WorldWideScience

Sample records for hive beetles survive

  1. Survival and reproduction of small hive beetle (Coleoptera: Nitidulidae) on commercial pollen substitutes

    Science.gov (United States)

    An assay was developed to investigate the small hive beetle’s (Aethina tumida) potential for survival and reproduction when providing artificial food resources in managed European honey bees (Apis mellifera). Supplemental feeding is done to maintain the health of the hive, initiate comb building, ex...

  2. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect

    International Nuclear Information System (INIS)

    Downey, Danielle; Chun, Stacey; Follett, Peter

    2016-01-01

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5–7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1–4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread. (author)

  3. Variability in Small Hive Beetle (Coleoptera: Nitidulidae) Reproduction in Laboratory and Field Experiments.

    Science.gov (United States)

    Meikle, William G; Holst, Niels; Cook, Steven C; Patt, Joseph M

    2015-06-01

    Experiments were conducted to examine how several key factors affect population growth of the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Laboratory experiments were conducted to examine effects of food quantity and temperature on reproduction of cohorts of young A. tumida adults (1:1 sex ratio) housed in experimental arenas. Daily numbers and total mass of larvae exiting arenas were highly variable within treatment. Either one or two cohorts of larvae were observed exiting the arenas. Food quantity, either 10 g or 20 g, did not significantly affect the number of larvae exiting arenas at 32°C, but did at 28°C; arenas provided 20 g food produced significantly more larvae than arenas provided 10 g. Temperature did not affect the total mass of larvae provided 10 g food, but did affect larval mass provided 20 g; beetles kept at 28°C produced more larval mass than at 32°C. Field experiments were conducted to examine A. tumida reproductive success in full strength bee colonies. Beetles were introduced into hives as egg-infested frames and as adults, and some bee colonies were artificially weakened through removal of sealed brood. Efforts were unsuccessful; no larvae were observed exiting from, or during the inspection of, any hives. Possible reasons for these results are discussed. The variability observed in A. tumida reproduction even in controlled laboratory conditions and the difficulty in causing beetle infestations in field experiments involving full colonies suggest that accurately forecasting the A. tumida severity in such colonies will be difficult. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  4. The small hive beetle Aethina tumida: A review of its biology and control measures

    Directory of Open Access Journals (Sweden)

    Andrew G. S. CUTHBERTSON et al

    2013-10-01

    Full Text Available The small hive beetle Aethina tumida is an endemic parasitic pest and scavenger of colonies of social bees indigenous to sub-Saharan Africa. In this region this species rarely inflicts severe damage on strong colonies since the bees have develo­­ped strategies to combat them. However, A. tumida has since ‘escaped’ from its native home and has recently invaded areas such as North America and Australia where its economic impact on the apiculture industry has been significant. Small hive beetle, should it become established within Europe, represents a real and live threat to the UK bee keeping industry. Here we review the biology and current pest status of A. tumida and up to-date research in terms of both chemical and biological control used against this honey bee pest [Current Zoology 59 (5: 644–653, 2013].

  5. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect Releases.

    Science.gov (United States)

    Downey, Danielle; Chun, Stacey; Follett, Peter

    2015-06-01

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5-7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1-4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  6. Chasing your honey: Worldwide diaspora of the small hive beetle, a parasite of honey bee colonies

    Science.gov (United States)

    Endemic to sub-Saharan Africa, small hive beetles (Aethina tumida) are now an invasive pest of honey bee colonies in Australia and North America. Knowledge on the introduction(s) from Africa into and between the current ranges will shed light on pest populations, invasion pathways and contribute to ...

  7. Transcriptomic and functional resources for the small hive beetle Aethina tumida, a worldwide parasite of honey bees

    Directory of Open Access Journals (Sweden)

    Matthew R. Tarver

    2016-09-01

    Full Text Available The small hive beetle (SHB, Aethina tumida, is a major pest of managed honey bee (Apis mellifera colonies in the United States and Australia, and an emergent threat in Europe. While strong honey bee colonies generally keep SHB populations in check, weak or stressed colonies can succumb to infestations. This parasite has spread from a sub-Saharan Africa to three continents, leading to immense management and regulatory costs. We performed a transcriptomic analysis involving deep sequencing of multiple life stages and both sexes of this species. The assembled transcriptome appears to be nearly complete, as judged by conserved insect orthologs and the ability to find plausible homologs for 11,952 proteins described from the genome of the red flour beetle. Expressed genes include each of the major metabolic, developmental and sensory groups, along with genes for proteins involved with immune defenses and insecticide resistance. We also present a total of 23,085 high-quality SNP's for the assembled contigs. We highlight potential differences between this beetle and its honey bee hosts, and suggest mechanisms of future research into the biology and control of this species. SNP resources will allow functional genetic analyses and analyses of dispersal for this invasive pest. All resources are posted as Supplemental Tables at https://data.nal.usda.gov/dataset/data-transcriptomic-and-functional-resources-small-hive-beetle-aethina-tumida-worldwide, and at NCBI under Bioproject PRJNA256171.

  8. Monitoring of Small Hive Beetle (Aethina Tumida Murray in Calabria (Italy from 2014 to 2016: Practical Identification Methods

    Directory of Open Access Journals (Sweden)

    Rivera-Gomis Jorge

    2017-12-01

    Full Text Available The Small Hive Beetle (SHB, Aethina tumida, is an invasive pest of honey bee colonies that causes significant damage to the beekeeping sector. SHB was detected in southern Italy (EU in 2014 and despite adopted eradication measures, is still present there. After three years of observations of SHB in Calabria (2014-2016, we provide here some practical tips for improving control measures. A new time-saving colony examination method, including the use of an internal divider reduced the time needed for hive inspections by 31.86 % on average. Prioritizating the inspection of pollen and honey combs rather than brood combs is advised. Sentinel apiaries with no more than five colonies without supers are suggested for each beekeeping location in order to attract and to monitor the early appearance of SHB. The use of these methods will enable early detection and prompt control measures application before this destructive pest can spread in the region.

  9. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.

    Science.gov (United States)

    Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang

    2017-06-01

    Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

  10. The alternative Pharaoh approach: stingless bees mummify beetle parasites alive

    Science.gov (United States)

    Greco, Mark K.; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter

    2010-03-01

    Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers ( Trigona carbonaria) immediately mummify invading adult small hive beetles ( Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

  11. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    Science.gov (United States)

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  12. Hives

    Science.gov (United States)

    Your health care provider can tell if you have hives by looking at your skin. If you have a history of an allergy causing hives, for example, to strawberries, the diagnosis is even clearer. Sometimes, a skin biopsy ...

  13. Help with Hives

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Help With Hives KidsHealth / For Kids / Help With Hives What's in this article? What Are ... about what happened. The doctor can try to help figure out what might be causing your hives, ...

  14. Hives (Urticaria) (For Parents)

    Science.gov (United States)

    ... Cake Cause Hives? Going to School With Food Allergies Food Allergies Egg Allergy Learning About Allergies Help With Hives Rashes: The Itchy Truth Food Allergies Shellfish Allergy Allergies Hives (Urticaria) Serious Allergic Reactions ( ...

  15. Apache hive essentials

    CERN Document Server

    Du, Dayong

    2015-01-01

    If you are a data analyst, developer, or simply someone who wants to use Hive to explore and analyze data in Hadoop, this is the book for you. Whether you are new to big data or an expert, with this book, you will be able to master both the basic and the advanced features of Hive. Since Hive is an SQL-like language, some previous experience with the SQL language and databases is useful to have a better understanding of this book.

  16. Parental care improves offspring survival and growth in burying beetles

    Science.gov (United States)

    Eggert; Reinking; MULLER

    1998-01-01

    Burying beetles (genus Nicrophorus) provide elaborate parental care to their offspring. Parental beetles defend a small vertebrate carcass, which constitutes the sole food source for the larvae. They also manipulate the carcass in various ways and directly regurgitate pre-digested carrion to the young. The benefits of carcass manipulation and regurgitation have been the subject of a few small-scale studies that have yielded conflicting results. In this study, we investigated the benefits of these behaviours and tested for possible beneficial effects on larval survival rates and final body mass in N. vespilloides. In this species: (1) larval survival and mass were significantly higher in broods receiving parental care throughout larval development on the carcass than in broods developing in the absence of adults; (2) parental presence immediately subsequent to larval hatching greatly improved larval survival rates; (3) continued parental presence for several days further improved larval growth, leading to a greater final mass of individual larvae; (4) larval survival and growth were improved by parental preparation of carcasses and by an excision made in the integument of the carcass surface by the parents that allows the larvae ready access to their food; (5) positive effects of parental feeding on larval survival and growth were not mediated by the transfer of symbionts. Copyright 1998 The Association for the Study of Animal Behaviour.

  17. Lima bean – lady beetle interactions: hooked trichomes affect survival of Stethorus punctillum larvae

    Science.gov (United States)

    We tested the hypothesis that Lima bean Phaseolus lunatus L. (Henderson cultivar) trichome density affects the survival of the acariphagous lady beetle Stethorus punctillum Weise. When isolated throughout larval development, 10% or less of S. punctillum larvae reared on two-spotted spider mite Tetr...

  18. A new cooling technique for stingless bees hive

    Directory of Open Access Journals (Sweden)

    Ramli Ahmad Syazwan

    2017-01-01

    Full Text Available Stingless bees are a type of insect that are very sensitive to the changes of their surroundings, especially to severe heat wave. A report stated that at temperature as high as 38°C can cause death of bees especially to the pupae. Therefore, the objective of this research is to evaluate a new method in regulating the temperature in the hive. Greenroof, a type of roof which contains green vegetation and soil, was used as the cooling method in this study. Two units of MUSTAFA-hives were exposed under sunlight, one is without temperature control and another one was fitted greenroof. The temperatures inside each hive was measured at two points and was compared with the hive without temperature control. It was found that, for the hive integrated with greenroof, the average hive temperature was about 3°C and 6°C lower in the honey cassette and brood-cells compartment, respectively. Therefore, it can be concluded that the implementation of greenroof could solve the problem of stingless bee hive overheating, and the greenroof has an impressive cooling performance besides being an economic and simple solution.

  19. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi.

    Science.gov (United States)

    Avery, Pasco B; Bojorque, Verónica; Gámez, Cecilia; Duncan, Rita E; Carrillo, Daniel; Cave, Ronald D

    2018-04-25

    Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF) are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus , and potential alternative vectors, Xylosandrus crassiusculus , Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae). Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus , X. volvulus and X. bispinatus. The specific objectives were to determine: (1) the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF ( Isaria fumosorosea , Metarhizium brunneum and Beauveria bassiana ); and (2) the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 10⁶ viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana , compared to the other fungal treatments. For X. volvulus , the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana . After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests) indicated an

  20. Hives (Urticaria)

    Science.gov (United States)

    ... allergic reaction. Hives also can be the body's way of reacting to temperature extremes, stress , infections, or illnesses. The red blotches happen when cells in the bloodstream (called mast cells) release the chemical histamine. This causes tiny blood vessels ...

  1. Survival of cabbage stem flea beetle larvae, Psylliodes chrysocephala, exposed to low temperatures

    DEFF Research Database (Denmark)

    Mathiasen, Helle; Bligaard, J.; Esbjerg, Peter

    2015-01-01

    The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. The larvae live throughout winter in leaf petioles and stems. Winter temperatures might play an important role in survival during winter and hence population dynamics, ...

  2. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Pasco B. Avery

    2018-04-01

    Full Text Available Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus, and potential alternative vectors, Xylosandrus crassiusculus, Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae. Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus, X. volvulus and X. bispinatus. The specific objectives were to determine: (1 the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF (Isaria fumosorosea, Metarhizium brunneum and Beauveria bassiana; and (2 the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 106 viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana, compared to the other fungal treatments. For X. volvulus, the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana. After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests indicated an

  3. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  4. Hives and Angioedema

    Science.gov (United States)

    ... is swelling or if you're having trouble breathing. Causes Hives and angioedema can be caused by: Foods. Many foods can trigger reactions in people with sensitivities. Shellfish, fish, peanuts, tree nuts, eggs and milk are frequent ...

  5. Comparative analysis of profitability of honey production using traditional and box hives.

    Science.gov (United States)

    Al-Ghamdi, Ahmed A; Adgaba, Nuru; Herab, Ahmed H; Ansari, Mohammad J

    2017-07-01

    Information on the profitability and productivity of box hives is important to encourage beekeepers to adopt the technology. However, comparative analysis of profitability and productivity of box and traditional hives is not adequately available. The study was carried out on 182 beekeepers using cross sectional survey and employing a random sampling technique. The data were analyzed using descriptive statistics, analysis of variance (ANOVA), the Cobb-Douglas (CD) production function and partial budgeting. The CD production function revealed that supplementary bee feeds, labor and medication were statistically significant for both box and traditional hives. Generally, labor for bee management, supplementary feeding, and medication led to productivity differences of approximately 42.83%, 7.52%, and 5.34%, respectively, between box and traditional hives. The study indicated that productivity of box hives were 72% higher than traditional hives. The average net incomes of beekeepers using box and traditional hives were 33,699.7 SR/annum and 16,461.4 SR/annum respectively. The incremental net benefit of box hives over traditional hives was nearly double. Our study results clearly showed the importance of adoption of box hives for better productivity of the beekeeping subsector.

  6. Comparative analysis of profitability of honey production using traditional and box hives

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Ghamdi

    2017-07-01

    Full Text Available Information on the profitability and productivity of box hives is important to encourage beekeepers to adopt the technology. However, comparative analysis of profitability and productivity of box and traditional hives is not adequately available. The study was carried out on 182 beekeepers using cross sectional survey and employing a random sampling technique. The data were analyzed using descriptive statistics, analysis of variance (ANOVA, the Cobb-Douglas (CD production function and partial budgeting. The CD production function revealed that supplementary bee feeds, labor and medication were statistically significant for both box and traditional hives. Generally, labor for bee management, supplementary feeding, and medication led to productivity differences of approximately 42.83%, 7.52%, and 5.34%, respectively, between box and traditional hives. The study indicated that productivity of box hives were 72% higher than traditional hives. The average net incomes of beekeepers using box and traditional hives were 33,699.7 SR/annum and 16,461.4 SR/annum respectively. The incremental net benefit of box hives over traditional hives was nearly double. Our study results clearly showed the importance of adoption of box hives for better productivity of the beekeeping subsector.

  7. Evaluation of transitional and modern hives for honey production in ...

    African Journals Online (AJOL)

    The study was conducted in Adami Tulu and Arsi Negelle districts from September 2009 to June 2012 to evaluate productivity performance of transitional and modern box bee hives. Based on farmers' capacity, one modern box hive and one transitional hive made from locally available materials were used at each of the ...

  8. Floral odor learning within the hive affects honeybees' foraging decisions

    Science.gov (United States)

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2007-03-01

    Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.

  9. Instant Apache Hive essentials how-to

    CERN Document Server

    Lee, Darren

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks.This book provides quick recipes for using Hive to read data in various formats, efficiently querying this data, and extending Hive with any custom functions you may need to insert your own logic into the data pipeline.This book is written for data analysts and developers who want to use their current knowledge of SQL to be more productive with Hadoop. It assumes that readers are comfortable writing SQL queries and are familiar with Hadoop at the level of the classic WordCount exampl

  10. Survival rate of Plodia interpunctella (Lepidoptera: Pyralidae: On different states of wheat and rye kernels previously infested by beetle pests

    Directory of Open Access Journals (Sweden)

    Vukajlović Filip N.

    2017-01-01

    Full Text Available The present study was undertaken to determine survival rate of Plodia interpunctella (Hübner, 1813, reared on different mechanical states of Vizija winter wheat cultivar and Raša winter rye cultivar, previously infested with different beetle pests. Wheat was previously infested with Rhyzopertha dominica, Sitophilus granarius, Oryzaephilus surinamensis and Cryptolestes ferrugineus, while rye was infested only with O. surinamensis. Kernels were tested in three different mechanical states: (A whole undamaged kernels; (B kernels already damaged by pests and (C original storage kernels (mixture of B and C type. No P. interpunctella adult emerged on wheat kernels, while 36 adults developed on rye kernels. The highest abundance reached beetle species who fed with a mixture of kernels damaged by pests and whole undamaged kernels. Development and survival rate of five different storage insect pests depends on type of kernels and there exist significant survivorship correlations among them.

  11. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis

    Science.gov (United States)

    Erika L. Eidson; Karen E. Mock; Barbara J. Bentz

    2018-01-01

    The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully...

  12. Using camera traps and digital video to investigate the impact of Aethina tumida pest on honey bee (Apis mellifera adansonii reproduction and ability to keep away elephants (Loxodonta africana cyclotis in Gamba, Gabon

    Directory of Open Access Journals (Sweden)

    Steeve Ngama

    2018-06-01

    Full Text Available Bees and elephant interactions are the core of a conservation curiosity since it has been demonstrated that bees, one of the smallest domesticated animals, can keep away elephants, the largest terrestrial animals. Yet, insects' parasites can impact the fitness and activity of the bees. Since their activity is critical to the repellent ability against elephants, this study assessed the impact of small hive beetles (Aethina tumida on bee (Apis mellifera adansonii reproduction and ability to keep forest elephants (Loxodonta africana cyclotis away. Because interspecies interactions are not easy to investigate, we have used camera traps and digital video to observe the activity of bees and their interactions with wild forest elephants under varying conditions of hive infestation with the small hive beetle, a common bee pest. Our results show that queen cells are good visual indicators of colony efficiency on keeping away forest elephants. We give evidences that small hive beetles are equivalently present in large and small bee colonies. Yet, results show no worries about the use of bees as elephant deterrents because of parasitism due to small hive beetles. Apis mellifera adansonii bees seem to effectively cope with small hive beetles showing no significant influence on its reproduction and ability to keep elephants away. This study also reports for the first time the presence of Aethina tumida as a constant beekeeping pest that needs to be addressed in Gabon.

  13. How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee.

    Directory of Open Access Journals (Sweden)

    Brian Dennis

    Full Text Available We construct a mathematical model to quantify the loss of resilience in collapsing honey bee colonies due to the presence of a strong Allee effect. In the model, recruitment and mortality of adult bees have substantial social components, with recruitment enhanced and mortality reduced by additional adult bee numbers. The result is an Allee effect, a net per-individual rate of hive increase that increases as a function of adult bee numbers. The Allee effect creates a critical minimum size in adult bee numbers, below which mortality is greater than recruitment, with ensuing loss of viability of the hive. Under ordinary and favorable environmental circumstances, the critical size is low, and hives remain large, sending off viably-sized swarms (naturally or through beekeeping management when hive numbers approach an upper stable equilibrium size (carrying capacity. However, both the lower critical size and the upper stable size depend on many parameters related to demographic rates and their enhancement by bee sociality. Any environmental factors that increase mortality, decrease recruitment, or interfere with the social moderation of these rates has the effect of exacerbating the Allee effect by increasing the lower critical size and substantially decreasing the upper stable size. As well, the basin of attraction to the upper stable size, defined by the model potential function, becomes narrower and shallower, indicating the loss of resilience as the hive becomes subjected to increased risk of falling below the critical size. Environmental effects of greater severity can cause the two equilibria to merge and the basin of attraction to the upper stable size to disappear, resulting in collapse of the hive from any initial size. The model suggests that multiple proximate causes, among them pesticides, mites, pathogens, and climate change, working singly or in combinations, could trigger hive collapse.

  14. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.

    Science.gov (United States)

    Simonyan, Vahan; Mazumder, Raja

    2014-09-30

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.

  15. High-Performance Integrated Virtual Environment (HIVE Tools and Applications for Big Data Analysis

    Directory of Open Access Journals (Sweden)

    Vahan Simonyan

    2014-09-01

    Full Text Available The High-performance Integrated Virtual Environment (HIVE is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.

  16. Effect of gamma irradiation on the cigarette beetles reared on cayenne pepper

    International Nuclear Information System (INIS)

    Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko

    2009-01-01

    Effect of gamma irradiation on the survival of the cigarette beetles reared on cayenne pepper was investigated. Gamma ray at a dose of 62 Gy completely killed eggs and larvae of the beetles. Some pupae survived at 540 Gy, but all pupae were killed at 1076 Gy. (author)

  17. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays

    International Nuclear Information System (INIS)

    De Guzman, Zenaida M.; Cervancia, Cleofas R.; Dimasuay, Kris Genelyn B.; Tolentino, Mitos M.; Abrera, Gina B.; Cobar, Ma. Lucia C.; Fajardo, Alejandro C.; Sabino, Noel G.; Manila-Fajardo, Analinda C.; Feliciano, Chitho P.

    2011-01-01

    The effectiveness of gamma radiation in inactivating the Philippine isolate of Paenibacillus larvae was investigated. Spores of P. larvae were irradiated at incremental doses (0.1, 0.2, 0.4, 0.8 and 1.6 kGy) of gamma radiation emitted by a 60 Co source. Surviving spores were counted and used to estimate the decimal reduction (D 10 ) value. A dose of 0.2 kGy was sufficient to inactivate 90% of the total recoverable spores from an initial count of 10 5 -9x10 3 spores per glass plate. The sterilizing effect of high doses of gamma radiation on the spores of P. larvae in infected hives was determined. In this study, a minimum dose (D min ) of 15 kGy was tested. Beehives with sub-clinical infections of AFB were irradiated and examined for sterility. All the materials were found to be free of P. larvae indicating its susceptibility to γ-rays. After irradiation, there were no visible changes in the physical appearance of the hives' body, wax and frames. Thus, a dose of 15 kGy is effective enough for sterilization of AFB-infected materials. - Highlights: → We characterized Paenibacillus larvae and determined its radiation sensitivity. → We investigated the effectiveness of gamma rays in inactivating P. larvae. → Gamma radiation inactivates P. larvae. → 15 kGy is effective for the sterilization of P. larvae-infected hives. → Irradiation produces no visible changes in the hives' body, waxes and frames.

  18. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    De Guzman, Zenaida M. [Microbiological Research and Service Laboratory, Atomic Research Division, Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Cervancia, Cleofas R. [Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Banos, Laguna (Philippines); Dimasuay, Kris Genelyn B.; Tolentino, Mitos M.; Abrera, Gina B.; Cobar, Ma. Lucia C. [Microbiological Research and Service Laboratory, Atomic Research Division, Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Fajardo, Alejandro C.; Sabino, Noel G.; Manila-Fajardo, Analinda C. [Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Banos, Laguna (Philippines); Feliciano, Chitho P., E-mail: cpfeliciano@pnri.dost.gov.ph [Microbiological Research and Service Laboratory, Atomic Research Division, Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City (Philippines)

    2011-10-15

    The effectiveness of gamma radiation in inactivating the Philippine isolate of Paenibacillus larvae was investigated. Spores of P. larvae were irradiated at incremental doses (0.1, 0.2, 0.4, 0.8 and 1.6 kGy) of gamma radiation emitted by a {sup 60}Co source. Surviving spores were counted and used to estimate the decimal reduction (D{sub 10}) value. A dose of 0.2 kGy was sufficient to inactivate 90% of the total recoverable spores from an initial count of 10{sup 5}-9x10{sup 3} spores per glass plate. The sterilizing effect of high doses of gamma radiation on the spores of P. larvae in infected hives was determined. In this study, a minimum dose (D{sub min}) of 15 kGy was tested. Beehives with sub-clinical infections of AFB were irradiated and examined for sterility. All the materials were found to be free of P. larvae indicating its susceptibility to {gamma}-rays. After irradiation, there were no visible changes in the physical appearance of the hives' body, wax and frames. Thus, a dose of 15 kGy is effective enough for sterilization of AFB-infected materials. - Highlights: > We characterized Paenibacillus larvae and determined its radiation sensitivity. > We investigated the effectiveness of gamma rays in inactivating P. larvae. > Gamma radiation inactivates P. larvae. > 15 kGy is effective for the sterilization of P. larvae-infected hives. > Irradiation produces no visible changes in the hives' body, waxes and frames.

  19. Asparagus Beetle and Spotted Asparagus Beetle

    OpenAIRE

    Hodgson, Erin W.; Drost, Dan

    2007-01-01

    Asparagus beetle, Crioceris asparagi, and spotted asparagus beetle, C. duodecimpunctata are leaf beetles in the family Chrysomelidae. These beetles feed exclusively on asparagus and are native to Europe. Asparagus beetle is the more economically injurious of the two species.

  20. Efficacy of imidacloprid, trunk-injected into Acer platanoides, for control of adult Asian longhorned beetles (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Ugine, Todd A; Gardescu, Sana; Lewis, Phillip A; Hajek, Ann E

    2012-12-01

    Feeding experiments with Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) in a quarantine laboratory were used to assess the effectiveness of imidacloprid in reducing adult fecundity and survival. The beetles were fed twigs and leaves cut between June-September 2010 from Norway maples (Acer platanoides L.) in the beetle-infested area of Worcester, MA. Treated trees had been trunk-injected once with imidacloprid in spring 2010 under the U.S. Department of Agriculture-Animal and Plant Health Inspection Service operational eradication program. The 21 d LC50 value for adult beetles feeding on twig bark from imidacloprid-injected trees was 1.3 ppm. Adult reproductive output and survival were significantly reduced when beetles fed on twig bark or leaves from treated trees. However, results varied widely, with many twig samples having no detectable imidacloprid and little effect on the beetles. When twigs with > 1 ppm imidacloprid in the bark were fed to mated beetles, the number of larvae produced was reduced by 94% and median adult survival was reduced to 14 d. For twigs with 1 ppm). When given a choice of control twigs and twigs from injected trees, beetles did not show a strong preference.

  1. eHive: An Artificial Intelligence workflow system for genomic analysis

    Science.gov (United States)

    2010-01-01

    Background The Ensembl project produces updates to its comparative genomics resources with each of its several releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic alignments and the protein homology predictions. The number of calculations required for this task grows approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect the number to continue to grow in the future. Results We present eHive, a new fault tolerant distributed processing system initially designed to support comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1) pairwise whole genome alignments, (2) multiple whole genome alignments and (3) gene trees with protein homology inference. Finally, we show the efficiency of the system in real case scenarios. Conclusions eHive allows us to produce computationally demanding results in a reliable and efficient way with minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/eHive/. PMID:20459813

  2. eHive: An Artificial Intelligence workflow system for genomic analysis

    Directory of Open Access Journals (Sweden)

    Gordon Leo

    2010-05-01

    Full Text Available Abstract Background The Ensembl project produces updates to its comparative genomics resources with each of its several releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic alignments and the protein homology predictions. The number of calculations required for this task grows approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect the number to continue to grow in the future. Results We present eHive, a new fault tolerant distributed processing system initially designed to support comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1 pairwise whole genome alignments, (2 multiple whole genome alignments and (3 gene trees with protein homology inference. Finally, we show the efficiency of the system in real case scenarios. Conclusions eHive allows us to produce computationally demanding results in a reliable and efficient way with minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/eHive/.

  3. eHive: an artificial intelligence workflow system for genomic analysis.

    Science.gov (United States)

    Severin, Jessica; Beal, Kathryn; Vilella, Albert J; Fitzgerald, Stephen; Schuster, Michael; Gordon, Leo; Ureta-Vidal, Abel; Flicek, Paul; Herrero, Javier

    2010-05-11

    The Ensembl project produces updates to its comparative genomics resources with each of its several releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic alignments and the protein homology predictions. The number of calculations required for this task grows approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect the number to continue to grow in the future. We present eHive, a new fault tolerant distributed processing system initially designed to support comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1) pairwise whole genome alignments, (2) multiple whole genome alignments and (3) gene trees with protein homology inference. Finally, we show the efficiency of the system in real case scenarios. eHive allows us to produce computationally demanding results in a reliable and efficient way with minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/eHive/.

  4. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    Science.gov (United States)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  5. Survival and behavioural responses of the predatory ladybird beetle, Eriopis connexa populations susceptible and resistant to a pyrethroid insecticide.

    Science.gov (United States)

    Spíndola, A F; Silva-Torres, C S A; Rodrigues, A R S; Torres, J B

    2013-08-01

    The ladybird beetle, Eriopis connexa (Germar) (Coleoptera: Coccinellidae), is one of the commonest predators of aphids (Hemiptera: Aphididae) in the cotton agroecosystem and in many other row and fruit crops in Brazil, and has been introduced into other countries such as the USA for purposes of aphid control. In addition, the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the most serious cotton pest where it occurs, including Brazil. Controlling boll weevils and other pests such as cotton defoliators still tends to involve the intense application of insecticides to secure cotton production. The pyrethroid insecticide lambda-cyhalothrin (LCT) is commonly used, but this compound is not effective against aphids; hence, a desirable strategy would be to maintain E. connexa populations in cotton fields where LCT is applied. Using populations of E. connexa resistant (Res) and susceptible (Sus) to LCT, we compared behavioural responses on treated cotton plants and under confinement on partially and fully treated surfaces, and assessed the insects' survival on treated plants compared with that of the boll weevil. The E. connexa resistant population caged on treated plants with 15 and 75 g a.i. ha-1 exhibited ≫82% survival for both insecticide concentrations compared with ≪3% and ≪17% survival for susceptible E. connexa populations and boll weevils, respectively. The response of E. connexa Res and Sus populations when released, either on the soil or on the plant canopy, indicated avoidance towards treated plants, as measured by elapsed time to assess the plant. When compared with susceptible individuals, resistant ones took longer time to suffer insecticide knockdown, had a higher recovery rate after suffering knockdown, and spent more time in the plant canopy. Based on behavioural parameters evaluated in treated arenas, no ladybird beetles exhibited repellency. However, irritability was evident, with the susceptible population exhibiting

  6. A Mathematical Model for the Bee Hive of Apis Mellifera

    Science.gov (United States)

    Antonioni, Alberto; Bellom, Fabio Enrici; Montabone, Andrea; Venturino, Ezio

    2010-09-01

    In this work we introduce and discuss a model for the bee hive, in which only adult bees and drones are modeled. The role that the latter have in the system is interesting, their population can retrieve even if they are totally absent from the bee hive. The feasibility and stability of the equilibria is studied numerically. A simplified version of the model shows the importance of the drones' role, in spite of the fact that it allows only a trivial equilibrium. For this simplified system, no Hopf bifurcations are shown to arise.

  7. How Honey Bee Colonies Survive in the Wild: Testing the Importance of Small Nests and Frequent Swarming.

    Directory of Open Access Journals (Sweden)

    J Carter Loftus

    Full Text Available The ectoparasitic mite, Varroa destructor, and the viruses that it transmits, kill the colonies of European honey bees (Apis mellifera kept by beekeepers unless the bees are treated with miticides. Nevertheless, there exist populations of wild colonies of European honey bees that are persisting without being treated with miticides. We hypothesized that the persistence of these wild colonies is due in part to their habits of nesting in small cavities and swarming frequently. We tested this hypothesis by establishing two groups of colonies living either in small hives (42 L without swarm-control treatments or in large hives (up to 168 L with swarm-control treatments. We followed the colonies for two years and compared the two groups with respect to swarming frequency, Varroa infesttion rate, disease incidence, and colony survival. Colonies in small hives swarmed more often, had lower Varroa infestation rates, had less disease, and had higher survival compared to colonies in large hives. These results indicate that the smaller nest cavities and more frequent swarming of wild colonies contribute to their persistence without mite treatments.

  8. How Honey Bee Colonies Survive in the Wild: Testing the Importance of Small Nests and Frequent Swarming

    Science.gov (United States)

    Loftus, J. Carter; Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    The ectoparasitic mite, Varroa destructor, and the viruses that it transmits, kill the colonies of European honey bees (Apis mellifera) kept by beekeepers unless the bees are treated with miticides. Nevertheless, there exist populations of wild colonies of European honey bees that are persisting without being treated with miticides. We hypothesized that the persistence of these wild colonies is due in part to their habits of nesting in small cavities and swarming frequently. We tested this hypothesis by establishing two groups of colonies living either in small hives (42 L) without swarm-control treatments or in large hives (up to 168 L) with swarm-control treatments. We followed the colonies for two years and compared the two groups with respect to swarming frequency, Varroa infesttion rate, disease incidence, and colony survival. Colonies in small hives swarmed more often, had lower Varroa infestation rates, had less disease, and had higher survival compared to colonies in large hives. These results indicate that the smaller nest cavities and more frequent swarming of wild colonies contribute to their persistence without mite treatments. PMID:26968000

  9. Honeybees learn floral odors while receiving nectar from foragers within the hive

    Science.gov (United States)

    Farina, Walter M.; Grüter, Christoph; Acosta, Luis; Mc Cabe, Sofía

    2007-01-01

    Recent studies showed that nectar odors brought back by honeybee foragers can be learned associatively inside the hive. In the present study, we focused on the learning abilities of bees, which directly interact via trophallaxis with the incoming nectar foragers: the workers that perform nectar-receiving tasks inside the hive. Workers that have received food directly from foragers coming back from a feeder offering either unscented or scented sugar solution [phenylacetaldehyde (PHE) or nonanal diluted] were captured from two observational hives, and their olfactory memories were tested using the proboscis extension response paradigm. Bees that have received scented solution from incoming foragers showed significantly increased response frequencies for the corresponding solution odor in comparison with those that have received unscented solution. No differences in the response frequencies were found between food odors and colonies. The results indicate that first-order receivers learn via trophallaxis the association between the scent and the sugar solution transferred by incoming foragers. The implications of these results should be considered at three levels: the operational cohesion of bees involved in foraging-related tasks, the information propagation inside the hive related to the floral type exploited, and the putative effect of these memories on future preferences for resources.

  10. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  11. A vertical compartmented hive design effective to reduce post-harvest colony loss in Afrotropical stingless bee species (Apidae: Meliponinae)

    NARCIS (Netherlands)

    Kiatoko, Nkoba; Raina, Suresh Kumar; Langevelde, van F.

    2016-01-01

    Domestication of Meliponinae in log hive or simple box has often been used in Africa. However, colonyloss in these two hive types due to pest infestation after honey harvesting still occurs. We hypothesized that the two hive types were the probable causes for the infestations.We designed and

  12. Hedgehog hives.

    Science.gov (United States)

    Fairley, J A; Suchniak, J; Paller, A S

    1999-05-01

    Hedgehogs are increasingly popular pets in the United States and Europe. A number of infections may be acquired from these animals, and hedgehogs are possible hosts of parasites. However, to our knowledge there arc no previous reports of urticarial reactions to hedgehogs. We describe 3 patients who developed an acute, transient, urticarial reaction after contact with the extended spines of pet hedgehogs. One patient also developed a more prolonged reaction at the site of contact. Interestingly, all 3 patients had documented allergies to cats and/or dogs. The results of prick testing in 1 patient to an extract of hedgehog dander produced an immediate wheal-and-flare reaction. A variety of dermatologic disorders may be seen in handlers of hedgehogs. Due to the increasing popularity of these animals as pets, it is likely that these reactions will be noted more frequently by dermatologists. The presence of allergies to other pets may be predictive of hedgehog hives and further investigation of the cross reaction of various animal antigens may clarify this relationship.

  13. High-performance integrated virtual environment (HIVE): a robust infrastructure for next-generation sequence data analysis.

    Science.gov (United States)

    Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E; Tkachenko, Valery; Torcivia-Rodriguez, John; Voskanian, Alin; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja

    2016-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure.The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu. © The Author(s) 2016. Published by Oxford University Press.

  14. Bee Hive management and colonisation: a practical approach ...

    African Journals Online (AJOL)

    The managerial issues include the method of approaching the bees and hives, feeding of the bees and prevention of predators. Exploitation of the colony for bee products is usually done with special tools that ensure no disturbance of the inhabitants while also protecting the harvester. The market for bee products varies ...

  15. Initial Response by a Native Beetle, Chrysochus auratus (Coleoptera: Chrysomelidae), to a Novel Introduced Host-Plant, Vincetoxicum rossicum (Gentianales: Apocynaceae).

    Science.gov (United States)

    deJonge, R B; Bourchier, R S; Smith, S M

    2017-06-01

    Native insects can form novel associations with introduced invasive plants and use them as a food source. The recent introduction into eastern North America of a nonnative European vine, Vincetoxicum rossicum (Kleopow) Barbar., allows us to examine the initial response of a native chrysomelid beetle, Chrysochus auratus F., that feeds on native plants in the same family as V. rossicum (Apocynaceae). We tested C. auratus on V. rossicum and closely related or co-occurring native plants (Apocynum spp., Asclepias spp., and Solidago canadensis L.) using all life stages of the beetle in lab, garden, and field experiments. Experiments measured feeding (presence or absence and amount), survival, oviposition, and whether previous exposure to V. rossicum in the lab or field affected adult beetle feeding. Beetles fed significantly less on V. rossicum than on native Apocynum hosts. Adult beetles engaged in exploratory feeding on leaves of V. rossicum and survived up to 10 d. Females oviposited on V. rossicum, eggs hatched, and larvae fed initially on the roots; however, no larvae survived beyond second instar. Beetles collected from Apocynum cannabinum L. field sites intermixed with V. rossicum were less likely to feed on this novel nonnative host than those collected from colonies further from and less likely to be exposed to V. rossicum (>5 km). Our experimental work indicates that V. rossicum may act as an oviposition sink for C. auratus and that this native beetle has not adapted to survive on this recently introduced novel host plant. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Hive Relocation Does Not Adversely Affect Honey Bee (Hymenoptera: Apidae Foraging

    Directory of Open Access Journals (Sweden)

    Fiona C. Riddell Pearce

    2013-01-01

    Full Text Available Honey bees, Apis mellifera, face major challenges including diseases and reduced food availability due to agricultural intensification. Additionally, migratory beekeeping may subject colonies to a moving stress, both during the move itself and after the move, from the bees having to forage in a novel environment where they have no knowledge of flower locations. This study investigated the latter. We moved three colonies housed in observation hives onto the campus from a site 26 km away and compared their foraging performance to three similarly sized colonies at the same location that had not been moved. We obtained data on (1 foraging performance by calculating distance by decoding waggle dances, (2 hive foraging rate by counting forager departure rate, (3 forage quality by assessing sugar content of nectar from returning foragers, and (4 forager success by calculating the proportion of bees returning to the nest entrance with nectar in their crop. We repeated this 3 times (August 2010, October 2010, and June 2011 to encompass any seasonal effects. The data show no consistent difference in foraging performance of moved versus resident hives. Overall the results suggest that moving to a new location does not adversely affect the foraging success of honey bees.

  17. Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor

    Science.gov (United States)

    Mitchell, Derek

    2016-05-01

    In the absence of human intervention, the honeybee ( Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW-1 K for wooden hives and greater than 5 kgW-1 K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW-1 K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.

  18. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States

    Science.gov (United States)

    Traynor, Kirsten S.; Pettis, Jeffery S.; Tarpy, David R.; Mullin, Christopher A.; Frazier, James L.; Frazier, Maryann; Vanengelsdorp, Dennis

    2016-09-01

    This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health.

  19. Produktová nabídka Honey Hive

    OpenAIRE

    Tomečková, Alena

    2010-01-01

    The topic of this Master's thesis is to define the product offering for start-up called Honey Hive and to describe the process supporting the product portfolio definition. Product portfolio definition is based on the theory of 4P (Marketing mix). The whole process of defining the product offering is based on 4P -- Price, Product, Promotion and Place. Each aspect brings its own view into product offering -- from defining the pricing strategy, through suppliers mix definition to the competition...

  20. The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins.

    Science.gov (United States)

    Clark, E L; Huber, D P W; Carroll, A L

    2012-04-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most serious pest of pines (Pinus) in western North America. Host pines protect themselves from attack by producing a complex mixture of terpenes in their resin. We sampled lodgepole pine (Pinus contorta variety latifolia) phloem resin at four widely separated locations in the interior of British Columbia, Canada, both just before (beginning of July) and substantially after (end of August) the mountain pine beetle dispersal period. The sampled trees then were observed the next spring for evidence of survival, and the levels of seven resin monoterpenes were compared between July and August samples. Trees that did not survive consistently had significantly higher phloem resin monoterpene levels at the end of August compared with levels in July. Trees that did survive mainly did not exhibit a significant difference between the two sample dates. The accumulation of copious defense-related secondary metabolites in the resin of mountain pine beetle-killed lodgepole pine has important implications for describing the environmental niche that the beetle offspring survive in as well as that of parasitoids, predators, and other associates.

  1. Previous encapsulation response enhances within individual protection against fungal parasite in the mealworm beetle Tenebrio molitor.

    Science.gov (United States)

    Krams, Indrikis; Daukste, Janina; Kivleniece, Inese; Krama, Tatjana; Rantala, Markus J

    2013-12-01

    Immune defenses of insects show either broad reactions or specificity and durability of induced protection against attacking parasites and pathogens. In this study, we tested whether encapsulation response against nylon monofilament increases between two attempts of activation of immune system in mealworm beetles Tenebrio molitor, and whether previous exposure to nylon monofilament may also increase protection against an entomopathogenic fungus. We found that survival of beetles subjected to immune activation by nylon implant and subsequent fungal exposure a week later was significantly higher than survival of beetles which had been subjected to fungal infection only. This result suggests that previous immune activation by the nylon implant may be considered as broad spectrum "immune priming" which helps to fight not only the same intruder but also other parasites. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  2. Unique honey bee (Apis mellifera hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Directory of Open Access Journals (Sweden)

    Kirk J Grubbs

    Full Text Available Microbial communities (microbiomes are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME and phospholipid-derived fatty acid (PLFA analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  3. Unique honey bee (Apis mellifera) hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Science.gov (United States)

    Grubbs, Kirk J; Scott, Jarrod J; Budsberg, Kevin J; Read, Harry; Balser, Teri C; Currie, Cameron R

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  4. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests.

    Science.gov (United States)

    Griffiths, Hannah M; Bardgett, Richard D; Louzada, Julio; Barlow, Jos

    2016-12-14

    Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services. © 2016 The Author(s).

  5. Data Container Study for Handling Array-based Data Using Rasdaman, Hive, Spark, and MongoDB

    Science.gov (United States)

    Xu, M.; Hu, F.; Yu, M.; Scheele, C.; Liu, K.; Huang, Q.; Yang, C. P.; Little, M. M.

    2016-12-01

    Geoscience communities have come up with various big data storage solutions, such as Rasdaman and Hive, to address the grand challenges for massive Earth observation data management and processing. To examine the readiness of current solutions in supporting big Earth observation, we propose to investigate and compare four popular data container solutions, including Rasdaman, Hive, Spark, and MongoDB. Using different types of spatial and non-spatial queries, datasets stored in common scientific data formats (e.g., NetCDF and HDF), and two applications (i.e. dust storm simulation data mining and MERRA data analytics), we systematically compare and evaluate the feature and performance of these four data containers in terms of data discover and access. The computing resources (e.g. CPU, memory, hard drive, network) consumed while performing various queries and operations are monitored and recorded for the performance evaluation. The initial results show that 1) Rasdaman has the best performance for queries on statistical and operational functions, and supports NetCDF data format better than HDF; 2) Rasdaman clustering configuration is more complex than the others; 3) Hive performs better on single pixel extraction from multiple images; and 4) Except for the single pixel extractions, Spark performs better than Hive and its performance is close to Rasdaman. A comprehensive report will detail the experimental results, and compare their pros and cons regarding system performance, ease of use, accessibility, scalability, compatibility, and flexibility.

  6. Screening Commercially Available Entomopathogenic Biocontrol Agents for the Control of Aethina tumida (Coleoptera: Nitidulidae in the UK

    Directory of Open Access Journals (Sweden)

    Giles E. Budge

    2012-08-01

    Full Text Available The Small hive beetle, Aethina tumida, is an invasive pest of honey bees. Indigenous to sub-Saharan Africa, it has now become established in North America and Australia. It represents a serious threat to European honey bees. Commercially available entomopathogenic agents were screened for their potential to control beetle larvae. Entomopathogenic fungi investigated had minimal impact. The nematodes Steinernema kraussei and S. carpocapsae provided excellent control with 100% mortality of larvae being obtained. Sequential applications of the nematodes following larvae entering sand to pupate also provided excellent control for up to 3 weeks. The information gained supports the development of contingency plans to deal with A. tumida should it occur in the UK, and is relevant to the management of Small hive beetle where it is already present.

  7. Ancient symbiosis confers desiccation resistance to stored grain pest beetles.

    Science.gov (United States)

    Engl, Tobias; Eberl, Nadia; Gorse, Carla; Krüger, Theresa; Schmidt, Thorsten H P; Plarre, Rudy; Adler, Cornel; Kaltenpoth, Martin

    2017-11-08

    Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities. © 2017 John Wiley & Sons Ltd.

  8. Evaluation of four apicultural products for hive colonization by honey ...

    African Journals Online (AJOL)

    Four apicultural products (honey, bee wax, slum gum and propolis) were evaluated for their potentials to attract the African honey bee (Apis mellifera adansonii) colony into artificial hives and their effect on infestation by apicultural insect pests. Ten grammes each of propolis, bee wax and slum gum and 10 ml of honey were ...

  9. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    Directory of Open Access Journals (Sweden)

    Zhong-Shi Zhou

    Full Text Available The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP, water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r, net reproductive rate (R 0 and finite rate of increase (λ of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  10. Fungi infection in honeybee hives in regions affected by Brazilian sac brood

    Directory of Open Access Journals (Sweden)

    K.M. Keller

    2014-10-01

    Full Text Available The Brazilian Sac Brood is a disease that affects apiaries of Africanized bee hives in Brazil, thereby making them susceptible to high losses. This study investigated the pathogenicity of Africanized bee hives by the entomopathogenic fungi in a Brazilian Sac Brood endemic region. The degree of fungal contamination, presence of mycotoxins in beehive elements, and vulnerability of healthy beehives in environments subjected and not subjected to the disease were investigated. From the contaminating fungal load, species that are mycotoxin producers and pathogenic causing mortality in the bees have been isolated. The analysis of bee pollen and bee bread samples did not show the presence of the toxic pollen of Stryphnodendron (Fabaceae, which has been indicated as the causative agent of mortality in pre-pupal stage larvae. However, bee bread showed the highest correlation between substrate and fungal contamination.

  11. Influence of nutrient levels in Tamarix on Diorhabda sublineata (Coleoptera: Chrysomelidae) survival and fitness with implications for biological control.

    Science.gov (United States)

    Guenther, D A; Gardner, K T; Thompson, D C

    2011-02-01

    Establishment of the saltcedar leaf beetle (Diorhabda spp.) has been unpredictable when caged or released in the field for saltcedar (Tamarix spp.) biocontrol. It has been observed that one caged tree might be voraciously fed upon by beetles while an adjacent tree in the cage is left untouched. We hypothesized that differences in the nutrient content of individual trees may explain this behavior. We evaluated survival, development rate, and egg production of beetles fed in the laboratory on saltcedar foliage from trees that had been grown under a range of fertilizer treatments. Tissue samples from the experimental trees and from the field were analyzed for percent nitrogen, phosphorus, and potassium. There was essentially no survival of beetle larvae fed foliage from saltcedar trees at nitrogen levels below 2.0%. At levels above 2.0% N, beetle larvae had corresponding increased survival rates and shorter development times. Multiple regression analyses indicated that nitrogen and phosphorus are important for larval survival and faster development rates. Higher levels of potassium were important for increased egg cluster production. The plant tissue analysis showed that the percentage of nitrogen in the experimental trees reflected the range of trees in the field and also that there is high variability within trees in the field. Our research indicates that if beetles are released on trees with poor nutrient quality, the larvae will not survive. © 2011 Entomological Society of America

  12. Management of Chinese Rose Beetle (Adoretus sinicus) Adults Feeding on Cacao (Theobroma cacao) Using Insecticides

    Science.gov (United States)

    Spafford, Helen; Ching, Alexander; Manley, Megan; Hardin, Chelsea; Bittenbender, Harry

    2016-01-01

    The Chinese rose beetle (Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae)) is an introduced, widely-established pest in Hawai’i. The adult beetles feed on the leaves of cacao (Theobroma cacao L.), which can lead to defoliation and even death of young trees. We evaluated the impact of five commercially available products with different active ingredients (imidacloprid, azadirachtin, Beauveria bassiana (Bals.-Criv.) Vuill., kaolin clay, and pyrethrin) and the presence or absence of weed mat cover in reducing adult beetle feeding on sapling cacao in the field. The use of weed mat cover reduced feeding damage compared to the untreated control, as did foliar application of imidacloprid, azadirachtin, and B. bassiana. In the laboratory, field-collected adult beetles were presented cacao leaf samples dipped in one of the five products and compared to a control. Beetles exposed to pyrethrin died rapidly. Among the other treatments, only exposure to imidacloprid significantly reduced survival relative to the control. Beetles fed very little on leaf samples with azadirachtin but their longevity was not significantly reduced. Imidacloprid, azadirachtin, and weed mat application had the most promise for reducing adult Chinese rose beetle feeding damage in young cacao and deserve further investigation for successful management of this significant pest. PMID:27348004

  13. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray.

    Directory of Open Access Journals (Sweden)

    Cesar Valdovinos-Flores

    Full Text Available In the search of alternatives for controlling Aethina tumida Murray, we recently proposed the BAA trap which uses boric acid and an attractant which mimics the process of fermentation caused by Kodamaea ohmeri in the hive. This yeast is excreted in the feces of A. tumida causing the fermentation of pollen and honey of infested hives and releasing compounds that function as aggregation pheromones to A. tumida. Since the boron is the toxic element in boric acid, the aim of this article is to assess the amount of boron residues in honey and beeswax from hives treated with the BAA trap. For this aim, the amount of bioaccumulated boron in products of untreated hives was first determined and then compared with the amount of boron of products from hives treated with the BAA trap in two distinct climatic and soil conditions. The study was conducted in the cities of Padilla, Tamaulipas, and Valladolid, Yucatan (Mexico from August 2014 to March 2015. The quantity of boron in honey was significantly less in Yucatan than in Tamaulipas; this agrees with the boron deficiency among Luvisol and Leptosol soils found in Yucatan compared to the Vertisol soil found in Tamaulipas. In fact, the honey from Yucatan has lower boron levels than those reported in the literature. The BAA treatment was applied for four months, results show that the BAA trap does not have any residual effect in either honey or wax; i.e., there is no significant difference in boron content before and after treatment. On the other hand, the organophosphate pesticide coumaphos was found in 100% of wax samples and in 64% of honey samples collected from Yucatan. The concentration of coumaphos in honey ranges from 0.005 to 0.040 mg/kg, which are below Maximum Residue Limit (MRL allowed in the European Union (0.1 mg/kg but 7.14% of samples exceeded the MRL allowed in Canada (0.02 mg/kg.

  14. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray

    Science.gov (United States)

    Valdovinos-Flores, Cesar; Gaspar-Ramírez, Octavio; Heras–Ramírez, María Elena; Dorantes-Ugalde, José Antonio; Saldaña-Loza, Luz María

    2016-01-01

    In the search of alternatives for controlling Aethina tumida Murray, we recently proposed the BAA trap which uses boric acid and an attractant which mimics the process of fermentation caused by Kodamaea ohmeri in the hive. This yeast is excreted in the feces of A. tumida causing the fermentation of pollen and honey of infested hives and releasing compounds that function as aggregation pheromones to A. tumida. Since the boron is the toxic element in boric acid, the aim of this article is to assess the amount of boron residues in honey and beeswax from hives treated with the BAA trap. For this aim, the amount of bioaccumulated boron in products of untreated hives was first determined and then compared with the amount of boron of products from hives treated with the BAA trap in two distinct climatic and soil conditions. The study was conducted in the cities of Padilla, Tamaulipas, and Valladolid, Yucatan (Mexico) from August 2014 to March 2015. The quantity of boron in honey was significantly less in Yucatan than in Tamaulipas; this agrees with the boron deficiency among Luvisol and Leptosol soils found in Yucatan compared to the Vertisol soil found in Tamaulipas. In fact, the honey from Yucatan has lower boron levels than those reported in the literature. The BAA treatment was applied for four months, results show that the BAA trap does not have any residual effect in either honey or wax; i.e., there is no significant difference in boron content before and after treatment. On the other hand, the organophosphate pesticide coumaphos was found in 100% of wax samples and in 64% of honey samples collected from Yucatan. The concentration of coumaphos in honey ranges from 0.005 to 0.040 mg/kg, which are below Maximum Residue Limit (MRL) allowed in the European Union (0.1 mg/kg) but 7.14% of samples exceeded the MRL allowed in Canada (0.02 mg/kg). PMID:27092938

  15. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack.

    Science.gov (United States)

    Wiley, Erin; Rogers, Bruce J; Hodgkinson, Robert; Landhäusser, Simon M

    2016-01-01

    Bark beetle outbreaks are an important cause of tree death, but the process by which trees die remains poorly understood. The effect of beetle attack on whole-tree nonstructural carbohydrate (NSC) dynamics is particularly unclear, despite the potential role of carbohydrates in plant defense and survival. We monitored NSC dynamics of all organs in attacked and protected lodgepole pines (Pinus contorta) during a mountain pine beetle (Dendroctonus ponderosae) outbreak in British Columbia, starting before beetle flight in June 2011 through October 2012, when most attacked trees had died. Following attack, NSC concentrations were first reduced in the attacked region of the bole. The first NSC reduction in a distant organ appeared in the needles at the end of 2011, while branch and root NSC did not decline until much later in 2012. Attacked trees that were still alive in October 2012 had less beetle damage, which was negatively correlated with initial bark sugar concentrations in the attack region. The NSC dynamics of dying trees indicate that trees were killed by a loss of water conduction and not girdling. Further, our results identify locally reduced carbohydrate availability as an important mechanism by which stressors like drought may increase tree susceptibility to biotic attack. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Forest development and carbon dynamics after mountain pine beetle outbreaks

    Science.gov (United States)

    E. Matthew. Hansen

    2014-01-01

    Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...

  17. Metal contaminant accumulation in the hive: Consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.).

    Science.gov (United States)

    Hladun, Kristen R; Di, Ning; Liu, Tong-Xian; Trumble, John T

    2016-02-01

    Metal pollution has been increasing rapidly over the past century, and at the same time, the human population has continued to rise and produce contaminants that may negatively impact pollinators. Honey bees (Apis mellifera L.) forage over large areas and can collect contaminants from the environment. The primary objective of the present study was to determine whether the metal contaminants cadmium (Cd), copper (Cu), lead (Pb), and selenium (Se) can have a detrimental effect on whole-colony health in the managed pollinator A. mellifera. The authors isolated small nucleus colonies under large cages and fed them an exclusive diet of sugar syrup and pollen patty spiked with Cd, Cu, Pb, and Se or a control (no additional metal). Treatment levels were based on concentrations in honey and pollen from contaminated hives around the world. They measured whole-colony health including wax, honey, and brood production; colony weight; brood survival; and metal accumulation in various life stages. Colonies treated with Cd or Cu contained more dead pupae within capped cells compared with control, and Se-treated colonies had lower total worker weights compared to control. Lead had a minimal effect on colony performance, although many members of the hive accumulated significant quantities of the metal. By examining the honey bee as a social organism through whole-colony assessments of toxicity, the authors found that the distribution of toxicants throughout the colony varied from metal to metal, some caste members were more susceptible to certain metals, and the colony's ability to grow over time may have been reduced in the presence of Se. Apiaries residing near metal-contaminated areas may be at risk and can suffer changes in colony dynamics and survival. © 2015 SETAC.

  18. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles

    Science.gov (United States)

    Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas

    2016-01-01

    Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. PMID:27226475

  19. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles.

    Science.gov (United States)

    Hammer, Tobin J; Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas

    2016-05-25

    Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. © 2016 The Author(s).

  20. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack.

    Science.gov (United States)

    Kane, Jeffrey M; Kolb, Thomas E

    2010-11-01

    The relative importance of growth and defense to tree mortality during drought and bark beetle attacks is poorly understood. We addressed this issue by comparing growth and defense characteristics between 25 pairs of ponderosa pine (Pinus ponderosa) trees that survived and trees that died from drought-associated bark beetle attacks in forests of northern Arizona, USA. The three major findings of our research were: (1) xylem resin ducts in live trees were >10% larger (diameter), >25% denser (no. of resin ducts mm(-2)), and composed >50% more area per unit ring growth than dead trees; (2) measures of defense, such as resin duct production (no. of resin ducts year(-1)) and the proportion of xylem ring area to resin ducts, not growth, were the best model parameters of ponderosa pine mortality; and (3) most correlations between annual variation in growth and resin duct characteristics were positive suggesting that conditions conducive to growth also increase resin duct production. Our results suggest that trees that survive drought and subsequent bark beetle attacks invest more carbon in resin defense than trees that die, and that carbon allocation to resin ducts is a more important determinant of tree mortality than allocation to radial growth.

  1. Killing them with kindness? In-hive medications may inhibit xenobiotic efflux transporters and endanger honey bees.

    Directory of Open Access Journals (Sweden)

    David J Hawthorne

    Full Text Available BACKGROUND: Honey bees (Apis mellifera have recently experienced higher than normal overwintering colony losses. Many factors have been evoked to explain the losses, among which are the presence of residues of pesticides and veterinary products in hives. Multiple residues are present at the same time, though most often in low concentrations so that no single product has yet been associated with losses. Involvement of a combination of residues to losses may however not be excluded. To understand the impact of an exposure to combined residues on honey bees, we propose a mechanism-based strategy, focusing here on Multi-Drug Resistance (MDR transporters as mediators of those interactions. METHODOLOGY/PRINCIPAL FINDINGS: Using whole-animal bioassays, we demonstrate through inhibition by verapamil that the widely used organophosphate and pyrethroid acaricides coumaphos and τ-fluvalinate, and three neonicotinoid insecticides: imidacloprid, acetamiprid and thiacloprid are substrates of one or more MDR transporters. Among the candidate inhibitors of honey bee MDR transporters is the in-hive antibiotic oxytetracycline. Bees prefed oxytetracycline were significantly sensitized to the acaricides coumaphos and τ-fluvalinate, suggesting that the antibiotic may interfere with the normal excretion or metabolism of these pesticides. CONCLUSIONS/SIGNIFICANCE: Many bee hives receive regular treatments of oxytetracycline and acaricides for prevention and treatment of disease and parasites. Our results suggest that seasonal co-application of these medicines to bee hives could increase the adverse effects of these and perhaps other pesticides. Our results also demonstrate the utility of a mechanism-based strategy. By identifying pesticides and apicultural medicines that are substrates and inhibitors of xenobiotic transporters we prioritize the testing of those chemical combinations most likely to result in adverse interactions.

  2. Inferring the colonization of a mountain range--refugia vs. nunatak survival in high alpine ground beetles.

    Science.gov (United States)

    Lohse, Konrad; Nicholls, James A; Stone, Graham N

    2011-01-01

    It has long been debated whether high alpine specialists survived ice ages in situ on small ice-free islands of habitat, so-called nunataks, or whether glacial survival was restricted to larger massifs de refuge at the periphery. We evaluate these alternative hypotheses in a local radiation of high alpine carabid beetles (genus Trechus) in the Orobian Alps, Northern Italy. While summits along the northern ridge of this mountain range were surrounded by the icesheet as nunataks during the last glacial maximum, southern areas remained unglaciated. We analyse a total of 1366 bp of mitochondrial (Cox1 and Cox2) data sampled from 150 individuals from twelve populations and 530 bp of nuclear (PEPCK) sequence sampled for a subset of 30 individuals. Using Bayesian inference, we estimate ancestral location states in the gene trees, which in turn are used to infer the most likely order of recolonization under a model of sequential founder events from a massif de refuge from the mitochondrial data. We test for the paraphyly expected under this model and for reciprocal monophyly predicted by a contrasting model of prolonged persistence of nunatak populations. We find that (i) only three populations are incompatible with the paraphyly of the massif de refuge model, (ii) both mitochondrial and nuclear data support separate refugial origins for populations on the western and eastern ends of the northern ridge, and (iii) mitochondrial node ages suggest persistence on the northern ridge for part of the last ice age. © 2010 Blackwell Publishing Ltd.

  3. Context-dependent effects of cold stress on behavioral, physiological, and life-history traits of the red flour beetle.

    Science.gov (United States)

    Scharf, Inon; Wertheimer, Keren-Or; Xin, Joy Lim; Gilad, Tomer; Goldenberg, Inna; Subach, Aziz

    2017-06-20

    Animals are exposed in nature to a variety of stressors. While stress is generally harmful, mild stress can also be beneficial and contribute to reproduction and survival. We studied the effect of five cold shock events versus a single cold shock and a control group, representing three levels of stress (harsh, mild, and no stress), on behavioral, physiological, and life-history traits of the red flour beetle (Tribolium castaneum, Herbst 1797). Beetles exposed to harsh cold stress were less active than a control group: they moved less and failed more frequently to detect a food patch. Their probability to mate was also lower. Beetle pairs exposed to harsh cold stress frequently failed to reproduce at all, and if reproducing, females laid fewer eggs, which were, as larvae in mid-development, smaller than those in the control group. However, harsh cold stress led to improved female starvation tolerance, probably due to enhanced lipid accumulation. Harsh cold shock also improved tolerance to an additional cold shock compared to the control. Finally, a single cold shock event negatively affected fewer measured response variables than the harsh cold stress, but also enhanced neither starvation tolerance nor tolerance to an additional cold shock. The consequences of a harsher cold stress are thus not solely detrimental but might even enhance survival under stressful conditions. Under benign conditions, nevertheless, harsh stress impedes beetle performance. The harsh stress probably shifted the balance point of the survival-reproduction trade-off, a shift that did not take place following exposure to mild stress. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  4. Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its Naïve Host.

    Science.gov (United States)

    Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir

    2015-06-01

    The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.

  5. A framework for organizing cancer-related variations from existing databases, publications and NGS data using a High-performance Integrated Virtual Environment (HIVE).

    Science.gov (United States)

    Wu, Tsung-Jung; Shamsaddini, Amirhossein; Pan, Yang; Smith, Krista; Crichton, Daniel J; Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    Years of sequence feature curation by UniProtKB/Swiss-Prot, PIR-PSD, NCBI-CDD, RefSeq and other database biocurators has led to a rich repository of information on functional sites of genes and proteins. This information along with variation-related annotation can be used to scan human short sequence reads from next-generation sequencing (NGS) pipelines for presence of non-synonymous single-nucleotide variations (nsSNVs) that affect functional sites. This and similar workflows are becoming more important because thousands of NGS data sets are being made available through projects such as The Cancer Genome Atlas (TCGA), and researchers want to evaluate their biomarkers in genomic data. BioMuta, an integrated sequence feature database, provides a framework for automated and manual curation and integration of cancer-related sequence features so that they can be used in NGS analysis pipelines. Sequence feature information in BioMuta is collected from the Catalogue of Somatic Mutations in Cancer (COSMIC), ClinVar, UniProtKB and through biocuration of information available from publications. Additionally, nsSNVs identified through automated analysis of NGS data from TCGA are also included in the database. Because of the petabytes of data and information present in NGS primary repositories, a platform HIVE (High-performance Integrated Virtual Environment) for storing, analyzing, computing and curating NGS data and associated metadata has been developed. Using HIVE, 31 979 nsSNVs were identified in TCGA-derived NGS data from breast cancer patients. All variations identified through this process are stored in a Curated Short Read archive, and the nsSNVs from the tumor samples are included in BioMuta. Currently, BioMuta has 26 cancer types with 13 896 small-scale and 308 986 large-scale study-derived variations. Integration of variation data allows identifications of novel or common nsSNVs that can be prioritized in validation studies. Database URL: BioMuta: http://hive

  6. Using within-day hive weight changes to measure environmental effects on honey bee colonies

    Science.gov (United States)

    Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony’s dai...

  7. Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults.

    Science.gov (United States)

    Echegaray, Erik R; Cloyd, Raymond A

    2012-12-01

    In many regions, pest management of greenhouse crops relies on the use of biological control agents; however, pesticides are also widely used, especially when dealing with multiple arthropod pests and attempting to maintain high esthetic standards. As such, there is interest in using biological control agents in conjunction with chemical control. However, the prospects of combining natural enemies and pesticides are not well known in many systems. The rove beetle, Atheta coriaria (Kraatz), is a biological control agent mainly used against fungus gnats (Bradysia spp.). This study evaluated the effects of reduced-risk pesticides and plant growth regulators on A. coriaria adult survival, development, and prey consumption under laboratory conditions. Rove beetle survival was consistently higher when adults were released 24 h after rather than before applying pesticides. The pesticides acetamiprid, lambda-cyhalothrin, and cyfluthrin were harmful to rove beetle adults, whereas Beauveria bassiana (Balsamo) Vuillemin, azadirachtin, and organic oils (cinnamon oils, rosemary oil, thyme oil, and clove oil) were nontoxic to A. coriaria adults. Similarly, the plant growth regulators acymidol, paclobutrazol, and uniconazole were not harmful to rove beetle adults. In addition, B. bassiana, azadirachtin, kinoprene, organic oils, and the plant growth regulators did not negatively affect A. coriaria development. However, B. bassiana did negatively affect adult prey consumption. This study demonstrated that A. coriaria may not be used when applying the pesticides, acetamiprid, lambda-cyhalothrin, and cyfluthrin, whereas organic oils, B. bassiana, azadirachtin, and the plant growth regulators evaluated may be used in conjunction with A. coriaria adults. As such, these compounds may be used in combination with A. coriaria in greenhouse production systems.

  8. Zombie soldier beetles: Epizootics in the goldenrod soldier beetle, Chauliognathus pensylvanicus (Coleoptera: Cantharidae) caused by Eryniopsis lampyridarum (Entomophthoromycotina: Entomophthoraceae).

    Science.gov (United States)

    Steinkraus, Donald C; Hajek, Ann E; Liebherr, Jim K

    2017-09-01

    Adult goldenrod soldier beetles, Chauliognathus pensylvanicus, were found infected by the fungus Eryniopsis lampyridarum (Entomophthoromycotina) in Arkansas during September - October (1996, 2001, 2015 and 2016). Living and dead infected beetles were found on flowering frost aster, Symphyotrichum pilosum, common boneset, Eupatorium perfoliatum, and Canada goldenrod, Solidago canadensis. Live and dead beetles (n=446) were collected in 1996 from S. pilosum flowers and held individually in the laboratory for determination of fungal prevalence. Of the beetles collected, 281 (63%) were males and 165 (37%) were females. A total of 90 beetles were infected with E. lampyridarum, an overall prevalence of 20.2%. Prevalence in males was 19.6% (n=55 infected/281 males total) and prevalence in females was 21.2% (n=35 infected /165 females total). Conidia were produced from 57% of the infected beetles, 23% of the infected beetles produced resting spores, and 20% contained the hyphal body stage. Infected beetles produced either conidia or resting spores but never both in the same host. Post-mortem morphological changes in the hosts due to E. lampyridarum were observed periodically for 24h. Shortly before death, by unknown mechanisms, dying infected beetles tightly clamped their mandibles into flower heads and ca. 15-22h later (between 2400 and 0700h) the fungus caused dead beetles to raise their elytra and expand their metathoracic wings. Copyright © 2017. Published by Elsevier Inc.

  9. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kovacs

    Full Text Available Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness effects for the larvae of two species of aphidophagous lady beetles that consumed aphids with facultative symbionts. In both species, larvae that consumed aphids with secondary symbionts were significantly less likely to survive to adulthood. In this study we tested whether adult Harmonia axyridis and Hippodamia convergens lady beetles avoided aphids with symbionts in a series of choice experiments. Adults of both lady beetle species were as likely to choose aphids with symbionts as those without, despite the potential negative fitness effects associated with consuming aphids with facultative symbionts. This may suggest that under natural conditions aphid secondary symbionts are not a significant source of selection for predatory lady beetles.

  10. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    Science.gov (United States)

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  11. Patterns of movement of radioactive carabid beetles

    International Nuclear Information System (INIS)

    Baars, M.A.

    1980-01-01

    Tracking of individual 192 Ir-labelled ground beetles released in the field revealed that both the day-active and night-active species studied showed periods of small distances covered per day in random directions, alternating with periods of directed movement with large distances covered per day. This pattern occurred not only in the reproductive period but outside the breeding season as well in juvenile Pterostichus versicolor and spent Calathus melanocephalus. Although mean locomotory activity increased with temperature, great daily differences occurred between individuals, pointing to asynchronous behaviour. In an unfavorable habitat directed movement occurred both more frequently and more extremely, sometimes resulting in escape to more favorable areas. Most of the radioactive beetles died within 7 weeks due to radiation effects, but independent field experiments and simulations showed that the recorded patterns were valid. Simulated individuals of P. versicolor living on 1 ha spread over 49 ha, whereas simulated C. melanocephalus covered only 9 ha after one activity season. Normal locomotory activities lead to both exchange of individuals between subpopulations and dispersal out of the habitat. The significance of these phenomena for population stability and for the survival of the species is discussed. (orig.) [de

  12. Charles Darwin, beetles and phylogenetics

    Science.gov (United States)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  13. Charles Darwin, beetles and phylogenetics.

    Science.gov (United States)

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  14. Interglacial insects and their possible survival in Greenland during the last glacial stage

    DEFF Research Database (Denmark)

    Bøcher, Jens Jensenius

    2012-01-01

    Sediments from the last interglacial (Eemian) in Jameson Land, East Greenland, and the Thule area, NW Greenland, have revealed a number of insect fragments of both arctic and more or less warmth-demanding species. Altogether, the interglacial fauna of Coleoptera (beetles) indicates boreal...... beetle species such as Amara alpina and Isochnus arcticus did not survive the last glacial stage in Greenland. Two factors that have not been sufficiently considered when discussing survival contra extinction are the importance of microclimate and the number of sun-hours during the Arctic summer. Even...... among the Coleoptera, which as a group fares quite badly in the Arctic, there might be survivors, at least among those found both during the interglacial and as fossils during the early Holocene. First of all, glacial survival applies to the seed bug Nysius groenlandicus, which was widespread during...

  15. Mechanical limits to maximum weapon size in a giant rhinoceros beetle.

    Science.gov (United States)

    McCullough, Erin L

    2014-07-07

    The horns of giant rhinoceros beetles are a classic example of the elaborate morphologies that can result from sexual selection. Theory predicts that sexual traits will evolve to be increasingly exaggerated until survival costs balance the reproductive benefits of further trait elaboration. In Trypoxylus dichotomus, long horns confer a competitive advantage to males, yet previous studies have found that they do not incur survival costs. It is therefore unlikely that horn size is limited by the theoretical cost-benefit equilibrium. However, males sometimes fight vigorously enough to break their horns, so mechanical limits may set an upper bound on horn size. Here, I tested this mechanical limit hypothesis by measuring safety factors across the full range of horn sizes. Safety factors were calculated as the ratio between the force required to break a horn and the maximum force exerted on a horn during a typical fight. I found that safety factors decrease with increasing horn length, indicating that the risk of breakage is indeed highest for the longest horns. Structural failure of oversized horns may therefore oppose the continued exaggeration of horn length driven by male-male competition and set a mechanical limit on the maximum size of rhinoceros beetle horns. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Southern Pine Beetle Information System (SPBIS)

    Science.gov (United States)

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  17. Population dynamics of the Gyrinid beetle Gyrinus marinus Gyll. (Coleoptera, Gyrinidae) with special reference to its dispersal activities

    NARCIS (Netherlands)

    Eijk, van der R.H.

    1987-01-01

    Data concerning reproduction, survival and dispersal of the whirligig water beetle Gyrinus marinus Gyll . were collected between 1974 and 1983 by observations and experiments in the laboratory and in a field area with about 10 populations distributed over 15

  18. The Mexican bean beetle (Epilachna varivestis regurgitome and insights into beetle-borne virus specificity.

    Directory of Open Access Journals (Sweden)

    Cassidy R Gedling

    Full Text Available For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant's defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle "regurgitome" and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions.

  19. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  20. T-38 Primary Flight Display Prototyping and HIVE Support Abstract & Summary

    Science.gov (United States)

    Boniface, Andrew

    2015-01-01

    This fall I worked in EV3 within NASA's Johnson Space Center in The HIVE (Human Integrated Vehicles & Environments). The HIVE is responsible for human in the loop testing, getting new technologies in front of astronauts, operators, and users early in the development cycle to make the interfaces more human friendly. Some projects the HIVE is working on includes user interfaces for future spacecraft, wearables to alert astronauts about important information, and test beds to simulate mock missions. During my internship I created a prototype for T-38 aircraft displays using LabVIEW, learned how to use microcontrollers, and helped out with other small tasks in the HIVE. The purpose of developing a prototype for T-38 Displays in LabVIEW is to analyze functions of the display such as navigation in a cost and time effective manner. The LabVIEW prototypes allow Ellington Field AOD to easily make adjustments to the display before hardcoding the final product. LabVIEW was used to create a user interface for simulation almost identical to the real aircraft display. Goals to begin the T-38 PFD (Primary Flight Display) prototype included creating a T-38 PFD hardware display in a software environment, designing navigation for the menu's, incorporating vertical and horizontal navigation bars, and to add a heading bug for compass controls connected to the HSI (Horizontal Situation Indicator). To get started with the project, measurements of the entire display were taken. This enabled an accurate model of the hardware display to be created. Navigation of menu's required some exploration of different buttons on the display. The T-38 simulator and aircraft were used for examining the display. After one piece of the prototype was finished, another trip of to the simulator took place. This was done until all goals for the prototype were complete. Some possible integration ideas for displays in the near future are autopilot selection, touch screen displays, and crew member preferences

  1. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    Science.gov (United States)

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Long-horned Beetles (Coleoptera: Cerambycidae and Tortoise Beetles (Chrysomelidae: Cassidinae of Tripura, northeastern India with some new additions

    Directory of Open Access Journals (Sweden)

    B.K. Agarwala

    2012-10-01

    Full Text Available This paper reports the occurrence of nineteen species of Long-horned Beetles (Cerambycidae and eleven species of Tortoise Beetles (Cassidinae from Tripura state, northeastern India. These include 11 species of Cerambycidae and seven species of Cassidinae, respectively, as new records from the state. Distribution of these beetles in different parts of the state are provided.

  3. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    Science.gov (United States)

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  4. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Jennifer A Berry

    Full Text Available In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate and Check Mite+ (coumaphos and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  5. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    be attributed to heterotrophic activity and surviving vegetation. Complex changes in stand structure following beetle infestation are lacking in ecosystem modeling, but these dynamic processes should be included to predict disturbance effects on C cycling.

  6. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  7. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, Agnieszka J., E-mail: a.bednarska@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland)

    2009-05-15

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  8. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    International Nuclear Information System (INIS)

    Bednarska, Agnieszka J.; Laskowski, Ryszard

    2009-01-01

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  9. Occurrence, diversity and pattern of damage of Oplostomus species (Coleoptera: Scarabaeidae), honey bee pests in Kenya

    Science.gov (United States)

    Several arthropod pests including the hive beetles Aethina tumida and Oplostomus haroldi and the ectoparasite Varroa destructor have recently been identified as associated with honey bee colonies in Kenya. Here, we report the first documentation of O. fuligineus in Kenya, a related scarab of O. haro...

  10. Assessing longleaf pine (Pinus palustris) restoration after southern pine beetle kill using a compact experimental design

    Science.gov (United States)

    J.-P. Berrill; C.M. Dagley

    2010-01-01

    A compact experimental design and analysis is presented of longleaf pine (Pinus palustris) survival and growth in a restoration project in the Piedmont region of Georgia, USA. Longleaf pine seedlings were planted after salvage logging and broadcast burning in areas of catastrophic southern pine beetle (Dendroctonus frontalis) attacks on even-aged mixed pine-hardwood...

  11. Asian longhorned beetle complicates the relationship ...

    Science.gov (United States)

    Urban foresters routinely emphasise the importance of taxonomic diversity to reduce the vulnerability of tree assemblages to invasive pests, but it is unclear to what extent diversity reduces vulnerability to polyphagous (i.e. generalist) pests. Drawing on field data from seven communities in metropolitan Cincinnati, Ohio, USA, we tested the hypothesis that communities with higher diversity would exhibit lower vulnerability to the polyphagous Asian longhorned beetle, which currently threatens the region. Based on street tree compositions and the beetle?s host preferences, Asian longhorned beetle threatened up to 35.6% of individual street trees and 47.5% of the total basal area across the study area, but we did not see clear connections between taxonomic diversity and beetle vulnerability among study communities. For example, the city of Fairfield was among the least diverse communities but had the lowest proportion of trees vulnerable to Asian longhorned beetle, whereas the city of Wyoming exhibited high diversity and high vulnerability. On the other hand, Forest Park aligned with our original hypothesis, as it was characterised by low diversity and high vulnerability. Our results demonstrate that relatively high taxonomic diversity in street tree assemblages does not necessarily lead to reduced vulnerability to a polyphagous pest. Considering the threats posed by polyphagous pests, selecting a set of relatively pest resistant trees known to perform well in urb

  12. Short communication. Platform for bee-hives monitoring based on sound analysis. A perpetual warehouse for swarms daily activity

    Energy Technology Data Exchange (ETDEWEB)

    Atauri Mezquida, D.; Llorente Martinez, J.

    2009-07-01

    Bees and beekeeping are suffering a global crisis. Constant information on swarms conditions would be a key to study new diseases like colony collapse disorder and to develop new beekeeping tools to improve the hive management and make it more efficient. A platform for beehives monitoring is presented. It is based on the analysis of the colonies buzz which is registered by a bunch of sensors sending the data to a common database. Data obtained through sound processing shows plenty of patterns and tendency lines related to colonies activities and their conditions. It shows the potential of the sound as a swarm activity gauge. The goal of the platform is the possibility to store information about the swarms activity. The objective is to build a global net of monitored hives covering apiaries with different climates, razes and managements. (Author) 21 refs.

  13. Ground beetle populations near a kraft mill

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, R.; Hastings, L.; Mercer, W.R.; Smith, A.

    1973-02-01

    Twenty species of ground beetles (Family Carabidae) and one species of carrion beetle (Family Silphidae) were collected in six stations east of a kraft paper mill in Thunder Bay, Ontario, from May to August, 1971. The beetle population decreased markedly towards the mill. There was no apparent statistical difference in size variation of specimens near the mill and those further away.

  14. Diversity and abundance of dung beetles (Coleoptera: Scaraebidae) at several different ecosystem functions in Peninsular Malaysia

    Science.gov (United States)

    Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza

    2015-09-01

    Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.

  15. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance.

    Science.gov (United States)

    Rodrigues, Agna R S; Spindola, Aline F; Torres, Jorge B; Siqueira, Herbert A A; Colares, Felipe

    2013-10-01

    Simultaneous use of biological and chemical controls is a valued and historic goal of integrated pest management, but has rarely been achieved. One explanation for this failure may be the inadequate documentation of field populations of natural enemies for insecticide tolerance or resistance because natural enemies surviving insecticide application do not create problems like resistant pest species. Therefore, this study investigated 31 populations of lady beetles (Coleoptera: Coccinellidae) regarding their susceptibility to lambda-cyhalothrin, a pyrethroid insecticide that is widely used in cotton and other crops to control lepidopteran and coleopteran pests that are not targeted as prey by lady beetles. The study focused on seven coccinellid species common in cotton fields Coleomegilla maculata De Geer, Cycloneda sanguinea (L.), Eriopis connexa Germar, Harmonia axyridis (Pallas), Hippodamia convergens Guérin-Méneville, Olla v-nigrum (Mulsant), and Brumoides foudrasi (Mulsant) and one lady beetle species [Curinus coeruleus Mulsant] from a non-cotton ecosystem for comparisons. Dose-mortality curves were estimated after topical treatment of adult lady beetles with lambda-cyhalothrin. Statistically significant variations in lady beetle susceptibility were observed between species and between populations of a given species. Seven and eighteen populations of lady beetles exhibited greater values of LD50 and LD90, respectively, than the highest recommended field rate of lambda-cyhalothrin (20g a.i./hectare≈0.2g a.i./L) for cotton fields in Brazil. Furthermore, based on LD50 values, 29 out of 30 tested populations of lady beetles exhibited ratios of relative tolerance varying from 2- to 215-fold compared to the toxicity of lambda-cyhalothrin to the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae). Four populations of E. connexa were 10.5-37.7 times more tolerant than the most susceptible population and thus were considered to be resistant to lambda

  17. Data Container Study for Handling array-based data using Hive, Spark, MongoDB, SciDB and Rasdaman

    Science.gov (United States)

    Xu, M.; Hu, F.; Yang, J.; Yu, M.; Yang, C. P.

    2017-12-01

    Geoscience communities have come up with various big data storage solutions, such as Rasdaman and Hive, to address the grand challenges for massive Earth observation data management and processing. To examine the readiness of current solutions in supporting big Earth observation, we propose to investigate and compare four popular data container solutions, including Rasdaman, Hive, Spark, SciDB and MongoDB. Using different types of spatial and non-spatial queries, datasets stored in common scientific data formats (e.g., NetCDF and HDF), and two applications (i.e. dust storm simulation data mining and MERRA data analytics), we systematically compare and evaluate the feature and performance of these four data containers in terms of data discover and access. The computing resources (e.g. CPU, memory, hard drive, network) consumed while performing various queries and operations are monitored and recorded for the performance evaluation. The initial results show that 1) the popular data container clusters are able to handle large volume of data, but their performances vary in different situations. Meanwhile, there is a trade-off between data preprocessing, disk saving, query-time saving, and resource consuming. 2) ClimateSpark, MongoDB and SciDB perform the best among all the containers in all the queries tests, and Hive performs the worst. 3) These studied data containers can be applied on other array-based datasets, such as high resolution remote sensing data and model simulation data. 4) Rasdaman clustering configuration is more complex than the others. A comprehensive report will detail the experimental results, and compare their pros and cons regarding system performance, ease of use, accessibility, scalability, compatibility, and flexibility.

  18. Quantifying beetle-macrofungal associations in a temperate biodiversity hot spot.

    Science.gov (United States)

    Epps, Mary Jane; Arnold, A Elizabeth

    2018-01-29

    Beetles (Coleoptera) are often among the most abundant and diverse insects that feed on sporocarps of macrofungi, but little is known regarding their relative specialism or generalism in most communities. We surveyed >9000 sporocarps in montane hardwood forest in the Appalachian Mountains (USA) to characterize associations of mycophagous beetles and macrofungi. We used traditional metrics and network analyses to quantify relationships between sporocarp traits (mass, age, persistence, and toughness) and assemblages of adult beetles, drawing from >50 000 beetles collected over two survey years. Strict-sense specificity was rare in these associations: most beetle species were found on multiple fungal genera, and most fungi hosted multiple beetle species. Sporocarp age and fresh mass were positively associated with beetle diversity in fungi with ephemeral sporocarps (here including 12 genera of Agaricales and Russulales), but sporocarp persistence was not. In Polyporales, beetle diversity was greater in softer sporocarps than in tough or woody sporocarps. The increase of beetle diversity in aging sporocarps could not be attributed to increases in sporocarp mass or sampling point in the growing season, suggesting that age-related changes in chemistry or structure may support increasingly diverse beetle communities. Interaction networks differed as a function of sporocarp age, revealing that community-wide measures of generalism (i.e., network connectance) and evenness (i.e., variance in normalized degree) change as sporocarps mature and senesce. Beetles observed on Agaricales and Russulales with more persistent sporocarps had narrower interaction breadth (i.e., were more host-specific) than those on less persistent sporocarps, and beetles on Polyporales with tougher sporocarps had narrower interaction breadth than those on soft sporocarps. In addition to providing a large-scale evaluation of sporocarp use by adult beetles in this temperate biodiversity hot spot, this

  19. A Multiplex PCR Assay for Differentiating Coconut Rhinoceros Beetle (Coleoptera: Scarabaeidae) From Oriental Flower Beetle (Coleoptera: Scarabaeidae) in Early Life Stages and Excrement.

    Science.gov (United States)

    Watanabe, S; Melzer, M J

    2017-04-01

    The coconut rhinoceros beetle, Oryctes rhinoceros (L.), is a major pest of coconut and other palm trees. An incipient coconut rhinoceros beetle population was recently discovered on the island of Oahu, Hawaii and is currently the target of a large, mutiagency eradication program. Confounding this program is the widespread presence of another scarab beetle on Oahu, the oriental flower beetle, Protaetia orientalis (Gory and Percheron 1833). Eggs, early life stages, and fecal excrement of coconut rhinoceros beetle and oriental flower beetle are morphologically indistinguishable, thereby creating uncertainty when such specimens are discovered in the field. Here, we report the development of a multiplex PCR assay targeting cytochrome oxidase I of coconut rhinoceros beetle and oriental flower beetle that can rapidly detect and distinguish between these insects. This assay also features an internal positive control to ensure DNA of sufficient quantity and quality is used in the assay, increasing its reliability and reducing the chances of false negative results. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Radiosensitivity of red flour beetle tribolium castaneum

    International Nuclear Information System (INIS)

    Sattar, A.; Khattak, S.; Hamed, M.

    1992-07-01

    In this report radiosensitivity of red beetle has been discussed. Red flour beetle is the most injurious pest causing great losses to stored grain. Radiation is one of the best tools of insect control. Different radiation doses (50 to 200 krads) were employed for different age groups from 1 to 60 days. It is concluded from these results that 200 krad radiation dose caused 100% mortality in red beetle in all age group. (A.B.)

  1. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  2. Acoustic characteristics of rhinoceros beetle stridulations

    Science.gov (United States)

    Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...

  3. Biological pest control in beetle agriculture

    NARCIS (Netherlands)

    Aanen, D.K.; Slippers, B.; Wingfield, M.J.

    2009-01-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics

  4. The ground-beetles (Coleoptera, Carabidae) of Nukatlinskiy watershed

    OpenAIRE

    G. M. Nahibasheva; Sh. M. Imanaliev

    2008-01-01

    The article is devoted to studying of ground-beetles fauna of Nukatlinskiy watershed of Republic Dagestan. For the first time the specific structure of ground-beetles this area, the numbering 109 kinds concerning 31 sort is resulted. The analysis of sexual structure of populations and seasonal dynamics of activity ground-beetles is lead.

  5. The role of wildfire, prescribed fire, and mountain pine beetle infestations on the population dynamics of black-backed woodpeckers in the black hills, South Dakota.

    Science.gov (United States)

    Rota, Christopher T; Millspaugh, Joshua J; Rumble, Mark A; Lehman, Chad P; Kesler, Dylan C

    2014-01-01

    Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus) are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic impact of natural disturbances can result in habitat loss for this species. Although black-backed woodpeckers occupy habitats created by wildfire, prescribed fire, and mountain pine beetle infestations, the relative value of these habitats remains unknown. We studied habitat-specific adult and juvenile survival probabilities and reproductive rates between April 2008 and August 2012 in the Black Hills, South Dakota. We estimated habitat-specific adult and juvenile survival probability with Bayesian multi-state models and habitat-specific reproductive success with Bayesian nest survival models. We calculated asymptotic population growth rates from estimated demographic rates with matrix projection models. Adult and juvenile survival and nest success were highest in habitat created by summer wildfire, intermediate in MPB infestations, and lowest in habitat created by fall prescribed fire. Mean posterior distributions of population growth rates indicated growing populations in habitat created by summer wildfire and declining populations in fall prescribed fire and mountain pine beetle infestations. Our finding that population growth rates were positive only in habitat created by summer wildfire underscores the need to maintain early post-wildfire habitat across the landscape. The lower growth rates in fall prescribed fire and MPB infestations may be attributed to differences in predator communities and food resources relative to summer wildfire.

  6. The role of wildfire, prescribed fire, and mountain pine beetle infestations on the population dynamics of black-backed woodpeckers in the black hills, South Dakota.

    Directory of Open Access Journals (Sweden)

    Christopher T Rota

    Full Text Available Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic impact of natural disturbances can result in habitat loss for this species. Although black-backed woodpeckers occupy habitats created by wildfire, prescribed fire, and mountain pine beetle infestations, the relative value of these habitats remains unknown. We studied habitat-specific adult and juvenile survival probabilities and reproductive rates between April 2008 and August 2012 in the Black Hills, South Dakota. We estimated habitat-specific adult and juvenile survival probability with Bayesian multi-state models and habitat-specific reproductive success with Bayesian nest survival models. We calculated asymptotic population growth rates from estimated demographic rates with matrix projection models. Adult and juvenile survival and nest success were highest in habitat created by summer wildfire, intermediate in MPB infestations, and lowest in habitat created by fall prescribed fire. Mean posterior distributions of population growth rates indicated growing populations in habitat created by summer wildfire and declining populations in fall prescribed fire and mountain pine beetle infestations. Our finding that population growth rates were positive only in habitat created by summer wildfire underscores the need to maintain early post-wildfire habitat across the landscape. The lower growth rates in fall prescribed fire and MPB infestations may be attributed to differences in predator communities and food resources relative to summer wildfire.

  7. Some ecological, economic, and social consequences of bark beetle infestations

    Science.gov (United States)

    Robert A. Progar; Adris Eglitis; John E. Lundquist

    2009-01-01

    Bark beetles are powerful agents of change in dynamic forest ecosystems. Most assessments of the effects of bark beetle outbreaks have been based on negative impacts on timber production. The positive effects of bark beetle activities are much less well understood. Bark beetles perform vital functions at all levels of scale in forest ecosystems. At the landscape...

  8. Laboratory and Field Evaluation of the Entomopathogenic Fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for Population Management of Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae), in Felled Trees and Factors Limiting Pathogen Success.

    Science.gov (United States)

    Davis, Thomas Seth; Mann, Andrew J; Malesky, Danielle; Jankowski, Egan; Bradley, Clifford

    2018-03-24

    An isolate of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) was tested for its ability to reduce survival and reproduction of spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytinae), under laboratory and field conditions. Conidial suspension applied directly to adults or to filter papers that adults contacted had a median survival time of 3-4 d in laboratory assays and beetles died more rapidly when exposed to conidial suspension than when treated with surfactant solution only. In the field, conidial suspension was applied to the surface of felled and pheromone-baited Engelmann spruce (Picea engelmannii) trees using a backpack sprayer. Mortality of colonizing parent beetles (F0), reproduction (abundance of F1 offspring in logs), and emergence of F1 beetles from logs was compared between treated and nontreated logs. Application of spore suspension increased mortality of F0 adults by 36% on average. Total F1 reproduction was reduced by 17% and emergence from logs was reduced by 13% in treated logs, but considerable variability in reproduction and emergence was observed. Viable spores were re-isolated from treated logs up to 90 d after application, indicating that spores are capable of long-term persistence on the tree bole microhabitat. Subsequent in vitro tests revealed that temperatures below 15°C and exposure to spruce monoterpenes likely limit performance of B. bassiana under field conditions, but exposure to low-intensity light or interactions with spruce beetle symbiotic fungi were not strongly inhibitory. It is concluded that matching environmental tolerances of biocontrol fungi to field conditions can likely improve their usefulness for control of spruce beetle in windthrown trees.

  9. Monitoring Asian longhorned beetles in Massachusetts

    Science.gov (United States)

    Maya Nehme; Melody Keena; Aijun Zhang; Alan Sawyer; Kelli. Hoover

    2011-01-01

    An operationally effective trap to monitor the Asian longhorned beetle (Anoplophora glabripennis or ALB) has been a goal of the ALB eradication program since the first beetle was found in New York in 1996. Ground surveying is only ~20 percent effective at identifying infested trees and, although tree climbing is more effective, it is also...

  10. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    Science.gov (United States)

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment.

  11. Bearing selection in ball-rolling dung beetles: is it constant?

    Science.gov (United States)

    Baird, Emily; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J; Dacke, Marie

    2010-11-01

    Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.

  12. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Science.gov (United States)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  13. Origin and Diversification of Dung Beetles in Madagascar

    Directory of Open Access Journals (Sweden)

    Andreia Miraldo

    2011-04-01

    Full Text Available Madagascar has a rich fauna of dung beetles (Scarabaeinae and Aphodiinae withalmost 300 species described to date. Like most other taxa in Madagascar, dung beetles exhibit an exceptionally high level of endemism (96% of the species. Here,we review the current knowledge of the origin and diversification of Malagasy dung beetles. Based on molecular phylogenies, the extant dung beetles originate from eight colonizations, of which four have given rise to extensive radiations. These radiations have occurred in wet forests, while the few extant species in the less successfulradiations occur in open and semi-open habitats. We discuss the likely mechanisms of speciation and the ecological characteristics of the extant communities, emphasizing the role of adaptation along environmental gradients and allopatric speciation in generating the exceptionally high beta diversity in Malagasy dung beetles. Phylogeographic analyses of selected species reveal complex patterns with evidence for genetic introgression between old taxa. The introduction of cattle to Madagascar 1500 years ago created a new abundant resource, onto which a few species haveshifted and thereby been able to greatly expand their geographical ranges.

  14. Impacts of silvicultural thinning treatments on beetle trap captures and tree attacks during low bark beetle populations in ponderosa pine forests of northern Arizona.

    Science.gov (United States)

    Gaylord, M L; Hofstetter, R W; Wagner, M R

    2010-10-01

    Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.

  15. Factors influencing survival duration and choice of virgin queens in the stingless bee Melipona quadrifasciata

    Science.gov (United States)

    Kärcher, Martin H.; Menezes, Cristiano; Alves, Denise A.; Beveridge, Oliver S.; Imperatriz-Fonseca, Vera-Lucia; Ratnieks, Francis L. W.

    2013-06-01

    In Melipona quadrifasciata, about 10 % of the females develop into queens, almost all of which are killed. Occasionally, a new queen replaces or supersedes the mother queen or heads a new colony. We investigated virgin queen fate in queenright and queenless colonies to determine the effects of queen behaviour, body mass, nestmate or non-nestmate status, queenright or queenless colony status, and, when queenless, the effect of the time a colony had been queenless, on survival duration and acceptance. None of 220 virgin queens observed in four observation hives ever attacked another virgin queen nor did any of 88 virgin queens introduced into queenright colonies ever attack the resident queen. A new queen was only accepted in a queenless colony. Factors increasing survival duration and acceptance of virgin queens were to emerge from its cell at 2 h of queenlessness, to hide, and to avoid fights with workers. In this way, a virgin queen was more likely to be available when a colony chooses a new queen, 24-48 h after resident queen removal. Running, walking or resting, antennating or trophallaxis, played little or no role, as did the factors body mass or nestmate. "Queen choice" took about 2 h during which time other virgin queens were still being killed by workers. During this agitated process, the bees congregated around the new queen. She inflated her abdomen and some of the workers deposited a substance on internal nest surfaces including the glass lid of the observation hive.

  16. Spectral information as an orientation cue in dung beetles.

    Science.gov (United States)

    El Jundi, Basil; Foster, James J; Byrne, Marcus J; Baird, Emily; Dacke, Marie

    2015-11-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. © 2015 The Author(s).

  17. What do dung beetles eat?

    DEFF Research Database (Denmark)

    Holter, Peter; Scholtz, Clarke H.

    2007-01-01

    Most adult coprophagous beetles feed on fresh dung of mammalian herbivores, confining ingestion to small particles with measured maximum diameters from 2-5 to 130 µm, according to body size and kind of beetle. This study explores benefits and costs of selective feeding in a ‘typical' dung beetle...... that of elephant and rhino (40-58%) was available to selective feeders. 3. Nitrogen concentrations were high - and C/N ratios low - in most types of bulk dung compared with the average food of terrestrial detritivores or herbivores. Exceptions were elephant and rhino dung with low nitrogen concentrations and high...... C/N ratios. 4. Estimated C/N ratios of 13-39 in bulk dung (sheep-elephant) were decreased by selective feeding to 7.3-12.6 in the ingested material. In assimilated food, ratios are probably only 5-7, as most assimilable nitrogen and carbon may be of microbial origin. If so, the assimilable food...

  18. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...

  19. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    Science.gov (United States)

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern. The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the

  20. Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle-symbiont relationships.

    Science.gov (United States)

    Brian H. Aukema; Richard A. Werner; Kirsten E. Haberkern; Barbara L. Illman; Murray K. Clayton; Kenneth F. Raffa

    2005-01-01

    The spruce beetle, Dendroctonus rufipennis (Kirby), causes landscape level mortality to mature spruce (Picea spp.) throughout western and northern North America. As with other bark beetles, this beetle is associated with a variety of fungi, whose ecological functions are largely unknown. It has been proposed that the relative...

  1. red flour beetle

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... 2Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan. 3Department of ... most important energy source around the globe ... T. castaneum (red flour beetle) samples were collected from rice.

  2. Experimental porcine cysticercosis using infected beetles with Taenia solium eggs.

    Science.gov (United States)

    Gomez-Puerta, Luis A; Garcia, Hector H; Gonzalez, Armando E

    2018-07-01

    Beetles are intermediate hosts for human and animal parasites, and several beetle species have been shown to carry Taenia eggs. An experimental porcine cysticercosis infection model was developed using beetles (Ammophorus rubripes) infected with Taenia solium eggs and then using these beetles for oral pig challenge. A total of 18 three months-old Landrace pigs were divided in four groups. Pigs from groups 1, 2, and 3 (n = 6 pigs per group) were challenged with one, three, and six beetles infected with T. solium eggs, containing approximately 52, 156 or 312 eggs respectively. Pigs were necropsied 12 weeks after infection to assess the presence of T. solium metacestode. Porcine cysticercosis by T. solium was produced in 17 out of 18 pigs (94.4%) challenged with infected beetles, all infected pigs had viable cysts. Only one pig from group 1 was negative to the presence of cysts. The median number of metacestodes per pig in groups 1, 2, and 3 were 2 (range 0-71), 26 (range 5-33) and 40 cysts (range 4-111), respectively. Experimental porcine cysticercosis infection is consistently obtained using beetles as mechanical vectors for T. solium eggs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    Science.gov (United States)

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.

  4. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae.

    Directory of Open Access Journals (Sweden)

    Yuichi Oba

    Full Text Available Click beetles (Coleoptera: Elateridae represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation. These findings urge taxonomic reinvestigation of these mismatched taxa.

  5. A new soldier beetle from Eocene Baltic amber

    Directory of Open Access Journals (Sweden)

    Fabrizio Fanti

    2017-11-01

    Full Text Available The family Cantharidae is a worldwide distributed group of flattened and soft-bodied beetles displaying aposematic colouration. These beetles, commonly known as soldier beetles, have an extensive fossil record dating back to the Lower Cretaceous. The majority of fossil material, referred to Cantharidae, is known from amber inclusions. In this paper we describe and illustrate a new soldier beetle Kuskaella macroptera gen. et sp. nov. from the Baltic amber. It is characterised by pronotum of the male parallel-sided in basal third and abruptly narrowed towards apex, and of the female gradually and steadily narrowing from the basal margin to the apex; globular head; unequal maxillary palpomeres with the last segment elongated-globular and pointed; long elytra slightly surpassing the last abdominal segment. This finding is the first described species of both sexes preserved in a single amber piece.

  6. Cloning and characterization of luciferase from a Fijian luminous click beetle.

    Science.gov (United States)

    Mitani, Yasuo; Futahashi, Ryo; Niwa, Kazuki; Ohba, Nobuyoshi; Ohmiya, Yoshihiro

    2013-01-01

    Luminous click beetle is distributed almost exclusively in Central and South America with a single genus in Melanesia. Among these click beetles, the description of Melanesian species has been fragmentary, and its luciferase gene and phylogenetic relation to other click beetles still remain uncertain. We collected a living luminous click beetle, Photophorus jansonii in Fiji. It emits green-yellow light from two spots on the pronotum and has no ventral luminous organ. Here, we cloned a luciferase gene from this insect by RT-PCR. The deduced amino acid sequence showed high identity of ~85% to the luciferases derived from other click beetle species. The luciferase of the Fijian click beetle was produced as a recombinant protein to characterize its biochemical properties. The Km for D-luciferin and ATP were 173 and 270 μm, respectively. The luciferase was pH-insensitive and the spectrum measured at pH 8.0 showed a peak at 559 nm, which was in the range of green-yellow light as seen in the luminous spot of the living Fijian click beetle. The Fijian click beetle luciferase was assigned to the Elateridae clade by a phylogenetic analysis, but it made a clearly different branch from Pyrophorus group examined in this study. © 2013 The American Society of Photobiology.

  7. The effect of Beetle leaves (Piper Betle Linn for dental caries formation

    Directory of Open Access Journals (Sweden)

    Adi Kurniawan

    2007-11-01

    Full Text Available Dental caries is still the main problem in dental and oral health. Caries is caused by several factors working simultaneously. The main principle of management caries is by prioritizing preventive action and avoiding invasive action. Beetle leaves are medicamentous plant which are widely cultivated and very beneficial for Indonesian people. Its active content enable beetle leaves to be used as antimicrobial, antiseptic, antifungal, antioxidant, and disinfectant. The government of Indonesia and WHO greatly support the utilization of natural resources as medical cure. Currently we can find a lot of toothpaste and mouthwash products which use beetle leaves as additional ingredient. Various researches have proved that the use of beetle leaves extract as mouthwash, toothpaste and chewing beetle leaves may decrease plaque score. Chavicol and chavibetol content enable beetle leaves to function as very good antimicrobial. Beetle leaves also contain charvacrol, eugenol, methyl eugenol, cadinene, and seskuiterpene, which can function as antiseptic. Beetle leaves may effect salivary function and secretion and also impede the forming of dental caries.

  8. Asteraceae - an evaluation of hutchinsons beetle-daisy hypothesis

    CSIR Research Space (South Africa)

    Midgley, JJ

    1993-05-01

    Full Text Available repel the beetles. However in this review of plant mimicry worldwide, it is considered an exceptionally intriguing example of Batesian mimicry. Despite the fact there still appears to be a dearth of information on the interaction between beetle...

  9. Brood temperature, task division and colony survival in honeybees : A model

    NARCIS (Netherlands)

    Becher, Matthias A.; Hildenbrandt, Hanno; Hemelrijk, Charlotte K.; Moritz, Robin F. A.

    2010-01-01

    One of the mechanisms by which honeybees regulate division of labour among their colony members is age polyethism. Here the younger bees perform in-hive tasks such as heating and the older ones carry out tasks outside the hive such as foraging. Recently it has been shown that the higher

  10. Ecological interactions of bark beetles with host trees

    Science.gov (United States)

    Certain species of bark beetles in the insect order Coleoptera, family Curculionidae (formerly Scolytidae) are keystone species in forest ecosystems. However, the tree-killing and woodboring bark and ambrosia beetles are also among the most damaging insects of forest products including lumber, paper...

  11. Endocrine control of exaggerated traits in rhinoceros beetles

    Science.gov (United States)

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  12. Rain forest provides pollinating beetles for atemoya crops.

    Science.gov (United States)

    Blanche, Rosalind; Cunningham, Saul A

    2005-08-01

    Small beetles, usually species of Nitidulidae, are the natural pollinators of atemoya (Annona squamosa L. x A. cherimola Mill. hybrids; custard apple) flowers but commercial atemoya growers often need to carry out labor-intensive hand pollination to produce enough high-quality fruit. Because Australian rain forest has plant species in the same family as atemoya (Annonaceae) and because many rain forest plants are beetle pollinated, we set out to discover whether tropical rain forest in far north Queensland harbors beetles that could provide this ecosystem service for atemoya crops. Orchards were chosen along a gradient of increasing distance from tropical rain forest (0.1-24 km). We sampled 100 flowers from each of nine atemoya orchards and determined the identity and abundance of insects within each flower. To assess the amount of pollination due to insects, we bagged six flowers per tree and left another six flowers per tree accessible to insects on 10 trees at an orchard near rain forest. Results indicated that atemoya orchards pollinators that are likely to originate in tropical rain forest. These native beetles occurred reliably enough in crops near rain forest to have a positive effect on the quantity of fruit produced but their contribution was not great enough to satisfy commercial production needs. Management changes, aimed at increasing native beetle abundance in crops, are required before these beetles could eliminate the need for growers to hand pollinate atemoya flowers. Appreciation of the value of this resource is necessary if we are to develop landscapes that both conserve native biodiversity and support agricultural production.

  13. Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae.

    Science.gov (United States)

    Six, Diana L; de Beer, Z Wilhelm; Duong, Tuan A; Carroll, Allan L; Wingfield, Michael J

    2011-08-01

    Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada. Fungi were isolated from these beetles and identified using a combination of morphology and DNA sequence comparisons of five gene regions. In all four populations, Grosmannia aurea was the most common associate (74-100% of all beetles) followed closely by Ophiostoma abietinum (29-75%). Other fungi isolated, in order of their relative prevalence with individual beetles were an undescribed Leptographium sp. (0-13%), Ophiostoma ips (0-15%), Ophiostoma piliferum (0-11%), a Pesotum sp. (0-11%) and Ophiostoma floccosum (0-1%). Comparisons of the DNA sequences of Leptographium strains isolated in this study, with ex-type isolates of G. aurea, Grosmannia robusta, Leptographium longiclavatum, and Leptographium terebrantis, as well as with sequences from GenBank, revealed a novel lineage within the Grosmannia clavigera complex. This lineage included some of the D. murrayane isolates as well as several isolates from previous studies referred to as L. terebrantis. However, the monophyly of this lineage is not well supported and a more comprehensive study will be needed to resolve its taxonomic status as one or more novel taxa.

  14. Pollen Bearing Honey Bee Detection in Hive Entrance Video Recorded by Remote Embedded System for Pollination Monitoring

    Science.gov (United States)

    Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G.

    2016-06-01

    Honey bees have crucial role in pollination across the world. This paper presents a simple, non-invasive, system for pollen bearing honey bee detection in surveillance video obtained at the entrance of a hive. The proposed system can be used as a part of a more complex system for tracking and counting of honey bees with remote pollination monitoring as a final goal. The proposed method is executed in real time on embedded systems co-located with a hive. Background subtraction, color segmentation and morphology methods are used for segmentation of honey bees. Classification in two classes, pollen bearing honey bees and honey bees that do not have pollen load, is performed using nearest mean classifier, with a simple descriptor consisting of color variance and eccentricity features. On in-house data set we achieved correct classification rate of 88.7% with 50 training images per class. We show that the obtained classification results are not far behind from the results of state-of-the-art image classification methods. That favors the proposed method, particularly having in mind that real time video transmission to remote high performance computing workstation is still an issue, and transfer of obtained parameters of pollination process is much easier.

  15. Floral associations of cyclocephaline scarab beetles.

    Science.gov (United States)

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  16. 75 FR 81832 - Asian Longhorned Beetle; Quarantined Area and Regulated Articles

    Science.gov (United States)

    2010-12-29

    .... APHIS-2010-0004] Asian Longhorned Beetle; Quarantined Area and Regulated Articles AGENCY: Animal and... are adopting as a final rule, without change, an interim rule that amended the Asian longhorned beetle... prevent the artificial spread of Asian longhorned beetle to noninfested areas of the United States. As a...

  17. Spectral information as an orientation cue in dung beetles

    OpenAIRE

    el Jundi, Basil; Foster, James J.; Byrne, Marcus J.; Baird, Emily; Dacke, Marie

    2015-01-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue...

  18. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface.

    Science.gov (United States)

    McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen

    2016-11-11

    Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.

  19. Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality

    Science.gov (United States)

    Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.

    2016-03-01

    A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.

  20. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    Science.gov (United States)

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  1. The implications of habitat management on the population viability of the endangered Ohlone tiger beetle (Cicindela ohlone metapopulation.

    Directory of Open Access Journals (Sweden)

    Tara M Cornelisse

    Full Text Available Despite their role in providing ecosystem services, insects remain overlooked in conservation planning, and insect management approaches often lack a rigorous scientific basis. The endangered Ohlone tiger beetle (Cicindela ohlone occurs in a 24-km(2 area in Santa Cruz County, California. The once larger metapopulation now consists of subpopulations inhabiting five patches of coastal prairie where it depends on bare ground for mating, foraging, and oviposition. Human activities have eliminated natural disturbances and spread invasive grasses, reducing C. ohlone's bare-ground habitat. Management actions to restore critical beetle habitat consist of cattle and horse grazing, maintaining slow bicycle speeds on occupied public trails, and artificial creation of bare-ground plots. Recreational biking trails help maintain bare ground, but can cause beetle mortality if left unregulated. We tracked C. ohlone survivorship and estimated fecundity for three years. We then constructed a stage-structured population projection matrix model to estimate population viability among the five patches, and to evaluate the success of management interventions. We demonstrate that habitat creation, regulation of bicycle speed, and migration between patches increase C. ohlone survival and population viability. Our results can be directly applied to management actions for conservation outcomes that will reduce species extinction risk and promote recolonization of extirpated patches.

  2. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles.

    Science.gov (United States)

    Nørgaard, Thomas; Dacke, Marie

    2010-07-16

    In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. The differences in

  3. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles

    Directory of Open Access Journals (Sweden)

    Dacke Marie

    2010-07-01

    Full Text Available Abstract Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. Results The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to

  4. Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields

    DEFF Research Database (Denmark)

    Steenberg, T; Langer, V; Esbjerg, P

    1995-01-01

    Prevalence of entomopathogenic fungi was studied in overwintering ground beetles (Col.: Carabidae) and rove beetles (Col.: Staphylinidae) collected from fields of lucerne, white cabbage and white cabbage undersown with white clover. In general infection levels in adult ground beetles and rove bee...

  5. Decreases in beetle body size linked to climate change and warming temperatures.

    Science.gov (United States)

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The

  6. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    Science.gov (United States)

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through

  7. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Directory of Open Access Journals (Sweden)

    Helena I Hanson

    Full Text Available In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  8. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Science.gov (United States)

    Hanson, Helena I; Palmu, Erkki; Birkhofer, Klaus; Smith, Henrik G; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  9. Development of a Dung Beetle Robot and Investigation of Its Dung-Rolling Behavior

    Directory of Open Access Journals (Sweden)

    Jen-Wei Wang

    2018-04-01

    Full Text Available In this study, a bio-inspired dung beetle robot was developed that emulated the dung rolling motion of the dung beetle. Dung beetles, which can roll objects up to 1000 times their own body weight, are one of the strongest insect species in the world. While the locomotion of many insects, such as cockroaches, inchworms, and butterflies, has been studied widely, the locomotion of dung beetles has rarely been given attention. Here, we report on the development of a dung beetle robot made specifically to investigate dung-rolling behavior and to determine and understand the underlying mechanism. Two versions of the robot were built, and the leg trajectories were carefully designed based on kinematic analysis. Cylinder and ball rolling experiments were conducted, and the results showed that the dung beetle robot could successfully and reliably roll objects. This further suggests that the dung beetle robot, with its current morphology, is capable of reliably rolling dung without the need for complex control strategies.

  10. 77 FR 22663 - Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts

    Science.gov (United States)

    2012-04-17

    ...-0128] Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts AGENCY: Animal and Plant... adopting as a final rule, without change, an interim rule that amended the Asian longhorned beetle (ALB... INFORMATION: Background The Asian longhorned beetle (ALB, Anoplophora glabripennis), an insect native to China...

  11. Low host-tree preferences among saproxylic beetles : acomparison of four deciduous species

    OpenAIRE

    Milberg, Per; Bergman, Karl-Olof; Johansson, Helena; Jansson, Nicklas

    2014-01-01

    Many wood-dwelling beetles rely on old hollow trees. In Europe, oaks are known to harbour a species-rich saproxylic beetle fauna, while less is known regarding other broad-leaved tree species. Furthermore, the extent to which saproxylic insect species have specialised on different tree species remains unknown. In this study, we sampled beetles through pitfall traps and window traps in four different tree species in a landscape with many old oaks. We recorded 242 saproxylic beetle species of w...

  12. Chemical ecology and lure development for redbay ambrosia beetle

    Science.gov (United States)

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the U.S., currently established in nine southeastern states. Female beetles are the primary vectors of a pathogenic fungus (Raffaelea lauricola) that causes laurel wilt. This lethal vascular dise...

  13. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    International Nuclear Information System (INIS)

    Biro, L.P.

    2010-01-01

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  14. Effects of an increase in population of sika deer on beetle communities in deciduous forests

    Directory of Open Access Journals (Sweden)

    Taichi Iida

    2016-10-01

    Full Text Available The overabundance of large herbivores is now recognized as a serious ecological problem. However, the resulting ecological consequences remain poorly understood. The ecological effects of an increase in sika deer, Cervus nippon Temminck (Cervidae, on three insect groups of beetles was investigated: ground beetles (Carabidae, carrion beetles (Silphidae, and dung beetles (Scarabaeidae and Geotrupidae on Nakanoshima Island, Hokkaido, northern Japan. We collected beetles on Nakanoshima Island (experimental site and lakeshore areas (control site and compared the species richness, abundance, diversity index, and community composition of beetles between the sites. Results showed that although both species diversity and abundance of carabid beetles were significantly higher at the lakeshore site, those of dung and carrion beetles were higher at the island site. It was additionally observed that abundance of larger carabid beetles was higher at the lakeshore site, whereas that of small-sized carabid beetles did not differ between the lakeshore and island sites. For dung beetles, abundance of smaller species was higher at the island site, whereas that of large species did not differ between the lakeshore and island sites. Abundance of two body sizes (small and large of carrion beetles were both higher at the island site. Overall, the findings of this study demonstrated that an increase in deer population altered the insect assemblages at an island scale, suggesting further changes in ecosystem functions and services in this region.

  15. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle.

    Science.gov (United States)

    Immonen, Esa-Ville; Dacke, Marie; Heinze, Stanley; El Jundi, Basil

    2017-06-01

    To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular. © 2017 Wiley Periodicals, Inc.

  16. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and

  17. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    Science.gov (United States)

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  18. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    Science.gov (United States)

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. Effects of fluorine-containing usnic acid and fungus Beauveria bassiana on the survival and immune-physiological reactions of Colorado potato beetle larvae.

    Science.gov (United States)

    Kryukov, Vadim Yu; Tomilova, Oksana G; Luzina, Olga A; Yaroslavtseva, Olga N; Akhanaev, Yuriy B; Tyurin, Maksim V; Duisembekov, Bahytzhan A; Salakhutdinov, Nariman F; Glupov, Viktor V

    2018-03-01

    The search for compounds that interact synergistically with entomopathogenic fungi is aimed at enhancing the efficacy and stability of biological products against pest insects, for example, against the Colorado potato beetle (CPB). We hypothesized that fluorine-containing derivatives of usnic acid (FUA) might be candidates for the development of multicomponent bio-insecticides. The aim of this study was to analyze the co-influence of FUA and Beauveria bassiana on the survival and immune-physiological reactions of CPB larvae. Synergy between FUA and B. bassiana was observed after treatment of second, third and fourth larvae instars under laboratory conditions. Furthermore, synergy was observed in field trials in continental climate conditions in southeastern Kazakhstan. In a field experiment, the median lethal time was shortened three-fold, and cumulative mortality for 15 days increased by 36% in the combined treatment compared with a fungal infection alone. FUA treatment delayed larval development, decreased the total hemocyte count, and increased both the phenoloxidase activity in integuments and the detoxification enzyme rate in hemolymph. A combined treatment with fungus and FUA led to increases in the aforementioned changes. Toxicosis caused by FUA provides a stable synergistic effect between FUA and B. bassiana. The combination can be promising for the development of highly efficient products against CPB. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Lack of nucleotide variability in a beetle pest with extreme inbreeding.

    Science.gov (United States)

    Andreev, D; Breilid, H; Kirkendall, L; Brun, L O; ffrench-Constant, R H

    1998-05-01

    The coffee berry borer beetle Hypothenemus hampei (Ferrari) (Curculionidae: Scolytinae) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an unusual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occurring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation in nuclear and mitochondrial genomes of this beetle worldwide. Here we show that two nuclear loci (Resistance to dieldrin and ITS2) are completely invariant, whereas some variability is maintained at a mitochondrial locus (COI), probably corresponding to a higher mutation rate in the mitochondrial genome. Phylogenetic analysis of the mitochondrial data shows only two clades of beetle haplotypes outside of Kenya, the proposed origin of the species. These data confirm that inbreeding greatly reduces nucleotide variation and suggest the recent global spread of only two inbreeding lines of this bark beetle.

  1. Ground beetles of the Ukraine (Coleoptera, Carabidae).

    Science.gov (United States)

    Putchkov, Alexander

    2011-01-01

    A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species) of the lowlands of southern Ukraine (sandy biotopes), situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  2. Semiochemical sabotage: behavioral chemicals for protection of western conifers from bark beetles

    Science.gov (United States)

    Nancy. E. Gillette; A. Steve Munson

    2009-01-01

    The discovery and elucidation of volatile behavioral chemicals used by bark beetles to locate hosts and mates has revealed a rich potential for humans to sabotage beetle host-finding and reproduction. Here, we present a description of currently available semiochemical methods for use in monitoring and controlling bark beetle pests in western conifer forests. Delivery...

  3. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA.

    Science.gov (United States)

    Kulakowski, Dominik; Veblen, Thomas T; Bebi, Peter

    2016-01-01

    The frequency, magnitude, and size of forest disturbances are increasing globally. Much recent research has focused on how the occurrence of one disturbance may affect susceptibility to subsequent disturbances. While much has been learned about such linked disturbances, the strength of the interactions is likely to be contingent on the severity of disturbances as well as climatic conditions, both of which can affect disturbance intensity and tree resistance to disturbances. Subalpine forests in western Colorado were affected by extensive and severe wildfires in the late 19th century and an extensive and severe outbreak of spruce beetle (Dendroctonus rufipennis) in the 1940s. Previous research found that most, but not all, of the stands that burned and established following the late 19th century fires were not susceptible to the 1940s outbreak as beetles preferentially attack larger trees and stands in advanced stages of development. However, previous research also left open the possibility that some stands that burned and established following the 19th century fires may have been attacked during the 1940s outbreak. Understanding how strongly stand structure, as shaped by disturbances of varying severity, affected susceptibility to past outbreaks is important to provide a baseline for assessing the degree to which recent climate change may be relaxing the preferences of beetles for larger trees and for stands in latter stages of structural development and thereby changing the nature of linked disturbances. Here, dendroecological methods were used to study disturbance history and tree age of stands in the White River National Forest in Western Colorado that were identified in historical documents or remotely-sensed images as having burned in the 19th century and having been attacked by spruce beetle in the 1940s. Dendroecological reconstructions indicate that in young post-fire stands only old remnant trees that survived the otherwise stand-replacing fires were

  4. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    Energy Technology Data Exchange (ETDEWEB)

    Biro, L.P., E-mail: biro@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, POB 49 (Hungary)

    2010-05-25

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  5. Distance and sex determine host plant choice by herbivorous beetles.

    Directory of Open Access Journals (Sweden)

    Daniel J Ballhorn

    Full Text Available Plants respond to herbivore damage with the release of volatile organic compounds (VOCs. This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores?We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis when facing lima bean plants (Fabaceae: Phaseolus lunatus with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials.Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a slightly damaged

  6. Observations on the Cave-Associated Beetles (Coleoptera of Nova Scotia, Canada

    Directory of Open Access Journals (Sweden)

    Moseley M.

    2009-07-01

    Full Text Available The cave-associated invertebrates of Nova Scotia constitute a fauna at a very early stage of post-glacial recolonization. TheColeoptera are characterized by low species diversity. A staphylinid Quedius spelaeus spelaeus, a predator, is the only regularlyencountered beetle. Ten other terrestrial species registered from cave environments in the province are collected infrequently. Theyinclude three other rove-beetles: Brathinus nitidus, Gennadota canadensis and Atheta annexa. The latter two together with Catopsgratiosus (Leiodidae constitute a small group of cave-associated beetles found in decompositional situations. Quedius s. spelaeusand a small suite of other guanophiles live in accumulations of porcupine dung: Agolinus leopardus (Scarabaeidae, Corticariaserrata (Latrididae, and Acrotrichis castanea (Ptilidae. Two adventive weevils Otiorhynchus ligneus and Barypeithes pellucidus(Curculionidae collected in shallow cave passages are seasonal transients; Dermestes lardarius (Dermestidae, recorded fromone cave, was probably an accidental (stray. Five of the terrestrial beetles are adventive Palaearctic species. Aquatic beetles arecollected infrequently. Four taxa have been recorded: Agabus larsoni (Dytiscidae may be habitual in regional caves; another Agabussp. (probably semivittatus, Dytiscus sp. (Dytiscidae, and Crenitis digesta (Hydrophilidae are accidentals. The distribution andecology of recorded species are discussed, and attention is drawn to the association of beetles found in a Nova Scotia “ice cave”.

  7. Effects of Japanese beetle (Coleoptera: Scarabaeidae) and silk clipping in field corn.

    Science.gov (United States)

    Steckel, Sandy; Stewart, S D; Tindall, K V

    2013-10-01

    Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to < 13 mm, and pollination is < 50% complete, and that recommendation appears to be adequate.

  8. Influence of predators and parisitoids on bark beetle productivity

    Science.gov (United States)

    Jan Weslien

    1991-01-01

    In an earlier field experiment, natural enemies of the bark beetle, Ips typographus (L) were estimated to have reduced bark beetle productivity by more than 80 percent. To test this hypothesis, spruce logs (Picea abies) were placed in the forest in the spring, prior to commencement of flight by I. typographus....

  9. New records of water beetles (Coleoptera: Haliplidae, Dytiscidae, Gyrinidae from Montenegro (SE Europe

    Directory of Open Access Journals (Sweden)

    Pešić Vladimir M.

    2005-01-01

    Full Text Available The water beetle fauna of Montenegro is still poorly known. In the catalog dealing with water beetles (Hydrochantares and Palpicornia in Yugoslavia Gueorguiev (1971 gives a list of 116 water beetle species from Montenegro. Mikšić (1977 reported the presence of six water beetles species from the Ulcinj area. In the present paper, 19 water beetle species (Coleoptera Hydradephaga are reported, five of which are new for the fauna of Montenegro. All specimens have been deposited in the zoological collection of the department of Biology (Podgorica. In list of the species, we give the locality, the date of sampling, the total number of individuals and the names of collectors.

  10. The artificial beetle, or a brief manifesto for engineered biomimicry

    Science.gov (United States)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  11. Ground beetles (Coleoptera, Carabidae agrocenoses of spring and winter wheat

    Directory of Open Access Journals (Sweden)

    Luboš Purchart

    2005-01-01

    Full Text Available On two monitoring areas of the Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ loaded with risk elements we carried out investigations of beetles of the family Carabidae (Coleoptera in agricultural stands of winter and spring wheat. The focus of the present study is on synecological characteristics and in some extent on the impact of agricultural practise on the population and seasonal dynamics of the most important representatives of ground beetles. This paper precedes the following article aimed to contents of heavy metals in ground beetles.

  12. Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Izzo, Victor M; Chen, Yolanda H; Schoville, Sean D; Wang, Cong; Hawthorne, David J

    2018-04-02

    Colorado potato beetle (Leptinotarsa decemlineata Say [Coleoptera: Chrysomelidae]) is a pest of potato throughout the Northern Hemisphere, but little is known about the beetle's origins as a pest. We sampled the beetle from uncultivated Solanum host plants in Mexico, and from pest and non-pest populations in the United States and used mitochondrial DNA and nuclear loci to examine three hypotheses on the origin of the pest lineages: 1) the pest beetles originated from Mexican populations, 2) they descended from hybridization between previously divergent populations, or 3) they descended from populations that are native to the Plains states in the United States. Mitochondrial haplotypes of non-pest populations from Mexico and Arizona differed substantially from beetles collected from the southern plains and potato fields in the United States, indicating that beetles from Mexico and Arizona did not contribute to founding the pest lineages. Similar results were observed for AFLP and microsatellite data . In contrast, non-pest populations from the states of Colorado, Kansas, Nebraska, New Mexico, and Texas were genetically similar to U.S. pest populations, indicating that they contributed to the founding of the pest lineages. Most of the pest populations do not show a significant reduction in genetic diversity compared to the plains populations in the United States. We conclude that genetically heterogeneous beetle populations expanded onto potato from native Solanum hosts. This mode of host range expansion may have contributed to the abundant genetic diversity of contemporary populations, perhaps contributing to the rapid evolution of climate tolerance, host range, and insecticide resistance.

  13. Scarab Beetle (Coleoptera: Scarabaeidae Fauna in Ardabil Province, North West Iran

    Directory of Open Access Journals (Sweden)

    G Mowlavi

    2008-12-01

    Full Text Available "nBackground: Dung beetles of Coleoptera associated to undisturbed cattle droppings in pastures present great diver¬sity and abundance. Dung beetles also play an important role for transmission of some helminthes to human and cat¬tle. This study was made to survey the biodiversity and abundance of these beetles in Ardebil Province, western Iran."nMethods: According to the field study all beetles attracted to fresh cow dung in five areas of Ardebil Province in¬cluding Namin, Ardabil, Meshkinshahr, Neer and Sarein were collected and identified. They were collected during summer 2007 from June to September, with general peaks appearing to be correlated with temperature mainly at 11 a.m to 15 p.m. The samples were identified using appropriate systematic key "nResults: A total of 231 specimens belonging to 9 beetle genera and at least 15 species were identified as Euoniticel¬lus fulvus, Sisyphus schaffaer, Euonthophagus taurus, Copris lunaris, Chironitis pamphilus, Gymnopleurus coriarus, Euonthophagus amyntas, Caccobius schreberi, Onthophagus speculifer, Onthophagus furcatus, Aphodius, lugens, Apho¬dius fimetarius, A. scrutator, Geotrupes spiniger and G. stercorarius"nThe most abundant and diverse subfamilies were Coprinae, Geotrupinae, and Aphodiinae. "nConclusion: We found 15 species of dung beetles occurred in the region. The prevalence of each species is varied depending on location. Some of them play an important role for helminths transmission of veterinary and public health importance. The finding will provide a clue for pasture management as well as public health monitoring and surveillance of the disease transmitted by dung beetles

  14. Ground beetles of the Ukraine (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Alexander Putchkov

    2011-05-01

    Full Text Available A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species of the lowlands of southern Ukraine (sandy biotopes, situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  15. Antibiotic-producing bacteria from stag beetle mycangia.

    Science.gov (United States)

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  16. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Science.gov (United States)

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  17. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    Science.gov (United States)

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  18. Dung Beetles Associated with Agroecosystems of Southern Brazil: Relationship with Soil Properties

    Directory of Open Access Journals (Sweden)

    Patrícia Menegaz de Farias

    Full Text Available ABSTRACT Knowing the biodiversity of dung beetles in agricultural and livestock environments is the basis for understanding the contribution that these organisms make in nutrient cycling and ecosystem functions. The aim of the present study was to investigate the structure of copronecrophagous dung beetle communities inhabiting the main agroecosystems in southern Brazil and correlate the presence of these organisms with soil properties. From December 2012 to April 2013, samples of dung beetles were taken in the municipality of Tubarão, Santa Catarina, Brazil (28° 28’ S; 48° 56’ W in corn, bean, and sugarcane crops, and in cattle pastures. Beetles were captured in 16 sampling sites, four from each agroecosystem, following a standardized methodology: 10 baited pitfall traps (feces and rotting meat at a spacing of 50 m with exposure for 48 h. The beetles were identified, weighed, and measured. Soil analyses were performed in order to correlate data on organic matter, texture, macro and micronutrients, and pH with data on the abundance of beetle species using canonical correspondence analysis. A total of 110 individuals belonging to 10 species of dung beetles was found. Twenty-four individuals from seven species (with total biomass of 2.4 g were found in the corn crop; five individuals from three species (1.8 g were found in the bean crop; 81 individuals from nine species (30.3 g were found in cattle pasture areas; and lastly, there were no dung beetles recorded in the sugarcane crop. In areas of cattle grazing, the tunnelers Dichotomius nisus and Trichillum externepunctatum correlated positively with organic matter content, whereas the roller species Canthon chalybaeus correlated positively with soil texture, preferring sandier soils. In corn crop areas, D. nisus was again correlated with organic matter content. Paracoprid dung beetle species were correlated with organic matter content in the soil, and species belonging to the roller

  19. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner.

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    Full Text Available Tree-killing bark beetles (Coleoptera, Scolytinae are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization.To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L. we inoculated 20 mature Norway spruce Picea abies (L. Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem. C. Moreau, and investigated induced terpene levels and beetle colonization in the bark.Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7 had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m(-2 and 2.6% as much gallery length (0.029 m m(-2 vs. 1.11 m m(-2 as trees with low terpene levels (n = 6. There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g(-1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g(-1 dry phloem trees were virtually unattacked.This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.

  20. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia.

    Science.gov (United States)

    Chung, A Y; Eggleton, P; Speight, M R; Hammond, P M; Chey, V K

    2000-12-01

    The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.

  1. Quantifying Beetle-Mediated Effects on Gas Fluxes from Dung Pats

    Science.gov (United States)

    Penttilä, Atte; Slade, Eleanor M.; Simojoki, Asko; Riutta, Terhi; Minkkinen, Kari; Roslin, Tomas

    2013-01-01

    Agriculture is one of the largest contributors of the anthropogenic greenhouse gases (GHGs) responsible for global warming. Measurements of gas fluxes from dung pats suggest that dung is a source of GHGs, but whether these emissions are modified by arthropods has not been studied. A closed chamber system was used to measure the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from dung pats with and without dung beetles on a grass sward. The presence of dung beetles significantly affected the fluxes of GHGs from dung pats. Most importantly, fresh dung pats emitted higher amounts of CO2 and lower amounts of CH4 per day in the presence than absence of beetles. Emissions of N2O showed a distinct peak three weeks after the start of the experiment – a pattern detected only in the presence of beetles. When summed over the main grazing season (June–July), total emissions of CH4 proved significantly lower, and total emissions of N2O significantly higher in the presence than absence of beetles. While clearly conditional on the experimental conditions, the patterns observed here reveal a potential impact of dung beetles on gas fluxes realized at a small spatial scale, and thereby suggest that arthropods may have an overall effect on gas fluxes from agriculture. Dissecting the exact mechanisms behind these effects, mapping out the range of conditions under which they occur, and quantifying effect sizes under variable environmental conditions emerge as key priorities for further research. PMID:23940758

  2. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran.

    Science.gov (United States)

    Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza

    2017-06-01

    Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010-2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12-14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97-100% with similar sequences from GenBank database. Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations.

  3. Efficacy of plant extracts against the cowpea beetle, Callosobruchus maculatus

    NARCIS (Netherlands)

    Boeke, S.J.; Barnaud, B.; Loon, van J.J.A.; Kossou, D.K.; Huis, van A.; Dicke, M.

    2004-01-01

    Traditionally used African plant powders, with a known effect against the cowpea beetle Callosobruchus maculatus in stored cowpea, were extracted with water. The extracts, 13 volatile oils, 2 non-volatile oils and 8 slurries, were evaluated for their toxic and repellent effects against the beetle.

  4. 78 FR 27853 - Asian Longhorned Beetle; Quarantined Areas in Ohio

    Science.gov (United States)

    2013-05-13

    ...-0004] Asian Longhorned Beetle; Quarantined Areas in Ohio AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule and request for comments. SUMMARY: We are amending the Asian... to prevent the artificial spread of the Asian longhorned beetle to noninfested areas of the United...

  5. Formulating entompathogens for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  6. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA.

    Directory of Open Access Journals (Sweden)

    Davide Rassati

    Full Text Available Non-native bark and ambrosia beetles represent a threat to forests worldwide. Their invasion patterns are, however, still unclear. Here we investigated first, if the spread of non-native bark and ambrosia beetles is a gradual or a discontinuous process; second, which are the main correlates of their community structure; third, whether those correlates correspond to those of native species. We used data on species distribution of non-native and native scolytines in the continental 48 USA states. These data were analyzed through a beta-diversity index, partitioned into species richness differences and species replacement, using Mantel correlograms and non-metric multidimensional scaling (NMDS ordination for identifying spatial patterns, and regression on distance matrices to test the association of climate (temperature, rainfall, forest (cover area, composition, geographical (distance, and human-related (import variables with β-diversity components. For both non-native bark and ambrosia beetles, β-diversity was mainly composed of species richness difference than species replacement. For non-native bark beetles, a discontinuous invasion process composed of long distance jumps or multiple introduction events was apparent. Species richness differences were primarily correlated with differences in import values while temperature was the main correlate of species replacement. For non-native ambrosia beetles, a more continuous invasion process was apparent, with the pool of non-native species arriving in the coastal areas that tended to be filtered as they spread to interior portions of the continental USA. Species richness differences were mainly correlated with differences in rainfall among states, while rainfall and temperature were the main correlates of species replacement. Our study suggests that the different ecology of bark and ambrosia beetles influences their invasion process in new environments. The lower dependency that bark beetles have

  7. Structure of domination and dynamics of activity of ground-beetles in agroecosistems of Derbent area

    OpenAIRE

    G. M. Nahibasheva; A. A. Bagomaev; R. A. Musaeva

    2008-01-01

    For the first time for area of research 61 kind of ground-beetles, concerning to 28 sorts and 13 vital  structure of ground-beetles of agroecosistems are studied. New data about structure and character biotopical are obtained distributions, seasonal dynamics of activity of ground-beetles. Phenological change prepotent of ground-beetles ofagroecosistems of Derbent area is revealed.

  8. Book review of advances in insect physiology: pine bark beetles

    Science.gov (United States)

    If not the most destructive forest pest, bark beetles are probably a close second in their culpability for killing millions of trees in the Northern Hemisphere. This volume provides an aptly-timed interdisciplinary review on aspects of bark beetle physiology, especially how it relates to selecting, ...

  9. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Science.gov (United States)

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  10. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera:Tenebrionidae Beetles from Iran

    Directory of Open Access Journals (Sweden)

    Mahsa Sadat Makki

    2017-06-01

    Full Text Available Background: Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran.Methods: The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010–2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene.Results: Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52% of laboratory-infected beetles showed infection with an average of 12–14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, includ­ing the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97–100% with similar sequences from GenBank database.Conclusion: Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations.

  11. Effects of insecticides intended for Ceutorhynchus napi Gyll. control in oilseed rape on ground beetles

    Directory of Open Access Journals (Sweden)

    Sivčev Lazar

    2017-01-01

    Full Text Available The effects of insecticides that are commonly used for conventional and integrated oilseed rape (OSR management on ground beetles were studied. Monitoring of harmful species showed that only insecticides intended against Ceutorhynchus napi should be applied. There were no differences in beetle numbers and phenology of settling of C. napi in the OSR fields that received different management practices. The type of OSR management has a primary and significant impact on ground beetles abundance. Early in the spring, ground beetles settled more massively on the non-tilled OSR field with abundant weed cover and mulch on soil surface. However, there were no significant differences in species richness between the OSR fields managed differently. A total of 22 species were recorded. Early in the spring, the granivorous ground beetles Amara aenea (47.3% and Harpalus distinguendus (32.5% were dominant. When insecticides were applied, immigration of ground beetles began, so that their adverse effect was minimal. In both management systems the number of ground beetles and their diversity increased after spraying. In conclusion, no significant harmful effects of the insecticides on ground beetles were detected in OSR fields managed in two different ways.

  12. Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi

    Science.gov (United States)

    W. R. Jacobi; R. D. Koski; J. F. Negron

    2013-01-01

    Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophiostoma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus...

  13. Structure of domination and dynamics of activity of ground-beetles in agroecosistems of Derbent area

    Directory of Open Access Journals (Sweden)

    G. M. Nahibasheva

    2008-01-01

    Full Text Available For the first time for area of research 61 kind of ground-beetles, concerning to 28 sorts and 13 vital  structure of ground-beetles of agroecosistems are studied. New data about structure and character biotopical are obtained distributions, seasonal dynamics of activity of ground-beetles. Phenological change prepotent of ground-beetles ofagroecosistems of Derbent area is revealed.

  14. Acorn consumption improves the immune response of the dung beetle Thorectes lusitanicus.

    Directory of Open Access Journals (Sweden)

    José R Verdú

    Full Text Available Thorectes lusitanicus, a typically coprophagous species is also actively attracted to oak acorns, consuming, burying them, and conferring ecophysiological and reproductive advantages to both the beetle and the tree. In this study, we explored the possible relation between diet shift and the health status of T. lusitanicus using a generalist entomopathogenic fungus (Metarhizium anisopliae as a natural pathogen. To measure the health condition and immune response of beetles, we analysed the protein content in the haemolymph, prophenoloxidase (proPO content, phenoloxidase (PO activity and mortality of beetles with diets based on either acorns or cow dung. Protein content, proPO levels and PO levels in the haemolymph of T. lusitanicus were found to be dependent on the type of diet. Furthermore, the beetles fed with acorns developed a more effective proPO-PO system than the beetles fed with cow dung. Furthermore, a significant decrease in mortality was observed when infected individuals were submitted to an acorn-based diet. In addition to enhancing an understanding of the relevance of dietary change to the evolutionary biology of dung beetles, these results provide a more general understanding of the ecophysiological implications of differential dietary selection in the context of fitness.

  15. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition.

    Directory of Open Access Journals (Sweden)

    Irene Piccini

    Full Text Available Cattle farming is a major source of greenhouse gases (GHGs. Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species, we ran six experimental treatments (four monospecific and two mixed and two controls (one with dung but without beetles, and one with neither dung nor beetles. In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux-an effect potentially traceable to the species' nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%. As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems.

  16. Chemical Strategies of the Beetle Metoecus Paradoxus, Social Parasite of the Wasp Vespula Vulgaris.

    Science.gov (United States)

    Van Oystaeyen, Annette; van Zweden, Jelle S; Huyghe, Hilde; Drijfhout, Falko; Bonckaert, Wim; Wenseleers, Tom

    2015-12-01

    The parasitoid beetle Metoecus paradoxus frequently parasitizes colonies of the common wasp, Vespula vulgaris. It penetrates a host colony as a larva that attaches itself onto a foraging wasp's body and, once inside the nest, it feeds on a wasp larva inside a brood cell and then pupates. Avoiding detection by the wasp host is crucial when the beetle emerges. Here, we tested whether adult M. paradoxus beetles avoid detection by mimicking the cuticular hydrocarbon profile of their host. The beetles appear to be chemically adapted to their main host species, the common wasp, because they share more hydrocarbon compounds with it than they do with the related German wasp, V. germanica. In addition, aggression tests showed that adult beetles were attacked less by common wasp workers than by German wasp workers. Our results further indicated that the host-specific compounds were, at least partially, produced through recycling of the prey's hydrocarbons, and were not acquired through contact with the adult host. Moreover, the chemical profile of the beetles shows overproduction of the wasp queen pheromone, nonacosane (n-C29), suggesting that beetles might mimic the queen's pheromonal bouquet.

  17. 77 FR 31720 - Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York

    Science.gov (United States)

    2012-05-30

    .... APHIS-2012-0003] Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York AGENCY...: We are amending the Asian longhorned beetle regulations to make changes to the list of quarantined... the artificial spread of Asian longhorned beetle to noninfested areas of the United States and to...

  18. Effects of available water on growth and competition of southern pine beetle associated fungi

    Science.gov (United States)

    Kier D. Klepzig; J. Flores-Otero; R.W. Hofstetter; M.P. Ayers

    2004-01-01

    Competitive interactions among bark beetle associated fungi are potentially influenced by abiotic factors. Water potential, in particular, undergoes marked changes over the course of beetle colonization of tree hosts. To investigate the impact of water potential on competition among three southern pine beetle associated fungi, Ophiostoma minus,

  19. Streetlights attract a broad array of beetle species

    Directory of Open Access Journals (Sweden)

    Bruno Augusto Souza de Medeiros

    2017-01-01

    Full Text Available Light pollution on ecosystems is a growing concern, and knowledge about the effects of outdoor lighting on organisms is crucial to understand and mitigate impacts. Here we build up on a previous study to characterize the diversity of all beetles attracted to different commonly used streetlight set ups. We find that lights attract beetles from a broad taxonomic and ecological spectrum. Lights that attract a large number of insect individuals draw an equally high number of insect species. While there is some evidence for heterogeneity in the preference of beetle species to different kinds of light, all species are more attracted to some light radiating ultraviolet. The functional basis of this heterogeneity, however, is not clear. Our results highlight that control of ultraviolet radiation in public lighting is important to reduce the number and diversity of insects attracted to lights. Keywords: Lighting, Coleoptera, Light pollution, Insects, Ultraviolet

  20. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  1. Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil

    Directory of Open Access Journals (Sweden)

    Philipp Werner Hopp

    2011-06-01

    Full Text Available Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil. To evaluate the reliability of data obtained by Winkler extraction in Atlantic forest sites in southern Brazil, we studied litter beetle assemblages in secondary forests (5 to 55 years after abandonment and old-growth forests at two seasonally different points in time. For all regeneration stages, species density and abundance were lower in April compared to August; but, assemblage composition of the corresponding forest stages was similar in both months. We suggest that sampling of small litter inhabiting beetles at different points in time using the Winkler technique reveals identical ecological patterns, which are more likely to be influenced by sample incompleteness than by differences in their assemblage composition. A strong relationship between litter quantity and beetle occurrences indicates the importance of this variable for the temporal species density pattern. Additionally, the sampled beetle material was compared with beetle data obtained with pitfall traps in one old-growth forest. Over 60% of the focal species captured with pitfall traps were also sampled by Winkler extraction in different forest stages. Few beetles with a body size too large to be sampled by Winkler extraction were only sampled with pitfall traps. This indicates that the local litter beetle fauna is dominated by small species. Hence, being aware of the exclusion of large beetles and beetle species occurring during the wet season, the Winkler method reveals a reliable picture of the local leaf litter beetle community.

  2. Urban soil biomonitoring by beetle and earthworm populations

    Energy Technology Data Exchange (ETDEWEB)

    Janossy, L.; Bitto, A. [ELTE Univ., Budapest (Hungary)

    1995-12-31

    Two macro invertebrate groups were chosen for biomonitoring environmental changes. The beetle population was pitfall trapped (five month in 1994) at five downtown sites (parks) of Budapest and in a hilly original woodland as a control site 33km NW of Budapest. Earthworms were collected by using formol solution. Five heavy metals were measured (Pb, Co, Hg, Zn, Cu) in the upper soil layer at the same sampling sites. Pb, Hg, Zn and Cu was over the tolerable limit in a park near the railway, extreme high Pb (530 mg/kg dry soil) and Zn content was measured in one park. Roads are also salted in wintertime. The number of beetle species in the downtown parks varied 10 to 22 (226--462 specimen). Near to the edge of the city up to 45 beetle species were found in a park with 1,027 specimen. In the woodland area 52 beetle species with 1,061 specimen were found. Less dominance and higher specific diversity showed the direction from downtown to woodland. Only 2 or 3 cosmopolitan earthworm species existed in downtown parks with 30--35 specimen/m{sup 2}, in the control woodland area 7 mostly endemic earthworm species were found with 74 specimens/m{sup 2}. But earthworm biomass was higher in three well fertilized parks (43--157 g/m{sup 2}), than in the original woodland (25-g/m{sup 2}). The beetle populations seem to be good tools for biomonitoring. Earthworms are susceptible to environmental changes but they also strongly depend on the leaf litter and the organic matter of the soil. The change in the animal populations is the result of summarized environmental impacts in such a big city like Budapest.

  3. Heavy metal concentrations in ground beetles, leaf litter, and soil of a forest ecosystem.

    Science.gov (United States)

    Jelaska, Lucija Serić; Blanusa, Maja; Durbesić, Paula; Jelaska, Sven D

    2007-01-01

    The objective of this study was to quantify the relationships between heavy metal concentrations in soil, leaf litter, and ground beetles at four sampling sites of a forest ecosystem in Medvednica Nature Park, Croatia. Ground beetles were sampled by pitfall trapping. Specimens were dry-ashed and soil and beetle samples digested with nitric acid. Lead, cadmium, copper, zinc, manganese, and iron were analyzed using atomic absorption spectrometry. Statistically significant differences between plots were found for lead, cadmium, and iron in ground beetles. Correlations between ground beetles and soil or leaf litter were positive for lead and cadmium concentrations and negative for iron concentration. Differences in species metal concentrations were recorded. Higher concentrations of all studied metals were found in female beetles. However, a significant difference between sexes was found only for manganese. Significant differences in species metal concentrations were found for species that differ in feeding strategies and age based on breeding season and emergence of young adults.

  4. Plant cells which aid in pollen digestion within a beetle's gut.

    Science.gov (United States)

    Rickson, Fred R; Cresti, M; Beach, James H

    1990-03-01

    The peach palm, Bactris gasipaes H.B.K., in Costa Rica, possesses unusual trichomes on the inflorescence epidermal surface. Certain cells of the trichome possess a thick, highly lignified cell wall and are consumed by the beetle Cyclocephala amazona L. before it ingests pollen from the same inflorescence. Chemical analyses show the trichome to possess no nutritive value. The thick-walled trichome cells pass intact through the beetle's digestive system, while ingested pollen is crushed. We suggest that the specialized plant cells function as gastroliths in the beetle's digestive tract.

  5. Odor information transfer in the stingless bee Melipona quadrifasciata: effect of in-hive experiences on classical conditioning of proboscis extension.

    Science.gov (United States)

    Mc Cabe, Sofía I; Farina, Walter M

    2009-02-01

    A recent study showed that the stingless bee Melipona quadrifasciata could learn to discriminate odors in a classical conditioning of proboscis extension response (PER). Here we used this protocol to investigate the ability of these bees to use olfactory information obtained within the colony in an experimental context: the PER paradigm. We compared their success in solving a classical differential conditioning depending on the previous olfactory experiences received inside the nest. We found that M. quadrifasciata bees are capable of transferring the food-odor information acquired in the colony to a differential conditioning in the PER paradigm. Bees attained higher discrimination levels when they had previously encountered the rewarded odor associated to food inside the hive. The increase in the discrimination levels, however, was in some cases unspecific to the odor used indicating a certain degree of generalization. The influence of the food scent offered at a field feeder 24 h before the classical conditioning could also be seen in the discrimination attained by the foragers in the PER setup, detecting the presence of long-term memory. Moreover, the improved performance of recruited bees in the PER paradigm suggests the occurrence of social learning of nectar scents inside the stingless bees' hives.

  6. A comparison of outbreak dynamics of the spruce bark beetle in Sweden and the mountain pine beetle in Canada (Curculionidae: Scolytinae)

    OpenAIRE

    Kärvemo, Simon; Schroeder, Leif Martin

    2010-01-01

    The European spruce bark beetle (Ips typographus) and the North American mountain pine beetle (Dendroctonus ponderosae) may kill millions of trees during outbreak periods. Both species have also experienced large outbreaks in recent years. But the magnitude of the outbreaks of D. ponderosae is much larger. In this review we compare the outbreak history of I. typographus in Sweden with D. ponderosae in British Columbia in Canada. We also discuss some possible explanations for the difference in...

  7. Overwintering biology and tests of trap and relocate as a conservation measure for burying beetles.

    Science.gov (United States)

    2015-01-01

    Burying beetles are carrion beetles and utilize dead animal carcasses for feeding : and reproductive efforts. They assist with decomposition, prevent the spread of disease, : and reduce the number of pest species. The largest species of carrion beetl...

  8. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies.

    Science.gov (United States)

    Krischik, Vera; Rogers, Mary; Gupta, Garima; Varshney, Aruna

    2015-01-01

    Integrated Pest Management (IPM) is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient) /canola seed and 1.2 mg AI/corn seed) translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon) pot and 69 g AI applied to the soil under a 61 (24 in) cm diam. tree. Translocation of imidacloprid from soil (300 mg AI) to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola), where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the principles of IPM.

  9. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies.

    Directory of Open Access Journals (Sweden)

    Vera Krischik

    Full Text Available Integrated Pest Management (IPM is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient /canola seed and 1.2 mg AI/corn seed translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon pot and 69 g AI applied to the soil under a 61 (24 in cm diam. tree. Translocation of imidacloprid from soil (300 mg AI to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola, where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the

  10. Soil-Applied Imidacloprid Translocates to Ornamental Flowers and Reduces Survival of Adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens Lady Beetles, and Larval Danaus plexippus and Vanessa cardui Butterflies

    Science.gov (United States)

    Krischik, Vera; Rogers, Mary; Gupta, Garima; Varshney, Aruna

    2015-01-01

    Integrated Pest Management (IPM) is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient) /canola seed and 1.2 mg AI/corn seed) translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon) pot and 69 g AI applied to the soil under a 61 (24 in) cm diam. tree. Translocation of imidacloprid from soil (300 mg AI) to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola), where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the principles of IPM

  11. Engaging students, shaping services: the changing face of student engagement at The Hive

    Directory of Open Access Journals (Sweden)

    Sarah Pittaway

    2016-11-01

    Full Text Available Library roles with a unique focus on student or customer engagement are relatively new in the sector and Worcester is one of the first universities to recruit to this area. Rather than focusing on the relationship between engagement and learning, this role seeks to engage with students as partners and agents for change who are actively involved in evaluating, developing and delivering our library service. This article outlines some of our initial successes and impacts, which are already changing the way we interact with our student population. It will also cover some of the challenges faced along the way, particularly in delivering service change in the context of the radical new service model of The Hive. 'Based on a breakout session presented at the 39th UKSG Annual Conference, Bournemouth, April 2016 '

  12. Tenebrio beetles use magnetic inclination compass

    Science.gov (United States)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  13. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  14. Effectiveness of insecticide-incorporated bags to control stored-product beetles

    Science.gov (United States)

    Adults of seven stored-product beetle species were exposed on the inside and outside surfaces of polypropylene polymer bags incorporated with the insecticide deltamethrin (approx. concentration of 3,000 ppm; ZeroFly® Storage Bags (3g/kg). Beetles were exposed for 60, 120, and 180 min, and 1, 3 and 5...

  15. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA.

    Directory of Open Access Journals (Sweden)

    Dominik Kulakowski

    Full Text Available The frequency, magnitude, and size of forest disturbances are increasing globally. Much recent research has focused on how the occurrence of one disturbance may affect susceptibility to subsequent disturbances. While much has been learned about such linked disturbances, the strength of the interactions is likely to be contingent on the severity of disturbances as well as climatic conditions, both of which can affect disturbance intensity and tree resistance to disturbances. Subalpine forests in western Colorado were affected by extensive and severe wildfires in the late 19th century and an extensive and severe outbreak of spruce beetle (Dendroctonus rufipennis in the 1940s. Previous research found that most, but not all, of the stands that burned and established following the late 19th century fires were not susceptible to the 1940s outbreak as beetles preferentially attack larger trees and stands in advanced stages of development. However, previous research also left open the possibility that some stands that burned and established following the 19th century fires may have been attacked during the 1940s outbreak. Understanding how strongly stand structure, as shaped by disturbances of varying severity, affected susceptibility to past outbreaks is important to provide a baseline for assessing the degree to which recent climate change may be relaxing the preferences of beetles for larger trees and for stands in latter stages of structural development and thereby changing the nature of linked disturbances. Here, dendroecological methods were used to study disturbance history and tree age of stands in the White River National Forest in Western Colorado that were identified in historical documents or remotely-sensed images as having burned in the 19th century and having been attacked by spruce beetle in the 1940s. Dendroecological reconstructions indicate that in young post-fire stands only old remnant trees that survived the otherwise stand

  16. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles

    OpenAIRE

    Dacke Marie; Nørgaard Thomas

    2010-01-01

    Abstract Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another ...

  17. Seasonal flight patterns of the Spruce bark beetle (Ips typographus) in Sweden

    OpenAIRE

    Öhrn, Petter

    2012-01-01

    The major bark beetle threat to Norway spruce (Picea abies (L.) Karst.) in Eurasia is the spruce bark beetle Ips typographus. Beetles cause damage after population build-up in defenseless trees. To minimize attacks, timely removal of these trees is important. This is practiced by clearing of wind throws and sanitation felling. Thus, knowledge about the region-specific flight pattern and voltinism of I. typographus is necessary for efficient pest management. This thesis focuses on the ...

  18. An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus).

    Science.gov (United States)

    Clare, Elizabeth L; Symondson, William O C; Fenton, Melville Brockett

    2014-08-01

    Generalist species with numerous food web interactions are thought to provide stability to ecosystem dynamics; however, it is not always clear whether habitat generality translates into dietary diversity. Big brown bats are common across North America and employ a flexible foraging strategy over water, dense forests, forest edges and rural and urban settings. Despite this generalist use of habitat, they are paradoxically characterized as beetle specialists. However, hard carapaces may preferentially survive digestion leading to over-representation during morphological analysis of diet. This specialization has not been evaluated independently using molecular analysis and species-level identification of prey. We used next-generation sequencing to assess the diet of big brown bats. Beetles were consumed in the highest frequency but Lepidoptera species richness was highest among identified prey. The consumption of species showed strong seasonal and annual variation. While Coleoptera consumption varied, Lepidoptera and Ephemeroptera were relatively constant dietary components. Dietary diversity increased in late summer when insect diversity decreases. Our results indicate that big brown bats are dietary generalists and, while beetles are an important component of the diet, Lepidoptera are equally important, and Lepidoptera and Ephemeroptera are the only stable prey resource exploited. As resources become limited, big brown bats may respond by increasing the species richness of prey and thus their connectedness in the ecosystem. This characterization of diet corresponds well with a generalist approach to foraging, making them an important species in encouraging and maintaining ecosystem stability.

  19. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    Science.gov (United States)

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. © 2016 The Author(s).

  20. Dung beetles eat acorns to increase their ovarian development and thermal tolerance.

    Directory of Open Access Journals (Sweden)

    José R Verdú

    Full Text Available Animals eat different foods in proportions that yield a more favorable balance of nutrients. Despite known examples of these behaviors across different taxa, their ecological and physiological benefits remain unclear. We identified a surprising dietary shift that confers ecophysiological advantages in a dung beetle species. Thorectes lusitanicus, a Mediterranean ecosystem species adapted to eat semi-dry and dry dung (dung-fiber consumers is also actively attracted to oak acorns, consuming and burying them. Acorn consumption appears to confer potential advantages over beetles that do not eat acorns: acorn-fed beetles showed important improvements in the fat body mass, hemolymph composition, and ovary development. During the reproductive period (October-December beetles incorporating acorns into their diets should have greatly improved resistance to low-temperature conditions and improved ovarian development. In addition to enhancing the understanding of the relevance of dietary plasticity to the evolutionary biology of dung beetles, these results open the way to a more general understanding of the ecophysiological implications of differential dietary selection on the ecology and biogeography of these insects.

  1. Impact of planting date on sunflower beetle (Coleoptera: Chrysomelidae) infestation, damage, and parasitism in cultivated sunflower.

    Science.gov (United States)

    Charlet, Laurence D; Knodel, Janet J

    2003-06-01

    The sunflower beetle, Zygogramma exclamationis (F.), is the major defoliating pest of sunflower (Helianthus annuus L.). Planting date was evaluated as a potential management tool in a variety of production regions throughout North Dakota from 1997 to 1999, for its impact on sunflower beetle population density of both adults and larvae, defoliation caused by both feeding stages, seed yield, oil content, and larval parasitism in cultivated sunflower. Results from this 3-yr study revealed that sunflower beetle adult and larval populations decreased as planting date was delayed. Delayed planting also reduced defoliation from adult and larval feeding, which is consistent with the lower numbers of the beetles present in the later seeded plots. Even a planting delay of only 1 wk was sufficient to significantly reduce feeding damage to the sunflower plant. Yield reduction caused by leaf destruction of the sunflower beetle adults and larvae was clearly evident in the first year of the study. The other component of sunflower yield, oil content, did not appear to be influenced by beetle feeding. The tachinid parasitoid, Myiopharus macellus (Rheinhard), appeared to be a significant mortality factor of sunflower beetle larvae at most locations regardless of the dates of planting, and was able to attack and parasitize the beetle at various larval densities. The results of this investigation showed the potential of delayed planting date as an effective integrated pest management tactic to reduce sunflower beetle adults, larvae, and their resulting defoliation. In addition, altering planting dates was compatible with biological control of the beetle, because delaying the planting date did not reduce the effectiveness of the parasitic fly, M. macellus, which attacks the sunflower beetle larvae.

  2. Chemical ecology and serendipity: Developing attractants for Florida ambrosia beetle pests

    Science.gov (United States)

    Two exotic ambrosia beetles have become established in southern Florida: Xyleborus glabratus, the redbay ambrosia beetle (RAB), and Euwallacea fornicatus, the tea shot hole borer (TSHB). Both pests vector pathogenic fungal symbionts; the former for laurel wilt and the latter for Fusarium dieback d...

  3. The tiger beetles (Coleoptera, Carabidae, Cicindelinae) of Israel and adjacent lands.

    Science.gov (United States)

    Matalin, Andrey V; Chikatunov, Vladimir I

    2016-01-01

    Based on field studies, museums collections and literature sources, the current knowledge of the tiger beetle fauna of Israel and adjacent lands is presented. In Israel eight species occur, one of them with two subspecies, while in the Sinai Peninsula nine species of tiger beetles are now known. In the combined regions seven genera from two tribes were found. The Rift Valley with six cicindelids species is the most specious region of Israel. Cylindera contorta valdenbergi and Cicindela javeti azari have localized distributions and should be considered regional endemics. A similarity analysis of the tiger beetles faunas of different regions of Israel and the Sinai Peninsula reveal two clusters of species. The first includes the Great Rift Valley and most parts of the Sinai Peninsula, and the second incorporates most regions of Israel together with Central Sinai Foothills. Five distinct adult phenological groups of tiger beetles can be distinguished in these two clusters: active all-year (three species), spring-fall (five species), summer (two species), spring-summer (one species) and spring (one species). The likely origins of the tiger beetle fauna of this area are presented. An annotated list and illustrated identification key of the Cicindelinae of Israel and adjacent lands are provided.

  4. Carcass Fungistasis of the Burying Beetle Nicrophorus nepalensis Hope (Coleoptera: Silphidae

    Directory of Open Access Journals (Sweden)

    Wenbe Hwang

    2013-01-01

    Full Text Available Our study investigated the fungistatic effects of the anal secretions of Nicrophorus nepalensis Hope on mouse carcasses. The diversity of fungi on carcasses was investigated in five different experimental conditions that corresponded to stages of the burial process. The inhibition of fungal growth on carcasses that were treated by mature beetles before burial was lost when identically treated carcasses were washed with distilled water. Compared with control carcasses, carcasses that were prepared, buried, and subsequently guarded by mature breeding pairs of beetles exhibited the greatest inhibition of fungal growth. No significant difference in fungistasis was observed between the 3.5 g and the 18 to 22 g guarded carcasses. We used the growth of the predominant species of fungi on the control carcasses, Trichoderma sp., as a biological indicator to examine differences in the fungistatic efficiency of anal secretions between sexually mature and immature adults and between genders. The anal secretions of sexually mature beetles inhibited the growth of Trichoderma sp., whereas the secretions of immature beetles did not. The secretions of sexually mature females displayed significantly greater inhibition of the growth of Trichoderma sp. than those of sexually mature males, possibly reflecting a division of labor in burying beetle reproduction.

  5. Bark beetle outbreaks in western North America: Causes and consequences

    Science.gov (United States)

    Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff; Wood, David J. A.

    2005-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.

  6. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch).

    Science.gov (United States)

    Saremba, Brett M; Tymm, Fiona J M; Baethke, Kathy; Rheault, Mark R; Sherif, Sherif M; Saxena, Praveen K; Murch, Susan J

    2017-05-04

    American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses.

  7. Using camera traps and digital video to investigate the impact of Aethina tumida pest on honey bee (Apis mellifera adansonii) reproduction and ability to keep away elephants (Loxodonta africana cyclotis) in Gamba, Gabon

    OpenAIRE

    Steeve Ngama; Lisa Korte; Mireille Johnson; Jérôme Bindelle; Auguste Ndoutoume Ndong; Cédric Vermeulen

    2018-01-01

    Bees and elephant interactions are the core of a conservation curiosity since it has been demonstrated that bees, one of the smallest domesticated animals, can keep away elephants, the largest terrestrial animals. Yet, insects' parasites can impact the fitness and activity of the bees. Since their activity is critical to the repellent ability against elephants, this study assessed the impact of small hive beetles (Aethina tumida) on bee (Apis mellifera adansonii) reproduction and ability to k...

  8. Pheromones in White Pine Cone Beetle, Conophthorus coniperdu (Schwarz) (Coleoptera: Scolytidae)

    Science.gov (United States)

    Goran Birgersson; Gary L. DeBarr; Peter de Groot; Mark J. Dalusky; Harold D. Pierce; John H. Borden; Holger Meyer; Wittko Francke; Karl E. Espelie; C. Wayne Berisford

    1995-01-01

    Female white pine cone beetles, Conophrhorus coniperda, attacking second-year cones of eastern white pine, Pinus strobus L., produced a sex-specific pheromone that attracted conspecific males in laboratory bioassays and to field traps. Beetle response was enhanced by host monoterpenes. The female-produced compound was identified in...

  9. BIOECOLOGICAL FEATURES OF GROUND BEETLES OF GUMBETOVSKY DISTRICT OF DAGHESTAN REPUBLIC

    Directory of Open Access Journals (Sweden)

    G. M. NAKHIBASHEVA

    2010-01-01

    Full Text Available Ground beetles of the Gumbetovskiy area are studied. For the first time for the territory there are defined 95 species of the beetles related to 28 genus. Bioecological features of the species are presented and the analysis of the received materials is lead.

  10. Hidden in Plain sight: synthetic pheromone misleads beetles, protects trees

    Science.gov (United States)

    Paul Meznarich; Robert Progar

    2015-01-01

    In the last decade, pine forests throughout much of the western United States have been ravaged by the mountain pine beetle (Dendroctonus ponderosae). This bark beetle is native to the United States and has been responsible for massive tree kills in the past. The current outbreak, however, has been notably severe and wide ranging and the effects have been more dramatic...

  11. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available Lady beetles (Coleoptera: Coccinellidae prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas, Coleomegilla maculata (De Geer, Cycloneda munda (Say, and Olla v-nigrum (Mulsant were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.

  12. Longevity and viability of Taenia solium eggs in the digestive system of the beetle Ammophorus rubripes.

    Science.gov (United States)

    Gomez-Puerta, Luis Antonio; Lopez-Urbina, Maria Teresa; Garcia, Hector Hugo; Gonzalez, Armando Emiliano

    2014-03-01

    The present study evaluated the capacity of Ammophorus rubripes beetles to carry Taenia solium eggs, in terms of duration and viability of eggs in their digestive system. One hundred beetles were distributed into five polyethylene boxes, and then they were infected with T. solium eggs. Gravid proglottids of T. solium were crushed and then mixed with cattle feces. One gram of this mixture was placed in each box for 24 hours, after which each group of beetles was transferred into a new clean box. Then, five beetles were dissected every three days. Time was strongly associated with viability (r=0.89; PTaenia solium eggs were present in the beetle's digestive system for up to 39 days (13th sampling day out of 20), gradually reducing in numbers and viability, which was 0 on day 36 post-infection. Egg viability was around 40% up to day 24 post-infection, with a median number of eggs of 11 per beetle at this time. Dung beetles may potentially contribute towards dispersing T. solium eggs in endemic areas.

  13. Bacterial Infection Increases Reproductive Investment in Burying Beetles

    Directory of Open Access Journals (Sweden)

    Catherine E. Reavey

    2015-10-01

    Full Text Available The Nicrophorus genus lives and breeds in a microbe rich environment. As such, it would be expected that strategies should be in place to counter potentially negative effects of the microbes common to this environment. In this study, we show the response of Nicrophorus vespilloides to the common soil bacterium, Bacillus subtilis. Phenoloxidase (PO levels are not upregulated in response to the challenge and the bacteria are observed to multiply within the haemolymph of the host. Despite the growth of B. subtilis, survival is not affected, either in virgin or in breeding beetles. Some limit on bacterial growth in the haemolymph does seem to be occurring, suggesting mechanisms of resistance, in addition to tolerance mechanisms. Despite limited detrimental effects on the individual, the challenge by Bacillus subtilis appears to act as a cue to increase reproductive investment. The challenge may indicate a suite of negative environmental conditions that could compromise future breeding opportunities. This could act as a cue to increase parental investment in the current bout.

  14. Spatial-temporal modeling of forest gaps generated by colonization from below- and above-ground bark beetle species

    DEFF Research Database (Denmark)

    Zhu, Jun; Rasmussen, Jakob Gulddahl; Møller, Jesper

    2008-01-01

    red turpentine beetle colonization, pine engraver bark beetle colonization, and mortality of red pine trees while accounting for correlation across space and over time. We extend traditional Markov random-field models to include temporal terms and multiple-response variables aimed at developing...... as well as posterior predictive distributions. In particular, we implement path sampling combined with perfect simulation for autologistic models while formally addressing the posterior propriety under an improper uniform prior. Our data analysis results suggest that red turpentine beetle colonization...... is associated with a higher likelihood of pine engraver bark beetle colonization and that pine engraver bark beetle colonization is associated with higher likelihood of red pine tree mortality, whereas there is no direct association between red turpentine beetle colonization and red pine tree mortality...

  15. Evidence of an aggregation pheromone in the flea beetle,Phyllotreta Cruciferae (Goeze) (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Peng, C; Weiss, M J

    1992-06-01

    Laboratory olfactometer bioassays and field trapping experiments showed that the flea beetle,Phyllotreta cruciferae (Goeze), was highly attracted by oilseed rape(Brassica napus L.) when flea beetles were on the plant. This attraction was mediated by a flea beetle-produced aggregation pheromone based upon: (1) Oilseed rape damaged mechanically, or byP. cruciferae, or by diamondback moth,Plutella xylostella (L.), did not attractP. cruciferae. (2) Contact with the plants or feeding was required for the production of aggregation pheromone because oilseed rape alone was not attractive when separated from flea beetles by a screen. (3) Equal numbers of males and females were attracted.

  16. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    International Nuclear Information System (INIS)

    Bright, B C; Hicke, J A; Hudak, A T

    2012-01-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40–50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75–89% of the study area had >25% AGC in killed trees and 3–6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale. (letter)

  17. Detection Survey of Khapra Beetle in Stored Agricultural Products in Central Java

    Directory of Open Access Journals (Sweden)

    Suciati Hadi Wuryaningsih

    2009-07-01

    Full Text Available Khapra beetle, Trogoderma granarium Evert (Celeoptera: Dermestidae entered Central Java together with importation of stored products four decades ago. A survey was conducted to detect whether the Kaphra beetle existed in Central Java after they had been fumigated during commodity arrival. If the Kaphra beetle is absent, the data could be treated as the starting point toward declaring a pest free area (PFA of Kaphra beetle in Central Java. The survey employed the procedure established in Australia, except this survey lasted for 11 months starting from April 2008 to February 2009. Insect traps (Trécé Incorporation, Oklahoma, USA were placed in eight sites distributed in six districts identified as high risk for Kaphra beetle. The traps were substituted following the label. The traps were checked every 2–4 weeks making the total observations varying from 18–24 times, except one site (eight times. No Kaphra beetle was observed during this detection survey. This finding strongly suggests that Kaphra beetle is not present in Central Java. Survey should be continued to collect data sufficient to declare PFA of Kaphra beetle.   KumbangKhapra,Trogoderma granarium Evert (Celeoptera;Dermestidae masuk ke Jawa Tengah bersama sama dengan produk impor empat dekade lalu. Survei deteksi ini dilakukan untuk mendeteksi apakah kumbang Kaphra masih ada di Jawa Tengah setelah dilakukan fumigasi sejak kedatangannya. Jika kumbang Kaphra sudah tidak ada, data tersebut digunakan sebagai langkah awal penetapan area bebas hama (Pest FreeArea/PFA kumbang Kaphra di JawaTengah. Survei menggunakan prosedur yang telah ditetapkan di Australia, yang dilakukan selama 11 bulan mulai April 2008 hingga Februari 2009. Perangkap serangga (produk dari Trécé Incorporation, Oklahoma, USA diletakkan di delapan tempat yang tersebar di enam Kabupaten/kota yang diidentifikasi sebagai daerah berisiko tinggi terhadap keberadaan kumbang Kaphra. Perangkap diganti dengan interval

  18. Studies on tiger beetles : 84. Additions to the tiger beetle fauna of Sulawesi, Indonesia (Coleoptera: Cicindelidae)

    NARCIS (Netherlands)

    Cassola, F.

    1996-01-01

    Distributional new data are provided for several interesting or poorly known tiger beetle species from Sulawesi, Indonesia. The generic attribution of Wallacedela brendelli Cassola, 1991, is confirmed, and moreover two new species, Wallacedela? problematica spec. nov. and Wallacedela butonensis

  19. Mesostigmatic Mites (Acari) Associated with Ground, Burying, Roving Carrion and Dung Beetles (Coleoptera) in Sapporo and Tomakomai, Hokkaido, Northern Japan

    OpenAIRE

    Takaku, Gen; Katakura, Haruo; Yoshida, Nobuyo

    1994-01-01

    A total of 19 species belonging to 5 families of mesostigmatic mites were collected in Sapporo and Tomakomai, northern Japan, on four groups of beetles, i.e., ground beetles (Carabinae, Carabidae), burying beetles (Nicrophorini, Silphinae, Silphidae), roving carrion beetles (Silphini, Silphinae, Silphidae) and dung beetles (Scarabaeidae and Geotrupidae), all of which mainly forage on the ground surface. No mite species was found on more than one group of beetles except for Poecilochirus carab...

  20. Mesostigmatic Mites (Acari) Associated with Ground, Burying, Roving Carrion and Dung Beetles (Coleoptera) in Sapporo and Tomakomai, Hokkaido, Northern Japan

    OpenAIRE

    Gen, Takaku; Haruo, Katakura; Nobuyo, Yoshida; Division of Biological Sciences, Graduate School of Science, Hokkaido University; Division of Biological Sciences, Graduate School of Science, Hokkaido University; Tohoku Agricultural Experiment Station

    1994-01-01

    A total of 19 species belonging to 5 families of mesostigmatic mites were collected in Sapporo and Tomakomai, northern Japan, on four groups of beetles, i. e. , ground beetles (Carabinae, Carabidae), burying beetles (Nicrophorini, Silphinae, Silphidae), roving carrion beetles (Silphini, Silphinae, Silphidae) and dung beetles (Scarabaeidae and Geotrupidae), all of which mainly forage on the ground surface. No mite species was found on more than one group of beetles except for Poecilochirus car...

  1. Significantly higher Carabid beetle (Coleoptera: Carabidae) catch in conventionally than in organically managed Christmas tree plantations

    DEFF Research Database (Denmark)

    Bagge, Søren; Lund, Malthe; Rønn, Regin

    2012-01-01

    Carabid beetles play an important role as consumers of pest organisms in forestry and agriculture. Application of pesticides may negatively affect abundance and activity of carabid beetles, thus reducing their potential beneficial effect. We investigated how abundance and diversity of pitfall...... trapped carabid beetles (Coleoptera, Carabidae) varied between conventionally and organically managed Caucasian Fir (Abies nordmanniana (Stev.)) plantations, in northern Zealand, Denmark. We recorded significantly higher numbers of carabid beetle specimens and species at conventionally than at organically...

  2. The role of dung beetles in reducing greenhouse gas emissions from cattle farming.

    Science.gov (United States)

    Slade, Eleanor M; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L

    2016-01-05

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results, [corrected] and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  3. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    Science.gov (United States)

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  4. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).

    Science.gov (United States)

    Lahr, Eleanor C; Sala, Anna

    2016-12-01

    Recent outbreaks of forest insects have been directly linked to climate change-induced warming and drought, but effects of tree stored resources on insects have received less attention. We asked whether tree stored resources changed following mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and whether they affected beetle development. We compared initial concentrations of stored resources in the sapwood of whitebark pine (Pinus albicaulis Engelmann) and lodgepole pine (Pinus contorta Douglas ex. Louden) with resource concentrations one year later, in trees that were naturally attacked by beetles and trees that remained unattacked. Beetles did not select host trees based on sapwood resources-there were no consistent a priori differences between attacked versus unattacked trees-but concentrations of nonstructural carbohydrate (NSC), lipids, and phosphorus declined in attacked trees, relative to initial concentrations and unattacked trees. Whitebark pine experienced greater resource declines than lodgepole pine; however, sapwood resources were not correlated with beetle success in either species. Experimental manipulation confirmed that the negative effect of beetles on sapwood and phloem NSC was not due to girdling. Instead, changes in sapwood resources were related to the percentage of sapwood with fungal blue-stain. Overall, mountain pine beetle attack affected sapwood resources, but sapwood resources did not contribute directly to beetle success; instead, sapwood resources may support colonization by beetle-vectored fungi that potentially accelerate tree mortality. Closer attention to stored resource dynamics will improve our understanding of the interaction between mountain pine beetles, fungi, and host trees, an issue that is relevant to our understanding of insect range expansion under climate change. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions

  5. Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress

    International Nuclear Information System (INIS)

    Grodzki, Wojciech; McManus, Michael; Knizek, Milos; Meshkova, Valentina; Mihalciuc, Vasile; Novotny, Julius; Turcani, Marek; Slobodyan, Yaroslav

    2004-01-01

    The spruce bark beetle, Ips typographus (L.) is the most serious pest of mature spruce stands, mainly Norway spruce, Picea abies (L.) Karst. throughout Eurasia. A complex of weather-related events and other environmental stresses are reported to predispose spruce stands to bark beetle attack and subsequent tree mortality; however the possible role of industrial pollution as a predisposing factor to attack by this species is poorly understood. The abundance and dynamics of I. typographus populations was evaluated in 60-80 year old Norway spruce stands occurring on 10x50 ha sites in five countries within the Carpathian range that were selected in proximity to established ozone measurement sites. Data were recorded on several parameters including the volume of infested trees, captures of adult beetles in pheromone traps, number of attacks, and the presence and relative abundance of associated bark beetle species. In several cases, stands adjacent to sites with higher ozone values were associated with higher bark beetle populations. The volume of sanitary cuttings, a reflection of tree mortality, and the mean daily capture of beetles in pheromone traps were significantly higher at sites where the O 3 level was higher. However, the mean infestation density on trees was higher in plots associated with lower O 3 levels. Captures of beetles in pheromone traps and infestation densities were higher in the zone above 800 m. However, none of the relationships was conclusive, suggesting that spruce bark beetle dynamics are driven by a complex interaction of biotic and abiotic factors and not by a single parameter such as air pollution. - Air pollution (ozone) can be one of predisposing factors that increases the susceptibility of mountain Norway spruce stands to attack by Ips typographus and associated bark beetle species

  6. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest.

    Science.gov (United States)

    S. Horn; M.D. Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles...

  7. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation

    International Nuclear Information System (INIS)

    Truong, Tien Van; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-01-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle. (paper)

  8. Fire injury reduces inducible defenses of lodgepole pine against Mountain pine beetle.

    Science.gov (United States)

    Powell, Erinn N; Raffa, Kenneth F

    2011-11-01

    We examined the effect of wildfire injury on lodgepole pine chemical defenses against mountain pine beetle. We compared the constitutive phloem chemistry among uninjured, lightly-, moderately-, and severely-injured trees, and the induced chemistry elicited by simulated beetle attack, among these same categories. We also compared the entry rates of caged female beetles into trees of these categories. The volatiles we studied included thirteen monoterpene hydrocarbons, four allylic monoterpene alcohols, one ester, and one phenyl propanoid, of which the monoterpene hydrocarbons always comprised 96% or more of the total. Fire injury reduced the total concentration of these compounds in the induced but not constitutive phloem tissue of lodgepole pines. Fire injury also affected the relative composition of some volatiles in both induced and constitutive phloem. For example, increased fire injury reduced 4-allylanisole, a host compound that inhibits mountain pine beetle aggregation. Increased fire injury also increased (-) α-pinene, which can serve as precursor of pheromone communication. However, it also reduced myrcene and terpinolene, which can serve as stimulants and synergists of pheromone communication. Beetle entry did not show statistical differences among fire injury categories, although there was a trend to increased entry with fire injury. These results suggest that the reduced ability of trees to mobilize induced chemical defenses is an important mechanism behind the higher incidence of attack on fire-injured trees in the field. Future studies should concentrate on whether beetles that enter fire-injured trees are more likely to elicit aggregation, based on the differences we observed in volatile composition.

  9. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    Science.gov (United States)

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  10. Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson

    Science.gov (United States)

    Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth

    2012-04-01

    One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.

  11. Trophic habits of mesostigmatid mites associated with bark beetles in Mexico

    Science.gov (United States)

    M. Patricia Chaires-Grijalva; Edith G. Estrada-Venegas; Armando Equihua-Martinez; John C. Moser; Stacy R. Blomquist

    2016-01-01

    Samples of bark and logs damaged by bark beetles were collected from 16 states of Mexico from 2007 to 2012. Fifteen bark beetle species were found within the bark and log samples and were examined for phoretic mites and arthropod associates. Thirty-three species of mesostigmatid mites were discovered within the samples. They were identified in several trophic guilds...

  12. Changes in food resources and conservation of scarab beetles

    DEFF Research Database (Denmark)

    Carpaneto, Giuseppe Maria; Mazziotta, Adriano; Piattella, Emanuele

    2005-01-01

    to dog dung, an impoverishment of the total richness was observed (from 19 to 9 species) together with an increase of individuals (by 7 times). Dog dung harboured 20% of the current scarab dung beetle fauna of Rome, probably as a consequence of the dog mixed diet, rich in cellulose. Both the communities...... showed a high percentage of tunnellers, probably because of the food shortage and, for dog scats, of the high dehydration rate. A comparison with other Roman scarab communities enhanced that: (1) the change in food resource determined a higher difference in species composition respect to other parameters......The aim of the research was to show how a change in land use influences the structure of a dung beetle assemblage and affect its conservation. In the Pineto Urban Regional Park (Rome), dog dung is the sole food resource currently available for scarab dung beetles, after the recent removal of wild...

  13. Are leaves that fall from imidacloprid-treated maple trees to control Asian longhorned beetles toxic to non-target decomposer organisms?

    Science.gov (United States)

    Kreutzweiser, David P; Good, Kevin P; Chartrand, Derek T; Scarr, Taylor A; Thompson, Dean G

    2008-01-01

    The systemic insecticide imidacloprid may be applied to deciduous trees for control of the Asian longhorned beetle, an invasive wood-boring insect. Senescent leaves falling from systemically treated trees contain imidacloprid concentrations that could pose a risk to natural decomposer organisms. We examined the effects of foliar imidacloprid concentrations on decomposer organisms by adding leaves from imidacloprid-treated sugar maple trees to aquatic and terrestrial microcosms under controlled laboratory conditions. Imidacloprid in maple leaves at realistic field concentrations (3-11 mg kg(-1)) did not affect survival of aquatic leaf-shredding insects or litter-dwelling earthworms. However, adverse sublethal effects at these concentrations were detected. Feeding rates by aquatic insects and earthworms were reduced, leaf decomposition (mass loss) was decreased, measurable weight losses occurred among earthworms, and aquatic and terrestrial microbial decomposition activity was significantly inhibited. Results of this study suggest that sugar maple trees systemically treated with imidacloprid to control Asian longhorned beetles may yield senescent leaves with residue levels sufficient to reduce natural decomposition processes in aquatic and terrestrial environments through adverse effects on non-target decomposer organisms.

  14. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    Science.gov (United States)

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.

  15. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.

    Science.gov (United States)

    Johansson, L Christoffer; Engel, Sophia; Baird, Emily; Dacke, Marie; Muijres, Florian T; Hedenström, Anders

    2012-10-07

    Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle's wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency.

  16. Dung beetles (Coleoptera: Scarabaeoidea in three landscapes in Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    MM. Rodrigues

    Full Text Available Dung beetles (Coleoptera: Scarabaeoidea in three landscapes in Mato Grosso do Sul, Brazil. Dung Beetles are important for biological control of intestinal worms and dipterans of economic importance to cattle, because they feed and breed in dung, killing parasites inside it. They are also very useful as bioindicators of species diversity in agricultural or natural environments. The aims of this paper were to study the species richness, and abundance of dung beetles, helping to answer the question: are there differences in the patterns of dung beetle diversity in three environments (pasture, agriculture and forest in the municipality of Dourados, in the state of Mato Grosso do Sul. A total of 105 samplings were carried out weekly, from November 2005 to November 2007, using three pitfall traps in each environment. The traps were baited with fresh bovine dung, and 44,355 adult dung beetles from 54 species were captured: two from Hyborosidae and 52 from Scarabaeidae. Five species were constant, very abundant and dominant on the pasture, two in the agricultural environment, and two in the environment of Semideciduous forest. Most of the species were characterised as accessories, common and not-dominant. The species with higher abundance was Ataenius platensis Blanchard, 1844. The indexes of Shannon-Wiener diversity were: 2.90 in the pasture, 2.84 in the agricultural environment and 2.66 in the area of native forest. The medium positive presence of dung beetles in the traps in each environment were: 36.88, 42.73 and 20.18 individuals per trap, in the pasture, agricultural environment and in the native forest, respectively. The pasture environment presented a higher diversity index. The species diversity of dung beetles was superior where there was higher abundance and regularity of resource (bovine dung.

  17. From facultative to obligatory parental care: Interspecific variation in offspring dependency on post-hatching care in burying beetles

    Science.gov (United States)

    Capodeanu-Nägler, Alexandra; Keppner, Eva M.; Vogel, Heiko; Ayasse, Manfred; Eggert, Anne-Katrin; Sakaluk, Scott K.; Steiger, Sandra

    2016-01-01

    Studies on the evolution of parental care have focused primarily on the costs and benefits of parental care and the life-history attributes that favour it. However, once care evolves, offspring in some taxa appear to become increasingly dependent on their parents. Although offspring dependency is a central theme in family life, the evolutionary dynamics leading to it are not fully understood. Beetles of the genus Nicrophorus are well known for their elaborate biparental care, including provisioning of their young. By manipulating the occurrence of pre- or post-hatching care, we show that the offspring of three burying beetle species, N. orbicollis, N. pustulatus, and N. vespilloides, show striking variation in their reliance on parental care. Our results demonstrate that this variation within one genus arises through a differential dependency of larvae on parental feeding, but not on pre-hatching care. In N. pustulatus, larvae appear to be nutritionally independent of their parents, but in N. orbicollis, larvae do not survive in the absence of parental feeding. We consider evolutionary scenarios by which nutritional dependency may have evolved, highlighting the role of brood size regulation via infanticide in this genus. PMID:27378180

  18. Biological activity of saponins from alfalfa tops and roots against Colorado potato beetle larvae

    Directory of Open Access Journals (Sweden)

    Maryla Szczepaniak

    2013-12-01

    Full Text Available The total saponins of alfalfa, Medicago sativa L., included in the diet of Colorado potato beetle larvae reduced their feeding, growth rate and survival. The biological activity of those compounds coming both from the roots and from the aerial parts is closely correlated with the dose. Larvae reared on leaves treated with a 0,5% dose virtually did not feed at all and died after 4-6 days. Lower saponin doses (0,01 and 0,001 % reduced the insects' feeding to a lesser degree. However, they inhibited their growth, caused an extension of the larval stage and mortality at a level of 76,7- 100%. No major differences have been found in saponin activity depending on its localization in the plant.

  19. Eurajoki Olkiluoto study on species of ground beetles and ants 2008

    International Nuclear Information System (INIS)

    Santaharju, J.; Helminen, S.-L.; Yrjoelae, R.

    2009-02-01

    The species of ants and Ground beetles at Olkiluoto in Eurajoki were studied in the summer of 2008 during two trapping periods: in June and August. The research goal was to clarify the species on Olkiluoto island of the earlier mentioned groups, at least at the family level, and to collect samples for further examination by Posiva. The trapping areas were selected at Olkiluoto in Posiva test monitoring sectors, a part of the trapping areas was the same as the earlier study. Species of ants, depending on their particular species, are a very dominating group of insects. The ants are the most important predators, scavengers and soil movers in Finnish forests. It looks as if the biomass of ants may be more than 10% of the biomass of all animals in certain areas of Finnish forests. In Finland there are about 60 species of ants that have been observed. They have been divided into four sub-groups, which are Myrmicinae, Formicinae, Ponerinae and Dolichoderinae. In Finland there are close to 300 species of ground beetles (Carabidae), which are divided into dozens of different families. The species, to a great extent, consist mostly of predatory insects that prey on microbes in field layers, but a part of them are specialized in feeding on flora. Ground beetles are usually divided into three groups according to their choice of habitat: Species that favour open biotopes, species that favour forests, and generalist species that can thrive in a variety of environments. Ground beetles also reflect changes in their living environment, and possibly they can be significant as socalled bio-indicators. Pitfall traps were used as the method of research. The preservative fluid used was ethanol (50%) with dishwashing liquid to remove surface tension. The points were located in various different biotopes in fields, meadows and forests. The data collected was defined as a minimum for the family level of Ground beetles and for ants to the species or species pairs. The species of Ground

  20. Eurajoki Olkiluoto study on species of ground beetles and ants 2008

    Energy Technology Data Exchange (ETDEWEB)

    Santaharju, J.; Helminen, S.-L.; Yrjoelae, R. (Environmental Research Yrjoelae Ltd, Helsinki (Finland))

    2009-02-15

    The species of ants and Ground beetles at Olkiluoto in Eurajoki were studied in the summer of 2008 during two trapping periods: in June and August. The research goal was to clarify the species on Olkiluoto island of the earlier mentioned groups, at least at the family level, and to collect samples for further examination by Posiva. The trapping areas were selected at Olkiluoto in Posiva test monitoring sectors, a part of the trapping areas was the same as the earlier study. Species of ants, depending on their particular species, are a very dominating group of insects. The ants are the most important predators, scavengers and soil movers in Finnish forests. It looks as if the biomass of ants may be more than 10% of the biomass of all animals in certain areas of Finnish forests. In Finland there are about 60 species of ants that have been observed. They have been divided into four sub-groups, which are Myrmicinae, Formicinae, Ponerinae and Dolichoderinae. In Finland there are close to 300 species of ground beetles (Carabidae), which are divided into dozens of different families. The species, to a great extent, consist mostly of predatory insects that prey on microbes in field layers, but a part of them are specialized in feeding on flora. Ground beetles are usually divided into three groups according to their choice of habitat: Species that favour open biotopes, species that favour forests, and generalist species that can thrive in a variety of environments. Ground beetles also reflect changes in their living environment, and possibly they can be significant as socalled bio-indicators. Pitfall traps were used as the method of research. The preservative fluid used was ethanol (50%) with dishwashing liquid to remove surface tension. The points were located in various different biotopes in fields, meadows and forests. The data collected was defined as a minimum for the family level of Ground beetles and for ants to the species or species pairs. The species of Ground

  1. Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?

    Directory of Open Access Journals (Sweden)

    Diana L. Six

    2014-01-01

    Full Text Available While the use of timber harvests is generally accepted as an effective approach to controlling bark beetles during outbreaks, in reality there has been a dearth of monitoring to assess outcomes, and failures are often not reported. Additionally, few studies have focused on how these treatments affect forest structure and function over the long term, or our forests’ ability to adapt to climate change. Despite this, there is a widespread belief in the policy arena that timber harvesting is an effective and necessary tool to address beetle infestations. That belief has led to numerous proposals for, and enactment of, significant changes in federal environmental laws to encourage more timber harvests for beetle control. In this review, we use mountain pine beetle as an exemplar to critically evaluate the state of science behind the use of timber harvest treatments for bark beetle suppression during outbreaks. It is our hope that this review will stimulate research to fill important gaps and to help guide the development of policy and management firmly based in science, and thus, more likely to aid in forest conservation, reduce financial waste, and bolster public trust in public agency decision-making and practice.

  2. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Science.gov (United States)

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  3. Log bioassay of residual effectiveness of insecticides against bark beetles

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Residual effectiveness of nine insecticides applied to bark was tested against western, mountain, and Jeffrey pine beetles. Ponderosa and Jeffrey pine trees were treated and logs cut from them 2 to 13 months later, and bioassayed with the three beetles. The insecticides were sprayed at the rate of 1 gal (3.8 l) per 40- or 80-ft² (3.6 or 7.2 m²) bark surface at varying...

  4. [Histological structure of tripartite mushroom bodies in ground beetles (Insecta, Coleoptera: Carabidae)].

    Science.gov (United States)

    Panov, A A

    2013-01-01

    Contrary to members of the suborder Polyphaga; ground beetles have been found to possess tripartite mushroom bodies, which are poorly developed in members of basal taxa and maximally elaborated in evolutionarily advanced groups. Nevertheless, they do not reach the developmental stage, which has been previously found in particular families of beetles. It has been pointed out that anew formation of the Kenyon cells occurs during at least the first months of adult life, and inactive neuroblasts are found even in one-year-old beetles. It has been suggested that there is a relation between the Kenyon cell number and development of the centers of Kenyon cell new-formation.

  5. Inquiry-based Investigation in Biology Laboratories: Does Neem Provide Bioprotection against Bean Beetles?

    Science.gov (United States)

    Pearce, Amy R.; Sale, Amanda Lovelace; Srivatsan, Malathi; Beck, Christopher W.; Blumer, Lawrence S.; Grippo, Anne A.

    2013-01-01

    We developed an inquiry-based biology laboratory exercise in which undergraduate students designed experiments addressing whether material from the neem tree ("Azadirachta indica") altered bean beetle ("Callosobruchus maculatus") movements and oviposition. Students were introduced to the bean beetle life cycle, experimental…

  6. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  7. Effects of Small-Scale Dead Wood Additions on Beetles in Southeastern U.S. Pine Forests

    Directory of Open Access Journals (Sweden)

    Chris E. Carlton

    2012-08-01

    Full Text Available Pitfall traps were used to sample beetles (Coleoptera in plots with or without inputs of dead loblolly pine (Pinus taeda L. wood at four locations (Louisiana, Mississippi, North Carolina and Texas on the coastal plain of the southeastern United States. The plots were established in 1998 and sampling took place in 1998, 1999, and 2002 (only 1998 for North Carolina. Overall, beetles were more species rich, abundant and diverse in dead wood addition plots than in reference plots. While these differences were greatest in 1998 and lessened thereafter, they were not found to be significant in 1998 due largely to interactions between location and treatment. Specifically, the results from North Carolina were inconsistent with those from the other three locations. When these data were excluded from the analyses, the differences in overall beetle richness for 1998 became statistically significant. Beetle diversity was significantly higher in the dead wood plots in 1999 but by 2002 there were no differences between dead wood added and control plots. The positive influence of dead wood additions on the beetle community can be largely attributed to the saproxylic fauna (species dependent on dead wood, which, when analyzed separately, were significantly more species rich and diverse in dead wood plots in 1998 and 1999. Ground beetles (Carabidae and other species, by contrast, were not significantly affected. These results suggest manipulations of dead wood in pine forests have variable effects on beetles according to life history characteristics.

  8. Diesel fuel oil for increasing mountain pine beetle mortality in felled logs

    Science.gov (United States)

    S. A. Mata; J. M. Schmid; D. A. Leatherman

    2002-01-01

    Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....

  9. Predicting live and dead basal area in bark beetle-affected forests from discrete-return LiDAR

    Science.gov (United States)

    Andrew T. Hudak; Ben Bright; Jose Negron; Robert McGaughey; Hans-Erik Andersen; Jeffrey A. Hicke

    2012-01-01

    Recent bark beetle outbreaks in western North America have been widespread and severe. High tree mortality due to bark beetles affects the fundamental ecosystem processes of primary production and decomposition that largely determine carbon balance (Kurz et al. 2008, Pfeifer et al. 2011, Hicke et al. 2012). Forest managers need accurate data on beetle-induced tree...

  10. TrOn: an anatomical ontology for the beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Jürgen Dönitz

    Full Text Available In a morphological ontology the expert's knowledge is represented in terms, which describe morphological structures and how these structures relate to each other. With the assistance of ontologies this expert knowledge is made processable by machines, through a formal and standardized representation of terms and their relations to each other. The red flour beetle Tribolium castaneum, a representative of the most species rich animal taxon on earth (the Coleoptera, is an emerging model organism for development, evolution, physiology, and pest control. In order to foster Tribolium research, we have initiated the Tribolium Ontology (TrOn, which describes the morphology of the red flour beetle. The content of this ontology comprises so far most external morphological structures as well as some internal ones. All modeled structures are consistently annotated for the developmental stages larva, pupa and adult. In TrOn all terms are grouped into three categories: Generic terms represent morphological structures, which are independent of a developmental stage. In contrast, downstream of such terms are concrete terms which stand for a dissectible structure of a beetle at a specific life stage. Finally, there are mixed terms describing structures that are only found at one developmental stage. These terms combine the characteristics of generic and concrete terms with features of both. These annotation principles take into account the changing morphology of the beetle during development and provide generic terms to be used in applications or for cross linking with other ontologies and data resources. We use the ontology for implementing an intuitive search function at the electronic iBeetle-Base, which stores morphological defects found in a genome wide RNA interference (RNAi screen. The ontology is available for download at http://ibeetle-base.uni-goettingen.de.

  11. TrOn: an anatomical ontology for the beetle Tribolium castaneum.

    Science.gov (United States)

    Dönitz, Jürgen; Grossmann, Daniela; Schild, Inga; Schmitt-Engel, Christian; Bradler, Sven; Prpic, Nikola-Michael; Bucher, Gregor

    2013-01-01

    In a morphological ontology the expert's knowledge is represented in terms, which describe morphological structures and how these structures relate to each other. With the assistance of ontologies this expert knowledge is made processable by machines, through a formal and standardized representation of terms and their relations to each other. The red flour beetle Tribolium castaneum, a representative of the most species rich animal taxon on earth (the Coleoptera), is an emerging model organism for development, evolution, physiology, and pest control. In order to foster Tribolium research, we have initiated the Tribolium Ontology (TrOn), which describes the morphology of the red flour beetle. The content of this ontology comprises so far most external morphological structures as well as some internal ones. All modeled structures are consistently annotated for the developmental stages larva, pupa and adult. In TrOn all terms are grouped into three categories: Generic terms represent morphological structures, which are independent of a developmental stage. In contrast, downstream of such terms are concrete terms which stand for a dissectible structure of a beetle at a specific life stage. Finally, there are mixed terms describing structures that are only found at one developmental stage. These terms combine the characteristics of generic and concrete terms with features of both. These annotation principles take into account the changing morphology of the beetle during development and provide generic terms to be used in applications or for cross linking with other ontologies and data resources. We use the ontology for implementing an intuitive search function at the electronic iBeetle-Base, which stores morphological defects found in a genome wide RNA interference (RNAi) screen. The ontology is available for download at http://ibeetle-base.uni-goettingen.de.

  12. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  13. Metal cycling within mountain pine beetle impacted watersheds of Keystone Gulch, Colorado

    Science.gov (United States)

    Heil, E. M.; Navarre-Sitchler, A.; Wanty, R. B.

    2016-12-01

    Metal cycling in mountain watersheds may be altered due to rapid landscape changes. Previous studies have examined the impact of deforestation and wildfires, on the fate and transport of metals in watersheds. However, we have only begun to understand changes in metal cycling in watersheds impacted by the mountain pine beetle. Warming climates and extended droughts have enabled pine beetles to impact larger areas. In these areas tree death occurs an average of three years after the initial infestation. In this short period of time the trees stop transpiring, defoliate, and die. The rapid deposition of pine needles to the forest floor, and subsequent decomposition of the needles, increases organic carbon (OC) availability and release metals that are stored in the impacted watersheds. Consequently, both OC and metal fluxes into and through the beetle-infested watersheds may be larger than those in non-infested watersheds. Four watersheds along Keystone Gulch Rd., located in Keystone, CO, were chosen for soil, water, and needle sampling because of their similar bedrock, drainage area, tree density and type, aspect, and their varying degree of pine beetle infestation. Sequential extractions using simulated rainwater, MgCl2, and pyrophosphate (representing soil pore water, exchangeable fraction, and organically bound metals) were performed on the Keystone Gulch soil samples to develop a better understanding of the distribution of metals in soils. Samples were classified by degree of beetle impact within and between the watersheds. The most obvious differences in the soil extractions between the four watersheds were observed for aluminum and iron and to a slightly lesser extent copper and zinc. In general, aluminum, iron, and zinc concentrations were higher while copper concentrations were lower in soils from less beetle-impacted watersheds. Metal concentrations in stream waters will be evaluated in the context of metal mobility through and out of the watershed.

  14. Partnerships Between Ambrosia Beetles and Fungi: Lineage-Specific Promiscuity Among Vectors of the Laurel Wilt Pathogen, Raffaelea lauricola.

    Science.gov (United States)

    Saucedo-Carabez, J R; Ploetz, Randy C; Konkol, J L; Carrillo, D; Gazis, R

    2018-04-20

    Nutritional mutualisms that ambrosia beetles have with fungi are poorly understood. Although these interactions were initially thought to be specific associations with a primary symbiont, there is increasing evidence that some of these fungi are associated with, and move among, multiple beetle partners. We examined culturable fungi recovered from mycangia of ambrosia beetles associated with trees of Persea humilis (silk bay, one site) and P. americana (avocado, six commercial orchards) that were affected by laurel wilt, an invasive disease caused by a symbiont, Raffaelea lauricola, of an Asian ambrosia beetle, Xyleborus glabratus. Fungi were isolated from 20 adult females of X. glabratus from silk bay and 70 each of Xyleborus affinis, Xyleborus bispinatus, Xyleborus volvulus, Xyleborinus saxesenii, and Xylosandrus crassiusculus from avocado. With partial sequences of ribosomal (LSU and SSU) and nuclear (β-tubulin) genes, one to several operational taxonomic units (OTUs) of fungi were identified in assayed individuals. Distinct populations of fungi were recovered from each of the examined beetle species. Raffaelea lauricola was present in all beetles except X. saxesenii and X. crassiusculus, and Raffaelea spp. predominated in Xyleborus spp. Raffaelea arxii, R. subalba, and R. subfusca were present in more than a single species of Xyleborus, and R. arxii was the most abundant symbiont in both X. affinis and X. volvulus. Raffaelea aguacate was detected for the first time in an ambrosia beetle (X. bispinatus). Yeasts (Ascomycota, Saccharomycotina) were found consistently in the mycangia of the examined beetles, and distinct, putatively co-adapted populations of these fungi were associated with each beetle species. Greater understandings are needed for how mycangia in ambrosia beetles interact with fungi, including yeasts which play currently underresearched roles in these insects.

  15. Balanced intake of protein and carbohydrate maximizes lifetime reproductive success in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Rho, Myung Suk; Lee, Kwang Pum

    2016-01-01

    Recent developments in insect gerontological and nutritional research have suggested that the dietary protein:carbohydrate (P:C) balance is a critical determinant of lifespan and reproduction in many insects. However, most studies investigating this important role of dietary P:C balance have been conducted using dipteran and orthopteran species. In this study, we used the mealworm beetles, Tenebrio molitor L. (Coleoptera: Tenebrionidae), to test the effects of dietary P:C balance on lifespan and reproduction. Regardless of their reproductive status, both male and female beetles had the shortest lifespan at the protein-biased ratio of P:C 5:1. Mean lifespan was the longest at P:C 1:1 for males and at both P:C 1:1 and 1:5 for females. Mating significantly curtailed the lifespan of both males and females, indicating the survival cost of mating. Age-specific egg laying was significantly higher at P:C 1:1 than at the two imbalanced P:C ratios (1:5 or 5:1) at any given age throughout their lives, resulting in the highest lifetime reproductive success at P:C 1:1. When given a choice, beetles actively regulated their intake of protein and carbohydrate to a slightly carbohydrate-biased ratio (P:C 1:1.54-1:1.64 for males and P:C 1:1.3-1:1.36 for females). The self-selected P:C ratio was significantly higher for females than males, reflecting a higher protein requirement for egg production. Collectively, our results add to a growing body of evidence suggesting the key role played by dietary macronutrient balance in shaping lifespan and reproduction in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution.

    Science.gov (United States)

    Stone, David; Jepson, Paul; Laskowski, Ryszard

    2002-05-01

    Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, Pground beetles in association with metal body burdens.

  17. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    Science.gov (United States)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  18. Tree physiology and bark beetles

    Science.gov (United States)

    Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood

    2015-01-01

    Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...

  19. The Pied Piper: A Parasitic Beetle's Melodies Modulate Ant Behaviours.

    Directory of Open Access Journals (Sweden)

    Andrea Di Giulio

    Full Text Available Ants use various communication channels to regulate their social organisation. The main channel that drives almost all the ants' activities and behaviours is the chemical one, but it is long acknowledged that the acoustic channel also plays an important role. However, very little is known regarding exploitation of the acoustical channel by myrmecophile parasites to infiltrate the ant society. Among social parasites, the ant nest beetles (Paussus are obligate myrmecophiles able to move throughout the colony at will and prey on the ants, surprisingly never eliciting aggression from the colonies. It has been recently postulated that stridulatory organs in Paussus might be evolved as an acoustic mechanism to interact with ants. Here, we survey the role of acoustic signals employed in the Paussus beetle-Pheidole ant system. Ants parasitised by Paussus beetles produce caste-specific stridulations. We found that Paussus can "speak" three different "languages", each similar to sounds produced by different ant castes (workers, soldiers, queen. Playback experiments were used to test how host ants respond to the sounds emitted by Paussus. Our data suggest that, by mimicking the stridulations of the queen, Paussus is able to dupe the workers of its host and to be treated as royalty. This is the first report of acoustic mimicry in a beetle parasite of ants.

  20. Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation.

    Science.gov (United States)

    el Jundi, Basil; Smolka, Jochen; Baird, Emily; Byrne, Marcus J; Dacke, Marie

    2014-07-01

    To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure their efficient escape from the dung pile, beetles rely on a 'celestial compass' to move along a straight path. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light-intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90 deg. The beetles then changed their bearing close to the expected 90 deg. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. When the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. Therefore, we analyzed the use of the celestial light-intensity gradient for orientation. Artificial rotation of the intensity pattern by 180 deg caused beetles to orient in the opposite direction. This light-intensity cue was also found to be subordinate to the sun and could play a role in disambiguating the polarization signal, especially at low sun elevations. © 2014. Published by The Company of Biologists Ltd.

  1. Trophic roles of scavenger beetles in relation to decomposition stages and seasons

    Directory of Open Access Journals (Sweden)

    Noelia I. Zanetti

    2015-06-01

    Full Text Available Carcasses represent a trophic and reproductive resource or shelter for arthropods, which are a representative component of the decomposition process. Four experiments, one per season, were conducted in a semi-rural area of Bahía Blanca, Argentina, to study the trophic roles of cadaveric beetles, evaluating the abundance, composition and dominance during all decomposition stages and seasons. Species of necrophagous, necrophilous and omnivorous habits were found. Abundance, composition and dominance of beetles in relation to their trophic roles changed according to seasons and decomposition stages. Guilds and patterns of succession were established in relation to those periods. Trophic roles could be an indicator of beetle associations with decomposition stages and seasons.

  2. Insecticidal and Repellent Properties of Subtropical Plant Extracts Against Pulse Beetle, Callosobruchus chinensis

    Directory of Open Access Journals (Sweden)

    H.T. AI Lawati

    2002-01-01

    Full Text Available Extracts of eight plants local to Oman, namely Qarat (Acacia nilotica, Mustafal (Annona squamosa, Shereesh (Azadirachta indica, Luban (Boswellia sacra, Kheshkhash (Crotolaria juncea, Zebrot (Jatropha dhofarica Yas, (Myrtus communis and Suwwad (Suaeda aegyptiaca were prepared by steeping shaded dried leaf/ seed powder of each plant in water and solvent (methanol or ethanol. The extracts were tested for their insecticidal and repellent properties against the pulse beetles, Callosobruchus chinensis. The extracts from the seeds of A. squamosa recorded l00% mortality of beetles within twenty and four hours of their exposure to methanol and ethanol extracts, respectively. The other extracts that caused high mortality were from A. nilotica, C. juncea, M. communis and S. aegzptiaca in methanol and B. sacra, J. dhofarica, S. aegptiaca and commercial neem in ethanol. Extracts of M. communis in methanol were highly repellent to the beetles compared to other extracts. Legume seeds treated with extracts of A. squamosa were not repellent, rather the beetles were attracted to them.

  3. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    Science.gov (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  4. The Role of the Beetle Hypocryphalus mangiferae (Coleoptera: Curculionidae) in the Spatiotemporal Dynamics of Mango Wilt.

    Science.gov (United States)

    Galdino, Tarcísio Visintin da Silva; Ferreira, Dalton de Oliveira; Santana Júnior, Paulo Antônio; Arcanjo, Lucas de Paulo; Queiroz, Elenir Aparecida; Sarmento, Renato Almeida; Picanço, Marcelo Coutinho

    2017-06-01

    The knowledge of the spatiotemporal dynamics of pathogens and their vectors is an important step in determining the pathogen dispersion pattern and the role of vectors in disease dynamics. However, in the case of mango wilt little is known about its spatiotemporal dynamics and the relationship of its vector [the beetle Hypocryphalus mangiferae (Stebbing 1914)] to these dynamics. The aim of this work was to determine the spatial-seasonal dynamic of H. mangiferae attacks and mango wilt in mango orchards and to verify the importance of H. mangiferae in the spatiotemporal dynamics of the disease. Two mango orchards were monitored during a period of 3 yr. The plants in these orchards were georeferenced and inspected monthly to quantify the number of plants attacked by beetles and the fungus. In these orchards, the percentage of mango trees attacked by beetles was always higher than the percentage infected by the fungus. The colonization of mango trees by beetles and the fungus occurred by colonization of trees both distant and proximal to previously attacked trees. The new plants attacked by the fungus emerged in places where the beetles had previously begun their attack. This phenomenon led to a large overlap in sites of beetle and fungal occurrence, indicating that establishment by the beetle was followed by establishment by the fungus. This information can be used by farmers to predict disease infection, and to control bark beetle infestation in mango orchards. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    Directory of Open Access Journals (Sweden)

    A. R. Berg

    2013-03-01

    Full Text Available Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect and increased emissions in trees under attack (attack effect. We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR Community Earth System Model (CESM to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response. Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia and 2008 (US. Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness

  6. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Science.gov (United States)

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  7. Diversity of beetle genes encoding novel plant cell wall degrading enzymes.

    Directory of Open Access Journals (Sweden)

    Yannick Pauchet

    Full Text Available Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.

  8. Convergent Reduction of Ovariole Number Associated with Subterranean Life in Beetles

    Science.gov (United States)

    Faille, Arnaud; Pluot-Sigwalt, Dominique

    2015-01-01

    Background Some species of obligate cavernicolous beetles are known to possess a unique feature—a contraction of the larval cycle. In contrast to many other subterranean beetles, life-cycle contraction in Trechini ground beetles (Carabidae) is correlated with a reduction in the number of eggs and a drastic reduction in the number of ovarioles. This remarkable peculiarity has only been reported for a small number of closely related species. Results We give a description of the female internal reproductive system for six species of Trechini, including five subterranean species, with a particular focus on the western Pyrenean radiation of Aphaenops, a group for which nothing is known regarding the early life stages. We redescribe the internal female genitalia of A. crypticola Linder. Study of the ovarioles allowed us to infer the postembryonic development of the larvae for each species examined. We then used a phylogenetic framework to recognize two independent reductions in the number of ovarioles in the Pyrenean lineage. We discuss the multiple convergent evolutions in ovariole number and the potential link between a reduction of ovariole number and troglobiomorphism in a phylogenetic context. Conclusions There is an extreme reduction in ovariole number and size within the species studied; the eggs produced by small ovarioles have a remarkably large size. A reduction to one ovariole has occurred independently at least twice in this subterranean group. A reduction in the number of ovarioles in ground beetles is one of the striking consequences of subterranean specialization and it is correlated with another remarkable adaptation of subterranean beetles, a reduction in the number of larval instars. PMID:26151557

  9. Convergent Reduction of Ovariole Number Associated with Subterranean Life in Beetles.

    Directory of Open Access Journals (Sweden)

    Arnaud Faille

    Full Text Available Some species of obligate cavernicolous beetles are known to possess a unique feature-a contraction of the larval cycle. In contrast to many other subterranean beetles, life-cycle contraction in Trechini ground beetles (Carabidae is correlated with a reduction in the number of eggs and a drastic reduction in the number of ovarioles. This remarkable peculiarity has only been reported for a small number of closely related species.We give a description of the female internal reproductive system for six species of Trechini, including five subterranean species, with a particular focus on the western Pyrenean radiation of Aphaenops, a group for which nothing is known regarding the early life stages. We redescribe the internal female genitalia of A. crypticola Linder. Study of the ovarioles allowed us to infer the postembryonic development of the larvae for each species examined. We then used a phylogenetic framework to recognize two independent reductions in the number of ovarioles in the Pyrenean lineage. We discuss the multiple convergent evolutions in ovariole number and the potential link between a reduction of ovariole number and troglobiomorphism in a phylogenetic context.There is an extreme reduction in ovariole number and size within the species studied; the eggs produced by small ovarioles have a remarkably large size. A reduction to one ovariole has occurred independently at least twice in this subterranean group. A reduction in the number of ovarioles in ground beetles is one of the striking consequences of subterranean specialization and it is correlated with another remarkable adaptation of subterranean beetles, a reduction in the number of larval instars.

  10. Elaborate horns in a giant rhinoceros beetle incur negligible aerodynamic costs.

    Science.gov (United States)

    McCullough, Erin L; Tobalske, Bret W

    2013-05-07

    Sexually selected ornaments and weapons are among nature's most extravagant morphologies. Both ornaments and weapons improve a male's reproductive success; yet, unlike ornaments that need only attract females, weapons must be robust and functional structures because they are frequently tested during male-male combat. Consequently, weapons are expected to be particularly costly to bear. Here, we tested the aerodynamic costs of horns in the giant rhinoceros beetle, Trypoxylus dichotomus. We predicted that the long, forked head horn would have three main effects on flight performance: increased body mass, an anterior shift in the centre of mass and increased body drag. We found that the horns were surprisingly lightweight, and therefore had a trivial effect on the male beetles' total mass and mass distribution. Furthermore, because beetles typically fly at slow speeds and high body angles, horns had little effect on total body drag. Together, the weight and the drag of horns increased the overall force required to fly by less than 3 per cent, even in the largest males. Because low-cost structures are expected to be highly evolutionarily labile, the fact that horns incur very minor flight costs may have permitted both the elaboration and diversification of rhinoceros beetle horns.

  11. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms.

    Science.gov (United States)

    Chakravarthy, A K; Chandrashekharaiah, M; Kandakoor, Subhash B; Nagaraj, D N

    2014-05-01

    Red palm weevil and Rhinoceros beetle are the major pests inflicting severe damage to coconut palms. Due to ineffectiveness of the current management practices to control the two important pests on coconut, a study was conducted to know the attractiveness of red palm weevil and rhinoceros beetle to aggregation pheromone. Olfactometer studies indicated that the aggregation pheromone of red palm weevil and rhinoceros beetle attracted significantly more number of weevils (13.4 females and 7.6 male weevils) and beetles (6.5 male and 12.3 female beetles), respectively than control. Similarly, field studies found that both 750 and 1000 mg pheromone dosage lures of red palm weevil and rhinoceros beetle trapped significantly higher numbers of weevils (695.80 and 789 weevils, respectively) and beetles (98 and 108 beetles, respectively) in traps (P rhinoceros beetle population got trapped. Observations indicated activity of red palm weevil throughout the year and of rhinoceros beetle from September to March around Bangalore, South India. Pheromone traps for red palm weevil can be placed in fields from June to August and October to December and September to February for rhinoceros beetle. Population reductions of the two coleopteran pests by pheromone traps are compatible with mechanical and cultural management tools with cumulative effects.

  12. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    -aided video tracking, whereupon the whole body AChE activity was measured in the individual beetle. AChE inhibition was strongly correlated with dimethoate dose in both sexes. Alterations in the locomotor behavior were directly correlated with AChE inhibition in male beetles, which responded by reducing...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer...... the time in locomotion, average velocity, and path length and by increasing the turning rate and frequency of stops. Females responded similarly at the two highest doses, whereas their locomotor behavior was not significantly different from the control group at the lowest dimethoate dose, suggesting a sex...

  13. Bio-Inspired Design and Kinematic Analysis of Dung Beetle-Like Legs

    DEFF Research Database (Denmark)

    Aditya, Sai Krishna Venkata; Ignasov, Jevgeni; Filonenko, Konstantin

    2017-01-01

    The African dung beetle Scarabaeus galenus can use its front legs to walk and manipulate or form a dung ball. The interesting multifunctional legs have not been fully investigated or even used as inspiration for robot leg design. Thus, in this paper, we present the development of real dung beetle......-like front legs based on biological investigation. As a result, each leg consists of three main segments which were built using 3D printing. The segments were combined with in total four active DOFs in order to mimic locomotion and object manipulation of the beetle. Kinematics analysis of the leg was also...... performed to identify its workspace as well as to design its trajectory. To this end, the study contributes not only novel multifunctional robotic legs but also the methodology of the bio-inspired leg design....

  14. A System for Harvesting Eggs from the Pink-Spotted Lady Beetle

    Directory of Open Access Journals (Sweden)

    Margaret L. Allen

    2012-01-01

    Full Text Available We describe a system for harvesting eggs from a predatory insect, the pink-spotted lady beetle, Coleomegilla maculata De Geer (Coleoptera: Coccinellidae. Adult beetles placed in square, transparent containers that included oviposition substrates hanging from the top of the cage deposited eggs on the materials provided. We harvested eggs from these substrates in quantities sufficient for either destructive sampling or synchronous development of larvae. We evaluated effects of crowding inside cages; effects of a chemical attractant on oviposition behavior; egg cannibalism. Females preferred a textured surface rather than a smooth, waxy one for laying eggs. Crowding inhibited oviposition of beetles. Presence of a chemical attractant (methyl salicylate did not significantly improve oviposition. This paper describes an inexpensive system for harvesting eggs from C. maculata. Refinement of this system should improve oviposition and reduce cannibalism.

  15. Comparison of chemical attractants against dung beetles and application for rangeland and animal health

    Science.gov (United States)

    Dung beetles (Coleoptera: Scarabaeidae) play a major role in nutrient cycling, soil aeration, and biological control of pests and parasites that breed in manure. Habitat fragmentation, pesticide usage, and conventional agricultural practices threaten dung beetle diversity, and their conservation is ...

  16. Quantitative separation of bone and muscle radioactivity in small rodents using Dermestid beetles

    International Nuclear Information System (INIS)

    Walburg, H.E.; Eisele, G.R.; Mraz, F.R.

    1979-01-01

    The use of Dermestid beetles, which feed on dead animals, to separate muscle and bone radioactivity in small rodent carcasses was studied. Eviscerated carcasses of mice injected with 1μCi 95 Nb 48hr before killing were placed in jars with adult beetle larvae. Within 3 weeks the skeletons were completely free of muscle. Losses of radioactivity were acceptably small. The actual muscle activity was measured by counting activity in beetles, larvae and excreta, and compared with estimated values. Dermestid digestion has proved to be effective for small carcasses, where size precludes other methods of separation, and is in current use in studies of tissue localization of radionuclides. (author)

  17. Contrasting needs of grassland dwellers: habitat preferences of endangered steppe beetles (Coleoptera)

    Czech Academy of Sciences Publication Activity Database

    Čížek, Lukáš; Hauck, David; Pokluda, Pavel

    2012-01-01

    Roč. 16, č. 2 (2012), s. 281-293 ISSN 1366-638X R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50070508 Keywords : blister beetle * carpathian basin * darkling beetle Subject RIV: EH - Ecology, Behaviour Impact factor: 1.801, year: 2012 http://www.springerlink.com/content/h7523m513164v7l3/

  18. Feeding stimulants for the colorado beetle

    NARCIS (Netherlands)

    Ritter, F.J.

    1967-01-01

    Potato leaf extract was fractionated and the fractions obtained were tested for their activity as feeding stimulants for Colorado beetle larvae. Also leaves and leaf extracts of different kinds of plants, as well as a number of known pure compounds and mixtures of them, were tested for this

  19. Lack of nucleotide variability in a beetle pest with extreme inbreeding

    OpenAIRE

    Andreev, D.; Breilid, H.; Kirkendall, L.; Brun, Luc-Olivier; French-Constant, R.H.

    1998-01-01

    The coffee berry borer beetle #Hypothenemus hampei$ (Ferrari) (#Curculionidae$ : #Scolytinae$) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an usual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occuring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation i...

  20. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Science.gov (United States)

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  1. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  2. Reflective Polyethylene Mulch Reduces Mexican Bean Beetle (Coleoptera: Coccinellidae) Densities and Damage in Snap Beans.

    Science.gov (United States)

    Nottingham, L B; Kuhar, T P

    2016-08-01

    Mexican bean beetle, Epilachna varivestis Mulsant, is a serious pest of snap beans, Phaseolus vulgaris L., in the eastern United States. These beetles are intolerant to direct sunlight, explaining why individuals are typically found on the undersides of leaves and in the lower portion of the plant canopy. We hypothesized that snap beans grown on reflective, agricultural polyethylene (plastic mulch) would have fewer Mexican bean beetles and less injury than those grown on black plastic or bare soil. In 2014 and 2015, beans were seeded into beds of metallized, white, and black plastic, and bare soil, in field plots near Blacksburg, VA. Mexican bean beetle density, feeding injury, predatory arthropods, and snap bean yield were sampled. Reflected light intensity, temperature, and humidity were monitored using data loggers. Pyranometer readings showed that reflected light intensity was highest over metallized plastic and second highest over white plastic; black plastic and bare soil were similarly low. Temperature and humidity were unaffected by treatments. Significant reductions in Mexican bean beetle densities and feeding injury were observed in both metallized and white plastic plots compared to black plastic and bare soil, with metallized plastic having the fewest Mexican bean beetle life stages and injury. Predatory arthropod densities were not reduced by reflective plastic. Metallized plots produced the highest yields, followed by white. The results of this study suggest that growing snap beans on reflective plastic mulch can suppress the incidence and damage of Mexican bean beetle, and increase yield in snap beans. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Electrophysiological and olfactometer responses of two histerid predators to three pine bark beetle pheromones

    Science.gov (United States)

    William P. Shepherd; Brian T. Sullivan; Richard A. Goyer; Kier D. Klepzig

    2005-01-01

    We measured electrophysiological responses in the antennae of two predaceous hister beetles, Platysoma parallelum and Plegaderus transversus, exposes to racemic mixtures of primary aggregation pheromones of scolytid bark beetle prey, ipsenol, ipsdienol, and frontalin. No significant differences were found for either histerid...

  4. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA

    Science.gov (United States)

    Jose F. Negron; Joel D. McMillin; John A. Anhold; Dave Coulson

    2009-01-01

    Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine...

  5. Solar radiation as a factor influencing the raid spruce bark beetle (Ips typographus) during spring swarming

    International Nuclear Information System (INIS)

    Mezei, P.

    2011-01-01

    Monitoring of spruce bark beetle in nature reserve Fabova hola Mountain in the Slovenske Rudohorie Mountains at an altitude of 1.100-1.440 meters was conducted from 2006 to 2009. Slovenske Rudohorie Mountains was affected by two windstorms (2004 and 2007) followed by a gradation of bark beetles. This article has examined the dependence between amount of solar radiation and trapping of spruce bark beetle into pheromone traps.

  6. Mountain pine beetles and emerging issues in the management of woodland caribou in Westcentral British Columbia

    Directory of Open Access Journals (Sweden)

    Deborah Cichowski

    2005-05-01

    Full Text Available The Tweedsmuir—Entiako caribou (Rangifer tarandus caribou herd summers in mountainous terrain in the North Tweedsmuir Park area and winters mainly in low elevation forests in the Entiako area of Westcentral British Columbia. During winter, caribou select mature lodgepole pine (Pinus contorta forests on poor sites and forage primarily by cratering through snow to obtain terrestrial lichens. These forests are subject to frequent large-scale natural disturbance by fire and forest insects. Fire suppression has been effective in reducing large-scale fires in the Entiako area for the last 40—50 years, resulting in a landscape consisting primarily of older lodgepole pine forests, which are susceptible to mountain pine beetle (Dendroctonus ponderosae attack. In 1994, mountain pine beetles were detected in northern Tweedsmuir Park and adjacent managed forests. To date, mountain pine beetles have attacked several hundred thousand hectares of caribou summer and winter range in the vicinity of Tweedsmuir Park, and Entiako Park and Protected Area. Because an attack of this scale is unprecedented on woodland caribou ranges, there is no information available on the effects of mountain pine beetles on caribou movements, habitat use or terrestrial forage lichen abundance. Implications of the mountain pine beetle epidemic to the Tweedsmuir—Entiako woodland caribou population include effects on terrestrial lichen abundance, effects on caribou movement (reduced snow interception, blowdown, and increased forest harvesting outside protected areas for mountain pine beetle salvage. In 2001 we initiated a study to investigate the effects of mountain pine beetles and forest harvesting on terrestrial caribou forage lichens. Preliminary results suggest that the abundance of Cladina spp. has decreased with a corresponding increase in kinnikinnick (Arctostaphylos uva-ursi and other herbaceous plants. Additional studies are required to determine caribou movement and

  7. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  8. Using malaise traps to sample ground beetles (Coleoptera. Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Hanula, James L. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Horn, Scott [USDA Forest Service, Savannah River, New Ellenton, SC (United States)

    2012-04-02

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  9. TROPHIC RELATIONS OF LADY BEETLES (COLEOPTERA, COCCINELLIDAE OF THE URALS

    Directory of Open Access Journals (Sweden)

    Z. I. Tyumaseva

    2016-05-01

    Full Text Available The article contains the study of the trophic relations of the lady beetles living in the Urals. The study allocates three ecological groups depending on the peculiarities of the beetles and larvae nutrition: phytophages, micetophages, and entomophages-predators. We have revealed 66 species of lady birds-predators and two species-phytophages: Subcoccinella vigintiquatuorpunctata (Linnaeus, 1758 and Bulaea lichatschovii (Hummel, 1827. In the group of obligatory micetophages in the Urals we registered the representatives of the tribe Halyziini, it is Halyzia sedecimguttata (Linnaeus, 1758 and Psyllobora vigintiduopunctata (Linnaeus, 1758.

  10. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling

    Science.gov (United States)

    Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron

    2013-01-01

    The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...

  11. Ecology and behavior of ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Lövei, G L; Sunderland, K D

    1996-01-01

    The ground beetles from the speciose beetle family Carabidae and, since their emergence in the Tertiary, have populated all habitats except deserts. Our knowledge about carabids is biased toward species living in north-temperate regions. Most carabids are predatory, consume a wide range of food types, and experience food shortages in the field. Feeding on both plant and animal material and scavenging are probably more significant than currently acknowledged. The most important mortality sources are abiotic factors and predators; pathogens and parasites can be important for some developmental stages. Although competition among larvae and adults does occur, the importance of competition as a community organization is not proven. Carabids are abundant in agricultural fields all over the world and may be important natural enemies of agricultural pests.

  12. Investigation of the enzyme system of detoxification of insecticides in the Colorado beetle

    International Nuclear Information System (INIS)

    Leonova, I.N.; Nedel'kina, S.V.; Salganik, R.I.

    1986-01-01

    The activity of three enzymes systems of xenobiotic metabolism - cytochrome P-450-dependent monooxygenases, nonspecific esterases, and glutathione S-transferases - was investigated at various stages of the development of the Colorado beetle Leptinotarsa decemlineata. Substantial sex and ontogenetic differences in the content of cytochrome P-450, the position of the maxima of the CO-differential spectra of its reduced form, and the substrate specificity of cytochrome P-450 were demonstrated. An increase in the activity of nonspecific esterases with increasing age of Colorado beetle larvae was observed. The insecticide 1-naphtholenol methylcarbamate, which is metabolized by the system of cytochrome P-450-dependent monooxygenases, is more toxic at the larval stage of development in comparison with the imaginal stage, which is in good agreement with the activity of this system at different stages of development. The inhibitor of microsomal monooxygenases piperonyl butoxide more than doubles the toxicity of the insecticide in the Colorado beetle imago. The data presented are evidence of a different contribution of the systems of detoxification to the sensitivity of the Colorado beetle to insecticides at different stages of metamorphosis

  13. Uso da tela excluidora de rainha no alvado e seus efeitos na atividade de coleta e no desenvolvimento de colônias de Apis mellifera Hoarding activity and hive development of Apis mellifera with queen excluder at the entrance

    Directory of Open Access Journals (Sweden)

    Leoman Almeida Couto

    1998-10-01

    Full Text Available Este trabalho teve o objetivo de avaliar os efeitos da tela excluidora de rainhas colocada no alvado sobre a atividade de coleta das operárias de Apis mellifera, peso da carga de pólen transportada e desenvolvimento das colônias. Foram utilizadas seis colônias, três com tela e três sem tela. Em média, 51,4%, 37,0% e 11,6% das operárias que entravam nas colméias transportavam pólen nas corbículas das 8-11, 11-14 e 14-17 horas, respectivamente. Somente 0,0175% das operárias perderam sua carga de pólen ao passar pela tela excluidora, o que representou 0,06% do total de pólen coletado/dia/colméia. A presença da tela excluidora reduziu em 15,2% e 19,4% a entrada das operárias com e sem pólen, respectivamente. Em média, o peso da carga de pólen representou 13,88 ± 8,4% do peso corporal da operária que a transportava. A tela excluidora no alvado reduziu a atividade de coleta de operárias.The aim of this article was to investigate the effect of the use of queen excluder at the hive entrance on Apis mellifera hoarding activity, pollen load and hive development in six hives, three of which provided with queen excluders. An average of 51.4%, 37.0% and 11.6% of the Apis mellifera workers which entered the hives from 8 to 11 a.m., 11 to 2 p.m. and 2 to 5 p.m., respectively, were pollen-loaded. Only 0.0175% of them lost their pollen load when passing the queen excluder, which amounted to 0.06% of total pollen collected/day/hive. The queen excluder caused the reduction of 15.2% to the entrance of pollen-loaded bees and 19.4% to the entrance of non-pollen-loaded bees. On average, the weight of the pollen load represented 13.88% ± 8.4% of the bee body weight. The results also indicated that the hoarding activity was reduced by the queen excluder.

  14. Susceptibilidade do besouro rola-bosta africano a reguladores de crescimento de insetos Susceptibility of African dung beetle to insect growth regulators

    Directory of Open Access Journals (Sweden)

    L.N. Domingues

    2009-10-01

    Full Text Available Verificou-se a ação dos reguladores de crescimento de insetos (IGR, diflubenzuron e methoprene, sobre o besouro rola-bosta africano, Digitonthophagus gazella (Fabricius, um inimigo natural da mosca-dos-chifres, Haematobia irritans irritans (Linnaeus. Casais de besouros foram colocados em baldes contendo terra úmida e alimentados com fezes bovinas contendo 1, 0,5 ou 0,2ppm de diflubenzuron e 0,2ppm de methoprene. Os insetos e sua prole foram recuperados com o auxílio de armadilhas pitfall. Diflubenzuron e methoprene não afetaram a sobrevivência dos adultos inicialmente expostos, mas interferiram na produção de descendentes. Diflubenzuron, nas concentrações de 1 e 0,5ppm, também afetou a duração do ciclo de vida dos besouros. Nenhum dos IGRs alterou a razão sexual dos descendentes obtidos. As concentrações testadas de diflubenzuron mostraram-se moderadamente nocivas ao besouro enquanto methoprene a 0,2ppm mostrou ser pouco nocivo, segundo os critérios da International Organization for Biological Control.The effects of insect growth regulators (IGR, diflubenzuron and methoprene, on African dung beetle, Digitonthophagus gazella (Fabricius, a natural enemy of the horn fly, Haematobia irritans irritans (Linnaeus, was studied. Beetles were placed in buckets partially filled with humid soil and were fed bovine feces containing 1, 0.5, or 0.2ppm diflubenzuron and 0.2ppm methoprene. Insects and their progenies were recovered by pitfall traps. Diflubenzuron and methoprene did not affect the survival of the adults but reduced their progenies. Diflubenzuron 1 and 0.5ppm also affected the life cicle of the beetles. None of the IGR modified the gender ratio of the progenies. According to the IOBC criteria, diflubenzuron tested concentrations showed to be moderately harmful to the beetles, whereas methoprene 0.2ppm was slightly harmful.

  15. The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia.

    Science.gov (United States)

    Ramle, M; Wahid, M B; Norman, K; Glare, T R; Jackson, T A

    2005-05-01

    The rhinoceros beetle, Oryctes rhinoceros, has emerged as a serious pest of oil palm since the prohibition of burning as a method for maintaining estate hygiene in the 1990s. The abundance of beetles is surprising given that the Malay peninsula was the site of first discovery of the Oryctes virus, which has been used to effect good as a biological control agent in other regions. A survey of adult beetles was carried out throughout Malaysia using pheromone traps. Captured beetles were examined for presence of virus using both visual/microscopic examination and PCR detection methods. The survey indicated that Oryctes virus was common in Malaysia among the adult beetles. Viral DNA analysis was carried out after restriction with HindIII enzyme and indicated at least three distinct viral genotypes. Bioassays were used to compare the viral strains and demonstrate that one strain (type B) is the most virulent against both larvae and adults of the beetle. Virus type B has been cultured and released into healthy populations where another strain (type A) forms the natural background. Capture and examination of beetles from the release site and surrounding area has shown that the spread and persistence of the applied virus strain is accompanied by a reduction in palm frond damage.

  16. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Science.gov (United States)

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  17. Approaches to control diseases vectored by ambrosia beetles in avocado and other American Lauraceae

    Science.gov (United States)

    Invasive ambrosia beetles and the plant pathogenic fungi they vector represent a significant challenge to North American agriculture, native and landscape trees. Ambrosia beetles encompass a range of insect species and they vector a diverse set of plant pathogenic fungi. Our lab has taken several bi...

  18. Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles

    Science.gov (United States)

    J.C. Nod; F.L. Hastings; A.S. Jones

    1990-01-01

    An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...

  19. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  20. Effects of hydrogen fluoride fumigation of bean plants on the growth, development, and reproduction of the Mexican bean beetle

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, L H; McCune, D C; Mancini, J F; van Leuken, P

    1973-01-01

    The growth and behavior of Mexican bean beetle populations on control and hydrogen fluoride-fumigated bean plants (P. vulgaris L.) were investigated to assess the effects of such fumigation on beetle growth, development and reproduction. Beetles that were cultured on HF-fumigated plants were generally lighter than controls, although the occurrence and magnitude of this effect depended upon stage of development, age, and sex of the adult beetle and the number of generations of culture on HF-fumigated plants. A consistently decreased mass of larvae cultured on HF-fumigated tissue pupated and enclosed three to six days later than controls, and the adults commenced reproductive activity with the same lag in time. Beetles cultured on the fumigated plants also contained greater amounts of fluoride than the controls, and the fluoride content of females was greater than that of males on both HF-fumigated and control plants. Beetles raised on fumigated plants laid fewer egg masses and fewer eggs per mass, although when the first generation was repeated at a later date there was no significant effect. Feeding activity was reduced in both larval and adult stages in beetles cultured on the fumigated plants, and adults showed less flight activity than controls. A difference in color of the elytra was also noted; beetles on HF-fumigated plants were paler than controls.

  1. Interaction of insecticide and media moisture on ambrosia beetle (Coleoptera: Curculionidae) attacks on ornamental trees

    Science.gov (United States)

    Exotic ambrosia beetles, particularly Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford), are among the most economically damaging pests of ornamental trees in nurseries. Growers have had few tactics besides insecticide applications to reduce ambrosia beetle attacks but rec...

  2. La chaux et la diatomite comme moyens de lutte alternatifs contre Aethina tumida Murray (Coleoptera: Nitidulidae)

    OpenAIRE

    Buchholz , Sven; Merkel , Katharina; Spiewok , Sebastian; Pettis , Jeff S.; Duncan , Michael; Spooner-Hart , Robert; Ulrichs , Christian; RITTER , Wolfgang; Neumann , P.

    2009-01-01

    International audience; Aiming at alternative small hive beetle control, slaked lime, powdered limestone and diatomaceous earth (Fossil Shield® FS 95, FS 90.0 and FS 90.0s) were evaluated for their effects on pupation and adult emergence in the laboratory. Limestone, FS 90.0 and FS 95 showed no significant effect. Slaked lime in autoclaved soil prevented pupation, but was lethal only in high dosages of 10 and 15 g per 100 g soil. In non-autoclaved soil, low slaked lime dosages of 0.5 and 5 g ...

  3. First occurrence of western corn root worm beetles in the federal states Hesse and Rhineland-Palatinate (Germany, 2011

    Directory of Open Access Journals (Sweden)

    Dicke, Dominik

    2014-02-01

    Full Text Available In 2011, western corn root worm beetles were detected in the federal states Hesse (Groß-Gerau and Rhineland-Palatinate (Bodenheim for the first time. Control measures based on commission decision 2003/766/EG (Byrne, 2003 were conducted after detection in PAL-traps. Focus and safety zones were established. In Hesse, both focus and safety zones were treated with the insecticide Biscaya, due to the high number of 50 beetles which were detected in the PAL-traps. Since in Rhineland-Palatinate, only one beetle had been captured, only the focus zone was treated with the insecticide. After insecticide treatment, new PAL-traps were arranged like a close grid over the infested areas in both federal states. In each maize field in the focus- and safety zone further traps were placed and checked weekly until September 30th by supporting staff. Until the end of the monitoring in 2011 (September 30th further beetles were detected in the south of the area (district of Groß-Gerau, Hesse, were the first infestation had been discovered. However, in Rhineland-Palatinate no further beetles were detected that year. By the end of the monitoring 354 beetles in Hesse and one beetle in Rhineland-Palatinate had been captured in total. Subsequently the demarked zones in Hesse were extended. Taking into account the local circumstances, the new focus zone was delimited to include all the areas where beetles had been detected as well as the surrounding maize fields. In the focus zones the cultivation of maize was forbidden for the consecutive two years and a crop rotation with at least 50 percent maize was established in the safety zones. In 2012 no further beetles were captured in the infested region.

  4. A survey of beetles (Coleoptera from the tundra surrounding the Nunalleq archaeological site, Quinhagak, southwestern Alaska

    Directory of Open Access Journals (Sweden)

    Véronique Forbes

    2018-03-01

    Full Text Available This paper presents the results of a survey of beetles conducted in the vicinity of the archaeological site of Nunalleq, a pre-contact (16th-17th century AD indigenous forager settlement located near the modern Yup’ik village of Quinhagak, in the Yukon-Kuskokwim delta, southwestern Alaska. Records and habitat data are reported for 74 beetle taxa collected in tundra, riparian, aquatic and anthropogenic environments from a region of Alaska that has been poorly studied by entomologists. This includes the first mainland Alaskan record for the byrrhid Simplocaria metallica (Sturm. Beyond improving our knowledge of the local beetle fauna’s diversity and ecology, this survey provides the basis for comparisons between modern and sub-fossil beetle assemblages from Nunalleq and Quinhagak.

  5. Biannual monitoring of pyrethroid and neonicotinoid susceptibility in Danish pollen beetle (Meligethes aeneus F.) populations

    DEFF Research Database (Denmark)

    Kaiser, Caroline; Kristensen, Michael; Jensen, Karl-Martin Vagn

    2015-01-01

    ) were used. Pollen beetle populations were collected from 47 locations of Denmark with the help of the consultants and the farmers of the various regions in 2014. Further six populations were tested from Sweden and one from Germany. In the following year 2015, the monitoring continued to find out......The pollen beetle (Meligethes aeneus F.) is a serious pest in the northern countries in oilseed rape. To determine the present level of pyrethroid and neonicotinoid susceptibility of Danish pollen beetle populations, standardized methods recommended by IRAC (Insecticide Resistance Action Committee......, if the resistance level which was determined in 2014 was stable in selected regions. Therefore pollen beetle populations from 14 locations in Denmark and five locations in Germany have been tested. For all tests the standardised methods for pyrethroids, the Adult-vial-test No. 11 and the Adult-vials-test No. 21...

  6. A dynamical model for bark beetle outbreaks

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Lewis, M.; Bentz, B. J.; Bewick, S.; Lenhart, S. M.; Liebhold, A.

    2016-01-01

    Roč. 407, OCT 21 (2016), s. 25-37 ISSN 0022-5193 Institutional support: RVO:60077344 Keywords : bistability * bark beetle * Dendroctonus ponderosae Subject RIV: EH - Ecology, Behaviour Impact factor: 2.113, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022519316301928

  7. Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus.

    Science.gov (United States)

    Harrington, T C; Fraedrich, S W

    2010-10-01

    The laurel wilt pathogen, Raffaelea lauricola, is a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia and was believed to have brought R. lauricola with it to the southeastern United States. Individual X. glabratus beetles from six populations in South Carolina and Georgia were individually macerated in glass tissue grinders and serially diluted to quantify the CFU of fungal symbionts. Six species of Raffaelea were isolated, with up to four species from an individual adult beetle. The Raffaelea spp. were apparently within the protected, paired, mandibular mycangia because they were as numerous in heads as in whole beetles, and surface-sterilized heads or whole bodies yielded as many or more CFU as did nonsterilized heads or whole beetles. R. lauricola was isolated from 40 of the 41 beetles sampled, and it was isolated in the highest numbers, up to 30,000 CFU/beetle. Depending on the population sampled, R. subalba or R. ellipticospora was the next most frequently isolated species. R. arxii, R. fusca, and R. subfusca were only occasionally isolated. The laurel wilt pathogen apparently grows in a yeast phase within the mycangia in competition with other Raffaelea spp.

  8. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Directory of Open Access Journals (Sweden)

    Renata Calixto Campos

    Full Text Available Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h, a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  9. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Science.gov (United States)

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  10. Heterorhabditis sp. (Nematoda: Heterorhabditidae): A Nematode Parasite Isolated from the Banded Cucumber Beetle Diabrotica balteata

    Science.gov (United States)

    Creighton, C. S.; Fassuliotis, G.

    1985-01-01

    A nematode identified as Heterorhabditis sp. was discovered in June 1982 in larval cadavers of the banded cucumber beetle, Diabrotica balteata, in soil on wooded land. Effective beetle control (over 95%) was obtained when larvae were exposed to potted soil containing infective stage nematode juveniles or infected larval cadavers. The nematode was propagated in vivo on larvae of D. balteata, Diaphania nitidalis (the pickleworm), and Galleria mellonella (the greater wax moth). This Heterorhabditis sp. has promising potential as a biocontrol agent for the banded cucumber beetle. PMID:19294074

  11. Niche separation of pollen beetle parasitoids

    Directory of Open Access Journals (Sweden)

    Josef eBerger

    2015-05-01

    Full Text Available Species with similar resource requirements are commonly assumed to competitively exclude each other, unless they differentiate their ecological niches. Hence, parasitoid wasps that use the same host species need to find some way to avoid competition. The aim of this study was to identify the role of volatile cues from oilseed rape plants and the larval host in niche separation between three coexisting parasitoid species. We examined how Phradis interstitialis, Phradis morionellus and Tersilochus heterocerus, sympatric parasitoids of Brassicogethes aeneus, differ in their abundances, distribution on buds and flowers, and oviposition behavior in the field. Furthermore, we tested their preferences for odours from uninfested and infested oilseed rape plants in the bud and flowering stage, and their preferences for odours from three developmental stages of pollen beetle larvae in a two-choice olfactometer bioassay.P. interstitialis was active in the field early in the season, preferred odours of infested buds versus uninfested, and oviposited into buds which contained only pollen beetle eggs, while P. morionellus was active late in the season, preferred odours of infested buds as well as odours of infested flowers over uninfested, and oviposited into buds which contained only larvae. T. heterocerus was active throughout the season, and preferred odours of infested flowers over uninfested. Neither Phradis species were attracted to larval odours, whereas T. heterocerus was attracted to odours from first-instar pollen beetle larvae both in the absence of plant odours, and when presented simultaneously with uninfested plant odour.This suggests that the two Phradis species are separated on a temporal scale and that they parasitize different host stages, while the larval parasitoids P. morionellus and T. heterocerus are separated by choice of microhabitat. The former oviposits into larvae in buds, and the latter in flowers.

  12. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine.

    Science.gov (United States)

    Progar, R A; Blackford, D C; Cluck, D R; Costello, S; Dunning, L B; Eager, T; Jorgensen, C L; Munson, A S; Steed, B; Rinella, M J

    2013-02-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of lodgepole pine. The success of verbenone treatments has varied greatly in previous studies because of differences in study duration, beetle population size, tree size, or other factors. To determine the ability of verbenone to protect lodgepole pine over long-term mountain pine beetle outbreaks, we applied verbenone treatments annually for 3 to 7 yr at five western United States sites. At one site, an outbreak did not develop; at two sites, verbenone reduced lodgepole pine mortality in medium and large diameter at breast height trees, and at the remaining two sites verbenone was ineffective at reducing beetle infestation. Verbenone reduced mountain pine beetle infestation of lodgepole pine trees in treated areas when populations built gradually or when outbreaks in surrounding untreated forests were of moderate severity. Verbenone did not protect trees when mountain pine beetle populations rapidly increase.

  13. Habitat preferences of ground beetle (Coleoptera: Carabidae) species in the northern Black Hills of South Dakota.

    Science.gov (United States)

    Bergmann, David J; Brandenburg, Dylan; Petit, Samantha; Gabel, Mark

    2012-10-01

    Ground beetles (Coleoptera: Carabidae) are a major component of terrestrial invertebrate communities and have been used as bioindicators of habitat change and disturbance. The Black Hills of South Dakota is a small area with a high biodiversity, but the ground beetles of this region are little studied. The habitat preferences of ground beetles in the Black Hills are unknown, and baseline data must be collected if these beetles are to be used in the future as bioindicators. Ground beetles (Coleoptera: Carabidae) were collected from pitfall traps at two sites in each of five kinds of habitats (grassland, bur oak-ironwood forests, ponderosa pine-common juniper forests, aspen-pine forests, and a spruce forest) from which habitat structure characteristics and plant abundance data also were collected. In total, 27 species of ground beetles were identified. Although some species, such as Dicaelus sculptilis Say were found in most habitats, other species showed distinct habitat preferences: Poecilus lucublandus (Say) preferred oak forests, Pasimachus elongatus LeConte preferred grasslands, and Calathus ingratus Dejean preferred high-elevation aspen-pine forests. Pterostichus adstrictus Escholtz was found only in woodlands, and Carabus taedatus Say strictly in higher elevation (over 1,500 m) aspen or coniferous woods, and may represent relict populations of boreal species. Elevation, exposure to sunlight, and cover of woody plants strongly influence the structure of carabid communities in the Black Hills.

  14. Expanded and updated data and a query pipeline for iBeetle-Base.

    Science.gov (United States)

    Dönitz, Jürgen; Gerischer, Lizzy; Hahnke, Stefan; Pfeiffer, Stefan; Bucher, Gregor

    2018-01-04

    The iBeetle-Base provides access to sequence and phenotype information for genes of the beetle Tribolium castaneum. It has been updated including more and updated data and new functions. RNAi phenotypes are now available for >50% of the genes, which represents an expansion of 60% compared to the previous version. Gene sequence information has been updated based on the new official gene set OGS3 and covers all genes. Interoperability with FlyBase has been enhanced: First, gene information pages of homologous genes are interlinked between both databases. Second, some steps of a new query pipeline allow transforming gene lists from either species into lists with related gene IDs, names or GO terms. This facilitates the comparative analysis of gene functions between fly and beetle. The backend of the pipeline is implemented as endpoints of a RESTful interface, such that it can be reused by other projects or tools. A novel online interface allows the community to propose GO terms for their gene of interest expanding the range of animals where GO terms are defined. iBeetle-Base is available at http://ibeetle-base.uni-goettingen.de/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. BEETLE - A modular electronics family for robotics

    CSIR Research Space (South Africa)

    Dickens, J

    2015-11-01

    Full Text Available of applications. A family of modular electronic elements is proposed to address this need. The Beautiful Embedded Electronic Logic Element (BEETLE) family of boards is designed to be compact, low cost, robust, reusable and easy to program. This allows the boards...

  16. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties

    Science.gov (United States)

    Abdullah, Haidi; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.; Heurich, Marco

    2018-02-01

    The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a mass outbreak, early detection of bark beetle infestation (so-called ;green attack; stage - a period at which trees are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce stands. It is expected that a bark beetle infestation at the green attack stage affects a tree's physiological and chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well as spectral responses are not well documented in the literature. Therefore, in this study, the early detection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties (400-2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar biochemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces not only

  18. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae.

    Science.gov (United States)

    Zhu, Wanyi; Schmehl, Daniel R; Mullin, Christopher A; Frazier, James L

    2014-01-01

    Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax--fluvalinate, coumaphos, chlorothalonil, and chloropyrifos--tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common 'inert' ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.

  19. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae.

    Directory of Open Access Journals (Sweden)

    Wanyi Zhu

    Full Text Available Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L. health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax--fluvalinate, coumaphos, chlorothalonil, and chloropyrifos--tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common 'inert' ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.

  20. Residue age and tree attractiveness influence efficacy of insecticide treatments against ambrosia beetles (Coleoptera: Curculionidae)

    Science.gov (United States)

    Management of ambrosia beetles in ornamental nurseries relies, in part, on treatments of insecticides to prevent beetles from boring into trees emitting stress-induced ethanol. However, data on residual efficacy of commonly used pyrethroid insecticides is warranted to gauge the duration that trees ...

  1. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    Science.gov (United States)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  2. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography.

    Science.gov (United States)

    Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji

    2017-05-30

    Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.

  3. Community composition and diversity of ground beetles (Coleoptera: Carabidae) in Yaoluoping National Nature Reserve

    Science.gov (United States)

    Li, Wen-Bo; Liu, Nai-Yi; Wu, Yun-He; Zhang, Yu-Cai; Xu, Qin; Chu, Jun; Wang, Shu-Yan

    2017-01-01

    Abstract This study used pitfall trapping to examine community composition and diversity of ground beetles in five different habitats (coniferous, deciduous, mixed coniferous, farmland, and settlements) within Anhui Yaoluoping National Nature Reserve from May to September 2014. In total, 1,352 ground beetles were collected, belonging to 16 genera and 44 species. Of these, four dominant species Dolichus halensis, Harpalus pastor, Carabus casaleianus, and Pheropsophus jessoensis were identified, respectively, comprising 370, 177, 131, and 123 individuals. The deciduous forest showed greater diversity (3.78 according to Shannon–Weiner index), equitability (0.80 according to Pielou’s index), and dominance (9.52 according to Simpson’s index) when compared with farmland, but species richness in the deciduous forest (27) was lower than that in farmland (35). One-way analysis of variance showed that ground beetle species composition and abundance among different habitats varied significantly. Cluster analysis and principal coordinate analysis showed that farmland shared low community similarity with other habitat types, and coniferous and mixed coniferous forests shared similar community types. Our results indicate that species composition, abundance, and diversity of ground beetles are affected by different habitat types, with deciduous forest types being critical in maintaining the diversity of rare species. We recommend reducing cultivated farmland area and increasing the area of carefully planned deciduous forest in order to better protect ground beetle diversity in the region.

  4. Identifying ponderosa pines infested with mountain pine beetles

    Science.gov (United States)

    William F. McCambridge

    1974-01-01

    Trees successfully and unsuccessfully attacked by mountain pine beetles have several symptoms in common, so that proper diagnosis is not always easy. Guidelines presented here enable the observer to correctly distinguish nearly all attacked trees.

  5. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments.

    Science.gov (United States)

    Davis, Doreen E; Gagné, Sara A

    2018-01-01

    Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k -means clustering. Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. We

  6. Boundaries in ground beetle (Coleoptera: Carabidae and environmental variables at the edges of forest patches with residential developments

    Directory of Open Access Journals (Sweden)

    Doreen E. Davis

    2018-01-01

    Full Text Available Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. Methods We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k-means clustering. Results Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of

  7. Fungus cultivation by ambrosia beetles: Behavior and laboratory breeding success in three Xyleborine species

    Science.gov (United States)

    Peter Biedermann; Kier Klepzig; Taborsky Michael

    2009-01-01

    Fungus cultivation by ambrosia beetles is one of the four independently evolved cases of agriculture known in animals. Such cultivation is most advanced in the highly social subtribe Xyleborina (Scolytinae), which is characterized by haplodiploidy and extreme levels of inbreeding. Despite their ubiquity in forests worldwide, the behavior of these beetles remains poorly...

  8. Adaptation of the Egg of the Desert Beetle, Microdera punctipennis (Coleoptera: Tenebrionidae), to Arid Environment

    Science.gov (United States)

    Wang, Yan; Shi, Meng; Hou, Xiaojuan; Meng, Shanshan; Zhang, Fuchun; Ma, Ji

    2014-01-01

    Abstract Microdera punctipennis Kaszab (Coleoptera: Tenebrionidae) is an endemic species in Guerbantonggut desert in China. To explore the ways that M. punctipennis egg adapts to dry desert environment, morphological characteristics of the egg was investigated along with the egg of the nondesert beetle Tenebrio molitor (Coleoptera: Tenebrionidae). Water loss rate and survival rate of these eggs under different dry treatments (relative humidity0, 10, and 20%) were measured to evaluate the desiccation resistance of the eggs at different developmental stages (day 0, 2, and 5 eggs). Our results showed that the 50-egg weight in T. molitor was heavier than M. punctipennis , while the 50-first-instar larva weight in T. molitor was almost the same as in M. punctipennis . The water loss rate of M. punctipennis egg under dry conditions was significantly lower than T. molitor , and the egg survival rate was significantly higher than T. molitor . The estimated developmental threshold temperature of M. punctipennis egg was 18.30°C, and the critical thermal maximum of M. punctipennis egg is above 39°C. These features partly account for the adaptability of M. punctipennis to desert environment in egg stage. PMID:25525108

  9. Carbon stocks of trees killed by bark beetles and wildfire in the western United States

    International Nuclear Information System (INIS)

    Hicke, Jeffrey A; Meddens, Arjan J H; Kolden, Crystal A; Allen, Craig D

    2013-01-01

    Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984–2010, fires killed trees that contained 5–11 Tg C year −1 and during 1997–2010, beetles killed trees that contained 2–24 Tg C year −1 , with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5–10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States. (letter)

  10. Saproxylic community, guild and species responses to varying pheromone components of a pine bark beetle.

    Science.gov (United States)

    Etxebeste, Iñaki; Lencina, José L; Pajares, Juan

    2013-10-01

    Some bark beetle species (Coleoptera: Scolytinae) produce aggregation pheromones that allow coordinated attack on their conifer hosts. As a new saproxylic habitat is founded, an assemblage of associated beetles kairomonally respond to bark beetle infochemicals. Ips sexdentatus is one of the major damaging insects of Pinus spp. in Southern Europe. Its response to varying ipsenol (Ie) percentages in relation to ipsdienol (Id) was studied in northwestern Spain, along with the entire saproxylic beetle assemblage captured at multiple-funnel traps. Response profile modeling was undertaken for I. sexdentatus sexes and sex-ratios, associated species and for selected trophic groups using a reference Gaussian model. In addition, the effects on the saproxylic assemblages were analyzed. I. sexdentatus response curve peaked at 22.7% Ie content, while remaining taxa that could be modeled, peaked above ca. 40% Ie. Predator guilds showed a linear relationship with Ie proportion, while competitors showed a delayed response peak. Consequently, species assemblages differed markedly between varying pheromone component mixtures. Given that the evaluated pheromonal proportions mimicked that of logs being colonized by I. sexdentatus, results suggested that the registered differential responses at different levels might provide I. sexdentatus with a temporal window that maximizes conspecific attraction while reducing interference with competitor and predatory guilds. Described responses might help improve the monitoring of the population status of target bark beetles and their associates, but also point toward the by-catch of many natural enemies, as well as rare saproxylic beetle species, interfering with the aims of sustainable forest management.

  11. Coffee Berry Borer Joins Bark Beetles in Coffee Klatch

    Science.gov (United States)

    Jaramillo, Juliana; Torto, Baldwyn; Mwenda, Dickson; Troeger, Armin; Borgemeister, Christian; Poehling, Hans-Michael; Francke, Wittko

    2013-01-01

    Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms. PMID:24073204

  12. Evaluation of funnel traps for characterizing the bark beetle (Coleoptera: Scolytidae) communities in ponderosa pine forests of north-central Arizona.

    Science.gov (United States)

    Hayes, Christopher J; DeGomez, Tom E; Clancy, Karen M; Williams, Kelly K; McMillin, Joel D; Anhold, John A

    2008-08-01

    Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.

  13. A foam formulation of an entomopathogenic fungus for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  14. The Influence of Weather and Lunar Phases on the Flight Activity of Paederus Rove Beetles (Coleoptera: Staphylinidae).

    Science.gov (United States)

    Silva, F S; Lobo, S E P D; Lima, D C B; Brito, J M; Costa-Neta, B M

    2015-06-01

    Despite the medical importance of Paederus beetles, no studies have studied the influence of the abiotic factors on the flight activity and nighttime dispersal of these insects in Brazil. Therefore, the influence of both climatic factors and moon phase on black-light catches of Paederus rove beetles was investigated. Paederus beetles were attracted to a black light source hourly from 1800 to 0600 hours, and data on weather conditions as well as moon phase data were taken for every sampling date. Overall, 543 individuals of Paederus beetles belonging to four species were captured: P. protensus, P. columbinus, P. brasiliensis, and P. mutans. Paederus beetles were mostly active in the warmest parts of the studied nights. Variations in nighttime temperature, relative humidity, wind speed, cloud cover, and moon phases appear not to affect Paederus flight. The diurnal temperature was observed to affect the night hourly dispersal of Paederus rove beetles as well as their distribution pattern during the entire period of study. The true environmental condition responsible for Paederus beetles seasonal pattern and daily night dispersal in northeastern Brazil were the annual moisture and drought cycles and the diurnal maximum temperatures, respectively. Significant trap catches were observed in the earliest hours after sunset (1800-2100), and people must be aware of this fact, as it can notably increase the risk of acquiring linearis dermatitis from the contact with large numbers of active Paederus. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Comparison of saproxylic beetle assemblages on four different broad-leaved tree species in south-eastern Sweden

    OpenAIRE

    Johansson, Helena

    2011-01-01

    Old hollow trees have declined in Europe and many saproxylic (wood-dwelling) beetles dependent on them are threatened. Several studies have been done on old hollow oaks and they have been shown to harbour a species-rich saproxylic beetle fauna. However, other broad-leaved trees might also be important to consider as supporting habitats. The aim of this study was to investigate to what extent saproxylic beetles are tree genus specialists. Pitfall traps and window traps were used to compare the...

  16. 1H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle

    OpenAIRE

    Todoruk, Tara M.; Hartley, Ian D.; Teymoori, Roshanak; Liang, Jianzhen; Peemoeller, Hartwig

    2010-01-01

    In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as wel...

  17. Diversity and Abundance of Beetle (Coleoptera Functional Groups in a Range of Land Use System in Jambi, Sumatra

    Directory of Open Access Journals (Sweden)

    SURYO HARDIWINOTO

    2009-10-01

    Full Text Available Degradation of tropical rain forest might exert impacts on biodiversity loss and affect the function and stability of the related ecosystems. The objective of this study was to study the impact of land use systems (LUS on the diversity and abundance of beetle functional groups in Jambi area, Sumatra. This research was carried out during the rainy season (May-June of 2004. Inventory and collection of beetles have been conducted using winkler method across six land use systems, i.e. primary forest, secondary forest, Imperata grassland, rubber plantation, oilpalm plantation, and cassava garden. The result showed that a total of 47 families and subfamilies of beetles was found in the study area, and they were classified into four major functional groups, i.e. herbivore, predator, scavenger, and fungivore. There were apparent changes in proportion, diversity, and abundance of beetle functional groups from forests to other land use systems. The bulk of beetle diversity and abundance appeared to converge in primary forest and secondary forest and predatory beetles were the most diverse and the most abundant of the four major functional groups.

  18. Atlas of Iberian water beetles (ESACIB database).

    Science.gov (United States)

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format.

  19. Atlas of Iberian water beetles (ESACIB database)

    Science.gov (United States)

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A.; Ribera, Ignacio

    2015-01-01

    Abstract The ESACIB (‘EScarabajos ACuáticos IBéricos’) database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the “Atlas de los Coleópteros Acuáticos de España Peninsular”. In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  20. A trial of direct control of pine engraver beetles on a small logging unit

    Science.gov (United States)

    W. L. Jackson

    1960-01-01

    Laboratory tests and small-scale field trials have shown the insecticide lindane to be highly toxic to pine engraver beetles. On the basis of that information, the insecticide was applied to fresh logging slash heavily infested with pine engraver beetles at Challenge Experimental Forest in 1959. Costs were reasonable and no insurmountable problems were encountered....

  1. Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Boran Altincicek

    Full Text Available Beetles (Coleoptera are the most diverse animal group on earth and interact with numerous symbiotic or pathogenic microbes in their environments. The red flour beetle Tribolium castaneum is a genetically tractable model beetle species and its whole genome sequence has recently been determined. To advance our understanding of the molecular basis of beetle immunity here we analyzed the whole transcriptome of T. castaneum by high-throughput next generation sequencing technology. Here, we demonstrate that the Illumina/Solexa sequencing approach of cDNA samples from T. castaneum including over 9.7 million reads with 72 base pairs (bp length (approximately 700 million bp sequence information with about 30× transcriptome coverage confirms the expression of most predicted genes and enabled subsequent qualitative and quantitative transcriptome analysis. This approach recapitulates our recent quantitative real-time PCR studies of immune-challenged and naïve T. castaneum beetles, validating our approach. Furthermore, this sequencing analysis resulted in the identification of 73 differentially expressed genes upon immune-challenge with statistical significance by comparing expression data to calculated values derived by fitting to generalized linear models. We identified up regulation of diverse immune-related genes (e.g. Toll receptor, serine proteinases, DOPA decarboxylase and thaumatin and of numerous genes encoding proteins with yet unknown functions. Of note, septic-injury resulted also in the elevated expression of genes encoding heat-shock proteins or cytochrome P450s supporting the view that there is crosstalk between immune and stress responses in T. castaneum. The present study provides a first comprehensive overview of septic-injury responsive genes in T. castaneum beetles. Identified genes advance our understanding of T. castaneum specific gene expression alteration upon immune-challenge in particular and may help to understand beetle immunity

  2. 76 FR 1337 - Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts and New York

    Science.gov (United States)

    2011-01-10

    .... APHIS-2009-0014] Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts and New York... rule. SUMMARY: We are adopting as a final rule, without change, an interim rule that amended the Asian..., MD 20737-1231; (301) 734-5705. SUPPLEMENTARY INFORMATION: Background The Asian longhorned beetle (ALB...

  3. Japanese beetle Popillia japonica Newman : foliar feeding on wine grapes in Virginia

    OpenAIRE

    Boucher, T. Jude

    1986-01-01

    The natural infestation level for 1985 of the Japanese beetle, Popillia japonica Newman, in the Shenandoah Valley of Virginia failed to reduce berry quality, yield or shoot growth in a commercial vineyard. Intensive postveraison foliage feeding by Japanese beetle resulted 1n fruit with lower soluble solids and higher total titratable acidity at harvest, but did not affect pH, sugar per berry, berry weight, yield, leaves per vine or shoot length. Intensive previraison feeding a...

  4. Lambda-Cyhalothrin Resistance in the Lady Beetle Eriopis connexa (Coleoptera: Coccinellidae) Confers Tolerance to Other Pyrethroids.

    Science.gov (United States)

    Torres, J B; Rodrigues, A R S; Barros, E M; Santos, D S

    2015-02-01

    Pyrethroid insecticides are widely recommended to control insect defoliators but lack efficacy against most aphid species. Thus, conserving aphid predators such as the lady beetle Eriopis connexa (Germar) is important to pest management in crop ecosystems that require pyrethroid sprays. In a greenhouse, early fourth-instar larvae and 5-day-old adults from susceptible (S) and resistant (R) E. connexa populations were caged on lambda-cyhalothrin-treated cotton plants, after which survival and egg production (for those caged at adult stage) were assessed. In the laboratory, similar groups were subjected to dried residues and topical treatment with one of eight pyrethroids (alpha-cypermethrin, bifenthrin, deltamethrin, esfenvalerate, fenpropathrin, permethrin, zeta-cypermethrin, and lambda-cyhalothrin), the organophosphate methidathion, or water and wetting agent. After caging on treated cotton terminals, 66% of the R-population larvae survived to adulthood, compared with 2% of those from the S-population. At 12 d after caging at adult stage under the same conditions, 64% of the females from the R-population survived and laid eggs, compared with 100% mortality and no oviposition for the S-females. In trials involving dried insecticide residues, gain in survival based on the survival difference (percentage for R-population minus percentage for S-population) across all tested pyrethroids varied from 3 to 63% for larvae and from 3 to 70% for adults. In trials involving topical sprays of the tested pyrethroids, survival differences ranged from 36 to 96% for larvae and from 21 to 82% for adults. Fenpropathrin and bifenthrin were the least and most toxic, respectively. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A behavioral study of the beetle Tenebrio molitor infected with cysticercoids of the rat tapeworm Hymenolepis diminuta

    Science.gov (United States)

    Sheiman, I. M.; Shkutin, M. F.; Terenina, N. B.; Gustafsson, M. K. S.

    2006-06-01

    The host-parasite relationship, Tenebrio molitor- Hymenolepis diminuta, was analyzed. The learning behavior of infected and uninfected (control) beetles in a T-maze was compared. The infected beetles moved much slower in the T-maze than the controls. The infected beetles reached the same level of learning as the controls. However, they needed more trials than the controls. The effect of the infection was already distinct after the first week and even higher after the second week. This indicates that the initial phase of infection caused stress in the beetles. Longer infection did not worsen their ability to learn. Thus, the parasites clearly changed the behavior of their intermediate host and probably made them more susceptible to their final host, the rat.

  6. Influences of the Tamarisk Leaf Beetle (Diorhabda carinulata) on the diet of insectivorous birds along the Dolores River in Southwestern Colorado

    Science.gov (United States)

    Puckett, Sarah L.; van Riper, Charles

    2014-01-01

    We examined the effects of a biologic control agent, the tamarisk leaf beetle (Diorhabda carinulata), on native avifauna in southwestern Colorado, specifically, addressing whether and to what degree birds eat tamarisk leaf beetles. In 2010, we documented avian foraging behavior, characterized the arthropod community, sampled bird diets, and undertook an experiment to determine whether tamarisk leaf beetles are palatable to birds. We observed that tamarisk leaf beetles compose 24.0 percent (95-percent-confidence interval, 19.9-27.4 percent) and 35.4 percent (95-percent-confidence interval, 32.4-45.1 percent) of arthropod abundance and biomass in the study area, respectively. Birds ate few tamarisk leaf beetles, despite a superabundance of D. carinulata in the environment. The frequency of occurrence of tamarisk leaf beetles in bird diets was 2.1 percent (95-percent-confidence interval, 1.3- 2.9 percent) by abundance and 3.4 percent (95-percent-confidence interval, 2.6-4.2 percent) by biomass. Thus, tamarisk leaf beetles probably do not contribute significantly to the diets of birds in areas where biologic control of tamarisk is being applied.

  7. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae.

    Directory of Open Access Journals (Sweden)

    Ming Bai

    Full Text Available This study examines the evolution hindwing shape in Chinese dung beetle species using morphometric and phylogenetic analyses. Previous studies have analyzed the evolution of wing shape within a single or very few species, or by comparing only a few wing traits. No study has analyzed wing shape evolution of a large number of species, or quantitatively compared morphological variation of wings with proposed phylogenetic relationships. This study examines the morphological variation of hindwings based on 19 landmarks, 119 morphological characters, and 81 beetle species. Only one most parsimonious tree (MPT was found based on 119 wing and body characters. To better understand the possible role of the hindwing in the evolution of Scarabaeinae, additional phylogenetic analyses were proposed based on the only body features (106 characters, wing characters excluded. Two MPT were found based on 106 body characters, and five nodes were collapsed in a strict consensus. There was a strong correlation between the morphometric tree and all phylogenetic trees (r>0.5. Reconstructions of the ancestral wing forms suggest that Scarabaeinae hindwing morphology has not changed substantially over time, but the morphological changes that do occur are focused at the base of the wing. These results suggest that flight has been important since the origin of Scarabaeinae, and that variation in hindwing morphology has been limited by functional constraints. Comparison of metric disparity values and relative evolutionary sequences among Scarabaeinae tribes suggest that the primitive dung beetles had relatively diverse hindwing morphologies, while advanced dung beetles have relatively similar wing morphologies. The strong correlation between the morphometric tree and phylogenetic trees suggest that hindwing features reflect the evolution of whole body morphology and that wing characters are suitable for the phylogenetic analyses. By integrating morphometric and cladistic

  8. Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia.

    Science.gov (United States)

    Harrington, Thomas C; Yun, Hye Young; Lu, Sheng-Shan; Goto, Hideaki; Aghayeva, Dilzara N; Fraedrich, Stephen W

    2011-01-01

    The laurel wilt pathogen Raffaelea lauricola was hypothesized to have been introduced to the southeastern USA in the mycangium of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia. To test this hypothesis adult X. glabratus were trapped in Taiwan and on Kyushu Island, Japan, in 2009, and dead beetles were sent to USA for isolation of fungal symbionts. Individual X. glabratus were macerated in glass tissue grinders, and the slurry was serially diluted and plated onto malt agar medium amended with cycloheximide, a medium semiselective for Ophiostoma species and their anamorphs, including members of Raffaelea. R. lauricola was isolated from 56 of 85 beetles in Taiwan and 10 of 16 beetles in Japan at up to an estimated 10 000 CFUs per beetle. The next most commonly isolated species was R. ellipticospora, which also has been recovered from X. glabratus trapped in the USA, as were two other fungi isolated from beetles in Taiwan, R. fusca and R. subfusca. Three unidentified Raffaelea spp. and three unidentified Ophiostoma spp. were isolated rarely from X. glabratus collected in Taiwan. Isolations from beetles similarly trapped in Georgia, USA, yielded R. lauricola and R. ellipticospora in numbers similar to those from beetles trapped in Taiwan and Japan. The results support the hypothesis that R. lauricola was introduced into the USA in mycangia of X. glabratus shipped to USA in solid wood packing material from Asia. However differences in the mycangial mycoflora of X. glabratus in Taiwan, Japan and USA suggest that the X. glabratus population established in USA originated in another part of Asia.

  9. Species Richness and Phenology of Cerambycid Beetles in Urban Forest Fragments of Northern Delaware

    Science.gov (United States)

    K. Handley; J. Hough-Goldstein; L.M. Hanks; J.G. Millar; V. D' amico

    2015-01-01

    Cerambycid beetles are abundant and diverse in forests, but much about their host relationships and adult behavior remains unknown. Generic blends of synthetic pheromones were used as lures in traps, to assess the species richness, and phenology of cerambycids in forest fragments in northern Delaware. More than 15,000 cerambycid beetles of 69 species were trapped over...

  10. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  11. Rove beetles of medical importance in Brazil (Coleoptera, Staphylinidae, Paederinae

    Directory of Open Access Journals (Sweden)

    Juliana S. Vieira

    2014-09-01

    Full Text Available Rove beetles of medical importance in Brazil (Coleoptera, Staphylinidae, Paederinae. The rove beetles of the genus Paederus Fabricius, 1775 are the most important group within Coleoptera causing dermatitis around the world. The medical importance of Paederus depends on its toxic hemolymph released when these beetles are crushed on human skin. The effects are mainly dermatitis linearis and some sporadic cases of conjunctivitis. In Brazil seven species of Paederus are known to cause dermatitis: P. amazonicus Sharp, 1876, P. brasiliensis Erichson, 1840, P. columbinus Laporte, 1835, P. ferus Erichson, 1840, P. mutans Sharp, 1876, P. protensus Sharp, 1876 stat. rev., and Paederus rutilicornis Erichson, 1840. Paederus mutans and P. protensus are for the first time recorded as of medical importance, whereas the record of P. rutilicornis in Brazil is doubtful. All seven species are redescribed and a dichotomous key is provided. The geographic distributions of all species are documented. The results provided here include the most recent and relevant taxonomic revision of Paederus of the Neotropical region, the first identification key for Brazilian species and the increase of recorded species of medical importance in the world.

  12. Uneven-aged silviculture can enhance within stand heterogeneity and beetle diversity.

    Science.gov (United States)

    Joelsson, Klara; Hjältén, Joakim; Work, Timothy

    2018-01-01

    Uneven-aged silviculture may better maintain species assemblages associated with old-growth forests than clear felling in part due to habitat heterogeneity created by maintaining standing retention strips adjacent to harvest trails. Retention strips and harvest trails created at the time of tree removal will likely have different microclimate and may harbor different assemblages. In some cases, the resultant stand heterogeneity associated with uneven-aged silviculture may be similar to natural small-scale disturbances. For beetles, increased light and temperature as well as potential access to young vegetation and deadwood substrates present in harvset trails may harbor beetle assemblages similar to those found in natural gaps. We sampled saproxylic beetles using flight intercept traps placed in harvest corridors and retention strips in 9 replicated uneven-aged spruce stands in central Sweden. We compared abundance, species richness and composition between harvest corridors and retention strips using generalized linear models, rarefaction, permutational multivariate analysis of variance and indicator species analysis. Canopy openness doubled, mean temperature and variability in daily temperature increased and humidity decreased on harvest trails. Beetle richness and abundance were greater in harvests trails than in retention strips and the beetle species composition differed significantly between habitats. Twenty-five species were associated with harvest trails, including three old-growth specialists such as Agathidium discoideum (Erichson), currently red-listed. We observed only one species, Xylechinus pilosus (Ratzeburg) that strongly favored retention strips. Harvest trails foster both open habitat species and old-growth species while retention strips harbored forest interior specialists. The combination of closed canopy, stratified forest in the retention strips and gap-like conditions on the harvest trails thus increases overall species richness and maintains

  13. Metal fate and partitioning in soils under bark beetle-killed trees.

    Science.gov (United States)

    Bearup, Lindsay A; Mikkelson, Kristin M; Wiley, Joseph F; Navarre-Sitchler, Alexis K; Maxwell, Reed M; Sharp, Jonathan O; McCray, John E

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid-liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of water

  14. Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)

    Science.gov (United States)

    Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...

  15. Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo Milton Moraes

    2013-03-01

    Full Text Available Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil. Carabidae is composed mainly by ground-dwelling predator beetles. It is the fourth most diverse group within Coleoptera, but its diversity in the Neotropical region is understudied. Here we describe and analyze the diversity of carabid beetles in a region of subtropical rain forest dominated by Araucaria angustifolia with different landscapes. Three areas were chosen in an environmental integrity gradient: primary forests, secondary forests and old Pinus plantations. Pitfall traps were taken monthly, in a total of 14 samples per area. 1733 adult carabid beetles, belonging to 18 species, were sampled. There were differences in richness and abundance between the sampled areas. The total scores followed the same tendency: primary forests (14 species/747 individuals, secondary forests (13/631 and Pinus forests (10/355. An analysis of similarity shows differences in species composition, for both areas and seasons. Galerita lacordarei was the most abundant species for all samples and seasons. Carabid species show similar responses in accordance with habitat heterogeneity and disturbance. The abundance of Galerita lacordarei was influenced by temperature, for all sampled sites. Environmental changes affect the carabid assemblages and decrease diversity, possibly interfering in local dynamics. Seasonality patterns seem to indicate an increase in individual movement during summer, probably in search of resources. It is suggested that microhabitat patchiness is probably an important factor affecting carabid beetle diversity at small spatial scales.

  16. Defence syndromes in lodgepole - whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles.

    Science.gov (United States)

    Raffa, Kenneth F; Mason, Charles J; Bonello, Pierluigi; Cook, Stephen; Erbilgin, Nadir; Keefover-Ring, Ken; Klutsch, Jennifer G; Villari, Caterina; Townsend, Philip A

    2017-09-01

    Warming climate is allowing tree-killing bark beetles to expand their ranges and access naïve and semi-naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high-elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle-fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non-structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less-continuously exposed host species. © 2017 John Wiley & Sons Ltd.

  17. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Directory of Open Access Journals (Sweden)

    Andrew P Lerch

    Full Text Available Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae, but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug. and 599 ponderosa (Pinus ponderosa Doug. ex Law pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  18. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Science.gov (United States)

    Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F

    2016-01-01

    Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  19. A Red List of Italian Saproxylic Beetles: taxonomic overview, ecological features and conservation issues (Coleoptera

    Directory of Open Access Journals (Sweden)

    Giuseppe Maria Carpaneto

    2015-12-01

    Full Text Available The main objectives of this review are: 1 the compilation and updating of a reference database for Italian saproxylic beetles, useful to assess the trend of their populations and communities in the next decades; 2 the identification of the major threats involving the known Italian species of saproxylic beetles; 3 the evaluation of the extinction risk for all known Italian species of saproxylic beetles; 4 the or- ganization of an expert network for studying and continuous updating of all known species of saproxylic beetle species in Italy; 5 the creation of a baseline for future evaluations of the trends in biodiversity conservation in Italy; 6 the assignment of ecological categories to all the Italian saproxylic beetles, useful for the aims of future researches on their communities and on forest environments. The assess- ments of extinction risk are based on the IUCN Red List Categories and Criteria and the most updated guidelines. The assessments have been carried out by experts covering different regions of Italy, and have been evaluated according to the IUCN standards. All the beetles whose larval biology is sufficiently well known as to be considered saproxylic have been included in the Red List, either the autochtho- nous species (native or possibly native to Italy or a few allochthonous species recently introduced or probably introduced to Italy in his- toric times. The entire national range of each saproxylic beetle species was evaluated, including large and small islands; for most species, the main parameters considered for evaluation were the extent of their geographical occurrence in Italy, and the number of known sites of presence. 2049 saproxylic beetle species (belonging to 66 families have been listed, assigned to a trophic category (Table 3 and 97% of them have been assessed. On the whole, threatened species (VU + EN + CR are 421 (Fig. 6, corresponding to 21 % of the 1988 as- sessed species; only two species are formally

  20. Bark beetle responses to vegetation management practices

    Science.gov (United States)

    Joel D. McMillin; Christopher J. Fettig

    2009-01-01

    Native tree-killing bark beetles (Coleoptera: Curculionidae, Scolytinae) are a natural component of forest ecosystems. Eradication is neither possible nor desirable and periodic outbreaks will occur as long as susceptible forests and favorable climatic conditions co-exist. Recent changes in forest structure and tree composition by natural processes and management...

  1. Mechanical vs. Beetle-mediated Self-pollination in (Malvaceae, an Endangered Shrub

    Directory of Open Access Journals (Sweden)

    Kyra N. Krakos

    2010-01-01

    Full Text Available Experimental hand pollinations of the endangered, Hawaiian, endemic, Gossypium tomentosum Nutt. Ex. (Malvaceae showed that it was self-compatible, but self-pollination resulted in reduced reproductive output. Field observations and pollen tube analyses using fluorescence microscopy showed that mechanical self-pollination in this species included a mechanism known as bending stigmas. A receptive stigma bent backwards and contacted dehiscent anthers in 7% of flowers found on 17 G. tomentosum plants. The yellow flowers were nectarless and were not visited by most anthophilous insects in situ except for the introduced, nitidulid beetle, Aethina concolor Macleay. Collections and insect GI-tract dissections showed that A. concolor carried and ate the pollen of the host flower. Field observations recorded regular contact between beetles and stigma lobes as these insects exited the flowers effecting self-pollination. Behavioral experiments showed that the beetles responded positively to a yellow visual cue. Under some circumstances, an introduced pollen vector may help maintain a low level of reproductive success in an insular endemic.

  2. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    Science.gov (United States)

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation

  3. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate

    Science.gov (United States)

    Barbara J. Bentz; Jacob P. Duncan; James A. Powell

    2016-01-01

    Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...

  4. Whirling in the late Permian: ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction.

    Science.gov (United States)

    Yan, Evgeny V; Beutel, Rolf G; Lawrence, John F

    2018-03-16

    Gyrinidae are a charismatic group of highly specialized beetles, adapted for a unique lifestyle of swimming on the water surface. They prey on drowning insects and other small arthropods caught in the surface film. Studies based on morphological and molecular data suggest that gyrinids were the first branch splitting off in Adephaga, the second largest suborder of beetles. Despite its basal position within this lineage and a very peculiar morphology, earliest Gyrinidae were recorded not earlier than from the Upper Triassic. Tunguskagyrus. with the single species Tunguskagyrus planus is described from Late Permian deposits of the Anakit area in Middle Siberia. The genus is assigned to the stemgroup of Gyrinidae, thus shifting back the minimum age of this taxon considerably: Tunguskagyrus demonstrates 250 million years of evolutionary stability for a very specialized lifestyle, with a number of key apomorphies characteristic for these epineuston predators and scavengers, but also with some preserved ancestral features not found in extant members of the family. It also implies that major splitting events in this suborder and in crown group Coleoptera had already occurred in the Permian. Gyrinidae and especially aquatic groups of Dytiscoidea flourished in the Mesozoic (for example Coptoclavidae and Dytiscidae) and most survive until the present day, despite the dramatic "Great Dying" - Permian-Triassic mass extinction, which took place shortly (in geological terms) after the time when Tunguskagyrus lived. Tunguskagyrus confirms a Permian origin of Adephaga, which was recently suggested by phylogenetic "tip-dating" analysis including both fossil and Recent gyrinids. This also confirms that main splitting events leading to the "modern" lineages of beetles took place before the Permian-Triassic mass extinction. Tunguskagyrus shows that Gyrinidae became adapted to swimming on the water surface long before Mesozoic invasions of the aquatic environment took place

  5. Relations Between the Structure of Benthic Macro-Invertebrates and the Composition of Adult Water Beetle Diets from the Dytiscidae Family.

    Science.gov (United States)

    Frelik, Anna; Pakulnicka, Joanna

    2015-10-01

    This paper investigates the relations between the diet structure of predaceous adult water beetles from the Dytiscidae family and the structure of macrofauna inhabiting the same environments. The field studies were carried out from April until September in 2012 and 2013 in 1-mo intervals. In total, >1,000 water beetles and 5,115 benthic macro-invertebrates were collected during the whole period of the study. Subsequently, 784 specimens of adult water beetles (70.6% out of the total sampled) with benthic macro-invertebrates found in their proventriculi, were subject to analysis. The predators were divided into three categories depending on their body size: small beetles (2.3-5.0 mm), medium-sized beetles (13-15 mm), and large beetles (27-37 mm). All adult Dytiscidae consumed primarily Ephemeroptera and Chironomidae larvae. Although Asellidae were numerically dominant inhabitants of the sites, the adult water beetles did not feed on them. The analysis of feeding relations between predators and their prey revealed that abundance of Ephemeroptera, Chironomidae, and larval Dytiscidae between the environment and the diet of adult Dytiscidae were strongly correlated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Feeding Preferences of the Endangered Diving Beetle Cybister tripunctatus orientalis Gschwendtner (Coleoptera: Dytiscidae

    Directory of Open Access Journals (Sweden)

    Shin-ya Ohba

    2012-01-01

    Full Text Available The numbers of Cybister tripunctatus orientalis Gschwendtner diving beetles are declining in most regions of Japan, and it is included in the Red Data List of species in 34 of 47 prefectures of Japan. However, basic ecological information about C. tripunctatus orientalis, such as its feeding habits, remains unknown. In order to elucidate the feeding habits of C. tripunctatus orientalis larvae, feeding preference experiments were carried out in 2nd and 3rd instar larvae. The number of Odonata nymphs consumed was significantly higher than the number of tadpoles consumed, indicating that C. tripunctatus orientalis larvae prefer Odonata nymphs to tadpoles. In addition, all the first instar larvae of C. tripunctatus orientalis developed into second instars when they were supplied with motionless Odonata nymphs, but their survival rate was lower when they were supplied with motionless tadpoles. These results suggest that C. tripunctatus orientalis larvae prefer insects to vertebrates.

  7. Recalibrated tree of leaf beetles (Chrysomelidae indicates independent diversification of angiosperms and their insect herbivores.

    Directory of Open Access Journals (Sweden)

    Jesús Gómez-Zurita

    2007-04-01

    Full Text Available The great diversity of the "Phytophaga" (weevils, longhorn beetles and leaf beetles has been attributed to their co-radiation with the angiosperms based on matching age estimates for both groups, but phylogenetic information and molecular clock calibrations remain insufficient for this conclusion.A phylogenetic analysis of the leaf beetles (Chrysomelidae was conducted based on three partial ribosomal gene markers (mitochondrial rrnL, nuclear small and large subunit rRNA including over 3000 bp for 167 taxa representing most major chrysomelid lineages and outgroups. Molecular clock calibrations and confidence intervals were based on paleontological data from the oldest (K-T boundary leaf beetle fossil, ancient feeding traces ascribed to hispoid Cassidinae, and the vicariant split of Nearctic and Palearctic members of the Timarchini.The origin of the Chrysomelidae was dated to 73-79 Mya (confidence interval 63-86 Mya, and most subfamilies were post-Cretaceous, consistent with the ages of all confirmed body fossils. Two major monocot feeding chrysomelid lineages formed widely separated clades, demonstrating independent colonization of this ancient (early Cretaceous angiosperm lineage.Previous calibrations proposing a much older origin of Chrysomelidae were not supported. Therefore, chrysomelid beetles likely radiated long after the origin of their host lineages and their diversification was driven by repeated radiaton on a pre-existing diverse resource, rather than ancient host associations.

  8. Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across a habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2010-01-01

    Full Text Available Shahabuddin (2010 Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi. Biodiversitas 11: 29-33. Dung beetles are important component of most terrestrial ecosystems and used to assess the effects of habitat disturbance and deforestation. This study aimed at comparing dung beetle assemblages among several habitat types ranging from natural tropical forest and agroforestry systems to open cultivated areas at the margin of Lore Lindu National Park (LLNP, Central Sulawesi (one of Indonesia’s biodiversity hotspots. Therefore, 10 pitfall traps baited with cattle dung were exposed at each habitat type (n = 4 replicate sites per habitat type to collect the dung beetles. The results showed that species richness of dung beetles declined significantly from natural forest to open area. However cacao agroforestry systems seemed to be capable of maintaining a high portion of dung beetle species inhabiting at forest sites. The closer relationship between dung beetle assemblages recorded at forest and agroforestry sites reflects the high similarity of some measured habitat parameters (e.g. vegetation structure and microclimate between both habitat types, while species assemblages at open areas differed significantly from both other habitat groups. These results indicated that habitat type has importance effect on determining the species richness and community structure of dung beetles at the margin of LLNP.

  9. BIOACTIVITY OF 1,8-CINEOLE AGAINST RED FLOUR BEETLE TRIBOLIUM CASTANEUM (HERBST

    Directory of Open Access Journals (Sweden)

    Anita Liška

    2011-06-01

    Full Text Available Red flour beetle Tribolium castaneum (Herbst is a major pest of stored products. The aim of this study was to assess the potential fumigant effects of 1,8-cineole, essential oil component, on the T. castaneum pupae. The compound was tested in 6 doses; in two treatments (fumigation without grain and with wheat grain, exposed for 48 h, in 4 repetitions, for each gender. The compound 1,8-cineole had lethal effect on the treated pupae at both genders and in the both treatments. Total proportion of the normally developed beetles was decreased. In addition, 1,8-cineole had also a growth regulator effect, producing adultoids and deformed units, with males more susceptible. In the treatment with the grain there were significant lower dead pupae, normally developed live male beetles and also deformed female units in the stage 2. In general, compound 1,8-cineole has multiple effect against T. castaneum in pupal stage.

  10. Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes.

    Directory of Open Access Journals (Sweden)

    Johannes Bergsten

    Full Text Available BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles.

  11. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Efficacy of Different Insecticides in Controlling Pollen Beetle (Meligethes aeneus F. in Rapeseed Crop

    Directory of Open Access Journals (Sweden)

    Predrag Milovanović

    2013-12-01

    Full Text Available Since pollen beetle, M. aeneus, is usually controlled by insecticides, the efficacy of several compounds with different modes of action against adult beetles was studied in a threeyear field study. The selected insecticides were: three pyrethroids (lambda-cyhalothrin, alpha-cypermethrin and bifenthrin, an oganophosphate (pirimiphos-methyl, a combination of an organophosphate and a pyrethroid (chlorpyrifos + cypermethrin and a neonicotinoid (thiacloprid. The insecticides were applied at label rates to winter rapeseed crops at the moment of visible but still closed flower buds (BBCH 55-57. In all experiments, the efficacy of pyrethroids and the organophosphate ranged from 90-100%, while the efficacy of the neonicotinoid was 85-95%. Therefore, they can be recommended for control of pollen beetle in Serbia.

  13. Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine.

    Science.gov (United States)

    Emerick, Jay J; Snyder, Aaron I; Bower, Nathan W; Snyder, Marc A

    2008-08-01

    Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.

  14. Atomic force microscopy study of nano-physiological response of ladybird beetles to photostimuli.

    Directory of Open Access Journals (Sweden)

    Natalia V Guz

    Full Text Available BACKGROUND: Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done. METHODOLOGY/PRINCIPAL FINDINGS: Here we applied an atomic force microscopy (AFM method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (∼500nm light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage. CONCLUSIONS: The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of "nanophysiology" of insects.

  15. Habitat disturbance and hydrological parameters determine the body size and reproductive strategy of alluvial ground beetles.

    Science.gov (United States)

    Gerisch, Michael

    2011-01-01

    Environmental variability is the main driver for the variation of biological characteristics (life-history traits) of species. Therefore, life-history traits are particularly suited to identify mechanistic linkages between environmental variability and species occurrence and can help in explaining ecological patterns. For ground beetles, few studies directly related species traits to environmental variables. This study aims to analyse how life-history traits of alluvial ground beetles are controlled by environmental factors. I expected that the occurrence of species and the occurrence of specific traits are closely related to hydrological and disturbance parameters. Furthermore I expected most of the trait-variation to be explained by a combination of environmental variables, rather than by their isolated effects. Ground beetles were sampled in the year 2005 in floodplain grassland along the Elbe River in Germany. I used redundancy analysis to quantify the effects of hydrological, sediment, and disturbance related parameters on both species occurrence and species traits. I applied variation partitioning to analyse which environmental compartments explain most of the trait variation. Species occurrence and trait variation were both mainly controlled by hydrological and flood disturbance parameters. I could clearly identify reproductive traits and body size as key traits for floodplain ground beetles to cope with the environmental variability. Furthermore, combinations of hydrological, habitat disturbance, habitat type, and species diversity parameters, rather than their isolated effects, explained large parts of ground beetle trait variation. Thus, a main conclusion of this study is that ground beetle occurrence is mainly determined by complex, multi-scale interactions between environmental variability and their life-history traits.

  16. Effect of land use change on ecosystem function of dung beetles: experimental evidence from Wallacea Region in Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2011-07-01

    Full Text Available Shahabuddin (2011 Effect of land use change on ecosystem function of dung beetles: experimental evidence from Wallacea Region in Sulawesi, Indonesia. Biodiversitas 12: 177-181. The deforestation of tropical forests and their subsequent conversion to human-dominated land-use systems is one of the most significant causes of biodiversity loss. However clear understanding of the links between ecological functions and biodiversity is needed to evaluate and predict the true environmental consequences of human activities. This study provided experimental evidence comparing ecosystem function of dung beetles across a land use gradient ranging from natural tropical forest and agroforestry systems to open cultivated areas in Central Sulawesi. Therefore, standardized dung pats were exposed at each land-use type to assess dung removal and parasite suppression activity by dung beetles. The results showed that ecosystem function of dung beetles especially dung burial activity were remarkably disrupted by land use changes from natural forest to open agricultural area. Dung beetles presence enhanced about 53% of the total dung removed and reduced about 83% and 63% of fly population and species number respectively, indicating a pronounce contribution of dung beetles in our ecosystem.

  17. Impact of planting dates and insecticide strategies for managing crucifer flea beetles (Coleoptera: Chrysomelidae) in spring-planted canola.

    Science.gov (United States)

    Knodel, Janet J; Olson, Denise L; Hanson, Bryan K; Henson, Robert A

    2008-06-01

    Integration of cultural practices, such as planting date with insecticide-based strategies, was investigated to determine best management strategy for flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola (Brassica napus L.). We studied the effect of two spring planting dates of B. napus and different insecticide-based management strategies on the feeding injury caused by fleabeetles in North Dakota during 2002-2003. Adult beetle peak emergence usually coincided with the emergence of the early planted canola, and this resulted in greater feeding injury in the early planted canola than later planted canola. Use of late-planted canola may have limited potential for cultural control of flea beetle, because late-planted canola is at risk for yield loss due to heat stress during flowering. Flea beetle injury ratings declined when 1) the high rate of insecticide seed treatment plus a foliar insecticide applied 21 d after planting was used, 2) the high rate of insecticide seed treatment only was used, or 3) two foliar insecticide sprays were applied. These insecticide strategies provided better protection than the low rates of insecticide seed treatments or a single foliar spray, especially in areas with moderate-to-high flea beetle populations. The foliar spray on top of the seed treatment controlled later-emerging flea beetles as the seed treatment residual was diminishing and the crop became vulnerable to feeding injury. The best insecticide strategy for management of flea beetle was the high rate of insecticide seed treatment plus a foliar insecticide applied at 21 d after planting, regardless of planting date.

  18. Effect of food factor on microevolution of Colorado beetle

    Directory of Open Access Journals (Sweden)

    N. А. Ryabchenko

    2005-12-01

    Full Text Available Many-sided research of interaction of Colorado beetle and fodder plant (potato, nightshade sweetly-bitter defines the role of the plants as guiding factor of microevolutional processes in pest population.

  19. an assessment of methods for sampling carabid beetles

    African Journals Online (AJOL)

    Mgina

    collection of epigaeic (ground-dwelling) invertebrates (Southwood and Henderson,. 2000). It has been widely used for sampling carabid beetles in biodiversity inventories. (Niemela et al. 1994, Davies 2000, Nyundo. 2002), population and community ecology. (Greenslade 1968, Refseth, 1980,. Niemela1988, Niemela et al.

  20. Current knowledge on exocrine glands in carabid beetles: structure, function and chemical compounds.

    Science.gov (United States)

    Giglio, Anita; Brandmayr, Pietro; Talarico, Federica; Brandmayr, Tullia Zetto

    2011-01-01

    Many exocrine products used by ground beetles are pheromones and allomones that regulate intra- and interspecific interactions and contribute to their success in terrestrial ecosystems. This mini-review attempts to unify major themes related to the exocrine glands of carabid beetles. Here we report on both glandular structures and the role of secretions in carabid adults, and that little information is available on the ecological significance of glandular secretions in pre-imaginal stages.

  1. Association of the symbiotic fungi Fusarium euwallaceae, Graphium sp. and Acremonium sp., with the ambrosia beetle Euwallacea nr. fornicatus in avocado

    Science.gov (United States)

    The ambrosia beetle, Euwallacea nr. fornicatus (Coleoptera:Scolytinae), is a new invasive species to Israel. To date, the beetle has been recorded from 48 tree species representing 25 plant families. Amongst the most affected are avocado, castor-bean and box elder. Isolations from beetle heads revea...

  2. Effect of wettability and topological features of Namib beetle inspired bumps on dropwise condensation

    Science.gov (United States)

    Ahmad, Shakeel; Tang, Hui; Yao, Haimin

    2017-11-01

    The Stenocara beetle lives in arid desert environment where the only available source of water is fog droplets. The beetle contains many hydrophobic/hydrophilic bumps on its back. Water collection occurs on the hydrophilic patches. Once the droplet reaches the critical volume, it sheds down due to gravity. Although a number of studies on condensation and water collection on beetle inspired structures have been reported in literature, most of them were on micro/nano scale textures. However, in nature the beetle bumps are in millimeter scale. At this scale the role of topological features and gravity becomes crucial for early droplet shedding. Therefore, in this work we numerically investigated the effects of bump shape, wettability contrast, surface slope and hydrophilic patch to total area ratio on droplet shedding volume and time. A three-dimensional lattice Boltzmann method (LBM) based numerical framework was used for the simulations. Compared with bumps of other shapes such a cube or a circular cylinder, faster droplet shedding was obtained over a hemispherical bump. Furthermore, it was found that larger hydrophilic patch to total area ratio for the hemispherical bump significantly increased the droplet shedding time.

  3. Kettle Holes in the Agrarian Landscape: Isolated and Ecological Unique Habitats for Carabid Beetles (Col.: Carabidae and Spiders (Arach.: Araneae

    Directory of Open Access Journals (Sweden)

    Platen Ralph

    2016-11-01

    Full Text Available Kettle holes are small depressional wetlands and because of the high variability of site factors they are potential hotspots of biodiversity in the monotone arable land. We investigated eight kettle holes and two agrarian reference biotopes for carabid beetles and spiders. The animals were captured with pitfall traps from May to August 2005, along with surveys of the soil and vegetation. We asked whether each kettle hole has specific ecological properties which match with characteristic carabid beetle and spider coenoses and whether they represent isolated biotopes. Differences in the composition of ecological and functional groups of carabid beetles and spiders between the plots were tested with an ANOVA. The impact of the soil variables and vegetation structure on the distribution of species was analyzed with a Redundancy Analysis. The assemblage similarities between the kettle hole plots were calculated by the Wainstein-Index. Ecological groups and habitat preferences of carabid beetles had maximal expressions in seven different kettle holes whereas most of the ecological characteristics of the spiders had maximal expression in only two kettle holes. High assemblage similarity values of carabid beetle coenoses were observed only in a few cases whereas very similar spider coenoses were found between nearly all of the kettle holes. For carabid beetles, kettle holes represent much more isolated habitats than that for spiders. We concluded that kettle holes have specific ecological qualities which match with different ecological properties of carabid beetles and spiders and that isolation effects affect carabid beetles more than spiders.

  4. Establishment Success of the Beetle Tapeworm Hymenolepis diminuta Depends on Dose and Host Body Condition

    Science.gov (United States)

    Jane Cassidy, Elizabeth; Vitt Meyling, Nicolai

    2018-01-01

    Parasite effects on host fitness and immunology are often intensity-dependent. Unfortunately, only few experimental studies on insect-parasite interactions attempt to control the level of infection, which may contribute substantial variation to the fitness or immunological parameters of interest. The tapeworm Hymenolepis diminuta—flour beetle Tenebrio molitor model—has been used extensively for ecological and evolutionary host–parasite studies. Successful establishment of H. diminuta cysticercoids in T. molitor relies on ingestion of viable eggs and penetration of the gut wall by the onchosphere. Like in other insect models, there is a lack of standardization of the infection load of cysticercoids in beetles. The aims of this study were to: (1) quantify the relationship between exposure dose and establishment success across several H. diminuta egg concentrations; and (2) test parasite establishment in beetles while experimentally manipulating host body condition and potential immune response to infection. Different egg concentrations of H. diminuta isolated from infected rat feces were fed to individual beetles 7–10 days after eclosion and beetles were exposed to starvation, wounding, or insertion of a nylon filament one hour prior to infection. We found that the establishment of cysticercoids in relation to exposure dose could be accurately predicted using a power function where establishment success was low at three lowest doses and higher at the two highest doses tested. Long-term starvation had a negative effect on cysticercoid establishment success, while insertion of a nylon filament and wounding the beetles did not have any effect compared to control treatment. Thus, our results show that parasite load may be predicted from the exposure dose within the observed range, and that the relationship between dose and parasite establishment success is able to withstand some changes in host body condition. PMID:29401652

  5. Establishment Success of the Beetle Tapeworm Hymenolepis diminuta Depends on Dose and Host Body Condition

    Directory of Open Access Journals (Sweden)

    Suraj Dhakal

    2018-02-01

    Full Text Available Parasite effects on host fitness and immunology are often intensity-dependent. Unfortunately, only few experimental studies on insect-parasite interactions attempt to control the level of infection, which may contribute substantial variation to the fitness or immunological parameters of interest. The tapeworm Hymenolepis diminuta—flour beetle Tenebrio molitor model—has been used extensively for ecological and evolutionary host–parasite studies. Successful establishment of H. diminuta cysticercoids in T. molitor relies on ingestion of viable eggs and penetration of the gut wall by the onchosphere. Like in other insect models, there is a lack of standardization of the infection load of cysticercoids in beetles. The aims of this study were to: (1 quantify the relationship between exposure dose and establishment success across several H. diminuta egg concentrations; and (2 test parasite establishment in beetles while experimentally manipulating host body condition and potential immune response to infection. Different egg concentrations of H. diminuta isolated from infected rat feces were fed to individual beetles 7–10 days after eclosion and beetles were exposed to starvation, wounding, or insertion of a nylon filament one hour prior to infection. We found that the establishment of cysticercoids in relation to exposure dose could be accurately predicted using a power function where establishment success was low at three lowest doses and higher at the two highest doses tested. Long-term starvation had a negative effect on cysticercoid establishment success, while insertion of a nylon filament and wounding the beetles did not have any effect compared to control treatment. Thus, our results show that parasite load may be predicted from the exposure dose within the observed range, and that the relationship between dose and parasite establishment success is able to withstand some changes in host body condition.

  6. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles.

    Science.gov (United States)

    Thormann, Birthe; Ahrens, Dirk; Espinosa, Carlos Iván; Armijos, Diego Marín; Wagner, Thomas; Wägele, Johann W; Peters, Marcell K

    2018-03-09

    Elevational diversity gradients are typically studied without considering the complex small-scale topography of large mountains, which generates habitats of strongly different environmental conditions within the same elevational zones. Here we analyzed the importance of small-scale topography for elevational diversity patterns of hyperdiverse tropical leaf beetles (Coleoptera: Chrysomelidae). We compared patterns of elevational diversity and species composition of beetles in two types of forests (on mountain ridges and in valleys) and analyzed whether differences in the rate of species turnover among forest habitats lead to shifts in patterns of elevational diversity when scaling up from the local study site to the elevational belt level. We sampled beetle assemblages at 36 sites in the Podocarpus National Park, Ecuador, which were equally distributed over two forest habitats and three elevational levels. DNA barcoding and Poisson tree processes modelling were used to delimitate putative species. On average, local leaf beetle diversity showed a clear hump-shaped pattern. However, only diversity in forests on mountain ridges peaked at mid-elevation, while beetle diversity in valleys was similarly high at low- and mid-elevation and only declined at highest elevations. A higher turnover of species assemblages at lower than at mid-elevations caused a shift from a hump-shaped diversity pattern found at the local level to a low-elevation plateau pattern (with similar species numbers at low and mid-elevation) at the elevational belt level. Our study reveals an important role of small-scale topography and spatial scale for the inference on gradients of elevational species diversity.

  7. Successful Colonization of Lodgepole Pine Trees by Mountain Pine Beetle Increased Monoterpene Production and Exhausted Carbohydrate Reserves.

    Science.gov (United States)

    Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir

    2018-02-01

    Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.

  8. Influence of temperature on spring flight initiation for southwestern ponderosa pine bark beetles (Coleoptera: Curculionidae, Scolytinae)

    Science.gov (United States)

    M. L. Gaylord; K. K. Williams; R. W. Hofstetter; J. D. McMillin; T. E. Degomez; M. R. Wagner

    2008-01-01

    Determination of temperature requirements for many economically important insects is a cornerstone of pest management. For bark beetles (Coleoptera: Curculionidae, Scolytinae), this information can facilitate timing of management strategies. Our goals were to determine temperature predictors for flight initiation of three species of Ips bark beetles...

  9. STUDIES ON THE OCCURRENCE AND DAMAGE BY YAM TUBER BEETLES (HETEROLIGUS SPP IN ANIOCHA AND OSHIMILI AREAS OF DELTA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    F TOBIH

    2007-11-01

    Full Text Available A two-year (2001 and 2002 studies to evaluate the occurrence, population distribution and damage by yam beetles: Heteroligus spp was undertaken in four Local Government Areas in Delta State, Nigeria namely: Oshimili South and North, Aniocha South and North. Beetle population were sampled from farmers fields using light traps in selected locations in the Council areas. Sampling period was April to December for both years. Data collected were number of beetles caught per month, damage indices such as number and size of beetle feeding holes, percentage tuber attacked and tuber yield. Beetle occurrence began in May and were encountered till November. Peak population of beetle occurred in August across the location for the two-year trials. Beetle species comprised of H. meles Billb and H. appiusBurm with the former, the most abundant species regarding the number caught across the locations. Oshimili North and South had higher beetle feeding holes significant at (P < 0.05 than Aniocha South and North for both years and across the locations. No significant difference in size of feeding hole but in terms of percentage tuber attacked, Oshimili South showed higher attack significantly different than Aniocha North both in 2001 and 2002 but not significantly higher than attacked in Oshimili North and Aniocha South in 2001. However, there were no significant difference in the yield of tuber across the locations and for the two-year period. Yam beetle is still a serious insect pest of yam and the two species responsible for tuber damages are H. meles Billb and H. appius Burm in these areas.

  10. Economic Impacts of the Southern Pine Beetle

    Science.gov (United States)

    John M. Pye; Thomas P. Holmes; Jeffrey P. Prestemon; David N. Wear

    2011-01-01

    This paper provides an overview of the timber economic impacts of the southern pine beetle (SPB). Although we anticipate that SPB outbreaks cause substantial economic losses to households that consume the nonmarket economic services provided by healthy forests, we have narrowly focused our attention here on changes in values to timber growers and wood-products...

  11. Risk Assessment for the Southern Pine Beetle

    Science.gov (United States)

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  12. Effects of knowledge of an endangered species on recreationists' attitudes and stated behaviors and the significance of management compliance for ohlone tiger beetle conservation.

    Science.gov (United States)

    Cornelisse, Tara M; Duane, Timothy P

    2013-12-01

    Recreation is a leading cause of species decline on public lands, yet sometimes it can be used as a tool for conservation. Engagement in recreational activities, such as hiking and biking, in endangered species habitats may even enhance public support for conservation efforts. We used the case of the endangered Ohlone tiger beetle (Cicindela ohlone) to investigate the effect of biking and hiking on the beetle's behavior and the role of recreationists' knowledge of and attitudes toward Ohlone tiger beetle in conservation of the species. In Inclusion Area A on the University of California Santa Cruz (U.S.A.) campus, adult Ohlone tiger beetles mate and forage in areas with bare ground, particularly on recreational trails; however, recreation disrupts these activities. We tested the effect of recreation on Ohlone tiger beetles by observing beetle behavior on trails as people walked and road bikes at slow and fast speed and on trails with no recreation. We also surveyed recreationists to investigate how their knowledge of the beetle affected their attitudes toward conservation of the beetle and stated compliance with regulations aimed at beetle conservation. Fast cycling caused the beetles to fly off the trail more often and to fly farther than slow cycling or hiking. Slow cycling and hiking did not differ in their effect on the number of times and distance the beetles flew off the trail. Recreationists' knowledge of the beetle led to increased stated compliance with regulations, and this stated compliance is likely to have tangible conservation outcomes for the beetle. Our results suggest management and education can mitigate the negative effect of recreation and promote conservation of endangered species. Efectos del Conocimiento de una Especie en Peligro sobre las Actitudes y Comportamientos Declarados de los Recreacionistas y el Significado del Manejo de la Conformidad para la Conservación del Escarabajo Tigre de Ohlone. © 2013 Society for Conservation Biology.

  13. The Trade-off Between Housing Density and Sprawl Area: Minimizing Impacts to Carabid Beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Sara A. Gagné

    2010-12-01

    Full Text Available Increasing housing density has negative effects on native biodiversity. This implies that we should build at low density to conserve native species. However, for a given human population, low-density development must cover a large area, resulting in sprawl. A pertinent question is then, at what housing density are the impacts of a given human population on native biodiversity minimized? We addressed this question with carabid beetles in Ottawa and Gatineau, Canada. First, we collected beetles at 22 sites representing a range of housing densities. We then used these data to estimate beetle abundance and species richness in hypothetical development scenarios representing the housing density/sprawl area trade-off. Our results suggest that clustering development at a high housing density minimizes the impacts of a given human population on carabid beetles. If these results are general across all forest taxa, then planning that favors densification rather than sprawl would minimize urbanization effects on forest biodiversity.

  14. Diversity of forensic rove beetles (Coleoptera, Staphylinidae) associated with decaying pig carcass in a forest biotope.

    Science.gov (United States)

    Dekeirsschieter, Jessica; Frederick, Christine; Verheggen, Francois J; Drugmand, Didier; Haubruge, Eric

    2013-07-01

    Most forensic studies are focused on Diptera pattern colonization while neglecting Coleoptera succession. So far, little information is available on the postmortem colonization by beetles and the decomposition process they initiate under temperate biogeoclimatic countries. These beetles have, however, been referred to as being part of the entomofaunal colonization of a dead body. Forensic entomologists need increased databases detailing the distribution, ecology, and phenology of necrophagous insects, including staphylinids (Coleoptera, Staphylinidae). While pig carcasses are commonly used in forensic entomology studies to surrogate human decomposition and to investigate the entomofaunal succession, very few works have been conducted in Europe on large carcasses. Our work reports the monitoring of the presence of adult rove beetles (Coleoptera, Staphylinidae) on decaying pig carcasses in a forest biotope during four seasons (spring, summer, fall, and winter). A total of 23 genera comprising 60 species of rove beetles were collected from pig carcasses. © 2013 American Academy of Forensic Sciences.

  15. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeanne A Robert

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  16. Limonene: attractant kairomone for white pine cone beetles (Coleoptera: Scolytidae) in an Eastern white pine seed orchard in Western North Carolina

    Science.gov (United States)

    Daniel R. Miller

    2007-01-01

    I report on the attraction of the white pine cone beetle, Canophthorus coniperda (Schwarz) (Coleoptera: Scolytidae), to traps baited with the host monoterpene limonene in western North Carolina. Both (+)- and (-)-limonene attracted male and female cone beetles to Japenese beetle traps in an eastern white pine, Pinus strobus L. seed...

  17. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2016-01-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...

  18. Current knowledge on exocrine glands in carabid beetles: structure, function and chemical compounds

    Directory of Open Access Journals (Sweden)

    Anita Giglio

    2011-05-01

    Full Text Available Many exocrine products used by ground beetles are pheromones and allomones that regulate intra- and interspecific interactions and contribute to their success in terrestrial ecosystems. This mini-review attempts to unify major themes related to the exocrine glands of carabid beetles. Here we report on both glandular structures and the role of secretions in carabid adults, and that little information is available on the ecological significance of glandular secretions in pre-imaginal stages.

  19. Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles

    Science.gov (United States)

    Rick G. Kelsey; D. Gallego; F.J. Sánchez-Garcia; J.A. Pajares

    2014-01-01

    Tree mortality from temperature-driven drought is occurring in forests around the world, often in conjunction with bark beetle outbreaks when carbon allocation to tree defense declines. Physiological metrics for detecting stressed trees with enhanced vulnerability prior to bark beetle attacks remain elusive. Ethanol, water, monoterpene concentrations, and composition...

  20. Efficient ethanol production from beetle-killed lodgepole pine using SPORL technology and Saccharomyces cerevisiae without detoxification

    Science.gov (United States)

    Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn

    2011-01-01

    This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...

  1. Assessing meteorological key factors influencing crop invasion by pollen beetle (

    Directory of Open Access Journals (Sweden)

    Jürgen Junk

    2016-09-01

    Full Text Available The pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae, is a severe pest of winter oilseed rape. A phenological model to forecast the first spring invasion of crops in Luxembourg by M. aeneus was developed in order to provide a tool for improving pest management and for assessing the potential effects of climate change on this pest. The model was derived using long-term, multi-site observational datasets of pollen beetle migration and meteorological data, as the timing of crop invasion is determined mainly by meteorological variables. Daily values of mean air and soil temperature, accumulated sunshine duration and precipitation were used to create a threshold-based model to forecast crop invasion. Minimising of the root mean squared error (RMSE of predicted versus observed migration dates was used as the quality criterion for selecting the optimum combination of threshold values for meteorological variables. We identified mean air temperature 8.0 °C, mean soil temperature 4.6 °C, and sunshine duration of 3.4 h as the best threshold values, with a cut-off of 1 mm precipitation and with no need for persistence of those conditions for more than one day (RMSE=9.3days$RMSE=9.3\\,\\text{days}$. Only in six out of 30 cases, differences between observed and predicted immigration dates were >5$>5$ days. In the future, crop invasion by pollen beetles will probably be strongly affected by changes in air temperature and precipitation related to climate change. We used a multi-model ensemble of 15 regional climate models driven by the A1B emission scenario to assess meteorological changes in two 30‑year future periods, near future (2021–2050 and far future (2069–2098 in comparison with the reference period (1971–2000. Air temperature and precipitation were predicted to increase in the first three months of each year, both in the near future and the far future. The pollen beetle migration model indicated that this change would

  2. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae

    Directory of Open Access Journals (Sweden)

    Valentina Amore

    2017-05-01

    Full Text Available The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal

  3. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae).

    Science.gov (United States)

    Amore, Valentina; Hernández, Malva I M; Carrascal, Luis M; Lobo, Jorge M

    2017-01-01

    The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae) differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal control of body

  4. Why Mountain Pine Beetle Exacerbates a Principal-agent Relationship: Exploring Strategic Policy Responses to Beetle Attack in a Mixed Species Forest

    NARCIS (Netherlands)

    Bogle, T.; Kooten, van G.C.

    2012-01-01

    The management of public forestland is often carried out by private forest companies, in which case the landowner needs to exercise care in dealing with catastrophic natural disturbance. We use the mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) damage in British Columbia to explore how

  5. [Behavioral mechanisms of spatial competition between red wood ants (Formica aquilonia) and ground beetles (Carabidae)].

    Science.gov (United States)

    Dorosheva, E A; Reznikova, Zh I

    2006-01-01

    Behavioral aspects of spatial competition between red wood ants (Formica aquilonia) and six mass species of Carabidae were studied in field and laboratory experiments. We showed that red wood ants essentially influence spatial distribution of ground beetles on their common territories. Transplantation experiments suggest that in newly established ants' settlements stronger forms of interrelations arise than in old stable colony. To examine the ability of beetles to avoid collisions with ants we used two experimental techniques. In laboratory, we tested carabids ability to avoid a clash in a Y-shaped labyrinth containing an active tethered ant in one section. In field experiments we compared quantitative characteristics of movements (such as crookedness of individual trajectories, speed of movement, the time spent on stops) for beetles placed close to ants foraging routes and on ant-free plots. All beetles studied displayed a clear tendency to learn, that is, to modity their behavior in order to avoid collisions with ants. Species that exhibited best parameters of learning were closer to ants by their size and characteristic movement, namely, Pterostichus oblogopunctatus and P. magus. Beetles' stereotyped behavioral tactics can be considered universal for avoiding collisions with any subject (for instance, with an ant) of a certain size and speed of movements. A set of tactics in the labyrinth included: (1) attempts to round the ant; (2) turns away after touching the ant with antennae; (3) turns away without a contact; (4) avoidances of a dangerous section; (5) stops near the ant with the antennae hidden. Comparing pairwise difference between four species shows that beetles use species-specific preference for definite combinations of tactics. Effective learning allows carabids to penetrate into ant foraging territory and partly avoide interference competition. It seems that red wood ants are not inclined to learn to avoid collisions with competing carabid species

  6. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.

    Directory of Open Access Journals (Sweden)

    Jonathan A Cale

    Full Text Available Mountain pine beetle (Dendroctonus ponderosae has killed millions of hectares of pine forests in western North America. Beetle success is dependent upon a community of symbiotic fungi comprised of Grosmannia clavigera, Ophiostoma montium, and Leptographium longiclavatum. Factors regulating the dynamics of this community during pine infection are largely unknown. However, fungal volatile organic compounds (FVOCs help shape fungal interactions in model and agricultural systems and thus may be important drivers of interactions among bark beetle-associated fungi. We investigated whether FVOCs can mediate interspecific interactions among mountain pine beetle's fungal symbionts by affecting fungal growth and reproduction. Headspace volatiles were collected and identified to determine species-specific volatile profiles. Interspecific effects of volatiles on fungal growth and conidia production were assessed by pairing physically-separated fungal cultures grown either on a carbon-poor or -rich substrate, inside a shared-headspace environment. Fungal VOC profiles differed by species and influenced the growth and/or conidia production of the other species. Further, our results showed that FVOCs can be used as carbon sources for fungi developing on carbon-poor substrates. This is the first report demonstrating that FVOCs can drive interactions among bark beetle fungal symbionts, and thus are important factors in beetle attack success.

  7. Effect of summer fire on cursorial spider (Aranei and beetle (Coleoptera assemblages in meadow steppes of Central European Russia

    Directory of Open Access Journals (Sweden)

    Polchaninova Nina

    2016-12-01

    Full Text Available Fire is an important structuring force for grassland ecosystems. Despite increased incidents of fire in European steppes, their impact on arthropod communities is still poorly studied. We assessed short-term changes in cursorial beetle and spider assemblages after a summer fire in the meadow steppe in Central European Russia. The responses of spider and beetle assemblages to the fire event were different. In the first post-fire year, the same beetle species dominated burnt and unburnt plots, the alpha-diversity of beetle assemblages was similar, and there were no pronounced changes in the proportions of trophic groups. Beetle species richness and activity density increased in the second post-fire year, while that of the spiders decreased. The spider alpha-diversity was lowest in the first post-fire year, and the main dominants were pioneer species. In the second year, the differences in spider species composition and activity density diminished. The main conclusion of our study is that the large-scale intensive summer fire caused no profound changes in cursorial beetle and spider assemblages of this steppe plot. Mitigation of the fire effect is explained by the small plot area, its location at the edge of the fire site and the presence of adjacent undisturbed habitats with herbaceous vegetation.

  8. Metal fate and partitioning in soils under bark beetle-killed trees

    Energy Technology Data Exchange (ETDEWEB)

    Bearup, Lindsay A., E-mail: lbearup@mines.edu [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Mikkelson, Kristin M. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Wiley, Joseph F. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Navarre-Sitchler, Alexis K.; Maxwell, Reed M. [Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Sharp, Jonathan O.; McCray, John E. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid–liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of

  9. Performance of Asian longhorned beetle among tree species

    Science.gov (United States)

    Kelli Hoover; Scott Ludwig; James Sellmer; Deborah McCullough; Laura Lazarus

    2003-01-01

    Two procedures were evaluated for assessing susceptibility of a variety of tree species to Anoplophora glabripennis. In the first procedure, adult beetles were caged with a section of sugar maple, northern red oak, white oak, honeylocust, eastern cottonwood, sycamore or tulip poplar wood and allowed to oviposit.

  10. Ambrosia beetles associated with laurel wilt of avocado

    Science.gov (United States)

    Redbay ambrosia beetle, Xyleborus glabratus, is an exotic wood-boring pest first detected in 2002 near Savannah, Georgia. The beetle’s dominant fungal symbiont, Raffaelea lauricola, is the pathogen that causes laurel wilt, a lethal disease of trees in the family Lauraceae. Laurel wilt has since spr...

  11. Molecular genetic pathway analysis of Asian longhorned beetle

    Science.gov (United States)

    Evan. Braswell

    2011-01-01

    The Asian longhorned beetle, Anoplophora glabripennis, is a destructive pest of hardwood trees. Historically, A. glabripennis was geographically restricted within China and Korea and not of economic importance. However, as a result of massive reforestation programs designed to combat desertification, the species emerged as a pest...

  12. Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields

    DEFF Research Database (Denmark)

    Steenberg, T; Langer, V; Esbjerg, P

    1995-01-01

    beetles were low (Carabidae: max. 7.6%, Staphylinidae: max. 7.0%). in comparison, prevalence of entomopathogenic fungi in carabid larvae was high (19-50%). At one study site an epizootic of Beauveria bassiana was observed, infecting 67% of staphylinid Anotylus rugosus and 37% of the staphylinid Gyrohypnus...... angustatus. Beauveria bassiana was the predominant fungus isolated from ground beetles and rove beetles from all studied sites. Other fungal species included the hyphomycetes Metarhizium anisopliae, Paecilomyces farinosus and Verticillium lecanii as well as Zoophthora radicans and Zoophthora philonthi...... (Zygomycetes: Entomophthorales). Two individuals of Anotylus rugosus were found to have a dual infection of Zoophthora philonthi and Beauveria bassiana...

  13. 1H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle

    Directory of Open Access Journals (Sweden)

    Hartwig Peemoeller

    2010-12-01

    Full Text Available In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as well as the fact that wood from the grey-stage of attack cycles seasonally through adsorption and desorption in the stand.

  14. ¹H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle.

    Science.gov (United States)

    Todoruk, Tara M; Hartley, Ian D; Teymoori, Roshanak; Liang, Jianzhen; Peemoeller, Hartwig

    2010-12-31

    In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as well as the fact that wood from the grey-stage of attack cycles seasonally through adsorption and desorption in the stand.

  15. Response of Coprophagus Beetles (Coleoptera: Scarabaeidae on changes of vegetation structure in various habitat types at Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    CHRISTIAN H. SCHULZE

    2007-01-01

    Full Text Available This study analysed the response of dung beetles − a group of beetles which play a major role in decomposition of dung and animal carcasses − to changes of vegetation structure due to forest conversion to different human-made habitat types at the margin of Lore Lindu National Park. Therefore, dung beetles were sampled at natural forest, cacao agroforestry systems and open area. A total of 28 species of coprophagus beetle species were recorded from the sampled sites. Species richness and abundance of dung beetles, particularly of large species, decreased from forest towards agroforestry systems and open areas. However, more than 80 % of the species recorded in natural forest were found in cacao agroforestry systems Of the measured habitat parameters, particularly the number of tree species, air temperature, and canopy cover had a significant power for explaining changes in dung beetle ensembles along the gradient of land-use intensity.

  16. Behavior of Paussus favieri (Coleoptera, Carabidae, Paussini: A Myrmecophilous Beetle Associated with Pheidole pallidula (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Emanuela Maurizi

    2012-01-01

    Full Text Available Several specimens of the myrmecophilous beetle Paussus favieri were reared in ant nests of Pheidole pallidula. Their interactions were recorded and all behaviors observed are described. Duration and frequency of five behaviors of P. favieri were analyzed with ANOVA and post hoc Tukey tests; these comprised rewarding, antennal shaking, antennation, escape, and “no contact”. Significant differences both in duration and in frequency among behaviors were detected. The main result is that the rewarding behavior, during which the beetle provides attractive substances to the host, is performed significantly more frequently than all others. This result strongly supports the hypothesis that the chemicals provided by the beetles and licked by the ants are of great importance for the acceptance and the full integration of P. favieri in the ant society. This result also suggests that, contrary to previous findings and interpretations, the myrmecophilous strategy of P. favieri is very similar to the symphilous strategy described for P. turcicus. The occasional interactions of some beetle specimens with the P. pallidula queen were recorded, illustrated, and discussed, indicating the possibility of a more complex strategy of P. favieri involving a chemical mimicry with the queen. In addition, the courtship performed by the beetle is described for the first time, together with a peculiar “cleaning” behavior, which we hypothesize functions to spread antennal chemicals over the body surfaces.

  17. Occurrence of cavernicolous ground beetles in Anhui Province, eastern China (Coleoptera, Carabidae, Trechinae).

    Science.gov (United States)

    Fang, Jie; Li, Wenbo; Tian, Mingyi

    2016-01-01

    Two new species of anophthalmic ground beetles belonging to the subfamily Trechinae are described: Cimmeritodes (Zhecimmerites) parvus Tian & Li, sp. n. and Wanoblemus wui Tian & Fang, gen. n., sp. n. Both were discovered in the limestone caves of Anhui Province in eastern China. Cimmeritodes (Zhecimmerites) parvus was found in caves Ziwei Dong, Xianren Dong and Qingtai Dong, whereas Wanoblemus wui was discovered in cave Baiyun Dong. This is the first record of cavernicolous ground beetles in Anhui Province, eastern China.

  18. Occurrence of cavernicolous ground beetles in Anhui Province, eastern China (Coleoptera, Carabidae, Trechinae

    Directory of Open Access Journals (Sweden)

    Jie Fang

    2016-10-01

    Full Text Available Two new species of anophthalmic ground beetles belonging to the subfamily Trechinae are described: Cimmeritodes (Zhecimmerites parvus Tian & Li, sp. n. and Wanoblemus wui Tian & Fang, gen. n., sp. n. Both were discovered in the limestone caves of Anhui Province in eastern China. C. (Z. parvus was found in caves Ziwei Dong, Xianren Dong and Qingtai Dong, whereas W. wui was discovered in cave Baiyun Dong. This is the first record of cavernicolous ground beetles in Anhui Province, eastern China.

  19. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  20. Synopsis of the cyclocephaline scarab beetles (Coleoptera, Scarabaeidae, Dynastinae).

    Science.gov (United States)

    Moore, Matthew R; Cave, Ronald D; Branham, Marc A

    2018-01-01

    The cyclocephaline scarabs (Scarabaeidae: Dynastinae: Cyclocephalini) are a speciose tribe of beetles that include species that are ecologically and economically important as pollinators and pests of agriculture and turf. We provide an overview and synopsis of the 14 genera of Cyclocephalini that includes information on: 1) the taxonomic and nomenclatural history of the group; 2) diagnosis and identification of immature life-stages; 3) economic importance in agroecosystems; 4) natural enemies of these beetles; 5) use as food by humans; 6) the importance of adults as pollination mutualists; 7) fossil cyclocephalines and the evolution of the group; 8) generic-level identification of adults. We provide an expanded identification key to genera of world Cyclocephalini and diagnoses for each genus. Character illustrations and generic-level distribution maps are provided along with discussions on the relationships of the tribe's genera.

  1. Synopsis of the cyclocephaline scarab beetles (Coleoptera, Scarabaeidae, Dynastinae

    Directory of Open Access Journals (Sweden)

    Matthew R. Moore

    2018-03-01

    Full Text Available The cyclocephaline scarabs (Scarabaeidae: Dynastinae: Cyclocephalini are a speciose tribe of beetles that include species that are ecologically and economically important as pollinators and pests of agriculture and turf. We provide an overview and synopsis of the 14 genera of Cyclocephalini that includes information on: 1 the taxonomic and nomenclatural history of the group; 2 diagnosis and identification of immature life-stages; 3 economic importance in agroecosystems; 4 natural enemies of these beetles; 5 use as food by humans; 6 the importance of adults as pollination mutualists; 7 fossil cyclocephalines and the evolution of the group; 8 generic-level identification of adults. We provide an expanded identification key to genera of world Cyclocephalini and diagnoses for each genus. Character illustrations and generic-level distribution maps are provided along with discussions on the relationships of the tribe’s genera.

  2. Large herbivores affect forest ecosystem functions by altering the structure of dung beetle communities

    Science.gov (United States)

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2018-04-01

    Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.

  3. Elevational Distribution of Flightless Ground Beetles in the Tropical Rainforests of North-Eastern Australia.

    Science.gov (United States)

    Staunton, Kyran M; Nakamura, Akihiro; Burwell, Chris J; Robson, Simon K A; Williams, Stephen E

    2016-01-01

    Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation

  4. Estimating aboveground tree biomass for beetle-killed lodgepole pine in the Rocky Mountains of northern Colorado

    Science.gov (United States)

    Woodam Chung; Paul Evangelista; Nathaniel Anderson; Anthony Vorster; Hee Han; Krishna Poudel; Robert Sturtevant

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic has affected millions of hectares of conifer forests in the Rocky Mountains. Land managers are interested in using biomass from beetle-killed trees for bioenergy and biobased products, but they lack adequate information to accurately estimate biomass in stands with heavy mortality. We...

  5. Alternative timing of carbaryl treatments for protecting lodgepole pine from mortality attributed to mountain pine beetle

    Science.gov (United States)

    Christopher J. Fettig; A.Steve Munson; Kenneth E. Gibson

    2015-01-01

    Carbaryl is regarded among the most effective, economically viable, and ecologically-compatible insecticides available for protecting conifers from bark beetle attack in the western United States. Treatments are typically applied in spring prior to initiation of bark beetle flight for that year. We evaluated the efficacy of spring and fall applications for protecting...

  6. Effect of gamma irradiation on khapra beetle Trogoderma granarium everts

    International Nuclear Information System (INIS)

    Makee, H.; Saour, G.

    2002-09-01

    The effect of gamma irradiation on all developmental stages of khapra beetle was examined. The results showed that when higher doses were applied and immature stages were treated the developmental time, larval and pupal mortality and adults' deformation were increased. Whereas, the fecundity and fertility of the emerged adults resulted from the treatment of immature stages, were increased when old eggs, larvae and pupae were treated with low doses. When newly emerged adults were irradiated the longevity of the male and the female was not affected, while the fecundity and fertility were declined especially when high doses were applied. The female of khapra beetle was more radiosensitive than the male, regardless of the applied dose or/and the treated developmental stage. (author)

  7. Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    2016-01-01

    Full Text Available The Brazilian Atlantic Forest is one of the world's biodiversity hotspots, and is currently highly fragmented and disturbed due to human activities. Variation in environmental conditions in the Atlantic Forest can influence the distribution of species, which may show associations with some environmental features. Dung beetles (Coleoptera: Scarabaeinae are insects that act in nutrient cycling via organic matter decomposition and have been used for monitoring environmental changes. The aim of this study is to identify associations between the spatial distribution of dung beetle species and Atlantic Forest structure. The spatial distribution of some dung beetle species was associated with structural forest features. The number of species among the sampling sites ranged widely, and few species were found in all remnant areas. Principal coordinates analysis indicated that species composition, abundance and biomass showed a spatially structured distribution, and these results were corroborated by permutational multivariate analysis of variance. The indicator value index and redundancy analysis showed an association of several dung beetle species with some explanatory environmental variables related to Atlantic Forest structure. This work demonstrated the existence of a spatially structured distribution of dung beetles, with significant associations between several species and forest structure in Atlantic Forest remnants from Southern Brazil. Keywords: Beta diversity, Species composition, Species diversity, Spatial distribution, Tropical forest

  8. A COMPARATIVE ANALYSIS OF SPECIES COMPOSITION OF GROUND BEETLES OF COASTAL AND ISLAND ECOSYSTEMS OF THE WESTERN CASPIAN

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2011-01-01

    Full Text Available For the first time studied the species composition of ground beetles of coastal and island ecosystems of the Western Caspian. The article provides a comparative analysis of species composition of ground beetles and adjacent areas.

  9. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors

    Science.gov (United States)

    Byers, John A.; Zhang, Qing-He; Birgersson, Göran

    The bark beetle, Pityogenes bidentatus (Coleoptera: Scolytidae), searches in mixed conifer and deciduous forests of northern Europe for suitable branches of its host, Scots pine (Pinus sylvestris). We tested whether odors from several diverse nonhost trees and plants common in the habitat (e.g., mountain ash, Sorbus aucuparia; oak, Quercus robur; alder buckthorn, Frangula alnus; blueberry, Vaccinium myrtillus; raspberry, Rubus idaeus; and grass, Deschampsia flexuosa) would reduce the attraction of the bark beetle to traps releasing its aggregation pheromone components in the field. Volatiles from the leaves or bark of each of these plants significantly reduced the attraction of the beetles to their pheromone. Odors collected from these nonhosts and analyzed by GC/MS contained monoterpenes, sesquiterpenes, and ``green-leaf'' alcohols, several of which (e.g., 1-octene-3-ol and β-caryophyllene) reduced the attraction to pheromone in the field and elicited electroantennographic responses. In the laboratory, reproduction by the beetle was marginal in nonhost Norway spruce, Picea abies, and was absent in the other nonhost trees. Olfactory avoidance of unsuitable nonhosts may have evolved due to advantages in avoiding mistakes during host selection.

  10. Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their response to laboratory rearing and antibiotic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Michael Lehman

    2008-06-01

    Ground beetles such as Poecilus chalcites (Coleoptera: Carabidae) are beneficial insects in agricultural systems where they contribute to the control of insect and weed pests. We assessed the complexity of bacterial communities occurring in the digestive tracts of field-collected P. chalcites using terminal restriction fragment length polymorphism analyses of polymerase chain reaction-amplified 16S rRNA genes. Bacterial identification was performed by the construction of 16S rRNA gene clone libraries and sequence analysis. Intestinal bacteria in field-collected beetles were then compared to those from groups of beetles that were reared in the lab on an artificial diet with and without antibiotics. Direct cell counts estimated 1.5 × 10S bacteria per milliliter of gut. The digestive tract of field-collected P. chalcites produced an average of 4.8 terminal restriction fragments (tRF) for each beetle. The most abundant clones were affiliated with the genus Lactobacillus, followed by the taxa Enterobacteriaceae, Clostridia, and Bacteriodetes. The majority of the sequences recovered were closely related to those reported from other insect gastrointestinal tracts. Lab-reared beetles produced fewer tRF, an average of 3.1 per beetle, and a reduced number of taxa with a higher number of clones from the family Enterobacteriaceae compared to the field-collected beetles. Antibiotic treatment significantly (p < 0.05) reduced the number of tRF per beetle and selected for a less diverse set of bacterial taxa. We conclude that the digestive tract of P. chalcites is colonized by a simple community of bacteria that possess autochthonous characteristics. Laboratory-reared beetles harbored the most common bacteria found in field-collected beetles, and these bacterial communities may be manipulated in the laboratory with the addition of antibiotics to the diet to allow study of functional roles.

  11. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  12. Impacts of beetle-induced forest mortality on carbon, water and nutrient cycling in the Rocky Mountains

    Science.gov (United States)

    Elise Pendall; Brent Ewers; Urszula Norton; Paul Brooks; W. J. Massman; Holly Barnard; David Reed; Tim Aston; John Frank

    2010-01-01

    Conifer forests across western North America are undergoing a widespread mortality event mediated by an epidemic outbreak of bark beetles of the genus Dendroctonus and their associated bluestain fungi (Ophiostoma spp.). As of late 2009, beetles have impacted over 600,000 hectares in northern Colorado and southern Wyoming (US Forest Service aerial survey estimates),...

  13. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    Science.gov (United States)

    Tabata, Jun; De Moraes, Consuelo M; Mescher, Mark C

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  14. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    Directory of Open Access Journals (Sweden)

    Jun Tabata

    Full Text Available Powdery mildews (Erysiphales are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata infected by powdery mildew (Podosphaera sp. and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  15. Checklist of the Iranian Ground Beetles (Coleoptera; Carabidae).

    Science.gov (United States)

    Azadbakhsh, Saeed; Nozari, Jamasb

    2015-09-30

    An up-to-date checklist of the ground beetles of Iran is presented. Altogether 955 species and subspecies in 155 genera belonging to 26 subfamilies of Carabidae are reported; 25 taxa are recorded for Iran for the fist time. New localities are listed and some previous distributional records are discussed.

  16. [Effects of different soil and water loss control measures on the dung beetle assemblages in Huangfuchuan watershed, Inner Mongolia of North China].

    Science.gov (United States)

    Liu, Wei; Wang, Run-Run; Liu, Xin-Min

    2013-03-01

    By using pitfall trap method, and taking the croplands and natural grasslands under different soil and water loss control measures as sampling plots, an investigation was conducted on the dung beetle assemblages in the Huangfuchuan watershed of Inner Mongolia from September 2007 to September 2008, aimed to understand the effects of different soil and water loss control measures on the dung beetle assemblages in the watershed. A total of 6169 dung beetles were captured, belonging to 15 species, 5 genus, and 2 families. The dominant species were Aphodius rectus and Onthophagus gibbulus, accounting for 66. 54% and 13. 26% of the total captured beetles, respectively. A lack of the species suitable for living in woodland habitats was the basic feature of the dung beetle assemblages. As compared with the control, all test soil and water loss control measures did not cause an obvious increase of species richness, biomass, and abundance of the dung beetle assemblages. The biomass and species richness of the assemblages as well as the abundance of the functional groups II and III had a significant negative correlation with the average tree (grass) height. Under the effects of long-term agricultural cultivation and the lack of large herbivores, the species richness and abundance of the functional group I (larger paracoprids and telocoprids) were lower than those of the functional groups II (relatively smaller paracoprids) and II (endocoprids), the main components of the dung beetle assemblages in the watershed. The faeces of the residents and livestock in the study region provided abundant foods for the dung beetle assemblages, inducing the relatively high abundance and spices richness of the assemblages occurred in the croplands nearby the villages. Our results suggested that natural grasslands were the suitable habitats for the dung beetles in Huangfuchuan watershed. At regional scale, to popularize the successful experiences of comprehensive soil and water loss control

  17. Assemblages of saproxylic beetles on large downed trunks of oak.

    Science.gov (United States)

    Milberg, Per; Bergman, Karl-Olof; Sancak, Kerem; Jansson, Nicklas

    2016-03-01

    Old living oaks (Quercus robur) are known as a very species-rich habitat for saproxylic beetles, but it is less clear to what extent such veteran trees differ from an even rarer feature: downed trunks of large oaks. In this study, we set out to sample this habitat, using window traps, with two aims: (1) to describe the variation of assemblages among downed trunks of different type and (2) to compare beetles on downed oaks with data from veteran standing trees. The results showed that trunk volume and sun exposure better explained assemblages as well as species numbers on downed trunks than did decay stage. Furthermore, species classified as facultative saproxylic species showed weak or no differentiation among downed trunks. Species with different feeding habits showed no apparent differentiation among downed trunks. Furthermore, species composition on dead, downed oak trunks differed sharply from that of living, veteran oaks. Wood or bark feeders were more common on veterans than downed trunks, but there was no difference for those species feeding on fungi or those feeding on insects and their remains. In conclusion, for a successful conservation of the saproxylic beetle fauna it is important to keep downed oak trunks, and particularly large ones, in forest and pastures as they constitute a saproxylic habitat that differs from that of living trees.

  18. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae.

    Directory of Open Access Journals (Sweden)

    Anne M Estes

    Full Text Available Insects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae feeds primarily, or exclusively, on dung. These associations suggest that dung beetles may benefit from mutualistic bacteria that provide nutrients missing from dung. The nesting behaviors of the female parent and the feeding behaviors of the larvae suggest that a microbiome could be vertically transmitted from the parental female to her offspring through the brood ball. Using sterile rearing and a combination of molecular and culture-based techniques, we examine transmission of the microbiome in the bull-headed dung beetle, Onthophagus taurus. Beetles were reared on autoclaved dung and the microbiome was characterized across development. A ~1425 bp region of the 16S rRNA identified Pseudomonadaceae, Enterobacteriaceae, and Comamonadaceae as the most common bacterial families across all life stages and populations, including cultured isolates from the 3(rd instar digestive system. Finer level phylotyping analyses based on lepA and gyrB amplicons of cultured isolates placed the isolates closest to Enterobacter cloacae, Providencia stuartii, Pusillimonas sp., Pedobacter heparinus, and Lysinibacillus sphaericus. Scanning electron micrographs of brood balls constructed from sterile dung reveals secretions and microbes only in the chamber the female prepares for the egg. The use of autoclaved dung for rearing, the presence of microbes in the brood ball and offspring, and identical 16S rRNA sequences in both parent and offspring suggests that the O. taurus female parent transmits specific microbiome members to her offspring through the brood

  19. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    Science.gov (United States)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body

  20. Predicting live and dead tree basal area of bark beetle affected forests from discrete-return lidar

    Science.gov (United States)

    Benjamin C. Bright; Andrew T. Hudak; Robert McGaughey; Hans-Erik Andersen; Jose Negron

    2013-01-01

    Bark beetle outbreaks have killed large numbers of trees across North America in recent years. Lidar remote sensing can be used to effectively estimate forest biomass, but prediction of both live and dead standing biomass in beetle-affected forests using lidar alone has not been demonstrated. We developed Random Forest (RF) models predicting total, live, dead, and...

  1. Technoeconomic and policy drivers of project performance for bioenergy alternatives using biomass from beetle-killed trees

    Science.gov (United States)

    Robert M. Campbell; Nathaniel M. Anderson; Daren E. Daugaard; Helen T. Naughton

    2018-01-01

    As a result of widespread mortality from beetle infestation in the forests of the western United States, there are substantial stocks of biomass suitable as a feedstock for energy production. This study explored the financial viability of four production pathway scenarios for the conversion of beetle-killed pine to bioenergy and bioproducts in the Rocky Mountains....

  2. Deterioration of beetle-killed Douglas-fir in Oregon and Washington: a summary of findings to date.

    Science.gov (United States)

    Ernest Wright; K.H. Wright

    1954-01-01

    In 1952 and 1953 cooperative research was conducted by the Pacific Northwest Forest Experiment Station and the Research Department of Weyerhaeuser Timber Company to obtain information concerning the rate of deterioration of beetle-killed Douglas-fir. The study was prompted by an outbreak of the Douglas-fir beetle that developed in 1951 and has since killed an estimated...

  3. Labelling with radioisotopes, release and dispersal of the rove beetle, Aleochara bilineata Gyll. (Coleoptera: Staphylinidae) in a Danish cauliflower field

    International Nuclear Information System (INIS)

    Esbjerg, P.; Bromand, B.

    1977-01-01

    In 1975 and 1976 the dispersal of Aleochara bilineata in a cauliflower field was investigated using radioactively labelled beetles from laboratory cultures. In 1975, 920 beetles were labelled with 54 MnCl 2 . 900 of these were released in two batches of 600 and 300 individuals respectively. 20 were kept for observations in the laboratory. In 1976, lO33 beetles were labelled with 65 ZnCl 2 . These beetles were released in 7 batches of 130-200 specimens each. Optimal labelling was obtained with 65 ZnCl 2 , which had a durability of 40 days. 54 MnCl 2 labelling, on the contrary, only lasted for 20 days. Also labelling with fluorescent dust and oil-soluble dye was tried, but proved to be ineffective. 100 pitfalls placed up to 30 meters from the release point were used for recapture of the labelled beetles. 143 were recaptured in 1975, and 47 were recaptured in 1976. Dispersal rates up to 6.5 metres per day were ascertained. For biological control of cabbage root flies (Hylemya brassicae) spread of few batches of several hundred beetles each is sufficient. However, a maximum distance of 20 metres between release points is recommended to ensure quick dispersal over the whole area. (author)

  4. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts

    Science.gov (United States)

    A.S. Adams; C.R. Currie; Y. Cardoza; K.D. Klepzig; K.F. Raffa

    2009-01-01

    Bark beetles are associated with diverse assemblages of microorganisms, many of which affect their interactions with host plants and natural enemies. We tested how bacterial associates of three bark beetles with various types of host relationships affect growth and reproduction of their symbiotic fungi. Fungi were exposed to volatiles...

  5. Suitability of California bay laurel and other species as hosts for the non-native redbay ambrosia beetle and granulate ambrosia beetle.

    Science.gov (United States)

    Albert (Bud) Mayfield; Martin MacKenzie; Philip G. Cannon; Steve Oak; Scott Horn; Jaesoon Hwang; Paul E. Kendra

    2013-01-01

    The redbay ambrosia beetle Xyleborus glabratus Eichhoff is a non-native vector of the pathogen that causes laurel wilt, a deadly disease of trees in the family Lauraceae in the southeastern U.S.A.Concern exists that X. glabratus and its fungal symbiont could be transported to the western U....

  6. Control of corpus allatum activity in the adult Colorado potato beetle

    International Nuclear Information System (INIS)

    Khan, M.A.

    1983-01-01

    Assay conditions for the short-term, radiochemical, in vitro determination of the spontaneous rate of juvenile hormone biosynthesis by isolated corpora allata from Leptinotarsa decemlineata have been further improved permitting the measurement of juvenile hormone biosynthesis by individual pairs of corpora allata. Using the new assay conditions, the activities of adult corpora allata during maturation were found to be significantly higher in reproductive, long-day animals than in pre-diapause, short-day beetles. During diapause no activity was detectable, whereas corpora allata from post-diapause beetles were reactivated totally after 5 days. Simultaneous determination of the in vitro rates of juvenile hormone biosynthesis and corpus allatum volumes revealed no clear correlation. (Auth.)

  7. Applied chemical ecology of the mountain pine beetle

    Science.gov (United States)

    Robert A. Progar; Nancy Gillette; Christopher J. Fettig; Kathryn Hrinkevich

    2014-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins, is a primary agent of forest disturbance in western North America. Episodic outbreaks occur at the convergence of favorable forest age and size class structure and climate patterns. Recent outbreaks have exceeded the historic range of variability of D. ponderosae-caused tree mortality affecting ecosystem goods and...

  8. Habitat manipulation of Exposed Riverine Sediments (ERS) how does microhabitat, microclimate and food availability influence beetle distributions?

    Science.gov (United States)

    Henshall, S. E.; Sadler, J. P.; Hannah, D. M.

    2009-04-01

    Exposed riverine sediments (ERS) are frequently inundated areas of relatively un-vegetated, fluvially deposited sediment (sand, silt, gravel and pebble). These habitats provide an important interface allowing the interaction of aquatic and terrestrial habitats and species. ERS are highly valuable for many rare and specialist invertebrates particularly beetles. Within an area of ERS, beetle species richness tends to be highest along the water's edge. This higher species richness may be linked to: (1) the availability of food items in the form of emerging and stranded aquatic invertebrates and (2) favourable physical microhabitat conditions in terms of temperature and moisture. This paper explores the role of microclimate and food availability by creating areas of ‘water's edge' habitat in the centre of a gravel bar. Typically these areas are drier, reach higher temperatures and devoid of emerging aquatic invertebrate prey. Four 2m x 2m experimental plots were created: one wet plot, one wet- fed plot, one dry-fed plot and one dry plot (control). These plots were each replicated on three separate areas of ERS. Sixty colour marked ERS specialist ground beetles (Bembidion atrocaeruleum) were released into each plot to monitor beetle persistence and movement on and between plots. The plots were maintained wet using a capillary pump system, and fed with dried blood worms for 30 days. Sediment temperature (0.05 m depth) was measured at 15 minute intervals and spot measurements of surface temperature were taken daily. A hand search was carried out on 25% of each plot after 7, 14, 21 and 30 days. Significant temperature differences were observed between the wet and dry sediment and air temperature. The wet plots on average were 1.8oC cooler than the dry plots and had a reduced temperature range. Both wet and dry sediments remained significantly warmer than air temperature. The wet and wet-fed plots yielded significantly greater numbers of beetles and marked beetles than

  9. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery

    Science.gov (United States)

    Arjan J. H. Meddens; Jeffrey A. Hicke; Lee A. Vierling; Andrew T. Hudak

    2013-01-01

    Bark beetles cause significant tree mortality in coniferous forests across North America. Mapping beetle-caused tree mortality is therefore important for gauging impacts to forest ecosystems and assessing trends. Remote sensing offers the potential for accurate, repeatable estimates of tree mortality in outbreak areas. With the advancement of multi-temporal disturbance...

  10. Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA

    Science.gov (United States)

    Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara

    2018-01-01

    Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.

  11. Potential for Water Savings by Defoliation of Saltcedar (Tamarix spp.) by Saltcedar Beetles (Diorhabda carinulata) in the Upper Colorado River Basin

    Science.gov (United States)

    Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.

    2016-12-01

    Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.

  12. Effects of Rearing Density on Survival, Growth, and Development of the Ladybird Coleomegilla maculata in Culture

    Directory of Open Access Journals (Sweden)

    Eric W. Riddick

    2015-10-01

    Full Text Available Our research focuses on developing techniques to rear ladybird beetles (Coleoptera: Coccinellidae. We evaluated the effects of rearing density on survival, growth, and development of Coleomegilla maculata. The hypothesis that a low to moderate rearing density has limited or no effects on survival and development was tested. C. maculata first instars were reared to pupae at a density of 1, 5, 10, 15, or 20 individuals per arena (2.5 cm high, 9.0 cm diameter, and 159 cm3 volume and fed powdered brine shrimp (Artemia franciscana eggs. More larvae survived at the 1 and 5 densities, but no differences were detected between the 10, 15, or 20 densities. Median survival rate was at least 90% for larvae and 100% for pupae at the 10, 15, and 20 densities. Development time, body weight, and sex ratio were unaffected by rearing density. Overall, this study suggests that C. maculata larvae can be reared successfully at a density of 20 larvae/159 cm3 (≈ 0.126 larvae/cm3 in containers provisioned with powdered A. franciscana eggs. Scaling-up the size of containers, and C. maculata density in these containers, should be possible.

  13. Aggregation pheromone of coconut rhinoceros beetle,Oryctes rhinoceros (L.) (coleoptera: Scarabaeidae).

    Science.gov (United States)

    Hallett, R H; Perez, A L; Gries, G; Gries, R; Pierce, H D; Yue, J; Oehlschlager, A C; Gonzalez, L M; Borden, J H

    1995-10-01

    Male coconut rhinoceros beetles,Oryctes rhinoceros (L.), produce three sex-specific compounds, ethyl 4-methyloctanoate, ethyl 4-methylheptanoate, and 4-methyloctanoic acid, the first of which is an aggregation pheromone. Synthesis of these compounds involving conjugate addition of organocuprates to ethyl acrylate is reported. In field trapping experiments, (4S)-ethyl 4-methyloctanoate and the racemic mixture were equally attractive and 10 times more effective in attracting beetles than ethyl chrysanthemumate, a previously recommended attractant. Ethyl 4-methylheptanoate was as attractive as ethyl chrysanthemumate and more attractive than 4-methyloctanoic acid, but further studies are required before it can be classed as an aggregation pheromone. Compared to ethyl 4-methyloctanoate alone, combinations of the three male-produced compounds did not increase attraction, whereas addition of freshly rotting oil palm fruit bunches to pheromone-baited traps significantly enhanced attraction. With increasing dose, captures ofO. rhinoceros increased, but doses of 6, 9, and 18 mg/day were competitive with 30 mg/day lures. Newly designed vane traps were more effective in capturing beetles than were barrier or pitfall traps. Results of this study indicate that there is potential for using ethyl 4-methyloctanoate in operational programs to controlO. rhinoceros in oil palm plantations.

  14. The Relative Importance of Spatial and Local Environmental Factors in Determining Beetle Assemblages in the Inner Mongolia Grassland.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Yu

    Full Text Available The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae along a geographic (longitudinal/precipitation gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.

  15. Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles

    OpenAIRE

    M?ller, Anna; Kaling, Moritz; Faubert, Patrick; Gort, Gerrit; Smid, Hans M; Van Loon, Joop JA; Dicke, Marcel; Kanawati, Basem; Schmitt-Kopplin, Philippe; Polle, Andrea; Schnitzler, J?rg-Peter; Rosenkranz, Maaria

    2015-01-01

    Background Chrysomela populi (poplar leaf beetle) is a common herbivore in poplar plantations whose infestation causes major economic losses. Because plant volatiles act as infochemicals, we tested whether isoprene, the main volatile organic compound (VOC) produced by poplars (Populus x canescens), affects the performance of C. populi employing isoprene emitting (IE) and transgenic isoprene non-emitting (NE) plants. Our hypothesis was that isoprene is sensed and affects beetle orientation or ...

  16. Parasitism of Ground Beetles (Coleoptera: Carabidae) by a New Species of Hairworm (Nematomorpha: Gordiida) in Arctic Canada.

    Science.gov (United States)

    Ernst, Crystal M; Hanelt, Ben; Buddle, Christopher M

    2016-06-01

    The host-parasite associations between ground beetles (Coleoptera: Carabidae) and hairworms (Nematomorpha: Gordiida) collected from the Arctic (an understudied and ecologically important region) is described. Carabids and their parasites were collected from 12 sites spanning the 3 northernmost ecoclimatic zones of Canada (north boreal, subarctic, and high Arctic) using standardized methods. The beetles and hairworms were identified using traditional morphological approaches. Seven beetle species are recorded as hosts: Amara alpina, Pterostichus caribou, Pterostichus brevicornis, Pterostichus tareumiut, Pterostichus haematopus, Patrobus septentrionis, and Notiophilus borealis. All represent new host records (increasing the known North American host list from 14 to 21), and this is the first record of hairworm infection in the genus Notiophilus. Beetles from Banks Island, Northwest Territory, were infected in high numbers (11-19% per sampling period) and were used as an ecological case study. There was no significant relationship between infection status and host species, body size, or sex. Beetles collected in yellow pan traps and in wet habitats were more likely to be infected, likely due to water-seeking behavior induced by the parasites. Morphological examinations indicate that the hairworms collected from all locations represent a single, new species of Gordionus, making it only the sixth hairworm species and the third species of that genus found in Canada. Hosts are unknown for all other Canadian (and 1 Alaskan) Gordionus species.

  17. The role of beetle and host volatiles in host colonization in the European oak bark beetle, Scolytus intricatus (Ratzeburg) (Col., Scolytidae)

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Oldřich; Kindl, Jiří; Kalinová, Blanka; Knížek, M.; Vrkočová, Pavlína; Koutek, Bohumír

    2005-01-01

    Roč. 129, č. 4 (2005), 221-226 ISSN 0931-2048 R&D Projects: GA ČR(CZ) GA203/97/0037; GA MZe(CZ) QD0332 Institutional research plan: CEZ:AV0Z4055905 Keywords : bark beetles * host colonization * pheromones Subject RIV: CC - Organic Chemistry Impact factor: 0.703, year: 2005

  18. Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles: source of new biocatalysts for industrial application?

    Science.gov (United States)

    Burse, Antje; Boland, Wilhelm

    2017-09-26

    The drastic growth of the population on our planet requires the efficient and sustainable use of our natural resources. Enzymes are indispensable tools for a wide range of industries producing food, pharmaceuticals, pesticides, or biofuels. Because insects constitute one of the most species-rich classes of organisms colonizing almost every ecological niche on earth, they have developed extraordinary metabolic abilities to survive in various and sometimes extreme habitats. Despite this metabolic diversity, insect enzymes have only recently generated interest in industrial applications because only a few metabolic pathways have been sufficiently characterized. Here, we address the biosynthetic route to iridoids (cyclic monoterpenes), a group of secondary metabolites used by some members of the leaf beetle subtribe Chrysomelina as defensive compounds against their enemies. The ability to produce iridoids de novo has also convergently evolved in plants. From plant sources, numerous pharmacologically relevant structures have already been described. In addition, in plants, iridoids serve as building blocks for monoterpenoid indole alkaloids with broad therapeutic applications. As the commercial synthesis of iridoid-based drugs often relies on a semisynthetic approach involving biocatalysts, the discovery of enzymes from the insect iridoid route can account for a valuable resource and economic alternative to the previously used enzymes from the metabolism of plants. Hence, this review illustrates the recent discoveries made on the steps of the iridoid pathway in Chrysomelina leaf beetles. The findings are also placed in the context of the studied counterparts in plants and are further discussed regarding their use in technological approaches.

  19. Description and phylogeny of a new microsporidium from the elm leaf beetle, Xanthogaleruca luteola Muller, 1766 (Coleoptera: Chrysomelidae)

    Science.gov (United States)

    This study describes a new genus and species of microsporidia which is a pathogen of the elm leaf beetle, Xanthogaleruca luteola Muller, 1776 (Coleoptera: Chrysomelidae). The beetles were collected from Istanbul in Turkey. All developmental stages are uninucleate and in direct contact with the host ...

  20. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon

    Science.gov (United States)

    Haiganoush K. Preisler; Jeffrey A. Hicke; Alan A. Ager; Jane L. Hayes

    2012-01-01

    Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process...