienna from 2 to 5 December 1991, to review, analyse, and discuss the effects of burnup extension in both light and heavy water reactors on all aspects of the fuel cycle. Twenty experts from thirteen countries participated in this meeting. There was consensus that both economic and environmental benefits are driving forces toward the achievement of higher burnups and that the present trend of burnup extension may be expected to continue. The extended burnup has been considered for the three main stages of the fuel cycle: the front end, in-reactor issues and the back end. Thirteen papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  18. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  19. Development of burnup methods and capabilities in Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Liu, Yuxuan; Wang, Kan; Yu, Ganglin; Forget, Benoit; Romano, Paul K.; Smith, Kord

    2013-01-01

    Highlights: ► The RMC code has been developed aiming at large-scale burnup calculations. ► Matrix exponential methods are employed to solve the depletion equations. ► The Energy-Bin method reduces the time expense of treating ACE libraries. ► The Cell-Mapping method is efficient to handle massive amounts of tally cells. ► Parallelized depletion is necessary for massive amounts of burnup regions. -- Abstract: The Monte Carlo burnup calculation has always been a challenging problem because of its large time consumption when applied to full-scale assembly or core calculations, and thus its application in routine analysis is limited. Most existing MC burnup codes are usually external wrappers between a MC code, e.g. MCNP, and a depletion code, e.g. ORIGEN. The code RMC is a newly developed MC code with an embedded depletion module aimed at performing burnup calculations of large-scale problems with high efficiency. Several measures have been taken to strengthen the burnup capabilities of RMC. Firstly, an accurate and efficient depletion module called DEPTH has been developed and built in, which employs the rational approximation and polynomial approximation methods. Secondly, the Energy-Bin method and the Cell-Mapping method are implemented to speed up the transport calculations with large numbers of nuclides and tally cells. Thirdly, the batch tally method and the parallelized depletion module have been utilized to better handle cases with massive amounts of burnup regions in parallel calculations. Burnup cases including a PWR pin and a 5 × 5 assembly group are calculated, thereby demonstrating the burnup capabilities of the RMC code. In addition, the computational time and memory requirements of RMC are compared with other MC burnup codes.

  20. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  1. Accuracy assessment of a new Monte Carlo based burnup computer code

    International Nuclear Information System (INIS)

    El Bakkari, B.; ElBardouni, T.; Nacir, B.; ElYounoussi, C.; Boulaich, Y.; Meroun, O.; Zoubair, M.; Chakir, E.

    2012-01-01

    Highlights: ► A new burnup code called BUCAL1 was developed. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► Validation of BUCAL1 was done by code to code comparison using VVER-1000 LEU Benchmark Assembly. ► Differences from BM value were found to be ± 600 pcm for k ∞ and ±6% for the isotopic compositions. ► The effect on reactivity due to the burnup of Gd isotopes is well reproduced by BUCAL1. - Abstract: This study aims to test for the suitability and accuracy of a new home-made Monte Carlo burnup code, called BUCAL1, by investigating and predicting the neutronic behavior of a “VVER-1000 LEU Assembly Computational Benchmark”, at lattice level. BUCAL1 uses MCNP tally information directly in the computation; this approach allows performing straightforward and accurate calculation without having to use the calculated group fluxes to perform transmutation analysis in a separate code. ENDF/B-VII evaluated nuclear data library was used in these calculations. Processing of the data library is performed using recent updates of NJOY99 system. Code to code comparisons with the reported Nuclear OECD/NEA results are presented and analyzed.

  2. Optimization of TRU burnup in modular helium reactor

    International Nuclear Information System (INIS)

    Yonghee, Kim; Venneri, F.

    2007-01-01

    An optimization study of a single-pass TRU (transuranic) deep-burn (DB) has been performed for a block-type MHR (Modular Helium Reactor) proposed by General Atomics. Assuming a future equilibrium scenario of advanced LWRs, a high-burnup TRU vector is considered: 50 GWD/MTU and 5-year cooling. For 3-D equilibrium cores, the performance analysis is done by using a continuous energy Monte Carlo depletion code MCCARD. The core optimization is performed from the viewpoints of the core configuration, fuel management, TRISO fuel specification, and neutron spectrum. With regard to core configuration, two annular cores are investigated in terms of the neutron economy. A conventional radial shuffling scheme of fuel blocks is compared with an axial block shuffling strategy in terms of the fuel burnup and core power distributions. The impact of the kernel size of TRISO fuel is evaluated and a diluted kernel, instead of a conventional concentrated kernel, is introduced to maximize the TRU burnup by reducing the self-shielding effects of TRISO fuels. A higher graphite density is evaluated in terms of the fuel burnup. In addition, it is shown that the core power distribution can be effectively controlled by zoning of the packing fraction of TRISO fuels. We also have shown that a long-cycle DB-MHR core can be designed by using a small batch size for fuel reloading, at the expense of a marginal decrease of the TRU discharge burnup. Depending on the fuel management scheme, fuel specifications, and core parameters, the TRU burnup in an optimized DB-MHR core is over 60% in a single-pass irradiation campaign. (authors)

  3. Parametric neutronic analyses related to burnup credit cask design

    International Nuclear Information System (INIS)

    Parks, C.V.

    1989-01-01

    The consideration of spent fuel histories (burnup credit) in the design of spent fuel shipping casks will result in cost savings and public risk benefits in the overall fuel transportation system. The purpose of this paper is to describe the depletion and criticality analyses performed in conjunction with and supplemental to the referenced analysis. Specifically, the objectives are to indicate trends in spent fuel isotopic composition with burnup and decay time; provide spent fuel pin lattice values as a function of burnup, decay time, and initial enrichment; demonstrate the variation of k eff for infinite arrays of spent fuel assemblies separated by generic cask basket designs (borated and unborated) of varying thicknesses; and verify the potential cask reactivity margin available with burnup credit via analysis with generic cask models

  4. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  5. Analytical and numerical study of radiation effect up to high burnup in power reactor fuels

    International Nuclear Information System (INIS)

    Lemes, M; Denis, A; Soba, A

    2012-01-01

    In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)

  6. Fuel element burnup determination in HEU-LEU mixed TRIGA research reactor core

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz

    2000-01-01

    This paper presents the results of a burnup calculations and burnup measurements for TRIGA FLIP HEU fuel elements and standard TRIGA LEU fuel elements used simultaneously in small TRIGA Mark II research reactor in Ljubljana, Slovenija. The fuel element burnup for approximately 15 years of operation was calculated with two different in house computer codes TRIGAP and TRIGLAV (both codes are available at OECD NEA Data Bank). The calculation is performed in one-dimensional radial geometry in TRIGAP and in two-dimensional (r,φ) geometry in TRIGLAV. Inter-comparison of results shows important influence of in-core water gaps, irradiation channels and mixed rings on burnup calculation accuracy. Burnup of 5 HEU and 27 LEU fuel elements was also measured with reactivity method. Measured and calculated burnup values are inter-compared for these elements (author)

  7. Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications

    International Nuclear Information System (INIS)

    Clement Ravi Chandar, S.; Sivayya, D.N.; Puthiyavinayagam, P.; Chellapandi, P.

    2013-01-01

    For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B 4 C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability

  8. Calculation of isotope burn-up and change in efficiency of absorbing elements of WWER-1000 control and protection system during burn-up

    International Nuclear Information System (INIS)

    Timofeeva, O.A.; Kurakin, K.U.

    2006-01-01

    The report deals with fast and thermal neutron flows distribution in structural elements of WWER-1000 fuel assembly and absorbing rods, determination of absorbing isotope burn-up and worth variation in WWER reactor control and protection system rods. Simulation of absorber rod burn-up is provided using code package SAPPHIRE 9 5 end RC W WER allowing detailed description of the core segment spatial model. Maximum burn-up of absorbing rods and respective worth variation of control and protection system rods is determined on the basis of a number of calculations considering known characteristics of fuel cycles (Authors)

  9. Burnup credit effect on proposed cask payloads

    International Nuclear Information System (INIS)

    Hall, I.K.

    1989-01-01

    The purpose of the Cask Systems Development Program (CSDP) is to develop a variety of cask systems which will allow safe and economical movement of commercial spent nuclear fuel and high-level waste from the generator to the Federal repository or Monitored Retrievable Storage (MRS) facility. Program schedule objectives for the initial phase of the CSDP include the development of certified spent fuel cask systems by 1995 to support Office of Civilian Radioactive Waste Management shipments from the utilities beginning in the late 1990s. Forty-nine proposals for developing a family of spent fuel casks were received and comparisons made. General conclusions that can be drawn from the comparisons are that (1) the new generation of casks will have substantially increased payloads in comparison to current casks, and (2) an even greater payload increase may be achievable with burnup credit. The ranges in the payload estimates do not allow a precise separation of the payload increase attributable to the proposed allowance of fuel burnup credit, as compared wilt the no-burnup-credit case. The beneficial effects of cask payload increases on overall costs and risks of transporting spent fuel are significant; therefore further work aimed toward taking advantage of burnup credit is warranted

  10. Full Core Burn-up Calculation at JRR-3 with MVP-BURN

    International Nuclear Information System (INIS)

    Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi

    2008-01-01

    Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)

  11. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  12. Burnup credit in a dry storage module

    International Nuclear Information System (INIS)

    Thornton, J.R.

    1989-01-01

    Comparison of spent fuel storage expansion options available to Oconee Nuclear Station revealed that dry storage could be economically competitive with transshipment and rod consolidation. Economic competitiveness, however, mandated large unit capacity while existing cask handling facilities at Oconee severely limited size and weight. The dry storage concept determined to best satisfy these conflicting criteria is a 24 pressurized water reactor (PWR) fuel assembly capacity NUTECH Horizontal Modular Storage (NUHOMS) system. The Oconee version of the NUHOMS system takes advantage of burnup credit in demonstrating criticality safety. The burnup credit criticality analysis was performed by Duke Power Company's Design Engineering Department. This paper was prepared to summarize the criticality control design features employed in the Oconee NUHOMS-24P DSC basket and to describe the incentives for pursuing a burnup credit design. Principal criticality design parameters, criteria, and analysis methodology are also presented

  13. Burnup measurements at the RECH-1 research reactor

    International Nuclear Information System (INIS)

    Henriquez, C.; Navarro, G.; Pereda, C.; Torres, H.; Pena, L.; Klein, J.; Calderon, D.; Kestelman, A.J.

    2002-01-01

    The Chilean Nuclear Energy Commission has decided to produce LEU fuel elements for the RECH-1 research reactor. During December 1998, the Fuel Fabrication Plant delivered the first four fuel elements, called leaders, to the RECH-1 reactor. The set was introduced into the reactor's core, following the normal routine, but performing a special follow-up on their behavior inside and outside the core. In order to measure the burn-up of the leader fuel elements, it was decided to develop a burn-up measurements system to be installed into the RECH-1 reactor pool, and to decline the use of a similar system, which operates in a hot cell. The main reason to build this facility was to have the capability to measure the burn-up of fuel elements without waiting for long decay period. This paper gives a brief description of the facility to measure the burn-up of spent fuel elements installed into the reactor pool, showing the preliminary obtained spectra and briefly discussing them. (author)

  14. Application of burnup credit in spent fuel management at Russian NPPs

    International Nuclear Information System (INIS)

    Koulikov, V.I.; Makarchuk, T.F.; Tikhonov, N.S.

    1998-01-01

    The article concerns implementation of burnup credit in spent fuel storage and transportation. Some of the problems with increased enrichment fuel can be resolved by use of modified transport methodology. Such as shipping in gas-filled casks only, reduced number of assemblies in casks, etc. However, the use of modified schemes of transportation results in essential financial losses. An actinide-only burnup credit is taken into account in most part of criticality calculations, and a parameter limiting loading of spent fuel in the cask or the repository is the avenge value of burnup on an assembly. The main method of burnup depth definition is its defect measurement. A short description of devices for measurement as well as some technical results of suing burnup credit approach in storage and transport are given. (author)

  15. High burnup models in computer code fair

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, B K; Swami Prasad, P; Kushwaha, H S; Mahajan, S C; Kakodar, A [Bhabha Atomic Research Centre, Bombay (India)

    1997-08-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ``Light water reactor fuel rod modelling code evaluation`` and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs.

  16. High burnup models in computer code fair

    International Nuclear Information System (INIS)

    Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.

    1997-01-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs

  17. Revised SWAT. The integrated burnup calculation code system

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Kiyosumi, Takehide

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  18. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  19. Use of burnup credit for transportation and storage

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ewing, R.I.; Lake, W.H.

    1991-01-01

    Burnup credit is the application of the effects of fuel burnup to nuclear criticality design. When burnup credit is considered in the design of storage facilities and transportation casks for spent fuel, the objectives are to reduce the requirements for storage space and to increase the payload of casks with acceptable nuclear criticality safety margins. The spent-fuel carrying capacities of previous-generation transport casks have been limited primarily by requirements to remove heat and/or to provide shielding. Shielding and heat transfer requirements for casks designed to transport older spent fuel with longer decay times are reduced significantly. Thus a considerable weight margin is available to the designer for increasing the payload capacity. One method to achieve an increase in capacity is to reduce fuel assembly spacing. The amount of reduction in assembly spacing is limited by criticality and fuel support structural concerns. The optimum fuel assembly spacing provides the maximum cask loading within a basket that has adequate criticality control and sufficient structural integrity for regulatory accident scenarios. The incorporation of burnup credit in cask designs could result in considerable benefits in the transport of spent fuel. The acceptance of burnup credit for the design of transport casks depends on the resolution of system safety issues and the uncertainties that affect the determination of criticality safety margins. The remainder of this report will examine these issues and the integrated approach under way to resolve them. 20 refs., 2 figs

  20. Corrections to the 148Nd method of evaluation of burnup for the PIE samples from Mihama-3 and Genkai-1 reactors

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki

    2006-01-01

    The value of the burnup is one of the most important parameters of samples taken by post-irradiation examination (PIE). Generally, it is evaluated by the Neodymium-148 method. Precise evaluation of the burnup value requires: (1) an effective fission yield of 148 Nd; (2) neutron capture reactions of 147 Nd and 148 Nd; (3) a conversion factor from fissions per initial heavy metal to the burnup unit GWd/t. In this study, the burnup values of the PIE data from Mihama-3 and Genkai-1 PWRs, which were taken by the Japan Atomic Energy Research Institute, were re-evaluated using more accurate corrections for each of these three items. The PIE data were then re-analyzed using SWAT and SWAT2 code systems with JENDL-3.3 library. The re-evaluation of the effective fission yield of 148 Nd has an effect of 1.5-2.0% on burnup values. Considering the neutron capture reactions of 147 Nd and 148 Nd removes dependence of C/E values of 148 Nd on the burnup value. The conversion factor from FIMA(%) to GWd/t changes according to the burnup value. Its effect on the burnup evaluation is small for samples having burnup of larger than 30 GWd/t. The analyses using the corrected burnup values showed that the calculated 148 Nd concentrations and the PIE data is approximately 1%, whereas this was 3-5% in prior analyses. This analysis indicates that the burnup values of samples from Mihama-3 and Genkai-1 PWRs should be corrected by 2-3%. The effect of re-evaluation of the burnup value on the neutron multiplication factor is an approximately 0.6% change in PIE samples having the burnup of larger than 30 GWd/t. Finally, comparison between calculation results using a single pin-cell model and an assembly model is carried out. Because the results agreed with each other within a few percent, we concluded that the single pin-cell model is suitable for the analysis of PIE samples and that the underestimation of plutonium isotopes, which occurred in the previous analyses, does not result from a geometry

  1. CHAR and BURNMAC - burnup modules of the AUS neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1986-03-01

    In the AUS neutronics code system, the burnup module CHAR solves the nuclide depletion equations by an analytic technique in a number of spatial zones. CHAR is usually used as one component of a lattice burnup calculation but contains features which also make it suitable for some global burnup calculations. BURNMAC is a simple accounting module based on the assumption that cross sections for a rector zone depend only on irradiation. BURNMAC is used as one component of a global calculation in which burnup is achieved by interpolation in the cross sections produced from a previous lattice calculation

  2. Cell verification of parallel burnup calculation program MCBMPI based on MPI

    International Nuclear Information System (INIS)

    Yang Wankui; Liu Yaoguang; Ma Jimin; Wang Guanbo; Yang Xin; She Ding

    2014-01-01

    The parallel burnup calculation program MCBMPI was developed. The program was modularized. The parallel MCNP5 program MCNP5MPI was employed as neutron transport calculation module. And a composite of three solution methods was used to solve burnup equation, i.e. matrix exponential technique, TTA analytical solution, and Gauss Seidel iteration. MPI parallel zone decomposition strategy was concluded in the program. The program system only consists of MCNP5MPI and burnup subroutine. The latter achieves three main functions, i.e. zone decomposition, nuclide transferring and decaying, and data exchanging with MCNP5MPI. Also, the program was verified with the pressurized water reactor (PWR) cell burnup benchmark. The results show that it,s capable to apply the program to burnup calculation of multiple zones, and the computation efficiency could be significantly improved with the development of computer hardware. (authors)

  3. End effect Keff bias curve for actinide-only burnup credit casks

    International Nuclear Information System (INIS)

    Kang, C.H.; Lancaster, D.B.

    1997-01-01

    A conservative end effect k eff bias curve for actinide-only burnup credit for spent fuel casks is presented in this paper. The k eff bias values can be added to the uniform axial burnup analysis to conservatively bound the actinide-only end effect. A normalized axial burnup distribution for the standard Westinghouse 17 x 17 assembly design is used for calculating k eff . The end effect calculated is a strong function of burnup, and increases as cask size size decreases. The presence of poison plates increases the end effect. The bias curve presented is based on the most limiting cask configuration of a single PWR assembly with completely black poison plates. Therefore, axially uniform criticality calculations with application of the proposed k eff could eliminate the need for axially burnup dependent analyses. 7 refs., 1 fig

  4. Theory analysis and simple calculation of travelling wave burnup scheme

    International Nuclear Information System (INIS)

    Zhang Jian; Yu Hong; Gang Zhi

    2012-01-01

    Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)

  5. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Tohjoh, Masayuki; Endo, Tomohiro; Watanabe, Masato; Yamamoto, Akio

    2006-01-01

    As a result of improvements in computer technology, the continuous energy Monte Carlo burn-up calculation has received attention as a good candidate for an assembly calculation method. However, the results of Monte Carlo calculations contain the statistical errors. The results of Monte Carlo burn-up calculations, in particular, include propagated statistical errors through the variance of the nuclide number densities. Therefore, if statistical error alone is evaluated, the errors in Monte Carlo burn-up calculations may be underestimated. To make clear this effect of error propagation on Monte Carlo burn-up calculations, we here proposed an equation that can predict the variance of nuclide number densities after burn-up calculations, and we verified this equation using enormous numbers of the Monte Carlo burn-up calculations by changing only the initial random numbers. We also verified the effect of the number of burn-up calculation points on Monte Carlo burn-up calculations. From these verifications, we estimated the errors in Monte Carlo burn-up calculations including both statistical and propagated errors. Finally, we made clear the effects of error propagation on Monte Carlo burn-up calculations by comparing statistical errors alone versus both statistical and propagated errors. The results revealed that the effects of error propagation on the Monte Carlo burn-up calculations of 8 x 8 BWR fuel assembly are low up to 60 GWd/t

  6. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    Medun, V.

    2001-01-01

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  7. Evaluation of burnup credit for fuel storage analysis -- Experience in Spain

    International Nuclear Information System (INIS)

    Conde, J.M.; Recio, M.

    1995-01-01

    Several Spanish light water reactor commercial nuclear power plants are close to maximum spent-fuel pool storage capacity. The utilities are working on the implementation of state-of-the-art methods to increase the storage capacity, including both changes in the pool design (recracking) and the implementation of new analysis approaches with reduced conservation (burnup credit). Burnup credit criticality safety analyses have been approved for two pressurized water reactor plants (four units) and one boiling water reactor (BWR); an other BWR storage analysis is being developed at this moment. The elimination of the ''fresh fuel assumption'' increases the complexity of the criticality analysis to be performed, sometimes putting into question the capability of the analytic tools to properly describe this new situation and increasing the scope of the scenarios to be analyzed. From a regulatory perspective, the reactivity reduction associated with burnup of the fuel can be given credit only if the exposure of each fuel bundle can be known with enough accuracy. Subcriticality of spent-fuel storage depends mainly on the initial fuel enrichment, storage geometry, fuel exposure history, and cooling time. The last two aspects introduced new uncertainties in the criticality analysis that should be quantified in an adequate way. In addition, each and every fuel bundle has its own specific exposure history, so that strong assumptions and simplified calculational schemes have to be developed to undertake the analysis. The Consejo de Seguridad Nuclear (CSN), Spanish regulatory authority on the matter of nuclear safety and radiation protection, plays an active role in the development of analysis methods to support burnup credit, making proposals that may be beneficial in terms of risk and cost while keeping the widest safety margins possible

  8. Fuel cycle cost considerations of increased discharge burnups

    International Nuclear Information System (INIS)

    Scherpereel, L.R.; Frank, F.J.

    1982-01-01

    Evaluations are presented that indicate the attainment of increased discharge burnups in light water reactors will depend on economic factors particular to individual operators. In addition to pure resource conserving effects and assuming continued reliable fuel performance, a substantial economic incentive must exist to justify the longer operating times necessary to achieve higher burnups. Whether such incentive will exist or not will depend on relative price levels of all fuel cycle cost components, utility operating practices, and resolution of uncertainties associated with the back-end of the fuel cycle. It is concluded that implementation of increased burnups will continue at a graduated pace similar to past experience, rather than finding universal acceptance of particular increased levels at any particular time

  9. Fission gas release from fuels at high burnup

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Pointud, M.L.; Vignesoult, Nicole; Atabek, Rosemarie; Baron, Daniel.

    1982-04-01

    Determinations of residual gas concentrations by heating and by X microanalysis were respectively carried out on particles (TANGO program) and on sections of fuel rods, perfectly characterized as to fabrication and irradiation history. A threshold release temperature of 1250 0 C+-100 0 C was determined irrespective of the type of oxide and the irradiation history in the 18,000-45,000 MWdt -1 (U) specific burnup field. The overall analyses of gas released from the fuel rods show that, in the PWR operating conditions, the fraction released remains less than 1% up to a mean specific burnup of 35000 MWdt -1 (U). The release of gases should not be a limiting factor in the increase of specific burnups [fr

  10. Burnup measurement study and prototype development in HTR-PM

    International Nuclear Information System (INIS)

    Yan Weihua; Zhang Zhao; Xiao Zhigang; Zhang Liguo

    2014-01-01

    In a pebble-bed core which employs the multi-pass scheme, it is mandatory to determine the burnup of each pebble after the pebble has been extracted from the core in order to determine whether its design burnup has been reached or whether it has to be reinserted into the core again. The burnup of the fuel pebbles can be determined by measuring the activity of 137 Cs with an HPGe detector because of their good correspondence, which is independent of the irradiation history in the core. Based on experiments and Geant4 simulation, the correction factor between the fuel and calibration source was derived by using the efficiency transfer method. By optimizing spectrum analysis algorithm and parameters, the relative standard deviation of the 137 Cs activity can be still controlled below 3.0% despite of the presence of interfering peaks. On the foundation of the simulation and experiment research, a complete solution for burnup measurement system in HTR-PM is provided. (authors)

  11. Assessment of US NRC fuel rod behavior codes to extended burnup

    International Nuclear Information System (INIS)

    Laats, E.T.; Croucher, D.W.; Haggag, F.M.

    1982-01-01

    The purpose of this paper is to report the status of assessing the capabilities of the NRC fuel rod performance codes for calculating extended burnup rod behavior. As part of this effort, a large spectrum of fuel rod behavior phenomena was examined, and the phenomena deemed as being influential during extended burnup operation were identified. Then, the experiment data base addressing these identified phenomena was examined for availability and completeness at extended burnups. Calculational capabilities of the NRC's steady state FRAPCON-2 and transient FRAP-T6 fuel rod behavior codes were examined for each of the identified phenomenon. Parameters calculated by the codes were compared with the available data base, and judgments were made regarding model performance. Overall, the FRAPCON-2 code was found to be moderately well assessed to extended burnups, but the FRAP-T6 code cannot be adequately assessed until more transient high burnup data are available

  12. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  13. Triton burnup measurements in KSTAR using a neutron activation system

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jungmin; Shi, Yue-Jiang; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.k; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Cheon, MunSeong; Rhee, T.; Kim, Junghee [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Kim, Jun Young [Korea University of Science and Technology, Daejeon 34133 (Korea, Republic of); Isobe, M.; Ogawa, K. [National Institute for Fusion Science, Toki-shi (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki-shi (Japan)

    2016-11-15

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a {sup 3}He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%–0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  14. Comparison of measured and calculated burn-up of AVR-Fuel-Elements

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, R.

    1974-03-15

    Burn-up comparisons are made for small batches of three types of AVR fuel elements using a coupled EREBUS-MUPO neutronic analysis compared against test results from both nondestructive gamma-ray measurements of cesium-137 activity and destructive mass spectrometry measurements of the ratio of U-233 to U-235. The comparisons are relatively good for average burn-up and reasonably good for burn-up distributions.

  15. Triton burnup in JET

    International Nuclear Information System (INIS)

    Chipsham, E.; Jarvis, O.N.; Sadler, G.

    1989-01-01

    Triton burnup measurements have been made at JET using time-integrated copper activation and time-resolved silicon detector techniques. The results confirm the classical nature of both the confinement and the slowing down of the 1 MeV tritons in a plasma. (author) 8 refs., 3 figs

  16. Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Sakr, A.M.; Amin, E.H.

    2011-01-01

    Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package M TR P C system , using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTR P C Package, Empirical Formula For Fuel Burn-Up.

  17. Burnup credit implementation plan and preparation work at JAERI

    International Nuclear Information System (INIS)

    Nomura, Y.; Itahara, K.

    2001-01-01

    Application of the burnup credit concept is considered to be very effective to the design of spent fuel transport and storage facilities. This technology is all the more important when considering construction of the intermediate spent fuel storage facility, which is to be commissioned by 2010 due to increasing amount of accumulated spent fuel in Japan. Until reprocessing and recycling all the spent fuel arising, they will be stored as an energy stockpile until such time as they can be reprocessed. On the other hand, the burnup credit has been partly taken into account for the spent fuel management at Rokkasho Reprocessing Plant, which is to be commissioned in 2005. They have just finished the calibration tests for their burnup monitor with initially accepted several spent fuel assemblies. Because this monitoring system is employed with highly conservative safety margin, it is considered necessary to develop the more rational and simplified method to confirm burnup of spent fuel. A research program has been instituted to improve the present method employed at the spent fuel management system for the Spent Fuel Receiving and Storage Pool of Rokkasho Reprocessing Plant. This program is jointly performed by Japan Nuclear Fuel Limited (JNFL) and JAERI.This presentation describes the current status of spent fuel accumulation discharged from PWR and BWR in Japan and the recent incentive to introduce burnup credit into design of spent fuel storage and transport facilities. This also includes the content of the joint research program initiated by JNFL and JAERI. The relevant study has been continued at JAERI. The results by these research programs will be included in the Burnup Credit Guide Original Version compiled by JAERI. (author)

  18. Application of routine methods for the inspector fuel burn-up determination and identification of displacement of spent fuel elements by dummy elements

    International Nuclear Information System (INIS)

    Rohar, S.

    1979-08-01

    14 irradiated assemblies were analyzed using nondestructive high resolution gamma spectrometry (HRGS). Measured and calculated (on the basis of calorimetric data) axial burnup profiles and average burnup values were compared. The measurements of spent fuel were performed in the Bohunice A-1 dry hot cell by using a proper collimating system and the standard Agency equipment, consisting of PGT intrinsic Ge detectors and Silena MCA with 1024 channels. The method of 134 Cs/ 137 Cs fission product activity ratio was used for burnup determination. It was found that the burnup values for 14 measured assemblies determined by HRGS were systematically lower than the calculated values with about 4-5%. The difference between the nondestructively determined burnup value of the 2N0053 assembly (average over 11 measured points) and destructively determined burnup (average over 19 measured points) was less than 2%. Passive neutron measurements of the irradiated assembly showed that the neutron counting rate was high enough for practical use and that the neutron and gamma profiles were similar and close to the burnup profile. Some calculations of gamma ray activity angular distribution were made for different numbers of dummy elements inside the irradiated assemblies. The results show that, by using gamma spectrometry transversal method, it is possible to find a significant number of dummy elements in different types of assemblies

  19. Determination of enrichment of recycle uranium fuels for different burnup values

    International Nuclear Information System (INIS)

    Zabunoglu, Okan H.

    2008-01-01

    Uranium (U) recovered from spent LWR fuels by reprocessing, which contains small amounts of U-236, is to be enriched before being re-irradiated as the recycle U. During the enrichment of recovered U in U-235, the mass fraction of U-236 also increases. Since the existence of U-236 in the recycle U has a negative effect on neutron economy, a greater enrichment of U-235 in the recycle U is required for reaching the same burnup as can be reached by the fresh U fuel. Two burnup values play the most important role in determining the enrichment of recycle U: (1) discharge burnup of spent fuel from which the recycle U is obtained and (2) desired discharge burnup of the recycle U fuel. A step-by-step procedure for calculating the enrichment of the recycle U as a function of these two burnup values is introduced. The computer codes MONTEBURNS and ORIGEN-S are made use of and a three-component (U-235, U-236, U-238) enrichment scheme is applied for calculating the amount of U-236 in producing the recycle U from the recovered U. As was aimed, the resulting expression is simple enough for quick/hand calculations of the enrichment of the recycle U for any given discharge burnup of spent fuel and for any desired discharge burnup of the recycle U fuel, most accurately within the range of 33,000-50,000 MWd/tonU

  20. Corrections to the {sup 148}Nd method of evaluation of burnup for the PIE samples from Mihama-3 and Genkai-1 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Fuel Cycle Facility Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)]. E-mail: suyama.kenya@jaea.go.jp; Mochizuki, Hiroki [Japan Research Institute, Limited, 16 Ichiban-cho, Chiyoda-ku, Tokyo 102-0082 (Japan)

    2006-03-15

    The value of the burnup is one of the most important parameters of samples taken by post-irradiation examination (PIE). Generally, it is evaluated by the Neodymium-148 method. Precise evaluation of the burnup value requires: (1) an effective fission yield of {sup 148}Nd; (2) neutron capture reactions of {sup 147}Nd and {sup 148}Nd; (3) a conversion factor from fissions per initial heavy metal to the burnup unit GWd/t. In this study, the burnup values of the PIE data from Mihama-3 and Genkai-1 PWRs, which were taken by the Japan Atomic Energy Research Institute, were re-evaluated using more accurate corrections for each of these three items. The PIE data were then re-analyzed using SWAT and SWAT2 code systems with JENDL-3.3 library. The re-evaluation of the effective fission yield of {sup 148}Nd has an effect of 1.5-2.0% on burnup values. Considering the neutron capture reactions of {sup 147}Nd and {sup 148}Nd removes dependence of C/E values of {sup 148}Nd on the burnup value. The conversion factor from FIMA(%) to GWd/t changes according to the burnup value. Its effect on the burnup evaluation is small for samples having burnup of larger than 30 GWd/t. The analyses using the corrected burnup values showed that the calculated {sup 148}Nd concentrations and the PIE data is approximately 1%, whereas this was 3-5% in prior analyses. This analysis indicates that the burnup values of samples from Mihama-3 and Genkai-1 PWRs should be corrected by 2-3%. The effect of re-evaluation of the burnup value on the neutron multiplication factor is an approximately 0.6% change in PIE samples having the burnup of larger than 30 GWd/t. Finally, comparison between calculation results using a single pin-cell model and an assembly model is carried out. Because the results agreed with each other within a few percent, we concluded that the single pin-cell model is suitable for the analysis of PIE samples and that the underestimation of plutonium isotopes, which occurred in the previous

  1. Increased fuel burn-up and fuel cycle equilibrium

    International Nuclear Information System (INIS)

    Debes, M.

    2001-01-01

    Improvement of nuclear competitiveness will rely mainly on increased fuel performance, with higher burn-up, and reactors sustained life. Regarding spent fuel management, the EDF current policy relies on UO 2 fuel reprocessing (around 850 MTHM/year at La Hague) and MOX recycling to ensure plutonium flux adequacy (around 100 MTHM/year, with an electricity production equivalent to 30 TWh). This policy enables to reuse fuel material, while maintaining global kWh economy with existing facilities. It goes along with current perspective to increase fuel burn-up up to 57 GWday/t mean in 2010. The following presentation describes the consequences of higher fuel burn-up on fuel cycle and waste management and implementation of a long term and global equilibrium for decades in spent fuel management resulting from this strategy. (author)

  2. Burnup performance of rock-like oxide (ROX) fuel in small pebble bed reactor with accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2017-01-01

    Highlights: • Burnup performance using ROX fuel in PBR with accumulative fuel loading scheme was analyzed. • Initial excess reactivity was suppressed by reducing 235 U enrichment in the startup condition. • Negative temperature coefficient was achieved in all condition of PBR with accumulative fuel loading scheme using ROX fuel. • Core lifetime of PBR with accumulative fuel loading scheme using ROX fuel was shorter than with UO 2 fuel. • In PBR with accumulative fuel loading scheme using ROX fuel, achieved discharged burnup can be as high as that for UO 2 fuel. - Abstract: The Japan Atomic Energy Agency (JAEA) has proposed rock-like oxide (ROX) fuel as a new, once-through type fuel concept. Here, burnup performance using ROX fuel was simulated in a pebble bed reactor with an accumulative fuel loading scheme. The MVP-BURN code was used to simulate the burnup calculation. Fuel of 5 g-HM/pebble with 20% 235 U enrichment was selected as the optimum composition. Discharged burnup could reach up to 218 GWd/t, with a core lifetime of about 8.4 years. However, high excess reactivity occurred in the initial condition. Initial fuel enrichment was therefore reduced from 20% to 4.65% to counter the initial excess reactivity. The operation period was reduced by the decrease of initial fuel enrichment, but the maximum discharged burnup was 198 GWd/t. Burnup performance of ROX fuel in this reactor concept was compared with that of UO 2 fuel obtained previously. Discharged burnup for ROX fuel in the PBR with an accumulative fuel loading scheme was as high as UO 2 fuel. Maximum power density could be lowered by introducing ROX fuel compared to UO 2 fuel. However, PBR core lifetime was shorter with ROX fuel than with UO 2 fuel. A negative temperature coefficient was achieved for both UO 2 and ROX fuels throughout the operation period.

  3. Triton burnup in JET - profile effects

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Conroy, S.W.; Marcus, F.B.; Sadler, G.J.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell Laboratory (United Kingdom))

    1991-01-01

    Measurements of the 14 MeV neutron emission from triton burnup show that the 14 MeV emission profile shadows closely the 2,5 MeV profile but after a delay corresponding to the triton slowing down time. The slightly greater width of the 14 MeV neutron profile is a consequence of the finite Larmor radius of the tritons. It has not so far been possible to identify unambiguously any effects on the triton burnup that are attributable to sawtooth crashes. Finally, the time dependence of the triton profile indicates that the triton diffusion coefficient is very small (<<0.1 m[sup 2]/s). (author) 4 refs., 3 figs.

  4. Triton burnup in JET - profile effects

    International Nuclear Information System (INIS)

    Jarvis, O.N.; Conroy, S.W.; Marcus, F.B.; Sadler, G.J.; Belle, P. van

    1991-01-01

    Measurements of the 14 MeV neutron emission from triton burnup show that the 14 MeV emission profile shadows closely the 2,5 MeV profile but after a delay corresponding to the triton slowing down time. The slightly greater width of the 14 MeV neutron profile is a consequence of the finite Larmor radius of the tritons. It has not so far been possible to identify unambiguously any effects on the triton burnup that are attributable to sawtooth crashes. Finally, the time dependence of the triton profile indicates that the triton diffusion coefficient is very small ( 2 /s). (author) 4 refs., 3 figs

  5. Burnup credit calculations for criticality safety justification for RBMK-1000 spent fuel of transport and storage systems

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2010-12-01

    Full Text Available In present paper the burnup credit calculations for TK-8 transport container and SVJP-1 spent fuel storage fa-cility of pool type with RBMK-1000 spent fuel during 100-years of cooling time were performed for criticality safety analysis purpose using MCNP and SCALE codes. Only actinides were taken into account for these critical systems. Two approaches were analyzed with isotopes distribution calculations along fuel assembly height and without it. The results show that subcriticality margin is increased considerably using burnup credit and isotopes distribution along fuel assembly height made this value more reasonable.

  6. Effect of local burn-up variation on computed mean nuclide concentrations

    International Nuclear Information System (INIS)

    Moeller, W.

    1982-01-01

    Mean concentrations of U-235, U-236, U-238, Pu-239, Pu-240, Pu-241 and Pu-242 in some volume areas of WWER-440 fuel assemblies have been calculated from corresponding burn-up microdistribution data and compared with those calculated from burn-up mean values. Differences occurring were below 3% for the uranium nuclides but, at low burn-ups, considerable for Pu-241 and Pu-242. (author)

  7. Review of high burn-up RIA and LOCA database and criteria

    International Nuclear Information System (INIS)

    Vitanza, C.; Hrehor, M.

    2006-01-01

    This document is intended to provide regulators, their technical support organizations and industry with a concise review of existing fuel experimental data at RIA and LOCA conditions and considerations on how these data affect fuel safety criteria at increasing burn-up. It mostly addresses experimental results relevant to BWR and PWR fuel and it encompasses several contributions from the various experts that participated in the CSNI SEGFSM activities. It also covers the information presented at the joint CSNI/CNRA Topical Discussion on high burn-up fuel issues that took place on this subject in December 2004. The report is organized in the following way: the CABRI RIA database (14 tests), the NSRR database (26 tests) and other databases, RIA failure thresholds, comparison of failure thresholds for the HZP case, LOCA database ductility tests and quench tests, LOCA safety limit, provisional burn-up dependent criterion for Zr-4. The conclusions are as follows. On RIA, there is a well-established testing method and a significant and relatively consistent database from NSRR and Cabri tests, especially on high burn-up Zr-2 and Zr-4 cladding. It is encouraging that several correlations have been proposed for the RIA fuel failure threshold. Their predictions are compared and discussed in this paper for a representative PWR case. On LOCA, there are two different test methods, one based on ductility determinations and the other based on 'integral' quench tests. The LOCA database at high burn-up is limited to both testing methods. Ductility tests carried out with pre-hydrided non-irradiated cladding show a pronounced hydrogen effect. Data for actual high burn-up specimens are being gathered in various laboratories and will form the basis for a burn-up dependent LOCA limit. A provisional burn-up dependent criterion is discussed in the paper

  8. Influence of FIMA burnup on actinides concentrations in PWR reactors

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2016-01-01

    Full Text Available In the paper we present the study on the dependence of actinides concentrations in the spent nuclear fuel on FIMA burnup. The concentrations of uranium, plutonium, americium and curium isotopes obtained in numerical simulation are compared with the result of the post irradiation assay of two spent fuel samples. The samples were cut from the fuel rod irradiated during two reactor cycles in the Japanese Ohi-2 Pressurized Water Reactor. The performed comparative analysis assesses the reliability of the developed numerical set-up, especially in terms of the system normalization to the measured FIMA burnup. The numerical simulations were preformed using the burnup and radiation transport mode of the Monte Carlo Continuous Energy Burnup Code – MCB, developed at the Department of Nuclear Energy, Faculty of Energy and Fuels of AGH University of Science and Technology.

  9. Experimental studies of spent fuel burn-up in WWR-SM reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alikulov, Sh. A.; Baytelesov, S.A.; Boltaboev, A.F.; Kungurov, F.R. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan); Menlove, H.O.; O’Connor, W. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Osmanov, B.S., E-mail: bari_osmanov@yahoo.com [Research Institute of Applied Physics, Vuzgorodok, 100174 Tashkent (Uzbekistan); Salikhbaev, U.S. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan)

    2014-10-01

    Highlights: • Uranium burn-up measurement from {sup 137}Cs activity in spent reactor fuel. • Comparison to reference sample with known burn-up value (ratio method). • Cross-check of the approach with neutron-based measurement technique. - Abstract: The article reports the results of {sup 235}U burn-up measurements using {sup 137}Cs activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%.

  10. Safety aspects related to burnup increase and mixed oxide fuel

    International Nuclear Information System (INIS)

    Thomas, W.

    1992-01-01

    The dominant factor presently limiting the fuel burnup is the response of the cladding hulls. To maintain the excellent record of very low fuel failure rates for increased burnups further technical development is underway and necessary. In the nuclear fuel cycle increased burnups lead to a remarkable reduction of spent fuel arisings and corresponding economic savings. Thermal recycling of plutonium presently provides an opportunity to reduce the rising accumulation of plutunium in a situation where there is no demand for this fissile material in Fast Breeder Reactors. (orig.) [de

  11. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  12. Optimum burnup of BAEC TRIGA research reactor

    International Nuclear Information System (INIS)

    Lyric, Zoairia Idris; Mahmood, Mohammad Sayem; Motalab, Mohammad Abdul; Khan, Jahirul Haque

    2013-01-01

    Highlights: ► Optimum loading scheme for BAEC TRIGA core is out-to-in loading with 10 fuels/cycle starting with 5 for the first reload. ► The discharge burnup ranges from 17% to 24% of U235 per fuel element for full power (3 MW) operation. ► Optimum extension of operating core life is 100 MWD per reload cycle. - Abstract: The TRIGA Mark II research reactor of BAEC (Bangladesh Atomic Energy Commission) has been operating since 1986 without any reshuffling or reloading yet. Optimum fuel burnup strategy has been investigated for the present BAEC TRIGA core, where three out-to-in loading schemes have been inspected in terms of core life extension, burnup economy and safety. In considering different schemes of fuel loading, optimization has been searched by only varying the number of fuels discharged and loaded. A cost function has been defined and evaluated based on the calculated core life and fuel load and discharge. The optimum loading scheme has been identified for the TRIGA core, the outside-to-inside fuel loading with ten fuels for each cycle starting with five fuels for the first reload. The discharge burnup has been found ranging from 17% to 24% of U235 per fuel element and optimum extension of core operating life is 100 MWD for each loading cycle. This study will contribute to the in-core fuel management of TRIGA reactor

  13. M5TM alloy high burnup behavior and worldwide licensing

    International Nuclear Information System (INIS)

    Mardon, J.P.; Hoffmann, P.B.; Garner, G.L.

    2005-01-01

    The in-reactor behavior of advanced PWR Zirconium alloys at burnups equal to or below licensing limits has been widely reported. Specifically, the advanced alloy M5 has demonstrated impressive improvements over Zircaloy-4 for fuel rod cladding and fuel assembly structural components. To demonstrate superiority of the alloy at burnups beyond current licensing limits, M5 has been operated in PWR at burnups exceeding 71 GWd/tU in the United States and 78 GWd/tU in Europe. Two extensive irradiation programs have been performed in the United States to demonstrate alloy M5 performance beyond current licensing limits. Four M5 TM fuel rods were exposed to four 24-month cycles in a 15x15 reactor beginning in 1995. Additionally, one 17x17 lead assembly containing M5 fuel rods and guide tubes was operated for four 18-month cycles beginning from 1997. Post-irradiation examinations (PIE) performed after all four cycles in the 15x15 demonstration program revealed excellent performance in the licensed burnup and in the high burnup stages of the experience. Examination of the 4th cycle 17x17 assembly will be accomplished in two stages the first of which is scheduled for June 2005. Moreover, several irradiation campaigns have been performed in Europe in order to confirm the excellent M5 in-pile behavior in demanding PWRs irradiation conditions with regard to void fraction, heat flux, lithium content and temperature. Results from the high burnup fuel examinations verify that the excellent performance achieved up to 62 GWd/tU was continued into higher burnup. The results of high burnup PIE campaigns for European and American PWR's are presented in this paper. Measured performance indicators include fuel assembly dimensional stability parameters (assembly length, fuel rod length, assembly bow, fuel rod bow, fuel rod radial creep and spacer grid width), oxidation measurements (fuel rod and guide tube) and hydrogen pick-up data (fuel rod). In the framework of PCI studies, power ramp

  14. Effect of core burnup on the dynamic behavior of fast reactors

    International Nuclear Information System (INIS)

    Ilberg, D.; Saphier, D.; Yiftah, S.

    1977-01-01

    Performance of a dynamic analysis, taking burnup changes into account, requires fission-product nuclear data of relatively small uncertainty, suitable burnup calculation models, and dynamic computer programs. These were prepared and used with the following results: (1) Significant changes in static and dynamic parameters were observed when investigating the effect of burnup. These changes were found to be larger than differences introduced by the uncertainty of the fission-product nuclear data. (2) A one-dimensional burnup computer program was prepared. It was found that a burnup model based on the generalized radioactive decay scheme is suitable for accurate fast reactor calculations. (3) Space-time dynamic calculations of fast reactors having different burnup levels were performed. The stability difference between ''clean'' and high burnup cores is greater when local rather than uniform perturbations are inserted along the entire core length. The magnitude by which the ''end-of-life'' core increases the transient excursion over that of the clean core depends on the particular region in which the perturbation is inserted. The end-of-life core will magnify the transient excursion more than the clean core whenever the perturbation is inserted into a region having a higher adjoint flux level than that of the clean core. However, when a reactor safety system operates successfully, the difference in the temperature transient of the clean and end-of-life cores will be relatively small. It is suggested that only the analysis of large local perturbations be performed for end-of-life cores as well as for clean cores in the safety evaluation of fast reactors

  15. Comparison of analysis methods for burnup credit applications

    International Nuclear Information System (INIS)

    Sanders, T.L.; Brady, M.C.; Renier, J.P.; Parks, C.V.

    1989-01-01

    The current approach used for the development and certification of spent fuel storage and transport casks requires an assumption of fresh fuel isotopics in the criticality safety analysis. However, it has been shown that there is a considerable reactivity reduction when the isotopics representative of the depleted (or burned) fuel are used in a criticality analysis. Thus, by taking credit for the burned state of the fuel (i.e., burnup credit), a cask designer could achieve a significant increase in payload. Accurate prediction of k eff for spent fuel arrays depends both on the criticality safety analysis and the prediction of the spent fuel isotopics via a depletion analysis. Spent fuel isotopics can be obtained from detailed multidimensional reactor analyses, e.g. the code PDQ, or from point reactor burnup models. These reactor calculations will help verify the adequacy of the isotopics and determine Δk eff biases for various analysis assumptions (with and without fission products, actinide absorbers, burnable poison rods, etc.). New software developed to interface PDQ multidimensional isotopics with KENO V.a reactor and cask models is described. Analyses similar to those performed for the reactor cases are carried out with a representative burnup credit cask model using the North Anna fuel. This paper presents the analysis methodology that has been developed for evaluating the physics issues associated with burnup credit. It is applicable in the validation and characterization of fuel isotopics as well as in determining the influence of various analysis assumptions in terms of δk eff . The methodology is used in the calculation of reactor restart criticals and analysis of a typical burnup credit cask

  16. The octopus burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de

    1996-09-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  17. The OCTOPUS burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.).

  18. The octopus burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.

    1996-01-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  19. The OCTOPUS burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)

  20. Development of remote controlled electron probe micro analyzer with crystal orientation analyzer

    International Nuclear Information System (INIS)

    Honda, Junichi; Matsui, Hiroki; Harada, Akio; Obata, Hiroki; Tomita, Takeshi

    2012-07-01

    The advanced utilization of Light Water Reactor (LWR) fuel is progressed in Japan to save the power generating cost and the volume of nuclear wastes. The electric power companies have continued the approach to the burnup extension and to rise up the thermal power increase of the commercial fuel. The government should be accumulating the detailed information on the newest technologies to make the regulations and guidelines for the safety of the advanced nuclear fuels. The remote controlled Electron Probe Micro Analyzer (EPMA) attached with crystal orientation analyzer has been developed in Japan Atomic Energy Agency (JAEA) to study the fuel behavior of the high burnup fuels under the accident condition. The effects of the cladding microstructure on the fuel behavior will be evaluated more conveniently and quantitatively by this EPMA. The commercial model of EPMA has been modified to have the performance of airtight and earthquake resistant in compliance with the safety regulation by the government for handling the high radioactive elements. This paper describes the specifications of EPMA which were specialised for post irradiation examination and the test results of the cold mock-up to confirm their performances and reliabilities. (author)

  1. Sophistication of burnup analysis system for fast reactor (2)

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Tatsumi, Masahiro

    2010-10-01

    Improvement on prediction accuracy for neutronics characteristics of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified cross-section set as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores improvement of not only static characteristics but also burnup characteristics is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup characteristics using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous study, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for power reactor analysis systems. In the present study, by extending the prototype system, features for handling of control rods and energy collapse of group constants have been designed and implemented. Computational results from the present analysis system are stored into restart files which can be accessible by

  2. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  3. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  4. Technical development on burn-up credit for spent LWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  5. Discharge Burnup Evaluation of Natural Uranium Loaded CANFLEX-43 Fuel Bundle

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Kim, Yong Hee; Kim, Won Young; Park, Joo Hwan

    2009-11-01

    Using WIMS-AECL code, which is 2-dimensional lattice core used in CANDU physics calculation, the discharge burnup of the natural uranium loaded CANFLEX-43 fuel bundle was evaluated by comparing the discharge burnup of standard 37 element fuel bundle. When the discharge burnup of the standard 37 element fuel is 7,200 MWd/MTU, that of the CANFLEX 43 fuel bundle was evaluated as 7,077 MWd/MTU, by applying the same lattice conditions for both fuel bundles

  6. Status of burnup credit implementation and research in Switzerland

    International Nuclear Information System (INIS)

    Grimm, P.

    2001-01-01

    Burnup credit has recently been approved by the Swiss licensing authority for the spent-fuel storage pool of a PWR plant for fuel exceeding the originally licensed initial enrichment. The criticality safety assessment is based on a configuration consisting of a small number (approximately a reload batch) of fresh assemblies surrounded by assemblies having a burnup corresponding to the minimum value in the top 1 m section after one cycle of irradiation. The allowable initial enrichment in this configuration is about 0.5% higher than for all fresh fuel. A central storage facility for all types of radioactive wastes from Switzerland, including cask storage of spent fuel assemblies is being commissioned presently. The first applications for licenses for casks to be used in this facility have been submitted. Credit for burnup has not been requested in these applications (conforming to the original licenses of the casks in their countries of origin), but utilities are interested in burnup credit for fuel with higher initial enrichments. Reactivity worth measurements as well as chemical assays of spent fuel samples in the LWR-PROTEUS facility at PSI are in detailed planning currently. The experiments, scheduled to start in 2001, will be performed in cooperation with the Swiss utilities and their fuel vendors. Although the focus of interest of these partners is on validation of in-core fuel management tools, the same experiments are also applicable to burnup credit, and contacts with further potential partners interested in this field are underway. (author)

  7. A guide to introducing burnup credit, preliminary version (English translation)

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Suyama, Kenya; Ryufuku, Susumu

    2017-06-01

    There is an ongoing discussion on the application of burnup credit to the criticality safety controls of facilities that treat spent fuels. With regard to such application of burnup credit in Japan, this document summarizes the current technical status of the prediction of the isotopic composition and criticality of spent fuels, as well as safety evaluation concerns and the current status of legal affairs. This report is an English translation of A Guide to Introducing Burnup Credit, Preliminary Version, originally published in Japanese as JAERI-Tech 2001-055 by the Nuclear Fuel Cycle Facility Safety Research Committee. (author)

  8. BNFL assessment of methods of attaining high burnup MOX fuel

    International Nuclear Information System (INIS)

    Brown, C.; Hesketh, K.W.; Palmer, I.D.

    1998-01-01

    It is clear that in order to maintain competitiveness with UO 2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO 2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)

  9. Approach for implementing burnup credit in high-capacity truck casks

    International Nuclear Information System (INIS)

    Boshoven, J.; Hopf, J.; Su, S.

    1991-01-01

    General Atomics (GA) will be submitting an application for certification to the US Nuclear Regulatory Commission (NRC) for the GA-4 and GA-9 Casks in 1992. To maintain a capacity of four pressurized-water-reactor (PWR) spent fuel assemblies, the GA-4 Cask uses burnup credit as part of the criticality control for the higher enrichments. Using the US Department of Energy (DOE) Burnup Credit Program as a basis, GA presents here an approach to burnup credit analysis to be included in the Safety Analysis Report for Packaging (SARP). 6 refs., 2 figs., 5 tabs

  10. Measurement and interpretation of triton burnup in Jet deuterium plasmas

    International Nuclear Information System (INIS)

    Jarvis, O.N.; Kallne, J.; Sadler, G.; van Belle, P.; Gorini, G.; Conroy, S.; Verschuur, K.

    1989-01-01

    The confinement and slowing down of fast tritons in JET deuterium plasmas is investigated. The ratio of 14 MeV and 2.5 MeV neutron production rates is measured. This ratio is equal to the fraction of tritons which burnup. The 2.5 MeV neutron emission is obtained from a set of fission chambers for which the calibration uncertainty is about 10%. The absolute calibration of the activation technique is calculated. The comparison between experimental and theoretical burnup ratios, for JET 1987 data, is shown. The range of conditions over which measurements of triton burnup fraction were obtained, is illustrated

  11. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  12. An empirical formulation to describe the evolution of the high burnup structure

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro; Denis, Alicia

    2015-01-15

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  13. The use of burnup credit for spent fuel cask design

    International Nuclear Information System (INIS)

    Lake, W.H.

    1993-01-01

    A new generation of high capacity spent fuel transport casks is being developed by the U.S. Department of Energy (DOE) as part of the Federal Waste Management System (FWMS). Burnup credit, which recognizes the reduced reactivity of spent fuel is being used for these casks. Two cask designs being developed for DOE by Babcock and Wilcox and General Atomics use burnup credit. The cask designs must be certified by the U.S. Nuclear Regulatory Commission (NRC) if they are to be used in the FWMS. Certification of these casks by the NRC would not require any change in the NRC's transport regulations, and would be consistent with past practices. Furthermore, use of burnup credit casks appears to be consistent with current International Atomic Energy Agency (IAEA) rules and regulations. To support NRC certification, DOE has identified the technical issues related to burnup credit, and embarked on a development program to resolve them. (J.P.N.)

  14. Effect of core configuration on the burnup calculations of MTR research reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Amin, E.H.; Sakr, A.M.

    2014-01-01

    Highlights: • 3D burn-up calculations of MTR-type research reactor were performed. Examination of the effect of control rod pattern on power density and neutron flux distributions is presented. • The calculations are performed using the MTR P C package and the programs (WIMS and CITVAP). • An empirical formula was generated for every fuel element type, to correlate irradiation to burn-up. - Abstract: In the present paper, three-dimensional burn-up calculations were performed using different patterns of control rods, in order to examine their effect on power density and neutron flux distributions through out the entire core and hence on the local burn-up distribution. These different cores burn-up calculations are carried out for an operating cycle equivalent to 15 Full Power Days (FPDs), with a power rating of 22 MW. Calculations were performed using an example of a typical research reactor of MTR-type using the internationally known computer codes’ package “MTR P C system”, using the cell calculation transport code WIMS-D4 with 12 energy groups and the core calculation diffusion code CITVAP with 5 energy groups. A depletion study was done and the effects on the research reactor fuel (U-235) were performed. The burn-up percentage (B.U.%) curves for every fuel element type were drawn versus irradiation (MWD/TE). Then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Charts of power density and neutron flux distribution for each core were plotted at different sections of each fuel element of the reactor core. Then a complete discussion and analysis of these curves are performed with comparison between the different core configurations, illustrating the effect of insertion or extraction of either of the four control rods directly on the neutron flux and consequently on the power distribution and burn-up. A detailed study of fuel burn-up gives detailed insight on the different B.U.% calculations

  15. Technical Issues in the development of high burnup and long cycle fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  16. Technical Issues in the development of high burnup and long cycle fuel pellets

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui

    2012-01-01

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  17. Determination of nuclear fuel burn-up using mass spectrometric techniques

    International Nuclear Information System (INIS)

    Saha, B.; Bagyalakshmi, R.; Periaswami, G.; Kavimandan, V.D.; Chitambar, S.A.; Jain, H.C.; Mathews, C.K.

    1977-01-01

    Determination of burn-up using a stable fission product monitor such as 148 Nd and heavy elements, determined by isotope dilution mass spectrometry gives the most accurate data. This report describes the work carried out to standardise the conditions for burn-up determination. Some typical results are given. (author)

  18. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  19. The Gd-isotopic fuel for high burnup in PWR's

    International Nuclear Information System (INIS)

    Dias, Marcio Soares; Mattos, João Roberto L. de; Andrade, Edison Pereira de

    2017-01-01

    Today, the discussion about the high burnup fuel is beyond the current fuel enrichment licensing and burnup limits. Licensing issues and material/design developments are again key features in further development of the LWR fuel design. Nevertheless, technological and economical solutions are already available or will be available in a short time. In order to prevent the growth of the technological gap, Brazil's nuclear sector needs to invest in the training of new human resources, in the access to international databases, and in the upgrading existing infrastructure. Experimental database and R&D infrastructure are essential components to support the autonomous development of Brazilian Nuclear Reactors, promoting the development of national technologies. The (U,Gd)O_2 isotopic fuel proposed by the CDTN's staff solve two main issues in the high burnup fuel, which are (1) the peak of reactivity resulting from the Gd-157 fast burnup, and (2) the peak of temperature in the (U,Gd)O_2 nuclear fuel resulting from detrimental effects in the thermal properties for gadolinia additions higher than 2%. A sustainable future can be envisaged for the nuclear energy. (author)

  20. Restructuring of burnup sensitivity analysis code system by using an object-oriented design approach

    International Nuclear Information System (INIS)

    Kenji, Yokoyama; Makoto, Ishikawa; Masahiro, Tatsumi; Hideaki, Hyoudou

    2005-01-01

    A new burnup sensitivity analysis code system was developed with help from the object-oriented technique and written in Python language. It was confirmed that they are powerful to support complex numerical calculation procedure such as reactor burnup sensitivity analysis. The new burnup sensitivity analysis code system PSAGEP was restructured from a complicated old code system and reborn as a user-friendly code system which can calculate the sensitivity coefficients of the nuclear characteristics considering multicycle burnup effect based on the generalized perturbation theory (GPT). A new encapsulation framework for conventional codes written in Fortran was developed. This framework supported to restructure the software architecture of the old code system by hiding implementation details and allowed users of the new code system to easily calculate the burnup sensitivity coefficients. The framework can be applied to the other development projects since it is carefully designed to be independent from PSAGEP. Numerical results of the burnup sensitivity coefficient of a typical fast breeder reactor were given with components based on GPT and the multicycle burnup effects on the sensitivity coefficient were discussed. (authors)

  1. SRAC-95, Cell Calculation with Burnup, Fuel Management for Thermal Reactors

    International Nuclear Information System (INIS)

    Tsuchihashi, K.; Ishiguro, Y.; Kaneko, K.; Ido, M.

    2004-01-01

    1 - Description of program or function: General neutronics calculation including cell calculation with burn-up, core calculation for any type of thermal reactor. Core burn-up calculation and fuel management by an auxiliary code. 2 - Method of solution: Collision probability method, 1D and 2D Sn for cell calculation; 1D, 2D and 3D diffusion for core calculation. 3 - Restrictions on the complexity of the problem: 20 regions for a continuous energy resonance absorption calculation and 16 steps for cell burn-up

  2. Modelling of phenomena associated with high burnup fuel behaviour during overpower transients

    International Nuclear Information System (INIS)

    Sills, H.E.; Langman, V.J.; Iglesias, F.C.

    1995-01-01

    Phenomena of importance to the behaviour of high burnup fuel subjected to conditions of rapid overpower (i.e., LWR RIAs) include the change in cladding material properties due to irradiation, pellet-clad interaction (PCI) and 'rim' effects associated with the periphery of high burnup fuel. 'Rim' effects are postulated to be caused by changes in fuel morphology at high burnup. Typical discharge burnups for CANDU fuel are low compared to LWRs. Maximum linear ratings for CANDU fuel are higher than those for LWRs. However, under normal operating conditions, the Zircaloy-4 clad of the CANDU fuel is collapsed onto the fuel stack. Thus, the CANDU fuel performance codes model the transient behaviour of the fuel-to-clad interface and are capable of assessing the potential for pellet-clad mechanical interaction (PCMI) failures for a wide range of overpower conditions. This report provides a discussion of the modelling of the phenomena of importance to high burnup fuel behaviour during rapid overpower transients. (author)

  3. A survey of previous and current industry-wide efforts regarding burnup credit

    International Nuclear Information System (INIS)

    Jones, R.H.

    1989-01-01

    Sandia has examined the matter of burnup credit from the perspective of physics, logistics, risk, and economics. A limited survey of the nuclear industry has been conducted to get a feeling for the actual application of burnup credit. Based on this survey, it can be concluded that the suppliers of spent fuel storage and transport casks are in general agreement that burnup credit offers the potential for improvements in cask efficiency without increasing the risk of accidental criticality. The actual improvement is design-specific but limited applications have demonstrated that capacity increases in the neighborhood of 20 percent are not unrealistic. A number of these vendors acknowledge that burnup credit has not been reduced to practice in cask applications and suggest that operational considerations may be more important to regulatory acceptance than to the physics. Nevertheless, the importance of burnup credit to the nuclear industry as a cask design and analysis tool has been confirmed by this survey

  4. Burnup calculation methodology in the serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    Leppaenen, J.; Isotalo, A.

    2012-01-01

    This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)

  5. Thermal conductivity evaluation of high burnup mixed-oxide (MOX) fuel pellet

    International Nuclear Information System (INIS)

    Amaya, Masaki; Nakamura, Jinichi; Nagase, Fumihisa; Fuketa, Toyoshi

    2011-01-01

    The thermal conductivity formula of fuel pellet which contains the effects of burnup and plutonium (Pu) addition was proposed based on the Klemens' theory and reported thermal conductivities of unirradiated (U, Pu) O 2 and irradiated UO 2 pellets. The thermal conductivity of high burnup MOX pellet was formulated by applying a summation rule between phonon scattering parameters which show the effects of plutonium addition and burnup. Temperature of high burnup MOX fuel was evaluated based on the thermal conductivity integral which was calculated from the above-mentioned thermal conductivity formula. Calculated fuel temperatures were plotted against the linear heat rates of the fuel rods, and were compared with the fuel temperatures measured in a test reactor. Since both values agreed well, it was confirmed that the proposed thermal conductivity formula of MOX pellets is adequate.

  6. Role of measurement systems in burnup credit operations

    International Nuclear Information System (INIS)

    Ewing, R.I.; Sanders, T.L.

    1991-01-01

    Spent fuel transport casks designed using burnup credit have increased payloads that may greatly reduce the number of shipments required to transport spent fuel from reactor sites to repositories. Burnup credit is obtained by applying the reduced reactivity of spent fuel to considerations of nuclear criticality in the design of transport casks. Although it does not appear to be possible to directly measure the criticality of spent fuel assemblies, measurements can be employed to ensure that the only assemblies loaded into a cask have the characteristics appropriate to that cask design. An effective on-site measurement system must be matched to the characteristics of the spent fuel cask design and to the inventory of spent fuel. For operation reasons the system should be simple, accurate, efficient, and easily calibrated. This paper is part of a study to examine the effects of the spent fuel inventory in the U.S. on the selection of measurement systems useful in burnup credit operations

  7. CARMEN-SYSTEM, Programs System for Thermal Neutron Diffusion and Burnup with Feedback

    International Nuclear Information System (INIS)

    Ahnert, Carol; Aragones, Jose M.

    1983-01-01

    1 - Description of problem or function: CARMEN is a system of programs developed for the neutronic calculation of PWR cycles. It includes the whole chain of analysis from cell calculations to core calculations with burnup. The core calculations are based on diffusion theory with cross sections depending on the relevant space-dependent feedback effects which are present at each moment along the cycles. The diffusion calculations are in one, two or three dimensions and in two energy groups. The feedback effects which are treated locally are: burnup, water density, power density and fission products. In order to study in detail these parameters the core should be divided into as many zones as different cross section sets are expected to be required in order to reproduce reality correctly. A relevant difference in any feedback parameter between zones produces different cross section sets for the corresponding zones. CARMEN is also capable to perform the following calculations: - Multiplication factor by burnup step with fixed boron concentration - Buckling and control rod insertion - Buckling search by burnup step - Boron search by burnup step - Control rod insertion search by burnup step. 2 - Method of solution: The cell code (LEOPARD-TRACA) generates the fuel assembly cross sections versus burnup. This is the basic library to be used in the CARMEN code proper. With a planar distribution guess for power density, water density and fluxes, the macroscopic cross sections by zone are calculated by CARMEN, and then a diffusion calculation is done in the whole geometry. With the distribution of power density, heat accumulated in the coolant and the thermal and fast fluxes determined in the diffusion calculation, CARMEN calculates the values of the most relevant parameters that influence the macroscopic cross sections by zone: burnup, water density, effective fuel temperature and fission product concentrations. If these parameters by zone are different from the reference

  8. The radial distribution of plutonium in high burnup UO2 fuels

    International Nuclear Information System (INIS)

    Lassmann, K.; O'Carroll, C.; Laar, J. van de; Walker, C.T.

    1994-01-01

    A new model (TUBRNP) is described which predicts the radial power density distribution as a function of burnup (and hence the radial burnup profile as a function of time) together with the radial profile of uranium and plutonium isotopes. Comparisons between measurements and the predictions of the TUBRNP model are made on fuels with enrichments in the range 2.9 to 8.25% and with burnups between 21 000 and 64 000 MWd/t. It is shown to be in excellent agreement with experimental measurements and is a marked improvement on earlier versions. (orig.)

  9. Criterion for burn-up conditions in gas-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Bejan, A.; Cluss, E.M. Jr.

    1976-01-01

    Superconducting magnets are energized through helium vapour-cooled cryogenic current leads operating at high ratios of current to mass flow. The high current operation where lead temperature, runaway, and eventual burn-up are likely to occur is investigated. A simple criterion for estimating the burn-up operation conditions (current, mass flow) for a given lead geometry (cross-sectional area, length, heat exchanger area) is presented. This article stresses the role played by the available heat exchanger area in avoiding burn-up at high ratios of current to mass flow. (author)

  10. The research on burnup characteristic of doping burnable poison in PWR

    International Nuclear Information System (INIS)

    Qiang Shenglong; Qin Dong; Chai Xiaoming; Yao Dong

    2014-01-01

    In PWR core design, burnable poisons are usually used for reactive compensation and power flatten. The choice of burnable poisons and how to match burnup would be the key-points for a long-life core design. We study the burnup character of doping burnable poisons (such as natural element, manual nuclide and soluble boron) in the PWR by the core burnup code MOI based on Monte Carlo method. The results show that Hf, Er and Eu doping burnable poison would be applicable for the nuclear design research on the long-life PWR core. (authors)

  11. Development of an extended-burnup Mark B design. Second semiannual progress report, January-June 1979

    International Nuclear Information System (INIS)

    1979-11-01

    The immediate goal of the DOE/AP and L/B and W project is to extend the burnup of light water reactor fuel assemblies beyond present limits to 50,000 MWd/mtU batch average burnup. Fuel management plans and fuel designs are being directed to attain the increased burnup limits. Lead-test assemblies of extended-burnup designs will be manufactured, irradiated in a commercial pressurized water reactor, and examined to support extended-burnup fuel cycles. This report, covering the period from January through June 1979, is the second semiannual progress report for the program. Efforts have included analyses of extended-burnup fuel cycles, developed of both annular fuel pellet and segmented rod designs, and design of a nondestructive post-irradiation examination system

  12. Fission gas release from fuel at high burnup

    International Nuclear Information System (INIS)

    Meyer, R.O.; Beyer, C.E.; Voglewede, J.C.

    1978-03-01

    The release of fission gas from fuel pellets at high burnup is reviewed in the context of the safety analysis performed for reactor license applications. Licensing actions are described that were taken to correct deficient gas release models used in these safety analyses. A correction function, which was developed by the Nuclear Regulatory Commission staff and its consultants, is presented. Related information, which includes some previously unpublished data, is also summarized. The report thus provides guidance for the analysis of high burnup gas release in licensing situations

  13. A regime showing anomalous triton burnup in JET

    International Nuclear Information System (INIS)

    Conroy, S.; Jarvis, O.N.; Sadler, G.; Pillon, M.

    1990-01-01

    Measurements of triton burnup made at JET in 1989 are in good agreement with a simple classical model of the triton slowing down, for the majority of discharges. For discharges with a long slowing down time (greater than 2 seconds), a much reduced burnup has been observed, suggesting that the tritons undergo diffusion with a diffusion constant of 0.10 m 2 s -1 . Also, the experimental 14 MeV neutron yield is 30% lower than expected for Beryllium limiter discharges. (author) 4 refs., 3 figs

  14. A guide introducing burnup credit, preliminary version. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    It is examined to take burnup credit into account for criticality safety control of facility treating spent fuel. This work is a collection of current technical status of predicting isotopic composition and criticality of spent fuel, points to be specially considered for safety evaluation, and current status of legal affairs for the purpose of applying burnup credit to the criticality safety evaluation of the facility treating spent fuel in Japan. (author)

  15. iBEST: a program for burnup history estimation of spent fuels based on ORIGEN-S

    International Nuclear Information System (INIS)

    Kim, Do Yeon; Hong, Ser Gi; Ahn, Gil Hoon

    2015-01-01

    In this paper, we describe a computer program, iBEST (inverse Burnup ESTimator), that we developed to accurately estimate the burnup histories of spent nuclear fuels based on sample measurement data. The burnup history parameters include initial uranium enrichment, burnup, cooling time after discharge from reactor, and reactor type. The program uses algebraic equations derived using the simplified burnup chains of major actinides for initial estimations of burnup and uranium enrichment, and it uses the ORIGEN-S code to correct its initial estimations for improved accuracy. In addition, we newly developed a stable bisection method coupled with ORIGEN-S to correct burnup and enrichment values and implemented it in iBEST in order to fully take advantage of the new capabilities of ORIGEN-S for improving accuracy. The iBEST program was tested using several problems for verification and well-known realistic problems with measurement data from spent fuel samples from the Mihama-3 reactor for validation. The test results show that iBEST accurately estimates the burnup history parameters for the test problems and gives an acceptable level of accuracy for the realistic Mihama-3 problems

  16. Microstructural change and its influence on fission gas release in high burnup UO 2 fuel

    Science.gov (United States)

    Une, K.; Nogita, K.; Kashibe, S.; Imamura, M.

    1992-06-01

    The microstructural change of UO 2 fuel pellets (burnup: 6-83 GWd/t), base irradiated under LWR conditions, has been studied by detailed postirradiation examinations. The lattice parameter near the fuel rim in the irradiated UO 2 increased with burnup and appeared to become constant beyond about 50 GWd/t. This lattice dilation was mainly due to the accumulation of radiation induced point defects. Moreover, the dislocation density in the UO 2 matrix developed progressively with burnup, and eventually the tangled dislocations organized many sub-grain boundaries in the highest burnup fuel of 83 GWd/t. This sub-grain structure induced by accumulated radiation damage was compatible in appearance with SEM fractography results which revealed sub-divided grains of sub-micron size in as-fabricated grains. The influence of burnup on 85Kr release from the UO 2 fuels has been examined by means of a postirradiation annealing technique. The higher fractional release of high burnup fuels was mainly due to the burnup dependence of the fractional burst release evolved on temperature ramp. The fractional burst release was represented in terms of the square root of burnup from 6 to 83 GWd/t.

  17. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1998-04-01

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report

  18. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system`s reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report. Refs, figs, tabs.

  19. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  20. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  1. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  2. TRIGA fuel element burnup determination by measurement and calculation

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.; Jeraj, R.

    2000-01-01

    To estimate the accuracy of the fuel element burnup calculation different factors influencing the calculation were studied. To cover different aspects of burnup calculations, two in-house developed computer codes were used in calculations. The first (TRIGAP) is based on a one-dimensional two-group diffusion approximation, and the second (TRIGLAV) is based on a two-dimensional four-group diffusion equation. Both codes use WIMSD program with different libraries forunit-cell cross section data calculation. The burnup accumulated during the operating history of the TRIGA reactor at Josef Stefan Institute was calculated for all fuel elements. Elements used in the core during this period were standard SS 8.5% fuel elements, standard SS 12% fuel elements and highly enriched FLIP fuel elements. During the considerable period of operational history, FLIP and standard fuel elements were used simultaneously in mixed cores. (authors)

  3. BEAVRS full core burnup calculation in hot full power condition by RMC code

    International Nuclear Information System (INIS)

    Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan

    2017-01-01

    Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.

  4. A burn-up module coupling to an AMPX system

    International Nuclear Information System (INIS)

    Salvatore Duque, M.; Gomez, S.E.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author) [es

  5. Criticality reference benchmark calculations for burnup credit using spent fuel isotopics

    International Nuclear Information System (INIS)

    Bowman, S.M.

    1991-04-01

    To date, criticality analyses performed in support of the certification of spent fuel casks in the United States do not take credit for the reactivity reduction that results from burnup. By taking credit for the fuel burnup, commonly referred to as ''burnup credit,'' the fuel loading capacity of these casks can be increased. One of the difficulties in implementing burnup credit in criticality analyses is that there have been no critical experiments performed with spent fuel which can be used for computer code validation. In lieu of that, a reference problem set of fresh fuel critical experiments which model various conditions typical of light water reactor (LWR) transportation and storage casks has been identified and used in the validation of SCALE-4. This report documents the use of this same problem set to perform spent fuel criticality benchmark calculations by replacing the actual fresh fuel isotopics from the experiments with six different sets of calculated spent fuel isotopics. The SCALE-4 modules SAS2H and CSAS4 were used to perform the analyses. These calculations do not model actual critical experiments. The calculated k-effectives are not supposed to equal unity and will vary depending on the initial enrichment and burnup of the calculated spent fuel isotopics. 12 refs., 11 tabs

  6. OREST, LWR Burnup Simulation Using Program HAMMER and ORIGEN

    International Nuclear Information System (INIS)

    Hesse, Ulrich; Sieberer, Johann

    2006-01-01

    1 - Description of program or function: In OREST, the 1-dimensional lattice code HAMMER and the isotope generation and depletion code ORIGEN are directly coupled for burnup simulation in light-water reactor fuels (GRS recommended). Additionally heavy water and graphite moderated systems can be calculated. New version differs from the previous version in the following features: An 84-group-library LIB84 for up to 200 isotopes is used to update the 3-group -POISON-XS. LIB84 uses the same energy boundaries as THERMOS and HAMLET in . In this way, high flexibility is achieved in very different reactor models. The coupling factor between THERMOS and HAMLET is now directly transferred from HAMMER to THERES and omits the equation 4 (see page 6 of the manual). Sandwich-reactor fuel reactivity and burnup calculations can be started with NGEOM = 1. Thorium graphite reactivity and burnup calculations can be started with NLIBE = 1. High enriched U-235 heavy water moderated reactivity and burnup calculations can be started. HAMLET libraries in for U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-242, Am-241, Am-243 and Zirconium are updated using resonance parameters. NEA-1324/04: A new version of the module hamme97.f has replaced the old one. 2 - Method of solution: For the user-defined irradiation history, an input data processor generates program loops over small burnup steps for the main codes HAMMER and ORIGEN. The user defined assembly description is transformed to an equivalent HAMMER fuel cell. HAMMER solves the integral neutron transport equation in a four-region cylindrical or sandwiched model with reflecting boundaries and runs with fuel power calculated rod temperatures. ORIGEN runs with HAMMER-calculated cross sections and neutron spectra and calculates isotope concentrations during burnup by solving the buildup-, depletion- and decay-chain equations. An output data processor samples the outputs of the program modules and generates tabular works for the

  7. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    Yoshioka, Ken-ichi; Ando, Y.; Kumanomido, H.; Sasaki, T.; Mitsuhashi, I.; Ueda, M.

    2001-01-01

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  8. Fission gas release and fuel rod chemistry related to extended burnup

    International Nuclear Information System (INIS)

    1993-04-01

    The purpose of the meeting was to review the state of the art in fission gas release and fuel rod chemistry related to extended burnup. The meeting was held in a time when national and international programmes on water reactor fuel irradiated in experimental reactors were still ongoing or had reached their conclusion, and when lead test assemblies had reached high burnup in power reactors and been examined. At the same time, several out-of-pile experiments on high burnup fuel or with simulated fuel were being carried out. As a result, significant progress has been registered since the last meeting, particularly in the evaluation of fuel temperature, the degradation of the global thermal conductivity with burnup and in the understanding of the impact on fission gas release. Fifty five participants from 16 countries and one international organization attended the meeting. 28 papers were presented. A separate abstract was prepared for each of the papers. Refs, figs, tabs and photos

  9. Estimate of fuel burnup spatial a multipurpose reactor in computer simulation

    International Nuclear Information System (INIS)

    Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes

    2015-01-01

    In previous research, which aimed, through computer simulation, estimate the spatial fuel burnup for the research reactor benchmark, material test research - International Atomic Energy Agency (MTR/IAEA), it was found that the use of the code in FORTRAN language, based on the diffusion theory of neutrons and WIMSD-5B, which makes cell calculation, bespoke be valid to estimate the spatial burnup other nuclear research reactors. That said, this paper aims to present the results of computer simulation to estimate the space fuel burnup of a typical multipurpose reactor, plate type and dispersion. the results were considered satisfactory, being in line with those presented in the literature. for future work is suggested simulations with other core configurations. are also suggested comparisons of WIMSD-5B results with programs often employed in burnup calculations and also test different methods of interpolation values obtained by FORTRAN. Another proposal is to estimate the burning fuel, taking into account the thermohydraulics parameters and the appearance of xenon. (author)

  10. Improvements on burnup chain model and group cross section library in the SRAC system

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Okumura, Keisuke; Takano, Hideki; Ishiguro, Yukio; Kaneko, Kunio.

    1992-01-01

    Data and functions of the cell burnup calculation of the SRAC system were revised to improve mainly the accuracy of the burnup calculation of high conversion light water reactors (HCLWRs). New burnup chain models were developed in order to treat fission products (FPs) and actinide nuclides in detail. Group cross section library, SRACLIB-JENDL2, was generated based on JENDL-2 nuclear data file. In generating this library, emphasis was placed on FPs and actinides. Also revised were the data such as the average energy release per fission for various actinides. These improved data were verified by performing the burnup analysis of PWR spent fuels. Some new functions were added to the SRAC system for the convenience to yield macroscopic cross sections used in the core burnup process. (author)

  11. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  12. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  13. Current studies related to the use of burnup credit in France

    International Nuclear Information System (INIS)

    Raby, Jerome; Lavarenne, Caroline; Barreau, Anne; Riffard, Cecile; Roque, Benedicte; Bioux, Philippe; Doucet, Michel; Guillou, Eric; Leka, Georges; Toubon, Herve

    2003-01-01

    In order to avoid criticality risks, a large number of facilities using spent fuels have been designed considering the fuel as fresh. This choice has obviously led to considerable safety margins. In the early 80's, a method was accepted by the French Safety Authorities allowing to consider the changes in the fuel composition during the depletion with some very pessimistic hypothesis: only actinides were considered and the amount of burnup used in the studies was equal to the mean burnup in the 50-least-irradiated centimeters. As many facilities still want to optimize their processes (e.g. transportation, storage, fuel reprocessing), the main companies involved in the French nuclear industry, researchers and IRSN set up a Working Group in order to study the way burnup could be taken into account in the criticality calculations, considering some fission products and a more realistic axial profile of burnup. The first of this article introduces the current French method used to take burnup into account in the criticality studies. The second part is devoted to the studies achieved by the Working Group to improve this method, especially concerning the consideration of the neutron absorption of some fission products and of an axial profile of burnup: for that purpose, some results are presented related to the steps of the process like the depletion calculations, the definition of an axial profile and the criticality calculation. In the third part, some results (keff) obtained with fission products and an axial profile are compared to those obtained with the current one. The conclusions presented are related to the present state of knowledge and may differ from the final conclusions of the Working Group. (author)

  14. Development and benchmark verification of a parallelized Monte Carlo burnup calculation program MCBMPI

    International Nuclear Information System (INIS)

    Yang Wankui; Liu Yaoguang; Ma Jimin; Yang Xin; Wang Guanbo

    2014-01-01

    MCBMPI, a parallelized burnup calculation program, was developed. The program is modularized. Neutron transport calculation module employs the parallelized MCNP5 program MCNP5MPI, and burnup calculation module employs ORIGEN2, with the MPI parallel zone decomposition strategy. The program system only consists of MCNP5MPI and an interface subroutine. The interface subroutine achieves three main functions, i.e. zone decomposition, nuclide transferring and decaying, data exchanging with MCNP5MPI. Also, the program was verified with the Pressurized Water Reactor (PWR) cell burnup benchmark, the results showed that it's capable to apply the program to burnup calculation of multiple zones, and the computation efficiency could be significantly improved with the development of computer hardware. (authors)

  15. Fission-gas release in fuel performing to extended burnups in Ontario Hydro nuclear generating stations

    International Nuclear Information System (INIS)

    Floyd, M.R.; Novak, J.; Truant, P.T.

    1992-06-01

    The average discharge burnup of CANDU fuel is about 200 MWh/kgU. A significant number of 37-element bundles have achieved burnups in excess of 400 MWh/kgU. Some of these bundles have experienced failures related to their extended operation. To date, hot-cell examinations have been performed on fuel elements from nine 37-element bundles irradiated in Bruce NGS-A that have burnups in the range of 300-800 MWh/kgU. 1 Most of these have declining power histories from peak powers of up to 59 kW/m. Fission-gas releases of up to 26% have been observed and exhibit a strong dependence on fuel power. This obscures any dependence on burnup. The extent of fission-gas release at extended burnups was not predicted by low-burnup code extrapolations. This is attributed primarily to a reduction in fuel thermal conductivity which results in elevated operating temperatures. Reduced conductivity is due, at least in part, to the buildup of fission products in the fuel matrix. Some evidence of hyperstoichiometry exists, although this needs to be further investigated along with any possible relation to CANLUB graphite coating behaviour and sheath oxidation. Residual tensile sheath strains of up to 2% have been observed and can be correlated with fuel power/fission-gas release. SCC 2 -related defects have been observed in the sheath and endcaps of elements from bundles experiencing declining power histories to burnups in excess of 500 MWh/kgU. This indicates that the current recommended burnup limit of 450 MWh/kgU is justified. SCC-related defects have also been observed in ramped bundles having burnups < 450 MWh/kgU. Hence, additional guidelines are in place for power ramping extended-burnup fuel

  16. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    Itagaki, N.; Ohira, K.; Tsuda, K.; Fischer, G.; Ota, T.

    1998-01-01

    UO 2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO 2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  17. Experimental and theoretical burnup investigations on model arrangements with solid burnable poisons

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  18. Experimental and theoretical investigations on solid burnable poison burnup of model arrangements

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments reported here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  19. Extended burnup with SEU fuel in Atucha-1 NPP

    International Nuclear Information System (INIS)

    Alvarez, L.; Casario, J.; Fink, J.; Perez, R.; Higa, M.

    2002-01-01

    Atucha-1 is a Pressurized Heavy Water Reactor originally fuelled with natural uranium. Fuel Assemblies consist of 36 fuel rods and the active length is 5300 mm. The total length of the fuel assembly is about 6 m. The average discharge burnup of natural UO 2 fuel is 5900 MWd/tU. After the deregulation of the Argentine electricity market there was an important incentive to reduce the impact of fuel cost on the cost of generation. To keep the competitiveness of the nuclear energy against another sources of electricity it was necessary to reduce the cost of the nuclear fuel. With this objective a program to introduce SEU (0.85 % 235 U) fuel in Atucha-1 was launched in 1993. As a result of this program the average SEU fuel discharge burnup increased to more than 11000 MWd/tU. The first SEU fuels were introduced in Atucha-1 in 1995 and, in the present stage of the program, 71% of core positions are loaded with this type of fuel. This paper describes key aspects of Atucha-1 fuel design and their relevance limiting the burnup extension and shows relevant data regarding the SEU in-reactor performance. At the present time 125 SEU Fuel Assemblies have been irradiated without failures associated with the extended burnup or unfavorable influences on the operation of the power station. (author)

  20. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    International Nuclear Information System (INIS)

    DOE

    1997-01-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k eff , of a spent nuclear fuel package. Fifty-seven UO 2 , UO 2 /Gd 2 O 3 , and UO 2 /PuO 2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k eff (which can be a function of the trending parameters) such that the biased k eff , when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection

  1. Burnup measurements with the Los Alamos fork detector

    International Nuclear Information System (INIS)

    Bosler, G.E.; Rinard, P.M.

    1991-01-01

    The fork detector system can determine the burnup of spent-fuel assemblies. It is a transportable instrument that can be mounted permanently in a spent-fuel pond near a loading area for shipping casks, or be attached to the storage pond bridge for measurements on partially raised spent-fuel assemblies. The accuracy of the predicted burnup has been demonstrated to be as good as 2% from measurements on assemblies in the United States and other countries. Instruments have also been developed at other facilities throughout the world using the same or different techniques, but with similar accuracies. 14 refs., 2 figs., 2 tabs

  2. Findings of an international study on burnup credit

    International Nuclear Information System (INIS)

    Brady, M.C.; Takano, M.; Okuno, H.; DeHart, M.D.; Nouri, A.

    1996-01-01

    Findings from a four year study by an international benchmarking group in the comparison of computational methods for evaluating burnup credit in criticality safety analyses are presented in this paper. Approximately 20 participants from 11 countries have provided results for most problems. Four detailed benchmark problems for Pressurized Water Reactor (PWR) fuel have been completed and are summarized in this paper. Preliminary results from current work addressing burnup credit for Boiling Water Reactor (BWR) fuel will also be discussed as well as planned activities for additional benchmarks including Mixed-Oxide (MOX) fuels, subcritical benchmarks, international databases, and other activities

  3. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  4. High Burnup Fuel: Implications and Operational Experience. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2016-08-01

    This publication reports on the outcome of a technical meeting on high burnup fuel experience and economics, held in Buenos Aires, Argentina in 2013. The purpose of the meeting was to revisit and update the current operational experience and economic conditions associated with high burnup fuel. International experts with significant experience in experimental programmes on high burnup fuel discussed and evaluated physical limitations at pellet, cladding and structural component levels, with a wide focus including fabrication, core behaviour, transport and intermediate storage for most types of commercial nuclear power plants

  5. Burnup measurements on spent fuel elements of the RP-10 research reactor

    International Nuclear Information System (INIS)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro

    2011-01-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using 137 Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  6. Hierarchical linear modeling (HLM) of longitudinal brain structural and cognitive changes in alcohol-dependent individuals during sobriety

    DEFF Research Database (Denmark)

    Yeh, P.H.; Gazdzinski, S.; Durazzo, T.C.

    2007-01-01

    faster brain volume gains, which were also related to greater smoking and drinking severities. Over 7 months of abstinence from alcohol, sALC compared to nsALC showed less improvements in visuospatial learning and memory despite larger brain volume gains and ventricular shrinkage. Conclusions: Different......)-derived brain volume changes and cognitive changes in abstinent alcohol-dependent individuals as a function of smoking status, smoking severity, and drinking quantities. Methods: Twenty non-smoking recovering alcoholics (nsALC) and 30 age-matched smoking recovering alcoholics (sALC) underwent quantitative MRI...... time points. Using HLM, we modeled volumetric and cognitive outcome measures as a function of cigarette and alcohol use variables. Results: Different hierarchical linear models with unique model structures are presented and discussed. The results show that smaller brain volumes at baseline predict...

  7. Burnup verification measurements on spent fuel assemblies at Arkansas Nuclear One

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1995-01-01

    Burnup verification measurements have been performed using the Fork system at Arkansas Nuclear One, Units 1 and 2, operated by Energy Operations, Inc. Passive neutron and gamma-ray measurements on individual spent fuel assemblies were correlated with the reactor records for burnup, cooling time, and initial enrichment. The correlation generates an internal calibration for the system in the form of a power law determined by a least squares fit to the neutron data. The values of the exponent in the power laws were 3.83 and 4.35 for Units 1 and 2, respectively. The average deviation of the reactor burnup records from the calibration determined from the measurements is a measure of the random error in the burnup records. The observed average deviations were 2.7% and 3.5% for assemblies at Units 1 and 2, respectively, indicating a high degree of consistency in the reactor records. Two non-standard assemblies containing neutron sources were studied at Unit 2. No anomalous measurements were observed among the standard assemblies at either Unit. The effectiveness of the Fork system for verification of reactor records is due to the sensitivity of the neutron yield to burnup, the self-calibration generated by a series of measurements, the redundancy provided by three independent detection systems, and the operational simplicity and flexibility of the design

  8. OECD/NEA burnup credit criticality benchmarks phase IIIB: Burnup calculations of BWR fuel assemblies for storage and transport

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155 Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k ∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  9. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  10. Modeling of burnup express-estimation for UO{sub 2}-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Likhanskii, Vladimir V.; Tokarev, Sergey A.; Vilkhivskaya, Olga V., E-mail: vilhivskaya_olga@mail.ru

    2017-03-15

    Highlights: • Proposed engineering model estimates fuel burnup by {sup 134}Cs/{sup 137}Cs activity ratio. • Buildup of cesium isotopes relies on changing neutron spectrum in the core cycle. • {sup 134}Cs/{sup 137}Cs activity ratios in FAs with Gd-doped fuel rods are analyzed. • Comparison of the model calculations with the NPPs spike measurements is presented. - Abstract: The paper presents the developed engineering model of cesium isotopes production as function of UO{sub 2}-fuel burnup and an assessment of their activity ratios. The model considers the evolution of linear power of gadolinium-doped fuel rods and fuel rods surrounding them in fuel assemblies with high enrichment fuel, harder neutron spectrum, and the changes in cross-sections of neutron reactions in thermal and epithermal energy areas. Parametrical dependences in the model are based on the fuel operation data for nuclear power plants and on the detailed neutronic-physical calculations of the core. Presented are the results of the model calculations for the {sup 134}Cs/{sup 137}Cs activity ratios in fuel taking into account the parameter of hardness of the neutron spectrum during the first irradiation cycle for fuel with enrichment ranging from 3.6 wt% in {sup 235}U.

  11. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

  12. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Andersson, S.; Helmersson, S.; Nilsson, S.; Jourdain, P.; Karlsson, L.; Limback, M.; Garde, A.M.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  13. Observations on the CANDLE burn-up in various geometries

    International Nuclear Information System (INIS)

    Seifritz, W.

    2007-01-01

    We have looked at all geometrical conditions under which an auto catalytically propagating burnup wave (CANDLE burn-up) is possible. Thereby, the Sine Gordon equation finds a new place in the burn-up theory of nuclear fission reactors. For a practical reactor design the axially burning 'spaghetti' reactor and the azimuthally burning 'pancake' reactor, respectively, seem to be the most promising geometries for a practical reactor design. Radial and spherical burn-waves in cylindrical and spherical geometry, respectively, are principally impossible. Also, the possible applicability of such fission burn-waves on the OKLO-phenomenon and the GEOREACTOR in the center of Earth, postulated by Herndon, is discussed. A fast CANDLE-reactor can work with only depleted uranium. Therefore, uranium mining and uranium-enrichment are not necessary anymore. Furthermore, it is also possible to dispense with reprocessing because the uranium utilization factor is as high as about 40%. Thus, this completely new reactor type can open a new era of reactor technology

  14. Modelling of some high burnup phenomena in nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, K; Lindstroem, F; Massih, A R [ABB Atom AB, Vaesteraas (Sweden)

    1997-08-01

    In this paper the results of some modelling efforts carried out by ABB Atom to describe certain light water reactor fuel high burnup effects are presented. In particular the degradation of fuel thermal conductivity with burnup and its impact on fuel temperature is briefly discussed. The formation of a porous rim and its effect on a thermal fission gas release has been modelled and the model has been used to predict the release of pressurized water reactor fuel rods that were operated at low power densities. Furthermore, a mathematical model which combines the diffusion and re-solution controlled thermal release with grain boundary movement has been briefly described. The model is used to compare release with diffusion only and release caused by diffusion and grain boundary sweeping (due to grain growth). Finally, analytical expressions are obtained for the calculation of fuel stoichiometry as a function of burnup. (author). 20 refs, 10 figs, 1 tab.

  15. Preparation of higher-actinide burnup and cross section samples

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.; Quinby, T.C.; Thomas, D.K.; Dailey, J.M.

    1981-01-01

    A joint research program involving the United States and the United Kingdom was instigated about four years ago for the purpose of studying burnup of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of cross sections of a wide variety of higher actinide isotopes was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the burnup and cross section samples. The higher actinide samples chosen for the burnup study were 241 Am and 244 Cm in the forms of Am 2 O 3 , Cm 2 O 3 , and Am 6 Cm(RE) 7 O 21 , where (RE) represents a mixture of lanthanide sesquioxides. It is the purpose of this paper to describe technology development and its application in the preparation of the fuel specimens and the cross section specimens that are being used in this cooperative program

  16. Conservatism in the actinide-only burnup credit for PWR spent nuclear fuel packages

    International Nuclear Information System (INIS)

    Lancaster, D.B.; Rahimi, M.; Thornton, J.

    1996-01-01

    In May 1995, the U.S. Department of Energy (DOE) submitted a topical report to the U.S. Nuclear Regulatory Commission (NRC) to gain actinide-only burnup credit for spent nuclear fuel (SNF) storage, transportation, or disposal packages. After approval of this topical report, DOE intends further submittals to the NRC to acquire additional burnup credit (e.g., the topical does not use fission products and is limited to only the first 100 yr of disposal). The NRC has responded to the topical with its preliminary questions. To aid in evaluation of the method, a review of the conservatism in the actinide-only burnup credit methodology was performed. An overview of the actinide-only burnup credit methodology is presented followed by a summary of the conservatism

  17. Polynomial expansion methodology for microscopic cross sections to use in spatial burnup calculations

    International Nuclear Information System (INIS)

    Conti Filho, P.; Oliveira Barroso, A.C. de

    1985-01-01

    It was developed a computer code to generate polynomial coefficients which represent homogenized microscopic cross sections in function of the local accumulated burnup and concentration of soluble boron, presented in fuel element, for each step of burnup reactor. Afterward, it was developed a coupling between LEOPARD-GERADOR DE POLINOMIOS - CITATION computer codes to interpret and build homogenized microscopic cross sections according with local characteristics of each fuel element during the burnup calculation of reactor core. (M.C.K.) [pt

  18. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  19. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  20. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2015-01-01

    Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

  1. A Criticality Evaluation of the GBC-32 Dry Storage Cask in PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyoungju; Park, Kwangheon; Hong, Ser Gi [Kyung Hee Univ., Yongin (Korea, Republic of)

    2015-05-15

    The current criticality safety evaluation assumes the only unirradiated fresh fuels with the maximum enrichment in a dry storage cask (DSC) for conservatism without consideration of the depletion of fissile nuclides and the generation of neutron-absorbing fission products. However, the large conservatism leads to the significant increase of the storage casks required. Thus, the application of burnup credit which takes credit for the reduction of reactivity resulted from fuel depletion can increase the capacity in storage casks. On the other hand, the burnup credit application introduces lots of complexity into a criticality safety analysis such as the accurate estimation of the isotopic inventories and the burnup of UNFs and the validation of the criticality calculation. The criticality evaluation with an effect of burnup credit was performed for the DSC of GBC-32 by using SCALE 6.1/STARBUCS. keff values were calculated as a function of burnup and cooling time for four initial enrichments of 2, 3, 4, and 5 wt. % 235U. The values were calculated for the burnup range of 0 to 60,000 MWD/MTU, in increments of 10,000 MWD/MTU, and for five cooling times of 0, 5, 10, 20, and 40 years.

  2. Regulatory status of burnup credit for storage and transport of spent fuel in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Schweer, H.H.; Johann, H.G.

    2001-01-01

    This paper describes the regulatory status of burnup credit applications to pond storage and dry-cask transport and storage of spent fuel in Germany. Burnup credit for wet storage of LWR fuel at nuclear power plants has to comply with the newly developed safety standard DIN 25471. This standard establishes the safety requirements for burnup credit criticality safety analysis of LWR fuel storage ponds and gives guidance on meeting these requirements. Licensing evaluations of dry transport systems are based on the application of the IAEA Safety Standards Series No.ST-1. However, because of the fact that burnup credit for dry-cask transport becomes more and more inevitable due to increasing initial enrichment of the fuel, and because of the increasing importance of dry-cask storage in Germany, the necessity of giving regulatory guidance on applying burnup credit to dry-cask transport and storage is seen. (author)

  3. Analysis of collective life-cycle dose for burnup credit shipping casks

    International Nuclear Information System (INIS)

    Brentlinger, L.A.; Peterson, R.W.; Hofmann, P.L.

    1989-01-01

    In 1987, several studies were conducted by Sandia National Laboratories (SNL) to investigate the feasibility of and the incentive to justify the consideration of spent fuel histories in the design of spent fuel shipping casks. Taking credit for reduction in fissile content of fuel elements resulting from burnup credit is not current practice in the design and certification of shipping casks. The general argument can be made, however, that if this were done cask capacities could be increased over the current shipping cask designs which do not take the benefit of such burnup credit. This paper deals specifically with the question of occupational and public dose reduction via the use of a series of postulated burnup-credit cask designs

  4. Calculation of effect of burnup history on spent fuel reactivity based on CASMO5

    International Nuclear Information System (INIS)

    Li Xiaobo; Xia Zhaodong; Zhu Qingfu

    2015-01-01

    Based on the burnup credit of actinides + fission products (APU-2) which are usually considered in spent fuel package, the effect of power density and operating history on k_∞ was studied. All the burnup calculations are based on the two-dimensional fuel assembly burnup program CASMO5. The results show that taking the core average power density of specified power plus a bounding margin of 0.0023 to k_∞, and taking the operating history of specified power without shutdown during cycle and between cycles plus a bounding margin of 0.0045 to k_∞ can meet the bounding principle of burnup credit. (authors)

  5. Models for fuel rod behaviour at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)

    2004-12-01

    This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be

  6. Investigation of Burnup Credit Issues in BWR Fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.; DeHart, M.D.

    1999-01-01

    Calculations for long-term-disposal criticality safety of spent nuclear fuel requires the application of burnup credit because of the large mass of fissile material that will be present in the repository. Burnup credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents, followed by criticality calculations to assess the value of keff for a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models used to characterize spent fuel. Most effort in the United States this decade has focused on burnup issues related to pressurized-water reactors. However, requirements for the permanent disposal of fuel from boiling-water reactors has necessitated development of methods for prediction of spent fuel contents for such fuels. Concomitant with such analyses, validation is also necessary. This paper provides a summary of initial efforts at the Oak Ridge National Laboratory to better understand and validate spent fuel analyses for boiling-water-reactor fuel

  7. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  8. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    International Nuclear Information System (INIS)

    Wagner, John C.; Parks, Cecil V.; Mueller, Don; Gauld, Ian C.

    2010-01-01

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transport and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and

  9. Characterisation of high-burnup LWR fuel rods through gamma tomography

    International Nuclear Information System (INIS)

    Caruso, S.

    2007-01-01

    Current fuel management strategies for light water reactors (LWRs), in countries with high back-end costs, progressively extend the discharge burnup at the expense of increasing the 235 U enrichment of the fresh UO 2 fuel loaded. In this perspective, standard non-destructive assay techniques, which are very attractive because they are fast, cheap, and preserve the fuel integrity, in contrast to destructive approaches, require further validation when burnup values become higher than 50 GWd/t. This doctoral work has been devoted to the development and optimisation of non-destructive assay techniques based on gamma-ray emissions from irradiated fuel. It represents an important extension of the unique, high-burnup related database, generated in the framework of the LWR PROTEUS Phase II experiments. A novel tomographic measurement station has been designed and developed for the investigation of irradiated fuel rod segments. A unique feature of the station is that it allows both gamma-ray transmission and emission computerised tomography to be performed on single fuel rods. Four burnt UO 2 fuel rod segments of 400 mm length have been investigated, two with very high (52 GWd/t and 71 GWd/t) and two with ultra-high (91 GWd/t and 126 GWd/t) burnup. Several research areas have been addressed, as described below. The application of transmission tomography to spent fuel rods has been a major task, because of difficulties of implementation and the uniqueness of the experiments. The main achievements, in this context, have been the determination of fuel rod average material density (a linear relationship between density and burnup was established), fuel rod linear attenuation coefficient distribution (for use in emission tomography), and fuel rod material density distribution. The non-destructive technique of emission computerised tomography (CT) has been applied to the very high and ultra-high burnup fuel rod samples for determining their within-rod distributions of caesium and

  10. Re-evaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya, E-mail: suyama.kenya@jaea.go.jp [Office of International Relations, Nuclear Safety Division, Ministry of Education, Culture, Sports, Science and Technology - Japan, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan); Murazaki, Minoru; Ohkubo, Kiyoshi [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nakahara, Yoshinori [Research Group for Analytical Science, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Uchiyama, Gunzo [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan)

    2011-05-15

    Highlights: > The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. > These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. > These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.

  11. First steps towards modelling high burnup effect in UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    O` Carroll, C; Lassmann, K; Laar, J Van De; Walker, C T [CEC Joint Research Centre, Karlsruhe (Germany)

    1997-08-01

    High burnup initiates a process that can lead to major microstructural changes near the edge of the fuel: formation of subgrains, the loss of matrix fission gas and an increase in porosity. A consequence of this, is a decrease of thermal conductivity near the edge of the fuel which may be major implications for the performance of LWR fuels at higher burnup. The mechanism for the changes in grain structure, the apparent depletion of Xe and increase in porosity is associated with the high fission density at the fuel periphery. This is in turn due to the preferential capture of epithermal neutrons in the resonances of {sup 238}U. The new model TUBRNP predicts the radial burnup profile as a function of time together with the radial profile of plutonium. The model has been validated with data from LWR UO{sub 2} fuels with enrichments in the range 2 to 8.25% and burnups between 21 to 75 Gwd/t. It has been reported that at high burnup EPMA measures a sharp decrease in the concentration of Xe near the fuel surface. This loss of Xe is interpreted as a signal that the gas has been swept out of the original grains into pores: this ``missing`` Xe has been measured by XRF. It has been noted experimentally that the restructuring (Xe depletion and changes in grain structure) have an onset threshold local burnup in the region of 70 to 80 GWd/t: a specific value was taken for use in the model. For a given fuel TUBRNP predicts the local burnup profile, and the depth corresponding to the threshold value is taken to be the thickness of the Xe depleted region. The theoretical predictions have been compared with experimental data. The results are presented and should be seen as a first step in the development of a more detailed model of this phenomenon. (author). 22 refs, 9 figs, 2 tabs.

  12. Non destructive assay of nuclear LEU spent fuels for burnup credit application

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.

    2001-01-01

    Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron

  13. Reconstruction of pin burnup characteristics from nodal calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Yang, W.S.; Finck, P.J.; Khalil, H.S.

    1990-01-01

    A reconstruction method has been developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intra-modal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method has been tested by performing several numerical benchmark calculations and by comparing predicted local burnups to values measured for experimental assemblies in EBR-11. The results indicate that the reconstruction methods are quite accurate, yielding maximum errors in power and nuclide densities that are less than 2% for driver assemblies and typically less than 5% for blanket assemblies. 14 refs., 2 figs., 5 tabs

  14. Device for measuring a burnup degree

    International Nuclear Information System (INIS)

    Ito, Toshiaki; Goto, Seiichiro

    1979-01-01

    Purpose: To measure the burnup degree at high efficiency and accuracy. Constitution: The outer metal wall of fuel assemblies is heated under gamma radiation with long half life gamma rays in inverse proportion to the burnup degree and issues infrared radiation in proportion to the intensity of the gamma rays. An image pick-up tube is opposed to one surface of the fuel assemblies to detect the radiated infrared rays. Since the output signal from the pick-up tube is subjected to the absorptive damping by the distance between the pick-up tube and the fuel assembly, as well as water filled in the gap therebetween, it is corrected through a main amplifier comprising a signal correction circuit composed of a characteristic section inverse to the absorption property and a characteristic section inverse to the square of the distance. The corrected output signal is displayed on a display unit such as CRT or recorded in a film or a magnetic tape. (Furukawa, Y.)

  15. Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data

    International Nuclear Information System (INIS)

    1997-11-01

    Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ''fresh fuel'' assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ''Burnup Credit.'' Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ''Actinide-Only Burnup Credit.'' The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly

  16. End effects in the criticality analysis of burnup credit casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Parks, C.V.

    1990-01-01

    A study to evaluate the effect of axially dependent burnup on k eff has been performed as part of an effort to qualify procedures to be used in establishing burnup credit in shipping cask design and certification. This study was performed using a generic 31-element modular cast-iron cask (wall thickness 33.1 cm) with a 1-cm-thick borated stainless-steel basket for reactivity control. Fuel isotopics used here are those of the 17 x 17 Westinghouse assemblies from the North Anna Unit 1 reactor. Virginia Power (VP) provided detailed spatial isotopics for the fuel assemblies in-core at beginning-of-cycle 5 (BOC-5) as generated from their PDQ analyses. Twenty-two axial planes were defined in the original VP data. The isotopics used in this study were for a 3.41 initial wt % 235 U and an average burnup of 31.5 GWd/MTU

  17. Numerical solution of stiff burnup equation with short half lived nuclides by the Krylov subspace method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro; Sugimura, Naoki

    2007-01-01

    The Krylov subspace method is applied to solve nuclide burnup equations used for lattice physics calculations. The Krylov method is an efficient approach for solving ordinary differential equations with stiff nature such as the nuclide burnup with short lived nuclides. Some mathematical fundamentals of the Krylov subspace method and its application to burnup equations are discussed. Verification calculations are carried out in a PWR pin-cell geometry with UO 2 fuel. A detailed burnup chain that includes 193 fission products and 28 heavy nuclides is used in the verification calculations. Shortest half life found in the present burnup chain is approximately 30 s ( 106 Rh). Therefore, conventional methods (e.g., the Taylor series expansion with scaling and squaring) tend to require longer computation time due to numerical stiffness. Comparison with other numerical methods (e.g., the 4-th order Runge-Kutta-Gill) reveals that the Krylov subspace method can provide accurate solution for a detailed burnup chain used in the present study with short computation time. (author)

  18. The Gd-isotopic fuel for high burnup in PWR's

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcio Soares; Mattos, João Roberto L. de; Andrade, Edison Pereira de, E-mail: marciod@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: epa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Today, the discussion about the high burnup fuel is beyond the current fuel enrichment licensing and burnup limits. Licensing issues and material/design developments are again key features in further development of the LWR fuel design. Nevertheless, technological and economical solutions are already available or will be available in a short time. In order to prevent the growth of the technological gap, Brazil's nuclear sector needs to invest in the training of new human resources, in the access to international databases, and in the upgrading existing infrastructure. Experimental database and R&D infrastructure are essential components to support the autonomous development of Brazilian Nuclear Reactors, promoting the development of national technologies. The (U,Gd)O{sub 2} isotopic fuel proposed by the CDTN's staff solve two main issues in the high burnup fuel, which are (1) the peak of reactivity resulting from the Gd-157 fast burnup, and (2) the peak of temperature in the (U,Gd)O{sub 2} nuclear fuel resulting from detrimental effects in the thermal properties for gadolinia additions higher than 2%. A sustainable future can be envisaged for the nuclear energy. (author)

  19. New burnup calculation of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z.

    2015-01-01

    The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)

  20. Validation of SCALE-4 for burnup credit applications

    International Nuclear Information System (INIS)

    Bowman, S.M.; DeHart, M.D.; Parks, C.V.

    1995-01-01

    In the past, a criticality analysis of PWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. If credit is allowed for fuel burnup in the design of casks that are used in the transport of spent light water reactor fuel to a repository, the increase in payload can lead to a significant reduction in the cost of transport and a potential reduction in the risk to the public. A portion of the work has been performed at ORNL in support of the US DOE efforts to demonstrate a validation approach for criticality safety methods to be used in burnup credit cask design. To date, the SCALE code system developed at ORNL has been the primary computational tool used by DOE to investigate technical issues related to burnup credit. The ANSI/ANS-8.1 criticality safety standard requires validation and benchmarking of the calculational methods used in evaluating criticality safety limits for applications outside reactors by correlation against critical experiments that are applicable. Numerous critical experiments for fresh PWR-type fuel in storage and transport configurations exist and can be used as part of a validation database. However, there are no critical experiments with burned PWR-type fuel in storage and transport configurations. As an alternative, commercial reactors offer an excellent source of measured critical configurations. The results reported demonstrate the ability of the ORNL SCALE-4 methodology to predict a value of k eff very close to the known value of 1.0, both for fresh fuel criticals and for the more complex reactor criticals. Beyond these results, additional work in the determination of biases and uncertainties is necessary prior to use in burnup credit applications

  1. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Henriquez, C; Navarro, G; Pereda, C

    2000-01-01

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  2. OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1993-01-01

    Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are 149 Sm, 151 Sm, and 155 Gd

  3. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Nagase, Fumihisa; Futakawa, Masatoshi; Kiuchi, Kiyoshi

    2001-03-01

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  4. IFPE/TRIBULATION R1, Fuel Rod Behaviour at High Burnup

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2002-01-01

    Description: The TRIBULATION (Tests Relative to High Burnup Limitations Arising Normally in LWRs) International Programme started in July 1980 and was organized jointly by BelgoNucleaire and the Nuclear Energy Centre at Mol (CEN/SCK) with the co-sponsorship of 14 participating organizations. The objectives of the programme were twofold. It was primarily a demonstration programme aimed at assessing the fuel rod behaviour at high burn-up, when an earlier transient had occurred in the power plant. The second objective was to investigate the behaviour of different fuel rod designs and manufacturers when subjected to a steady state irradiation history to high burn-up. The first objective was met by irradiating fuel rods under steady state conditions in the BR3 reactor and under transient conditions in BR2. The effect of the transient was determined by comparing data from 4 identical rods tested as follows: i) BR3 irradiation followed by PIE; ii) BR3 irradiation followed by BR2 transient then PIE; iii) BR3 irradiation followed by BR2 transient and re-irradiated in BR3 before PIE; iv) BR3 irradiation and continued BR3 irradiation to maximum burn-up before PIE. The Database contains data from 19 cases using rods fabricated by BelgoNucleaire (BN) (11) and Brown Boveri Reactor GmbH (BBR) (8)

  5. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  6. On-line extraction of the variance caused by burn-up in in-core three-dimensional power distribution

    International Nuclear Information System (INIS)

    Wang Yaqi; Luo Zhengpei; Li Fu; Liu Wenfeng

    2001-01-01

    In most of PWRs, the ex-core ion-chambers are the sole real-time sensors to respond to in-core power and its axial offset. However, the calibration coefficient of the ion-chambers depends on the (3D) power distribution and varies with the burn-up. People expect to know the variance in distribution caused by burn-up directly from the signals of ion-chambers. This expectation is not realized as yet, because an ion-chamber almost only responds to its nearest fuel assemblies. The authors then developed a two-step method for burn-up characteristic extraction: the harmonics synthesis method and harmonics' burn-up grouping. Using the extracted burn-up characteristics, the relationship between the readings of the ex-core ion-chambers and the in-core 3D power distribution is set up. Through the simulation on the heating reactor, the method of burn-up characteristic extraction is verified under engineering conditions. It is possible to on-line extract the variance caused by burn-up in 3D power distribution

  7. Deuterides of light elements: low-temperature thermonuclear burn-up and applications to thermonuclear fusion problems

    International Nuclear Information System (INIS)

    Frolov, A.M.; Smith, V.H.; Smith, G.T.

    2002-01-01

    Thermonuclear burn-up and thermonuclear applications are discussed for a number of deuterides and DT hydrides of light elements. These deuterides and corresponding DT hydrides are often used as thermonuclear fuels or components of such fuels. In fact, only for these substances thermonuclear energy gain exceeds (at some densities and temperatures) the bremsstrahlung loss and other high-temperature losses, i.e., thermonuclear burn-up is possible. Herein, thermonuclear burn-up in these deuterides and DT hydrides is considered in detail. In particular, a simple method is proposed to determine the critical values of the burn-up parameter x c for these substances and their mixtures at different temperatures and densities. The results for equimolar DT mixtures coincide quite well with the results of previous calculations. Also, the natural or Z limit is determined for low-temperature thermonuclear burn-up in the deuterides of light elements. (author)

  8. Nuclear fuel burn-up economy; Ekonomija izgaranja nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1984-07-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  9. Isotopic and criticality validation for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Fuentes, E.; Lancaster, D.; Rahimi, M.

    1997-01-01

    The techniques used for actinide-only burnup credit isotopic validation and criticality validation are presented and discussed. Trending analyses have been incorporated into both methodologies, requiring biases and uncertainties to be treated as a function of the trending parameters. The isotopic validation is demonstrated using the SAS2H module of SCALE 4.2, with the 27BURNUPLIB cross section library; correction factors are presented for each of the actinides in the burnup credit methodology. For the criticality validation, the demonstration is performed with the CSAS module of SCALE 4.2 and the 27BURNUPLIB, resulting in a validated upper safety limit

  10. Power ramp tests of high burnup BWR segment rods

    International Nuclear Information System (INIS)

    Hayashi, H.; Etoh, Y.; Tsukuda, Y.; Shimada, S.; Sakurai, H.

    2002-01-01

    Lead use assemblies (LUAs) of high burnup 8x8 fuel design for Japanese BWRs were irradiated up to 5 cycles in Fukushima Daini Nuclear Power Station No. 2 Unit. Segment rods were installed in LUAs and used for power ramp tests in Japanese Material Test Reactor (JMTR). Post irradiation examinations (PIEs) of segment rods were carried out at Nippon Nuclear Fuel Development Co., Ltd. before and after ramp tests. Maximum linear heat rates of LUAs were kept above 300 W/cm in the first cycle, above 250 W/cm in the second and third cycles and decreased to 200 W/cm in the fourth cycle and 80 W/cm in the fifth cycle. The integrity of high burnup 8x8 fuel was confirmed up to the bundle burnup of 48 GWd/t after 5 cycles of irradiation. Systematic and high quality data were collected through detailed PIEs. The main results are as follows. The oxide on the outer surface of cladding tubes was uniform and its thickness was less than 20 micro-meter after 5 cycles of irradiation and was almost independent of burnup. Hydrogen contents in cladding tubes were less than 150 ppm after 5 cycles of irradiation, although hydrogen contents increased during the fourth and fifth irradiation cycles. Mechanical properties of cladding tubes were on the extrapolated line of previous data up to 5 cycles of irradiation. Fission gas release rates were in the low level (mainly less than 6%) up to 5 cycles of irradiation due to the design to decrease pellet temperature. Pellet-cladding bonding layers were observed after the third cycle and almost full bonding was observed after the fifth cycle. Pellet volume increased with burnup in proportion to solid swelling rate up to the forth cycle. After the fifth cycle, slightly higher pellet swelling was confirmed. Power ramp tests were carried out and satisfactory performance of Zr-lined cladding tube was confirmed up to 60 GWd/t (segment average burnup). One segment rod irradiated for 3 cycles failed by a single step ramp test at terminal ramp power of 614 W

  11. Total surface area change of Uranium dioxide fuel in function of burn-up and its impact on fission gas release during neutron irradiation for small, intermediate and high burn-up

    International Nuclear Information System (INIS)

    Szuta, M.

    2011-01-01

    In the early published papers it was observed that the fractional fission gas release from the specimen have a tendency to increase with the total surface area of the specimen - a fairy linear relationship was indicated. Moreover it was observed that the increase of total surface area during irradiation occurs in the result of connection the closed porosity with the open porosity what in turn causes the increase of fission gas release. These observations let us surmise that the process of knock-out release is the most significant process of fission gas release since its quantity is proportional to the total surface area. Review of the experiments related to the increase of total surface area in function of burn-up is presented in the paper. For very high burn-up the process of grain sub-division (polygonization) occurs under condition that the temperature of irradiated fuel lies below the temperature of grain re-crystallization. Simultaneously with the process of polygonization, the increase in local porosity and the decrease in local density in function of burn-up occurs, which leads to the increase of total surface area. It is suggested that the same processes take place in the transformed fuel as in the original fuel, with the difference that the total surface area is so big that the whole fuel can be treated as that affected by the knock-out process. This leads to explanation of the experimental data that for very high burn-up (>120 MWd/kgU) the concentration of xenon is constant. An explanation of the grain subdivision process in function of burn-up in the 'athermal' rim region in terms of total surface area, initial grain size and knock-out release is undertaken. Correlation of the threshold burn-up, the local fission gas concentration, local total surface area, initial and local grain size and burn-up in the rim region is expected. (author)

  12. Validation issues for depletion and criticality analysis in burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Dehart, M.D.; Gauld, I.C.

    2001-01-01

    This paper reviews validation issues associated with implementation of burnup credit in transport, dry storage, and disposal. The issues discussed are ones that have been identified by one or more constituents of the United States technical community (national laboratories, licensees, and regulators) that have been exploring the use of burnup credit. There is not necessarily agreement on the importance of the various issues, which sometimes is what creates the issue. The broad issues relate to the paucity of available experimental data (radiochemical assays and critical experiments) covering the full range and characteristics of spent nuclear fuel in away-from-reactor systems. The paper will also introduce recent efforts initiated at Oak Ridge National Laboratory (ORNL) to provide technical information that can help better assess the value of different experiments. The focus of the paper is on experience with validation issues related to use of burnup credit for transport and dry storage applications. (author)

  13. Calculation study of the WWER-440 fuel performance for extended burnup

    International Nuclear Information System (INIS)

    Kujal, J.; Pazdera, F.; Barta, O.

    1984-01-01

    The results of preliminary calculational study of extended burnup cycling schemes impact on WWER-440 fuel performance are presented. Two high burnup schemes were proposed with three and four cycles, resp. Comparison was made with three cycle reference case. The thermal mechanical analysis was performed with PIN and RELA codes. The values of rod internal pressure, fuel centerline temperatures and fuel-cladding gap are expressed as function of power history. (author)

  14. Burnup credit implementation in WWER spent fuel management systems: Status and future aspects

    International Nuclear Information System (INIS)

    Manolova, M.

    1998-01-01

    This paper describes the motivation for possible burnup credit implementation in WWER spent fuel management systems in Bulgaria. The activities being done are described, namely: the development and verification of a 3D few-group diffusion burnup model; the application of the KORIGEN code for evaluation of WWER fuel nuclear inventory during reactor core lifetime and after spent fuel discharge; using the SCALE modular system (PC Version 4.1) for criticality safety analyses of spent fuel storage facilities. Future plans involving such important tasks as validation and verification of computer systems and libraries for WWER burnup credit analysis are shown. (author)

  15. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  16. OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1993-01-01

    Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are {sup 149}Sm, {sup 151}Sm, and {sup 155}Gd.

  17. Evaluation of Gap Conductance Approach for Mid-Burnup Fuel LOCA Analysis

    International Nuclear Information System (INIS)

    Lee, Joosuk; Woo, Swengwoong

    2013-01-01

    In this study, therefore, the applicability of gap conductance approach on the mid-burnup fuel in LOCA analysis was estimated in terms of the comparison of PCT distribution method means the fuel rod uncertainty is taken into account by the combination of overall uncertainty parameters of fuel rod altogether by use of a simple random sampling(SRS) technique. There are many uncertainty parameters of fuel rod that can change the PCT during LOCA analysis, and these have been identified by the authors' previous work already. But, for the 'best-estimate' LOCA safety analysis the methodology that dose not use the overall uncertainty parameters altogether but used the gap conductance uncertainty alone has been developed to simulate the overall fuel rod uncertainty, because it can represent many uncertainty parameters. Based on this approach, uncertainty range of gap conductance was prescribed as 0.67∼1.5 in audit calculation methodology on LBLOCA analysis. This uncertainty was derived from experimental data of fresh or low burnup fuel. Meanwhile, recent research work identify that the currently utilized uncertainty range seems to be not enough to encompass the uncertainty of mid-burnup fuel. Instead it has to be changed to 0.5∼2.4 for the mid-burnup fuel(30 MWd/kgU)

  18. Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up

    International Nuclear Information System (INIS)

    El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.

    2004-01-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  19. Evaluation of Gap Conductance Approach for Mid-Burnup Fuel LOCA Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joosuk; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, therefore, the applicability of gap conductance approach on the mid-burnup fuel in LOCA analysis was estimated in terms of the comparison of PCT distribution method means the fuel rod uncertainty is taken into account by the combination of overall uncertainty parameters of fuel rod altogether by use of a simple random sampling(SRS) technique. There are many uncertainty parameters of fuel rod that can change the PCT during LOCA analysis, and these have been identified by the authors' previous work already. But, for the 'best-estimate' LOCA safety analysis the methodology that dose not use the overall uncertainty parameters altogether but used the gap conductance uncertainty alone has been developed to simulate the overall fuel rod uncertainty, because it can represent many uncertainty parameters. Based on this approach, uncertainty range of gap conductance was prescribed as 0.67∼1.5 in audit calculation methodology on LBLOCA analysis. This uncertainty was derived from experimental data of fresh or low burnup fuel. Meanwhile, recent research work identify that the currently utilized uncertainty range seems to be not enough to encompass the uncertainty of mid-burnup fuel. Instead it has to be changed to 0.5∼2.4 for the mid-burnup fuel(30 MWd/kgU)

  20. Calculation of heat rating and burn-up for test fuel pins irradiated in DR 3

    International Nuclear Information System (INIS)

    Bagger, C.; Carlsen, H.; Hansen, K.

    1980-01-01

    A summary of the DR 3 reactor and HP1 rig design is given followed by a detailed description of the calculation procedure for obtaining linear heat rating and burn-up values of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially regarding features like end pellet contribution to power as a function of burn-up, gamma heat contributions, and evaluation of local values of heat rating and burn-up. Included in the report is also a description of the fast flux- and cladding temperature calculation techniques currently used. A good agreement between measured and calculated local burn-up values is found. This gives confidence to the detailed treatment of the data. (author)

  1. UO2 fuel behaviour at rod burn-ups up to 105 MWd/kgHM. A review of 10 years of high burn-up examinations commissioned by AREVA NP

    International Nuclear Information System (INIS)

    Goll, W.; Hoffmann, P.B.; Hellwig, C.; Sauser, W.; Spino, J.; Walker, C.T.

    2007-01-01

    Irradiation experience gained on fuel rods with burn-ups greater than 60 MWd/kgHM irradiated in the Nuclear Power Plant Goesgen, Switzerland, is described. Emphasis is placed on the fuel behaviour, which has been analysed by hot cell examinations at the Institute for Transuranium Elements and the Paul-Scherrer-Institute. Above 60 MWd/kgHM, the so-called high burn-up structure (HBS) forms and the fission gas release increases with burn-up and rod power. Examinations performed in the outer region of the fuel revealed that most if not all of the fission gas created was retained in the HBS, even at 25% porosity. Furthermore, the HBS has a relatively low swelling rate, greatly increased plasticity, and its thermal conductivity is higher than expected from the porosity. The post-irradiation examinations showed that the HBS has no detrimental effects on the performance of stationary irradiated PWR fuel irradiated to the high burn-ups that can be achieved with 5 wt% U-235 enrichment. On the contrary, the HBS results in fuel performance that is generally better than it would have been if the HBS had not formed. (orig.)

  2. Specific application of burnup credit for MOX PWR fuels in the rotary dissolver

    International Nuclear Information System (INIS)

    Caplin, Gregory; Coulaud, Alexandre; Klenov, Pavel; Toubon, Herve

    2003-01-01

    In prospect of a Mixed OXide spent fuels processing in the rotary dissolver in COGEMA/La Hague plant, it is interesting to quantify the criticality-safety margins from the burnup credit. Using the current production computer codes and considering a minimal fuel irradiation of 3 200 megawatt-day per ton, this paper shows the impact of burnup credit on industrial parameters such as the permissible concentration in the dissolution solution or the permissible oxide mass in the rotary dissolver. Moreover, the burnup credit is broken down into five sequences in order to quantify the contribution of fissile nuclides decrease and of minor actinides and fission products formation. The implementation of the burnup credit in the criticality-safety analysis of the rotary dissolver may lead to workable industrial conditions for the particular MOX fuel studied. It can eventually be noticed that minor actinides contribution is negligible and that considering only the six major fission products is sufficient, owing to the weak fuel irradiation contemplated. (author)

  3. Challenges in the application of burn-up credit to the criticality safety of the THORP reprocessing plant

    International Nuclear Information System (INIS)

    Mayson, R.T.H.; Gunston, K.J.

    1999-01-01

    Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)

  4. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1991-08-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications

  5. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package

  6. The burnup capabilities of the Deep Burn Modular Helium Reactor analyzed by the Monte Carlo Continuous Energy Code MCB

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto E-mail: alby@neutron.kth.se; Gudowski, Waclaw E-mail: wacek@neutron.kth.se; Venneri, Francesco E-mail: venneri@lanl.gov

    2004-01-01

    We have investigated the waste actinide burnup capabilities of a Gas Turbine Modular Helium Reactor (GT-MHR, similar to the reactor being designed by General Atomics and Minatom for surplus weapons plutonium destruction) with the Monte Carlo Continuous Energy Burnup Code MCB, an extension of MCNP developed at the Royal Institute of Technology in Stockholm and University of Mining and Metallurgy in Krakow. The GT-MHR is a gas-cooled, graphite-moderated reactor, which can be powered with a wide variety of fuels, like thorium, uranium or plutonium. In the present work, the GT-MHR is fueled with the transuranic actinides contained in Light Water Reactors (LWRs) spent fuel for the purpose of destroying them as completely as possible with minimum reliance on multiple reprocessing steps. After uranium extraction from the LWR spent fuel (UREX), the remaining waste actinides, including plutonium are partitioned into two distinct types of fuel for use in the GT-MHR: Driver Fuel (DF) and Transmutation Fuel (TF). The DF supplies the neutrons to maintain the fission chain reaction, whereas the TF emphasizes neutron capture to induce a deep burn transmutation and provide reactivity control by a negative feedback. When used in this mode, the GT-MHR is called Deep Burn Modular Helium Reactor (DB-MHR). Both fuels are contained in a structure of triple isotropic coated layers, TRISO coating, which has been proven to retain fission products up to 1600 deg. C and is expected to remain intact for hundreds of thousands of years after irradiation. Other benefits of this reactor consist of: a well-developed technology, both for the graphite-moderated core and the TRISO structure, a high energy conversion efficiency (about 50%), well established passive safety mechanism and a competitive cost. The destruction of more than 94% of {sup 239}Pu and the other geologically problematic actinide species makes this reactor a valid proposal for the reduction of nuclear waste and the prevention of

  7. The burnup capabilities of the Deep Burn Modular Helium Reactor analyzed by the Monte Carlo Continuous Energy Code MCB

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gudowski, Waclaw; Venneri, Francesco

    2004-01-01

    We have investigated the waste actinide burnup capabilities of a Gas Turbine Modular Helium Reactor (GT-MHR, similar to the reactor being designed by General Atomics and Minatom for surplus weapons plutonium destruction) with the Monte Carlo Continuous Energy Burnup Code MCB, an extension of MCNP developed at the Royal Institute of Technology in Stockholm and University of Mining and Metallurgy in Krakow. The GT-MHR is a gas-cooled, graphite-moderated reactor, which can be powered with a wide variety of fuels, like thorium, uranium or plutonium. In the present work, the GT-MHR is fueled with the transuranic actinides contained in Light Water Reactors (LWRs) spent fuel for the purpose of destroying them as completely as possible with minimum reliance on multiple reprocessing steps. After uranium extraction from the LWR spent fuel (UREX), the remaining waste actinides, including plutonium are partitioned into two distinct types of fuel for use in the GT-MHR: Driver Fuel (DF) and Transmutation Fuel (TF). The DF supplies the neutrons to maintain the fission chain reaction, whereas the TF emphasizes neutron capture to induce a deep burn transmutation and provide reactivity control by a negative feedback. When used in this mode, the GT-MHR is called Deep Burn Modular Helium Reactor (DB-MHR). Both fuels are contained in a structure of triple isotropic coated layers, TRISO coating, which has been proven to retain fission products up to 1600 deg. C and is expected to remain intact for hundreds of thousands of years after irradiation. Other benefits of this reactor consist of: a well-developed technology, both for the graphite-moderated core and the TRISO structure, a high energy conversion efficiency (about 50%), well established passive safety mechanism and a competitive cost. The destruction of more than 94% of 239 Pu and the other geologically problematic actinide species makes this reactor a valid proposal for the reduction of nuclear waste and the prevention of

  8. Consequences of the increase of burnup on the fuel

    International Nuclear Information System (INIS)

    Melin, P.; Lavoine, O.; Houdaille, B.

    1986-04-01

    The examinations carried out on the FRAGEMA fuel of EDF reactors show its good behavior in service. The results of research and development programs developed by EDF, FGA and the CEA show that this fuel can be irradiated up to a high burnup, and allow to point out the axies of research to improve still the performance of the product in a more and more soliciting environment (increase of power and burnup coupled with load following). Among the solutions considered, there are the design and fabrication adjustments (geometry, initial pressurization), more fundamental changes concerning fuel cans and fuel pellets, which need still research and development programs [fr

  9. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  10. Tag gas burnup based on three-dimensional FTR analysis

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1976-01-01

    Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified

  11. K-infinite trends with burnup, enrichment, and cooling time for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1998-08-01

    This report documents the work performed by ORNL for the Yucca Mountain project (YMP) M and O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k inf values for infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon consultation with the YMP staff, a Quad Cities BWR fuel assembly was selected as a baseline assembly. This design consists of seven axial enrichment zones, three of which contain natural uranium oxide. No attempt was made to find a bounding or even typical assembly design due to the wide variety in fuel assembly designs necessary for consideration. The current work concentrates on establishing a baseline analysis, along with a small number of sensitivity studies which can be expected later if desired. As a result of similar studies of this nature, several effects are known to be important in the determination of the final k inf for spent fuel in a cask-like geometry. For a given enrichment there is an optimal burnup: for lower burnups, excess energy (and corresponding excess reactivity) is present in the fuel assembly; for larger burnups, the assembly is overburned and essentially driven by neighboring fuel assemblies. The majority of the burnup/enrichment scenarios included in this study were for some near-optimum burnup/enrichment combinations as determined from Energy Information Administration (EIA) data. Several calculations were performed for under- and over-burned fuel to show these effects

  12. High Burnup Fuel Behaviour under LOCA Conditions as Observed in Halden Reactor Experiments

    International Nuclear Information System (INIS)

    Kolstad, E.; Wiesenack, W.; Oberlander, B.; Tverberg, T.

    2013-01-01

    In the context of assessing the validity of safety criteria for loss of coolant accidents with high burnup fuel, the OECD Halden Reactor Project has implemented an integral in-pile LOCA test series. In this series, fuel fragmentation and relocation, axial gas communication in high burnup rods as affected by gap closure and fuel- clad bonding, and secondary cladding oxidation and hydriding are of major interest. In addition, the data are being used for code validation as well as model development and verification. So far, nine tests with irradiated fuel segments (burnup 40-92 MW.d.kg -1 ) from PWR, BWR and VVER commercial nuclear power plants have been carried out. The in-pile measurements and the PIE results show a good repeatability of the experiments. The paper describes the experimental setup as well as the principal features and main results of these tests. Fuel fragmentation and relocation have occurred to varying degrees in these tests. The paper compares the conditions leading to the presence or absence of fuel fragmentation, e.g., burnup and loss of constraint. Axial gas flow is an important driving force for clad ballooning, fuel relocation and fuel expulsion. The experiments have provided evidence that such gas flow can be impeded in high burnup fuel with a potential impact on the ballooning and fuel dispersal. Although the results of the Halden LOCA tests are, to some extent, amplified by conditions and features deliberately introduced into the test series, the fuel behaviour identified in the Halden tests has an impact on the safety assessment of high burnup fuel and should give rise to improvements of the predictive capabilities of LOCA modelling codes. (author)

  13. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Makmal, T. [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel); Nuclear Physics and Engineering Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Aviv, O. [Radiation Safety Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel)

    2016-10-21

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections. - Highlights: • Simple, inexpensive, safe and flexible experimental setup that can be quickly deployed. • Experimental results are thoroughly corroborated against ORIGEN2 burnup code. • Experimental uncertainty of 9% and 5% deviation between measurements and simulations. • Very high burnup MTR fuel element is examined, with 60% depletion of {sup 235}U. • Impact of highly irregular irradiation regime on burnup evaluation is studied.

  14. Burn-Up Determination by High Resolution Gamma Spectrometry: Fission Product Migration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-04-15

    The migration of solid fission products, in particular caesium and ruthenium, in high temperature oxide fuel can create a severe problem during the application of non-destructive burn-up methods employing gamma spectrometry, since caesium-137 is otherwise the most convenient long-lived burn-up monitor and ruthenium-106 can be used to distinguish between fissions in U-235 and Pu-239. As part of an experimental programme to develop burn-up methods, gamma scanning experiments have been performed on slices of irradiated UO{sub 2} pellets using a lithium-drifted germanium detector. The usefulness of the technique for migration studies has been demonstrated by comparing the fission product distribution curves across the specimen diameters with the microstructure of the specimens after polishing and etching.

  15. Fission gas and iodine release measured up to 15 GWd/t UO2 burnup

    International Nuclear Information System (INIS)

    Appelhans, A.D.

    1983-01-01

    A summary is presented of the measured release of xenon, krypton and iodine up to 15 GWd/t UO 2 burnup for fuel centerline temperatures ranging from 950 to 1800 K, at average linear heat ratings of 15 to 35 kW/m. The IFA-430 is composed of four 1.28-m-long fuel rods containing 10% enriched UO 2 pellet fuel. Two of the fuel rods are connected, top and bottom, to a gas flow system that permits the fission gases released from the fuel pellets to be swept out of the rods during irradiation and measured via gamma spectrometry. The release/burnup increased significantly between 10 and 15 GWd/t burnup. Fuel temperature did not change. Increased releases were due to physical changes in the fuel-surface area. Changes appeared to be due to higher power operation and burnup

  16. Implementation of burnup credit in spent fuel management systems. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-08-01

    The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately.

  17. Implementation of burnup credit in spent fuel management systems. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-08-01

    The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately

  18. Dependence of heavy metal burnup on nuclear data libraries for fast reactors

    CERN Document Server

    Ohki, S

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) is considering the highly burnt fuel as well as the recycling of minor actinide (MA) in the development of commercialized fast reactor cycle systems. Higher accuracy in burnup calculation is going to be required for higher mass plutonium isotopes ( sup 2 sup 4 sup 0 Pu, etc.) and MA nuclides. In the framework of research and development aiming at the validation and necessary improvements of fast reactor burnup calculation, we investigated the differences among the burnup calculation results with the major nuclear data libraries: JEF-2.2, ENDF/B-VI Release 5, JENDL-3.2, and JENDL-3.3. We focused on the heavy metal nuclides such as plutonium and MA in the central core region of a conventional sodium-cooled fast reactor. For main heavy metal nuclides ( sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U, sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, and sup 2 sup 4 sup 1 Pu), number densities after 1-cycle burnup did not change over one or two percent. Library dependence was re...

  19. Status of burnup credit for transport of SNF in the United States

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2004-01-01

    Allowing credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transportation, and disposal of spent nuclear fuel (SNF) while maintaining a subcritical margin sufficient to establish an adequate safety basis. This paper reviews the current status of burnup credit applied to the design and transport of SNF casks in the United States. The existing U.S. regulatory guidance on burnup credit is limited to pressurized-water-reactor (PWR) fuel and to allowing credit only for actinides in the SNF. By comparing loading curves against actual SNF discharge data for U.S. reactors, the potential benefits that can be realized using the current regulatory guidance with actinide-only burnup credit are illustrated in terms of the inventory allowed in high-capacity casks and the concurrent reduction in SNF shipments. The additional benefits that might be realized by extending burnup credit to credit for select fission products are also illustrated. The curves show that, although fission products in SNF provide a small decrease in reactivity compared with actinides, the additional negative reactivity causes the SNF inventory acceptable for transportation to increase from roughly 30% to approximately 90% when fission products are considered. A savings of approximately $150M in transport costs can potentially be realized for the planned inventory of the repository. Given appropriate experimental data to support code validation, a realistic best-estimate analysis of burnup credit that includes validated credit for fission products is the enhancement that will yield the most significant impact on future transportation plans

  20. Benefits of the delta K of depletion benchmarks for burnup credit validation

    International Nuclear Information System (INIS)

    Lancaster, D.; Machiels, A.

    2012-01-01

    Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO 2 critical experiments to determine the criticality safety limits on the neutron multiplication factor, k eff . The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)

  1. Design and analytic evaluation of a rim effect reduction type LWR fuel for extending burnup

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo; Kameyama, Takanori; Kinoshita, Motoyasu

    1991-01-01

    We have designed a new concept fuel design 'Rim effect reduction type fuel' which has thin natural UO 2 layer on surface of a UO2 pellet. Our neutronic analyses with ANRB code show this fuel design can reduce rim effect (burnup at plelet rim) by about 30 GWd/t comparing a normal fuel. It is known that a high burnup fuel has different microstructure from as-fabricated one at fuel rim (which is called as rim region) due to rim effect. Therefore this fuel design can expect smaller rim region than a normal fuel. Our fuel performance analyses with EIMUS code show this fuel design can reduce fuel center temperature at high burnup if thermal conductivity of fuel pellet decreases with burnup in inverse proportion. However, this fuel design increases fuel center temperature at low and middle burnup than a normal fuel due to increase of thermal power density at pellet center. Additionally Irradiation experiment of this fuel design can be considered to offer important data which make clear the relation between rim effect and fuel performance. (author)

  2. Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.

    2016-01-01

    Criticality control of damaged nuclear fuel is one of the key issues in the decommissioning operation of the Fukushima Daiichi Nuclear Power Station accident. The average isotopic composition of spent nuclear fuel as a function of burn-up is required in order to evaluate criticality parameters of the mixture of damaged nuclear fuel with other materials. The NEA Expert Group on Burn-up Credit Criticality (EGBUC) has organised several international benchmarks to assess the accuracy of burn-up calculation methodologies. For BWR fuel, the Phase III-B benchmark, published in 2002, was a remarkable landmark that provided general information on the burn-up properties of BWR spent fuel based on the 8x8 type fuel assembly. Since the publication of the Phase III-B benchmark, all major nuclear data libraries have been revised; in Japan from JENDL-3.2 to JENDL-4, in Europe from JEF-2.2 to JEFF-3.1 and in the US from ENDF/B-VI to ENDF/B-VII.1. Burn-up calculation methodologies have been improved by adopting continuous-energy Monte Carlo codes and modern neutronics calculation methods. Considering the importance of the criticality control of damaged fuel in the Fukushima Daiichi Nuclear Power Station accident, a new international burn-up calculation benchmark for the 9 x 9 STEP-3 BWR fuel assemblies was organised to carry out the inter-comparison of the averaged isotopic composition in the interest of the burnup credit criticality safety community. Benchmark specifications were proposed and approved at the EGBUC meeting in September 2012 and distributed in October 2012. The deadline for submitting results was set at the end of February 2013. The basic model for the benchmark problem is an infinite two-dimensional array of BWR fuel assemblies consisting of a 9 x 9 fuel rod array with a water channel in the centre. The initial uranium enrichment of fuel rods without gadolinium is 4.9, 4.4, 3.9, 3.4 and 2.1 wt% and 3.4 wt% for the rods using gadolinium. The burn-up conditions are

  3. Technical and economic limits to fuel burnup extension. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-07-01

    For many years, the increase of efficiency in the production of nuclear electricity has been an economic challenge in many countries which have developed this kind of energy. The increase of fuel burnup leads to a reduction in the volume of spent fuel discharged to longer fuel cycles in the reactor, which means bigger availability and capacity factors. After having increased the authorized burnup in plants, developing new alloys capable of resisting high burnup, and having accumulated data on fuel evolution with burnup, it has become necessary to establish the limitations which could be imposed by the physical evolution of the fuel, influencing fuel management, neutron properties, reprocessing or, more generally, the management of waste and irradiated fuels. It is also necessary to verify whether the benefits of lower electricity costs would not be offset by an increase in fuel management costs. The main questions are: Are technical and economic limits to the increasing of fuel burnup in parallel? Can we envisage nowadays the hardest limitation in some of these areas? Which are the main points to be solved from the technical point of view? Is this effort worthwhile considering the economy of the cycle? To which extent? For these reasons, the IAEA, following a recommendation by the International Working Group on Fuel Performance and Technology, held a Technical Committee Meeting on Technical and Economic Limits to Fuel Burnup Extension. The purpose of this meeting was to provide an international forum to review the evolution of fuel properties at increased burnup in order to estimate the limitations both from a physical and an economic point of view. The meeting was therefore divided into two parts. The first part, focusing on technical limits, was devoted to the improvement of the fuel element, such as fission gas release (FGR), RIM effect, cladding, etc. and the fabrication, core management, spent fuel and reprocessing. Eighteen related papers were presented which

  4. Burnup Measurement of Spent Fuel Assembly by CZT-based Gamma-ray Spectroscopy for Input Nuclear Material Accountancy of Pyroprocessing

    International Nuclear Information System (INIS)

    Seo, Hee; Oh, Jong-Myeong; Shin, Hee-Sung; Kim, Ho-Dong; Lee, Seung-Kyu; Park, Se-Hwan

    2013-06-01

    Input nuclear material accountancy is crucial for a pyroprocessing facility safeguards. Until a direct Pu measurement technique is established, an indirect method based on code calculations with burnup measurement and neutron counting for 244 Cm could be a practical option. Burnup can be determined by destructive analysis (DA) for final dispositive accuracy or by nondestructive assay (NDA) for near-real time accountancy. In the present study, an underwater burnup measurement system based on gamma-ray spectroscopy with the CZT detector was developed and tested on a spent fuel assembly. Burnup was determined according to the 134 Cs/ 137 Cs activity ratio with efficiency correction by Geant4 Monte Carlo simulations. The activity ratio as a function of burnup was obtained by ORIGEN calculations. The measured burnup error was 8.6%, which was within the measurement uncertainty. It is expected that the underwater burnup measurement system could fulfill an important role as a means of near-real time accountancy at a future pyroprocessing facility. (authors)

  5. Development of a Burnup Module DECBURN Based on the Krylov Subspace Method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Kim, K. S.; Shim, H. J.; Song, J. S

    2008-05-15

    This report is to develop a burnup module DECBURN that is essential for the reactor analysis and the assembly homogenization codes to trace the fuel composition change during the core burnup. The developed burnup module solves the burnup equation by the matrix exponential method based on the Krylov Subspace method. The final solution of the matrix exponential is obtained by the matrix scaling and squaring method. To develop DECBURN module, this report includes the followings as: (1) Krylov Subspace Method for Burnup Equation, (2) Manufacturing of the DECBURN module, (3) Library Structure Setup and Library Manufacturing, (4) Examination of the DECBURN module, (5) Implementation to the DeCART code and Verification. DECBURN library includes the decay constants, one-group cross section and the fission yields. Examination of the DECBURN module is performed by manufacturing a driver program, and the results of the DECBURN module is compared with those of the ORIGEN program. Also, the implemented DECBURN module to the DeCART code is applied to the LWR depletion benchmark and a OPR-1000 pin cell problem, and the solutions are compared with the HELIOS code to verify the computational soundness and accuracy. In this process, the criticality calculation method and the predictor-corrector scheme are introduced to the DeCART code for a function of the homogenization code. The examination by a driver program shows that the DECBURN module produces exactly the same solution with the ORIGEN program. DeCART code that equips the DECBURN module produces a compatible solution to the other codes for the LWR depletion benchmark. Also the multiplication factors of the DeCART code for the OPR-1000 pin cell problem agree to the HELIOS code within 100 pcm over the whole burnup steps. The multiplication factors with the criticality calculation are also compatible with the HELIOS code. These results mean that the developed DECBURN module works soundly and produces an accurate solution

  6. Fission product margin in burnup credit analyses

    International Nuclear Information System (INIS)

    Finck, P.J.; Stenberg, C.G.

    1998-01-01

    The US Department of Energy (DOE) is currently working toward the licensing of a methodology for using actinide-only burnup credit for the transportation of spent nuclear fuel (SNF). Important margins are built into this methodology. By using comparisons with a representative experimental database to determine bias factors, the methodology ensures that actinide concentrations and worths are estimated conservatively; furthermore, the negative net reactivity of certain actinides and all fission products (FPs) is not taken into account, thus providing additional margin. A future step of DOE's effort might aim at establishing an actinide and FP burnup credit methodology. The objective of this work is to establish the uncertainty to be applied to the total FP worth in SNF. This will serve two ends. First, it will support the current actinide-only methodology by demonstrating the margin available from FPs. Second, it will identify the major contributions to the uncertainty and help set priorities for future work

  7. Effect of fissile isotope burnup on criticality safety for stored disintegrated fuel rods

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Selby, G.P.

    1978-09-01

    If the fuel rods were to disintegrate and water added, a criticality could occur in a 13-in. PWR canister with fresh fuel enriched to 3.5 wt % 235 U. The question is, ''If credit could be taken for burnup, could this indicate a subcritical condition.'' In attempting to answer this question, a series of calculations were performed. A set of isotopic concentrations were generated for 5,000, 10,000, 15,000, and 20,000 MWD/MTU burnup levels. Four reflector materials, water, concrete and two types of soil, were considered. Results indicate that allowing credit for fissile isotope burnup does not completely remove the concern for criticality safety in the event of rod disintegration. Reactivities which are ''subcritical'' (k/sub eff/ = 0.95) would not occur for three of the four reflector materials at even the 20,000 MWD/MTU burnup level in the 13-in. canister. The water reflected canister would achieve the k/sub eff/ = 0.95 level near 18,000 MWD/MTU. A smaller canister could be postulated. If a quarter inch gap is allowed, a Westinghouse 17 x 17 PWR assembly requires a 12 1 / 4 inch diameter canister. For such a canister with water reflection the ''subcritical'' (k/sub eff/ = 0.95) level would be reached near 15,000 MWD/MTU. The soil reflected canisters would reach this level between 18,000 and 19,000 MWD/MTU. Considering the difficulties in taking credit for burnup, such modest gains in apparent safety are not encouraging. This situation might be improved, however, if credit were also taken for neutron absorption by fission product poisons produced during burnup. It is strongly recommended that other approaches to a solution of the criticality safety problem be considered

  8. Method for adding additional isotopes to actinide-only burnup credit

    International Nuclear Information System (INIS)

    Lancaster, D.B.; Fuentes, E.; Kang, C.

    1998-01-01

    The Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages requires computer code validation to be performed against a benchmark set of chemical assays for isotopic concentration and against a benchmark set of critical experiments for package criticality. Both sets contain all the isotopes included in the methodology. The chemical assays used include the uranium and plutonium isotopes, while the critical experiments were composed of UO 2 or MOX rods, covering the isotopes in the actinide only approach. Since other isotopes are not included in the validation benchmark sets, it would be necessary to justify both the content and worth of any additional isotope for which burnup credit is to be taken (i.e., both the concentration and criticality effect of each particular isotope must be validated). A method is proposed here that can be used for any number of additional isotopes. As does the actinide-only burnup credit methodology, this method makes use of chemical assay data to establish the conservatism in the prediction of each isotope's concentration. Criticality validation is also performed using a benchmark set of UO 2 and MOX critical experiments, where the additional isotopes are validated using worth experiments to conservatively account for any uncertainty in their cross sections. The remaining requirements (analysis and modeling parameters, loading criteria generation, and physical implementation and controls) are performed exactly as described in the actinide-only burnup credit methodology. This report provides insight into each particular requirement in the new methodology

  9. Overview of the burnup credit activities at OECD/NEA/NSC

    International Nuclear Information System (INIS)

    Brady Raap, M.C.; Nomura, Y.; Sartori, E.

    2001-01-01

    This article summarizes activities of the OECD/NEA Burnup Credit Expert Panel, a subordinate group to the Working Party on Nuclear Criticality Safety (WPNCS). The WPNCS of the OECD/NEA coordinates and carries out work in the domain of criticality safety at the international level. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burnup credit. The activities of the expert panel are aimed toward improving safety and identifying economic solutions to issues concerning the back-end of the fuel cycle. The main objective of the activities of the OECD/NEA Burnup Credit Expert Panel is to demonstrate that the available criticality safety calculational tools are appropriate for application to burned fuel systems and that a reasonable safety margin can be established. The method established by the expert panel for investigating the physics and predictability of burnup credit is based on the specification and comparison of calculational benchmark problems. A wide range of fuel types, including PWR, BWR, MOX, and VVER fuels, has been or are being addressed by the expert panel. The objective and status of each of these benchmark problems is reviewed in this article. It is important to note that the focus of the expert panel is the comparison of the results submitted by each participant to assess the capability of commonly used code systems, not to quantify the physical phenomena investigated in the comparisons or to make recommendations for licensing action. (author)

  10. Burnup verification measurements at a US nuclear utility using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.; Bosler, G.E.; Walden, G.

    1993-01-01

    The FORK measurement system, designed at Los Alamos National Laboratory (LANL) for the International Atomic Energy Agency (IAEA) safeguards program, has been used to examine spent reactor fuel assemblies at Duke Power Company's Oconee Nuclear Station. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. These measurements can be correlated with burnup and cooling time, and can be used to verify the reactor site records. Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. By taking into account the reduced reactivity of spent fuel due to its burnup in the reactor, burnup credit results in more efficient and economic transport and storage. The objectives of these tests are to demonstrate the applicability of the FORK system to verify reactor records and to develop optimal procedures compatible with utility operations. The test program is a cooperative effort supported by Sandia National Laboratories, the Electric Power Research Institute (EPRI), Los Alamos National Laboratory, and the Duke Power Company

  11. A SAS2H/KENO-V methodology for 3D fuel burnup analysis

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J.

    2002-01-01

    An efficient methodology for 3D fuel burnup analysis of LWR reactors is described in this paper. This methodology is founded on coupling Monte Carlo method for 3D calculation of node power distribution, and transport method for depletion calculation in ID Wigner-Seitz equivalent cell for each node independently. The proposed fuel burnup modeling, based on application of SCALE-4.4a control modules SAS2H and KENO-V.a is verified for the case of 2D x-y model of IRIS 15 x 15 fuel assembly (with reflective boundary condition) by using two well benchmarked code systems. The one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. The proposed SAS2H/KENO-V.a methodology was applied for 3D burnup analysis of IRIS-1000 benchmark.44 core. Detailed k sub e sub f sub f and power density evolution with burnup are reported. (author)

  12. Proceedings of a workshop on the use of burnup credit in spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-10-01

    The Department of Energy sponsored a workshop on the use of burnup credit in the criticality design of spent fuel shipping casks on February 21 and 22, 1988. Twenty-five different presentations on many related topics were conducted, including the effects of burnup credit on the design and operation of spent fuel storage pools, casks and modules, and shipping casks; analysis and physics issues related to burnup credit; regulatory issues and criticality safety; economic incentives and risks associated with burnup credit; and methods for verifying spent fuel characteristics. An abbreviated version of the DOE workshop was repeated as a special session at the November 1988 American Nuclear Society Meeting in Washington, DC. Each of the invited speakers prepared detailed papers on his or her respective topic. The individual papers have been cataloged separately

  13. The application of burnup credit for spent fuel operations in the United Kingdom

    International Nuclear Information System (INIS)

    Bowden, R.

    1998-01-01

    This paper begins by outlining the structure of the nuclear industry in the United Kingdom. It then sets out the methodology of burnup credit, and provides a brief discussion of the validation and robustness of the calculational route. This leads to a description of both the current and intended applications of burnup credit in the United Kingdom. (author)

  14. Performance of Bruce natural UO2 fuel irradiated to extended burnups

    International Nuclear Information System (INIS)

    Zhou, Y.N.; Floyd, M.R.; Ryz, M.A.

    1995-11-01

    Bruce-type bundles XY, AAH and GF were successfully irradiated in the NRU reactor at Chalk River Laboratories to outer-element burnups of 570-900 MWh/kgU. These bundles were of the Bruce Nuclear Generating Station (NGS)-A 'first-charge' design that contained gas plenums in the outer elements. The maximum outer-element linear powers were 33-37 kW/m. Post-irradiation examination of these bundles confirmed that all the elements were intact. Bundles XY and AAH, irradiated to outer-element burnups of 570-700 MWh/kgU, experienced low fission-gas release (FGR) ( 500 MWh/kgU (equivalent to bundle-average 450 MWh/kgU) when maximum outer-element linear powers are > 50 kW/m. The analysis in this paper suggests that CANDU 37-element fuel can be successfully irradiated (low-FGR/defect-free) to burnups of at least 700 MWh/kgU, provided maximum power do not exceed 40 kW/m. (author). 5 refs., 1 tab., 8 figs

  15. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  16. On the influence of spatial discretization in LWR steady state and burnup calculations with HELIOS 1.9

    International Nuclear Information System (INIS)

    Merk, B.; Weiss, F. P.

    2009-01-01

    Cell and burnup calculations are fundamental to all deterministic static and transient 3D full core calculations for different operational states of the reactor. The spatial discretization used for the cell and burnup calculations influences significantly the results of full integral transport solutions. The influence of the discretization on k inf is shown for the steady state case and the influence on the neutron spectrum is analyzed. Moreover, the differences in k inf are presented for different spatial discretization strategies in the burnup calculation of Uranium Oxide (UOX) fuel. The resulting different flux distributions cause significant changes in the isotopic densities. The influence of the discretization strategies on the calculation of homogenized few group cross-sections is investigated. This detailed discretization study demonstrates the need for sufficiently fine discretization to produce reliable and accurate results when using integral transport methods. In contrast to the currently used discretization schemes, refined discretization is especially important in the moderator region of the unit cell to reproduce the influence on the thermal neutron spectrum. Additionally, the need for sufficient discretization affects the idea of full core calculations based on integral transport methods since it has to be discussed whether it is worth to do full core calculations with reduced discretization when facing this strong discretization effect. The computer resources required for full core calculations with fine discretization are currently not available. (authors)

  17. Review of the effects of burnup on the thermal conductivity of UO2

    International Nuclear Information System (INIS)

    Lokken, R.O.; Courtright, E.L.

    1976-01-01

    The general trends which relate changes in thermal conductivity of UO 2 fuel as a function of temperature and burnup can be summarized as follows: (1) At temperatures below 500 0 C, reductions in UO 2 thermal conductivity relative to the unirradiated values can be expected up to a saturation level of approximately 10 19 fissions/cc. (2) At temperatures above 500 0 C, the thermal conductivity will undergo little change at low burnups, (less than 10 19 fissions/cc) but at higher exposures some decrease can be expected which should, in turn, diminish with increasing temperature. (3) A review of the data reported by Berman on the ThO 2 --UO 2 fuel indicates that the basic behavior is the same as for UO 2 in the temperature range of major interest. The applicability of this data to LWR UO 2 fuel is somewhat questionable because of basic physical property differences, and limited data on irradiation effects, and would not seem to support concerns that the effects of burnup on thermal conductivity for LWR fuel may be of more significance than currently believed. (4) A mathematical expression of the type proposed by Daniel and Cohen seems to provide a reasonable approximation for the behavioral trends reported in the literature which relate changes in thermal conductivity to increasing burnup in certain temperature regimes. Calculations indicate that only small incremental increases in the fuel centerline temperature might be expected if burnup effects are taken into account

  18. Analyzing longitudinal data with the linear mixed models procedure in SPSS.

    Science.gov (United States)

    West, Brady T

    2009-09-01

    Many applied researchers analyzing longitudinal data share a common misconception: that specialized statistical software is necessary to fit hierarchical linear models (also known as linear mixed models [LMMs], or multilevel models) to longitudinal data sets. Although several specialized statistical software programs of high quality are available that allow researchers to fit these models to longitudinal data sets (e.g., HLM), rapid advances in general purpose statistical software packages have recently enabled analysts to fit these same models when using preferred packages that also enable other more common analyses. One of these general purpose statistical packages is SPSS, which includes a very flexible and powerful procedure for fitting LMMs to longitudinal data sets with continuous outcomes. This article aims to present readers with a practical discussion of how to analyze longitudinal data using the LMMs procedure in the SPSS statistical software package.

  19. Tritium release from EXOTIC-7 orthosilicate pebbles. Effect of burnup and contact with beryllium during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F; Werle, H [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-03-01

    EXOTIC-7 was the first in-pile test with {sup 6}Li-enriched (50%) lithium orthosilicate (Li{sub 4}SiO{sub 4}) pebbles and with DEMO representative Li-burnup. Post irradiation examinations of the Li{sub 4}SiO{sub 4} have been performed at the Forschungszentrum Karlsruhe (FZK), mainly to investigate the tritium release kinetics as well as the effect of Li-burnup and/or contact with beryllium during irradiation. The release rate of Li{sub 4}SiO{sub 4} from pure Li{sub 4}SiO{sub 4} bed of capsule 28.1-1 is characterized by a broad main peak at about 400degC and by a smaller peak at about 800degC, and that from the mixed beds of capsule 28.2 and 26.2-1 shows again these two peaks, but most of the tritium is now released from the 800degC peak. This shift of release from low to high temperature may be due to the higher Li-burnup and/or due to contact with Be during irradiation. Due to the very difficult interpretation of the in-situ tritium release data, residence times have been estimated on the basis of the out-of-pile tests. The residence time for Li{sub 4}SiO{sub 4} from caps. 28.1-1 irradiated at 10% Li-burnup agrees quite well with that of the same material irradiated at Li-burnup lower than 3% in the EXOTIC-6 experiment. In spite of the observed shift in the release peaks from low to high temperature, also the residence time for Li{sub 4}SiO{sub 4} from caps. 26.2-1 irradiated at 13% Li-burnup agrees quite well with the data from EXOTIC-6 experiment. On the other hand, the residence time for Li{sub 4}SiO{sub 4} from caps. 28.2 (Li-burnup 18%) is about a factor 1.7-3.8 higher than that for caps. 26.2-1. Based on these data on can conclude that up to 13% Li-burnup neither the contact with beryllium nor the Li-burnup have a detrimental effect on the tritium release of Li{sub 4}SiO{sub 4} pebbles, but at 18% Li-burnup the residence time is increased by about a factor three. (J.P.N.)

  20. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  1. Steady-state irradiation testing of U-Pu-Zr fuel to >18% burnup

    International Nuclear Information System (INIS)

    Pahl, R.G.; Wisner, R.S.; Billone, M.C.; Hofman, G.L.

    1990-01-01

    Tests of austenitic stainless steel clad U-xP-10Zr fuel (x=o, 8, 19 wt. %) to peak burnups as high as 18.4 at. % have been completed in the EBR-II. Fuel swelling and fractional fission gas release are slowly increasing functions of burnup beyond 2 at. % burnup. Increasing plutonium content in the fuel reduces swelling and decreases the amount of fission gas which diffuses from fuel to plenum. LIFE-METAL code modelling of cladding strains is consistent with creep by fission gas loading and irradiation-induced swelling mechanisms. Fuel/cladding chemical interaction involves the ingress of rare-earth fission products. Constituent redistribution in the fuel had not limited steady-state performance. Cladding breach behavior at closure welds, in the gas plenum, and in the fuel column region have been benign events. 3 refs., 5 figs

  2. Fission product model for BWR analysis with improved accuracy in high burnup

    International Nuclear Information System (INIS)

    Ikehara, Tadashi; Yamamoto, Munenari; Ando, Yoshihira

    1998-01-01

    A new fission product (FP) chain model has been studied to be used in a BWR lattice calculation. In attempting to establish the model, two requirements, i.e. the accuracy in predicting burnup reactivity and the easiness in practical application, are simultaneously considered. The resultant FP model consists of 81 explicit FP nuclides and two lumped pseudo nuclides having the absorption cross sections independent of burnup history and fuel composition. For the verification, extensive numerical tests covering over a wide range of operational conditions and fuel compositions have been carried out. The results indicate that the estimated errors in burnup reactivity are within 0.1%Δk for exposures up to 100GWd/t. It is concluded that the present model can offer a high degree of accuracy for FP representation in BWR lattice calculation. (author)

  3. Burnup simulations of an inert matrix fuel using a two region, multigroup reactor physics model

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E. [Dept. of Mechanical Engineering, Univ. of Texas at Austin, 1 Univ. Place C2200, Austin, TX 78712 (United States); Deinert, M.; Bingham Cady, K. [Dept. of Theoretical and Applied Mechanics, Cornell Univ., Ithaca, NY 14853 (United States)

    2006-07-01

    Determining the time dependent concentration of isotopes in a nuclear reactor core is of fundamental importance to analysis of nuclear fuel cycles and the impact of spent fuels on long term storage facilities. We present a fast, conceptually simple tool for performing burnup calculations applicable to obtaining isotopic balances as a function of fuel burnup. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to determine the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. The model has been tested against benchmarked results for LWRs burning UOX and MOX, as well as MONTEBURNS simulations of zirconium oxide based IMF, all with strong fidelity. As an illustrative example, VBUDS burnup calculation results for an IMF fuel are presented in this paper. (authors)

  4. Calculational prediction of fuel burn-up for the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Phuoc Lan; Do Quang Binh

    2016-01-01

    In this paper, the method of expanding operators and functions in the neutron diffusion equations as chains of time variable is used for calculation of fuel burn-up of the Dalat nuclear reactors. A computer code, named BURREF, programmed in language Fortran-77 running on IBM PC-AT, has been developed based on this method to predict the fuel burn-up of the Dalat reactor. Some results will be presented here. (author)

  5. New approach to derive linear power/burnup history input for CANDU fuel codes

    International Nuclear Information System (INIS)

    Lac Tang, T.; Richards, M.; Parent, G.

    2003-01-01

    The fuel element linear power / burnup history is a required input for the ELESTRES code in order to simulate CANDU fuel behavior during normal operating conditions and also to provide input for the accident analysis codes ELOCA and SOURCE. The purpose of this paper is to present a new approach to derive 'true', or at least more realistic linear power / burnup histories. Such an approach can be used to recreate any typical bundle power history if only a single pair of instantaneous values of bundle power and burnup, together with the position in the channel, are known. The histories obtained could be useful to perform more realistic simulations for safety analyses for cases where the reference (overpower) history is not appropriate. (author)

  6. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  7. Investigation of very high burnup UO{sub 2} fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cappia, Fabiola

    2017-03-27

    Historically, the average discharge burnup of Light Water Reactor (LWR) fuel has increased almost continuously. On one side, increase in the average discharge burnup is attractive because it contributes to decrease part of the fuel cycle costs. On the other side, it raises the practical problem of predicting the performance, longevity and properties of reactor fuel elements upon accumulation of irradiation damage and fission products both during in-reactor operation and after discharge. Performance of the fuel and structural components of the core is one of the critical areas on which the economic viability and public acceptance of nuclear energy production hinges. Along the pellet radius, the fuel matrix is subjected to extremely heterogeneous alteration and damage, as a result of temperature and burnup gradients. In particular, in the peripheral region of LWR UO{sub 2} fuel pellets, when the local burnup exceeds 50-70 GWd/tHM, a microstructural transformation starts to take place, as a consequence of enhanced accumulation of radiation damage, fission products and limited thermal recovery. The newly formed structure is commonly named High Burnup Structure (HBS). The HBS is characterised by three main features: (a) formation of submicrometric grains from the original grains, (b) depletion of fission gas from the fuel matrix, (c) steep increase in the porosity, which retains most of the gas depleted from the fuel matrix. The last two aspects rose significant attention because of the important impact of the fission gas behaviour on integral fuel performance. The porosity increase controls the gas-driven swelling, worsening the cladding loading once the fuel-cladding gap is closed. Another concern is that the large retention of fission gas within the HBS could lead to significant release at high burnups through the degradation of thermal conductivity or contribute to fuel pulverisation during accidental conditions. Need of more experimental investigations about the

  8. MCB. A continuous energy Monte Carlo burnup simulation code

    International Nuclear Information System (INIS)

    Cetnar, J.; Wallenius, J.; Gudowski, W.

    1999-01-01

    A code for integrated simulation of neutrinos and burnup based upon continuous energy Monte Carlo techniques and transmutation trajectory analysis has been developed. Being especially well suited for studies of nuclear waste transmutation systems, the code is an extension of the well validated MCNP transport program of Los Alamos National Laboratory. Among the advantages of the code (named MCB) is a fully integrated data treatment combined with a time-stepping routine that automatically corrects for burnup dependent changes in reaction rates, neutron multiplication, material composition and self-shielding. Fission product yields are treated as continuous functions of incident neutron energy, using a non-equilibrium thermodynamical model of the fission process. In the present paper a brief description of the code and applied methods are given. (author)

  9. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  10. Burn-up measurements of spent fuel using gamma spectrometry technique

    International Nuclear Information System (INIS)

    Pereda, C.; Henriquez, C.; Klein, J.; Medel, J.

    2005-01-01

    Burn-up results obtained for HEU (45% of 235 U) fuel assemblies of the RECH-1 Research Reactor using gamma spectrometry technique are presented. The spectra were got from an in-pool facility built in the reactor to be mainly used to measure the burnup of irradiated fuel assemblies with short cooling time, where 95 Zr is being evaluated as possible fission monitor. A program to measure all spent fuel assemblies of the RECH-1 reactor was initiated in the frame of the Regional Project RLA/4/018: 'Management of Spent Fuel from Research Reactors'. The results presented here were obtained from HEU spent fuel assemblies with cooling time greater than 100 days and 137 Cs was used as fission monitor. The efficiency of the in-pool system was determined using a slightly burnt experimental fuel assembly, which has one fuel plate (one of the outer plates) and the rest are dummy plates. An average burn-up of 2.8% of 235 U was previously measured for the experimental fuel assembly utilizing a facility installed in a hot cell and 137 Cs was used as monitor. (author)

  11. CEA contribution to power plant operation with high burnup level

    International Nuclear Information System (INIS)

    1981-03-01

    High level burnup in PWR leads to investigate again the choices carried out in the field of fuel management. French CEA has studied the economic importance of reshuffling technique, cycle length, discharge burnup, and non-operation period between two cycles. Power plants operators wish to work with increased length cycles of 18 months instead of 12. That leads to control problems because the core reactivity cannot be controlled with the only soluble boron: moderator temperature coefficient must be negative. With such cycles, it is necessary to use burnable poisons and for economic reasons with a low penalty in end of cycle. CEA has studied the use of Gd 2 O 3 mixed with fuel or with inert element like Al 2 O 3 . Parametric studies of specific weights, efficacities relatively to the fuel burnup and the fuel enrichment have been carried out. Particular studies of 1 month cycles with Gd 2 O 3 have shown the possibility to control power distribution with a very low reactivity penalty in EOC. In the same time, in the 100 MW PWR-CAP, control reactivity has been made with large use of gadolinia in parallel with soluble boron for the two first cycles

  12. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  13. Regulatory status of burnup credit for dry storage and transport of spent nuclear fuel in the United States

    International Nuclear Information System (INIS)

    Carlson, D.E.

    2001-01-01

    During 1999, the Spent Fuel Project Office of the U.S. Nuclear Regulatory Commission (NRC) introduced technical guidance for allowing burnup credit in the criticality safety analysis of casks for transporting or storing spent fuel from pressurized water reactors. This paper presents the recommendations embodied by the current NRC guidance, discusses associated technical issues, and reviews information needs and industry priorities for expanding the scope and content of the guidance. Allowable analysis approaches for burnup credit must account for the fuel irradiation variables that affect spent fuel reactivity, including the axial and horizontal variation of burnup within fuel assemblies. Consistent with international transport regulations, the burnup of each fuel assembly must be verified by pre-loading measurements. The current guidance limits the credited burnup to no more than 40 GWd/MTU and the credited cooling time to five years, imposes a burnup offset for fuels with initial enrichments between 4 and 5 wt% 235U, does not include credit for fission products, and excludes burnup credit for damaged fuels and fuels that have used burnable absorbers. Burnup credit outside these limits may be considered when adequately supported by technical information beyond that reviewed to-date by the NRC staff. The guidance further recommends that residual subcritical margins from the neglect of fission products, and any other nuclides not credited in the licensing-basis analysis, be estimated for each cask design and compared against estimates of the maximum reactivity effects associated with remaining computational uncertainties and potentially nonconservative modeling assumptions. The NRC's Office of Nuclear Regulatory Research is conducting a research program to help develop the technical information needed for refining and expanding the evolving guidance. Cask vendors have announced plans to submit the first NRC license applications for burnup credit later this year

  14. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  15. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.; Parks, C.V. [Oak Ridge National Lab., TN (United States); Brady, M.C. [Sandia National Labs., Las Vegas, NV (United States)

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155.

  16. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    International Nuclear Information System (INIS)

    DeHart, M.D.; Parks, C.V.; Brady, M.C.

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155

  17. Isocrit: a burnup credit tool for spent fuel pool storage calculations - 333

    International Nuclear Information System (INIS)

    Kucukboyaci, V.N.; Marshall, W.J.

    2010-01-01

    In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power up-rate, exit temperature changes, etc) with a quick turnaround. (authors)

  18. ZZ PWR-AXBUPRO-GKN, Measured Axial Burnup Profiles, NPP Neckarewstheim

    International Nuclear Information System (INIS)

    Neuber, Jens-Christian; Lamprecht, Thomas

    1999-01-01

    Description or function: PWR-AXBUPRO-GKN12 contains Axial Burnup Shapes released by Siemens AG Power Generation Group. It contains data sets relative to following NPP and initial enrichment: - NPP Neckarwestheim 1, Fuel assemblies with an initial enrichment of 3.5 wt.-% 235-U; - NPP Neckarwestheim 2, Fuel assemblies with an initial enrichment of 3.5 wt.-% 235-U; - NPP Neckarwestheim 2, Fuel assemblies with an initial enrichment of 3.8 wt.-% 235-U; - NPP Neckarwestheim 2, Fuel assemblies with an initial enrichment of 4.0 wt.-% 235-U. In each of these files the axial shapes are listed one after the other. Each shape is characterised by: - the number of the cycle; - the number of the fuel assembly. - axial burnup shape characteristics: - height (in centimeter) of the nodes with respect to the active length of the fuel assemblies normalized to the cold, unirradiated state. - the nodal burnup (in MWd/kg U). - fuel assembly design data as well as core geometry and operating data pertinent to depletion calculations: NPP Neckarwestheim 1 (GKN1) - (square pitch lattice 15X15 - thermal Power 2497 MW)thermal Power 2497 MW); More than 700 EOC axial shapes from cycle 18 up. From cycle 18 to cycle 20 a change from an Out-In-Loading to an In-Out-Loading has taken place. Fuel assemblies up to number 1093 have spacer grids made of Inconel, whereas all the fuel assemblies from number 1094 up have spacer grids made of Zircaloy. Discharge burnups range from: 9.7 to 52.8 MWd/kg. NPP Neckarwestheim 2 (GKN2) - (square pitch lattice 18X18 - thermal Power 3850 MW) more than 500 EOC axial shapes from cycle 5 up: - More than 170 shapes for an initial fuel enrichment of 3.5 wt.-% 235-U, discharge burnup ranges from 16.3 to 44.4 MWd/kg; - more than 170 shapes for an initial fuel enrichment of 3.8 wt.-% 235-U, discharge burnup ranges from 14.0 to 52.8 MWd/kg; - more than 180 shapes for an initial fuel enrichment of 4.0 wt.-% 235-U. discharge burnup ranges from 15.5 to 48.9 MWd/kg. PWR AXBUPRO

  19. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  20. High burn-up structure in nuclear fuel: impact on fuel behavior - 4005

    International Nuclear Information System (INIS)

    Noirot, J.; Pontillon, Y.; Zacharie-Aubrun, I.; Hanifi, K.; Bienvenu, P.; Lamontagne, J.; Desgranges, L.

    2016-01-01

    When UO 2 and (U,Pu)O 2 fuels locally reach high burn-up, a major change in the microstructure takes place. The initial grains are replaced by thousands of much smaller grains, fission gases form micrometric bubbles and metallic fission products form precipitates. This occurs typically at the rim of the pellets and in heterogeneous MOX fuel Pu rich agglomerates. The high burn-up at the rim of the pellets is due to a high capture of epithermal neutrons by 238 U leading locally to a higher concentration of fissile Pu than in the rest of the pellet. In the heterogeneous MOX fuels, this rim effect is also active, but most of the high burn-up structure (HBS) formation is linked to the high local concentration of fissile Pu in the Pu agglomerates. This Pu distribution leads to sharp borders between HBS and non-HBS areas. It has been shown that the size of the new grains, of the bubbles and of the precipitates increase with the irradiation local temperatures. Other parameters have been shown to have an influence on the HBS initiation threshold, such as the irradiation density rate, the fuel composition with an effect of the Pu presence, but also of the Gd concentration in poisoned fuels, some of the studied additives, like Cr, and, maybe some of the impurities. It has been shown by indirect and direct approaches that HBS formation is not the main contributor to the increase of fission gas release at high burn-up and that the HBS areas are not the main source of the released gases. The impact of HBS on the fuel behavior during ramp on high burn-up fuels is still unclear. This short paper is followed by the slides of the presentation

  1. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    International Nuclear Information System (INIS)

    Ozdemir, Levent; Acar, Banu Bulut; Zabunoglu, Okan H.

    2011-01-01

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239 Pu and 241 Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  2. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  3. ABB PWR fuel design for high burnup

    International Nuclear Information System (INIS)

    Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.

    1998-01-01

    Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)

  4. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  5. Past experience and future needs for the use of burnup credit in LWR fuel storage

    International Nuclear Information System (INIS)

    Boyd, W.A.; Wrights, G.N.

    1987-01-01

    To achieve improved fuel economics and reduce the amount of fuel discharged annually, utilities are engaging in fuel management strategies that will achieve higher discharge burnups for their fuel assemblies. Although burnup credit methodologies have been developed and spent-fuel racks have been licensed, burnup credit fuel storage racks are not the answer for all utilities. Off-site and out-of-pool spent-fuel storage may be more appropriate. This is leading to the development of dry spent-fuel storage and shipping casks. Cask designs with spent-fuel storage capability between 20 and 32 assemblies are being developed by several vendors. The US Dept. of Energy is also funding work by VEPCO. Westinghouse is currently licensing its dry storage cask, developing a shipping cask for the domestic market, and is involved in a joint venture to develop a cask for the international market. Although methods of taking credit for fuel burnup in spent-fuel storage racks have been developed and licensed, use of these methods on dry spent-fuel storage and shipping casks can lead to new issues. These issues arise because the excess reactivity margin that is inherent in a burnup credit spent-fuel storage rack criticality analysis will not be available in a dry cask analysis

  6. Grain and burnup dependence of spent fuel oxidation: geological repository impact

    International Nuclear Information System (INIS)

    Hanson, B. D.; Kansa, E. J.; Stoot, R.B.

    1998-01-01

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate in addition to an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent fuel samples oxidized in Thermogravimetric Analysis (TGA) or Oven Dry-Bath (ODB) experiments. The comparison between the experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 (rightwards arrow)U 3 O 4 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficient

  7. Properties of the high burnup structure in nuclear light water reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, Thierry; Rondinella, Vincenzo V.; Konings, Rudy J.M. [European Commission, Joint Research Centre, Karlsruhe (Germany). Directorate Nuclear Safety and Security; and others

    2017-07-01

    The formation of the high burnup structure (HBS) is possibly the most significant example of the restructuring processes affecting commercial nuclear fuel in-pile. The HBS forms at the relatively cold outer rim of the fuel pellet, where the local burnup is 2-3 times higher than the average pellet burnup, under the combined effects of irradiation and thermo-mechanical conditions determined by the power regime and the fuel rod configuration. The main features of the transformation are the subdivision of the original fuel grains into new sub-micron grains, the relocation of the fission gas into newly formed intergranular pores, and the absence of large concentrations of extended defects in the fuel matrix inside the subdivided grains. The characterization of the newly formed structure and its impact on thermo-physical or mechanical properties is a key requirement to ensure that high burnup fuel operates within the safety margins. This paper presents a synthesis of the main findings from extensive studies performed at JRC-Karlsruhe during the last 25 years to determine properties and behaviour of the HBS. In particular, microstructural features, thermal transport, fission gas behaviour, and thermo-mechanical properties of the HBS will be discussed. The main conclusion of the experimental studies is that the HBS does not compromise the safety of nuclear fuel during normal operations.

  8. Study of the acceleration of nuclide burnup calculation using GPU with CUDA

    International Nuclear Information System (INIS)

    Okui, S.; Ohoka, Y.; Tatsumi, M.

    2009-01-01

    The computation costs of neutronics calculation code become higher as physics models and methods are complicated. The degree of them in neutronics calculation tends to be limited due to available computing power. In order to open a door to the new world, use of GPU for general purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing mechanism enabled with multi-processors which realize mush higher performance than CPUs. NVIDIA recently released the CUDA language for general purpose computation which is a C-like programming language. It is relatively easy to learn compared to the conventional ones used for GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 4.-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup calculation and the 4.-order Runge-Kutta method were suitable to the first step of introduction CUDA into numerical calculation because these consist of simple operations of matrices and vectors of single precision where actual codes were written in the C++ language. Our experimental results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 100 compared to that with CPU. (authors)

  9. An optimal model for fuel burnup in nuclear reactors

    International Nuclear Information System (INIS)

    Anton, V.

    1979-05-01

    An approach to minimize the number of the burnup equations taking into account the introduction of an appropriate number of fission products is given. The corresponding number of fission pseudo-products is defined. (author)

  10. WWER-1000 Burnup Credit Benchmark (CB5)

    International Nuclear Information System (INIS)

    Manolova, M.A.

    2002-01-01

    In the paper the specification of WWER-1000 Burnup Credit Benchmark first phase (depletion calculations), given. The second phase - criticality calculations for the WWER-1000 fuel pin cell, will be given after the evaluation of the results, obtained at the first phase. The proposed benchmark is a continuation of the WWER benchmark activities in this field (Author)

  11. Burnup performance of OTTO cycle pebble bed reactors with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    Highlights: • A 300 MW t Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO 2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO 2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO 2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor

  12. Establishing a PWR burn-up library

    International Nuclear Information System (INIS)

    Lutz, D.C.

    1981-01-01

    Starting out from data file ENDF/B IV /1/, a cross-section library has been established for the calculation of operating conditions in pressurized water reactors of the type used in BIBLIS B. The library includes macroscopic, homogenized 2-group cross-sections for all types of fuel elements used in this reactor, including those equipped with boron glass rods. For their calculation the previous irradiation of the fuel has been taken into consideration by approximation. Information on fuel consumption from cell burn-up calculations has been stored in a separate data file. It was designed as a base for the determination of cross sections to be used in the calculation of the incident ''main-steam pipe fracture''. For this library the description of cross sections as a function of the moderator status chose the water densities at 300 0 C/155 bar, 190 0 C/140 bar and 100 0 C/100 bar as fixed values. The burn-up library has been tested by a three-dimensional calculation for the 1sup(st) cycle of the BIBLIS B-reactor using program QUABOX /2/. This showed variances with the anticipated course concerning critically, which can be explained almost quantitatively by known deficiencies of the ENDF/b-IV library. (orig.) [de

  13. Extended burnup demonstration: reactor fuel program. Pre-irradiation characterization and summary of pre-program poolside examinations. Big Rock Point extended burnup fuel

    International Nuclear Information System (INIS)

    Exarhos, C.A.; Van Swam, L.F.; Wahlquist, F.P.

    1981-12-01

    This report is a resource document characterizing the 64 fuel rods being irradiated at the Big Rock Point reactor as part of the Extended Burnup Demonstration being sponsored jointly by the US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities. The program entails extending the exposure of standard BWR fuel to a discharge average of 38,000 MWD/MTU to demonstrate the feasibility of operating fuel of standard design to levels significantly above current limits. The fabrication characteristics of the Big Rock Point EBD fuel are presented along with measurement of rod length, rod diameter, pellet stack height, and fuel rod withdrawal force taken at poolside at burnups up to 26,200 MWD/MTU. A review of the fuel examination data indicates no performance characteristics which might restrict the continued irradiation of the fuel

  14. The burn-up credit physics and the 40. Minerve anniversary; La physique du credit Burn-Up et le 40. anniversaire de Minerve

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, A [CEA/Cadarache, Departement d' Etudes des Reacteurs, DER/SPRC, 13 - Saint-Paul-lez-Durance (France); Toubon, H [Cogema, 78 - Velizy Villacoublay (France); Trakas, C [FRAMATOME, 92 - Paris La Defense (France); and others

    2000-03-21

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  15. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  16. Some implications of batch average burnup calculations on predicted spent fuel compositions

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1984-01-01

    The accuracy of using batch-averaged burnups to determine spent fuel characteristics (such as isotopic composition, activity, etc.) was examined for a typical pressurized-water reactor (PWR) fuel discharge batch by comparing characteristics computed by (a) performing a single depletion calculation using the average burnup of the spent fuel and (b) performing separate depletion calculations based on the relative amounts of spent fuel in each of twelve burnup ranges and summing the results. The computations were done using ORIGEN 2. Procedure (b) showed a significant shift toward a greater quantity of the heavier transuranics, which derive from multiple neutron captures, and a corresponding decrease in the amounts of lower transuranics. Those characteristics which derive primarily from fission products, such as total radioactivity and total thermal power, are essentially identical for the two procedures. Those characteristics that derive primarily from the heavier transuranics, such as spontaneous fission neutrons, are underestimated by procedure (a)

  17. Grain size and burnup dependence of spent fuel oxidation: Geological repository impact

    International Nuclear Information System (INIS)

    Kansa, E.J.; Hanson, B.D.; Stout, R.B.

    1999-01-01

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate and an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent-fuel samples oxidized in thermogravimetric analysis (TGA) or oven dry-bath (ODB) experiments. The experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 r↓U 3 O 8 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficiently low

  18. MCNPX and MCB coupled methodology for the burnup calculation of the KIPT accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)

  19. Post Irradiation Examination Plan for High-Burnup Demonstration Project Sister Rods

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.

  20. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.

    1998-01-01

    The paper describes the experience gained in Germany in applying burnup credit methodologies to wet storage and dry transport systems of spent LWR fuel. It gives a survey of the levels of burnup credit presently used or intended to be used, the regulatory status and future developments planned, the codes used for performing depletion and criticality calculations, the methods applied to verification of these codes, and the methods used to treat parameters specific of burnup credit. In particular it is shown that the effect of axial burnup profiles on wet PWR storage designs based on burnup credit varies from fuel type to fuel type. For wet BWR storage systems the method of estimating a loading curve is described which provides for a given BWR fuel assembly design the minimum required initial burnable absorber content as a function of the initial enrichment of the fuel. (author)

  1. Configuration of LWR fuel enrichment or burnup yielding maximum power

    International Nuclear Information System (INIS)

    Bartosek, V.; Zalesky, K.

    1976-01-01

    An analysis is given of the spatial distribution of fuel burnup and enrichment in a light-water lattice of given dimensions with slightly enriched uranium, at which the maximum output is achieved. It is based on the spatial solution of neutron flux using a one-group diffusion model in which linear dependence may be expected of the fission cross section and the material buckling parameter on the fuel burnup and enrichment. Two problem constraints are considered, i.e., the neutron flux value and the specific output value. For the former the optimum core configuration remains qualitatively unchanged for any reflector thickness, for the latter the cases of a reactor with and without reflector must be distinguished. (Z.M.)

  2. SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi

    2009-05-01

    Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)

  3. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.

    2008-01-01

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files

  4. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  5. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  6. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  7. Impacts of SNF burnup credit on the shipment capability of the GA-4 cask

    International Nuclear Information System (INIS)

    Mobasheran, A.S.; Lake, W.; Richardson, J.

    1996-01-01

    Scoping analyses were performed to determine the impacts of two different levels of burnup credit and two different spent fuel pickup rates on the shipment capability and the minimum fleet size of the GA-4 cask. The analyses involved developing loading curves for the GA-4 cask based on the actinide-only and principal-isotope burnup credit considerations. The analyses also involved examination of the spent nuclear fuel assembly population at nine reactor sites and categorization of the assemblies in accordance with the loading restrictions imposed. The results revealed that for the nine sites considered, depending on the level of burnup credit and the pickup rate assumed, the total savings in shipment and cask fleet costs (1994 dollars) can range from $55 million to $74 million

  8. Study on the application of CANDLE burnup strategy to several nuclear reactors. JAERI's nuclear research promotion program, H13-002 (Contract research)

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko

    2005-03-01

    The CANDLE burnup strategy is a new reactor burnup concept, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed from bottom to top (or from top to bottom) of the core and without any change in their shapes. Therefore, any burnup control mechanisms are not required, and reactor characteristics do not change along burnup. The reactor is simple and safe. When this burnup scheme is applied to some neutron rich fast reactors, either natural or depleted uranium can be utilized as fresh fuel after second core and the burnup of discharged fuel is about 40%. It means that the nuclear energy can be utilized for many hundreds years without new mining, enrichment and reprocessing, and the amount of spent fuel can be reduced considerably. However, in order to perform such a high fuel burnup some innovative technologies should be developed. Though development of innovative fuel will take a lot of time, intermediate re-cladding may be easy to be employed. Compared to fast reactors, application of CANDLE burnup to prismatic fuel high-temperature gas cooled reactors is very easy. In this report the application of CANDLE burnup to both these types of reactors are studied. (author)

  9. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  10. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2005-01-01

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k eff ) to determine the net importance of cross sections to k eff . The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: 151 Sm, 103 Rh, 155 Eu, 150 Sm, 152 Sm, 153 Eu, 154 Eu, and 143 Nd

  11. Validation of a new continuous Monte Carlo burnup code using a Mox fuel assembly

    International Nuclear Information System (INIS)

    El bakkari, B.; El Bardouni, T.; Merroun, O.; El Younoussi, C.; Boulaich, Y.; Boukhal, H.; Chakir, E.

    2009-01-01

    The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc...). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called 'BUCAL1'. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k ∞ ) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.

  12. Kinetic Monte Carlo Potts Model for Simulating a High Burnup Structure in UO2

    International Nuclear Information System (INIS)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho

    2008-01-01

    A Potts model, based on the kinetic Monte Carlo method, was originally developed for magnetic domain evolutions, but it was also proposed as a model for a grain growth in polycrystals due to similarities between Potts domain structures and grain structures. It has modeled various microstructural phenomena such as grain growths, a recrystallization, a sintering, and so on. A high burnup structure (HBS) is observed in the periphery of a high burnup UO 2 fuel. Although its formation mechanism is not clearly understood yet, its characteristics are well recognized: The HBS microstructure consists of very small grains and large bubbles instead of original as-sintered grains. A threshold burnup for the HBS is observed at a local burnup 60-80 Gwd/tM, and the threshold temperature is 1000-1200 .deg. C. Concerning a energy stability, the HBS can be created if the system energy of the HBS is lower than that of the original structure in an irradiated UO 2 . In this paper, a Potts model was implemented for simulating the HBS by calculating system energies, and the simulation results were compared with the HBS characteristics mentioned above

  13. Study of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Pavelescu, M.; Borza, M.

    1975-01-01

    The authors approach theoretical treatment of isotopic composition changement for nuclear fuel in nuclear reactors. They show the difficulty of exhaustive treatment of burn-up problems and introduce the principal simplifying principles. Due to these principles they write and solve analytically the evolution equations of the concentration for the principal nuclides both in the case of fast and thermal reactors. Finally, they expose and comment the results obtained in the case of a power fast reactor. (author)

  14. A semi-empirical model for the formation and depletion of the high burnup structure in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pizzocri, D. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany); Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Via La Masa 34, 20156, Milan (Italy); Cappia, F. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany); Technische Universität München, Boltzmannstraße 15, 85747, Garching bei München (Germany); Luzzi, L., E-mail: lelio.luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Via La Masa 34, 20156, Milan (Italy); Pastore, G. [Idaho National Laboratory, Fuel Modeling and Simulation Department, 2525 Fremont Avenue, 83415, Idaho Falls (United States); Rondinella, V.V.; Van Uffelen, P. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany)

    2017-04-15

    In the rim zone of UO{sub 2} nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. For this purpose, we performed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Based on these new experimental data, we infer an exponential reduction of the average grain size with local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes. - Highlights: •Development of a new model for the formation and depletion of the high burnup structure. •New average grain-size measurements to support model development. •Formation threshold of the high burnup structure based on the concept of effective burnup. •Coupled description of grain recrystallization/polygonisation and depletion of intra-granular fission gas. •Model suitable for application in fuel performance codes.

  15. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  16. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  17. Determination of the burn-up of TRIGA fuel elements by calculation with new TRIGLAV program

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.

    1996-01-01

    The results of fuel element burn-up calculations with new TRIGLAV program are presented. TRIGLAV program uses two dimensional model. Results of calculation are compared to results calculated with program, which uses one dimensional model. The results of fuel element burn-up measurements with reactivity method are presented and compared with the calculated results. (author)

  18. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    International Nuclear Information System (INIS)

    Wagner, John C.

    2003-01-01

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  19. The measurement of abundance and content of 148Nd monitor for the determination of burnup with mass spectrometry

    International Nuclear Information System (INIS)

    Gao Shuqin; Li Silin

    1992-09-01

    The abundance and content of nuclide 148 Nd, which is used as monitor to determine reactor element burnup, were measured by mass spectrometry, and the burnup can be calculated from measured results. The distribution of 148 Nd abundance and content in the axial direction are consistent with the theoretical calculation. The burnup values agree with the data obtained from heavy isotope ratio and radiochemistry methods within the errors of 4.0% and 2.8% respectively

  20. Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4

    International Nuclear Information System (INIS)

    Tombakoglu, M.; Cecen, Y.

    2001-01-01

    In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)

  1. Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from an XRF investigation

    International Nuclear Information System (INIS)

    Mogensen, M.; Walker, C.T.

    1999-01-01

    XRF and EPMA results for retained xenon from Battelle's high burn-up effects program are re-evaluated. The data reviewed are from commercial low enriched BWR fuel with burn-ups of 44.8-54.9 GWd/tU and high enriched PWR fuel with burn-ups from 62.5 to 83.1 GWd/tU. It is found that the high burn-up structure penetrated much deeper than initially reported. The local burn-up threshold for the formation of the high burn-up structure in those fuels with grain sizes in the normal range lay between 60 and 75 GWd/tU. The high burn-up structure was not detected by EPMA in a fuel that had a grain size of 78 μm although the local burn-up at the pellet rim had exceeded 80 GWd/tU. It is concluded that fission gas had been released from the high burn-up structure in three PWR fuel sections with burn-ups of 70.4, 72.2 and 83.1 GWd/tU. In the rim region of the last two sections at the locations where XRF indicated gas release the local burn-up was higher than 75 GWd/tU. (orig.)

  2. Experimental support of WWER-440 fuel reliability and serviceability at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Ivanov, V; Pnyushkin, A [Nauchno-Issledovatel` skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Tzibulya, V [AO Mashinostroitelnij Zavod Electrostal (Russian Federation); Kolosovsky, V; Bibilashvili, Yu [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation); Dubrovin, K [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    1994-12-31

    Results from post-reactor examination of two WWER-440 fuel assemblies spent at the Kola NPP Unit 3 during 4 and 5 fuel cycles are presented. The fuel assembly states and their serviceability allowance are estimated experimentally at the RIAR hot laboratory and studied by non-destructive and destructive methods. The following parameters are examined: fuel assembly overall dimensions change; fuel element diameter change; fuel element cladding corrosion and hydriding; fuel element cladding mechanical properties; fission gas release from fuel and gas pressure; fuel macro- and microstructure. it has been found that the maximum fuel burnup of fuel assemblies No. 1 and No.2 achieved is 58.3 and 64.0 MWd/kg, respectively. The mechanical fuel pellets-cladding interaction has been observed at the average fuel burnup above 45 MWd/kg that occurred with increasing the local cladding diameter at the areas of pellets end arrangement (bamboo stick). The gas release linearly increases at the range 2.7% per 10 MWd/kg within burnup of 43-60 MWd/kg. 9 figs., 3 refs.

  3. Chemical analytical considerations on the determination of burnup in irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Cretella, R.F.; Servant, R.E.

    1989-01-01

    Burnup in an irradiated nuclear fuel may be defined as the energy produced per mass unit, from the time the fuel is introduced into the reactor and until a given moment. It is usually shown in megawatt/day or megawatt/hour generated per ton or kilo of fuel. It is also indicated as the number of fission produced per volume unit (cm 3 ) or per every 100 initial fissionable atoms. The yield of a power plant is directly related to the burnup of its fuel load and knowing the latter contributes to optimizing the economy in reactor operation and the related technologies. The development of nuclear fuels and the operation of reactors require doing with exact and accurate methods allowing to know the burnup. Errors in this measurement have an incidence upon the fuel design, the physical and nuclear calculations, the shielding requirements, the design of vehicles for the transportation of irradiated fuels, the engineering of processing plants, etc. All these factors, in turn, have an incidence upon the cost of nuclear power generation. (Author) [es

  4. Investigation of research and development subjects for the Very High Burnup Fuel

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Amano, Hidetoshi; Suzuki, Yasufumi; Furuta, Teruo; Nagase, Fumihisa; Suzuki, Masahide

    1993-06-01

    A concept of the Very High Burnup Fuel aiming at a maximum fuel assembly burnup of 100 GWd/t has been proposed in terms of burnup extension, utilization of Pu and transmutation of transuranium elements (TRU: Np, Am and Cm). The authors have investigated research and development (R and D) subjects of the fuel pellet and the cladding material of the Fuel. The present report describes the results on the fuel pellet. First, the chemical state of the Fuel and fission products (FP) was inferred through an FP-inventory and an equilibrium-thermodynamics calculations. Besides, knowledge obtained from post-irradiation examinations was surveyed. Next, an investigation was made on irradiation behavior of U/Pu mixed oxide (MOX) fuel with high enrichment of Pu, as well as on fission-gas release and swelling behavior of high burnup fuels. Reprocessibility of the Fuel, particularly solubility of the spent fuel, was also examined. As for the TRU-added fuel, material property data on TRU oxides were surveyed and summarized as a database. And the subjects on the production and the irradiation behavior were examined on the basis of experiences of MOX fuel production and TRU-added fuel irradiation. As a whole, the present study revealed the necessity of accumulating fundamental data and knowledge required for design and assessment of the fuel pellet, including the information on properties and irradiation performance of the TRU-added fuel. Finally, the R and D subjects were summarized, and a proposal was made on the way of development of the fuel pellet and cladding materials. (author)

  5. Modification in the FUDA computer code to predict fuel performance at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Das, M; Arunakumar, B V; Prasad, P N [Nuclear Power Corp., Mumbai (India)

    1997-08-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig.

  6. Modification in the FUDA computer code to predict fuel performance at high burnup

    International Nuclear Information System (INIS)

    Das, M.; Arunakumar, B.V.; Prasad, P.N.

    1997-01-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig

  7. Construction and tests of a gamma device for experimental measurements of burnup of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Brandao Junior, F.A.

    1982-01-01

    The gamma-scanning method is an important tool for the measurement of burnup of nuclear reactor fuel. The adequate knowledge of burnup allows for a better inventory of 'sensitive' fissile materials, better fuel management and provides insight on fuel behaviour and safety margins. This paper is related to the description, construction and operation of a first gamma scanning device, tested by irradiation of prototype PWR fuel pins, 14 cm long, in a Triga Mark-I reactor at very low power. Despite the limitations imposed by the low burnup, the experiment permitted a good checking of the main physical concepts and devices involved in the method. (Author) [pt

  8. Computation of classical triton burnup with high plasma temperature and current

    International Nuclear Information System (INIS)

    Batistoni, P.

    1990-09-01

    For comparison with experiment, the expected production of 14-MeV neutrons from the burnup of tritons produced in the d(d,t)p reaction must be computed. An effort was undertaken to compare in detail the computer codes used for this purpose at TFTR and JET. The calculation of the confined fraction of tritons by the different codes agrees to within a few percent. The high electron temperature in the experiments has raised the critical energy of the tritons that are slowing down to near or above the peak of the D-T reactivity, making the ion drag terms more important. When the different codes use the same slowing down formulas, the calculated burnup was within 6% for a case where orbit effects are expected to be small. Then results from codes with and without the effects of finite radial orbit excursions were compared for two test cases. For medium to high current discharges the finite radius effects are only of order 10%. A new version of the TFTR burnup code using an implicit Fokker-Planck solution was written to include the effects of energy diffusion and charge exchange. These effects change the time-integrated yields by only a few percent, but can significantly affect the instantaneous rates in time. Significant populations of hot ions can affect the fusion reactivity, and this effect was also studied. In particular, the d(d,p)t rate can be 10%--15% less than the d(d, 3 He)n rate which is usually used as a direct monitor of the triton source. Finally, a finite particle confinement time for the thermalized tritons can increase the apparent ''burn-up'' either if there is a high thermal deuteron temperature or if there exists a significant beam deuteron density

  9. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307 degree C rather than the normal 288 degree C, a relatively thick (50 to 70 μm) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs

  10. chemical determination of burnup ratio in nuclear fuels

    International Nuclear Information System (INIS)

    Guereli, L.

    1997-01-01

    Measurements of the extent of fission are important to determine the irradiation performance of a nuclear fuel. The energy released per unit mass of uranium (burnup) can be determined from measurement of the percent of heavy atoms that have fissioned during irradiation.The preferred method for this determination is choosing a suitable fission monitor (usually ''1''4''8Nd) and its determination after separation from the fuel matrix. In thermal reactor fuels where the only heavy element in the starting material is uranium, uranium depletion can be used for burnup determination. ''2''3''5U depletion method requires measurement of uranium isotopic ratios of both irradiated and unirradiated fuel. Isotopic ratios can be determined by thermal ionization mass spectrometer following separation of uranium from the fuel matrix. Separation procedures include solvent extraction, ion exchange and anion exchange chromatography. Another fission monitor used is ''1''3''9La determination by HPLC. Because La is monoisotopic (''1''3''9La) in the fuel, it can be determined by chemical analysis techniques

  11. VAMPIR - A two-group two-dimensional diffusion computer code for burnup calculation

    International Nuclear Information System (INIS)

    Zmijarevic, I.; Petrovic, I.

    1985-01-01

    VAMPIR is a computer code which simulates the burnup within a reactor coe. It computes the neutron flux, power distribution and burnup taking into account spatial variations of temperature and xenon poisoning. Its overall reactor calculation uses diffusion theory with finite differences approximation in X-Y or R-Z geometry. Two-group macroscopic cross section data are prepared by the lattice cell code WIMS-D4 and stored in the library form of multi entry tabulation against the various parameters that significantly affect the physical conditions in the reactor core. herein, the main features of the program are presented. (author)

  12. Benefits of cycle stretchout in pressurized water reactor extended-burnup fuel cycles

    International Nuclear Information System (INIS)

    Matzie, R.A.; Leung, D.C.; Liu, Y.; Beekmann, R.W.

    1981-01-01

    Nuclear reactors are inherently capable of operating for a substantial period beyond their nominal end of cycle (EOC) as a result of negative moderator and fuel temperature coefficients and the decrease in xenon poisoning with lower core power levels. This inherent capability can be used to advantage to reduce annual uranium makeup requirements and cycle energy costs by the use of planned EOC stretchout. This paper discusses the fuel utilization efficiency and economics of both the five-batch, extended-burnup cycle and the three-batch, standard-burnup cycle, which can be improved by employing planned EOC (end of cycle) stretchout. 11 refs

  13. Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Rodriguez Rivada, A.

    2014-07-01

    Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)

  14. Calculation of fuel burn-up and fuel reloading for the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Nguyen Phuoc; Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Binh, Do Quang [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Calculation of fuel burnup and fuel reloading for the Dalat Nuclear Research Reactor was carried out by using a new programme named HEXA-BURNUP, realized in a PC. The programme is used to calculate the following parameters of the Dalat reactor: a/Critical configurations of the core loaded with 69, 72, 74, 86, 88, 89 and 92 fuel elements. The effective multiplication coefficients equal 1 within the error ranges of less than 0.38%. b/ The thermal neutron flux distribution in the reactor. The calculated results agree with the experimental data measured at 11 typical positions. c/The average fuel burn-up for the period from Feb. 1984 to Sep. 1992. The difference between calculation and experiment is only about 1.9%. 10 fuel reloading versions are calculated, from which an optimal version is proposed. (author). 9 refs., 4 figs., 5 tabs.

  15. Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions

    International Nuclear Information System (INIS)

    Tas, Fatma Burcu; Ergun, Sule

    2013-01-01

    Highlights: • Fuel performance of a typical Pressurized Water Reactor rod is analyzed. • Steady state fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • Transient fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • The optimum pellet to cladding gap thickness and gap gas pressure values of the simulated fuel are determined. • The effects of pellet to cladding gap design parameters on nuclear fuel reliability are examined. - Abstract: As an important improvement in the light water nuclear reactor operations, the nuclear fuel burnup rate is increased in recent decades and this increase causes heavier duty for the nuclear fuel. Since the high burnup fuel is exposed to very high thermal and mechanical stresses and since it operates in an environment with high radiation for about 18 month cycles, it carries the risk of losing its integrity. In this study; it is aimed to determine the effects of pellet–cladding gap thickness and gap pressure on reliability of high burnup nuclear fuel in Pressurized Water Reactors (PWRs) under steady state operation conditions and suggest optimum values for the examined parameters only and validate these suggestions for a transient condition. In the presented study, fuel performance was analyzed by examining the effects of pellet–cladding gap thickness and gap pressure on the integrity of high burnup fuels. This work is carried out for a typical Westinghouse type PWR fuel. The steady state conditions were modeled and simulated with FRAPCON-3.4a steady state fuel performance code and the FRAPTRAN-1.4 fuel transient code was used to calculate transient fuel behavior. The analysis included the changes in the important nuclear fuel design limitations such as the centerline temperature, cladding stress, strain and oxidation with the change in pellet–cladding gap thickness and initial pellet–cladding gap gas

  16. International studies on burnup credit criticality safety by an OECD/NEA working group

    International Nuclear Information System (INIS)

    Brady, M.C.; Okuno, H.; DeHart, M.D.; Nouri, A.; Sartori, E.

    1998-01-01

    The results and conclusions from a six-year study by an international benchmarking group in the comparison of computational methods for evaluating burnup credit in criticality safety analyses is presented. Approximately 20 participants from 12 countries have provided results for most problems. Four detailed benchmark problems for pressurized-water-reactor fuel have been completed. Results from work being finalized, addressing burnup credit for boiling-water-reactor fuel, are discussed, as well as planned activities for additional benchmarks, including mixed-oxide fuels, and other activities

  17. Modeling CANDU type fuel behaviour during extended burnup irradiations using a revised version of the ELESIM code

    International Nuclear Information System (INIS)

    Arimescu, V.I.; Richmond, W.R.

    1992-05-01

    The high-burnup database for CANDU fuel, with a variety of cases, offers a good opportunity to check models of fuel behaviour, and to identify areas for improvement. Good agreement of calculated values of fission-gas release, and sheath hoop strain, with experimental data indicates that the global behaviour of the fuel element is adequately simulated by a computer code. Using, the ELESIM computer code, the fission-gas release, swelling, and fuel pellet expansion models were analysed, and changes made for gaseous swelling, and diffusional release of fission-gas atoms to the grain boundaries. Using this revised version of ELESIM, satisfactory agreement between measured values of fission-gas release was found for most of the high-burnup database cases. It is concluded that the revised version of the ELESIM code is able to simulate with reasonable accuracy high-burnup as well as low-burnup CANDU fuel

  18. Study on small long-life LBE cooled fast reactor with CANDLE burn-up. Part 1. Steady state research

    International Nuclear Information System (INIS)

    Yan, Mingyu; Sekimoto, Hiroshi

    2008-01-01

    Small long-life reactor is required for some local areas. CANDLE small long-life fast reactor which does not require control rods, mining, enrichment and reprocessing plants can satisfy this demand. In a CANDLE reactor, the shapes of neutron flux, nuclide number densities and power density distributions remain constant and only shift in axial direction. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is used as coolant. From steady state analysis, we obtained the burn-up velocity, output power distribution, core temperature distribution, etc. The burn-up velocity is less than 1.0 cm/year that enables a long-life design easily. The core averaged discharged fuel burn-up is about 40%. (author)

  19. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    International Nuclear Information System (INIS)

    Wagner, J.C.

    2001-01-01

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses

  20. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-01-01

    The fresh fuel design basis provides some margin of safety, i.e., criticality safety is almost independent of loading operations if fuel designs do not change significantly over the next 40 years. However, the design basis enrichment for future nuclear fuel will most likely vary with time. As a result, it cannot be guaranteed that the perceived passivity of the concept will be maintained over the life cycle of a future cask system. Several options are available to ensure that the reliability of a burnup credit system is comparable to or greater than that of a system based on a fresh fuel assumption. Criticality safety and control reliability could increase with burnup credit implementation. The safety of a burnup credit system could be comparable to that for a system based on the fresh fuel assumption. A burnup credit philosophy could be implemented without any cost-benefit tradeoff. A burnup credit design basis could result in a significant reduction in total system risk as well as economic benefits. These reductions occur primarily as a result of increased cask capacities and, thus, fewer shipments. Fewer shipments also result in fewer operations over the useful life of a cask, and opportunities for error decrease. The system concept can be designed such that only benefits occur. These benefits could include enhanced criticality safety and the overall reliability of cask operations, as well as system risk and economic benefits. Thus, burnup credit should be available as an alternative for the criticality design of spent fuel shipping casks

  1. Impact of fission gas on irradiated PWR fuel behaviour at extended burnup under RIA conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Schmitz, F.

    1996-01-01

    With the world-wide trend to increase the fuel burnup at discharge of the LWRs, the reliability of high burnup fuel must be proven, including its behaviour under energetic transient conditions, and in particular during RIAs. Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup. The potential for swelling and transient expansion work under rapid heating conditions characterizes the high burnup fuel behaviour by comparison to fresh fuel. This effect is resulting from the steadily increasing amount of gaseous and volatile fission products retained inside the fuel structure. An attempt is presented to quantify the gas behaviour which is motivated by the results from the global tests both in CABRI and in NSRR. A coherent understanding of specific results, either transient release or post transient residual retention has been reached. The early failure of REP Na1 with consideration given to the satisfactory behaviour of the father rod of the test pin at the end of the irradiation (under load follow conditions) is to be explained both by the transient loading from gas driven fuel swelling and from the reduced clad resistance due to hydriding. (R.P.)

  2. Determination of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Kristak, J.; Vobecky, M.

    1973-01-01

    Samples containing a known content of 235 U were irradiated with several different neutron doses and activities were determined of radionuclides including 125 Sb, 144 Ce, 134 Cs, 154 Eu, 103 Ru, 95 Zr. The values thus obtained were divided by the 137 Cs activity value. The resulting neutron dose-dependent value is plotted into a calibration graph. The degree of nuclear fuel burn-up is obtained from the graph using an experimentally determined ratio of the activities of the above radionuclides. (B.S.)

  3. Portable gamma-ray holdup and attributes measurements of high- and variable-burnup plutonium

    International Nuclear Information System (INIS)

    Wenz, T.R.; Russo, P.A.; Miller, M.C.; Menlove, H.O.; Takahashi, S.; Yamamoto, Y.; Aoki, I.

    1991-01-01

    High burnup-plutonium holdup has been assayed quantitatively by low resolution gamma-ray spectrometry. The assay was calibrated with four plutonium standards representing a range of fuel burnup and 241 Am content. Selection of a calibration standard based on its qualitative spectral similarity to gamma-ray spectra of the process material is partially responsible for the success of these holdup measurements. The spectral analysis method is based on the determination of net counts in a single spectral region of interest (ROI). However, the low-resolution gamma-ray assay signal for the high-burnup plutonium includes unknown amounts of contamination from 241 Am. For most needs, the range of calibration standards required for this selection procedure is not available. A new low-resolution gamma-ray spectral analysis procedure for assay of 239 Pu has been developed. The procedure uses the calculated isotope activity ratios and the measured net counts in three spectral ROIs to evaluate and remove the 241 Am contamination from the 239 Pu assay signal on a spectrum-by-spectrum basis. The calibration for the new procedure requires only a single plutonium standard. The procedure also provides a measure of the burnup and age attributes of holdup deposits. The new procedure has been demonstrated using portable gamma-ray spectroscopy equipment for a wide range of plutonium standards and has also been applied to the assay of 239 Pu holdup in a mixed oxide fuel fabrication facility. 10 refs., 5 figs., 3 tabs

  4. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    International Nuclear Information System (INIS)

    Wiesenack, W.

    1996-01-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project's data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup

  5. Impact on burnup performance of coated particle fuel design in pebble bed reactor with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    The pebble bed reactor (PBR), a kind of high-temperature gas-cooled reactor (HTGR), is expected to be among the next generation of nuclear reactors as it has excellent passive safety features, as well as online refueling and high thermal efficiency. Rock-like oxide (ROX) fuel has been studied at the Japan Atomic Energy Agency (JAEA) as a new once-through type fuel concept. Rock-like oxide used as fuel in a PBR can be expected to achieve high burnup and improve chemical stabilities. In the once-through fuel concept, the main challenge is to achieve as high a burnup as possible without failure of the spent fuel. The purpose of this study was to investigate the impact on burnup performance of different coated fuel particle (CFP) designs in a PBR with ROX fuel. In the study, the AGR-1 Coated Particle design and Deep-Burn Coated Particle design were used to make the burnup performance comparison. Criticality and core burnup calculations were performed by MCPBR code using the JENDL-4.0 library. Results at equilibrium showed that the two reactors utilizing AGR-1 Coated Particle and Deep-Burn Coated Particle designs could be critical with almost the same multiplication factor k eff . However, the power peaking factor and maximum power per fuel ball in the AGR-1 coated particle design was lower than that of Deep-Burn coated particle design. The AGR-1 design also showed an advantage in fissions per initial fissile atoms (FIFA); the AGR-1 coated particle design produced a higher FIFA than the Deep-Burn coated particle design. These results suggest that the difference in coated particle fuel design can have an effect on the burnup performance in ROX fuel. (author)

  6. The influence of rhodium burn-up on the sensitivity of rhodium self-powered neutron detectors

    International Nuclear Information System (INIS)

    Erben, O.

    1980-01-01

    Depression and self-shielding coefficients are presented for thermal and epithermal neutron flux densities. Functions are shown describing the distribution of beta particle sources on the emitter cross section for 0 to 50% rhodium burnup. The values are calculated of detector sensitivity to thermal and epithermal neutron flux densities for the said burnup for main types of rhodium SPN detectors made by SODERN. (J.B.)

  7. Influence of high burnup on the decay heat power of spent fuel at long-term storage

    International Nuclear Information System (INIS)

    Bergelson, B.; Gerasimov, A.; Tikhomirov, G.

    2005-01-01

    Development and application of advanced fuel with higher burnup is now in practice of NPP with light water reactors in an increasing number of countries. High burnup allows to decrease significantly consumption of uranium. However, spent fuel of this type contains increased amount of high active actinides and fission products in comparison with spent fuel of common-type burnup. Therefore extended time of storage, improved cooling system of the storage facility will be required along with more strong radiation protection during storage, transportation and processing. Calculated data on decay heat power of spent uranium fuel of light water VVER-1000 type reactor are discussed in the paper. Long-term storage of discharged fuel during 100000 years is considered. Calculations were made for burnups of 40-70 MW d/kg. In the initial 50-year period of storage, power of fission products is much higher than that of actinides. Power of gamma-radiation is mainly due to fission products. During subsequent storage power of fission products quickly decreases, the main contribution to the power is given by actinides rather than by fission products. (author)

  8. Burn-up determination of irradiated thoria samples by isotope dilution-thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.; Shah, R.V.; Sant, V.L.; Sasibhushan, K.; Parab, A.R.; Alamelu, D.

    2010-03-01

    Burn-up was determined experimentally using thermal ionization mass spectrometry for two samples from ThO 2 bundles irradiated in KAPS-2. This involved quantitative dissolution of the irradiated fuel samples followed by separation and determination of Th, U and a stable fission product burn-up monitor in the dissolved fuel solution. Stable fission product 148 Nd was used as a burn-up monitor for determining the number of fissions. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using natural U, 229 Th and enriched 142 Nd as spikes was employed for the determination of U, Th and Nd, respectively. Atom % fission values of 1.25 ± 0.03 were obtained for both the samples. 232 U content in 233 U determined by alpha spectrometry was about 500 ppm and this was higher by a factor of 5 compared to the theoretically predicted value by ORIGEN-2 code. (author)

  9. Advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-05-01

    Given a trend towards higher burnup power reactor fuel, the IAEA began an active programme in burnup credit (BUC) with major meetings in 1997 (IAEA-TECDOC-1013), 2000 (IAEA-TECDOC-1241) and 2002 (IAEA-TECDOC-1378) exploring worldwide interest in using BUC in spent fuel management systems. This publication contains the proceedings of the IAEA's 4th major BUC meeting, held in London. Sixty participants from 18 countries addressed calculation methodology, validation and criticality, safety criteria, procedural compliance with safety criteria, benefits of BUC applications, and regulatory aspects in BUC. This meeting encouraged the IAEA to continue its activities on burnup credit including dissemination of related information, given the number of Member States having to deal with increased spent fuel quantities and extended durations. A 5th major meeting on burnup credit is planned 2008. Burnup credit is a concept that takes credit for the reduced reactivity of fuel discharged from the reactor to improve loading density of irradiated fuel assemblies in storage, transportation, and disposal applications, relative to the assumption of fresh fuel nuclide inventories in loading calculations. This report has described a general four phase approach to be considered in burnup credit implementation. Much if not all of the background research and data acquisition necessary for successful burnup credit development in preparation for licensing has been completed. Many fuel types, facilities, and analysis methods are encompassed in the public knowledge base, such that in many cases this guidance will provide a means for rapid development of a burnup credit program. For newer assembly designs, higher enrichment fuels, and more extensive nuclide credit, additional research and development may be necessary, but even this work can build on the foundation that has been established to date. Those, it is hoped that this report will serve as a starting point with sufficient reference to

  10. Economic incentives and recommended development for commercial use of high burnup fuels in the once-through LWR fuel cycle

    International Nuclear Information System (INIS)

    Stout, R.B.; Merckx, K.R.; Holm, J.S.

    1981-01-01

    This study calculates the reduced uranium requirements and the economic incentives for increasing the burnup of current design LWR fuels from the current range of 25 to 35 MWD/Kg to a range of 45 to 55 MWD/Kg. The changes in fuel management strategies which may be required to accommodate these high burnup fuels and longer fuel cycles are discussed. The material behavior problems which may present obstacles to achieving high burnup or to license fuel are identified and discussed. These problems are presented in terms of integral fuel response and the informational needs for commercial and licensing acceptance. Research and development programs are outlined which are aimed at achieving a licensing position and commercial acceptance of high burnup fuels

  11. EPRI/DOE High Burnup Fuel Sister Pin Test Plan Simplification and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanson, Brady [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billone, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    The EPRI/DOE High Burnup Confirmatory Data Project (herein called the "Demo") is a multi-year, multi-entity confirmation demonstration test with the purpose of providing quantitative and qualitative data to show how high-burnup fuel ages in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of four common cladding alloys from the North Anna Nuclear Power Plant, drying them according to standard plant procedures, and then storing them in an NRC-licensed TN-3 2B cask on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and the rods will be examined for signs of aging. Twenty-five rods from assemblies of similar claddings, in-reactor placement, and burnup histories (herein called "sister rods") have been shipped from the North Anna Nuclear Power Plant and are currently being nondestructively tested at Oak Ridge National Laboratory. After the non-destructive testing has been completed for each of the twenty-five rods, destructive analysis will be performed at ORNL, PNNL, and ANL to obtain mechanical data. Opinions gathered from the expert interviews, ORNL and PNNL Sister Rod Test Plans, and numerous meetings has resulted in the Simplified Test Plan described in this document. Some of the opinions and discussions leading to the simplified test plan are included here. Detailed descriptions and background are in the ORNL and PNNL plans in the appendices . After the testing described in this simplified test plan h as been completed , the community will review all the collected data and determine if additional testing is needed.

  12. Evaluation of RSG-GAS Core Management Based on Burnup Calculation

    International Nuclear Information System (INIS)

    Lily Suparlina; Jati Susilo

    2009-01-01

    Evaluation of RSG-GAS Core Management Based on Burnup Calculation. Presently, U 3 Si 2 -Al dispersion fuel is used in RSG-GAS core and had passed the 60 th core. At the beginning of each cycle the 5/1 fuel reshuffling pattern is used. Since 52 nd core, operators did not use the core fuel management computer code provided by vendor for this activity. They use the manually calculation using excel software as the solving. To know the accuracy of the calculation, core calculation was carried out using two kinds of 2 dimension diffusion codes Batan-2DIFF and SRAC. The beginning of cycle burn-up fraction data were calculated start from 51 st to 60 th using Batan-EQUIL and SRAC COREBN. The analysis results showed that there is a disparity in reactivity values of the two calculation method. The 60 th core critical position resulted from Batan-2DIFF calculation provide the reduction of positive reactivity 1.84 % Δk/k, while the manually calculation results give the increase of positive reactivity 2.19 % Δk/k. The minimum shutdown margin for stuck rod condition for manual and Batan-3DIFF calculation are -3.35 % Δk/k dan -1.13 % Δk/k respectively, it means that both values met the safety criteria, i.e <-0.5 % Δk/k. Excel program can be used for burn-up calculation, but it is needed to provide core management code to reach higher accuracy. (author)

  13. The burn-up credit physics and the 40. Minerve anniversary

    International Nuclear Information System (INIS)

    Santamarina, A.; Toubon, H.; Trakas, C.

    2000-01-01

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  14. State of fuel rods spent in the VVER-1000 reactor up to a fuel burnup of 75 MW·Day/KgU

    International Nuclear Information System (INIS)

    Markov, D.; Zvir, E.; Polenok, V.; Zhitelev, V.; Strozhuk, A.; Volkova, I.

    2011-01-01

    The presented material contains the data on change in form, corrosion state and mechanical properties of fuel rod claddings, change in fuel structure and release of gaseous fission products (GFP) under the cladding. The results of PIEs of the VVER-1000 fuel rods with the high burnup of fuel (average value is 72.3 MW·day/kgU and maximum is 75 MW·day/kgU) carried out in JSC 'SSC RIAR' show that by the basic operational characteristics the lifetime of fuel rods with such burnup of fuel is not exhausted. The state of fuel rods is characterized by following key parameters. The fuel-to-cladding gap on the most part of the fuel meat is absent. With the burnup growth, diameter of the fuel rod increases due to fuel meat swelling. In so doing, the reverse strain achieves the values of 0.40-0.47 %. Ridges on the cladding are formed practically along the entire length of the fuel meat, average height of ridges makes up 25 μm, maximum - 40 μm. At burnups exceeding 55 MW·day/kgU, the rate of the fuel rod elongation is less than at low and average burnups. So if within a burnup range of 20-55 MW·day/kgU, the rate of the fuel rod elongation makes up about 0.330mm per 1 MW·day/kgU, at burnups exceeding 55 MW·day/kgU it is only 0.085mm per 1 MW·day/kgU. Corrosion state of the claddings of fuel rods with high burnup of fuel is satisfactory. The oxide film, as a rule, is uniform, dense, without cracks and exfoliation, its thickness on the external surface does not exceed 13 μm, while on the internal surface - 15 μm. Hydrogenation is insignificant, mass fraction of hydrogen does not exceed 0.01 %. Interaction of fuel rods with spacer grids does not result in significant fretting-corrosion. Based of the results of tests, short-term mechanical properties of the claddings of fuel rods with high burnup of fuel remain at high level. The state of fuel is characterized by absence of the fuel-to-cladding gap on the most part of the fuel meat, fuel is tightly fixed to the cladding

  15. Recent developments of the TRANSURANUS code with emphasis on high burnup phenomena

    International Nuclear Information System (INIS)

    Lassmann, K.; Schubert, A.; Laar, J. van de; Vennix, C.W.H.M.

    2001-01-01

    TRANSURANUS is a computer program for the thermal and mechanical analysis of fuel rods in nuclear reactors, which is developed at the Institute for Transuranium Elements. The code is in use in several European organisations, both in research and industry. In the paper the recent developments are summarised: the burnup degradation of the fuel thermal conductivity as well as the effects of gadolinium on the radial power distribution and thermal conductivity. Fission gas release from the High Burnup Structure is discussed. Finally, a new numerical method is outlined that is able to treat the highly non-linear mechanical equations in transients (RIAs and LOCAs). (author)

  16. A Study for Burn-up Calculation applied on 400MWth PBMR Core

    International Nuclear Information System (INIS)

    Luu, Nam Hai; Kim, Hong Chul; Kim, Soon Young; Kim, Jong Kyung; Noh, Jae Man

    2007-01-01

    The 400MWth Pebble-bed Modular Reactor (PBMR) is an advanced high temperature gas cooled-reactor (HTGR). It possesses a very high efficiency and attractive economics without compromising the high levels of passive safety expected of advanced nuclear designs. With this reason, PBMR is a target which researchers especially in nuclear engineering field study carefully and therefore it is regarded as the leader in the power generation field. There are many research results about benchmark problems but results of the burn-up process are still poor. Hence, in this study a burn-up calculation was performed with PBMR using MONTEBURNS code in which MCNP modeling linked a depletion systems is used

  17. Technique for sensitivity analysis of space- and energy-dependent burn-up calculations

    International Nuclear Information System (INIS)

    Williams, M.L.; White, J.R.

    1979-01-01

    A practical method is presented for sensitivity analysis of the very complex, space-energy dependent burn-up equations, in which the neutron and nuclide fields are coupled nonlinearly. The adjoint burn-up equations that are given are in a form which can be directly implemented into multi-dimensional depletion codes, such as VENTURE/BURNER. The data sensitivity coefficients can be used to determine the effect of data uncertainties on time-dependent depletion responses. Initial condition sensitivity coefficients provide a very effective method for computing the change in end of cycle parameters (such as k/sub eff/, fissile inventory, etc.) due to changes in nuclide concentrations at beginning of cycle

  18. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  19. Burnup characteristics of binary breeder reactors

    International Nuclear Information System (INIS)

    Dias, A.F.; Nascimento, J.A. do; Ishiguro, Y.

    1983-01-01

    Burnup calculations of a binary breeder reactor have been done for two cases of fueling. In one case the U 233 /TH fueled inner core and the Pu/U-fueled outer core have the same number of fuel assemblies. In the other case two outermost rings in the inner core are Pu/U-fueled. The second case is considered for an initial phase of thorim cycle introduction when the supply of U 233 could be limited. Results show an efficient breeding on the thorium cycle in both cases. (Author) [pt

  20. Burnup studies of the subcritical fusion-driven in-zinerator

    International Nuclear Information System (INIS)

    Persson, C. M.; Gudowski, W.; Venneri, F.

    2007-01-01

    A fusion-driven subcritical core, 'In-Zinerator', has been proposed for nuclear waste transmutation [1]. In this concept, a powerful Z-pinch neutron source will produce pulses of 14 MeV neutrons that multiply in a surrounding subcritical core consisting of spent fuel from the LWR fuel cycle or from deep burn high temperature reactors. The proposed design has pulse frequency 0.1 Hz and a thermal power of 3 GWth. The Z-pinch fusion experiment is located at Sandia Laboratories, USA, and can today fire once a day. However, investigations have been made how to increase the frequency to several fires per minute. Each fire yields 300 MJ corresponding to 1020 neutrons per pulse. The source chamber will in the In-Zinerator concept be surrounded by spent fuel to reach an effective multiplication factor, k e ff, of 0.97. The core will be cooled by liquid lead. In this paper, the burnup of different fuel compositions in the In-Zinerator will be studied as function of initial k e ff. The Monte Carlo based continuous energy burnup code MCB [2][3]will be used. References: [1] B.B. Cipiti, Fusion Transmutation of Waste and the Role of the In-Zinerator in the Nuclear Fuel Cycle, Sandia Report SAND2006-3522, Sandia National Laboratories, USA, 2006. [2] J. Cetnar, J Wallenius and W Gudowski, MCB: A continuous energy Monte-Carlo burnup simulation code, Actinide and fission product partitioning and transmutation, Proc. of the Fifth Int. Information Exchange Meeting, Mol, Belgium, 25-27 November 1998, 523, OECD/NEA, 1998. [3] http://www.nea.fr/abs/html/nea-1643.html

  1. Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)

    2014-07-01

    A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm{sup 2}s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)

  2. Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2014-01-01

    A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm 2 s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)

  3. Flowchart evaluations of irradiated fuel treatment process of low burnup thorium

    International Nuclear Information System (INIS)

    Linardi, M.

    1987-01-01

    A literature survey has been carried out, on some versions of the acid-thorex process. Flowsheets of the different parts of the process were evaluated with mixer-settlers experiments. A low burnup thorium fuel (mass ratio Th/U∼100/1), proposed for Brazilian fast breeder reactor initial program, was considered. The behaviour of some fission products was studied by irradiated tracers techniques. Modifications in some of the process parameters were necessary to achieve low losses of 233 U and 232 U and 232 Th. A modified acid-thorex process flowsheet, evaluated in a complete operational cycle, for the treatment of low burnup thorium fuels, is presented. High decontamination factors of thorium in uranium, with reasonable decontamination of uranium in thorium, were achieved. (author) [pt

  4. On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100 MWd/kgHM

    International Nuclear Information System (INIS)

    Walker, C.T.; Staicu, D.; Sheindlin, M.; Papaioannou, D.; Goll, W.; Sontheimer, F.

    2006-01-01

    A study of the thermal conductivity of a commercial PWR fuel with an average pellet burn-up of 102 MWd/kgHM is described. The thermal conductivity data reported were derived from the thermal diffusivity measured by the laser flash method. The factors determining the fuel thermal conductivity at high burn-up were elucidated by investigating the recovery that occurred during thermal annealing. It was found that the thermal conductivity in the outer region of the fuel was much higher than it would have been if the high burn-up structure were not present. The increase in thermal conductivity is a consequence of the removal of fission products and radiation defects from the fuel lattice during recrystallisation of the fuel grains (an integral part of the formation process of the high burn-up structure). The gas porosity in the high burn-up structure lowers the increase in thermal conductivity caused by recrystallisation

  5. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  6. Advancements in reactor physics modelling methodology of Monte Carlo Burnup Code MCB dedicated to higher simulation fidelity of HTR cores

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2014-01-01

    The recent development of MCB - Monte Carlo Continuous Energy Burn-up code is directed towards advanced description of modern reactors, including double heterogeneity structures that exist in HTR-s. In this, we exploit the advantages of MCB methodology in integrated approach, where physics, neutronics, burnup, reprocessing, non-stationary process modeling (control rod operation) and refined spatial modeling are carried in a single flow. This approach allows for implementations of advanced statistical options like analysis of error propagation, perturbation in time domain, sensitivity and source convergence analyses. It includes statistical analysis of burnup process, emitted particle collection, thermal-hydraulic coupling, automatic power profile calculations, advanced procedures of burnup step normalization and enhanced post processing capabilities. (author)

  7. Estimation of burnup with cesium isotopes based on gamma-scanning of a instrumented fuel capsule(02F-11K) in hot-cell

    International Nuclear Information System (INIS)

    Song, Ung Sup; Kim, Hee Moon; Park, Dae Gyu; Paik, Seung Je; Lee, Hong Gi; Choo, Yong Sun; Hong Kwon Pyo

    2004-01-01

    Many experimental inspection have been performed to obtain the burnup of fuel. In the case, chemical analysis were popular with high reliability. High radioactivity of fuel was severe problem during destructive procedure. Afterward, many researchers have studied calculation of burnup using gamma detector as the non-destructive method. methodologies of gamma-scanning test have been developed as well as higher accuracy of detector. Generally, Cs-137 and Cs-134 are standard isotopes for long-term cooling spent fuel to estimate burnup, because atomic ratio of them follows the linearity with burnup

  8. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  9. Effect of burnup history by moderator density on neutron-physical characteristics of WWER-1000 core

    International Nuclear Information System (INIS)

    Ovdiienko, I.; Kuchin, A.; Khalimonchuk, V.; Ieremenko, M.

    2011-01-01

    Results of assessment of burnup history effect by moderator density on neutron physical characteristics of WWER-1000 core are presented on example of stationary fuel loading with Russian design fuel assembly TWSA and AER benchmark for Khmelnitsky NPP that was proposed by TUV and SSTC NRC at nineteenth symposium. Assessment was performed by DYN3D code and cross section library sets generated by HELIOS code. Burnup history was taken into account by preparing of numerous cross section sets with different isotopic composition each of which was obtained by burning under different moderator density. For analysis of history effect 20 cross section sets were prepared for each fuel assembly corresponded to each of 20 axial layers of reactor core model for DYN3D code. Four fuel cycles were modeled both for stationary fuel loading with TWSA and AER benchmark for Khmelnitsky NPP to obtain steady value of error due to neglect of burnup history effect. Main attention of study was paid to effect of burnup history by moderator density to axial power distribution. Results of study for AER benchmark were compared with experimental values of axial power distribution for fuel assemblies of first, second, third and fourth year operation. (Authors)

  10. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  11. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    El-Osery, I.A.

    1981-01-01

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  12. Development of a Fully-Automated Monte Carlo Burnup Code Monteburns

    International Nuclear Information System (INIS)

    Poston, D.I.; Trellue, H.R.

    1999-01-01

    Several computer codes have been developed to perform nuclear burnup calculations over the past few decades. In addition, because of advances in computer technology, it recently has become more desirable to use Monte Carlo techniques for such problems. Monte Carlo techniques generally offer two distinct advantages over discrete ordinate methods: (1) the use of continuous energy cross sections and (2) the ability to model detailed, complex, three-dimensional (3-D) geometries. These advantages allow more accurate burnup results to be obtained, provided that the user possesses the required computing power (which is required for discrete ordinate methods as well). Several linkage codes have been written that combine a Monte Carlo N-particle transport code (such as MCNP TM ) with a radioactive decay and burnup code. This paper describes one such code that was written at Los Alamos National Laboratory: monteburns. Monteburns links MCNP with the isotope generation and depletion code ORIGEN2. The basis for the development of monteburns was the need for a fully automated code that could perform accurate burnup (and other) calculations for any 3-D system (accelerator-driven or a full reactor core). Before the initial development of monteburns, a list of desired attributes was made and is given below. o The code should be fully automated (that is, after the input is set up, no further user interaction is required). . The code should allow for the irradiation of several materials concurrently (each material is evaluated collectively in MCNP and burned separately in 0RIGEN2). o The code should allow the transfer of materials (shuffling) between regions in MCNP. . The code should allow any materials to be added or removed before, during, or after each step in an automated fashion. . The code should not require the user to provide input for 0RIGEN2 and should have minimal MCNP input file requirements (other than a working MCNP deck). . The code should be relatively easy to use

  13. Kr-85m activity as burnup measurement indicator in a pebble bed reactor based on ORIGEN2.1 Computer Simulation

    Science.gov (United States)

    Husnayani, I.; Udiyani, P. M.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) is a high temperature gas-cooled reactor which employs graphite as a moderator and helium as a coolant. In a multi-pass PBR, burnup of the fuel pebble must be measured in each cycle by online measurement in order to determine whether the fuel pebble should be reloaded into the core for another cycle or moved out of the core into spent fuel storage. One of the well-known methods for measuring burnup is based on the activity of radionuclide decay inside the fuel pebble. In this work, the activity and gamma emission of Kr-85m were studied in order to investigate the feasibility of Kr-85m as burnup measurement indicator in a PBR. The activity and gamma emission of Kr-85 were estimated using ORIGEN2.1 computer code. The parameters of HTR-10 were taken as a case study in performing ORIGEN2.1 simulation. The results show that the activity revolution of Kr-85m has a good relationship with the burnup of the pebble fuel in each cycle. The Kr-85m activity reduction in each burnup step,in the range of 12% to 4%, is considered sufficient to show the burnup level in each cycle. The gamma emission of Kr-85m is also sufficiently high which is in the order of 1010 photon/second. From these results, it can be concluded that Kr-85m is suitable to be used as burnup measurement indicator in a pebble bed reactor.

  14. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Kuehl, H.

    2001-01-01

    This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)

  15. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Neuber, J C [Siemens Nuclear Power GmbH, Offenbach (Germany); Kuehl, H [Wissenschaftlich-Technische Ingenieurberatung WTI GmbH, Juelich (Germany)

    2001-08-01

    This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)

  16. Application of dynamic pseudo fission products and actinides for accurate burnup calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Kloosterman, J.L.

    1996-09-01

    The introduction of pseudo fission products for accurate fine-group spectrum calculations during burnup is discussed. The calculation of the density of the pseudo nuclides is done before each spectrum calculation from the actual densities and their cross sections of all nuclides to be lumped into a pseudo fission product. As there are also many actinides formed in the fuel during its life cycle, a pseudo actinide with fission cross section is also introduced. From a realistic burnup calculation it is demonstrated that only a few fission products and actinides need to be included explicitly in a spectrum calculation. All other fission products and actinides can be accurately represented in the pseudo nuclides. (author)

  17. Discrete rod burnup analysis capability in the Westinghouse advanced nodal code

    International Nuclear Information System (INIS)

    Buechel, R.J.; Fetterman, R.J.; Petrunyak, M.A.

    1992-01-01

    Core design analysis in the last several years has evolved toward the adoption of nodal-based methods to replace traditional fine-mesh models as the standard neutronic tool for first core and reload design applications throughout the nuclear industry. The accuracy, speed, and reduction in computation requirements associated with the nodal methods have made three-dimensional modeling the preferred approach to obtain the most realistic core model. These methods incorporate detailed rod power reconstruction as well. Certain design applications such as confirmation of fuel rod design limits and fuel reconstitution considerations, for example, require knowledge of the rodwise burnup distribution to avoid unnecessary conservatism in design analyses. The Westinghouse Advanced Nodal Code (ANC) incorporates the capability to generate the intra-assembly pin burnup distribution using an efficient algorithm

  18. Critical assessment of the pore size distribution in the rim region of high burnup UO_2 fuels

    International Nuclear Information System (INIS)

    Cappia, F.; Pizzocri, D.; Schubert, A.; Van Uffelen, P.; Paperini, G.; Pellottiero, D.; Macián-Juan, R.; Rondinella, V.V.

    2016-01-01

    A new methodology is introduced to analyse porosity data in the high burnup structure. Image analysis is coupled with the adaptive kernel density estimator to obtain a detailed characterisation of the pore size distribution, without a-priori assumption on the functional form of the distribution. Subsequently, stereological analysis is carried out. The method shows advantages compared to the classical approach based on the histogram in terms of detail in the description and accuracy within the experimental limits. Results are compared to the approximation of a log-normal distribution. In the investigated local burnup range (80–200 GWd/tHM), the agreement of the two approaches is satisfactory. From the obtained total pore density and mean pore diameter as a function of local burnup, pore coarsening is observed starting from ≈100 GWd/tHM, in agreement with a previous investigation. - Highlights: • A new methodology to analyse porosity is introduced. • The method shows advantages compared to the histogram. • Pore density and mean diameter data vs. burnup are presented. • Pore coarsening is observed starting from ≈100 GWd/tHM.

  19. High-burnup/low-cooling-time fuel carrying capacity of the GA-4 and GA-9 spent fuel shipping casks

    International Nuclear Information System (INIS)

    Boshoven, J.K.; Hopf, J.E.

    1994-01-01

    In response to utilities' projected needs to ship higher burnup spent fuel, General Atomics (GA) has performed shielding and thermal analysis for the GA-4 and GA-9 legal weight shipping casks to determine the minimum cooling times for various burnup levels for fully loaded GA-4 and GA-9 casks and reduced payloads for the casks. Tables are provided in the paper which show the minimum cooling time for a given burnup and payload for each of the casks. The analyses show that the GA-4 and GA-9 casks can carry at least as many high-burnup and/or short-cooling-time spent fuel assemblies as present day shipping casks. In addition, the GA casks are able to carry at least twice as many assemblies as the present day shipping casks if the spent fuel burnup levels and/or cooling times are open-quotes coolerclose quotes or open-quotes as coolclose quotes as their design basis fuels. The increased shipping capacity for these more common open-quotes coolerclose quotes assemblies allows fewer shipments and therefore increases the efficiency and lowers predicted risks of the transport system

  20. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, M.; Cammi, A.; Fiorina, C. [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy); Leppänen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Luzzi, L., E-mail: lelio.luzzi@polimi.it [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy); Ricotti, M.E. [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy)

    2013-10-15

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  1. Assesment of advanced step models for steady state Monte Carlo burnup calculations in application to prismatic HTGR

    Directory of Open Access Journals (Sweden)

    Kępisty Grzegorz

    2015-09-01

    Full Text Available In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5. The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.

  2. Computer programs for TRIGA calibration, burnup evaluation, and bookkeeping

    International Nuclear Information System (INIS)

    Nelson, George W.

    1978-01-01

    Several computer programs have been developed at the University of Arizona to assist the direction and operation of the TRIGA Reactor Laboratory. The programs fall into the following three categories: 1. Programs for calculation of burnup of each fuel element in the reactor core, for maintaining an inventory of fuel element location and fissile content at any time, and for evaluation of the reactivity effects of burnup or proposed fuel element rearrangement in the core. 2. Programs for evaluation, function fitting, and tabulation of control rod measurements. 3. Bookkeeping programs to summarize and tabulate reactor runs and irradiations according to time, energy release, purpose, responsible party, etc. These summarized data are reported in an annual operating report for the facility. The use of these programs has saved innumerable hours of repetitious work, assuring more accurate, objective results, and requiring a minimum of effort to repeat calculations when input data are modified. The programs are written in FORTRAN-IV, and have been used on a CDC-6400 computer. (author)

  3. A PWR PCI failure criterion to burnups of 60 GW·d/t using the ENIGMA code

    International Nuclear Information System (INIS)

    Clarke, A.P.; Tempest, P.A.; Shea, J.H.

    2000-01-01

    A fuel performance modelling code (ENIGMA) has been used to analyse the empirical PCI failure criterion in terms of a clad failure stress as a function of burnup and fast neutron dose. The Studsvik database has been analysed. Results indicate a rising and then saturating failure stress with burnup and fast neutron dose. Using the PCI failure limits, equivalent to 95/95 confidence limits, an ENIGMA stress-based methodology is used to derive PWR PCI failure limits up to 60 GW·d/t U using a conservative assumption that the failure stress does not increase at high burnup and neutron dose. In addition experimental ramp data on gadolinia-doped fuel rods do not indicate any increased susceptibility to PCI failure implying that the UO 2 criterion can be used for gadolinia doped fuel. (author)

  4. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    International Nuclear Information System (INIS)

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-01-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at ∼2.4, ∼7 and ∼11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of ∼7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10 15 n/cm 2 /s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between ∼410 deg. C and ∼645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  5. CARA design criteria for HWR fuel burnup extension

    International Nuclear Information System (INIS)

    Florido, P.C.; Cirimello, R.O.; Bergallo, J.E.; Marino, A.C.; Delmastro, D.F.; Brasnarof, D.O.; Gonzalez, J.H.; Juanico, L.A.

    2002-01-01

    A new concept for HWR fuel bundles, namely CARA, is presented. The CARA design allows to improve all the major performances in the PHWR fuel technology. Among others, it reaches higher burnup and thermohydraulic safety margins, together with lower fuel pellet temperatures and Zry/HM mass ratio. Moreover, it keeps the fuel mass content per unit length and the channel pressure drop by using a single diameter of fuel rods. (author)

  6. SWAT4.0 - The integrated burnup code system driving continuous energy Monte Carlo codes MVP, MCNP and deterministic calculation code SRAC

    International Nuclear Information System (INIS)

    Kashima, Takao; Suyama, Kenya; Takada, Tomoyuki

    2015-03-01

    There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)

  7. A complete NUHOMS {sup registered} solution for storage and transport of high burnup spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bondre, J. [Transnuclear, Inc. (AREVA Group), Fremont, CA (United States)

    2004-07-01

    The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS {sup registered} solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS {sup registered} solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS {sup registered} 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS {sup registered} 32PTH system for higher crane capacity. These systems include NUHOMS {sup registered} - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask.

  8. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO2 fuel assemblies

    International Nuclear Information System (INIS)

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-01-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO 2 fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for 238 Pu, 144 Nd, 145 Nd, 146 Nd, 148 Nd, 134 Cs, 154 Eu, 152 Sm, 154 Gd, and 157 Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  9. Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup

    Science.gov (United States)

    Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.

    2017-12-01

    Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.

  10. Triton burnup study using scintillating fiber detector on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Harano, Hideki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-09-01

    The DT fusion reactor cannot be realized without knowing how the fusion-produced 3.5 MeV {alpha} particles behave. The {alpha} particles` behavior can be simulated using the 1 MeV triton. To investigate the 1 MeV triton`s behavior, a new type of directional 14 MeV neutron detector, scintillating fiber (Sci-Fi) detector has been developed and installed on JT-60U in the cooperation with LANL as part of a US-Japan collaboration. The most remarkable feature of the Sci-Fi detector is that the plastic scintillating fibers are employed for the neutron sensor head. The Sci-Fi detector measures and extracts the DT neutrons from the fusion radiation field in high time resolution (10 ms) and wide dynamic range (3 decades). Triton burnup analysis code TBURN has been made in order to analyze the time evolution of DT neutron emission rate obtained by the Sci-Fi detector. The TBURN calculations reproduced the measurements fairly well, and the validity of the calculation model that the slowing down of the 1 MeV triton was classical was confirmed. The Sci-Fi detector`s directionality indicated the tendency that the DT neutron emission profile became more and more peaked with the time progress. In this study, in order to examine the effect of the toroidal field ripple on the triton burnup, R{sub p}-scan and n{sub e}-scan experiments have been performed. The R{sub p}-scan experiment indicates that the triton`s transport was increased as the ripple amplitude over the triton became larger. In the n{sub e}-scan experiment, the DT neutron emission showed the characteristic changes after the gas puffing injection. It was theoretically confirmed that the gas puffing was effective for the collisionality scan. (J.P.N.) 127 refs.

  11. Triton burnup study using scintillating fiber detector on JT-60U

    International Nuclear Information System (INIS)

    Harano, Hideki

    1997-09-01

    The DT fusion reactor cannot be realized without knowing how the fusion-produced 3.5 MeV α particles behave. The α particles' behavior can be simulated using the 1 MeV triton. To investigate the 1 MeV triton's behavior, a new type of directional 14 MeV neutron detector, scintillating fiber (Sci-Fi) detector has been developed and installed on JT-60U in the cooperation with LANL as part of a US-Japan collaboration. The most remarkable feature of the Sci-Fi detector is that the plastic scintillating fibers are employed for the neutron sensor head. The Sci-Fi detector measures and extracts the DT neutrons from the fusion radiation field in high time resolution (10 ms) and wide dynamic range (3 decades). Triton burnup analysis code TBURN has been made in order to analyze the time evolution of DT neutron emission rate obtained by the Sci-Fi detector. The TBURN calculations reproduced the measurements fairly well, and the validity of the calculation model that the slowing down of the 1 MeV triton was classical was confirmed. The Sci-Fi detector's directionality indicated the tendency that the DT neutron emission profile became more and more peaked with the time progress. In this study, in order to examine the effect of the toroidal field ripple on the triton burnup, R p -scan and n e -scan experiments have been performed. The R p -scan experiment indicates that the triton's transport was increased as the ripple amplitude over the triton became larger. In the n e -scan experiment, the DT neutron emission showed the characteristic changes after the gas puffing injection. It was theoretically confirmed that the gas puffing was effective for the collisionality scan. (J.P.N.) 127 refs

  12. High burnup, high power irradiation behavior of helium-bonded mixed carbide fuel pins

    International Nuclear Information System (INIS)

    Levine, P.J.; Nayak, U.P.; Boltax, A.

    1983-01-01

    Large diameter (9.4 mm) helium-bonded mixed carbide fuel pins were successfully irradiated in EBR-II to high burnup (12%) at high power levels (100 kW/m) with peak cladding midwall temperatures of 550 0 C. The wire-wrapped pins were clad with 0.51-mm-thick, 20% cold-worked Type 316 stainless steel and contained hyperstoichiometric (Usub(0.8)Pusub(0.2))C fuel covering the smeared density range from 75-82% TD. Post-irradiation examinations revealed: extensive fuel-cladding mechanical interaction over the entire length of the fuel column, 35% fission gas release at 12% burnup, cladding carburization and fuel restructuring. (orig.)

  13. Research on burnup physics

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1974-07-01

    One of the major problems in burnup studies is the reasonably fast and accurate calculation of the space-and-energy dependent neutron flux and reaction rates for realistic power reactor fuel geometries and compositions, and its optimal integration in the global reactor calculations. The scope of the present research was to develop improved methods trying to satisfy the above requirements. In the epithermal region, simple and efficient approximation is proposed which allows the analytical solution for the space dependence of the spherical harmonics flux moments, and hence the derivation of the recurrence relations between he flux moments at successive lethargy pivotal points. A new matrix formalism to invert the coefficient matrix of band structure resulted in a reduce computer time and memory demands. The research on epithermal region is finalized in computing programme SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, and the related integral quantities as reaction rates and resonance integrals. For partial verification of the above methods a Monte Carlo procedure was developed. Using point-wise representation of variables, a flexible and fast convergent integral transport method SEPT i developed. Expanding the neutron source and flux in finite series of arbitrary polynomials, the space-and-energy dependent integral transport equation is transformed into a general linear algebraic form, which is solved numerically. A simple and efficient procedure for deriving multipoint equations and constructing matrix is proposed and examined, and no unwanted oscillations were noticed. The energy point method was combined with the spherical harmonics method as well. A multi zone few-group program SPECTAR for global reactor calculations was developed. For testing, the flux distribution, neutron leakage and effective multiplication factor for the PWR reactor of the power station San Onofre were calculated. In order to verify

  14. Nuclear fuel burnup calculation in a Voronezh type reactor; Analiza izgaranja nuklearnog goriva u reaktoru tipa Voronjez

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M; Marinkovic, N; Kocic, A [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1977-07-01

    In order to summarize and present our abilities to perform a complex computation of the nuclear fuel burn-up, a systematic review of the available methods, algorithms and computer programmes is given in this paper. The computer programmes quoted have all been developed, modified and tested in our department, so that they can be successfully used in the analysis of nuclear power plants from both physics and economic points of view. For a commercially proven nuclear reactor - reactor of the Voronezh type - an illustrative computation of the fuel burn-up is performed. The typical results are presented and discussed. The conclusion concerns the completion of a modular scheme for the fuel burn-up calculation and the fuel cycle analysis (author)

  15. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  16. Fuel burnup analysis of the TRIGA Mark II reactor at the University of Pavia

    International Nuclear Information System (INIS)

    Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2016-01-01

    Highlights: • A fuel evolution model for a TRIGA Mark II reactor has been developed. • Reproduction of nearly 50 years of reactor operation. • The model was used to predict the best reactor reconfiguration. • Reactor life was extended without adding fresh fuel elements. - Abstract: A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyze neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate low power experimental reactors from those used for power production, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.

  17. Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Karunasagar, D.; Saha, B.

    1996-01-01

    Burn-up an important parameter during evaluation of the performance of any nuclear fuel. Among the various techniques available, the preferred one for its determination is based on accurate measurement of a suitable fission product monitor and the residual heavy elements. Since isotopes of rare earth elements are generally used as burn-up monitors, conditions were standardized for rapid separation (within 15 minutes) of light rare earths using high performance liquid chromatography based on either anion exchange (Partisil 10 SAX) in methanol-nitric acid medium or by cation exchange on a reverse phase column (Spherisorb 5-ODS-2 or Supelcosil LC-18) dynamically modified with 1-octane sulfonate or camphor-10-sulfonic acid (β). Both these methods were assessed for separation of individual fission product rare earths from their mixtures. A new approach has been examined in detail for rapid assay of neodymium, which appears promising for faster and accurate measurement of burn-up. (author)

  18. Burnup analysis of a peu a peu fuel-loading scheme in a pebble bed reactor using the Monte Carlo method

    International Nuclear Information System (INIS)

    Irwanto, Dwi; Obara, Toru

    2010-01-01

    The design of a pebble bed reactor can be simplified by removing the unloading device from the system. For this reactor design, a suitable fuel-loading scheme is the peu a peu (little by little) fueling scheme. In the peu a peu mode, there is no unloading device; as such, the fuels are never discharged and remain at the bottom of the core during reactor operation. This means that the burnup cycle and reactivity is controlled by the addition of fuel. In this study, the Monte Carlo method is used to perform calculations with high accuracy. However, the calculation procedures for the peu a peu mode using the Monte Carlo method require lot of steps. Therefore, a computer code to automate the process of the peu a peu fuel-loading scheme based on the Monte Carlo MVP/MVP-BURN code has been developed using Fortran. Using the method developed in this study, burnup characteristics for a reference design of a small 20-MW pebble bed reactor with the peu a peu concept were analyzed. (author)

  19. Study on the sensitivity of Self-Powered Neutron Detectors (SPND) and its change due to burn-up

    International Nuclear Information System (INIS)

    Cho, Gyuseong; Lee, Wanno; Yoon, Jeong-Hyoun.

    1996-01-01

    Self-Powered Neutron Detectors (SPND) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. While they have several advantages such as small size, low cost, and relatively simple electronics required in conjunction with its usage, it has some intrinsic problems of the low level of output current, a slow response time, the rapid change of sensitivity which makes it difficult to use for a long term. In this paper, Monte Carlo simulation was accomplished to calculate the escape probability as a function of the birth position for the typical geometry of rhodium-based SPNDs. Using the simulation result, the burn-up profile of rhodium number density and the neutron sensitivity is calculated as a function of burn-up time in the reactor. The sensitivity of the SPND decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long-term usage. (author)

  20. Determination of reactor fuel burnup using passive neutron assay

    International Nuclear Information System (INIS)

    Kodeli, I.; Trkov, A.; Najzer, M.; Ertek, C.

    1988-01-01

    Passive neutron assay (PNA) method was developed to verify the fissile inventory of the irradiated reactor fuels. The characteristics of the method were studied at 'Jozef Stefan' Institute. The dependence of neutron source in the fuel on burnup, cooling time, initial enrichment and specific power were investigated and the accuracy of the method, using available computer codes was estimated. (author)