WorldWideScience

Sample records for hiv-1 rna viral

  1. HIV-1 nef suppression by virally encoded microRNA

    Brisibe Ebiamadon

    2004-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are 21~25-nucleotides (nt long and interact with mRNAs to trigger either translational repression or RNA cleavage through RNA interference (RNAi, depending on the degree of complementarity with the target mRNAs. Our recent study has shown that HIV-1 nef dsRNA from AIDS patients who are long-term non-progressors (LTNPs inhibited the transcription of HIV-1. Results Here, we show the possibility that nef-derived miRNAs are produced in HIV-1 persistently infected cells. Furthermore, nef short hairpin RNA (shRNA that corresponded to a predicted nef miRNA (~25 nt, miR-N367 can block HIV-1 Nef expression in vitro and the suppression by shRNA/miR-N367 would be related with low viremia in an LTNP (15-2-2. In the 15-2-2 model mice, the weight loss, which may be rendered by nef was also inhibited by shRNA/miR-N367 corresponding to suppression of nef expression in vivo. Conclusions These data suggest that nef/U3 miRNAs produced in HIV-1-infected cells may suppress both Nef function and HIV-1 virulence through the RNAi pathway.

  2. Profile of HIV-1 RNA viral load among HIV-TB co-infected patients in ...

    Profile of HIV-1 RNA viral load among HIV-TB co-infected patients in a tertiary health facility in Maiduguri, Northeastern Nigeria. ... This study aims to estimate the HIV-1 RNA viral load and impact of anti TB therapy (ATT) ... HOW TO USE AJOL.

  3. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA:Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged......Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious virus-like particles and the viral RNA is dispensable...... in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle...

  4. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    Ma Hong

    2011-06-01

    Full Text Available Abstract Background The process of HIV-1 genomic RNA (gRNA encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ. Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site from the 5' untranslated region (UTR. Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ. Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons; however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into

  5. Diagnosing acute HIV infection: The performance of quantitative HIV-1 RNA testing (viral load) in the 2014 laboratory testing algorithm.

    Wu, Hsiu; Cohen, Stephanie E; Westheimer, Emily; Gay, Cynthia L; Hall, Laura; Rose, Charles; Hightow-Weidman, Lisa B; Gose, Severin; Fu, Jie; Peters, Philip J

    2017-08-01

    New recommendations for laboratory diagnosis of HIV infection in the United States were published in 2014. The updated testing algorithm includes a qualitative HIV-1 RNA assay to resolve discordant immunoassay results and to identify acute HIV-1 infection (AHI). The qualitative HIV-1 RNA assay is not widely available; therefore, we evaluated the performance of a more widely available quantitative HIV-1 RNA assay, viral load, for diagnosing AHI. We determined that quantitative viral loads consistently distinguished AHI from a false-positive immunoassay result. Among 100 study participants with AHI and a viral load result, the estimated geometric mean viral load was 1,377,793copies/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection

    Doria, Margherita; Neri, Francesca; Gallo, Angela; Farace, Maria Giulia; Michienzi, Alessandro

    2009-01-01

    Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1. PMID:19651874

  7. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export.

    Behrens, Ryan T; Aligeti, Mounavya; Pocock, Ginger M; Higgins, Christina A; Sherer, Nathan M

    2017-02-01

    HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide

  8. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. HIV-1 Viral RNA Dynamics at the Plasma Membrane May Provide Insight into Viral Assembly | Poster

    Many aspects of how infectious viruses assemble in cells have yet to be completely deciphered. However, as reported in a recent Journal of Virology paper, researchers may be one step closer to understanding how HIV-1, the virus that causes AIDS, assembles and replicates.

  10. Dissection of specific binding of HIV-1 Gag to the 'packaging signal' in viral RNA.

    Comas-Garcia, Mauricio; Datta, Siddhartha Ak; Baker, Laura; Varma, Rajat; Gudla, Prabhakar R; Rein, Alan

    2017-07-20

    Selective packaging of HIV-1 genomic RNA (gRNA) requires the presence of a cis -acting RNA element called the 'packaging signal' (Ψ). However, the mechanism by which Ψ promotes selective packaging of the gRNA is not well understood. We used fluorescence correlation spectroscopy and quenching data to monitor the binding of recombinant HIV-1 Gag protein to Cy5-tagged 190-base RNAs. At physiological ionic strength, Gag binds with very similar, nanomolar affinities to both Ψ-containing and control RNAs. We challenged these interactions by adding excess competing tRNA; introducing mutations in Gag; or raising the ionic strength. These modifications all revealed high specificity for Ψ. This specificity is evidently obscured in physiological salt by non-specific, predominantly electrostatic interactions. This nonspecific activity was attenuated by mutations in the MA, CA, and NC domains, including CA mutations disrupting Gag-Gag interaction. We propose that gRNA is selectively packaged because binding to Ψ nucleates virion assembly with particular efficiency.

  11. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA

    Soros Vanessa

    2008-10-01

    Full Text Available Abstract HIV-1 structural proteins are translated from incompletely spliced 9 kb and 4 kb mRNAs, which are transported to the cytoplasm by Crm1. It has been assumed that once in the cytoplasm, translation of incompletely spliced HIV-1 mRNAs occurs in the same manner as host mRNAs. Previous analyses have demonstrated that Sam68 and a mutant thereof, Sam68ΔC, have dramatic effects on HIV gene expression, strongly enhancing and inhibiting viral structural protein synthesis, respectively. While investigating the inhibition of incompletely spliced HIV-1 mRNAs by Sam68ΔC, we determined that the effect was independent of the perinuclear bundling of the viral RNA. Inhibition was dependent upon the nuclear export pathway used, as translation of viral RNA exported via the Tap/CTE export pathway was not blocked by Sam68ΔC. We demonstrate that inhibition of HIV expression by Sam68ΔC is correlated with a loss of PABP1 binding with no attendant change in polyadenosine tail length of the affected RNAs. The capacity of Sam68ΔC to selectively inhibit translation of HIV-1 RNAs exported by Crm1 suggests that it is able to recognize unique characteristics of these viral RNPs, a property that could lead to new therapeutic approaches to controlling HIV-1 replication.

  12. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging.

    Webb, Joseph A; Jones, Christopher P; Parent, Leslie J; Rouzina, Ioulia; Musier-Forsyth, Karin

    2013-08-01

    Despite the vast excess of cellular RNAs, precisely two copies of viral genomic RNA (gRNA) are selectively packaged into new human immunodeficiency type 1 (HIV-1) particles via specific interactions between the HIV-1 Gag and the gRNA psi (ψ) packaging signal. Gag consists of the matrix (MA), capsid, nucleocapsid (NC), and p6 domains. Binding of the Gag NC domain to ψ is necessary for gRNA packaging, but the mechanism by which Gag selectively interacts with ψ is unclear. Here, we investigate the binding of NC and Gag variants to an RNA derived from ψ (Psi RNA), as well as to a non-ψ region (TARPolyA). Binding was measured as a function of salt to obtain the effective charge (Zeff) and nonelectrostatic (i.e., specific) component of binding, Kd(1M). Gag binds to Psi RNA with a dramatically reduced Kd(1M) and lower Zeff relative to TARPolyA. NC, GagΔMA, and a dimerization mutant of Gag bind TARPolyA with reduced Zeff relative to WT Gag. Mutations involving the NC zinc finger motifs of Gag or changes to the G-rich NC-binding regions of Psi RNA significantly reduce the nonelectrostatic component of binding, leading to an increase in Zeff. These results show that Gag interacts with gRNA using different binding modes; both the NC and MA domains are bound to RNA in the case of TARPolyA, whereas binding to Psi RNA involves only the NC domain. Taken together, these results suggest a novel mechanism for selective gRNA encapsidation.

  13. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: Implications for viral genomic RNA packaging

    Webb, Joseph A.; Jones, Christopher P.; Parent, Leslie J.; Rouzina, Ioulia; Musier-Forsyth, Karin

    2013-01-01

    The mechanism underlying the selective packaging of genomic RNA into HIV-1 virions is not known. This paper provides important new biophysical insights into the nature of protein–RNA interactions responsible for HIV-1 genome packaging by quantifying the electrostatic and hydrophobic contributions to specific and nonspecific RNA.

  14. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.

  15. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Chao, E-mail: liuchao9@mail.sysu.edu.cn [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Zhang, Hui [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China)

    2015-12-15

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.

  16. Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity

    Buck, H. M.; Koole, L. H.; van Genderen, M. H.; Smit, L.; Geelen, J. L.; Jurriaans, S.; Goudsmit, J.

    1990-01-01

    Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human

  17. Dried blood spot HIV-1 RNA quantification: A useful tool for viral load monitoring among HIV-infected individuals in India

    Neogi, Ujjwal; Gupta, Soham; Rodridges, Rashmi; Sahoo, Pravat Nalini; Rao, Shwetha D.; Rewari, Bharat B.; Shastri, Suresh; De Costa, Ayesha; Shet, Anita

    2012-01-01

    Background & objectives: Monitoring of HIV-infected individuals on antiretroviral treatment (ART) ideally requires periodic viral load measurements to ascertain adequate response to treatment. While plasma viral load monitoring is widely available in high-income settings, it is rarely used in resource-limited regions because of high cost and need for sophisticated sample transport. Dried blood spot (DBS) as source specimens for viral load measurement has shown promise as an alternative to plasma specimens and is likely to be a useful tool for Indian settings. The present study was undertaken to investigate the performance of DBS in HIV-1 RNA quantification against the standard plasma viral load assay. Methods: Between April-June 2011, 130 samples were collected from HIV-1-infected (n=125) and non-infected (n=5) individuals in two district clinics in southern India. HIV-1 RNA quantification was performed from DBS and plasma using Abbott m2000rt system after manual RNA extraction. Statistical analysis included correlation, regression and Bland-Altman analysis. Results: The sensitivity of DBS viral load was 97 per cent with viral loads >3.0 log10 copies/ml. Measurable viral load (>3.0 log 10 copies/ml) results obtained for the 74 paired plasma-DBS samples showed positive correlation between both the assays (r=0.96). For clinically acceptable viral load threshold values of >5,000 copies/ml, Bland-Altman plots showed acceptable limits of agreement (−0.21 to +0.8 log10 copies/ml). The mean difference was 0.29 log10 copies/ml. The cost of DBS was $2.67 lower compared to conventional plasma viral load measurement in the setting Interpretation & conclusions: The significant positive correlation with standard plasma-based assay and lower cost of DBS viral load monitoring suggest that DBS sampling can be a feasible and economical means of viral load monitoring in HIV-infected individual in India and in other resource-limited settings globally. PMID:23391790

  18. Comparación de los métodos de cuantificación de carga viral de VIH: COBAS® AmpliPrep/COBAS® TaqMan HIV-1 test, v 2.0, y VERSANT HIV-1 RNA 1.0 Assay (kPCR Comparison of COBAS® AmpliPrep/COBAS® TaqMan HIV-1 test, v 2.0 and VERSANT HIV-1 RNA 1.0 (kPCR assays for HIV-1 plasma viral load

    María Isabel Múnera-Jaramillo

    2012-03-01

    Full Text Available Objetivo. El propósito del estudio fue evaluar el desempeño del método VERSANTHIV-1RNA 1.0 Assay® (kPCR (Siemens, para la cuantificación de la carga viral en pacientes con VIH-1, en comparación con el método COBAS® AmpliPrep/COBAS TaqMan HIV-1 test®, v2.0 (Roche Diagnostics (CAP/CTM. Métodos. Las muestras fueron tomadas en dos tubos con EDTA, de 60 pacientes remitidos por el médico tratante para pruebas de carga viral como parte de su control de rutina de VIH/sida, y fueron procesadas para la cuantificación del ARN del VIH-1 por ambas técnicas. Se hizo análisis de regresión y se calcularon los coeficientes de correlación de Pearson, y los de correlación y concordancia de Lin. Se evalúo la concordancia entre las dos técnicas mediante el método de Bland-Altman. Resultados. El promedio de la carga viral por el método CAP/CTM fue 3,2±1,4 long10 copias/ml y, por el método kPCR, 3,0±1,3 long10 copias/ml. El 86,7 % de muestras presentó diferencias entre los dos métodos, menores de 0,5 long10 copias/ml, y el 13,3 % presentó diferencias mayores. El coeficiente de correlación de Pearson entre los dos métodos fue de 0,97 (IC95% 0,95-0,99 y el índice kappa ponderado entre los dos métodos en diferentes rangos de concentración, fue de 0,91 (IC95% 0,87-0,96. El promedio de las diferencias entre las mediciones fue 0,22 long10 copias/ml (IC95% -0,45 a 0,89. Conclusión. Las dos técnicas evaluadas fueron comparables, con el método kPCR se observaron resultados más bajos.Objective: The purpose of this study was to evaluate the performance of the kPCR VERSANT (™ 440 HIV-1RNA 3.0 Assay® (Siemens method for the quantification of viral load in HIV-1 patients, compared to the COBAS AmpliPrep/COBASTaqMan HIV-1 test®, v. 2.0 (Roche Diagnostics (CAP/CTM. Methods: Samples were taken in 2 tubes with EDTA, in 60 patients referred by the attending physician for viral load tests as part of their routine control of HIV/AIDS, and were

  19. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  20. DBR1 siRNA inhibition of HIV-1 replication

    Naidu Yathi

    2005-10-01

    Full Text Available Abstract Background HIV-1 and all retroviruses are related to retroelements of simpler organisms such as the yeast Ty elements. Recent work has suggested that the yeast retroelement Ty1 replicates via an unexpected RNA lariat intermediate in cDNA synthesis. The putative genomic RNA lariat intermediate is formed by a 2'-5' phosphodiester bond, like that found in pre-mRNA intron lariats and it facilitates the minus-strand template switch during cDNA synthesis. We hypothesized that HIV-1 might also form a genomic RNA lariat and therefore that siRNA-mediated inhibition of expression of the human RNA lariat de-branching enzyme (DBR1 expression would specifically inhibit HIV-1 replication. Results We designed three short interfering RNA (siRNA molecules targeting DBR1, which were capable of reducing DBR1 mRNA expression by 80% and did not significantly affect cell viability. We assessed HIV-1 replication in the presence of DBR1 siRNA and found that DBR1 knockdown led to decreases in viral cDNA and protein production. These effects could be reversed by cotransfection of a DBR1 cDNA indicating that the inhibition of HIV-1 replication was a specific effect of DBR1 underexpression. Conclusion These data suggest that DBR1 function may be needed to debranch a putative HIV-1 genomic RNA lariat prior to completion of reverse transcription.

  1. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  2. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-01-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4"+ T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4"+ T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4"+ T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation (IR) increases

  3. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Iordanskiy, Sergey [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Van Duyne, Rachel [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Romerio, Fabio [Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Kashanchi, Fatah, E-mail: fkashanc@gmu.edu [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States)

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  4. Compartmentalization of the gut viral reservoir in HIV-1 infected patients

    Grant Tannika

    2007-12-01

    Full Text Available Abstract Background Recently there has been an increasing interest and appreciation for the gut as both a viral reservoir as well as an important host-pathogen interface in human immunodefiency virus type 1 (HIV-1 infection. The gut associated lymphoid tissue (GALT is the largest lymphoid organ infected by HIV-1. In this study we examined if different HIV-1 quasispecies are found in different parts of the gut of HIV-1 infected individuals. Results Gut biopsies (esophagus, stomach, duodenum and colorectum were obtained from eight HIV-1 infected preHAART (highly active antiretroviral therapy patients. HIV-1 Nef and Reverse transcriptase (RT encoding sequences were obtained through nested PCR amplification from DNA isolated from the gut biopsy tissues. The PCR fragments were cloned and sequenced. The resulting sequences were subjected to various phylogenetic analyses. Expression of the nef gene and viral RNA in the different gut tissues was determined using real-time RT-PCR. Phylogenetic analysis of the Nef protein-encoding region revealed compartmentalization of viral replication in the gut within patients. Viral diversity in both the Nef and RT encoding region varied in different parts of the gut. Moreover, increased nef gene expression (p Conclusion Our results indicated that different HIV-1 quasispecies populate different parts of the gut, and that viral replication in the gut is compartmentalized. These observations underscore the importance of the gut as a host-pathogen interface in HIV-1 infection.

  5. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.

    Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2015-11-01

    To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas

  6. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages.

    Valentina Vongrad

    Full Text Available MiRNAs and other small noncoding RNAs (sncRNAs are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM.The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP, which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs.PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages.

  7. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth.

    Maja Kiselinova

    2016-03-01

    Full Text Available The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4-2.6 between time point 1 and 2; and median of 31 days (IQR: 28-36 between time point 2 and 3. Patients were median of 6 years (IQR: 3-12 on ART, and plasma viral load (<50 copies/ml was suppressed for median of 4 years (IQR: 2-8. Total HIV-1 DNA, unspliced (us and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85, us HIV-1 RNA (p = 0.029, R² = 0.40, and VOA (p = 0.041, R2 = 0.44. Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54. The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1. Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the

  8. Cerebrospinal fluid HIV-1 RNA levels in asymptomatic patients with early stage chronic HIV-1 infection: support for the hypothesis of local virus replication.

    García, F; Niebla, G; Romeu, J; Vidal, C; Plana, M; Ortega, M; Ruiz, L; Gallart, T; Clotet, B; Miró, J M; Pumarola, T; Gatell, J M

    1999-08-20

    To assess HIV-1 RNA levels in cerebrospinal fluid (CSF) and their potential correlation with plasma viral load and central nervous system (CNS) HIV-1 infection markers in stable asymptomatic patients with a CD4 T cell count >500x10(6) cells/l. Consecutive patients screened for two trials were eligible for lumbar puncture assessment. At day 0, simultaneous samples of CSF and plasma were obtained and levels of total proteins, albumin, IgG, antibodies against HIV-1 p24 antigen, HIV-1 RNA (using the polymerase chain technique) and white cells were measured. The integrity of the blood-brain barrier was preserved (albumin index > or =7) in 59 out of 70 patients (84%). Intrathecal production of antibodies against HIV-1 p24 antigen was demonstrated in 55 out of 70 individuals (78%). Viral load in CSF was significantly lower than plasma values (3.13+/-0.95 versus 4.53+/-0.53, P = 0.0001). HIV-1 RNA was not detected in CSF in only three of the 70 patients (4%). Overall, there was a significant correlation between plasma and CSF HIV-1 RNA levels (r = 0.43, P = 0.0001); however, in 29 patients (41%) there were significant differences (>1.5 log10 copies/ml) between the viral loads in plasma and CSF. In the multivariate analysis, a high level of protein and white cells in CSF, but not the HIV-1 RNA plasma level, were factors independently associated with a higher level of HIV-1 RNA in CSF (P = 0.0001). HIV-1 RNA can be detected almost always in CSF of asymptomatic patients in early stages of HIV-1 infection including those with a preserved integrity of the blood-brain barrier. The important discrepancies between plasma and CSF viral load, and the independent association between CSF abnormalities and CSF viral load, support the hypothesis of local production of HIV-1.

  9. HIV-1 viral load measurement in venous blood and fingerprick blood using Abbott RealTime HIV-1 DBS assay.

    Tang, Ning; Pahalawatta, Vihanga; Frank, Andrea; Bagley, Zowie; Viana, Raquel; Lampinen, John; Leckie, Gregor; Huang, Shihai; Abravaya, Klara; Wallis, Carole L

    2017-07-01

    HIV RNA suppression is a key indicator for monitoring success of antiretroviral therapy. From a logistical perspective, viral load (VL) testing using Dried Blood Spots (DBS) is a promising alternative to plasma based VL testing in resource-limited settings. To evaluate the analytical and clinical performance of the Abbott RealTime HIV-1 assay using a fully automated one-spot DBS sample protocol. Limit of detection (LOD), linearity, lower limit of quantitation (LLQ), upper limit of quantitation (ULQ), and precision were determined using serial dilutions of HIV-1 Virology Quality Assurance stock (VQA Rush University), or HIV-1-containing armored RNA, made in venous blood. To evaluate correlation, bias, and agreement, 497 HIV-1 positive adult clinical samples were collected from Ivory Coast, Uganda and South Africa. For each HIV-1 participant, DBS-fingerprick, DBS-venous and plasma sample results were compared. Correlation and bias values were obtained. The sensitivity and specificity were analyzed at a threshold of 1000 HIV-1 copies/mL generated using the standard plasma protocol. The Abbott HIV-1 DBS protocol had an LOD of 839 copies/mL, a linear range from 500 to 1×10 7 copies/mL, an LLQ of 839 copies/mL, a ULQ of 1×10 7 copies/mL, and an inter-assay SD of ≤0.30 log copies/mL for all tested levels within this range. With clinical samples, the correlation coefficient (r value) was 0.896 between DBS-fingerprick and plasma and 0.901 between DBS-venous and plasma, and the bias was -0.07 log copies/mL between DBS-fingerprick and plasma and -0.02 log copies/mL between DBS-venous and plasma. The sensitivity of DBS-fingerprick and DBS-venous was 93%, while the specificity of both DBS methods was 95%. The results demonstrated that the Abbott RealTime HIV-1 assay with DBS sample protocol is highly sensitive, specific and precise across a wide dynamic range and correlates well with plasma values. The Abbott RealTime HIV-1 assay with DBS sample protocol provides an

  10. Viral linkage in HIV-1 seroconverters and their partners in an HIV-1 prevention clinical trial.

    Mary S Campbell

    2011-03-01

    Full Text Available Characterization of viruses in HIV-1 transmission pairs will help identify biological determinants of infectiousness and evaluate candidate interventions to reduce transmission. Although HIV-1 sequencing is frequently used to substantiate linkage between newly HIV-1 infected individuals and their sexual partners in epidemiologic and forensic studies, viral sequencing is seldom applied in HIV-1 prevention trials. The Partners in Prevention HSV/HIV Transmission Study (ClinicalTrials.gov #NCT00194519 was a prospective randomized placebo-controlled trial that enrolled serodiscordant heterosexual couples to determine the efficacy of genital herpes suppression in reducing HIV-1 transmission; as part of the study analysis, HIV-1 sequences were examined for genetic linkage between seroconverters and their enrolled partners.We obtained partial consensus HIV-1 env and gag sequences from blood plasma for 151 transmission pairs and performed deep sequencing of env in some cases. We analyzed sequences with phylogenetic techniques and developed a Bayesian algorithm to evaluate the probability of linkage. For linkage, we required monophyletic clustering between enrolled partners' sequences and a Bayesian posterior probability of ≥ 50%. Adjudicators classified each seroconversion, finding 108 (71.5% linked, 40 (26.5% unlinked, and 3 (2.0% indeterminate transmissions, with linkage determined by consensus env sequencing in 91 (84%. Male seroconverters had a higher frequency of unlinked transmissions than female seroconverters. The likelihood of transmission from the enrolled partner was related to time on study, with increasing numbers of unlinked transmissions occurring after longer observation periods. Finally, baseline viral load was found to be significantly higher among linked transmitters.In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner

  11. A European multicientre study on the comparison of HIV-1 viral loads between VERIS HIV-1 Assay and Roche COBAS® TAQMAN® HIV-1 test, Abbott RealTime HIV-1 Assay, and Siemens VERSANT HIV-1 Assay.

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Mª Angeles; Mileto, Davide; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-07-01

    Viral load monitoring is essential for patients under treatment for HIV. Beckman Coulter has developed the VERIS HIV-1 Assay for use on the novel, automated DxN VERIS Molecular Diagnostics System. ¥ OBJECTIVES: Evaluation of the clinical performance of the new quantitative VERIS HIV-1 Assay at multiple EU laboratories. Method comparison with the VERIS HIV-1 Assay was performed with 415 specimens at 5 sites tested with COBAS ® AmpliPrep/COBAS ® TaqMan ® HIV-1 Test, v2.0, 169 specimens at 3 sites tested with RealTime HIV-1 Assay, and 202 specimens from 2 sites tested with VERSANT HIV-1 Assay. Patient monitoring sample results from 4 sites were also compared. Bland-Altman analysis showed the average bias between VERIS HIV-1 Assay and COBAS HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay to be 0.28, 0.39, and 0.61 log 10 cp/mL, respectively. Bias at low end levels below 1000cp/mL showed predicted bias to be <0.3 log 10 cp/mL for VERIS HIV-1 Assay versus COBAS HIV-1 Test and RealTime HIV-1 Assay, and <0.5 log 10 cp/mL versus VERSANT HIV-1 Assay. Analysis on 174 specimens tested with the 0.175mL volume VERIS HIV-1 Assay and COBAS HIV-1 Test showed average bias of 0.39 log 10 cp/mL. Patient monitoring results using VERIS HIV-1 Assay demonstrated similar viral load trends over time to all comparators. The VERIS HIV-1 Assay for use on the DxN VERIS System demonstrated comparable clinical performance to COBAS ® HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies.

    Susanne Eriksson

    2013-02-01

    Full Text Available HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART. The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+ T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+ T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+ T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy

  13. The HIV-1 leader RNA conformational switch regulates RNA dimerization but does not regulate mRNA translation

    Abbink, Truus E. M.; Ooms, Marcel; Haasnoot, P. C. Joost; Berkhout, Ben

    2005-01-01

    The untranslated leader RNA is the most conserved part of the human immunodeficiency virus type I (HIV-1) genome. It contains many regulatory motifs that mediate a variety of steps in the viral life cycle. Previous work showed that the full-length leader RNA can adopt two alternative structures: a

  14. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1–Seropositive Kenyan Men

    Srinivasan, Sujatha; Huang, Dandi; Ko, Daisy L.; Sanders, Eduard J.; Peshu, Norbert M.; Krieger, John N.; Muller, Charles H.; Coombs, Robert W.; Fredricks, David N.; Graham, Susan M.

    2017-01-01

    Introduction: HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. Methods: We analyzed semen samples from 42 HIV-1–seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. Results: Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: −0.77, 95% CI: −1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. Conclusion: Most of these HIV-1–infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission. PMID:27861240

  15. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1-Seropositive Kenyan Men.

    Korhonen, Christine J; Srinivasan, Sujatha; Huang, Dandi; Ko, Daisy L; Sanders, Eduard J; Peshu, Norbert M; Krieger, John N; Muller, Charles H; Coombs, Robert W; Fredricks, David N; Graham, Susan M

    2017-03-01

    HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. We analyzed semen samples from 42 HIV-1-seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: -0.77, 95% CI: -1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. Most of these HIV-1-infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission.

  16. MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1 seropositive individuals

    Smith Stephen M

    2008-12-01

    Full Text Available Abstract MicroRNAs (miRNAs play diverse roles in regulating cellular and developmental functions. We have profiled the miRNA expression in peripheral blood mononuclear cells from 36 HIV-1 seropositive individuals and 12 normal controls. The HIV-1-positive individuals were categorized operationally into four classes based on their CD4+ T-cell counts and their viral loads. We report that specific miRNA signatures can be observed for each of the four classes.

  17. An RNA-binding compound that stabilizes the HIV-1 gRNA packaging signal structure and specifically blocks HIV-1 RNA encapsidation.

    Ingemarsdotter, Carin K; Zeng, Jingwei; Long, Ziqi; Lever, Andrew M L; Kenyon, Julia C

    2018-03-14

    NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594

  18. Redefining the Viral Reservoirs That Prevent HIV-1 Eradication

    Eisele, Evelyn; Siliciano, Robert F.

    2014-01-01

    Summary This review proposes definitions for key terms in the field of HIV-1 latency and eradication. In the context of eradication, a reservoir is a cell type that allows persistence of replication-competent HIV-1 on a time scale of years in patients on optimal antiretroviral therapy. Reservoirs act as a barrier to eradication in the patient population in whom cure attempts will likely be made. Halting viral replication is essential to eradication, and definitions and criteria for assessing whether this goal has been achieved are proposed. The cell types that may serve as reservoirs for HIV-1 are discussed. Currently, only latently infected resting CD4+ T cells fit the proposed definition of a reservoir, and more evidence is necessary to demonstrate that other cell types including hematopoietic stem cells and macrophages fit this definition. Further research is urgently required on potential reservoirs in the gut-associated lymphoid tissue and the central nervous system. PMID:22999944

  19. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment.

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W; Gisslén, Magnus

    2010-12-15

    Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice.

  20. RNA interactions in the 5' region of the HIV-1 genome

    Damgaard, Christian Kroun; Andersen, Ebbe Sloth; Knudsen, Bjarne

    2004-01-01

    The untranslated leader of the dimeric HIV-1 RNA genome is folded into a complex structure that plays multiple and essential roles in the viral replication cycle. Here, we have investigated secondary and tertiary structural elements within the 5' 744 nucleotides of the HIV-1 genome using...... a combination of bioinformatics, enzymatic probing, native gel electrophoresis, and UV-crosslinking experiments. We used a recently developed RNA folding algorithm (Pfold) to predict the common secondary structure of an alignment of 20 divergent HIV-1 sequences. Combining this analysis with biochemical data, we...

  1. Viral dynamics in primary HIV-1 infection. Karolinska Institutet Primary HIV Infection Study Group.

    Lindbäck, S; Karlsson, A C; Mittler, J; Blaxhult, A; Carlsson, M; Briheim, G; Sönnerborg, A; Gaines, H

    2000-10-20

    To study the natural course of viremia during primary HIV infection (PHI). Eight patients were followed from a median of 5 days from the onset of PHI illness. Plasma HIV-1 RNA levels were measured frequently and the results were fitted to mathematical models. HIV-1 RNA levels were also monitored in nine patients given two reverse transcriptase inhibitors and a protease inhibitor after a median of 7 days from the onset of PHI illness. HIV-1 RNA appeared in the blood during the week preceding onset of PHI illness and increased rapidly during the first viremic phase, reaching a peak at a mean of 7 days after onset of illness. This was followed by a phase of rapidly decreasing levels of HIV-1 RNA to an average of 21 days after onset. Viral density continued to decline thereafter but at a 5- to 50-fold lower rate; a steady-state level was reached at a median of 2 months after onset of PHI. Peak viral density levels correlated significantly with levels measured between days 50 and 600. Initiation of antiretroviral treatment during PHI resulted in rapidly declining levels to below 50 copies/mL. This study demonstrates the kinetic phases of viremia during PHI and indicates two new contributions to the natural history of HIV-1 infection: PHI peak levels correlate with steady-state levels and HIV-1 RNA declines biphasically; an initial rapid decay is usually followed by a slow decay, which is similar to the initial changes seen with antiviral treatment.

  2. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA

    Kiselinova, Maja; Pasternak, Alexander O.; de Spiegelaere, Ward; Vogelaers, Dirk; Berkhout, Ben; Vandekerckhove, Linos

    2014-01-01

    Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been

  3. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  4. Longer duration of homelessness is associated with a lower likelihood of non-detectable plasma HIV-1 RNA viral load among people who use illicit drugs in a Canadian setting.

    Loh, Jane; Kennedy, Mary Clare; Wood, Evan; Kerr, Thomas; Marshall, Brandon; Parashar, Surita; Montaner, Julio; Milloy, M-J

    2016-11-01

    Homelessness is common among people who use drugs (PWUD) and, for those living with HIV/AIDS, an important contributor to sub-optimal HIV treatment outcomes. This study aims to investigate the relationship between the duration of homelessness and the likelihood of plasma HIV-1 RNA viral load (VL) non-detectability among a cohort of HIV-positive PWUD. We used data from the ACCESS study, a long-running prospective cohort study of HIV-positive PWUD linked to comprehensive HIV clinical records including systematic plasma HIV-1 RNA VL monitoring. We estimated the longitudinal relationship between the duration of homelessness and the likelihood of exhibiting a non-detectable VL (i.e., effects modelling. Between May 1996 and June 2014, 922 highly active antiretroviral therapy-exposed participants were recruited and contributed 8188 observations. Of these, 4800 (59%) were characterized by non-detectable VL. Participants reported they were homeless in 910 (11%) interviews (median: six months, interquartile range: 6-12 months). A longer duration of homelessness was associated with lower odds of VL non-detectability (adjusted odds ratio = 0.71 per six-month period of homelessness, 95% confidence interval: 0.60-0.83) after adjustment for age, ancestry, drug use patterns, engagement in addiction treatment, and other potential confounders. Longer durations of episodes of homelessness in this cohort of HIV-positive illicit drug users were associated with a lower likelihood of plasma VL non-detectability. Our findings suggest that interventions that seek to promptly house homeless individuals, such as Housing First approaches, might assist in maximizing the clinical and public health benefits of antiretroviral therapy among people living with HIV/AIDS.

  5. Discordant CSF/plasma HIV-1 RNA in individuals on virologically suppressive antiretroviral therapy in Western India.

    Dravid, Ameet N; Natrajan, Kartik; Kulkarni, Milind M; Saraf, Chinmay K; Mahajan, Uma S; Kore, Sachin D; Rathod, Niranjan M; Mahajan, Umakant S; Wadia, Rustom S

    2018-02-01

    Aim of this study was to estimate the prevalence of cerebrospinal fluid (CSF)/Plasma HIV-1 RNA discordance in virologically suppressed individuals presenting with incident neurologic symptoms.In this retrospective cohort study conducted between March 1, 2009, and March 1, 2017, HIV-1 infected adults exposed to atleast 12 months of antiretroviral therapy (ART) and having plasma viral load (VL) CSF/Plasma HIV-1 RNA discordance by measuring HIV-1 RNA in collected plasma and CSF samples. CSF/plasma HIV-1 RNA discordance was defined as either detectable CSF HIV-1 RNA (VL > 20 copies/mL) with an undetectable plasma RNA (complete viral suppression, VL ≤20 copies/mL) or CSF HIV-1 RNA ≥ 0.5 log10 higher than plasma RNA when plasma VL was between 20 and 1000 copies/mL (low-level viremia, LLV).Out of 1584 virologically suppressed patients, 71 (4.4%) presented with incident neurologic symptoms. Twenty out of 71 (28.2%) patients were diagnosed with CSF/Plasma HIV-1 discordance. Median plasma and CSF VL in patients with discordance was 120 [interquartile range (IQR): CSF HIV-1 genotypic resistance testing was done showed mutations that would compromise efficacy of prescribed ART regimen. Prevalence of CSF/plasma HIV-1 RNA discordance was higher among neurologically symptomatic patients with plasma LLV as compared with those with complete viral suppression (70% vs 11.8%, P CSF/plasma HIV-1 RNA discordance indicates replication of HIV-1 that has adapted to the CNS or has developed antiretroviral drug resistance. Larger studies should be performed to study incidence of discordance in India. This will help in managing patients presenting with neurologic symptoms on suppressive ART with appropriate neuroeffective therapy.

  6. HIV-1 pre-mRNA commitment to Rev mediated export through PSF and Matrin 3

    Kula, Anna; Gharu, Lavina; Marcello, Alessandro

    2013-01-01

    Human immunodeficiency virus gene expression and replication are regulated at several levels. Incompletely spliced viral RNAs and full-length genomic RNA contain the RRE element and are bound by the viral trans-acting protein Rev to be transported out of the nucleus. Previously we found that the nuclear matrix protein MATR3 was a cofactor of Rev-mediated RNA export. Here we show that the pleiotropic protein PSF binds viral RNA and is associated with MATR3. PSF is involved in the maintenance of a pool of RNA available for Rev activity. However, while Rev and PSF bind the viral pre-mRNA at the site of viral transcription, MATR3 interacts at a subsequent step. We propose that PSF and MATR3 define a novel pathway for RRE-containing HIV-1 RNAs that is hijacked by the viral Rev protein.

  7. Comparison between Roche and Xpert in HIV-1 RNA quantitation: A high concordance between the two techniques except for a CRF02_AG subtype variant with high viral load titters detected by Roche but undetected by Xpert.

    Avidor, Boaz; Matus, Natalia; Girshengorn, Shirley; Achsanov, Svetlana; Gielman, Simona; Zeldis, Irene; Schweitzer, Inbal; Adler, Amos; Turner, Dan

    2017-08-01

    HIV-1 viral load (VL) testing is important to predict viral progression and to monitor the response to antiretroviral therapy. New HIV-1 VL tests are continuously introduced to the market. Their performance is usually compared to Abbott and/or Roche HIV-1 VL assays, as reference. The Xpert HIV-1 VL test was recently introduced, but its performance compared to Roche has not been sufficiently studied. To compare the Xpert assay with Roche and to assess its use in the HIV clinical laboratory. A total of 383 plasma samples of HIV-1 infected patients previously tested by Roche, were retrospectively tested by Xpert to determine concordance between the two assays. Samples included a diversity of HIV-1 subtypes and a wide range of VLs. There was a high concordance between the two assays, except for a CRF02_AG subtype variant with high VL titters, that was detected by Roche but undetected by Xpert. The 5' long terminal repeat gene region of this virus, targeted by the Xpert assay, was amplified and sequenced. A 25 nucleotide insert was identified, but was unmatched to any known sequences of HIV-1. This particular insert, however could not explain the false-negativity by the Xpert assay. This study underlines the challenge to routine VL testing due to the high genetic diversity of HIV-1. Clinicians should, therefore be advised that a negative VL in cases where the clinical picture does not match the laboratory report, might in fact be, a false-negative result of the VL assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1

    Zhou, Jiehua; Lazar, Daniel; Li, Haitang; Xia, Xin; Satheesan, Sangeetha; Charlins, Paige; O'Mealy, Denis; Akkina, Ramesh; Saayman, Sheena; Weinberg, Marc S.; Rossi, John J.; Morris, Kevin V.

    2018-01-01

    Gene-based therapies represent a promising therapeutic paradigm for the treatment of HIV-1, as they have the potential to maintain sustained viral inhibition with reduced treatment interventions. Such an option may represent a long-term treatment alternative to highly active antiretroviral therapy. Methods: We previously described a therapeutic approach, referred to as transcriptional gene silencing (TGS), whereby small noncoding RNAs directly inhibit the transcriptional activity of HIV-1 by targeting sites within the viral promoter, specifically the 5' long terminal repeat (LTR). TGS differs from traditional RNA interference (RNAi) in that it is characterized by concomitant silent-state epigenetic marks on histones and DNA. To deliver TGS-inducing RNAs, we developed functional RNA conjugates based on the previously reported dual function of the gp120 (A-1) aptamer conjugated to 27-mer Dicer-substrate anti-HIV-1 siRNA (dsiRNA), LTR-362. Results: We demonstrate here that high levels of processed guide RNAs localize to the nucleus in infected T lymphoblastoid CEM cell line and primary human CD4+ T-cells. Treatment of the aptamer-siRNA conjugates induced TGS with an ~10-fold suppression of viral p24 levels as measured at day 12 post infection. To explore the silencing efficacy of aptamer-siRNA conjugates in vivo, HIV-1-infected humanized NOD/SCID/IL2 rγnull mice (hu-NSG) were treated with the aptamer-siRNA conjugates. Systemic delivery of the A-1-stick-LTR-362 27-mer siRNA conjugates suppressed HIV-1 infection and protected CD4+ T cell levels in viremia hu-NSG mice. Principle conclusions: Collectively these data suggest that the gp120 aptamer-dsiRNA conjugate design is suitable for systemic delivery of small RNAs that can be used to suppress HIV-1. PMID:29556342

  9. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay.

    Gregory M Laird

    Full Text Available HIV-1 persists in infected individuals in a stable pool of resting CD4(+ T cells as a latent but replication-competent provirus. This latent reservoir is the major barrier to the eradication of HIV-1. Clinical trials are currently underway investigating the effects of latency-disrupting compounds on the persistence of the latent reservoir in infected individuals. To accurately assess the effects of such compounds, accurate assays to measure the frequency of latently infected cells are essential. The development of a simpler assay for the latent reservoir has been identified as a major AIDS research priority. We report here the development and validation of a rapid viral outgrowth assay that quantifies the frequency of cells that can release replication-competent virus following cellular activation. This new assay utilizes bead and column-based purification of resting CD4(+ T cells from the peripheral blood of HIV-1 infected patients rather than cell sorting to obtain comparable resting CD4(+ T cell purity. This new assay also utilizes the MOLT-4/CCR5 cell line for viral expansion, producing statistically comparable measurements of the frequency of latent HIV-1 infection. Finally, this new assay employs a novel quantitative RT-PCR specific for polyadenylated HIV-1 RNA for virus detection, which we demonstrate is a more sensitive and cost-effective method to detect HIV-1 replication than expensive commercial ELISA detection methods. The reductions in both labor and cost make this assay suitable for quantifying the frequency of latently infected cells in clinical trials of HIV-1 eradication strategies.

  10. Plasma HIV-1 RNA viral load rebound among people who inject drugs receiving antiretroviral therapy (ART) in a Canadian setting: an ethno-epidemiological study.

    Small, Will; Milloy, M J; McNeil, Ryan; Maher, Lisa; Kerr, Thomas

    2016-01-01

    People who inject drugs (PWID) living with HIV often experience sub-optimal antiretroviral therapy (ART) treatment outcomes, including HIV plasma viral load (PVL) rebound. While previous studies have identified risk factors for PVL rebound among PWID, no study has examined the perspectives of PWID who have experienced PVL rebound episodes. We conducted an ethno-epidemiological study to investigate the circumstances surrounding the emergence of rebound episodes among PWID in Vancouver, BC, Canada. Comprehensive clinical records linked to a community-based prospective observational cohort of HIV-positive drug users were used to identify PWID who had recently experienced viral rebound. In-depth qualitative interviews with 16 male and 11 female participants explored participant perspectives regarding the emergence of viral rebound. A timeline depicting each participant's HIV viral load and adherence to ART was used to elicit discussion of circumstances surrounding viral rebound. Viral rebound episodes were shaped by interplay between various individual, social, and environmental factors that disrupted routines facilitating adherence. Structural-environmental influences resulting in non-adherence included housing transitions, changes in drug use patterns and intense drug scene involvement, and inadequate care for co-morbid health conditions. Social-environmental influences on ART adherence included poor interactions between care providers and patients producing non-adherence, and understandings of HIV treatment that fostered intentional treatment discontinuation. This study describes key pathways which led to rebound episodes among PWID receiving ART and illustrates how environmental forces may increase vulnerability for non-adherence leading to treatment failure. Our findings have potential to help inform interventions and supports that address social-structural forces that foster non-adherence among PWID.

  11. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  12. Novel RNA Duplex Locks HIV-1 in a Latent State via Chromatin-mediated Transcriptional Silencing

    Chantelle Ahlenstiel

    2015-01-01

    Full Text Available Transcriptional gene silencing (TGS of mammalian genes can be induced by short interfering RNA (siRNA targeting promoter regions. We previously reported potent TGS of HIV-1 by siRNA (PromA, which targets tandem NF-κB motifs within the viral 5′LTR. In this study, we screened a siRNA panel with the aim of identifying novel 5′LTR targets, to provide multiplexing potential with enhanced viral silencing and application toward developing alternate therapeutic strategies. Systematic examination identified a novel siRNA target, si143, confirmed to induce TGS as the silencing mechanism. TGS was prolonged with virus suppression >12 days, despite a limited ability to induce post- TGS. Epigenetic changes associated with silencing were suggested by partial reversal by histone deacetylase inhibitors and confirmed by chromatin immunoprecipitation analyses, which showed induction of H3K27me3 and H3K9me3, reduction in H3K9Ac, and recruitment of argonaute-1, all characteristic marks of heterochromatin and TGS. Together, these epigenetic changes mimic those associated with HIV-1 latency. Further, robust resistance to reactivation was observed in the J-Lat 9.2 cell latency model, when transduced with shPromA and/or sh143. These data support si/shRNA-mediated TGS approaches to HIV-1 and provide alternate targets to pursue a functional cure, whereby the viral reservoir is locked in latency following antiretroviral therapy cessation.

  13. A prospective study of the effect of pregnancy on CD4 counts and plasma HIV-1 RNA concentrations of antiretroviral-naive HIV-1-infected women.

    Heffron, Renee; Donnell, Deborah; Kiarie, James; Rees, Helen; Ngure, Kenneth; Mugo, Nelly; Were, Edwin; Celum, Connie; Baeten, Jared M

    2014-02-01

    In HIV-1-infected women, CD4 count declines occur during pregnancy, which has been attributed to hemodilution. However, for women who have not initiated antiretroviral therapy, it is unclear if CD4 declines are sustained beyond pregnancy and accompanied by increased viral levels, which could indicate an effect of pregnancy on accelerating HIV-1 disease progression. In a prospective study among 2269 HIV-1-infected antiretroviral therapy-naive women from 7 African countries, we examined the effect of pregnancy on HIV-1 disease progression. We used linear mixed models to compare CD4 counts and plasma HIV-1 RNA concentrations between pregnant, postpartum, and nonpregnant periods. Women contributed 3270 person-years of follow-up, during which time 476 women became pregnant. In adjusted analysis, CD4 counts were an average of 56 (95% confidence interval: 39 to 73) cells/mm lower during pregnant compared with nonpregnant periods and 70 (95% confidence interval: 53 to 88) cells/mm lower during pregnant compared with postpartum periods; these results were consistent when restricted to the subgroup of women who became pregnant. Plasma HIV-1 RNA concentrations were not different between pregnant and nonpregnant periods (P = 0.9) or pregnant and postpartum periods (P = 0.3). Neither CD4 counts nor plasma HIV-1 RNA levels were significantly different in postpartum compared with nonpregnant periods. CD4 count declines among HIV-1-infected women during pregnancy are temporary and not sustained in postpartum periods. Pregnancy does not have a short-term impact on plasma HIV-1 RNA concentrations.

  14. A prospective study of the effect of pregnancy on CD4 counts and plasma HIV-1 RNA concentrations of antiretroviral-naive HIV-1 infected women

    Heffron, Renee; Donnell, Deborah; Kiarie, James; Rees, Helen; Ngure, Kenneth; Mugo, Nelly; Were, Edwin; Celum, Connie; Baeten, Jared M.

    2014-01-01

    Background In HIV-1 infected women, CD4 count declines occur during pregnancy, which has been attributed to hemodilution. However, for women who have not initiated antiretroviral therapy (ART), it is unclear if CD4 declines are sustained beyond pregnancy and accompanied by increased viral levels, which could indicate an effect of pregnancy on accelerating HIV-1 disease progression. Methods In a prospective study among 2269 HIV-1 infected ART-naïve women from 7 African countries, we examined the effect of pregnancy on HIV-1 disease progression. We used linear mixed models to compare CD4 counts and plasma HIV-1 RNA concentrations between pregnant, postpartum and non-pregnant periods. Results Women contributed 3270 person-years of follow-up, during which time 476 women became pregnant. In adjusted analysis, CD4 counts were an average of 56 (95% CI 39-73) cells/mm3 lower during pregnant compared to non-pregnant periods and 70 (95% CI 53-88) cells/mm3 lower during pregnant compared to postpartum periods; these results were consistent when restricted to the subgroup of women who became pregnant. Plasma HIV-1 RNA concentrations were not different between pregnant and non-pregnant periods (p=0.9) or pregnant and postpartum periods (p=0.3). Neither CD4 counts nor plasma HIV-1 RNA levels were significantly different in postpartum compared to non-pregnant periods. Conclusion CD4 count declines among HIV-1 infected women during pregnancy are temporary and not sustained in postpartum periods. Pregnancy does not have a short term impact on plasma HIV-1 RNA concentrations. PMID:24442226

  15. RNA glycosidase and other agents target Tat to inhibit HIV-1 transcription.

    Harrich, David; Jin, Hongping

    2018-03-20

    The HIV-1 tat gene encodes a small 86-104 amino acid protein depending on the HIV-1 strain. Tat is essential for HIV-1 replication through interactions with numerous cellular transcription factors. The interaction between Tat and P-TEFb, which is a cellular protein complex composed of cyclin T1 and CDK9, delivers P-TEFb to the newly transcribed viral mRNAs where phosphorylation of RNA polymerase II by CDK9 leads to highly efficient mRNA transcription. It has long been recognized that Tat is a potential anti-HIV-1 target and possibly a viral Achilles' heel. However, specifically targeting Tat without affecting normal host cell functions has been challenging. Means to inactivate Tat have been reported that includes small compounds, transdominant negative Tat proteins, and by plant-derived antivirals. Investigations of these agents have reported encouraging outcomes that inform and may hopefully affect strategies for a functional HIV-1 cure. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    Fang Jianhua; Acheampong, Edward; Dave, Rajnish; Wang Fengxiang; Mukhtar, Muhammad; Pomerantz, Roger J.

    2005-01-01

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  17. Opening of the TAR hairpin in the HIV-1 genome causes aberrant RNA dimerization and packaging

    Das Atze T

    2012-07-01

    Full Text Available Abstract Background The TAR hairpin is present at both the 5′ and 3′ end of the HIV-1 RNA genome. The 5′ element binds the viral Tat protein and is essential for Tat-mediated activation of transcription. We recently observed that complete TAR deletion is allowed in the context of an HIV-1 variant that does not depend on this Tat-TAR axis for transcription. Mutations that open the 5′ stem-loop structure did however affect the leader RNA conformation and resulted in a severe replication defect. In this study, we set out to analyze which step of the HIV-1 replication cycle is affected by this conformational change of the leader RNA. Results We demonstrate that opening the 5′ TAR structure through a deletion in either side of the stem region caused aberrant dimerization and reduced packaging of the unspliced viral RNA genome. In contrast, truncation of the TAR hairpin through deletions in both sides of the stem did not affect RNA dimer formation and packaging. Conclusions These results demonstrate that, although the TAR hairpin is not essential for RNA dimerization and packaging, mutations in TAR can significantly affect these processes through misfolding of the relevant RNA signals.

  18. Meticulous plasma isolation is essential to avoid false low-level viraemia in Roche Cobas HIV-1 viral load assays.

    Mortier, Virginie; Vancoillie, Leen; Dauwe, Kenny; Staelens, Delfien; Demecheleer, Els; Schauvliege, Marlies; Dinakis, Sylvie; Van Maerken, Tom; Dessilly, Géraldine; Ruelle, Jean; Verhofstede, Chris

    2017-10-24

    Pre-analytical sample processing is often overlooked as a potential cause of inaccurate assay results. Here we demonstrate how plasma, extracted from standard EDTA-containing blood collection tubes, may contain traces of blood cells consequently resulting in a false low-level HIV-1 viral load when using Roche Cobas HIV-1 assays. The presence of human DNA in Roche Cobas 4800 RNA extracts and in RNA extracts from the Abbott HIV-1 RealTime assay was assessed by quantifying the human albumin gene by means of quantitative PCR. RNA was extracted from plasma samples before and after an additional centrifugation and tested for viral load and DNA contamination. The relation between total DNA content and viral load was defined. Elevated concentrations of genomic DNA were detected in 28 out of 100 Cobas 4800 extracts and were significantly more frequent in samples processed outside of the AIDS Reference Laboratory. An association between genomic DNA presence and spurious low-level viraemia results was demonstrated. Supplementary centrifugation of plasma before RNA extraction eliminated the contamination and the false viraemia. Plasma isolated from standard EDTA-containing blood collection tubes may contain traces of HIV DNA leading to false viral load results above the clinical cutoff. Supplementary centrifugation of plasma before viral load analysis may eliminate the occurrence of this spurious low-level viraemia.

  19. Seminal Plasma HIV-1 RNA Concentration Is Strongly Associated with Altered Levels of Seminal Plasma Interferon-γ, Interleukin-17, and Interleukin-5

    Hoffman, Jennifer C.; Anton, Peter A.; Baldwin, Gayle Cocita; Elliott, Julie; Anisman-Posner, Deborah; Tanner, Karen; Grogan, Tristan; Elashoff, David; Sugar, Catherine; Yang, Otto O.

    2014-01-01

    Abstract Seminal plasma HIV-1 RNA level is an important determinant of the risk of HIV-1 sexual transmission. We investigated potential associations between seminal plasma cytokine levels and viral concentration in the seminal plasma of HIV-1-infected men. This was a prospective, observational study of paired blood and semen samples from 18 HIV-1 chronically infected men off antiretroviral therapy. HIV-1 RNA levels and cytokine levels in seminal plasma and blood plasma were measured and analyzed using simple linear regressions to screen for associations between cytokines and seminal plasma HIV-1 levels. Forward stepwise regression was performed to construct the final multivariate model. The median HIV-1 RNA concentrations were 4.42 log10 copies/ml (IQR 2.98, 4.70) and 2.96 log10 copies/ml (IQR 2, 4.18) in blood and seminal plasma, respectively. In stepwise multivariate linear regression analysis, blood HIV-1 RNA level (pplasma HIV-1 RNA level. After controlling for blood HIV-1 RNA level, seminal plasma HIV-1 RNA level was positively associated with interferon (IFN)-γ (p=0.03) and interleukin (IL)-17 (p=0.03) and negatively associated with IL-5 (p=0.0007) in seminal plasma. In addition to blood HIV-1 RNA level, cytokine profiles in the male genital tract are associated with HIV-1 RNA levels in semen. The Th1 and Th17 cytokines IFN-γ and IL-17 are associated with increased seminal plasma HIV-1 RNA, while the Th2 cytokine IL-5 is associated with decreased seminal plasma HIV-1 RNA. These results support the importance of genital tract immunomodulation in HIV-1 transmission. PMID:25209674

  20. Dried blood spot HIV-1 RNA quantification using open real-time systems in South Africa and Burkina Faso.

    Viljoen, Johannes; Gampini, Sandrine; Danaviah, Sivapragashini; Valéa, Diane; Pillay, Sureshnee; Kania, Dramane; Méda, Nicolas; Newell, Marie-Louise; Van de Perre, Philippe; Rouet, François

    2010-11-01

    There is an urgent need to assess the accuracy/feasibility of using dried blood spots (DBS) for monitoring of HIV-1 viral load in resource-limited settings. A total of 892 DBS from HIV-1-positive pregnant women and their neonates enrolled in the Kesho Bora prevention of mother-to-child transmission trial conducted in Durban (South Africa) and Bobo-Dioulasso (Burkina Faso) between May 2005 and July 2008 were tested for HIV-1 RNA. The combination Nuclisens extraction method (BioMérieux)/Generic HIV Viral Load assay (Biocentric) was performed using one DBS (in Durban) versus 2 DBS (in Bobo-Dioulasso) on 2 distinct open real-time polymerase chain reaction instruments. DBS HIV-1 RNA results were compared with plasma HIV-1 RNA and HIV serology results used as the gold standards. The limits of detection of assays on DBS were 3100 and 1550 copies per milliliter in Durban and Bobo-Dioulasso, respectively. DBS HIV-1 RNA values correlated significantly with plasma levels (n = 327; R = 0.7351) and were uniformly distributed according to duration of DBS storage at -20°C (median duration, 280 days). For early infant diagnosis, the sensitivity and specificity were 100% (95% confidence interval: 97.2 to 100.0 and 96.5 to 100.0, respectively). HIV-1 viral load kinetics in DNase-pretreated DBS were similar to those obtained in plasma specimens among 13 patients receiving antiretroviral treatment. HIV-1 RNA findings from serial infant DBS collected prospectively (n = 164) showed 100% concordance with HIV serology at 18 months of life. Our findings strongly advocate the implementation of DBS HIV-1 RNA testing in remote areas from low-income and middle-income countries.

  1. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression.

    Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication.

    Masha Sorin

    2009-06-01

    Full Text Available HIV-1 integrase (IN is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD, a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1 virions in an HIV-1 IN-dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1(H141A was utilized. Incorporation of HDAC1(H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1(H141A decreased the infectivity of HIV-1 (but not SIV virions. The block in infectivity due to virion-associated HDAC1(H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post

  3. Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.

    Nikolaitchik, Olga A; Hu, Wei-Shau

    2014-04-01

    A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1

  4. Cervical Shedding of HIV-1 RNA Among Women With Low Levels of Viremia While Receiving Highly Active Antiretroviral Therapy

    Neely, Michael N.; Benning, Lorie; Xu, Jiaao; Strickler, Howard D.; Greenblatt, Ruth M.; Minkoff, Howard; Young, Mary; Bremer, James; Levine, Alexandra M.; Kovacs, Andrea

    2011-01-01

    Background Among women with low o r undetectable quantities of HIV-1 RNA in plasma, factors associated with genital HIV-1 RNA shedding, including choice of treatment regimen, are poorly characterized. Methods We measured HIV-1 RNA in cervical swab specimens obtained from participants in the Women’s Interagency HIV Study who had concurrent plasma viral RNA levels <500 copies/mL, and we assessed factors associated with genital HIV shedding. The study was powered to determine the relative effects of antiretroviral protease inhibitors (PIs) versus nonnucleoside reverse transcriptase inhibitors (NNRTIs) on viral RNA shedding. Results Overall, 44 (15%) of 290 women had detectable HIV-1 RNA in cervical specimens. In the final multivariate model, shedding was independently associated with NNRTI (vs. PI) use (odds ratio [OR], 95% confidence interval [CI]: 2.24, 1.13 to 4.45) and illicit drug use (OR, 95% CI: 2.41, 0.96 to 5.69). Conclusions This is the largest study to define risks for genital HIV-1 RNA shedding in women with low/undetectable plasma virus. Shedding in this population was common, and NNRTI-based highly active antiretroviral therapy (HAART) (vs. PI-based HAART) was associated with genital HIV shedding. Further study is required to determine the impact of these findings on transmission of HIV from mother to child or to sexual partners. PMID:17106279

  5. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1.

    Luis Apolonia

    2015-01-01

    Full Text Available The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G and APOBEC3F (A3F, act as potent human immunodeficiency virus type-1 (HIV-1 restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.

  6. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1.

    Darlix, J L; Gabus, C; Nugeyre, M T; Clavel, F; Barré-Sinoussi, F

    1990-12-05

    The retroviral genome consists of two identical RNA molecules joined at their 5' ends by the Dimer Linkage Structure (DLS). To study the mechanism of dimerization and the DLS of HIV-1 RNA, large amounts of bona fide HIV-1 RNA and of mutants have been synthesized in vitro. We report that HIV-1 RNA forms dimeric molecules and that viral nucleocapsid (NC) protein NCp15 greatly activates dimerization. Deletion mutagenesis in the RNA 5' 1333 nucleotides indicated that a small domain of 100 nucleotides, located between positions 311 to 415 from the 5' end, is necessary and sufficient to promote HIV-1 RNA dimerization. This dimerization domain encompasses an encapsidation element located between the 5' splice donor site and initiator AUG of gag and shows little sequence variations in different strains of HIV-1. Furthermore, cross-linking analysis of the interactions between NC and HIV-1 RNA (311 to 415) locates a major contact site in the encapsidation element of HIV-1 RNA. The genomic RNA dimer is tightly associated with nucleocapsid protein molecules in avian and murine retroviruses, and this ribonucleoprotein structure is believed to be the template for reverse transcription. Genomic RNA-protein interactions have been analyzed in human immunodeficiency virus (HIV) virions and results showed that NC protein molecules are tightly bound to the genomic RNA dimer. Since retroviral RNA dimerization and packaging appear to be under the control of the same cis element, the encapsidation sequences, and trans-acting factor, the NC protein, they are probably related events in the course of virion assembly.

  7. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1.

    Gabus, C; Derrington, E; Leblanc, P; Chnaiderman, J; Dormont, D; Swietnicki, W; Morillas, M; Surewicz, W K; Marc, D; Nandi, P; Darlix, J L

    2001-06-01

    Transmissible spongiform encephalopathies are fatal neurodegenerative diseases associated with the accumulation of a protease-resistant form of the prion protein (PrP). Although PrP is conserved in vertebrates, its function remains to be identified. In vitro PrP binds large nucleic acids causing the formation of nucleoprotein complexes resembling human immunodeficiency virus type 1 (HIV-1) nucleocapsid-RNA complexes and in vivo MuLV replication accelerates the scrapie infectious process, suggesting possible interactions between retroviruses and PrP. Retroviruses, including HIV-1 encode a major nucleic acid binding protein (NC protein) found within the virus where 2000 NC protein molecules coat the dimeric genome. NC is required in virus assembly and infection to chaperone RNA dimerization and packaging and in proviral DNA synthesis by reverse transcriptase (RT). In HIV-1, 5'-leader RNA/NC interactions appear to control these viral processes. This prompted us to compare and contrast the interactions of human and ovine PrP and HIV-1 NCp7 with HIV-1 5'-leader RNA. Results show that PrP has properties characteristic of NCp7 with respect to viral RNA dimerization and proviral DNA synthesis by RT. The NC-like properties of huPrP map to the N-terminal region of huPrP. Interestingly, PrP localizes in the membrane and cytoplasm of PrP-expressing cells. These findings suggest that PrP is a multifunctional protein possibly participating in nucleic acid metabolism.

  8. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.

    Batisse, Julien; Guerrero, Santiago; Bernacchi, Serena; Sleiman, Dona; Gabus, Caroline; Darlix, Jean-Luc; Marquet, Roland; Tisné, Carine; Paillart, Jean-Christophe

    2012-11-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Mortality of treated HIV-1 positive individuals according to viral subtype in Europe and Canada

    Obel, Niels

    2016-01-01

    OBJECTIVES: To estimate prognosis by viral subtype in HIV-1-infected individuals from start of antiretroviral therapy (ART) and after viral failure. DESIGN: Collaborative analysis of data from eight European and three Canadian cohorts. METHODS: Adults (N>20 000) who started triple ART between 199...

  10. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells.

    Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  11. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Mouhssin Oufir

    2011-01-01

    Full Text Available An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  12. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.

    Jones, Christopher P; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-02-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.

  13. Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses.

    Michael D Moore

    2009-10-01

    Full Text Available Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking.

  14. Co-occurrence of Trichomonas vaginalis and bacterial vaginosis and vaginal shedding of HIV-1 RNA.

    Fastring, Danielle R; Amedee, Angela; Gatski, Megan; Clark, Rebecca A; Mena, Leandro A; Levison, Judy; Schmidt, Norine; Rice, Janet; Gustat, Jeanette; Kissinger, Patricia

    2014-03-01

    Trichomonas vaginalis (TV) and bacterial vaginosis (BV) are independently associated with increased risk of vaginal shedding in HIV-positive women. Because these 2 conditions commonly co-occur, this study was undertaken to examine the association between TV/BV co-occurrence and vaginal shedding of HIV-1 RNA. HIV-positive women attending outpatient HIV clinics in 3 urban US cities underwent a clinical examination; were screened for TV, BV, Neisseria gonorrhoeae, Chlamydia trachomatis, and vulvovaginal candidiasis; and completed a behavioral survey. Women shedding HIV-1 RNA vaginally (≥50 copies/mL) were compared with women who had an undetectable (women who were TV positive and BV positive or had co-occurrence of TV/BV had higher odds of shedding vaginally when compared with women who did not have these conditions. In this sample of 373 HIV-positive women, 43.1% (n = 161) had co-occurrence of TV/BV and 33.2% (n = 124) were shedding HIV-1 RNA vaginally. The odds of shedding HIV vaginally in the presence of TV alone or BV alone and when TV/BV co-occurred were 4.07 (95% confidence interval [CI], 1.78-9.37), 5.65 (95% CI, 2.64-12.01), and 18.63 (95% CI, 6.71-51.72), respectively, when compared with women with no diagnosis of TV or BV, and after adjusting for age, antiretroviral therapy status, and plasma viral load. T. vaginalis and BV were independently and synergistically related to vaginal shedding of HIV-1 RNA. Screening and prompt treatment of these 2 conditions among HIV-positive women are important not only clinically but for HIV prevention, as well.

  15. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  16. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation.

    Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W

    2014-09-24

    Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.

  17. Repeat testing of low-level HIV-1 RNA: assay performance and implementation in clinical trials.

    White, Kirsten; Garner, Will; Wei, Lilian; Eron, Joseph J; Zhong, Lijie; Miller, Michael D; Martin, Hal; Plummer, Andrew; Tran-Muchowski, Cecilia; Lindstrom, Kim; Porter, James; Piontkowsky, David; Light, Angela; Reiske, Heinz; Quirk, Erin

    2018-05-15

    Assess the performance of HIV-1 RNA repeat testing of stored samples in cases of low-level viremia during clinical trials. Prospective and retrospective analysis of randomized clinical trial samples and reference standards. To evaluate assay variability of the Cobas AmpliPrep/Cobas TaqMan HIV-1 Test, v2.0, three separate sources of samples were utilized: the World Health Organization (WHO) HIV reference standard (assayed using 50 independent measurements at six viral loads <200 copies/ml), retrospective analysis of four to six aliquots of plasma samples from four clinical trial participants, and prospective repeat testing of 120 samples from participants in randomized trials with low-level viremia. The TaqMan assay on the WHO HIV-1 RNA standards at viral loads <200 copies/ml performed within the expected variability according to assay specifications. However, standards with low viral loads of 36 and 18 copies/ml reported values of ≥ 50 copies/ml in 66 and 18% of tests, respectively. In participants treated with antiretrovirals who had unexpected viremia of 50-200 copies/ml after achieving <50 copies/ml, retesting of multiple aliquots of stored plasma found <50 copies/ml in nearly all cases upon retesting (14/15; 93%). Repeat testing was prospectively implemented in four clinical trials for all samples with virologic rebound of 50-200 copies/ml (n = 120 samples from 92 participants) from which 42% (50/120) had a retest result of less than 50 copies/ml and 58% (70/120) retested ≥ 50 copies/ml. The TaqMan HIV-1 RNA assay shows variability around 50 copies/ml that affects clinical trial results and may impact clinical practice. In participants with a history of viral load suppression, unexpected low-level viremia may be because of assay variability rather than low drug adherence or true virologic failure. Retesting a stored aliquot of the same sample may differentiate between assay variability and virologic failure as the source of viremia

  18. Prolonged elevation of viral loads in HIV-1-infected children

    cqq1a

    2010-11-09

    Nov 9, 2010 ... treatment i.e. mean difference (signed-rank test) in viral load “before” and .... We used Abbott Determine and Unigold as the rapid HIV test kits. The ..... N: Number of patients, *: Wilcoxon signed ranks test for Median difference ...

  19. Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal

    Narayanan, Krishna; Chen, Chun-Jen; Maeda, Junko; Makino, Shinji

    2003-01-01

    For any of the enveloped RNA viruses studied to date, recognition of a specific RNA packaging signal by the virus's nucleocapsid (N) protein is the first step described in the process of viral RNA packaging. In the murine coronavirus a selective interaction between the viral transmembrane envelope protein M and the viral ribonucleoprotein complex, composed of N protein and viral RNA containing a short cis-acting RNA element, the packaging signal, determines the selective RNA packaging into vi...

  20. Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency.

    Barat, Corinne; Proust, Alizé; Deshiere, Alexandre; Leboeuf, Mathieu; Drouin, Jean; Tremblay, Michel J

    2018-02-21

    The "shock and kill" HIV-1 cure strategy proposes eradication of stable cellular reservoirs by clinical treatment with latency-reversing agents (LRAs). Although resting CD4 + T cells latently infected with HIV-1 constitute the main reservoir that is targeted by these approaches, their consequences on other reservoirs such as the central nervous system are still unknown and should be taken into consideration. We performed experiments aimed at defining the possible role of astrocytes in HIV-1 persistence in the brain and the effect of LRA treatments on this viral sanctuary. We first demonstrate that the diminished HIV-1 production in a proliferating astrocyte culture is due to a reduced proliferative capacity of virus-infected cells compared with uninfected astrocytes. In contrast, infection of non-proliferating astrocytes led to a robust HIV-1 infection that was sustained for over 60 days. To identify astrocytes latently infected with HIV-1, we designed a new dual-color reporter virus called NL4.3 eGFP-IRES-Crimson that is fully infectious and encodes for all viral proteins. Although we detected a small fraction of astrocytes carrying silent HIV-1 proviruses, we did not observe any reactivation using various LRAs and even strong inducers such as tumor necrosis factor, thus suggesting that these proviruses were either not transcriptionally competent or in a state of deep latency. Our findings imply that astrocytes might not constitute a latent reservoir per se but that relentless virus production by this brain cell population could contribute to the neurological disorders seen in HIV-1-infected persons subjected to combination antiretroviral therapy. © 2018 Wiley Periodicals, Inc.

  1. A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication.

    Herzig, Eytan; Voronin, Nickolay; Kucherenko, Nataly; Hizi, Amnon

    2015-08-01

    The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription

  2. HIV-1 transmitting couples have similar viral load set-points in Rakai, Uganda.

    T Déirdre Hollingsworth

    2010-05-01

    Full Text Available It has been hypothesized that HIV-1 viral load set-point is a surrogate measure of HIV-1 viral virulence, and that it may be subject to natural selection in the human host population. A key test of this hypothesis is whether viral load set-points are correlated between transmitting individuals and those acquiring infection. We retrospectively identified 112 heterosexual HIV-discordant couples enrolled in a cohort in Rakai, Uganda, in which HIV transmission was suspected and viral load set-point was established. In addition, sequence data was available to establish transmission by genetic linkage for 57 of these couples. Sex, age, viral subtype, index partner, and self-reported genital ulcer disease status (GUD were known. Using ANOVA, we estimated the proportion of variance in viral load set-points which was explained by the similarity within couples (the 'couple effect'. Individuals with suspected intra-couple transmission (97 couples had similar viral load set-points (p = 0.054 single factor model, p = 0.0057 adjusted and the couple effect explained 16% of variance in viral loads (23% adjusted. The analysis was repeated for a subset of 29 couples with strong genetic support for transmission. The couple effect was the major determinant of viral load set-point (p = 0.067 single factor, and p = 0.036 adjusted and the size of the effect was 27% (37% adjusted. Individuals within epidemiologically linked couples with genetic support for transmission had similar viral load set-points. The most parsimonious explanation is that this is due to shared characteristics of the transmitted virus, a finding which sheds light on both the role of viral factors in HIV-1 pathogenesis and on the evolution of the virus.

  3. Transmission of single and multiple viral variants in primary HIV-1 subtype C infection.

    Vladimir Novitsky

    2011-02-01

    Full Text Available To address whether sequences of viral gag and env quasispecies collected during the early post-acute period can be utilized to determine multiplicity of transmitted HIV's, recently developed approaches for analysis of viral evolution in acute HIV-1 infection [1,2] were applied. Specifically, phylogenetic reconstruction, inter- and intra-patient distribution of maximum and mean genetic distances, analysis of Poisson fitness, shape of highlighter plots, recombination analysis, and estimation of time to the most recent common ancestor (tMRCA were utilized for resolving multiplicity of HIV-1 transmission in a set of viral quasispecies collected within 50 days post-seroconversion (p/s in 25 HIV-infected individuals with estimated time of seroconversion. The decision on multiplicity of HIV infection was made based on the model's fit with, or failure to explain, the observed extent of viral sequence heterogeneity. The initial analysis was based on phylogeny, inter-patient distribution of maximum and mean distances, and Poisson fitness, and was able to resolve multiplicity of HIV transmission in 20 of 25 (80% cases. Additional analysis involved distribution of individual viral distances, highlighter plots, recombination analysis, and estimation of tMRCA, and resolved 4 of the 5 remaining cases. Overall, transmission of a single viral variant was identified in 16 of 25 (64% cases, and transmission of multiple variants was evident in 8 of 25 (32% cases. In one case multiplicity of HIV-1 transmission could not be determined. In primary HIV-1 subtype C infection, samples collected within 50 days p/s and analyzed by a single-genome amplification/sequencing technique can provide reliable identification of transmission multiplicity in 24 of 25 (96% cases. Observed transmission frequency of a single viral variant and multiple viral variants were within the ranges of 64% to 68%, and 32% to 36%, respectively.

  4. Viral load, CD4+ T-lymphocyte counts and antibody titres in HIV-1 ...

    Viral load, CD4+ T-lymphocyte counts and antibody titres in HIV-1 infected untreated children in Kenya; implication for immunodeficiency and AIDS progression. Washingtone Ochieng, Dorington Ogoyi, Francis J Mulaa, Simon Ogola, Rachel Musoke, Moses G Otsyula ...

  5. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  6. Ultra-Sensitive HIV-1 Latency Viral Outgrowth Assays Using Humanized Mice.

    Schmitt, Kimberly; Akkina, Ramesh

    2018-01-01

    In the current quest for a complete cure for HIV/AIDS, highly sensitive HIV-1 latency detection methods are critical to verify full viral eradication. Until now, the in vitro quantitative viral outgrowth assays (qVOA) have been the gold standard for assessing latent HIV-1 viral burden. However, these assays have been inadequate in detecting the presence of ultralow levels of latent virus in a number of patients who were initially thought to have been cured, but eventually showed viral rebound. In this context, new approaches utilizing in vivo mouse-based VOAs are promising. In the murine VOA (mVOA), large numbers of CD4 + T cells or PBMC from aviremic subjects are xenografted into immunodeficient NSG mice, whereas in the humanized mouse-based VOA (hmVOA) patient CD4 + T cell samples are injected into BLT or hu-hematopoetic stem cells (hu-HSC) humanized mice. While latent virus could be recovered in both of these systems, the hmVOA provides higher sensitivity than the mVOA using a fewer number of input cells. In contrast to the mVOA, the hmVOA provides a broader spectrum of highly susceptible HIV-1 target cells and enables newly engrafted cells to home into preformed human lymphoid organs where they can infect cells in situ after viral activation. Hu-mice also allow for both xenograft- and allograft-driven cell expansions with less severe GvH providing a longer time frame for potential viral outgrowth from cells with a delayed latent viral activation. Based on these advantages, the hmVOA has great potential in playing an important role in HIV-1 latency and cure research.

  7. Curaxin CBL0100 Blocks HIV-1 Replication and Reactivation through Inhibition of Viral Transcriptional Elongation

    Maxime J. Jean

    2017-10-01

    Full Text Available Despite combination antiretroviral therapy (cART, acquired immunodeficiency syndrome (AIDS, predominantly caused by the human immunodeficiency virus type 1 (HIV-1, remains incurable. The barrier to a cure lies in the virus' ability to establish a latent infection in HIV/AIDS patients. Unsurprisingly, efforts for a sterilizing cure have focused on the “shock and kill” strategy using latency-reversing agents (LRAs to complement cART in order to eliminate these latent reservoirs. However, this method faces numerous challenges. Recently, the “block and lock” strategy has been proposed. It aims to reinforce a deep state of latency and prevent sporadic reactivation (“blip” of HIV-1 using latency-promoting agents (LPAs for a functional cure. Our studies of curaxin 100 (CBL0100, a small-molecule targeting the facilitates chromatin transcription (FACT complex, show that it blocks both HIV-1 replication and reactivation in in vitro and ex vivo models of HIV-1. Mechanistic investigation elucidated that CBL0100 preferentially targets HIV-1 transcriptional elongation and decreases the occupancy of RNA Polymerase II (Pol II and FACT at the HIV-1 promoter region. In conclusion, CBL0100 is a newly identified inhibitor of HIV-1 transcription that can be used as an LPA in the “block and lock” cure strategy.

  8. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Upert, Gregory; Di Giorgio, Audrey; Upadhyay, Alok; Manvar, Dinesh; Pandey, Nootan; Pandey, Virendra N.; Patino, Nadia

    2012-01-01

    Human immunodeficiency virus-1 (HIV-1) replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR), to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP) cation-based vectors that efficiently deliver nucleotide analogs (PNAs) into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins. PMID:23029603

  9. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Gregory Upert

    2012-01-01

    Full Text Available Human immunodeficiency virus-1 (HIV-1 replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR, to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP cation-based vectors that efficiently deliver nucleotide analogs (PNAs into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins.

  10. Syphilis and HIV-1 co-infection: influence on CD4 T cell count, HIV-1 viral load and treatment response

    Kofoed, Kristian; Gerstoft, Jan; Mathiesen, Lars Reinhardt

    2006-01-01

    OBJECTIVES: To assess the effect of human immunodeficiency virus (HIV)-1 and syphilis coinfection on HIV-ribonucleic acid (RNA) viral load, CD4 cell count, and the response in rapid plasmin reagin (RPR) to treatment of the syphilis infection. STUDY DESIGN: Cases of syphilis diagnosed during 1 year...... in HIV-infected patients in Copenhagen were included. HIV-RNA, CD4 cell counts, and RPR-serology were measured before, during, and after syphilis. RESULTS: Forty-one patients were included. CD4 cell count decreased significantly during infection in patients with primary and secondary stages of syphilis...... (mean 106 cells/mm, P = 0.03). Treatment of syphilis was associated with an increase in the CD4 cell count and a decrease in HIV-RNA in the overall group (mean 66 cells/mm and -0.261 RNA log10 copies/ml, P = 0.02 and 0.04). The serological response rates for 15 patients treated with penicillin and 25...

  11. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA

    Robert J Scarborough

    2014-01-01

    Full Text Available Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies.

  12. Changes in HIV-1 subtypes B and C genital tract RNA in women and men after initiation of antiretroviral therapy.

    Fiscus, Susan A; Cu-Uvin, Susan; Eshete, Abel Tilahun; Hughes, Michael D; Bao, Yajing; Hosseinipour, Mina; Grinsztejn, Beatriz; Badal-Faesen, Sharlaa; Dragavon, Joan; Coombs, Robert W; Braun, Ken; Moran, Laura; Hakim, James; Flanigan, Timothy; Kumarasamy, N; Campbell, Thomas B

    2013-07-01

    Combination antiretroviral therapy (cART) reduces genital tract human immunodeficiency virus type 1 (HIV-1) load and reduces the risk of sexual transmission, but little is known about the efficacy of cART for decreasing genital tract viral load (GTVL) and differences in sex or HIV-1 subtype. HIV-1 RNA from blood plasma, seminal plasma, or cervical wicks was quantified at baseline and at weeks 48 and 96 after entry in a randomized clinical trial of 3 cART regimens. One hundred fifty-eight men and 170 women from 7 countries were studied (men: 55% subtype B and 45% subtype C; women: 24% subtype B and 76% subtype C). Despite similar baseline CD4(+) cell counts and blood plasma viral loads, women with subtype C had the highest GTVL (median, 5.1 log10 copies/mL) compared to women with subtype B and men with subtype C or B (4.0, 4.0, and 3.8 log10 copies/mL, respectively; P female genital tract may serve as a reservoir of persistent HIV-1 replication during cART and affect the use of cART to prevent sexual and perinatal transmission of HIV-1.

  13. Analysis of correlation between cerebrospinal fluid and plasma HIV-1 RNA levels in patients with neurological opportunistic diseases

    Paulo Pereira Christo

    2011-08-01

    Full Text Available The question of whether HIV-1 RNA in cerebrospinal fluid (CSF is derived from viral replication in the central nervous system or simply reflects the transit of infected lymphocytes from the blood compartment has long been a matter of debate. Some studies found no correlation between CSF and plasma viral load, whereas others did. The lack of a correlation between the two compartments suggests that the presence of HIV-1 RNA is not simply due to the passive passage of the virus from blood to CSF but rather due to intrathecal replication. To evaluate the correlation between plasma and CSF HIV-1 RNA levels and to identify situations in which there is no correlation between the two compartments, seventy patients were prospectively studied. The association between CSF and plasma viral load was evaluated in the total population and in subgroups of patients with similar characteristics. A correlation between the CSF and plasma compartments was observed for patients undergoing highly active antiretroviral therapy (HAART, those with a CD4 T lymphocyte count lower than 200 cells/mm³, and those with increased CSF protein content. On the other hand, no correlation was observed for patients without adequate virological control, who had a CD4 count higher than 200 cells/mm³ and who did not use HAART. The correlation between the two compartments observed in some patients suggests that CSF HIV-1 RNA levels may reflect plasma levels in these subjects. In contrast, the lack of a correlation between the two compartments in patients who were not on HAART and who had normal CSF proteins and a poor virological control possibly indicates compartmentalization of the virus in CSF and, consequently, plasma-independent intrathecal viral replication.

  14. HIV-1 splicing is controlled by local RNA structure and binding of splicing regulatory proteins at the major 5' splice site

    Mueller, Nancy; Berkhout, Ben; Das, Atze T.

    2015-01-01

    The 5' leader region of the human immunodeficiency virus 1 (HIV-1) RNA genome contains the major 5' splice site (ss) that is used in the production of the many spliced viral RNAs. This splice-donor (SD) region can fold into a stable stem-loop structure and the thermodynamic stability of this RNA

  15. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA

    Friew, Yeshitila N; Boyko, Vitaly; Hu, Wei-Shau; Pathak, Vinay K

    2009-01-01

    Abstract Background Host restriction factor APOBEC3G (A3G) blocks human immunodeficiency virus type 1 (HIV-1) replication by G-to-A hypermutation, and by inhibiting DNA synthesis and provirus formation. Previous reports have suggested that A3G is a dimer and its virion incorporation is mediated through interactions with viral or nonviral RNAs and/or HIV-1 Gag. We have now employed a bimolecular fluorescence complementation assay (BiFC) to analyze the intracellular A3G-A3G, A3G-RNA, and A3G-Ga...

  16. Compartmentalization of HIV-1 within the female genital tract is due to monotypic and low-diversity variants not distinct viral populations.

    Bull, Marta; Learn, Gerald; Genowati, Indira; McKernan, Jennifer; Hitti, Jane; Lockhart, David; Tapia, Kenneth; Holte, Sarah; Dragavon, Joan; Coombs, Robert; Mullins, James; Frenkel, Lisa

    2009-09-22

    Compartmentalization of HIV-1 between the genital tract and blood was noted in half of 57 women included in 12 studies primarily using cell-free virus. To further understand differences between genital tract and blood viruses of women with chronic HIV-1 infection cell-free and cell-associated virus populations were sequenced from these tissues, reasoning that integrated viral DNA includes variants archived from earlier in infection, and provides a greater array of genotypes for comparisons. Multiple sequences from single-genome-amplification of HIV-1 RNA and DNA from the genital tract and blood of each woman were compared in a cross-sectional study. Maximum likelihood phylogenies were evaluated for evidence of compartmentalization using four statistical tests. Genital tract and blood HIV-1 appears compartmentalized in 7/13 women by >/=2 statistical analyses. These subjects' phylograms were characterized by low diversity genital-specific viral clades interspersed between clades containing both genital and blood sequences. Many of the genital-specific clades contained monotypic HIV-1 sequences. In 2/7 women, HIV-1 populations were significantly compartmentalized across all four statistical tests; both had low diversity genital tract-only clades. Collapsing monotypic variants into a single sequence diminished the prevalence and extent of compartmentalization. Viral sequences did not demonstrate tissue-specific signature amino acid residues, differential immune selection, or co-receptor usage. In women with chronic HIV-1 infection multiple identical sequences suggest proliferation of HIV-1-infected cells, and low diversity tissue-specific phylogenetic clades are consistent with bursts of viral replication. These monotypic and tissue-specific viruses provide statistical support for compartmentalization of HIV-1 between the female genital tract and blood. However, the intermingling of these clades with clades comprised of both genital and blood sequences and the absence

  17. Mapping the binding interface between an HIV-1 inhibiting intrabody and the viral protein Rev.

    Thomas Vercruysse

    Full Text Available HIV-1 Rev is the key protein in the nucleocytoplasmic export and expression of the late viral mRNAs. An important aspect for its function is its ability to multimerize on these mRNAs. We have recently identified a llama single-domain antibody (Nb190 as the first inhibitor targeting the Rev multimerization function in cells. This nanobody is a potent intracellular antibody that efficiently inhibits HIV-1 viral production. In order to gain insight into the Nb190-Rev interaction interface, we performed mutational and docking studies to map the interface between the nanobody paratope and the Rev epitope. Alanine mutants of the hyper-variable domains of Nb190 and the Rev multimerization domains were evaluated in different assays measuring Nb190-Rev interaction or viral production. Seven residues within Nb190 and five Rev residues are demonstrated to be crucial for epitope recognition. These experimental data were used to perform docking experiments and map the Nb190-Rev structural interface. This Nb190-Rev interaction model can guide further studies of the Nb190 effect on HIV-1 Rev function and could serve as starting point for the rational development of smaller entities binding to the Nb190 epitope, aimed at interfering with protein-protein interactions of the Rev N-terminal domain.

  18. High Maternal HIV-1 Viral Load During Pregnancy Is Associated With Reduced Placental Transfer of Measles IgG Antibody

    Farquhar, Carey; Nduati, Ruth; Haigwood, Nancy; Sutton, William; Mbori-Ngacha, Dorothy; Richardson, Barbra; John-Stewart, Grace

    2012-01-01

    Background Studies among HIV-1–infected women have demonstrated reduced placental transfer of IgG antibodies against measles and other pathogens. As a result, infants born to women with HIV-1 infection may not acquire adequate passive immunity in utero and this could contribute to high infant morbidity and mortality in this vulnerable population. Methods To determine factors associated with decreased placental transfer of measles IgG, 55 HIV-1–infected pregnant women who were enrolled in a Nairobi perinatal HIV-1 transmission study were followed. Maternal CD4 count, HIV-1 viral load, and HIV-1–specific gp41 antibody concentrations were measured antenatally and at delivery. Measles IgG concentrations were assayed in maternal blood and infant cord blood obtained during delivery to calculate placental antibody transfer. Results Among 40 women (73%) with positive measles titers, 30 (75%) were found to have abnormally low levels of maternofetal IgG transfer (<95%). High maternal HIV-1 viral load at 32 weeks’ gestation and at delivery was associated with reductions in placental transfer (P < 0.0001 and P = 0.0056, respectively) and infant measles IgG concentrations in cord blood (P < 0.0001 and P = 0.0073, respectively). High maternal HIV-1–specific gp41 antibody titer was also highly correlated with both decreased placental transfer (P = 0.0080) and decreased infant IgG (P < 0.0001). Conclusions This is the first study to evaluate the relationship between maternal HIV-1 viremia, maternal HIV-1 antibody concentrations, and passive immunity among HIV-1–exposed infants. These data support the hypothesis that high HIV-1 viral load during the last trimester may impair maternofetal transfer of IgG and increases risk of measles and other serious infections among HIV-1–exposed infants. PMID:16280707

  19. Patterns and rates of viral evolution in HIV-1 subtype B infected females and males.

    Michael J Dapp

    Full Text Available Biological sex differences affect the course of HIV infection, with untreated women having lower viral loads compared to their male counterparts but, for a given viral load, women have a higher rate of progression to AIDS. However, the vast majority of data on viral evolution, a process that is clearly impacted by host immunity and could be impacted by sex differences, has been derived from men. We conducted an intensive analysis of HIV-1 gag and env-gp120 evolution taken over the first 6-11 years of infection from 8 Women's Interagency HIV Study (WIHS participants who had not received combination antiretroviral therapy (ART. This was compared to similar data previously collected from men, with both groups infected with HIV-1 subtype B. Early virus populations in men and women were generally homogenous with no differences in diversity between sexes. No differences in ensuing nucleotide substitution rates were found between the female and male cohorts studied herein. As previously reported for men, time to peak diversity in env-gp120 in women was positively associated with time to CD4+ cell count below 200 (P = 0.017, and the number of predicted N-linked glycosylation sites generally increased over time, followed by a plateau or decline, with the majority of changes localized to the V1-V2 region. These findings strongly suggest that the sex differences in HIV-1 disease progression attributed to immune system composition and sensitivities are not revealed by, nor do they impact, global patterns of viral evolution, the latter of which proceeds similarly in women and men.

  20. Sensitivity and specificity of dried blood spots for HIV-1 viral load quantification

    Pannus, Pieter; Claus, Maarten; Gonzalez, Maria Mercedes Perez; Ford, Nathan; Fransen, Katrien

    2016-01-01

    Abstract The use of dried blood spots (DBS) instead of plasma as a specimen type for HIV-1 viral load (VL) testing facilitates the decentralization of specimen collection and can increase access to VL testing in resource-limited settings. The performance of DBS for VL testing is lower, however, when compared to the gold standard sample type plasma. In this diagnostic accuracy study, we evaluated 3 VL assays with DBS. Participants were recruited between August 2012 and April 2015. Both plasma and DBS specimens were prepared and tested for HIV-1 VL with the Roche CAP/CTM HIV-1 test v2.0, the Abbott RealTime HIV-1, and the bioMérieux NucliSENS EasyQ HIV-1 v2.0. Sensitivity and specificity to detect treatment failure at a threshold of 1000 cps/mL with DBS were determined. A total of 272 HIV-positive patients and 51 HIV-negative people were recruited in the study. The mean difference or bias between plasma and DBS VL was 25% of the specimens differed by >0.5 log cps/mL. All 3 assays had comparable sensitivities around 80% and specificities around 90%. Upward misclassification rates were around 10%, but downward misclassification rates ranged from 20.3% to 23.6%. Differences in between assays were not statistically significant (P > 0.1). The 3 VL assays evaluated had suboptimal performance with DBS but still performed better than immunological or clinical monitoring. Even after the introduction of the much-anticipated point-of-care VL devices, it is expected that DBS will remain important as a complementary option for supporting access to VL monitoring, particularly in rural, resource-limited settings. Manufacturers should accelerate efforts to develop more reliable, sensitive and specific methods to test VL on DBS specimens. PMID:27902602

  1. Endogenous MCM7 microRNA cluster as a novel platform to multiplex small interfering and nucleolar RNAs for combinational HIV-1 gene therapy.

    Chung, Janet; Zhang, Jane; Li, Haitang; Ouellet, Dominique L; DiGiusto, David L; Rossi, John J

    2012-11-01

    Combinational therapy with small RNA inhibitory agents against multiple viral targets allows efficient inhibition of viral production by controlling gene expression at critical time points. Here we explore combinations of different classes of therapeutic anti-HIV-1 RNAs expressed from within the context of an intronic MCM7 (minichromosome maintenance complex component-7) platform that naturally harbors 3 microRNAs (miRNAs). We replaced the endogenous miRNAs with anti-HIV small RNAs, including small interfering RNAs (siRNAs) targeting HIV-1 tat and rev messages that function to induce post-transcriptional gene silencing by the RNA interference pathway, a nucleolar-localizing RNA ribozyme that targets the conserved U5 region of HIV-1 transcripts for degradation, and finally nucleolar trans-activation response (TAR) and Rev-binding element (RBE) RNA decoys designed to sequester HIV-1 Tat and Rev proteins inside the nucleolus. We demonstrate the versatility of the MCM7 platform in expressing and efficiently processing the siRNAs as miRNA mimics along with nucleolar small RNAs. Furthermore, three of the combinatorial constructs tested potently suppressed viral replication during a 1-month HIV challenge, with greater than 5-log inhibition compared with untransduced, HIV-1-infected CEM T lymphocytes. One of the most effective constructs contains an anti-HIV siRNA combined with a nucleolar-localizing U5 ribozyme and TAR decoy. This represents the first efficacious example of combining Drosha-processed siRNAs with small nucleolar ribonucleoprotein (snoRNP)-processed nucleolar RNA chimeras from a single intron platform for effective inhibition of viral replication. Moreover, we demonstrated enrichment/selection for cells expressing levels of the antiviral RNAs that provide optimal inhibition under the selective pressure of HIV. The combinations of si/snoRNAs represent a new paradigm for combinatorial RNA-based gene therapy applications.

  2. Physician experience and rates of plasma HIV-1 RNA suppression among illicit drug users: an observational study

    Sangsari Sassan

    2012-01-01

    Full Text Available Abstract Background Despite the availability of antiretroviral therapy (ART, suboptimal treatment outcomes have been observed among HIV-seropositive illicit drug users. As there is an urgent need to improve responses to antiretroviral therapy among this population, we undertook this study to evaluate the role of physician experience on rates of plasma HIV-1 RNA suppression following initiation of ART. Methods Using data from a community-recruited cohort of HIV-positive illicit drug users, we used Cox proportional hazards regression to model the time to plasma viral HIV RNA Results Between May 1996 and December 2008, 267 individuals initiated ART among whom 227 (85% achieved a plasma HIV RNA Conclusions In this setting of universal HIV/AIDS care, illicit drug users with more experienced physicians exhibited faster rates of plasma viral load suppression. These findings argue for specialized services to help optimize HIV treatment outcomes among this population.

  3. Field evaluation of an open and polyvalent universal HIV-1/SIVcpz/SIVgor quantitative RT-PCR assay for HIV-1 viral load monitoring in comparison to Abbott RealTime HIV-1 in Cameroon.

    Guichet, Emilande; Aghokeng, Avelin; Eymard-Duvernay, Sabrina; Vidal, Nicole; Ayouba, Ahidjo; Mpoudi Ngole, Eitel; Delaporte, Eric; Ciaffi, Laura; Peeters, Martine

    2016-11-01

    With the increasing demand of HIV viral load (VL) tests in resource-limited countries (RLCs) there is a need for assays at affordable cost and able to quantify all known HIV-1 variants. VLs obtained with a recently developed open and polyvalent universal HIV-1/SIVcpz/SIVgor RT-qPCR were compared to Abbott RealTime HIV-1 assay in Cameroon. On 474 plasma samples, characterized by a wide range of VLs and a broad HIV-1 group M genetic diversity, 97.5% concordance was observed when using the lower detection limit of each assay. When using the threshold of 3.00 log 10 copies/mL, according to WHO guidelines to define virological failure (VF) in RLCs, the concordance was 94.7%, 360/474 versus 339/474 patients were identified with VF with the new assay and Abbott RealTime HIV-1, respectively. Higher VLs were measured with the new assay, +0.47 log 10 copies/mL (95% CI; 0.42-0.52) as shown with Bland-Altman analysis. Eleven samples from patients on VF with drug resistance were not detected by Abbott RealTime HIV-1 versus two only with the new assay. Overall, our study showed that the new assay can be easily implemented in a laboratory in RLCs with VL experience and showed good performance on a wide diversity of HIV-1 group M variants. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Viral persistence, latent reservoir, and blips: a review on HIV-1 dynamics and modeling during HAART and related treatment implications

    Rong, Libin [Los Alamos National Laboratory; Perelson, Alan [Los Alamos National Laboratory

    2008-01-01

    HIV-1 eradication from infected individuals has not been achieved with the use of highly active antiretroviral therapy (HAART) for a prolonged period of time. The cellular reservoir for HIV-1 in resting memory CD4{sup +} T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time as is able to release replication competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed in patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling can help improve our understanding of HIV-1 dynamics in patients on HAART and the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies.

  5. Factors influencing cerebrospinal fluid and plasma HIV-1 RNA detection rate in patients with and without opportunistic neurological disease during the HAART era

    Aleixo Agdemir W

    2007-12-01

    Full Text Available Abstract Background In the central nervous system, HIV replication can occur relatively independent of systemic infection, and intrathecal replication of HIV-1 has been observed in patients with HIV-related and opportunistic neurological diseases. The clinical usefulness of HIV-1 RNA detection in the cerebrospinal fluid (CSF of patients with opportunistic neurological diseases, or the effect of opportunistic diseases on CSF HIV levels in patients under HAART has not been well defined. We quantified CSF and plasma viral load in HIV-infected patients with and without different active opportunistic neurological diseases, determined the characteristics that led to a higher detection rate of HIV RNA in CSF, and compared these two compartments. Methods A prospective study was conducted on 90 HIV-infected patients submitted to lumbar puncture as part of a work-up for suspected neurological disease. Seventy-one patients had active neurological diseases while the remaining 19 did not. Results HIV-1 RNA was quantified in 90 CSF and 70 plasma samples. The HIV-1 RNA detection rate in CSF was higher in patients with neurological diseases, in those with a CD4 count lower than 200 cells/mm3, and in those not receiving antiretroviral therapy, as well as in patients with detectable plasma HIV-1 RNA. Median viral load was lower in CSF than in plasma in the total population, in patients without neurological diseases, and in patients with toxoplasmic encephalitis, while no significant difference between the two compartments was observed for patients with cryptococcal meningitis and HIV-associated dementia. CSF viral load was lower in patients with cryptococcal meningitis and neurotoxoplasmosis under HAART than in those not receiving HAART. Conclusion Detection of HIV-1 RNA in CSF was more frequent in patients with neurological disease, a CD4 count lower than 200 cells/mm3 and detectable plasma HIV-1. Median HIV-1 RNA levels were generally lower in CSF than in

  6. Performance of the Xpert HIV-1 Viral Load Assay: a Systematic Review and Meta-analysis.

    Nash, Madlen; Huddart, Sophie; Badar, Sayema; Baliga, Shrikala; Saravu, Kavitha; Pai, Madhukar

    2018-04-01

    Viral load (VL) is the preferred treatment-monitoring approach for HIV-positive patients. However, more rapid, near-patient, and low-complexity assays are needed to scale up VL testing. The Xpert HIV-1 VL assay (Cepheid, Sunnyvale, CA) is a new, automated molecular test, and it can leverage the GeneXpert systems that are being used widely for tuberculosis diagnosis. We systematically reviewed the evidence on the performance of this new tool in comparison to established reference standards. A total of 12 articles (13 studies) in which HIV patient VLs were compared between Xpert HIV VL assay and a reference standard VL assay were identified. Study quality was generally high, but substantial variability was observed in the number and type of agreement measures reported. Correlation coefficients between Xpert and reference assays were high, with a pooled Pearson correlation ( n = 8) of 0.94 (95% confidence interval [CI], 0.89, 0.97) and Spearman correlation ( n = 3) of 0.96 (95% CI, 0.86, 0.99). Bland-Altman metrics ( n = 11) all were within 0.35 log copies/ml of perfect agreement. Overall, Xpert HIV-1 VL performed well compared to current reference tests. The minimal training and infrastructure requirements for the Xpert HIV-1 VL assay make it attractive for use in resource-constrained settings, where point-of-care VL testing is most needed. Copyright © 2018 Nash et al.

  7. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  8. Novel HIV-1 knockdown targets identified by an enriched kinases/phosphatases shRNA library using a long-term iterative screen in Jurkat T-cells.

    Sylvie Rato

    2010-02-01

    Full Text Available HIV-1 is a complex retrovirus that uses host machinery to promote its replication. Understanding cellular proteins involved in the multistep process of HIV-1 infection may result in the discovery of more adapted and effective therapeutic targets. Kinases and phosphatases are a druggable class of proteins critically involved in regulation of signal pathways of eukaryotic cells. Here, we focused on the discovery of kinases and phosphatases that are essential for HIV-1 replication but dispensable for cell viability. We performed an iterative screen in Jurkat T-cells with a short-hairpin-RNA (shRNA library highly enriched for human kinases and phosphatases. We identified 14 new proteins essential for HIV-1 replication that do not affect cell viability. These proteins are described to be involved in MAPK, JNK and ERK pathways, vesicular traffic and DNA repair. Moreover, we show that the proteins under study are important in an early step of HIV-1 infection before viral integration, whereas some of them affect viral transcription/translation. This study brings new insights for the complex interplay of HIV-1/host cell and opens new possibilities for antiviral strategies.

  9. Host and viral determinants for MxB restriction of HIV-1 infection.

    Matreyek, Kenneth A; Wang, Weifeng; Serrao, Erik; Singh, Parmit Kumar; Levin, Henry L; Engelman, Alan

    2014-10-25

    Interferon-induced cellular proteins play important roles in the host response against viral infection. The Mx family of dynamin-like GTPases, which include MxA and MxB, target a wide variety of viruses. Despite considerable evidence demonstrating the breadth of antiviral activity of MxA, human MxB was only recently discovered to specifically inhibit lentiviruses. Here we assess both host and viral determinants that underlie MxB restriction of HIV-1 infection. Heterologous expression of MxB in human osteosarcoma cells potently inhibited HIV-1 infection (~12-fold), yet had little to no effect on divergent retroviruses. The anti-HIV effect manifested as a partial block in the formation of 2-long terminal repeat circle DNA and hence nuclear import, and we accordingly found evidence for an additional post-nuclear entry block. A large number of previously characterized capsid mutations, as well as mutations that abrogated integrase activity, counteracted MxB restriction. MxB expression suppressed integration into gene-enriched regions of chromosomes, similar to affects observed previously when cells were depleted for nuclear transport factors such as transportin 3. MxB activity did not require predicted GTPase active site residues or a series of unstructured loops within the stalk domain that confer functional oligomerization to related dynamin family proteins. In contrast, we observed an N-terminal stretch of residues in MxB to harbor key determinants. Protein localization conferred by a nuclear localization signal (NLS) within the N-terminal 25 residues, which was critical, was fully rescuable by a heterologous NLS. Consistent with this observation, a heterologous nuclear export sequence (NES) abolished full-length MxB activity. We additionally mapped sub-regions within amino acids 26-90 that contribute to MxB activity, finding sequences present within residues 27-50 particularly important. MxB inhibits HIV-1 by interfering with minimally two steps of infection

  10. Correlation of immune activation with HIV-1 RNA levels assayed by real-time RT-PCR in HIV-1 Subtype C infected patients in Northern India

    Agarwal, Atima; Sankaran, Sumathi; Vajpayee, Madhu; Sreenivas, V; Seth, Pradeep; Dandekar, Satya

    2014-01-01

    Background Assays with specificity and cost effectiveness are needed for the measurement of HIV-1 burden to monitor disease progression or response to anti-retroviral therapy (ART) in HIV-1 subtype C infected patients. Objectives The objective of this study was to develop and validate an affordable; one step Real-Time RT-PCR assay with high specificity and sensitivity to measure plasma HIV-1 loads in HIV-1 subtype C infected patients. Results We developed an RT-PCR assay to detect and quantitate plasma HIV-1 levels in HIV-1 subtype C infected patients. An inverse correlation between plasma viral loads (PVL) and CD4+ T-cell numbers was detected at all CDC stages. Significant correlations were found between CD8+ T-cell activation and PVL, as well as with the clinical and immunological status of the patients. Conclusions The RT-PCR assay provides a sensitive method to measure PVL in HIV-1 subtype C infected patients. Viral loads correlated with immune activation and can be used to monitor HIV care in India. PMID:17962068

  11. Preclinical safety and efficacy of an anti–HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor

    Orit Wolstein

    2014-01-01

    Full Text Available Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4+ T lymphocytes, and CD34+ hematopoietic stem/progenitor cells (HSPC. CCR5-targeted shRNA (sh5 and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.

  12. Correlates of HIV-1 viral suppression in a cohort of HIV-positive drug users receiving antiretroviral therapy in Hanoi, Vietnam

    Jordan, Michael R; La, Hanh; Nguyen, Hien Duc; Sheehan, Heidi; Lien, Trinh Thi Minh; Van Dang, Duong; Hellinger, James; Wanke, Christine; Tang, Alice M

    2009-01-01

    Summary Injection drug users bear the burden of HIV in Vietnam and are a focus of national treatment programs. To date, determinants of successful therapy in this population are unknown. Substance use and clinical correlates of viral suppression were studied in 100 HIV-1 infected drug users receiving antiretroviral therapy (ART) for at least 6 months in Hanoi, Vietnam. Mean age of the cohort was 29.9 + 4.9 years; all were men. A majority of patients (73%) achieved viral suppression (HIV-RNA 95% adherence (p<0.01) and current use of trimethoprim/sulfamethoxazole (p<0.01); current or ever diagnosed with tuberculosis was associated with viral non-suppression (p=0.006). Tobacco use was prevalent (84%), and surprisingly 48% of patients reported active drug use; neither was associated with viral non-suppression. This is the first study to document successful ART treatment in a population of Vietnamese drug users; rates of viral suppression are comparable to other international populations. The 28% of patients without HIV-1 suppression highlights the need for adherence promotion, risk reduction programs, and population based surveillance strategies for assessing the emergence of HIV drug resistance in settings where access to viral load and drug resistance testing is limited. PMID:19451329

  13. Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics

    Lythgoe, Katrina A.; Blanquart, François

    2016-01-01

    The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. PMID:27706164

  14. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells.

    Kara G Lassen

    2006-07-01

    Full Text Available HIV-1 latency in resting CD4+ T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART. We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4+ T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4+ T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4+ T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4+ T cells. Overexpression of PTB in resting CD4+ T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4+ T cells. Virus culture experiments showed that overexpression of PTB in resting CD4+ T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications.

  15. The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA

    Niu Meijuan

    2004-10-01

    Full Text Available Abstract The primer tRNA for reverse transcription in HIV-1, tRNALys3, is selectively packaged into the virus during its assembly, and annealed to the viral genomic RNA. The ribonucleoprotein complex that is involved in the packaging and annealing of tRNALys into HIV-1 consists of Gag, GagPol, tRNALys, lysyl-tRNA synthetase (LysRS, and viral genomic RNA. Gag targets tRNALys for viral packaging through Gag's interaction with LysRS, a tRNALys-binding protein, while reverse transcriptase (RT sequences within GagPol (the thumb domain bind to tRNALys. The further annealing of tRNALys3 to viral RNA requires nucleocapsid (NC sequences in Gag, but not the NC sequences GagPol. In this report, we further show that while the RT connection domain in GagPol is not required for tRNALys3 packaging into the virus, it is required for tRNALys3 annealing to the viral RNA genome.

  16. Gastrointestinal viral load and enteroendocrine cell number are associated with altered survival in HIV-1 infected individuals.

    Guido van Marle

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infects and destroys cells of the immune system leading to an overt immune deficiency known as HIV acquired immunodeficiency syndrome (HIV/AIDS. The gut associated lymphoid tissue is one of the major lymphoid tissues targeted by HIV-1, and is considered a reservoir for HIV-1 replication and of major importance in CD4+ T-cell depletion. In addition to immunodeficiency, HIV-1 infection also directly causes gastrointestinal (GI dysfunction, also known as HIV enteropathy. This enteropathy can manifest itself as many pathological changes in the GI tract. The objective of this study was to determine the association of gut HIV-1 infection markers with long-term survival in a cohort of men who have sex with men (MSM enrolled pre-HAART (Highly Active Antiretroviral Therapy. We examined survival over 15-years in a cohort of 42 HIV-infected cases: In addition to CD4+ T cell counts and HIV-1 plasma viral load, multiple gut compartment (duodenum and colon biopsies were taken by endoscopy every 6 months during the initial 3-year period. HIV-1 was cultured from tissues and phenotyped and viral loads in the gut tissues were determined. Moreover, the tissues were subjected to an extensive assessment of enteroendocrine cell distribution and pathology. The collected data was used for survival analyses, which showed that patients with higher gut tissue viral load levels had a significantly worse survival prognosis. Moreover, lower numbers of serotonin (duodenum and somatostatin (duodenum and colon immunoreactive cell counts in the gut tissues of patients was associated with significant lower survival prognosis. Our study, suggested that HIV-1 pathogenesis and survival prognosis is associated with altered enteroendocrine cell numbers, which could point to a potential role for enteroendocrine function in HIV infection and pathogenesis.

  17. Schistosomiasis and HIV-1 infection in rural Zimbabwe: effect of treatment of schistosomiasis on CD4 cell count and plasma HIV-1 RNA load

    Kallestrup, Per; Zinyama, Rutendo; Gomo, Exnevia

    2005-01-01

    To determine whether treatment of schistosomiasis has an effect on the course of human immunodeficiency virus type 1 (HIV-1) infection, individuals with schistosomiasis and with or without HIV-1 infection were randomized to receive praziquantel treatment at inclusion or after a delay of 3 months......; 287 participants were included in the study, and 227 (79%) were followed up. Among the 130 participants who were coinfected, those who received early treatment (n=64) had a significantly lower increase in plasma HIV-1 RNA load than did those who received delayed treatment (n=66) (P...

  18. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice.

    Gene-Errol E Ringpis

    Full Text Available Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA. However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR. Here, we report that human CD4(+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4(+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4(+ T-cells ex vivo. Furthermore, levels of gene-marked CD4(+ T-cells in peripheral blood increased despite systemic infection with either

  19. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  20. Structural equation modelling of viral tropism reveals its impact on achieving viral suppression within 6 months in treatment-naive HIV-1-infected patients after combination antiretroviral therapy.

    Mengoli, Carlo; Andreis, Samantha; Scaggiante, Renzo; Cruciani, Mario; Bosco, Oliviero; Ferretto, Roberto; Leoni, Davide; Maffongelli, Gaetano; Basso, Monica; Torti, Carlo; Sarmati, Loredana; Andreoni, Massimo; Palù, Giorgio; Parisi, Saverio Giuseppe

    2017-01-01

    To evaluate the role of pre-treatment co-receptor tropism of plasma HIV on the achievement of viral suppression (plasma HIV RNA 1.69 log 10 copies/mL) at the sixth month of combination antiretroviral therapy (cART) in a cohort of naive patients using, for the first time in this context, a path analysis (PA) approach. Adult patients with chronic infection by subtype B HIV-1 were consecutively enrolled from the start of first-line cART (T0). Genotypic analysis of viral tropism was performed on plasma and interpreted using the bioinformatic tool Geno2pheno, with a false positive rate of 10%. A Bayesian network starting from the viro-immunological data at T0 and at the sixth month of treatment (T1) was set up and this model was evaluated using a PA approach. A total of 262 patients (22.1% bearing an X4 virus) were included; 178 subjects (67.9%) achieved viral suppression. A significant positive indirect effect of bearing X4 virus in plasma at T0 on log 10 HIV RNA at T1 was detected (P = 0.009), the magnitude of this effect was, however, over 10-fold lower than the direct effect of log 10 HIV RNA at T0 on log 10 HIV RNA at T1 (P = 0.000). Moreover, a significant positive indirect effect of bearing an X4 virus on log 10 HIV RNA at T0 (P = 0.003) was apparent. PA overcame the limitations implicit in common multiple regression analysis and showed the possible role of pre-treatment viral tropism at the recommended threshold on the outcome of plasma viraemia in naive patients after 6 months of therapy. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus.

    Desai, Tanay M; Marin, Mariana; Sood, Chetan; Shi, Jiong; Nawaz, Fatima; Aiken, Christopher; Melikyan, Gregory B

    2015-10-29

    HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.

  2. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR RNA.

    Matthew S Lalonde

    2011-05-01

    Full Text Available The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC(50 ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (- strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.

  3. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    Sükösd, Zsuzsanna; Andersen, Ebbe Sloth; Seemann, Ernst Stefan

    2015-01-01

    of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping...

  4. Forced evolution of a regulatory RNA helix in the HIV-1 genome

    Berkhout, B.; Klaver, B.; Das, A. T.

    1997-01-01

    The 5'and 3'end of the HIV-1 RNA genome forms a repeat (R) element that encodes a double stem-loop structure (the TAR and polyA hairpins). Phylogenetic analysis of the polyA hairpin in different human and simian immunodeficiency viruses suggests that the thermodynamic stability of the helix is

  5. Residual viraemia in HIV-1-infected patients with plasma viral load

    Ostrowski, S R; Katzenstein, T L; Pedersen, B K

    2008-01-01

    Despite undetectable viral load in conventional assays, probably all human immunodeficiency virus (HIV)-1 infected patients have residual viraemia (RV) detectable by ultra-sensitive assays. To study this issue, this study investigated virologic and immunologic consequences of RV in highly active......-count, CD4+HLA-DR+, CD8+HLA-DR+CD38+, CD4+CD45RA-CD45RO+, CD8+CD45RA-CD45RO+, CD4+CD45RA+CD62L+, CD8+CD45RA+CD62L+ T cells, IgG or IgM. In conclusion, RV was associated with increased blood levels of soluble immune activation markers in HAART-treated HIV-1-infected patients. The finding that RV...... antiretroviral therapy (HAART)-treated HIV-1-infected patients with plasma HIV-1 RNA or=1 episode with TMA-RV whereas 9 patients had undetectable TMA-RV throughout the study-period. Time-points with TMA-RV and PCR-RV were associated with higher circulating sTNFrII (+0.234 ng/ml, P = 0.030) and beta(2...

  6. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design.

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.

  7. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R.

    Li, Ge; Park, Hyeon U; Liang, Dong; Zhao, Richard Y

    2010-07-07

    Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU) and ultraviolet light (UV) also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.

  8. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R

    Liang Dong

    2010-07-01

    Full Text Available Abstract Background Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. Results To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU and ultraviolet light (UV also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. Conclusions These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.

  9. The RNA binding protein HuR does not interact directly with HIV-1 reverse transcriptase and does not affect reverse transcription in vitro

    Gronenborn Angela M

    2010-05-01

    Full Text Available Abstract Background Lemay et al recently reported that the RNA binding protein HuR directly interacts with the ribonuclease H (RNase H domain of HIV-1 reverse transcriptase (RT and influences the efficiency of viral reverse transcription (Lemay et al., 2008, Retrovirology 5:47. HuR is a member of the embryonic lethal abnormal vision protein family and contains 3 RNA recognition motifs (RRMs that bind AU-rich elements (AREs. To define the structural determinants of the HuR-RT interaction and to elucidate the mechanism(s by which HuR influences HIV-1 reverse transcription activity in vitro, we cloned and purified full-length HuR as well as three additional protein constructs that contained the N-terminal and internal RRMs, the internal and C-terminal RRMs, or the C-terminal RRM only. Results All four HuR proteins were purified and characterized by biophysical methods. They are well structured and exist as monomers in solution. No direct protein-protein interaction between HuR and HIV-1 RT was detected using NMR titrations with 15N labeled HuR variants or the 15N labeled RNase H domain of HIV-1 RT. Furthermore, HuR did not significantly affect the kinetics of HIV-1 reverse transcription in vitro, even on RNA templates that contain AREs. Conclusions Our results suggest that HuR does not impact HIV-1 replication through a direct protein-protein interaction with the viral RT.

  10. HIV-1 matrix dependent membrane targeting is regulated by Gag mRNA trafficking.

    Jing Jin

    Full Text Available Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV post-transcriptional regulatory element (PRE mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.

  11. Production of HIV-1 vif mRNA Is Modulated by Natural Nucleotide Variations and SLSA1 RNA Structure in SA1D2prox Genomic Region

    Masako Nomaguchi

    2017-12-01

    Full Text Available Genomic RNA of HIV-1 contains localized structures critical for viral replication. Its structural analysis has demonstrated a stem-loop structure, SLSA1, in a nearby region of HIV-1 genomic splicing acceptor 1 (SA1. We have previously shown that the expression level of vif mRNA is considerably altered by some natural single-nucleotide variations (nSNVs clustering in SLSA1 structure. In this study, besides eleven nSNVs previously identified by us, we totally found nine new nSNVs in the SLSA1-containing sequence from SA1, splicing donor 2, and through to the start codon of Vif that significantly affect the vif mRNA level, and designated the sequence SA1D2prox (142 nucleotides for HIV-1 NL4-3. We then examined by extensive variant and mutagenesis analyses how SA1D2prox sequence and SLSA1 secondary structure are related to vif mRNA level. While the secondary structure and stability of SLSA1 was largely changed by nSNVs and artificial mutations introduced to restore the original NL4-3 form from altered ones by nSNVs, no clear association of the two SLSA1 properties with vif mRNA level was observed. In contrast, when naturally occurring SA1D2prox sequences that contain multiple nSNVs were examined, we attained significant inverse correlation between the vif level and SLSA1 stability. These results may suggest that SA1D2prox sequence adapts over time, and also that the altered SA1D2prox sequence, SLSA1 stability, and vif level are mutually related. In total, we show here that the entire SA1D2prox sequence and SLSA1 stability critically contribute to the modulation of vif mRNA level.

  12. Dual R3R5 tropism characterizes cerebrospinal fluid HIV-1 isolates from individuals with high cerebrospinal fluid viral load.

    Karlsson, Ulf; Antonsson, Liselotte; Ljungberg, Bengt; Medstrand, Patrik; Esbjörnsson, Joakim; Jansson, Marianne; Gisslen, Magnus

    2012-09-10

    To study the use of major and alternative coreceptors by HIV-1 isolates obtained from paired plasma and cerebrospinal fluid (CSF) samples. Paired plasma and CSF isolates from HIV-1-infected individuals with varying clinical, virologic, and immunologic parameters were assessed for the ability to infect indicator cells expressing a panel of coreceptors with documented expression in the central nervous system (CNS). HIV-1 isolates obtained from plasma and CSF in 28 individuals with varying viral load, CD4 T-cell counts, and with or without AIDS-defining disease were analyzed for the ability to infect NP2.CD4 cells stably expressing a panel of HIV coreceptors (CCR5, CXCR4, CCR3, CXCR6, GPR1, APJ, ChemR23, RDC-1 or BLT1). All isolates from both plasma and CSF utilized CCR5 and/or CXCR4. However, the ability to use both CCR3 and CCR5 (R3R5) was more pronounced in CSF isolates and correlated with high CSF viral load and low CD4 T-cell count. Notably, four out of five CSF isolates of subtype C origin exhibited CXCR6 use, which coincided with high CSF viral load despite preserved CD4 T-cell counts. The use of other alternative coreceptors was less pronounced. Dual-tropic R3R5 HIV-1 isolates in CSF coincide with high CSF viral load and low CD4 T-cell counts. Frequent CXCR6 use by CSF-derived subtype C isolates indicates that subtype-specific differences in coreceptor use may exist that will not be acknowledged when assessing plasma virus isolates. The findings may also bare relevance for HIV-1 replication within the CNS, and consequently, for the neuropathogenesis of AIDS.

  13. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    Jiang Jiyang; Aiken, Christopher

    2006-01-01

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4 + T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo

  14. Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein

    Chen, Jianbo; Grunwald, David; Sardo, Luca

    2014-01-01

    . In this report, we visualized HIV-1 RNA and monitored its movement in the cytoplasm by using single-molecule tracking. We observed that most of the HIV-1 RNA molecules move in a nondirectional, random-walk manner, which does not require an intact cytoskeletal structure, and that the mean-squared distance...... traveled by the RNA increases linearly with time, indicative of diffusive movement. We also observed that a single HIV-1 RNA molecule can move at various speeds when traveling through the cytoplasm, indicating that its movement is strongly affected by the immediate environment. To examine the effect of Gag...

  15. Quantification of viral DNA during HIV-1 infection: A review of relevant clinical uses and laboratory methods.

    Alidjinou, E K; Bocket, L; Hober, D

    2015-02-01

    Effective antiretroviral therapy usually leads to undetectable HIV-1 RNA in the plasma. However, the virus persists in some cells of infected patients as various DNA forms, both integrated and unintegrated. This reservoir represents the greatest challenge to the complete cure of HIV-1 infection and its characteristics highly impact the course of the disease. The quantification of HIV-1 DNA in blood samples constitutes currently the most practical approach to measure this residual infection. Real-time quantitative PCR (qPCR) is the most common method used for HIV-DNA quantification and many strategies have been developed to measure the different forms of HIV-1 DNA. In the literature, several "in-house" PCR methods have been used and there is a need for standardization to have comparable results. In addition, qPCR is limited for the precise quantification of low levels by background noise. Among new assays in development, digital PCR was shown to allow an accurate quantification of HIV-1 DNA. Total HIV-1 DNA is most commonly measured in clinical routine. The absolute quantification of proviruses and unintegrated forms is more often used for research purposes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Options to Expand HIV Viral Load Testing in South Africa: Evaluation of the GeneXpert® HIV-1 Viral Load Assay.

    Natasha Gous

    Full Text Available Expansion of HIV viral load (VL testing services are required to meet increased targets for monitoring patients on antiretroviral treatment. South Africa currently tests >4million VLs per annum in 16 highly centralised, automated high-throughput laboratories. The Xpert HIV-1 VL assay (Cepheid was evaluated against in-country predicates, the Roche Cobas Taqmanv2 and Abbott HIV-1RT, to investigate options for expanding VL testing using GeneXpert's random access, polyvalent capabilities and already established footprint in South Africa with the Xpert MTB/RIF assay (207 sites. Additionally, the performance of Xpert HIV-1VL on alternative, off-label specimen types, Dried Blood Spots (DBS and whole blood, was investigated.Precision, accuracy (agreement and clinical misclassification (1000cp/ml of Xpert HIV-1VL plasma was compared to Taqmanv2 (n = 155 and Abbott HIV-1 RT (n = 145. Misclassification of Xpert HIV-1VL was further tested on DBS (n = 145 and whole blood (n = 147.Xpert HIV-1VL demonstrated 100% concordance with predicate platforms on a standardised frozen, plasma panel (n = 42 and low overall percentage similarity CV of 1.5% and 0.9% compared to Taqmanv2 and Abbott HIV-1 RT, respectively. On paired plasma clinical specimens, Xpert HIV-1VL had low bias (SD 0.32-0.37logcp/ml and 3% misclassification at the 1000cp/ml threshold compared to Taqmanv2 (fresh and Abbott HIV-1 RT (frozen, respectively. Xpert HIV-1VL on whole blood and DBS increased misclassification (upward by up to 14% with increased invalid rate. All specimen testing was easy to perform and compatible with concurrent Xpert MTB/RIF Tuberculosis testing on the same instrument.The Xpert HIV-1VL on plasma can be used interchangeably with existing predicate platforms in South Africa. Whole blood and DBS testing requires further investigation, but polyvalency of the GeneXpert offers a solution to extending VL testing services.

  17. Anti-cancer effect of HIV-1 viral protein R on doxorubicin resistant neuroblastoma.

    Richard Y Zhao

    Full Text Available Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX. To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working.

  18. Dynamics of Viremia in Primary HIV-1 infection in Africans: Insights from Analyses of Host and Viral Correlates

    Prentice, Heather A.; Price, Matthew A.; Porter, Travis R.; Cormier, Emmanuel; Mugavero, Michael J.; Kamali, Anatoli; Karita, Etienne; Lakhi, Shabir; Sanders, Eduard J.; Anzala, Omu; Amornkul, Pauli N.; Allen, Susan; Hunter, Eric; Kaslow, Richard A.; Gilmour, Jill; Tang, Jianming

    2014-01-01

    In HIV-1 infection, plasma viral load (VL) has dual implications for pathogenesis and public health. Based on well-known patterns of HIV-1 evolution and immune escape, we hypothesized that VL is an evolving quantitative trait that depends heavily on duration of infection (DOI), demographic features, human leukocyte antigen (HLA) genotypes and viral characteristics. Prospective data from 421 African seroconverters with at least four eligible visits did show relatively steady VL beyond 3 months of untreated infection, but host and viral factors independently associated with cross-sectional and longitudinal VL often varied by analytical approaches and sliding time windows. Specifically, the effects of age, HLA-B*53 and infecting HIV-1 subtypes (A1, C and others) on VL were either sporadic or highly sensitive to time windows. These observations were strengthened by the addition of 111 seroconverters with 2–3 eligible VL results, suggesting that DOI should be a critical parameter in epidemiological and clinical studies. PMID:24418560

  19. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    Nikki van Bel

    Full Text Available The viral integrase (IN is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs. Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  20. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  1. Stimulation of HIV-1-specific cytolytic T-lymphocytes facilitates elimination of latent viral reservoir after virus reactivation

    Shan, Liang; Deng, Kai; Shroff, Neeta S.; Durand, Christine; Rabi, S. Alireza.; Yang, Hung-Chih; Zhang, Hao; Margolick, Joseph B.; Blankson, Joel N.; Siliciano, Robert F.

    2012-01-01

    Summary Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia. Life-long treatment is therefore required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T-cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4+ T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T-lymphocytes (CTL) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials. PMID:22406268

  2. Four-tiered π interaction at the dimeric interface of HIV-1 integrase critical for DNA integration and viral infectivity

    Al-Mawsawi, Laith Q.; Hombrouck, Anneleen; Dayam, Raveendra; Debyser, Zeger; Neamati, Nouri

    2008-01-01

    HIV-1 integrase (IN) is an essential enzyme for viral infection. Here, we report an extensive π electron orbital interaction between four amino acids, W132, M178, F181 and F185, located at the dimeric interface of IN that is critical for the strand transfer activity alone. Catalysis of nine different mutant IN proteins at these positions were evaluated. Whereas the 3'-processing activity is predominantly strong, the strand transfer activity of each enzyme was completely dependent on an intact π electron orbital interaction at the dimeric interface. Four representative IN mutants were constructed in the context of the infectious NL4.3 HIV-1 viral clone. Whereas viruses with an intact π electron orbital interaction at the IN dimeric interface replicated comparable to wild type, viruses containing an abolished π interaction were non-infectious. Q-PCR analysis of viral DNA forms during viral replication revealed pleiotropic effects of most mutations. We hypothesize that the π interaction is a critical contact point for the assembly of functional IN multimeric complexes, and that IN multimerization is required for a functional pre-integration complex. The rational design of small molecule inhibitors targeting the disruption of this π-π interaction should lead to powerful anti-retroviral drugs

  3. Effect of antiretroviral drugs on maternal CD4 lymphocyte counts, HIV-1 RNA levels, and anthropometric parameters of their neonates Efeito das drogas anti-retrovirais sobre os valores dos linfócitos TCD4, RNA do HIV-1 e parâmetros antropométricos de neonatos de gestantes portadoras do HIV-1

    Patrícia El Beitune

    2005-06-01

    Full Text Available PURPOSE: To study the effect of antiretroviral drugs administered during pregnancy on CD4 lymphocyte counts and HIV-1 RNA levels of pregnant women and on the anthropometric parameters of their neonates. METHODS: A prospective study was conducted on 57 pregnant women and their neonates divided into 3 groups: ZDV Group, HIV-infected mothers taking zidovudine (n = 20; triple therapy (TT Group, mothers taking zidovudine + lamivudine + nelfinavir (n = 25, and Control Group, normal women (n = 12. CD4 lymphocyte counts and HIV-1 RNA levels of pregnant women were analyzed during two periods of pregnancy. The perinatal prognosis took into account preterm rates, birth weight, intrauterine growth restriction, perinatal death, and vertical transmission of HIV-1. Data were analyzed statistically using the nonparametric chi-square, Mann-Whitney, Friedman, Kruskal-Wallis, and Wilcoxon matched pairs tests, with the level of significance set at P OBJETIVOS: Estudar o efeito das drogas anti-retrovirais sobre a quantificação dos linfócitos TCD4 e RNA do HIV-1 de gestantes portadoras do HIV-1 e parâmetros antropométricos de seus neonatos. MÉTODOS: Estudo prospectivo avaliando 57 gestantes e seus neonatos em três grupos: Grupo AZT, gestantes portadoras do HIV utilizando zidovudina (n=20; Grupo TT, mães utilizando zidovudina+lamivudina+nelfinavir (n=25, e Grupo Controle, mulheres saudáveis (n=12. A quantificação dos linfócitos TCD4 e RNA do HIV-1 de gestantes portadoras do HIV foi analisada em dois períodos durante a gestação. O prognóstico perinatal levou em consideração as taxas de pré-termos, restrição de crescimento intra-útero, mortalidade perinatal e transmissão vertical do HIV-1. Os dados foram analisados utilizando-se testes não paramétricos de qui-quadrado, Mann-Whitney, Friedman, Kruskal-Wallys e Wilcoxon para amostras pareadas, considerando-se significativos valores associados a p<0,05. RESULTADOS: Observou-se homogeneidade entre

  4. Sensitivity and specificity of dried blood spots for HIV-1 viral load quantification: A laboratory assessment of 3 commercial assays.

    Pannus, Pieter; Claus, Maarten; Gonzalez, Maria Mercedes Perez; Ford, Nathan; Fransen, Katrien

    2016-11-01

    The use of dried blood spots (DBS) instead of plasma as a specimen type for HIV-1 viral load (VL) testing facilitates the decentralization of specimen collection and can increase access to VL testing in resource-limited settings. The performance of DBS for VL testing is lower, however, when compared to the gold standard sample type plasma. In this diagnostic accuracy study, we evaluated 3 VL assays with DBS.Participants were recruited between August 2012 and April 2015. Both plasma and DBS specimens were prepared and tested for HIV-1 VL with the Roche CAP/CTM HIV-1 test v2.0, the Abbott RealTime HIV-1, and the bioMérieux NucliSENS EasyQ HIV-1 v2.0. Sensitivity and specificity to detect treatment failure at a threshold of 1000 cps/mL with DBS were determined.A total of 272 HIV-positive patients and 51 HIV-negative people were recruited in the study. The mean difference or bias between plasma and DBS VL was 25% of the specimens differed by >0.5 log cps/mL.All 3 assays had comparable sensitivities around 80% and specificities around 90%. Upward misclassification rates were around 10%, but downward misclassification rates ranged from 20.3% to 23.6%. Differences in between assays were not statistically significant (P > 0.1).The 3 VL assays evaluated had suboptimal performance with DBS but still performed better than immunological or clinical monitoring. Even after the introduction of the much-anticipated point-of-care VL devices, it is expected that DBS will remain important as a complementary option for supporting access to VL monitoring, particularly in rural, resource-limited settings. Manufacturers should accelerate efforts to develop more reliable, sensitive and specific methods to test VL on DBS specimens.

  5. Detection of viral sequence fragments of HIV-1 subfamilies yet unknown

    Stanke Mario

    2011-04-01

    Full Text Available Abstract Background Methods of determining whether or not any particular HIV-1 sequence stems - completely or in part - from some unknown HIV-1 subtype are important for the design of vaccines and molecular detection systems, as well as for epidemiological monitoring. Nevertheless, a single algorithm only, the Branching Index (BI, has been developed for this task so far. Moving along the genome of a query sequence in a sliding window, the BI computes a ratio quantifying how closely the query sequence clusters with a subtype clade. In its current version, however, the BI does not provide predicted boundaries of unknown fragments. Results We have developed Unknown Subtype Finder (USF, an algorithm based on a probabilistic model, which automatically determines which parts of an input sequence originate from a subtype yet unknown. The underlying model is based on a simple profile hidden Markov model (pHMM for each known subtype and an additional pHMM for an unknown subtype. The emission probabilities of the latter are estimated using the emission frequencies of the known subtypes by means of a (position-wise probabilistic model for the emergence of new subtypes. We have applied USF to SIV and HIV-1 sequences formerly classified as having emerged from an unknown subtype. Moreover, we have evaluated its performance on artificial HIV-1 recombinants and non-recombinant HIV-1 sequences. The results have been compared with the corresponding results of the BI. Conclusions Our results demonstrate that USF is suitable for detecting segments in HIV-1 sequences stemming from yet unknown subtypes. Comparing USF with the BI shows that our algorithm performs as good as the BI or better.

  6. Control of HIV-1 env RNA splicing and transport: investigating the role of hnRNP A1 in exon splicing silencer (ESS3a) function

    Asai, Kengo; Platt, Craig; Cochrane, Alan

    2003-01-01

    The control of HIV-1 viral RNA splicing and transport plays an important role in the successful replication of the virus. Previous studies have identified both an exon splicing enhancer (ESE) and a bipartite exon splicing silencer (ESS3a and ESS3b) within the terminal exon of HIV-1 that are involved in modulating both splicing and Rev-mediated export of viral RNA. To define the mechanism of ESS3a function, experiments were carried out to better define the cis and trans components required for ESS3a activity. Mutations throughout the 30-nt element resulted in partial loss of ESS function. Combining mutations was found to have an additive effect, suggesting the presence of multiple binding sites. Analysis of interacting factors identified hnRNP A1 as one component of the complex that modulates ESS3a activity. However, subsequent binding analyses determined that hnRNP A1 interacts with only one portion of ESS3a, suggesting the involvement of another host factor. Parallel analysis of the effect of the mutations on Rev-mediated export determined that there is not a direct correlation between the effect of the mutations on splicing and RNA transport. Consistent with this hypothesis, replacement of ESS3a with consensus hnRNP A1 binding sites was found to be insufficient to block Rev-mediated RNA export

  7. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

    Ebina, Hirotaka, E-mail: hebina@virus.kyoto-u.ac.jp; Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio

    2012-05-25

    HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.

  8. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

    Ebina, Hirotaka; Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio

    2012-01-01

    HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.

  9. Analytical Performances of Human Immunodeficiency Virus Type 1 RNA-Based Amplix® Real-Time PCR Platform for HIV-1 RNA Quantification

    Christian Diamant Mossoro-Kpinde

    2016-01-01

    Full Text Available Objectives. We evaluated the performances of Amplix real-time PCR platform developed by Biosynex (Strasbourg, France, combining automated station extraction (Amplix station 16 Dx and real-time PCR (Amplix NG, for quantifying plasma HIV-1 RNA by lyophilized HIV-1 RNA-based Amplix reagents targeting gag and LTR, using samples from HIV-1-infected adults from Central African Republic. Results. Amplix real-time PCR assay showed low limit of detection (28 copies/mL, across wide dynamic range (1.4–10 log copies/mL, 100% sensitivity and 99% specificity, high reproducibility, and accuracy with mean bias < 5%. The assay showed excellent correlations and concordance of 95.3% with the reference HIV-1 RNA load assay (Roche, with mean absolute bias of +0.097 log copies/mL by Bland-Altman analysis. The assay was able to detect and quantify the most prevalent HIV-1 subtype strains and the majority of non-B subtypes, CRFs of HIV-1 group M, and HIV-1 groups N and O circulating in Central Africa. The Amplix assay showed 100% sensitivity and 99.6% specificity to diagnose virological failure in clinical samples from antiretroviral drug-experienced patients. Conclusions. The HIV-1 RNA-based Amplix real-time PCR platform constitutes sensitive and reliable system for clinical monitoring of HIV-1 RNA load in HIV-1-infected children and adults, particularly adapted to intermediate laboratory facilities in sub-Saharan Africa.

  10. Increasing cerebrospinal fluid chemokine concentrations despite undetectable cerebrospinal fluid HIV RNA in HIV-1-infected patients receiving antiretroviral therapy

    Gisolf, E. H.; van Praag, R. M.; Jurriaans, S.; Portegies, P.; Goudsmit, J.; Danner, S. A.; Lange, J. M.; Prins, J. M.

    2000-01-01

    Only limited data on cerebrospinal fluid (CSF) HIV-1 RNA responses and markers of local inflammation in CSF during antiretroviral therapy are available. HIV-RNA, soluble tumor necrosis factor (TNF)-receptor (sTNFr)-II, monocyte chemoattractant protein (MCP)-1, and interferon-gamma-inducible protein

  11. Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1.

    Zabrina L Brumme

    2007-07-01

    Full Text Available Despite the formidable mutational capacity and sequence diversity of HIV-1, evidence suggests that viral evolution in response to specific selective pressures follows generally predictable mutational pathways. Population-based analyses of clinically derived HIV sequences may be used to identify immune escape mutations in viral genes; however, prior attempts to identify such mutations have been complicated by the inability to discriminate active immune selection from virus founder effects. Furthermore, the association between mutations arising under in vivo immune selection and disease progression for highly variable pathogens such as HIV-1 remains incompletely understood. We applied a viral lineage-corrected analytical method to investigate HLA class I-associated sequence imprinting in HIV protease, reverse transcriptase (RT, Vpr, and Nef in a large cohort of chronically infected, antiretrovirally naïve individuals. A total of 478 unique HLA-associated polymorphisms were observed and organized into a series of "escape maps," which identify known and putative cytotoxic T lymphocyte (CTL epitopes under selection pressure in vivo. Our data indicate that pathways to immune escape are predictable based on host HLA class I profile, and that epitope anchor residues are not the preferred sites of CTL escape. Results reveal differential contributions of immune imprinting to viral gene diversity, with Nef exhibiting far greater evidence for HLA class I-mediated selection compared to other genes. Moreover, these data reveal a significant, dose-dependent inverse correlation between HLA-associated polymorphisms and HIV disease stage as estimated by CD4(+ T cell count. Identification of specific sites and patterns of HLA-associated polymorphisms across HIV protease, RT, Vpr, and Nef illuminates regions of the genes encoding these products under active immune selection pressure in vivo. The high density of HLA-associated polymorphisms in Nef compared to other

  12. Fluorescent reporter signals, EGFP and DsRed, encoded in HIV-1 facilitate the detection of productively infected cells and cell-associated viral replication levels

    Kazutaka eTerahara

    2012-01-01

    Full Text Available Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1 strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity. When primary CD4+ T cells were infected with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry was associated with the level of CD4 downmodulation and Gag p24 expression in infected cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately downmodulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation status of primary CD4+ T cells was modulated by T cell receptor-mediated stimulation, we confirmed the preferential viral production upon strong stimulation and showed that the intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was correlated with the viral replication level. These findings indicate that a fluorescent reporter encoded within HIV-1 is useful for the sensitive detection of productively-infected cells at different stages of infection and for evaluating cell-associated viral replication at the single cell level.

  13. HIV-1 intersection with CD4 T cell vesicle exocytosis: intercellular communication goes viral

    Helena eSoares

    2014-09-01

    Full Text Available In cells of the immune system the secretion of extracellular vesicles is modulated through cellular activation. In particular, T cell activation is achieved through cell-cell contacts with antigen presenting cells and the consequent formation of a specialized signaling junction called the immunological synapse. Recent works on CD4 T cells have elucidated that cognate antigen recognition by the T cell receptor (TCR engages two distinct exocytic events. The first, involves the exocytic targeting of signaling molecules at the synaptic membrane and drives the functional architecture of the immunological synapse. The second, enlists the extracellular secretion of the TCR itself, once the functional architecture of the immunological synapse is accomplished. HIV-1, a human lymphotropic virus, has evolved sophisticated mechanisms to co-opt CD4 T cell physiology. Notably, it has become apparent that HIV-1 intersects the regulated secretory system of CD4 T cells in order to bud from the plasma membrane of the infected cell and to promote bystander cell death. Here, I review the relevance of CD4 vesicle exocytosis to immune regulation and to HIV-1 pathogenesis and discuss their potential therapeutic applications.

  14. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry.

    Rachid Sougrat

    2007-05-01

    Full Text Available The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV, are heterodimers of a transmembrane glycoprotein (usually gp41, and a surface glycoprotein (gp120, which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.

  15. Host molecular factors and viral genotypes in the mother-to-child HIV-1 transmission in sub-Saharan Africa

    Linda Chapdeleine M. Mouafo

    2017-07-01

    Full Text Available Maternal viral load and immune status, timing and route of delivery, viral subtype, and host genetics are known to influence the transmission, acquisition and disease progression of human immunodeficiency virus-1 (HIV-1 infection. This review summarizes the findings from published works on host molecular factors and virus genotypes affecting mother to child transmission (MTCT in Africa and identifies the gaps that need to be addressed in future research. Articles in PubMed, Google and AIDSearch and relevant conference abstracts publications were searched. Accessible articles on host factors and viral genetics impacting the MTCT of HIV, done on African populations till 2015 were downloaded. Forty-six articles were found and accessed; 70% described host genes impacting the transmission. The most studied gene was the CCR5 promoter, followed by the CCR2-64I found to reduce MTCT; then SDF1-3’A shown to have no effect on MTCT and others like the DC-SIGNR, CD4, CCL3 and IP- 10. The HLA class I was most studied and was generally linked to the protective effect on MTCT. Breast milk constituents were associated to protection against MTCT. However, existing studies in Sub Saharan Africa were done just in few countries and some done without control groups. Contradictory results obtained may be due to different genetic background, type of controls, different socio-cultural and economic environment and population size. More studies are thus needed to better understand the mechanism of transmission or prevention.

  16. Avaliação de ensaio molecular para determinação de carga viral em indivíduos sorologicamente negativos para o HIV-1

    Pereira,José Moreira; Silva,Cirley Santos da; Porto,Luís Fernando Bruzzi; Póvoa,Luiz Gallotti; Moreira,Aline Santos; Alves,Jorge Roberto

    2002-01-01

    O teste de carga viral foi concebido para acompanhar a evolução e o tratamento do paciente com diagnóstico confirmado de HIV-1. Contudo, sua especificidade diagnóstica não foi ainda avaliada em pessoas que apresentam um teste sorológico negativo. Mesmo assim, ele tem sido erroneamente utilizado para o diagnóstico da infecção primária pelo HIV-1. Este trabalho relata quatro pacientes em que a carga viral plasmática NucliSens (Organon Teknika) foi repetidamente positiva na ausência de anticorpo...

  17. Cyclophilin A potentiates TRIM5α inhibition of HIV-1 nuclear import without promoting TRIM5α binding to the viral capsid.

    Mallori Burse

    Full Text Available The host immunophilin cyclophilin A (CypA binds to the capsid protein (CA of HIV-1 and regulates its infectivity. Depending on the target cell type, CypA can either promote or inhibit HIV-1 infection. The ability of CypA to promote HIV-1 infection has been extensively studied and linked to several steps in early replication including uncoating, reverse transcription and nuclear import. By contrast, the mechanism by which CypA inhibits infection is less well understood. We investigated the mechanism by which CypA potentiates restriction of HIV-1 by the tripartite motif-containing protein 5 (TRIM5α. Depletion of TRIM5α in the African green monkey cell line Vero, resulted in a loss of inhibition of infection by CypA, demonstrating that inhibition by CypA is mediated by TRIM5α. Complementary genetic and biochemical assays failed to demonstrate an ability of CypA to promote binding of TRIM5α to the viral capsid. TRIM5α inhibits HIV-1 reverse transcription in a proteasome-dependent manner; however, we observed that inhibition of proteasome activity did not reduce the ability of CypA to inhibit infection, suggesting that CypA acts at a step after reverse transcription. Accordingly, we observed a CypA-dependent reduction in the accumulation of nuclear HIV-1 DNA, indicating that CypA specifically promotes TRIM5α inhibition of HIV-1 nuclear import. We also observed that the ability of CypA to inhibit HIV-1 infection is abolished by amino acid substitutions within the conserved CPSF6-binding surface in CA. Our results indicate that CypA inhibits HIV-1 infection in Vero cells not by promoting TRIM5α binding to the capsid but by blocking nuclear import of the HIV-1 preintegration complex.

  18. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  19. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Chetan Sood

    Full Text Available HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles. Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  20. Suppression of HIV-1 viral load after multiple changes in high active ...

    1-infected patients. However, the virus persists ... chronological changes in HIV viral load and CD4+ T-cell count, and treatment outcomes of multiple combinations of .... Lewin SR, Rouzioux C. HIV cure and eradication: how will we get from the ...

  1. SUN1 Regulates HIV-1 Nuclear Import in a Manner Dependent on the Interaction between the Viral Capsid and Cellular Cyclophilin A.

    Luo, Xinlong; Yang, Wei; Gao, Guangxia

    2018-07-01

    Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells via passing through the nuclear pore complex. The nuclear membrane-imbedded protein SUN2 was recently reported to be involved in the nuclear import of HIV-1. Whether SUN1, which shares many functional similarities with SUN2, is involved in this process remained to be explored. Here we report that overexpression of SUN1 specifically inhibited infection by HIV-1 but not that by simian immunodeficiency virus (SIV) or murine leukemia virus (MLV). Overexpression of SUN1 did not affect reverse transcription but led to reduced accumulation of the 2-long-terminal-repeat (2-LTR) circular DNA and integrated viral DNA, suggesting a block in the process of nuclear import. HIV-1 CA was mapped as a determinant for viral sensitivity to SUN1. Treatment of SUN1-expressing cells with cyclosporine (CsA) significantly reduced the sensitivity of the virus to SUN1, and an HIV-1 mutant containing CA-G89A, which does not interact with cyclophilin A (CypA), was resistant to SUN1 overexpression. Downregulation of endogenous SUN1 inhibited the nuclear entry of the wild-type virus but not that of the G89A mutant. These results indicate that SUN1 participates in the HIV-1 nuclear entry process in a manner dependent on the interaction of CA with CypA. IMPORTANCE HIV-1 infects both dividing and nondividing cells. The viral preintegration complex (PIC) can enter the nucleus through the nuclear pore complex. It has been well known that the viral protein CA plays an important role in determining the pathways by which the PIC enters the nucleus. In addition, the interaction between CA and the cellular protein CypA has been reported to be important in the selection of nuclear entry pathways, though the underlying mechanisms are not very clear. Here we show that both SUN1 overexpression and downregulation inhibited HIV-1 nuclear entry. CA played an important role in determining the sensitivity of the virus to SUN1: the regulatory

  2. Comparison of the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 test v1.0 with v2.0 in HIV-1 viral load quantification

    Yi-Ching Tung

    2015-04-01

    Full Text Available Roche modified the COBAS AmpliPrep/COBAS TaqMan human immunodeficiency virus type 1 (HIV-1 test version 1.0 (CAP/CTM v1.0, resulting in the COBAS AmpliPrep/COBAS TaqMan HIV-1 test version 2.0 (CAP/CTM v2.0. The aim of this study was to evaluate the performance of the CAP/CTM v2.0 and to compare this performance with that of the CAP/CTM v1.0. The study was conducted in a small local study group in Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. A total of 86 plasma samples from HIV-1-seropositive patients were tested using the two assays. The correlation and concordance of results between the two assays were calculated. The CAP/CTM v2.0 generated higher values than did the CAP/CTM v1.0, and five samples (5.8% yielded a difference of > 1 log10 copies/mL. In addition, our data show that CAP/CTM v1.0 and CAP/CTM v2.0 yielded relatively consistent values for 23 samples with low viral loads (< 200 copies/mL. Furthermore, when viral loads were in a medium range (2–5 log10 copies/mL, the results of the two assays were more compatible. This study shows a good correlation between CAP/CTM v1.0 and v2.0 in HIV-1 viral load measurement. Further attention must be paid to those cases in which measured viral loads present larger differences between the two assays.

  3. Computerized counseling reduces HIV-1 viral load and sexual transmission risk: findings from a randomized controlled trial.

    Kurth, Ann E; Spielberg, Freya; Cleland, Charles M; Lambdin, Barrot; Bangsberg, David R; Frick, Pamela A; Severynen, Anneleen O; Clausen, Marc; Norman, Robert G; Lockhart, David; Simoni, Jane M; Holmes, King K

    2014-04-15

    Evaluate a computerized intervention supporting antiretroviral therapy (ART) adherence and HIV transmission prevention. Longitudinal randomized controlled trial. An academic HIV clinic and a community-based organization in Seattle. In a total of 240 HIV-positive adults on ART, 209 completed 9-month follow-up (87% retention). Randomization to computerized counseling or assessment only, 4 sessions over 9 months. HIV-1 viral suppression, and self-reported ART adherence and transmission risks, compared using generalized estimating equations. Overall, intervention participants had reduced viral load: mean 0.17 log10 decline, versus 0.13 increase in controls, P = 0.053, and significant difference in ART adherence baseline to 9 months (P = 0.046). Their sexual transmission risk behaviors decreased (odds ratio = 0.55, P = 0.020), a reduction not seen among controls (odds ratio = 1.1, P = 0.664), and a significant difference in change (P = 0.040). Intervention effect was driven by those most in need; among those with detectable virus at baseline (>30 copies/mL, n = 89), intervention effect was mean 0.60 log10 viral load decline versus 0.15 increase in controls, P = 0.034. ART adherence at the final follow-up was 13 points higher among intervention participants versus controls, P = 0.038. Computerized counseling is promising for integrated ART adherence and safer sex, especially for individuals with problems in these areas. This is the first intervention to report improved ART adherence, viral suppression, and reduced secondary sexual transmission risk behavior.

  4. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults

    Dinges, Warren; Girard, Pierre-Marie; Podzamczer, Daniel; Brockmeyer, Norbert H.; García, Felipe.; Harrer, Thomas; Lelievre, Jean-Daniel; Frank, Ian; Colin De Verdière, Nathalie; Yeni, Guy-Patrick; Ortega Gonzalez, Enrique; Rubio, Rafael; Clotet Sala, Bonaventura; DeJesus, Edwin; Pérez-Elias, Maria Jesus; Launay, Odile; Pialoux, Gilles; Slim, Jihad; Weiss, Laurence; Bouchaud, Olivier; Felizarta, Franco; Meurer, Anja; Raffi, François; Esser, Stefan; Katlama, Christine; Koletar, Susan L.; Mounzer, Karam; Swindells, Susan; Baxter, John D.; Schneider, Stefan; Chas, Julie; Molina, Jean-Michel; Koutsoukos, Marguerite; Collard, Alix; Bourguignon, Patricia; Roman, François

    2016-01-01

    Abstract The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults. This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4+ T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks. At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): −0.088; 0.235]), or F4/AS01B_3 and control group (−0.096 log10 copies/mL [97.5% CI: −0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4+ T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4+ T-cells, but had no significant impact on F4-specific CD8+ T-cell and anti-F4 antibody levels. F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4+ T-cell responses, but did not reduce HIV-1 VL, impact CD4+ T-cells count, delay ART initiation, or prevent HIV-1 related clinical events. PMID:26871794

  5. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults: A Randomized Controlled Trial.

    Dinges, Warren; Girard, Pierre-Marie; Podzamczer, Daniel; Brockmeyer, Norbert H; García, Felipe; Harrer, Thomas; Lelievre, Jean-Daniel; Frank, Ian; Colin De Verdière, Nathalie; Yeni, Guy-Patrick; Ortega Gonzalez, Enrique; Rubio, Rafael; Clotet Sala, Bonaventura; DeJesus, Edwin; Pérez-Elias, Maria Jesus; Launay, Odile; Pialoux, Gilles; Slim, Jihad; Weiss, Laurence; Bouchaud, Olivier; Felizarta, Franco; Meurer, Anja; Raffi, François; Esser, Stefan; Katlama, Christine; Koletar, Susan L; Mounzer, Karam; Swindells, Susan; Baxter, John D; Schneider, Stefan; Chas, Julie; Molina, Jean-Michel; Koutsoukos, Marguerite; Collard, Alix; Bourguignon, Patricia; Roman, François

    2016-02-01

    The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults.This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4 T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks.At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): -0.088; 0.235]), or F4/AS01B_3 and control group (-0.096 log10 copies/mL [97.5% CI: -0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4 T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4 T-cells, but had no significant impact on F4-specific CD8 T-cell and anti-F4 antibody levels.F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4 T-cell responses, but did not reduce HIV-1 VL, impact CD4 T-cells count, delay ART initiation, or prevent HIV-1 related clinical events.

  6. Persistence of transmitted HIV-1 drug resistance mutations associated with fitness costs and viral genetic backgrounds.

    Wan-Lin Yang

    2015-03-01

    Full Text Available Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS. All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V to 2.7/100-person-years;[0.7, 10.9] (for 215D. RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs. When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.

  7. Hairpin-induced tRNA-mediated (HITME) recombination in HIV-1

    Konstantinova, Pavlina; de Haan, Peter; Das, Atze T.; Berkhout, Ben

    2006-01-01

    Recombination due to template switching during reverse transcription is a major source of genetic variability in retroviruses. In the present study we forced a recombination event in human immunodeficiency virus type 1 (HIV-1) by electroporation of T cells with DNA from a molecular HIV-1 clone that

  8. “Computerized Counseling Reduces HIV-1 Viral Load and Sexual Transmission Risk: Findings from a Randomized Controlled Trial”

    KURTH, Ann E.; SPIELBERG, Freya; CLELAND, Charles M.; LAMBDIN, Barrot; BANGSBERG, David R.; FRICK, Pamela A.; SEVERYNEN, Anneleen O.; CLAUSEN, Marc; NORMAN, Robert G.; LOCKHART, David; SIMONI, Jane M.; HOLMES, King K.

    2014-01-01

    Objective Evaluate a computerized intervention supporting antiretroviral therapy (ART) adherence and HIV transmission prevention. Design Longitudinal RCT. Settings An academic HIV clinic and a community-based organization in Seattle. Subjects 240 HIV-positive adults on ART; 209 completed nine-month follow-up (87% retention). Intervention Randomization to computerized counseling or assessment-only, 4 sessions over 9 months. Main Outcome Measures HIV-1 viral suppression, and self-reported ART adherence, and transmission risks, compared using generalized estimating equations. Results Overall, intervention participants had reduced viral load (VL): mean 0.17 log10 decline, versus 0.13 increase in controls, p = 0.053, and significant difference in ART adherence baseline to 9 months (p = 0.046). Their sexual transmission risk behaviors decreased (OR = 0.55, p = 0.020), a reduction not seen among controls (OR = 1.1, p = 0.664), and a significant difference in change (p = 0.040). Intervention effect was driven by those most in need: among those with detectable virus at baseline (>30 copies/milliliter, n=89), intervention effect was mean 0.60 log10 VL decline versus 0.15 increase in controls, p=0.034. ART adherence at the final follow-up was 13 points higher among intervention participants versus controls, p = 0.038. Conclusions Computerized counseling is promising for integrated ART adherence and safer sex, especially for individuals with problems in these areas. This is the first intervention to report improved ART adherence, viral suppression, and reduced secondary sexual transmission risk behavior. PMID:24384803

  9. Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA

    Ristic Natalia

    2010-09-01

    Full Text Available Abstract Background The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1 sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines. The replication restriction phenotype in the SL1 deletion mutant appears to be multifactorial, with defects in viral RNA dimerization and packaging in producer cells as well as in reverse transcription of the viral RNA in infected cells. In this study, we sought to characterize SL1 mutant replication restrictions and provide insights into the underlying mechanisms of compensation in revertants. Results HIV-1 lacking SL1 (NLΔSL1 did not replicate in PM-1 cells until two independent non-synonymous mutations emerged: G913A in the matrix domain (E42K on day 18 postinfection and C1907T in the SP1 domain (P10L on day 11 postinfection. NLΔSL1 revertants carrying either compensatory mutation showed enhanced infectivity in PM-1 cells. The SL1 revertants produced significantly more infectious particles per nanogram of p24 than did NLΔSL1. The SL1 deletion mutant packaged less HIV-1 genomic RNA and more cellular RNA, particularly signal recognition particle RNA, in the virion than the wild-type. NLΔSL1 also packaged 3- to 4-fold more spliced HIV mRNA into the virion, potentially interfering with infectious virus production. In contrast, both revertants encapsidated 2.5- to 5-fold less of these HIV-1 mRNA species. Quantitative RT-PCR analysis of RNA cross-linked with Gag in formaldehyde-fixed cells demonstrated that the compensatory mutations reduced the association between Gag and spliced HIV-1 RNA, thereby effectively preventing these RNAs from being packaged into the virion. The reduction of spliced viral RNA in the virion may have a major role in facilitating infectious virus production, thus restoring the infectivity of NLΔSL1

  10. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

    Sushmita Poddar

    2014-06-01

    Full Text Available To date the Simian Virus 40 (SV40 is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.

  11. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication

    Belhumeur Pierre

    2008-11-01

    Full Text Available Abstract Background HIV-1 integrase (IN is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s and/or motif(s required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. Results Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. Conclusion Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of

  12. Potential of RNA aptamers in the prevention of HIV-1 subtype C infections

    London, GM

    2014-10-01

    Full Text Available Compounds that have been used to prevent human immunodeficiency virus type-I (HIV-1) infections include synthetic chemicals, plant extras and monoclonal antibodies. Although most of these compounds have potent antiviral activity, they often fail...

  13. Functional interactions of nucleocapsid protein of feline immunodeficiency virus and cellular prion protein with the viral RNA.

    Moscardini, Mila; Pistello, Mauro; Bendinelli, M; Ficheux, Damien; Miller, Jennifer T; Gabus, Caroline; Le Grice, Stuart F J; Surewicz, Witold K; Darlix, Jean-Luc

    2002-04-19

    All lentiviruses and oncoretroviruses examined so far encode a major nucleic-acid binding protein (nucleocapsid or NC* protein), approximately 2500 molecules of which coat the dimeric RNA genome. Studies on HIV-1 and MoMuLV using in vitro model systems and in vivo have shown that NC protein is required to chaperone viral RNA dimerization and packaging during virus assembly, and proviral DNA synthesis by reverse transcriptase (RT) during infection. The human cellular prion protein (PrP), thought to be the major component of the agent causing transmissible spongiform encephalopathies (TSE), was recently found to possess a strong affinity for nucleic acids and to exhibit chaperone properties very similar to HIV-1 NC protein in the HIV-1 context in vitro. Tight binding of PrP to nucleic acids is proposed to participate directly in the prion disease process. To extend our understanding of lentiviruses and of the unexpected nucleic acid chaperone properties of the human prion protein, we set up an in vitro system to investigate replication of the feline immunodeficiency virus (FIV), which is functionally and phylogenetically distant from HIV-1. The results show that in the FIV model system, NC protein chaperones viral RNA dimerization, primer tRNA(Lys,3) annealing to the genomic primer-binding site (PBS) and minus strand DNA synthesis by the homologous FIV RT. FIV NC protein is able to trigger specific viral DNA synthesis by inhibiting self-priming of reverse transcription. The human prion protein was found to mimic the properties of FIV NC with respect to primer tRNA annealing to the viral RNA and chaperoning minus strand DNA synthesis. Copyright 2002 Elsevier Science Ltd.

  14. Performance Evaluation of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit: Comparison with the Roche COBAS® AmpliPrep/COBAS TaqMan® HIV-1 Test Ver.2.0 for Quantification of HIV-1 Viral Load in Indonesia.

    Kosasih, Agus Susanto; Sugiarto, Christine; Hayuanta, Hubertus Hosti; Juhaendi, Runingsih; Setiawan, Lyana

    2017-08-08

    Measurement of viral load in human immunodeficiency virus type 1 (HIV-1) infected patients is essential for the establishment of a therapeutic strategy. Several assays based on qPCR are available for the measurement of viral load; they differ in sample volume, technology applied, target gene, sensitivity and dynamic range. The Bioneer AccuPower® HIV-1 Quantitative RT-PCR is a novel commercial kit that has not been evaluated for its performance. This study aimed to evaluate the performance of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit. In total, 288 EDTA plasma samples from the Dharmais Cancer Hospital were analyzed with the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit and the Roche COBAS? AmpliPrep/COBAS® TaqMan® HIV-1 version 2.0 (CAP/CTM v2.0). The performance of the Bioneer assay was then evaluated against the Roche CAP/CTM v2.0. Overall, there was good agreement between the two assays. The Bioneer assay showed significant linear correlation with CAP/CTM v2.0 (R2=0.963, plaboratories.

  15. High levels of T lymphocyte activation in Leishmania-HIV-1 co-infected individuals despite low HIV viral load

    Grinsztejn Beatriz

    2010-12-01

    Full Text Available Abstract Background Concomitant infections may influence HIV progression by causing chronic activation leading to decline in T-cell function. In the Americas, visceral (AVL and tegumentary leishmaniasis (ATL have emerged as important opportunistic infections in HIV-AIDS patients and both of those diseases have been implicated as potentially important co-factors in disease progression. We investigated whether leishmaniasis increases lymphocyte activation in HIV-1 co-infected patients. This might contribute to impaired cellular immune function. Methods To address this issue we analyzed CD4+ T absolute counts and the proportion of CD8+ T cells expressing CD38 in Leishmania/HIV co-infected patients that recovered after anti-leishmanial therapy. Results We found that, despite clinical remission of leishmaniasis, AVL co-infected patients presented a more severe immunossupression as suggested by CD4+ T cell counts under 200 cells/mm3, differing from ATL/HIV-AIDS cases that tends to show higher lymphocytes levels (over 350 cells/mm3. Furthermore, five out of nine, AVL/HIV-AIDS presented low CD4+ T cell counts in spite of low or undetectable viral load. Expression of CD38 on CD8+ T lymphocytes was significantly higher in AVL or ATL/HIV-AIDS cases compared to HIV/AIDS patients without leishmaniasis or healthy subjects. Conclusions Leishmania infection can increase the degree of immune system activation in individuals concomitantly infected with HIV. In addition, AVL/HIV-AIDS patients can present low CD4+ T cell counts and higher proportion of activated T lymphocytes even when HIV viral load is suppressed under HAART. This fact can cause a misinterpretation of these laboratorial markers in co-infected patients.

  16. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  17. DNA/MVA Vaccination of HIV-1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re-Emergent Virus.

    Thompson, Melanie; Heath, Sonya L; Sweeton, Bentley; Williams, Kathy; Cunningham, Pamela; Keele, Brandon F; Sen, Sharon; Palmer, Brent E; Chomont, Nicolas; Xu, Yongxian; Basu, Rahul; Hellerstein, Michael S; Kwa, Suefen; Robinson, Harriet L

    2016-01-01

    GV-TH-01, a Phase 1 open-label trial of a DNA prime—Modified Vaccinia Ankara (MVA) boost vaccine (GOVX-B11), was undertaken in HIV infected participants on antiretroviral treatment (ART) to evaluate safety and vaccine-elicited T cell responses, and explore the ability of elicited CD8+ T cells to control viral rebound during analytical treatment interruption (TI). Nine men who began antiretroviral therapy (ART) within 18 months of seroconversion and had sustained plasma HIV-1 RNA HIV-1 RNA was 140,000 copies/ml and mean baseline CD4 count was 755/μl. Two DNA, followed by 2 MVA, inoculations were given 8 weeks apart. Eight subjects completed all vaccinations and TI. Clinical and laboratory adverse events were generally mild, with no serious or grade 4 events. Only reactogenicity events were considered related to study drug. No treatment emergent viral resistance was seen. The vaccinations did not reduce viral reservoirs and virus re-emerged in all participants during TI, with a median time to re-emergence of 4 weeks. Eight of 9 participants had CD8+ T cells that could be stimulated by vaccine-matched Gag peptides prior to vaccination. Vaccinations boosted these responses as well as eliciting previously undetected CD8+ responses. Elicited T cells did not display signs of exhaustion. During TI, temporal patterns of viral re-emergence and Gag-specific CD8+ T cell expansion suggested that vaccine-specific CD8+ T cells had been stimulated by re-emergent virus in only 2 of 8 participants. In these 2, transient decreases in viremia were associated with Gag selection in known CD8+ T cell epitopes. We hypothesize that escape mutations, already archived in the viral reservoir, plus a poor ability of CD8+ T cells to traffic to and control virus at sites of re-emergence, limited the therapeutic efficacy of the DNA/MVA vaccine. clinicaltrials.gov NCT01378156.

  18. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression

    Nguyen, Kim-Lien; Llano, Manuel; Akari, Hirofumi; Miyagi, Eri; Poeschla, Eric M.; Strebel, Klaus; Bour, Stephan

    2004-01-01

    Two HIV-1 accessory proteins, Vpu and Vif, are notoriously difficult to express autonomously in the absence of the viral Tat and Rev proteins. We examined whether the codon bias observed in the vpu and vif genes relative to highly expressed human genes contributes to the Rev dependence and low expression level outside the context of the viral genome. The entire vpu gene as well as the 5' half of the vif gene were codon optimized and the resulting open reading frames (ORFs) (vphu and hvif, respectively) were cloned in autonomous expression vectors under the transcriptional control of the CMV promoter. Codon optimization efficiently removed the expression block observed in the native genes and allowed high levels of Rev- and Tat-independent expression of Vpu and Vif. Most of the higher protein levels detected are accounted for by enhanced steady-state levels of the mRNA encoding the optimized species. Nuclear run-on experiments show for the first time that codon optimization has no effect on the rate of transcriptional initiation or elongation of the vphu mRNA. Instead, optimization of the vpu gene was found to stabilize the vphu mRNA in the nucleus and enhance its export to the cytoplasm. This was achieved by allowing the optimized mRNA to use a new CRM1-independent nuclear export pathway. This work provides a better understanding of the molecular mechanisms underlying the process of codon optimization and introduces novel tools to study the biological functions of the Vpu and Vif proteins independently of other viral proteins

  19. Different patterns of HIV-1 DNA after therapy discontinuation

    Ghinelli Florio

    2005-09-01

    Full Text Available Abstract Background By persisting in infected cells for a long period of time, proviral HIV-1 DNA can represent an alternative viral marker to RNA viral load during the follow-up of HIV-1 infected individuals. In the present study sequential blood samples of 10 patients under antiretroviral treatment from 1997 with two NRTIs, who refused to continue any antiviral regimen, were analyzed for 16 – 24 weeks to study the possible relationship between DNA and RNA viral load. Methods The amount of proviral DNA was quantified by SYBR green real-time PCR in peripheral blood mononuclear cells from a selected group of ten patients with different levels of plasmatic viremia (RNA viral load. Results Variable levels of proviral DNA were found without any significant correlation between proviral load and plasma HIV-1 RNA levels. Results obtained showed an increase or a rebound in viral DNA in most patients, suggesting that the absence of therapy reflects an increase and/or a persistence of cells containing viral DNA. Conclusion Even though plasma HIV RNA levels remain the basic parameter to monitor the intensity of viral replication, the results obtained seem to indicate that DNA levels could represent an adjunct prognostic marker in monitoring HIV-1 infected subjects.

  20. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T.; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to

  1. An effective HIV-1 integrase inhibitor screening platform: Rationality validation of drug screening, conformational mobility and molecular recognition analysis for PFV integrase complex with viral DNA.

    Du, Wenyi; Zuo, Ke; Sun, Xin; Liu, Wei; Yan, Xiao; Liang, Li; Wan, Hua; Chen, Fengzheng; Hu, Jianping

    2017-11-01

    As an important target for the development of novel anti-AIDS drugs, HIV-1 integrase (IN) has been widely concerned. However, the lack of a complete accurate crystal structure of HIV-1 IN greatly blocks the discovery of novel inhibitors. In this work, an effective HIV-1 IN inhibitor screening platform, namely PFV IN, was filtered from all species of INs. Next, the 40.8% similarity with HIV-1 IN, as well as the high efficiency of virtual screening and the good agreement between calculated binding free energies and experimental ones all proved PFV IN is a promising screening platform for HIV-1 IN inhibitors. Then, the molecular recognition mechanism of PFV IN by its substrate viral DNA and six naphthyridine derivatives (NRDs) inhibitors was investigated through molecular docking, molecular dynamics simulations and water-mediated interactions analyses. The functional partition of NRDs IN inhibitors could be divided into hydrophobic and hydrophilic ones, and the Mg 2+ ions, water molecules and conserved DDE motif residues all interacted with the hydrophilic partition, while the bases in viral DNA and residues like Tyr212, Pro214 interacted with the hydrophobic one. Finally, the free energy landscape (FEL) and cluster analyses were performed to explore the molecular motion of PFV IN-DNA system. It is found that the association with NRDs inhibitors would obviously decrease the motion amplitude of PFV IN-DNA, which may be one of the most potential mechanisms of IN inhibitors. This work will provide a theoretical basis for the inhibitor design based on the structure of HIV-1 IN. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Short communication: identification of a novel HIV type 1 subtype H/J recombinant in Canada with discordant HIV viral load (RNA) values in three different commercial assays.

    Kim, John E; Beckthold, Brenda; Chen, Zhaoxia; Mihowich, Jennifer; Malloch, Laurie; Gill, Michael John

    2007-11-01

    The presence of HIV-1 non-B subtypes is increasing worldwide. This poses challenges to commercial diagnostic and viral load (RNA) monitoring tests that are predominantly based on HIV-1 subtype B strains. Based on phylogenetic analysis of the gag, pol, and env gene regions, we describe the first HIV-1 H/J recombinant in Canada that presented divergent viral load values. DNA sequence analysis of the gag gene region further revealed that genetic diversity between this H/J recombinant and the primers and probes used in the bio-Merieux Nuclisens HIV-1 QT (Nuclisens) and Roche Amplicor Monitor HIV-1, v1.5 (Monitor) viral RNA assays can erroneously lead to undetectable viral load values. This observation appears to be more problematic in the Nuclisens assay. In light of increasing genetic diversity in HIV worldwide we recommend that DNA sequencing of HIV, especially in the gag gene region targeted by primers and probes used in molecular diagnostic and viral load tests, be incorporated into clinical monitoring practices.

  3. Human endogenous retrovirus K Gag coassembles with HIV-1 Gag and reduces the release efficiency and infectivity of HIV-1.

    Monde, Kazuaki; Contreras-Galindo, Rafael; Kaplan, Mark H; Markovitz, David M; Ono, Akira

    2012-10-01

    Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.

  4. Identifying HIV-1 dual infections

    Cornelissen Marion

    2007-09-01

    Full Text Available Abstract Transmission of human immunodeficiency virus (HIV is no exception to the phenomenon that a second, productive infection with another strain of the same virus is feasible. Experiments with RNA viruses have suggested that both coinfections (simultaneous infection with two strains of a virus and superinfections (second infection after a specific immune response to the first infecting strain has developed can result in increased fitness of the viral population. Concerns about dual infections with HIV are increasing. First, the frequent detection of superinfections seems to indicate that it will be difficult to develop a prophylactic vaccine. Second, HIV-1 superinfections have been associated with accelerated disease progression, although this is not true for all persons. In fact, superinfections have even been detected in persons controlling their HIV infections without antiretroviral therapy. Third, dual infections can give rise to recombinant viruses, which are increasingly found in the HIV-1 epidemic. Recombinants could have increased fitness over the parental strains, as in vitro models suggest, and could exhibit increased pathogenicity. Multiple drug resistant (MDR strains could recombine to produce a pan-resistant, transmittable virus. We will describe in this review what is presently known about super- and re-infection among ambient viral infections, as well as the first cases of HIV-1 superinfection, including HIV-1 triple infections. The clinical implications, the impact of the immune system, and the effect of anti-retroviral therapy will be covered, as will as the timing of HIV superinfection. The methods used to detect HIV-1 dual infections will be discussed in detail. To increase the likelihood of detecting a dual HIV-1 infection, pre-selection of patients can be done by serotyping, heteroduplex mobility assays (HMA, counting the degenerate base codes in the HIV-1 genotyping sequence, or surveying unexpected increases in the

  5. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction.

    Gargan, Siobhan; Ahmed, Suaad; Mahony, Rebecca; Bannan, Ciaran; Napoletano, Silvia; O'Farrelly, Cliona; Borrow, Persephone; Bergin, Colm; Stevenson, Nigel J

    2018-04-01

    Anti-retroviral therapy successfully suppresses HIV-1 infection, but fails to provide a cure. During infection Type 1 IFNs normally play an essential role in viral clearance, but in vivo IFN-α only has a modest impact on HIV-1 infection, suggesting its possible targeting by HIV. Here, we report that the HIV protein, Vif, inhibits effective IFN-α signalling via degradation of essential JAK/STAT pathway components. We found that STAT1 and STAT3 are specifically reduced in HEK293T cells expressing Vif and that full length, infectious HIV-1 IIIB strain promotes their degradation in a Vif-dependent manner. HIV-1 IIIB infection of myeloid ThP-1 cells also reduced the IFN-α-mediated induction of the anti-viral gene, ISG15, but not MxA, revealing a functional consequence of this HIV-1-mediated immune evasion strategy. Interestingly, while total STAT levels were not reduced upon in vitro IIIB infection of primary human PBMCs, IFN-α-mediated phosphorylation of STAT1 and STAT3 and ISG induction were starkly reduced, with removal of Vif (IIIBΔVif), partially restoring pSTATs, ISG15 and MxB induction. Similarly, pSTAT1 and pSTAT3 expression and IFN-α-induced ISG15 were reduced in PBMCs from HIV-infected patients, compared to healthy controls. Furthermore, IFN-α pre-treatment of a CEM T lymphoblast cells significantly inhibited HIV infection/replication (measured by cellular p24), only in the absence of Vif (IIIBΔVif), but was unable to suppress full length IIIB infection. When analysing the mechanism by which Vif might target the JAK/STAT pathway, we found Vif interacts with both STAT1 and STAT3, (but not STAT2), and its expression promotes ubiquitination and MG132-sensitive, proteosomal degradation of both proteins. Vif's Elongin-Cullin-SOCS-box binding motif enables the formation of an active E3 ligase complex, which we found to be required for Vif's degradation of STAT1 and STAT3. In fact, the E3 ligase scaffold proteins, Cul5 and Rbx2, were also found to be

  6. Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA and HIV-1 nef Genes in Escherichia coli.

    Siti Aisyah Mualif

    Full Text Available Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef, HIV-1 p24 (ca, and HIV-1 vif in NiCo21(DE3 E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.

  7. GeneXpert HIV-1 quant assay, a new tool for scale up of viral load monitoring in the success of ART programme in India.

    Kulkarni, Smita; Jadhav, Sushama; Khopkar, Priyanka; Sane, Suvarna; Londhe, Rajkumar; Chimanpure, Vaishali; Dhilpe, Veronica; Ghate, Manisha; Yelagate, Rajendra; Panchal, Narayan; Rahane, Girish; Kadam, Dilip; Gaikwad, Nitin; Rewari, Bharat; Gangakhedkar, Raman

    2017-07-21

    Recent WHO guidelines identify virologic monitoring for diagnosing and confirming ART failure. In view of this, validation and scale up of point of care viral load technologies is essential in resource limited settings. A systematic validation of the GeneXpert® HIV-1 Quant assay (a point-of-care technology) in view of scaling up HIV-1 viral load in India to monitor the success of national ART programme was carried out. Two hundred nineteen plasma specimens falling in nine viral load ranges (5 L copies/ml) were tested by the Abbott m2000rt Real Time and GeneXpert HIV-1 Quant assays. Additionally, 20 seronegative; 16 stored specimens and 10 spiked controls were also tested. Statistical analysis was done using Stata/IC and sensitivity, specificity, PPV, NPV and %misclassification rates were calculated as per DHSs/AISs, WHO, NACO cut-offs for virological failure. The GeneXpert assay compared well with the Abbott assay with a higher sensitivity (97%), specificity (97-100%) and concordance (91.32%). The correlation between two assays (r = 0.886) was statistically significant (p performance and rapidity will aid in timely diagnosis of ART failures, integrated HIV-TB management and will facilitate the UNAIDS 90-90-90 target.

  8. Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence.

    Sugden, Scott M; Bego, Mariana G; Pham, Tram N Q; Cohen, Éric A

    2016-03-03

    The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.

  9. Viral load and genomic integration of HPV 16 in cervical samples from HIV-1-infected and uninfected women in Burkina Faso.

    Rousseau, Marie-Noelle Didelot; Costes, Valérie; Konate, Issouf; Nagot, Nicolas; Foulongne, Vincent; Ouedraogo, Abdoulaye; Van de Perre, Philippe; Mayaud, Philippe; Segondy, Michel

    2007-06-01

    The relationships between human papillomavirus type 16 (HPV 16) viral load, HPV 16 integration status, human immunodeficiency virus type 1 (HIV-1) status, and cervical cytology were studied among women enrolled in a cohort of female sex workers in Burkina Faso. The study focused on 24 HPV 16-infected women. The HPV 16 viral load in cervical samples was determined by real-time PCR. Integration ratio was estimated as the ratio between E2 and E6 genes DNA copy numbers. Integrated HPV16 viral load was defined as the product of HPV 16 viral load by the integration ratio. High HPV 16 viral load and high integration ratio were more frequent among women with squamous intraepithelial lesions compared with women with normal cytology (33% vs. 11%, and 33% vs. 0%, respectively), and among women with high-grade squamous intraepithelial lesions compared with women without high-grade squamous intraepithelial lesions (50% vs. 17%, and 50% vs. 11%, respectively). High HPV 16 DNA load, but not high integration ratio, was also more frequent among HIV-1-positive women (39% vs. 9%; and 23% vs. 18%, respectively). The absence of statistical significance of these differences might be explained by the small study sample size. High-integrated HPV 16 DNA load was significantly associated with the presence of high-grade squamous intraepithelial lesions (50% vs. 5%, P = 0.03) in univariate and multivariate analysis (adjusted odds-ratio: 19.05; 95% confidence interval (CI), 1.11-328.3, P = 0.03), but not with HIV-1 or other high-risk HPV types (HR-HPV). Integrated HPV 16 DNA load may be considered as a useful marker of high-grade cervical lesions in HPV 16-infected women. (c) 2007 Wiley-Liss, Inc.

  10. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Interleukin-28B polymorphisms are associated with hepatitis C virus clearance and viral load in a HIV-1-infected cohort

    Clausen, L N; Weis, N; Astvad, K

    2011-01-01

    Summary. Twenty-five per cent of individuals infected with hepatitis C virus (HCV) are able to clear HCV spontaneously. Differences in host genetics are believed to affect the outcome of HCV infection. We analysed an exonic, a promoter and an intronic single nucleotide polymorphism (SNP) of the i......Summary. Twenty-five per cent of individuals infected with hepatitis C virus (HCV) are able to clear HCV spontaneously. Differences in host genetics are believed to affect the outcome of HCV infection. We analysed an exonic, a promoter and an intronic single nucleotide polymorphism (SNP...... higher median HCV RNA levels than individuals with unfavourable haplotype blocks (P = 0.05). Our findings suggest that IL28B may account for some differences in HCV outcome but that other factors including the viral genotype, host genetics and the host-virus interaction are likely to influence...

  12. [Analysis of the results of the HIV-1, HCV and HBV viral load of SEIMC External Quality Control Program. Year 2014].

    Medina González, Rafael; Orta Mira, Nieves; Guna Serrano, María Del Remedio; Latorre Martínez, José-Carlos; Gopegui, Enrique Ruiz de; Rosario Ovies, María; Poveda, Marta; Gimeno Cardona, Concepción

    2016-07-01

    Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV) and hepatitis C virus (HCV) viral load determinations are among the most relevant markers for the follow up of patients infected with these viruses. External quality control tools are crucial to ensure the accuracy of results obtained by microbiology laboratories. This article summarizes the results obtained from the 2014 SEIMC (Spanish Society of Infectious Diseases and Clinical Microbiology) External Quality Control Programme for HIV-1, HCV, and HBV viral loads. In the HIV-1 program, a total of 5 standards were sent. One standard consisted in seronegative human plasma, while the remaining 4 contained plasma from 3 different viremic patients, in the range of 2-5 log10 copies/mL; 2 of these standards were identical aiming to determine repeatability. A significant proportion of the laboratories (30.8% on average) obtained values out of the accepted range (mean ± 0.25 log10 copies/mL), depending on the standard and on the method used for quantification. Repeatability was excellent, with up to 95.8% of laboratories reporting results within the limits (Δ quality of the results obtained by a particular laboratory, as well as the importance of the post-analytical phase on the overall quality. Due to the remarkable interlaboratory variability, it is advisable to use the same method and the same laboratory for patient follow up. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  13. CD4+ T cell count, HIV-1 viral loads and demographic variables of newly identified patients with HIV infection in Wuhan, China.

    Liu, Man-Qing; Tang, Li; Kong, Wen-Hua; Zhu, Ze-Rong; Peng, Jin-Song; Wang, Xia; Yao, Zhong-Zhao; Schilling, Robert; Zhou, Wang

    2013-10-01

    In China, the rate of human immunodeficiency virus (HIV) testing is increasing among men who have sex with men. The purpose of the present study was to describe HIV-related biomarkers and selected demographic variables of persons with newly diagnosed HIV/AIDS, among men who have sex with men in particular, in Wuhan China. Demographic indicators, and CD4+ T cell counts and HIV-1 viral load were collected from individuals newly identified as HIV-1 antibody positive during 2011. Of 176 enrolled patients, 132 (75.0%) were men who have sex with men. This group was significantly younger and had higher CD4+ T cell counts than patients who were likely infected through heterosexual contact. Most men who have sex with men (56.6%) were discovered by initiative investigation. Among heterosexual patients CD4+ T cell counts and HIV-1 viral load were significantly correlated; among the group of men who have sex with men, no such association was found. Copyright © 2013 Wiley Periodicals, Inc.

  14. Antiretroviral-treated HIV-1 patients can harbour resistant viruses in CSF despite an undetectable viral load in plasma.

    Soulie, Cathia; Grudé, Maxime; Descamps, Diane; Amiel, Corinne; Morand-Joubert, Laurence; Raymond, Stéphanie; Pallier, Coralie; Bellecave, Pantxika; Reigadas, Sandrine; Trabaud, Mary-Anne; Delaugerre, Constance; Montes, Brigitte; Barin, Francis; Ferré, Virginie; Jeulin, Hélène; Alloui, Chakib; Yerly, Sabine; Signori-Schmuck, Anne; Guigon, Aurélie; Fafi-Kremer, Samira; Haïm-Boukobza, Stéphanie; Mirand, Audrey; Maillard, Anne; Vallet, Sophie; Roussel, Catherine; Assoumou, Lambert; Calvez, Vincent; Flandre, Philippe; Marcelin, Anne-Geneviève

    2017-08-01

    HIV therapy reduces the CSF HIV RNA viral load (VL) and prevents disorders related to HIV encephalitis. However, these brain disorders may persist in some cases. A large population of antiretroviral-treated patients who had a VL > 1.7 log 10 copies/mL in CSF with detectable or undetectable VL in plasma associated with cognitive impairment was studied, in order to characterize discriminatory factors of these two patient populations. Blood and CSF samples were collected at the time of neurological disorders for 227 patients in 22 centres in France and 1 centre in Switzerland. Genotypic HIV resistance tests were performed on CSF. The genotypic susceptibility score was calculated according to the last Agence Nationale de Recherche sur le Sida et les hépatites virales Action Coordonnée 11 (ANRS AC11) genotype interpretation algorithm. Among the 227 studied patients with VL > 1.7 log 10 copies/mL in CSF, 195 had VL detectable in plasma [median (IQR) HIV RNA was 3.7 (2.7-4.7) log 10 copies/mL] and 32 had discordant VL in plasma (VL plasma compared with patients with plasma VL > 1.7 log 10 copies/mL. Resistance to antiretrovirals was observed in CSF for the two groups of patients. Fourteen percent of this population of patients with cognitive impairment and detectable VL in CSF had well controlled VL in plasma. Thus, it is important to explore CSF HIV (VL and genotype) even if the HIV VL is controlled in plasma because HIV resistance may be observed. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin.

    Kumar, Santosh; Bose, Debojit; Suryawanshi, Hemant; Sabharwal, Harshana; Mapa, Koyeli; Maiti, Souvik

    2011-01-01

    Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT(m) = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a K(a) = 16.2±0.6×10(7) M(-1) where enthalpic change ΔH = -13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = -2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (K(a) = 3.1±0.4×10(7) M(-1)) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.

  16. HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia

    Mishra Ritu

    2012-06-01

    Full Text Available Abstract Background HIV-1 Tat protein is known to be associated with neuroinflammation, a condition that develops in almost half of patients infected with HIV-1. HIV-1 Tat can alter glial neuroprotective functions, leading to neurotoxicity within the CNS. HIV-1 Tat is known to be secreted from productively infected cells and can affect neighboring uninfected cells by modulating cellular gene expression in a bystander fashion. Methods We were interested to study whether exogenous exposure to HIV-1 Tat-C protein perturbs the microRNA (miRNA expression profile of human microglial cells, leading to altered protein expression. We used protein expression and purification, miRNA overexpression, miRNA knockdown, transfection, site-directed mutagenesis, real-time PCR, luciferase assay and western blotting techniques to perform our study. Results HIV-1 Tat-C treatment of human microglial cells resulted in a dose-dependent increase in miR-32 expression. We found that tumor necrosis factor-receptor–associated factor 3 TRAF3 is a direct target for miR-32, and overexpression of miR-32 in CHME3 cells decreased TRAF3 both at the mRNA and the protein level. Recovery of TRAF3 protein expression after transfection of anti-miR-32 and the results of the luciferase reporter assay provided direct evidence of TRAF3 regulation by miR-32. We found that the regulation of interferon regulatory factor 3 (IRF3 and IRF7 is controlled by cellular levels of TRAF3 protein in microglial cells, as after overexpression of miR-32 and application of anti-miR-32, expression levels of IRF3 and IRF7 were inversely regulated by expression levels of TRAF3. Thus, our results suggest a novel miRNA mediated mechanism for regulation of TRAF3 in human microglial cells exposed to HIV-1 Tat C protein. These results may help to elucidate the detrimental neuroinflammatory consequences of HIV-1 Tat C protein in bystander fashion. Conclusion HIV-1 Tat protein can modulate TRAF3 expression through

  17. Correlates of HIV-1 genital shedding in Tanzanian women.

    Clare Tanton

    2011-03-01

    Full Text Available Understanding the correlates of HIV shedding is important to inform strategies to reduce HIV infectiousness. We examined correlates of genital HIV-1 RNA in women who were seropositive for both herpes simplex virus (HSV-2 and HIV-1 and who were enrolled in a randomised controlled trial of HSV suppressive therapy (aciclovir 400 mg b.i.d vs. placebo in Tanzania.Samples, including a cervico-vaginal lavage, were collected and tested for genital HIV-1 and HSV and reproductive tract infections (RTIs at randomisation and 6, 12 and 24 months follow-up. Data from all women at randomisation and women in the placebo arm during follow-up were analysed using generalised estimating equations to determine the correlates of cervico-vaginal HIV-1 RNA detection and load.Cervico-vaginal HIV-1 RNA was detected at 52.0% of 971 visits among 482 women, and was independently associated with plasma viral load, presence of genital ulcers, pregnancy, bloody cervical or vaginal discharge, abnormal vaginal discharge, cervical ectopy, Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, an intermediate bacterial vaginosis score and HSV DNA detection. Similar factors were associated with genital HIV-1 RNA load.RTIs were associated with increased presence and quantity of genital HIV-1 RNA in this population. These results highlight the importance of integrating effective RTI treatment into HIV care services.

  18. Markovian negentropies in bioinformatics. 1. A picture of footprints after the interaction of the HIV-1 Psi-RNA packaging region with drugs.

    Díaz, Humberto González; de Armas, Ronal Ramos; Molina, Reinaldo

    2003-11-01

    Many experts worldwide have highlighted the potential of RNA molecules as drug targets for the chemotherapeutic treatment of a range of diseases. In particular, the molecular pockets of RNA in the HIV-1 packaging region have been postulated as promising sites for antiviral action. The discovery of simpler methods to accurately represent drug-RNA interactions could therefore become an interesting and rapid way to generate models that are complementary to docking-based systems. The entropies of a vibrational Markov chain have been introduced here as physically meaningful descriptors for the local drug-nucleic acid complexes. A study of the interaction of the antibiotic Paromomycin with the packaging region of the RNA present in type-1 HIV has been carried out as an illustrative example of this approach. A linear discriminant function gave rise to excellent discrimination among 80.13% of interacting/non-interacting sites. More specifically, the model classified 36/45 nucleotides (80.0%) that interacted with paromomycin and, in addition, 85/106 (80.2%) footprinted (non-interacting) sites from the RNA viral sequence were recognized. The model showed a high Matthews' regression coefficient (C = 0.64). The Jackknife method was also used to assess the stability and predictability of the model by leaving out adenines, C, G, or U. Matthews' coefficients and overall accuracies for these approaches were between 0.55 and 0.68 and 75.8 and 82.7, respectively. On the other hand, a linear regression model predicted the local binding affinity constants between a specific nucleotide and the aforementioned antibiotic (R2 = 0.83,Q2 = 0.825). These kinds of models may play an important role either in the discovery of new anti-HIV compounds or in the elucidation of their mode of action. On request from the corresponding author (humbertogd@cbq.uclv.edu.cu or humbertogd@navegalia.com).

  19. HIV-Infected Ugandan Women on Antiretroviral Therapy Maintain HIV-1 RNA Suppression Across Periconception, Pregnancy, and Postpartum Periods.

    Matthews, Lynn T; Ribaudo, Heather B; Kaida, Angela; Bennett, Kara; Musinguzi, Nicholas; Siedner, Mark J; Kabakyenga, Jerome; Hunt, Peter W; Martin, Jeffrey N; Boum, Yap; Haberer, Jessica E; Bangsberg, David R

    2016-04-01

    HIV-infected women risk sexual and perinatal HIV transmission during conception, pregnancy, childbirth, and breastfeeding. We compared HIV-1 RNA suppression and medication adherence across periconception, pregnancy, and postpartum periods, among women on antiretroviral therapy (ART) in Uganda. We analyzed data from women in a prospective cohort study, aged 18-49 years, enrolled at ART initiation and with ≥1 pregnancy between 2005 and 2011. Participants were seen quarterly. The primary exposure of interest was pregnancy period, including periconception (3 quarters before pregnancy), pregnancy, postpartum (6 months after pregnancy outcome), or nonpregnancy related. Regression models using generalized estimating equations compared the likelihood of HIV-1 RNA ≤400 copies per milliliter, pregnancy, and 89% of postpartum visits, and was more likely during periconception (adjusted odds ratio, 2.15) compared with nonpregnant periods. Average ART adherence was 90% [interquartile range (IQR), 70%-98%], 93% (IQR, 82%-98%), 92% (IQR, 72%-98%), and 88% (IQR, 63%-97%) during nonpregnant, periconception, pregnant, and postpartum periods, respectively. Average adherence pregnancy were virologically suppressed at most visits, with an increased likelihood of suppression and high adherence during periconception follow-up. Increased frequency of 72-hour gaps suggests a need for increased adherence support during postpartum periods.

  20. Morphogenesis of the infectious HIV-1 virion

    Jun-Ichi eSakuragi

    2011-12-01

    Full Text Available The virion of HIV-1 is spherical and viral glycoprotein spikes (gp120, gp41 protrude from its envelope. The characteristic cone-shaped core exists within the virion, caging the ribonucleoprotein (RNP complex, which is comprised of viral RNA, nucleocapsid (NC and viral enzymes. The HIV-1 virion is budded and released from the infected cell as an immature donut-shaped particle. During or immediately after release, viral protease (PR is activated and subsequently processes the viral structural protein Gag. Through this maturation process, virions acquire infectivity, but its mechanism and transition of morphology largely remain unclear. Recent technological advances in experimental devices and techniques have made it possible to closely dissect the viral production site on the cell, the exterior – or even the interior – of an individual virion, and many new aspects on virion morphology and maturation. In this manuscript, I review the morphogenesis of HIV-1 virions. I focus on several studies, including some of our recent findings, which examined virion formation and/or maturation processes. The story of novel compound, which inhibits virion maturation, and the importance of maturation research are also discussed.

  1. Decrease in Seminal HIV-1 RNA Load After Praziquantel Treatment of Urogenital Schistosomiasis Coinfection in HIV-Positive Men—An Observational Study

    Midzi, Nicholas; Mduluza, Takafira; Mudenge, Boniface

    2017-01-01

    BACKGROUND: Urogenital schistosomiasis due to Schistosoma hematobium infection is hypothesized to cause increased HIV-1 RNA shedding in semen in HIV co-infected men as result of chronic egg-induced inflammation in the prostate and the seminal vesicles. The effect of treatment with the antihelmint...... targeting praziquantel as a supplementary preventive measure of sexual transmission of HIV-1 in S. haematobium endemic areas in sub-Saharan Africa....

  2. HIV-1 in the RNA world: Transcription regulation, miRNAs and antiviral RNAs

    Harwig, A.

    2015-01-01

    All organisms, from bacteria to human, use three biological molecules that each serve critical functions in the expression of genes in the cell. These are deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins. RNA is synthesized from DNA in a process called transcription. RNA differs from

  3. Prognosis of patients treated with cART from 36 months after initiation, according to current and previous CD4 cell count and plasma HIV-1 RNA measurements

    Lanoy, Emilie; May, Margaret; Mocroft, Amanda; Phillips, Andrew; Justice, Amy; Chene, Genevieve; Furrer, Hansjakob; Sterling, Timothy; D'Arminio Monforte, Antonella; Force, Lluis; Gill, John; Harris, Ross; Hogg, Robert S.; Rockstroh, Juergen; Saag, Mike; Khaykin, Pavel; de Wolf, Frank; Sterne, Jonathan A. C.; Costagliola, Dominique

    2009-01-01

    Objectives: CD4 cell count and plasma viral load are well known predictors of AIDS and mortality in HIV-1-infected patients treated with combination antiretroviral therapy (cART). This study investigated, in patients treated for at least 3 years, the respective prognostic importance of values

  4. Evaluation of the analytical performance of the new Abbott RealTime RT-PCRs for the quantitative detection of HCV and HIV-1 RNA

    Schutten, Martin; Fries, E; Burghoorn-Maas, C; Niesters, H G M

    2007-01-01

    BACKGROUND: Despite FDA approval and CE marking of commercial tests, manufacturer independent testing of technical aspects is important. OBJECTIVES: To evaluate the analytical performance of the new Abbott RealTime HCV and HIV-1 viral load tests. STUDY DESIGN: Sensitivity, specificity and

  5. Viral RNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis

    Kolakofsky, Daniel; Le Mercier, Philippe; Iseni, Frederic; Garcin, Dominique

    2004-01-01

    mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in that the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template

  6. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging.

    Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming; Eliceiri, Kevin W; Ahlquist, Paul; Sherer, Nathan M

    2017-02-01

    Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. © 2017 Pocock et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-01-01

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics

  8. Pooled HIV-1 viral load testing using dried blood spots to reduce the cost of monitoring antiretroviral treatment in a resource-limited setting.

    Pannus, Pieter; Fajardo, Emmanuel; Metcalf, Carol; Coulborn, Rebecca M; Durán, Laura T; Bygrave, Helen; Ellman, Tom; Garone, Daniela; Murowa, Michael; Mwenda, Reuben; Reid, Tony; Preiser, Wolfgang

    2013-10-01

    Rollout of routine HIV-1 viral load monitoring is hampered by high costs and logistical difficulties associated with sample collection and transport. New strategies are needed to overcome these constraints. Dried blood spots from finger pricks have been shown to be more practical than the use of plasma specimens, and pooling strategies using plasma specimens have been demonstrated to be an efficient method to reduce costs. This study found that combination of finger-prick dried blood spots and a pooling strategy is a feasible and efficient option to reduce costs, while maintaining accuracy in the context of a district hospital in Malawi.

  9. In silico analysis of HIV-1 Env-gp120 reveals structural bases for viral adaptation in growth-restrictive cells

    Masaru eYokoyama

    2016-02-01

    Full Text Available Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1 envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.

  10. Factors associated with mother-to-child transmission of HIV-1 despite a maternal viral load EPF-ANRS CO1).

    Tubiana, Roland; Le Chenadec, Jerome; Rouzioux, Christine; Mandelbrot, Laurent; Hamrene, Karima; Dollfus, Catherine; Faye, Albert; Delaugerre, Constance; Blanche, Stephane; Warszawski, Josiane

    2010-02-15

    The rate of mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) type 1 is as low as 0.5% in non-breast-feeding mothers who delivered at term while receiving antiretroviral therapy with a plasma viral load <500 copies/mL. This situation accounted for 20% of the infected children born during the period 1997-2006 in the French Perinatal Cohort. We aimed to identify factors associated with such residual transmission risk. We performed a case-control study nested in the aforementioned subpopulation of the French Perinatal Cohort. Nineteen case patients (transmitters) and 60 control subjects (nontransmitters) were included. Case patients and control subjects did not differ by geographical origin, gestational age at HIV diagnosis, type of antiretroviral therapy received, or elective Cesarean delivery. Case patients were less often receiving treatment at the time that they conceived pregnancy than control subjects (16% vs 45%; P=.017). A lower proportion of case patients had a viral load <500 copies/mL, compared with control subjects, at 14 weeks (0% vs 38.1%; P=.02), 28 weeks (7.7% vs 62.1%; P=.005), and 32 weeks: (21.4% vs 71.1%; P=.004). The difference remained significant when we restricted analysis to the 10 of 16 intrapartum transmission cases. In a multivariate analysis at 30+/-4 weeks adjusted for viral load, CD4(+) T cell count, and time at antiretroviral therapy initiation, viral load was the only factor independently associated with MTCT of HIV (adjusted odds ratio, 23.2; 95% confidence interval, 3.5-553; P<.001). Early and sustained control of viral load is associated with a decreasing residual risk of MTCT of HIV-1. Guidelines should take into account not only CD4(+) T cell count and risk of preterm delivery, but also baseline HIV-1 load for deciding when to start antiretroviral therapy during pregnancy.

  11. CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection

    Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967

  12. Paraconsistents artificial neural networks applied to the study of mutational patterns of the F subtype of the viral strains of HIV-1 to antiretroviral therapy

    PAULO C.C. DOS SANTOS

    2016-03-01

    Full Text Available ABSTRACT The high variability of HIV-1 as well as the lack of efficient repair mechanisms during the stages of viral replication, contribute to the rapid emergence of HIV-1 strains resistant to antiretroviral drugs. The selective pressure exerted by the drug leads to fixation of mutations capable of imparting varying degrees of resistance. The presence of these mutations is one of the most important factors in the failure of therapeutic response to medications. Thus, it is of critical to understand the resistance patterns and mechanisms associated with them, allowing the choice of an appropriate therapeutic scheme, which considers the frequency, and other characteristics of mutations. Utilizing Paraconsistents Artificial Neural Networks, seated in Paraconsistent Annotated Logic Et which has the capability of measuring uncertainties and inconsistencies, we have achieved levels of agreement above 90% when compared to the methodology proposed with the current methodology used to classify HIV-1 subtypes. The results demonstrate that Paraconsistents Artificial Neural Networks can serve as a promising tool of analysis.

  13. DNA/MVA Vaccination of HIV-1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re-Emergent Virus.

    Melanie Thompson

    Full Text Available GV-TH-01, a Phase 1 open-label trial of a DNA prime—Modified Vaccinia Ankara (MVA boost vaccine (GOVX-B11, was undertaken in HIV infected participants on antiretroviral treatment (ART to evaluate safety and vaccine-elicited T cell responses, and explore the ability of elicited CD8+ T cells to control viral rebound during analytical treatment interruption (TI. Nine men who began antiretroviral therapy (ART within 18 months of seroconversion and had sustained plasma HIV-1 RNA <50 copies/mL for at least 6 months were enrolled. Median age was 38 years, median pre-ART HIV-1 RNA was 140,000 copies/ml and mean baseline CD4 count was 755/μl. Two DNA, followed by 2 MVA, inoculations were given 8 weeks apart. Eight subjects completed all vaccinations and TI. Clinical and laboratory adverse events were generally mild, with no serious or grade 4 events. Only reactogenicity events were considered related to study drug. No treatment emergent viral resistance was seen. The vaccinations did not reduce viral reservoirs and virus re-emerged in all participants during TI, with a median time to re-emergence of 4 weeks. Eight of 9 participants had CD8+ T cells that could be stimulated by vaccine-matched Gag peptides prior to vaccination. Vaccinations boosted these responses as well as eliciting previously undetected CD8+ responses. Elicited T cells did not display signs of exhaustion. During TI, temporal patterns of viral re-emergence and Gag-specific CD8+ T cell expansion suggested that vaccine-specific CD8+ T cells had been stimulated by re-emergent virus in only 2 of 8 participants. In these 2, transient decreases in viremia were associated with Gag selection in known CD8+ T cell epitopes. We hypothesize that escape mutations, already archived in the viral reservoir, plus a poor ability of CD8+ T cells to traffic to and control virus at sites of re-emergence, limited the therapeutic efficacy of the DNA/MVA vaccine.clinicaltrials.gov NCT01378156.

  14. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy

    Dobson Wendy

    2011-06-01

    Full Text Available Abstract Background RNA processing plays a critical role in the replication of HIV-1, regulated in part through the action of host SR proteins. To explore the impact of modulating SR protein activity on virus replication, the effect of increasing or inhibiting the activity of the Cdc2-like kinase (CLK family of SR protein kinases on HIV-1 expression and RNA processing was examined. Results Despite their high homology, increasing individual CLK expression had distinct effects on HIV-1, CLK1 enhancing Gag production while CLK2 inhibited the virus. Parallel studies on the anti-HIV-1 activity of CLK inhibitors revealed a similar discrepant effect on HIV-1 expression. TG003, an inhibitor of CLK1, 2 and 4, had no effect on viral Gag synthesis while chlorhexidine, a CLK2, 3 and 4 inhibitor, blocked virus production. Chlorhexidine treatment altered viral RNA processing, decreasing levels of unspliced and single spliced viral RNAs, and reduced Rev accumulation. Subsequent experiments in the context of HIV-1 replication in PBMCs confirmed the capacity of chlorhexidine to suppress virus replication. Conclusions Together, these findings establish that HIV-1 RNA processing can be targeted to suppress virus replication as demonstrated by manipulating individual CLK function and identified chlorhexidine as a lead compound in the development of novel anti-viral therapies.

  15. siRNA as an alternative therapy against viral infections

    Hana A. Pawestri

    2012-07-01

    Full Text Available siRNA (small interfering ribonucleic acid adalah sebuah metode yang dapat digunakan untuk mengatasi infeksi virus yang prinsip kerjanya berdasarkan metode komplementer dsRNA (double stranded RNA pada RNA virus sehingga menyebabkan kegagalan proses transkripsi (silencing.  Untuk lebih memahami bagaimana proses kerja dan ulasan penelitian siRNA yang terkini, di dalam tulisan ini ditinjau siRNA sebagai metoda yang dikembangkan untuk mengatasi infeksi dan meneliti efeknya pada replikasi beberapa virus seperti Hepatitis C, Influenza, Polio, dan HIV. Kami menemukan bahwa urutan basa nukleotida dari target siRNA sangat penting. Hal tersebut harus homolog dengan target RNA virus dan tidak menganggu RNA sel inang. Untuk mengurangi kegagalan terapi siRNA oleh adanya mutasi, digunakan beberapa siRNA yang sekaligus menjadi target RNA virus yang berbeda. Namun demikian, terapi siRNA masih menghadapi beberapa kesulitan seperti pengiriman (transfer khusus ke jaringan yang terinfeksi dan perlindungan siRNA dari perusakan oleh nuklease. Berdasarkan beberapa penelitian yang telah dilakukan, siRNA dapat digunakan sebagai alternatif untuk mengobati infeksi yang disebabkan oleh virus. Terapi tersebut direkomendasikan untuk dilakukan uji klinis dengan memperhatikan beberapa aspek seperti desain siRNA dan mekanisme transfer. (Health Science Indones 2010; 1: 58 - 65 Kata kunci: siRNA, infeksi virus, target virus, alternatif terapi Abstract SiRNA is a promising method to deal with viral infections. The principle of siRNA is based on the complementarily of (synthetic dsRNA to an RNA virus which, in consequence, will be silenced. Many studies are currently examining the effects of siRNA on replication of diverse virus types like Hepatitis C, polio and HIV. The choice of the siRNA target sequence is crucial. It has to be very homologous to the target RNA, but it cannot target RNA of the host cell. To reduce the possibility for the virus to escape from the siRNA therapy by

  16. Avaliação de ensaio molecular para determinação de carga viral em indivíduos sorologicamente negativos para o HIV-1 Evaluation of a molecular assay for determining viral load on HIV-1 antibody negative patients

    José Moreira Pereira

    2002-01-01

    Full Text Available O teste de carga viral foi concebido para acompanhar a evolução e o tratamento do paciente com diagnóstico confirmado de HIV-1. Contudo, sua especificidade diagnóstica não foi ainda avaliada em pessoas que apresentam um teste sorológico negativo. Mesmo assim, ele tem sido erroneamente utilizado para o diagnóstico da infecção primária pelo HIV-1. Este trabalho relata quatro pacientes em que a carga viral plasmática NucliSens (Organon Teknika foi repetidamente positiva na ausência de anticorpos para HIV e chama atenção para o fato de que a carga viral abaixo de 10 mil cópias/ml é de difícil interpretação, como tem sido assinalado em numerosos artigos, em que foram utilizadas outras metodologias.The plasma viral load test for HIV-1,a exquisitely high sensitive assay, were neither developed nor evaluated for the diagnosis of primary HIV infection; therefore, their diagnostic specificity is not well delineated when applied to persons who are negative for HIV antibody. This article reported four cases of false positive results obtained by using NucliSens viral load assay (Organon Teknika and emphasize the importance that low positive plasma viral load (< 10 000 copies/ml may be difficult to interpret how has been assinalated in numerous articles in the medical literature, using other methodologies.

  17. HLA-Driven Convergence of HIV-1 Viral Subtypes B and F Toward the Adaptation to Immune Responses in Human Populations

    Dilernia, Dario Alberto; Jones, Leandro; Rodriguez, Sabrina; Turk, Gabriela; Rubio, Andrea E.; Pampuro, Sandra; Gomez-Carrillo, Manuel; Bautista, Christian; Deluchi, Gabriel; Benetucci, Jorge; Lasala, María Beatriz; Lourtau, Leonardo; Losso, Marcelo Horacio; Perez, Héctor; Cahn, Pedro; Salomón, Horacio

    2008-01-01

    Background Cytotoxic T-Lymphocyte (CTL) response drives the evolution of HIV-1 at a host-level by selecting HLA-restricted escape mutations. Dissecting the dynamics of these escape mutations at a population-level would help to understand how HLA-mediated selection drives the evolution of HIV-1. Methodology/Principal Findings We undertook a study of the dynamics of HIV-1 CTL-escape mutations by analyzing through statistical approaches and phylogenetic methods the viral gene gag sequenced in plasma samples collected between the years 1987 and 2006 from 302 drug-naïve HIV-positive patients. By applying logistic regression models and after performing correction for multiple test, we identified 22 potential CTL-escape mutations (p-value<0.05; q-value<0.2); 10 of these associations were confirmed in samples biologically independent by a Bayesian Markov Chain Monte-Carlo method. Analyzing their prevalence back in time we found that escape mutations that are the consensus residue in samples collected after 2003 have actually significantly increased in time in one of either B or F subtype until becoming the most frequent residue, while dominating the other viral subtype. Their estimated prevalence in the viral subtype they did not dominate was lower than 30% for the majority of samples collected at the end of the 80's. In addition, when screening the entire viral region, we found that the 75% of positions significantly changing in time (p<0.05) were located within known CTL epitopes. Conclusions Across HIV Gag protein, the rise of polymorphisms from independent origin during the last twenty years of epidemic in our setting was related to an association with an HLA allele. The fact that these mutations accumulated in one of either B or F subtypes have also dominated the other subtype shows how this selection might be causing a convergence of viral subtypes to variants which are more likely to evade the immune response of the population where they circulate. PMID:18941505

  18. Viral tRNA Mimicry from a Biocommunicative Perspective

    Ascensión Ariza-Mateos

    2017-12-01

    Full Text Available RNA viruses have very small genomes which limits the functions they can encode. One of the strategies employed by these viruses is to mimic key factors of the host cell so they can take advantage of the interactions and activities these factors typically participate in. The viral RNA genome itself was first observed to mimic cellular tRNA over 40 years ago. Since then researchers have confirmed that distinct families of RNA viruses are accessible to a battery of cellular factors involved in tRNA-related activities. Recently, potential tRNA-like structures have been detected within the sequences of a 100 mRNAs taken from human cells, one of these being the host defense interferon-alpha mRNA; these are then additional to the examples found in bacterial and yeast mRNAs. The mimetic relationship between tRNA, cellular mRNA, and viral RNA is the central focus of two considerations described below. These are subsequently used as a preface for a final hypothesis drawing on concepts relating to mimicry from the social sciences and humanities, such as power relations and creativity. Firstly, the presence of tRNA-like structures in mRNAs indicates that the viral tRNA-like signal could be mimicking tRNA-like elements that are contextualized by the specific carrier mRNAs, rather than, or in addition to, the tRNA itself, which would significantly increase the number of potential semiotic relations mediated by the viral signals. Secondly, and in particular, mimicking a host defense mRNA could be considered a potential new viral strategy for survival. Finally, we propose that mRNA’s mimicry of tRNA could be indicative of an ancestral intracellular conflict in which species of mRNAs invaded the cell, but from within. As the meaning of the mimetic signal depends on the context, in this case, the conflict that arises when the viral signal enters the cell can change the meaning of the mRNAs’ internal tRNA-like signals, from their current significance to that

  19. Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity

    Maarseveen van, N. M.; Andersson, Dan; Lepšík, Martin; Fun, A.; Schipper, P. J.; Jong de, D.; Boucher, Ch. A. B.; Nijhuis, M.

    2012-01-01

    Roč. 9, č. 29 (2012), s. 1-7 ISSN 1742-4690 EU Projects: European Commission(XE) 37693 - HIV PI RESISTANCE Grant - others:Dutch AIDS Fund(XE) 2006028; (NWO) VIDI(XE) 91796349 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV-1 * protease * Gag * resistance * cleavage Subject RIV: CE - Biochemistry Impact factor: 5.657, year: 2012

  20. Potyviral VPg enhances viral RNA Translation and inhibits reporter mRNA translation in planta.

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I; Mäkinen, Kristiina

    2011-09-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.

  1. Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta▿

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I.; Mäkinen, Kristiina

    2011-01-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5′ untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation. PMID:21697470

  2. Viral control in chronic HIV-1 subtype C infection is associated with enrichment of p24 IgG1 with Fc effector activity.

    Chung, Amy; Makuba, Jenniffer M; Ndlovu, Bongiwe; Licht, Anna; Robinson, Hannah; Ramlakhan, Yathisha; Ghebremichael, Musie; Reddy, Tarylee; Goulder, Philip; Walker, Bruce; Ndung'u, Thumbi; Alter, Galit

    2018-04-03

    Postinfection HIV viral control and immune correlates analysis of the RV144 vaccine trial indicate a potentially critical role for Fc receptor-mediated antibody functions. However, the influence of functional antibodies in clade C infection is largely unknown. Plasma samples from 361 chronic subtype C-infected, antiretroviral therapy-naïve participants were tested for their HIV-specific isotype and subclass distributions, along with their Fc receptor-mediated functional potential. Total IgG, IgG subclasses and IgA binding to p24 clade B/C and gp120 consensus C proteins were assayed by multiplex. Antibody-dependent uptake of antigen-coated beads and Fc receptor-mediated natural killer cell degranulation were evaluated as surrogates for antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC), respectively. p24 IgG1 was the only subclass associated with viral control (P = 0.01), with higher p24-specific ADCP and ADCC responses detected in individuals with high p24 IgG1. Although p24 IgG1 levels were enriched in patients with elevated Gag-specific T-cell responses, these levels remained an independent predictor of low-viral loads (P = 0.04) and high CD4 counts (P = 0.004) after adjusting for Gag-specific T-cell responses and for protective HLA class I alleles. p24 IgG1 levels independently predict viral control in HIV-1 clade C infection. Whether these responses contribute to direct antiviral control via the recruited killing of infected cells via the innate immune system or simply mark a qualitatively superior immune response to HIV, is uncertain, but highlights the role of p24-specific antibodies in control of clade C HIV-1 infection.

  3. A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes.

    Baodong Wu

    2009-03-01

    Full Text Available Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA-RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA-RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA-based interaction spanning approximately 3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes.

  4. The conserved residue Arg46 in the N-terminal heptad repeat domain of HIV-1 gp41 is critical for viral fusion and entry.

    Xiaoyi Wang

    Full Text Available During the process of HIV-1 fusion with the target cell, the N-terminal heptad repeat (NHR of gp41 interacts with the C-terminal heptad repeat (CHR to form fusogenic six-helix bundle (6-HB core. We previously identified a crucial residue for 6-HB formation and virus entry--Lys63 (K63 in the C-terminal region of NHR (aa 54-70, which forms a hydrophobic cavity. It can form an important salt bridge with Asp121 (D121 in gp41 CHR. Here, we found another important conserved residue for virus fusion and entry, Arg46 (R46, in the N-terminal region of NHR (aa 35-53, which forms a hydrogen bond with a polar residue, Asn43 (N43, in NHR, as a part of the hydrogen-bond network. R46 can also form a salt bridge with a negatively charged residue, Glu137 (E137, in gp41 CHR. Substitution of R46 with the hydrophobic residue Ala (R46A or the negatively charged residue Glu (R46E resulted in disruption of the hydrogen bond network, breakage of the salt bridge and reduction of 6-HB's stability, leading to impairment of viral fusion and decreased inhibition of N36, an NHR peptide. Similarly, CHR peptide C34 with substitution of E137 for Ala (E137A or Arg (E137R also exhibited reduced inhibitory activity against HIV-1 infection and HIV-1-mediated cell-to-cell fusion. These results suggest that the positively charged residue R46 and its hydrogen bond network, together with the salt bridge between R46 and E137, are important for viral fusion and entry and may therefore serve as a target for designing novel HIV fusion/entry inhibitors.

  5. Comparison of the RealTime HIV-1, COBAS TaqMan 48 v1.0, Easy Q v1.2, and Versant v3.0 assays for Determination of HIV-1 Viral Loads in a Cohort of Canadian Patients with Diverse HIV Subtype Infections▿

    Church, Deirdre; Gregson, Daniel; Lloyd, Tracie; Klein, Marina; Beckthold, Brenda; Laupland, Kevin; Gill, M. John

    2010-01-01

    HIV clinics in Canada provide care to an increasing number of patients born outside of Canada with HIV-1 non-B subtype infections. Because the Easy Q HIV-1 v1.2 assay (EQ; bioMérieux) failed to detect some non-B subtype infections, a multiassay HIV-1 viral load (VL) study was conducted with patients with diverse HIV subtype infections. Patients were enrolled from the Southern Alberta HIV Clinic (SAC), Calgary, Alberta, Canada (n = 349) and the McGill HIV Clinic (MHC), Montreal, Quebec, Canada...

  6. Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA.

    Neeleman, L; Olsthoorn, R C; Linthorst, H J; Bol, J F

    2001-12-04

    On entering a host cell, positive-strand RNA virus genomes have to serve as messenger for the translation of viral proteins. Efficient translation of cellular messengers requires interactions between initiation factors bound to the 5'-cap structure and the poly(A) binding protein bound to the 3'-poly(A) tail. Initiation of infection with the tripartite RNA genomes of alfalfa mosaic virus (AMV) and viruses from the genus Ilarvirus requires binding of a few molecules of coat protein (CP) to the 3' end of the nonpolyadenylated viral RNAs. Moreover, infection with the genomic RNAs can be initiated by addition of the subgenomic messenger for CP, RNA 4. We report here that extension of the AMV RNAs with a poly(A) tail of 40 to 80 A-residues permitted initiation of infection independently of CP or RNA 4 in the inoculum. Specifically, polyadenylation of RNA 1 relieved an apparent bottleneck in the translation of the viral RNAs. Translation of RNA 4 in plant protoplasts was autocatalytically stimulated by its encoded CP. Mutations that interfered with CP binding to the 3' end of viral RNAs reduced translation of RNA 4 to undetectable levels. Possibly, CP of AMV and ilarviruses stimulates translation of viral RNAs by acting as a functional analogue of poly(A) binding protein or other cellular proteins.

  7. Acyclovir and Transmission of HIV-1 from Persons Infected with HIV-1 and HSV-2

    Celum, Connie; Wald, Anna; Lingappa, Jairam R.; Magaret, Amalia S.; Wang, Richard S.; Mugo, Nelly; Mujugira, Andrew; Baeten, Jared M.; Mullins, James I.; Hughes, James P.; Bukusi, Elizabeth A.; Cohen, Craig R.; Katabira, Elly; Ronald, Allan; Kiarie, James; Farquhar, Carey; Stewart, Grace John; Makhema, Joseph; Essex, Myron; Were, Edwin; Fife, Kenneth H.; de Bruyn, Guy; Gray, Glenda E.; McIntyre, James A.; Manongi, Rachel; Kapiga, Saidi; Coetzee, David; Allen, Susan; Inambao, Mubiana; Kayitenkore, Kayitesi; Karita, Etienne; Kanweka, William; Delany, Sinead; Rees, Helen; Vwalika, Bellington; Stevens, Wendy; Campbell, Mary S.; Thomas, Katherine K.; Coombs, Robert W.; Morrow, Rhoda; Whittington, William L.H.; McElrath, M. Juliana; Barnes, Linda; Ridzon, Renee; Corey, Lawrence

    2010-01-01

    BACKGROUND Most persons who are infected with human immunodeficiency virus type 1 (HIV-1) are also infected with herpes simplex virus type 2 (HSV-2), which is frequently reactivated and is associated with increased plasma and genital levels of HIV-1. Therapy to suppress HSV-2 reduces the frequency of reactivation of HSV-2 as well as HIV-1 levels, suggesting that suppression of HSV-2 may reduce the risk of transmission of HIV-1. METHODS We conducted a randomized, placebo-controlled trial of suppressive therapy for HSV-2 (acyclovir at a dose of 400 mg orally twice daily) in couples in which only one of the partners was seropositive for HIV-1 (CD4 count, ≥250 cells per cubic millimeter) and that partner was also infected with HSV-2 and was not taking antiretroviral therapy at the time of enrollment. The primary end point was transmission of HIV-1 to the partner who was not initially infected with HIV-1; linkage of transmissions was assessed by means of genetic sequencing of viruses. RESULTS A total of 3408 couples were enrolled at 14 sites in Africa. Of the partners who were infected with HIV-1, 68% were women, and the baseline median CD4 count was 462 cells per cubic millimeter. Of 132 HIV-1 seroconversions that occurred after randomization (an incidence of 2.7 per 100 person-years), 84 were linked within couples by viral sequencing: 41 in the acyclovir group and 43 in the placebo group (hazard ratio with acyclovir, 0.92, 95% confidence interval [CI], 0.60 to 1.41; P = 0.69). Suppression with acyclovir reduced the mean plasma concentration of HIV-1 by 0.25 log10 copies per milliliter (95% CI, 0.22 to 0.29; P<0.001) and the occurrence of HSV-2–positive genital ulcers by 73% (risk ratio, 0.27; 95% CI, 0.20 to 0.36; P<0.001). A total of 92% of the partners infected with HIV-1 and 84% of the partners not infected with HIV-1 remained in the study for 24 months. The level of adherence to the dispensed study drug was 96%. No serious adverse events related to acyclovir

  8. Dynamics of breast milk HIV-1 RNA with unilateral mastitis or abscess.

    Semrau, Katherine; Kuhn, Louise; Brooks, Daniel R; Cabral, Howard; Sinkala, Moses; Kankasa, Chipepo; Thea, Donald M; Aldrovandi, Grace M

    2013-03-01

    Mastitis and abscess in HIV-infected women increase the risk of breastfeeding transmission of HIV. Guidelines encourage women to stop breastfeeding on the affected breast and feed on the contralateral breast. However, impact of breast pathology on breast milk HIV dynamics is unknown. HIV RNA was quantified in 211 breast milk samples collected before, during, and after a clinical mastitis or an abscess diagnosis from 38 HIV-infected women participating in a Zambian breastfeeding study. HIV RNA quantity was compared between affected and unaffected breasts over time using generalized estimating equation models. A sample of 115 women without breast pathology was selected as a control group. In the affected breast, breast milk HIV RNA quantity increased from the pre- to during-pathology period by log(10) 0.45 copies per milliliter [95% confidence interval (CI): 0.16 to 0.74], and after symptom resolution, HIV RNA levels were no different from prepathology levels (log10 -0.04 copies per milliliter 95% CI: -0.33 to 0.25). In the contralateral, unaffected breast, HIV RNA quantity did not significantly increase (log(10) 0.15 copies per milliliter, 95% CI: -0.41 to 0.10). Increase was more marked in women with abscess or with a greater number of mastitis symptoms. HIV RNA was not significantly different between affected and unaffected women, except at the time of diagnosis. Breast milk HIV RNA increased modestly in the affected breast with unilateral mastitis or abscess and returned to prepathology levels with symptom resolution. Contralateral HIV RNA was not affected. Results support guidelines encouraging feeding from the contralateral breast to minimize the risk of HIV transmission associated with unilateral breast pathology.

  9. CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection.

    Yin, Lijuan; Hu, Siqi; Mei, Shan; Sun, Hong; Xu, Fengwen; Li, Jian; Zhu, Weijun; Liu, Xiaoman; Zhao, Fei; Zhang, Di; Cen, Shan; Liang, Chen; Guo, Fei

    2018-05-09

    CRISPR/Cas9 is an adaptive immune system where bacteria and archaea have evolved to resist the invading viruses and plasmid DNA by creating site-specific double-strand breaks in DNA. This study tested this gene editing system in inhibiting human immunodeficiency virus type 1 (HIV-1) infection by targeting the viral long terminal repeat and the gene coding sequences. Strong inhibition of HIV-1 infection by Cas9/gRNA was observed, which resulted not only from insertions and deletions (indels) that were introduced into viral DNA due to Cas9 cleavage, but also from the marked decrease in the levels of the late viral DNA products and the integrated viral DNA. This latter defect might have reflected the degradation of viral DNA that has not been immediately repaired after Cas9 cleavage. It was further observed that Cas9, when solely located in the cytoplasm, inhibits HIV-1 as strongly as the nuclear Cas9, except that the cytoplasmic Cas9 does not act on the integrated HIV-1 DNA and thus cannot be used to excise the latent provirus. Together, the results suggest that Cas9/gRNA is able to target and edit HIV-1 DNA both in the cytoplasm and in the nucleus. The inhibitory effect of Cas9 on HIV-1 is attributed to both the indels in viral DNA and the reduction in the levels of viral DNA.

  10. Intracellular Detection of Viral Transcription and Replication Using RNA FISH

    2016-05-26

    Chapter 14. Intracellular detection of viral transcription and replication using RNA FISH i. Summary/Abstract Many hemorrhagic fever viruses...only allow entirely new investigations into the replication of these viruses, but also how this method can be applied to any virus with a known...localization, TurboFISH, hemorrhagic fever virus replication 1. Introduction RNA FISH was developed as a method to visualize cellular RNA by binding a

  11. NFAT5 regulates HIV-1 in primary monocytes via a highly conserved long terminal repeat site.

    Shahin Ranjbar

    2006-12-01

    Full Text Available To replicate, HIV-1 capitalizes on endogenous cellular activation pathways resulting in recruitment of key host transcription factors to its viral enhancer. RNA interference has been a powerful tool for blocking key checkpoints in HIV-1 entry into cells. Here we apply RNA interference to HIV-1 transcription in primary macrophages, a major reservoir of the virus, and specifically target the transcription factor NFAT5 (nuclear factor of activated T cells 5, which is the most evolutionarily divergent NFAT protein. By molecularly cloning and sequencing isolates from multiple viral subtypes, and performing DNase I footprinting, electrophoretic mobility shift, and promoter mutagenesis transfection assays, we demonstrate that NFAT5 functionally interacts with a specific enhancer binding site conserved in HIV-1, HIV-2, and multiple simian immunodeficiency viruses. Using small interfering RNA to ablate expression of endogenous NFAT5 protein, we show that the replication of three major HIV-1 viral subtypes (B, C, and E is dependent upon NFAT5 in human primary differentiated macrophages. Our results define a novel host factor-viral enhancer interaction that reveals a new regulatory role for NFAT5 and defines a functional DNA motif conserved across HIV-1 subtypes and representative simian immunodeficiency viruses. Inhibition of the NFAT5-LTR interaction may thus present a novel therapeutic target to suppress HIV-1 replication and progression of AIDS.

  12. Role of RNase MRP in viral RNA degradation and RNA recombination.

    Jaag, Hannah M; Lu, Qiasheng; Schmitt, Mark E; Nagy, Peter D

    2011-01-01

    RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.

  13. T-cell dysfunction in HIV-1-infected patients with impaired recovery of CD4 cells despite suppression of viral replication

    Erikstrup, Christian; Kronborg, Gitte; Lohse, Nicolai

    2010-01-01

    INTRODUCTION: CD4 T-cell recovery is impeded in some HIVinfected patients despite successful combination antiretroviral therapy (cART) with suppressed HIV RNA. We hypothesized that T-cell dysfunction would be increased in these patients. METHODS: In the Danish HIV Cohort Study, we identified HIV-1...... selected as controls. Six-color flow cytometry was performed on whole blood. Cytokine levels in supernatants from whole blood stimulations were assessed. RESULTS: The case and control groups comprised 18 and 35 patients, respectively. Cases were older than controls (median: 54/46 years). The fraction of CD...

  14. Anti-viral RNA silencing: do we look like plants ?

    Lecellier Charles-Henri

    2006-01-01

    Full Text Available Abstract The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(miRNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering (siRNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.

  15. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA?

    Subramanya, Sandesh; Kim, Sang-Soo; Manjunath, N; Shankar, Premlata

    2010-02-01

    Despite the clinical benefits of highly active antiretroviral therapy (HAART), the prospect of life-long antiretroviral treatment poses significant problems, which has spurred interest in developing new drugs and strategies to treat HIV infection and eliminate persistent viral reservoirs. RNAi has emerged as a therapeutic possibility for HIV. We discuss progress in overcoming hurdles to translating transient and stable RNAi enabling technologies to clinical application for HIV; covering the past 2 - 3 years. HIV inhibition can be achieved by transfection of chemically or enzymatically synthesized siRNAs or by DNA-based vector systems expressing short hairpin RNAs (shRNAs) that are processed intracellularly into siRNA. We compare these approaches, focusing on technical and safety issues that will guide the choice of strategy for clinical use. Introduction of synthetic siRNA into cells or its stable endogenous production using vector-driven shRNA have been shown to suppress HIV replication in vitro and, in some instances, in vivo. Each method has advantages and limitations in terms of ease of delivery, duration of silencing, emergence of escape mutants and potential toxicity. Both appear to have potential as future therapeutics for HIV, once the technical and safety issues of each approach are overcome.

  16. Conformations of flanking bases in HIV-1 RNA DIS kissing complexes studied by molecular dynamics

    Réblová, Kamila; Fadrná, E.; Sarzynska, J.; Kulinski, T.; Kulhánek, P.; Ennifar, E.; Koča, J.; Šponer, Jiří

    2007-01-01

    Roč. 93, č. 11 (2007), s. 3932-3949 ISSN 0006-3495 R&D Projects: GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/05/0009; GA ČR(CZ) GA203/05/0388; GA AV ČR(CZ) 1QS500040581 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * RNA * virus Subject RIV: BO - Biophysics Impact factor: 4.627, year: 2007

  17. Tumour necrosis factor-α stimulates HIV-1 replication in single-cycle infection of human term placental villi fragments in a time, viral dose and envelope dependent manner

    Barré-Sinoussi Françoise

    2006-06-01

    Full Text Available Abstract Background The placenta plays an important role in the control of in utero HIV-1 mother-to-child transmission (MTCT. Proinflammatory cytokines in the placental environment are particularly implicated in this control. We thus investigated the effect of TNF-α on HIV-1 expression in human placental tissues in vitro. Results Human placental chorionic villi fragments were infected with varying doses of luciferase reporter HIV-1 pseudotypes with the R5, X4-Env or the vesicular stomatitis virus protein G (VSV-G. Histocultures were then performed in the presence or absence of recombinant human TNF-α. Luciferase activity was measured at different time points in cell lysates or on whole fragments using ex vivo imaging systems. A significant increase in viral expression was detected in placental fragments infected with 0.2 ng of p24 antigen/fragment (P = 0.002 of VSV-G pseudotyped HIV-1 in the presence of TNF-α seen after 120 hours of culture. A time independent significant increase of viral expression by TNF-α was observed with higher doses of VSV-G pseudotyped HIV-1. When placental fragments were infected with R5-Env pseudotyped HIV-1, a low level of HIV expression at 168 hours of culture was detected for 3 of the 5 placentas tested, with no statistically significant enhancement by TNF-α. Infection with X4-Env pseudotyped HIV-1 did not lead to any detectable luciferase activity at any time point in the absence or in the presence of TNF-α. Conclusion TNF-α in the placental environment increases HIV-1 expression and could facilitate MTCT of HIV-1, particularly in an inflammatory context.

  18. The HIV-1 viral protein Tat increases glutamate and decreases GABA exocytosis from human and mouse neocortical nerve endings.

    Musante, Veronica; Summa, Maria; Neri, Elisa; Puliti, Aldamaria; Godowicz, Tomasz T; Severi, Paolo; Battaglia, Giuseppe; Raiteri, Maurizio; Pittaluga, Anna

    2010-08-01

    Human immunodeficiency virus-1 (HIV-1)-encoded transactivator of transcription (Tat) potentiated the depolarization-evoked exocytosis of [(3)H]D-aspartate ([(3)H]D-ASP) from human neocortical terminals. The metabotropic glutamate (mGlu) 1 receptor antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented this effect, whereas the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) was ineffective. Western blot analysis showed that human neocortex synaptosomes possess mGlu1 and mGlu5 receptors. Tat potentiated the K(+)-evoked release of [(3)H]D-ASP or of endogenous glutamate from mouse neocortical synaptosomes in a CPCCOEt-sensitive and MPEP-insensitive manner. Deletion of mGlu1 receptors (crv4/crv4 mice) or mGlu5 receptors (mGlu5(-/-)mouse) silenced Tat effects. Tat enhanced inositol 1,4,5-trisphosphate production in human and mouse neocortical synaptosomes, consistent with the involvement of group I mGlu receptors. Tat inhibited the K(+)-evoked release of [(3)H]gamma-aminobutyric acid ([(3)H]GABA) from human synaptosomes and that of endogenous GABA or [(3)H]GABA from mouse nerve terminals; the inhibition was insensitive to CPCCOEt or MPEP. Tat-induced effects were retained by Tat(37-72) but not by Tat(48-85). In mouse neocortical slices, Tat facilitated the K(+)- and the veratridine-induced release of [(3)H]D-ASP in a CPCCOEt-sensitive manner and was ineffective in crv4/crv4 mouse slices. These observations are relevant to the comprehension of the pathophysiological effects of Tat in central nervous system and may suggest new potential therapeutic approaches to the cure of HIV-1-associated dementia.

  19. Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection.

    Michael Huber

    2006-11-01

    Full Text Available BACKGROUND: To explore the possibility that antibody-mediated complement lysis contributes to viremia control in HIV-1 infection, we measured the activity of patient plasma in mediating complement lysis of autologous primary virus. METHODS AND FINDINGS: Sera from two groups of patients-25 with acute HIV-1 infection and 31 with chronic infection-were used in this study. We developed a novel real-time PCR-based assay strategy that allows reliable and sensitive quantification of virus lysis by complement. Plasma derived at the time of virus isolation induced complement lysis of the autologous virus isolate in the majority of patients. Overall lysis activity against the autologous virus and the heterologous primary virus strain JR-FL was higher at chronic disease stages than during the acute phase. Most strikingly, we found that plasma virus load levels during the acute but not the chronic infection phase correlated inversely with the autologous complement lysis activity. Antibody reactivity to the envelope (Env proteins gp120 and gp41 were positively correlated with the lysis activity against JR-FL, indicating that anti-Env responses mediated complement lysis. Neutralization and complement lysis activity against autologous viruses were not associated, suggesting that complement lysis is predominantly caused by non-neutralizing antibodies. CONCLUSIONS: Collectively our data provide evidence that antibody-mediated complement virion lysis develops rapidly and is effective early in the course of infection; thus it should be considered a parameter that, in concert with other immune functions, steers viremia control in vivo.

  20. UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication.

    Peng-Nien Huang

    2017-05-01

    Full Text Available Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR in host cells. This study found that enterovirus A71 (EVA71 utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1, a key endoplasmic reticulum protein (ER involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice. These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity.

  1. Extracellular histones identified in crocodile blood inhibit in-vitro HIV-1 infection.

    Kozlowski, Hannah N; Lai, Eric T L; Havugimana, Pierre C; White, Carl; Emili, Andrew; Sakac, Darinka; Binnington, Beth; Neschadim, Anton; McCarthy, Stephen D S; Branch, Donald R

    2016-08-24

    It has been reported that crocodile blood contains potent antibacterial and antiviral properties. However, its effects on HIV-1 infection remain unknown. We obtained blood from saltwater crocodiles to examine whether serum or plasma could inhibit HIV-1 infection. We purified plasma fractions then used liquid chromatography-mass spectrometry to identify the inhibitory protein factor(s). We then analyzed the ability of recombinant proteins to recapitulate HIV-1 inhibition and determine their mechanism of action. Crocodylus porosus plasma was tested for inhibition of Jurkat T-cell HIV-1 infection. Inhibitor(s) were purified by reverse-phase chromatography then identified by protein liquid chromatography-mass spectrometry. Anti-HIV-1 activity of purified plasma or recombinant proteins were measured by p24 enzyme-linked immunosorbent assay and luciferase readouts, and mechanism of action was determined by measuring HIV-1 RNA, cDNA and transcription (using 1G5 cells). Crocodile plasma contains potent inhibitors of HIV-1IIIB infection, which were identified as histones. Recombinant human histones H1 and H2A significantly reduced HIV-1JR-FL infection (IC50 of 0.79 and 0.45 μmol/l, respectively), whereas H4 enhanced JR-FL luciferase activity. The inhibitory effects of crocodile plasma, recombinant H1 or recombinant H2A on HIV-1 infection were during or post-viral transcription. Circulating histones in crocodile blood, possibly released by neutrophil extracellular traps, are significant inhibitors of HIV-1 infection in-vitro. Extracellular recombinant histones have different effects on HIV-1 transcription and protein expression and are downregulated in HIV-1 patients. Circulating histones may be a novel resistance factor during HIV-1 infection, and peptide versions should be explored as future HIV-1 therapeutics that modulate viral transcription.

  2. Mutations in HIV-1 gag and pol Compensate for the Loss of Viral Fitness Caused by a Highly Mutated Protease

    Kožíšek, Milan; Henke, S.; Grantz Šašková, Klára; Jacobs, G. B.; Schuch, A.; Buchholz, B.; Müller, V.; Kräusslich, H. G.; Řezáčová, Pavlína; Konvalinka, Jan; Bodem, J.

    2012-01-01

    Roč. 56, č. 8 (2012), s. 4320-4330 ISSN 0066-4804 R&D Projects: GA ČR GAP207/11/1798 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * resistance * inhibitor * viral fitness * AG subtype Subject RIV: EE - Microbiology, Virology Impact factor: 4.565, year: 2012

  3. Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Yan Zhang

    Full Text Available CD4(+ T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+ cells, and (ii that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+ compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+ T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p and disappearance (d* rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul participated. CCR5-expression defined a CD4(+ subpopulation of predominantly CD45R0(+ memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+ vs CCR5(-; healthy controls; P<0.01. Conversely, CXCR4 expression defined CD4(+ T-cells (predominantly CD45RA(+ naive cells with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+CD45R0(+CD4(+ memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05, naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9 or X4-tropic (n = 4. Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively. Our data are most consistent with models in which CD4(+ T-cell loss is primarily driven by non-specific immune activation.

  4. Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape

    Wibmer, Constantinos Kurt; Gorman, Jason; Ozorowski, Gabriel; Bhiman, Jinal N.; Sheward, Daniel J.; Elliott, Debra H.; Rouelle, Julie; Smira, Ashley; Joyce, M. Gordon; Ndabambi, Nonkululeko; Druz, Aliaksandr; Asokan, Mangai; Burton, Dennis R.; Connors, Mark; Abdool Karim, Salim S.; Mascola, John R.; Robinson, James E.; Ward, Andrew B.; Williamson, Carolyn; Kwong, Peter D.; Morris, Lynn; Moore, Penny L.; Desrosiers, Ronald C.

    2017-01-11

    A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing

  5. Respiratory viral RNA on toys in pediatric office waiting rooms.

    Pappas, Diane E; Hendley, J Owen; Schwartz, Richard H

    2010-02-01

    Toys in pediatric office waiting rooms may be fomites for transmission of viruses. Eighteen samples were taken from office objects on 3 occasions. Samples were tested for presence of picornavirus (either rhinovirus or enterovirus) on all 3 sample days; in addition, January samples were tested for respiratory syncytial virus and March samples were tested for influenza A and B. In addition, 15 samples were obtained from the sick waiting room before and after cleaning. Polymerase chain reaction was used to detect picornavirus, respiratory syncytial virus, and influenza A or B virus. Finally, 20 samples were obtained from the fingers of a researcher after handling different toys in the sick waiting room, and samples were then obtained from all the same toys; all samples were tested for picornavirus by polymerase chain reaction. Viral RNA was detected on 11 of 52 (21%) of toys sampled. Ten of the positives were picornavirus; 1 was influenza B virus. Three (30%) of 10 toys from the new toy bag, 6 of 30 (20%) in the sick child waiting room, and 2 of 12 (17%) in the well child waiting room were positive. Six (40%) of 15 toys in the sick waiting room were positive for picornaviral RNA before cleaning; after cleaning, 4 (27%) of 15 were positive in spite of the fact that RNA was removed from 4 of 6 of the original positives. Three (15%) of 20 toys in the sick waiting room were positive for picornaviral RNA, but RNA was not transferred to the fingers of the investigator who handled these toys. About 20% of the objects in a pediatric office may be contaminated with respiratory viral RNA, most commonly picornavirus RNA. Cleaning with a disinfectant cloth was only modestly effective in removing the viral RNA from the surfaces of toys, but transfer of picornaviral RNA from toys to fingers was inefficient.

  6. Rapid accumulation of HIV-1 thymidine analogue mutations and phenotypic impact following prolonged viral failure on zidovudine-based first-line ART in sub-Saharan Africa.

    Goodall, Ruth L; Dunn, David T; Nkurunziza, Peter; Mugarura, Lincoln; Pattery, Theresa; Munderi, Paula; Kityo, Cissy; Gilks, Charles; Kaleebu, Pontiano; Pillay, Deenan; Gupta, Ravindra K

    2017-05-01

    Lack of viral load monitoring of ART is known to be associated with slower switch from a failing regimen and thereby higher prevalence of MDR HIV-1. Many countries have continued to use thymidine analogue drugs despite recommendations to use tenofovir in combination with a cytosine analogue and NNRTI as first-line ART. The effect of accumulated thymidine analogue mutations (TAMs) on phenotypic resistance over time has been poorly characterized in the African setting. A retrospective analysis of individuals with ongoing viral failure between weeks 48 and 96 in the NORA (Nevirapine OR Abacavir) study was conducted. We analysed 36 genotype pairs from weeks 48 and 96 of first-line ART (14 treated with zidovudine/lamivudine/nevirapine and 22 treated with zidovudine/lamivudine/abacavir). Phenotypic drug resistance was assessed using the Antivirogram assay (v. 2.5.01, Janssen Diagnostics). At 96 weeks, extensive TAMs (≥3 mutations) were present in 50% and 73% of nevirapine- and abacavir-treated patients, respectively. The mean (SE) number of TAMs accumulating between week 48 and week 96 was 1.50 (0.37) in nevirapine-treated participants and 1.82 (0.26) in abacavir-treated participants. Overall, zidovudine susceptibility of viruses was reduced between week 48 [geometric mean fold change (FC) 1.3] and week 96 (3.4, P  =   0.01). There was a small reduction in tenofovir susceptibility (FC 0.7 and 1.0, respectively, P  =   0.18). Ongoing viral failure with zidovudine-containing first-line ART is associated with rapidly increasing drug resistance that could be mitigated with effective viral load monitoring. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  7. Novel host restriction factors implicated in HIV-1 replication.

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  8. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  9. Back to the future: revisiting HIV-1 lethal mutagenesis

    Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2012-01-01

    The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population non infectious – known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt into clinical translation. More recent studies of the APOBEC3 proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model. PMID:23195922

  10. Viral evasion of intracellular DNA and RNA sensing

    Chan, Ying Kai; Gack, Michaela U.

    2016-01-01

    The co-evolution of viruses with their hosts has led to the emergence of viral pathogens that are adept at evading or actively suppressing host immunity. Pattern recognition receptors (PRRs) are key components of antiviral immunity that detect conserved molecular features of viral pathogens and initiate signalling that results in the expression of antiviral genes. In this Review, we discuss the strategies that viruses use to escape immune surveillance by key intracellular sensors of viral RNA or DNA, with a focus on RIG-I-like receptors (RLRs), cyclic GMP–AMP synthase (cGAS) and interferon-γ (IFNγ)-inducible protein 16 (IFI16). Such viral strategies include the sequestration or modification of viral nucleic acids, interference with specific post-translational modifications of PRRs or their adaptor proteins, the degradation or cleavage of PRRs or their adaptors, and the sequestration or relocalization of PRRs. An understanding of viral immune-evasion mechanisms at the molecular level may guide the development of vaccines and antivirals. PMID:27174148

  11. Prevalence of HIV-1 drug resistance in treated patients with viral load >50 copies/mL: a 2014 French nationwide study.

    Assoumou, L; Charpentier, C; Recordon-Pinson, P; Grudé, M; Pallier, C; Morand-Joubert, L; Fafi-Kremer, S; Krivine, A; Montes, B; Ferré, V; Bouvier-Alias, M; Plantier, J-C; Izopet, J; Trabaud, M-A; Yerly, S; Dufayard, J; Alloui, C; Courdavault, L; Le Guillou-Guillemette, H; Maillard, A; Amiel, C; Vabret, A; Roussel, C; Vallet, S; Guinard, J; Mirand, A; Beby-Defaux, A; Barin, F; Allardet-Servent, A; Ait-Namane, R; Wirden, M; Delaugerre, C; Calvez, V; Chaix, M-L; Descamps, D; Reigadas, S

    2017-06-01

    Surveillance of HIV-1 resistance in treated patients with a detectable viral load (VL) is important to monitor, in order to assess the risk of spread of resistant viruses and to determine the proportion of patients who need new antiretroviral drugs with minimal cross-resistance. The HIV-1 protease and reverse transcriptase (RT) and integrase genes were sequenced in plasma samples from 782 consecutive patients on failing antiretroviral regimens, seen in 37 specialized centres in 2014. The genotyping results were interpreted using the ANRS v24 algorithm. Prevalence rates were compared with those obtained during a similar survey conducted in 2009. The protease and RT sequences were obtained in 566 patients, and the integrase sequence in 382 patients. Sequencing was successful in 60%, 78%, 78% and 87% of patients with VLs of 51-200, 201-500, 501-1000 and >1000 copies/mL, respectively. Resistance to at least one antiretroviral drug was detected in 56.3% of samples. Respectively, 3.9%, 8.7%, 1.5% and 3.4% of patients harboured viruses that were resistant to any NRTI, NNRTI, PI and integrase inhibitor (INI). Resistance rates were lower in 2014 than in 2009. Resistance was detected in 48.5% of samples from patients with a VL between 51 and 200 copies/mL. In France in 2014, 90.0% of patients in AIDS care centres were receiving antiretroviral drugs and 12.0% of them had VLs >50 copies/mL. Therefore, this study suggests that 6.7% of treated patients in France might transmit resistant strains. Resistance testing may be warranted in all treated patients with VL > 50 copies/mL. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. HIV-1 infection, response to treatment and establishment of viral latency in a novel humanized T cell-only mouse (TOM) model.

    Honeycutt, Jenna B; Wahl, Angela; Archin, Nancie; Choudhary, Shailesh; Margolis, David; Garcia, J Victor

    2013-10-24

    The major targets of HIV infection in humans are CD4⁺ T cells. CD4⁺ T cell depletion is a hallmark of AIDS. Previously, the SCID-hu thy/liv model was used to study the effect of HIV on thymopoeisis in vivo. However, these mice did not develop high levels of peripheral T cell reconstitution and required invasive surgery for infection and analysis. Here, we describe a novel variant of this model in which thy/liv implantation results in systemic reconstitution with human T cells in the absence of any other human hematopoietic lineages. NOD/SCID-hu thy/liv and NSG-hu thy/liv mice were created by implanting human fetal thymus and liver tissues under the kidney capsule of either NOD/SCID or NSG mice. In contrast to NOD/SCID-hu thy/liv mice that show little or no human cells in peripheral blood or tissues, substantial systemic human reconstitution occurs in NSG-hu thy/liv. These mice are exclusively reconstituted with human T cells (i.e. T-cell only mice or TOM). Despite substantial levels of human T cells no signs of graft-versus-host disease (GVHD) were noted in these mice over a period of 14 months. TOM are readily infected after parenteral exposure to HIV-1. HIV replication is sustained in peripheral blood at high levels and results in modest reduction of CD4⁺ T cells. HIV-1 replication in TOM responds to daily administration of combination antiretroviral therapy (ART) resulting in strong suppression of virus replication as determined by undetectable viral load in plasma. Latently HIV infected resting CD4⁺ T cells can be isolated from suppressed mice that can be induced to express HIV ex-vivo upon activation demonstrating the establishment of latency in vivo. NSG-hu thy/liv mice are systemically reconstituted with human T cells. No other human lymphoid lineages are present in these mice (i.e. monocytes/macrophages, B cells and DC are all absent). These T cell only mice do not develop GVHD, are susceptible to HIV-1 infection and can efficiently maintain virus

  13. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2.

    Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko

    2016-09-01

    To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Potent inhibition of HIV-1 replication by a Tat mutant.

    Luke W Meredith

    Full Text Available Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.

  15. HIV-1 and the macrophage

    Bol, Sebastiaan M.; Cobos-Jimenez, Viviana; Kootstra, Neeltje A.; van 't Wout, Angelique B.

    2011-01-01

    Macrophages and CD4(+) T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific

  16. Stable assembly of HIV-1 export complexes occurs cotranscriptionally

    Nawroth, Isabel; Mueller, Florian; Basyuk, Eugenia

    2014-01-01

    The HIV-1 Rev protein mediates export of unspliced and singly spliced viral transcripts by binding to the Rev response element (RRE) and recruiting the cellular export factor CRM1. Here, we investigated the recruitment of Rev to the transcription sites of HIV-1 reporters that splice either post......- or cotranscriptionally. In both cases, we observed that Rev localized to the transcription sites of the reporters and recruited CRM1. Rev and CRM1 remained at the reporter transcription sites when cells were treated with the splicing inhibitor Spliceostatin A (SSA), showing that the proteins associate with RNA prior...... to or during early spliceosome assembly. Fluorescence recovery after photobleaching (FRAP) revealed that Rev and CRM1 have similar kinetics as the HIV-1 RNA, indicating that Rev, CRM1, and RRE-containing RNAs are released from the site of transcription in one single export complex. These results suggest...

  17. Developing strategies for HIV-1 eradication

    Durand, Christine M.; Blankson, Joel N.; Siliciano, Robert F.

    2014-01-01

    Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication, transforming the outlook for infected patients. However, reservoirs of replication-competent forms of the virus persist during HAART, and when treatment is stopped, high rates of HIV-1 replication return. Recent insights into HIV-1 latency, as well as a report that HIV-1 infection was eradicated in one individual, have renewed interest in finding a cure for HIV-1 infection. Strategies for HIV-1 eradication include gene therapy and hematopoietic stem cell transplantation, stimulating host immunity to control HIV-1 replication, and targeting latent HIV-1 in resting memory CD4+ T cells. Future efforts should aim to provide better understanding of how to reconstitute the CD4+ T cell compartment with genetically engineered cells, exert immune control over HIV-1 replication, and identify and eliminate all viral reservoirs. PMID:22867874

  18. Human cellular restriction factors that target HIV-1 replication

    Jeang Kuan-Teh

    2009-09-01

    Full Text Available Abstract Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, bone marrow stromal cell antigen 2 (BST-2, cyclophilin A, tripartite motif protein 5 alpha (Trim5α, and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.

  19. An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G.

    Ejima, Tomohiko; Hirota, Mayuko; Mizukami, Tamio; Otsuka, Masami; Fujita, Mikako

    2011-10-01

    Human apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3G (A3G) is an antiviral protein that blocks HIV-1 replication. However, the antiviral activity of A3G is overcome by the HIV-1 protein Vif. This inhibitory function of Vif is related to its ability to degrade A3G in the proteasome. This finding prompted us to examine the activities of 4-(dimethylamino)-2,6-bis[(N-(2-[(2-nitrophenyl)dithio]ethyl)amino)methyl]pyridine (SN-2) and SN-3. We found that 5 µM SN-2 increases the expression of A3G to a level much higher than that observed in the absence of Vif, without affecting the level of Vif expression. The proteasome inhibitor MG-132 increased the level of both A3G and Vif expression. These results demonstrate that A3G is ubiquitinated and degraded in the proteasome by a factor other than Vif, and that SN-2 selectively inhibits these processes. Furthermore, 5 µM SN-2 significantly inhibited the MAGI cell infectivity of wild-type HIV-1. These findings may contribute to the development of a novel anti-HIV-1 drug.

  20. Distinguishing HIV-1 drug resistance, accessory, and viral fitness mutations using conditional selection pressure analysis of treated versus untreated patient samples

    Lee Christopher

    2006-05-01

    Full Text Available Abstract Background HIV can evolve drug resistance rapidly in response to new drug treatments, often through a combination of multiple mutations 123. It would be useful to develop automated analyses of HIV sequence polymorphism that are able to predict drug resistance mutations, and to distinguish different types of functional roles among such mutations, for example, those that directly cause drug resistance, versus those that play an accessory role. Detecting functional interactions between mutations is essential for this classification. We have adapted a well-known measure of evolutionary selection pressure (Ka/Ks and developed a conditional Ka/Ks approach to detect important interactions. Results We have applied this analysis to four independent HIV protease sequencing datasets: 50,000 clinical samples sequenced by Specialty Laboratories, Inc.; 1800 samples from patients treated with protease inhibitors; 2600 samples from untreated patients; 400 samples from untreated African patients. We have identified 428 mutation interactions in Specialty dataset with statistical significance and we were able to distinguish primary vs. accessory mutations for many well-studied examples. Amino acid interactions identified by conditional Ka/Ks matched 80 of 92 pair wise interactions found by a completely independent study of HIV protease (p-value for this match is significant: 10-70. Furthermore, Ka/Ks selection pressure results were highly reproducible among these independent datasets, both qualitatively and quantitatively, suggesting that they are detecting real drug-resistance and viral fitness mutations in the wild HIV-1 population. Conclusion Conditional Ka/Ks analysis can detect mutation interactions and distinguish primary vs. accessory mutations in HIV-1. Ka/Ks analysis of treated vs. untreated patient data can distinguish drug-resistance vs. viral fitness mutations. Verification of these results would require longitudinal studies. The result

  1. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex.

    Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc

    2011-07-01

    Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.

  2. Herpes viruses and HIV-1 drug resistance mutations influence the virologic and immunologic milieu of the male genital tract.

    Gianella, Sara; Morris, Sheldon R; Anderson, Christy; Spina, Celsa A; Vargas, Milenka V; Young, Jason A; Richman, Douglas D; Little, Susan J; Smith, Davey M

    2013-01-02

    To further understand the role that chronic viral infections of the male genital tract play on HIV-1 dynamics and replication. Retrospective, observational study including 236 paired semen and blood samples collected from 115 recently HIV-1 infected antiretroviral naive men who have sex with men. In this study, we evaluated the association of seminal HIV-1 shedding to coinfections with seven herpes viruses, blood plasma HIV-1 RNA levels, CD4 T-cell counts, presence of transmitted drug resistance mutations (DRMs) in HIV-1 pol, participants' age and stage of HIV-infection using multivariate generalized estimating equation methods. Associations between herpes virus shedding, seminal HIV-1 levels, number and immune activation of seminal T-cells was also investigated (Mann-Whitney). Seminal herpes virus shedding was observed in 75.7% of individuals. Blood HIV-1 RNA levels (P herpes virus (HHV)-8 levels (P herpes viruses seminal shedding in our cohort. Shedding of CMV, EBV and HHV-8 and absence of DRM were associated with increased frequency of HIV-1 shedding and/or higher levels of HIV-1 RNA in semen, which are likely important cofactors for HIV-1 transmission.

  3. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  4. Association of mitochondrial lysyl-tRNA synthetase with HIV-1 GagPol involves catalytic domain of the synthetase and transframe and integrase domains of Pol

    Shalak V. F.

    2011-10-01

    Full Text Available Aim. Analyze the interaction between Lysyl-tRNA synthetase (LysRS and HIV-1 GagPol to know whether a particular N-terminal sequence of mitochondrial LysRS triggers a specific recognition with GagPol. Methods. Yeast two-hybrid analysis, immunoprecipitation. Results. We have shown that LysRS associates with the Pol domain of GagPol. Conclusions. A model of the assembly of the LysRS:tRNA3Lys:GagPol packaging complex is proposed.

  5. Effect of menstrual cycle on HIV-1 levels in the peripheral blood and genital tract. WHS 001 Study Team.

    Reichelderfer, P S; Coombs, R W; Wright, D J; Cohn, J; Burns, D N; Cu-Uvin, S; Baron, P A; Coheng, M H; Landay, A L; Beckner, S K; Lewis, S R; Kovacs, A A

    2000-09-29

    To assess the variation in HIV-1 over the menstrual cycle, including RNA levels in the female genital tract, plasma HIV-1-RNA levels, CD4 cell counts, and culturable virus. A prospective analysis of 55 HIV-1-infected women. Blood and genital tract specimens were collected weekly over 8 weeks, spanning two complete menstrual cycles. Applying repeated-measures models that used menses as the reference level, the variation in viral RNA levels was compared in endocervical canal fluid and cells (collected by Sno-strips and cytobrush, respectively) and ectocervicovaginal lavage (CVL) fluid. Repeated-measures models were also used to assess the variation in plasma CD4 cell counts and viral load. Shedding patterns differed among the three sampling methods, independent of genital tract co-infections. Genital tract HIV-1-RNA levels from CVL fluid and endocervical canal cytobrush specimens were highest during menses and lowest immediately thereafter (P = 0.001 and P = 0.04). The HIV-1-RNA level in endocervical canal fluid was highest in the week preceding menses (P = 0.003). The menstrual cycle had no effect on blood levels of RNA (P = 0.62), culturable virus (P = 0.34), or CD4 cell counts (P = 0.55). HIV-1-RNA levels were higher in endocervical canal fluid than in peripheral blood plasma during the late luteal phase (P = 0.03). HIV-1-RNA levels vary with the menstrual cycle in the female genital tract but not the blood compartment. HIV-1-RNA levels are higher in endocervical canal fluid than in blood plasma. These findings may have important implications for sex-specific pathogenesis, heterosexual transmission, and contraceptive hormone interventions in HIV-1-infected women.

  6. Hyperthermia stimulates HIV-1 replication.

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  7. Who Regulates Whom? An Overview of RNA Granules and Viral Infections

    Natalia Poblete-Durán

    2016-06-01

    Full Text Available After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs, which are translationally silent sites of RNA triage and processing bodies (PBs, which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs.

  8. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  9. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  10. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors.

    Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.

  11. An advanced BLT-humanized mouse model for extended HIV-1 cure studies.

    Lavender, Kerry J; Pace, Craig; Sutter, Kathrin; Messer, Ronald J; Pouncey, Dakota L; Cummins, Nathan W; Natesampillai, Sekar; Zheng, Jim; Goldsmith, Joshua; Widera, Marek; Van Dis, Erik S; Phillips, Katie; Race, Brent; Dittmer, Ulf; Kukolj, George; Hasenkrug, Kim J

    2018-01-02

    Although bone marrow, liver, thymus (BLT)-humanized mice provide a robust model for HIV-1 infection and enable evaluation of cure strategies dependent on endogenous immune responses, most mice develop graft versus host disease (GVHD), limiting their utility for extended HIV cure studies. This study aimed to: evaluate the GVHD-resistant C57 black 6 (C57BL/6) recombination activating gene 2 (Rag2)γcCD47 triple knockout (TKO)-BLT mouse as a model to establish HIV-1 latency. Determine whether TKO-BLT mice could be maintained on antiretroviral therapy (ART) for extended periods of time. Assess the rapidity of viral rebound following therapy interruption. TKO-BLT mice were HIV-1 infected, treated with various ART regimens over extended periods of time and assayed for viral rebound following therapy interruption. Daily subcutaneous injection and oral ART-mediated suppression of HIV-1 infection was tested at various doses in TKO-BLT mice. Mice were monitored for suppression of viremia and cellular HIV-1 RNA and DNA prior to and following therapy interruption. Mice remained healthy for 45 weeks posthumanization and could be treated with ART for up to 18 weeks. Viremia was suppressed to less than 200 copies/ml in the majority of mice with significant reductions in cellular HIV-1 RNA and DNA. Treatment interruption resulted in rapid viral recrudescence. HIV-1 latency can be maintained in TKO-BLT mice over extended periods on ART and rapid viral rebound occurs following therapy removal. The additional 15-18 weeks of healthy longevity compared with other BLT models provides sufficient time to examine the decay kinetics of the latent reservoir as well as observe delays in recrudescence in HIV-1 cure studies.

  12. Risk group characteristics and viral transmission clusters in South-East Asian patients infected with HIV-1 circulating recombinant form (CRF)01_AE and subtype B

    Oyomopito, Rebecca A; Chen, Yen-Ju; Sungkanuparph, Somnuek; Kantor, Rami; Merati, Tuti; Yam, Wing-Cheong; Sirisanthana, Thira; Li, Patrick CK; Kantipong, Pacharee; Phanuphak, Praphan; Lee, Chris KC; Kamarulzaman, Adeeba; Ditangco, Rossana; Huang, Szu-Wei; Sohn, Annette H; Law, Matthew; Chen, Yi Ming A

    2016-01-01

    HIV-1 epidemics in Asian countries are driven by varying exposures. The epidemiology of the regional pandemic has been changing with the spread of HIV-1 to lower-risk populations through sexual transmission. Common HIV-1 genotypes include subtype B and circulating recombinant form (CRF)01_AE. Our objective was to use HIV-1 genotypic data to better quantify local epidemics. TASER-M is a multi-centre prospective cohort of HIV-infected patients. Associations between HIV-exposure, patient gender, country of sample origin and HIV-1 genotype were evaluated by multivariate logistic regression. Phylogenetic methods were used on genotypic data to investigate transmission relationships. A total of 1086 patients from Thailand, Hong Kong, Malaysia and the Philippines were included in analyses. Proportions of males within countries varied (Thailand: 55.6%, Hong Kong: 86.1%, Malaysia: 81.4%, Philippines: 93.8%; p Malaysia: 47.8%, Philippines: 25.0%; p <0.001). After adjustment, we found increased subtype B infection among men-who-have-sex with-men, relative to heterosexual-reported exposures (OR = 2.4, p <0.001). We further describe four transmission clusters of 8–15 treatment naive, predominantly symptomatic patients (two each for subtype B and CRF01_AE). Risk-group sub-populations differed with respect to the infecting HIV-1 genotype. Homosexual exposure patients had a higher odds of being infected with subtype B. Where HIV-1 genotypes circulate within countries or patient risk-groups, local monitoring of genotype-specific transmissions may play a role in focussing public health prevention strategies. Phylogenetic evaluations provide complementary information for surveillance and monitoring of viruses with high mutation rates such as HIV-1 and Ebola. PMID:26362956

  13. Low-cost HIV-1 diagnosis and quantification in dried blood spots by real time PCR.

    Mehta, Nishaki; Trzmielina, Sonia; Nonyane, Bareng A S; Eliot, Melissa N; Lin, Rongheng; Foulkes, Andrea S; McNeal, Kristina; Ammann, Arthur; Eulalievyolo, Vindu; Sullivan, John L; Luzuriaga, Katherine; Somasundaran, Mohan

    2009-06-05

    Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log(10), and %CV real-time systems demonstrated similar performance. The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings.

  14. Thermodynamic studies of a series of homologous HIV-1 TAR RNA ligands reveal that loose binders are stronger Tat competitors than tight ones.

    Pascale, Lise; Azoulay, Stéphane; Di Giorgio, Audrey; Zenacker, Laura; Gaysinski, Marc; Clayette, Pascal; Patino, Nadia

    2013-06-01

    RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous 'polyamide amino acids' (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy-entropy compensation phenomenon resulting in very close TAR affinities for all PAA. However, their binding modes and their ability to compete with the Tat fragment strongly differ according to their structure. Surprisingly, PAA that form loose complexes with TAR were shown to be stronger Tat competitors than those forming tight ones, and thermal denaturation studies demonstrated that loose complexes are more stable than tight ones. This could be correlated to the fact that loose and tight ligands induce distinct RNA conformational changes as revealed by circular dichroism experiments, although nuclear magnetic resonance (NMR) experiments showed that the TAR binding site is the same in all cases. Finally, some loose PAA also display promising inhibitory activities on HIV-infected cells. Altogether, these results lead to a better understanding of RNA interaction modes that could be very useful for devising new ligands of relevant RNA targets.

  15. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor

    Buchmeier Michael J

    2001-02-01

    Full Text Available Abstract Background Recent studies of viral entry proteins from influenza, measles, human immunodeficiency virus, type 1 (HIV-1, and Ebola virus have shown, first with molecular modeling, and then X-ray crystallographic or other biophysical studies, that these disparate viruses share a coiled-coil type of entry protein. Results Structural models of the transmembrane glycoproteins (GP-2 of the Arenaviruses, lymphochoriomeningitis virus (LCMV and Lassa fever virus, are presented, based on consistent structural propensities despite variation in the amino acid sequence. The principal features of the model, a hydrophobic amino terminus, and two antiparallel helices separated by a glycosylated, antigenic apex, are common to a number of otherwise disparate families of enveloped RNA viruses. Within the first amphipathic helix, demonstrable by circular dichroism of a peptide fragment, there is a highly conserved heptad repeat pattern proposed to mediate multimerization by coiled-coil interactions. The amino terminal 18 amino acids are 28% identical and 50% highly similar to the corresponding region of Ebola, a member of the Filovirus family. Within the second, charged helix just prior to membrane insertion there is also high similarity over the central 18 amino acids in corresponding regions of Lassa and Ebola, which may be further related to the similar region of HIV-1 defining a potent antiviral peptide analogue. Conclusions These findings indicate a common pattern of structure and function among viral transmembrane fusion proteins from a number of virus families. Such a pattern may define a viral transmembrane superfamily that evolved from a common precursor eons ago.

  16. Comparison of the Abbott m2000 HIV-1 Real-Time and Roche AMPLICOR Monitor v1.5 HIV-1 assays on plasma specimens from Rakai, Uganda.

    Ssebugenyi, I; Kizza, A; Mpoza, B; Aluma, G; Boaz, I; Newell, K; Laeyendecker, O; Shott, J P; Serwadda, D; Reynolds, S J

    2011-07-01

    The need for viral load (VL) monitoring of HIV patients receiving antiretroviral therapy (ART) in resource-limited settings (RLS) has become apparent with studies showing the limitations of immunological monitoring. We compared the Abbott m2000 Real-Time (Abbott) HIV-1 assay with the Roche AMPLICOR Monitor v1.5 (Roche) HIV-1 assay over a range of VL concentrations. Three hundred and eleven plasma samples were tested, including 164 samples from patients on ART ≥ six months and 147 from ART-naïve patients. The Roche assay detected ≥400 copies/mL in 158 (50.8%) samples. Of these, Abbott produced 145 (91.8%) detectable results ≥400 copies/mL; 13 (8.2%) samples produced discrepant results. Concordance between the assays for detecting HIV-1 RNA ≥400 copies/mL was 95.8% (298/311). The sensitivity, specificity, positive predictive value and negative predictive value of Abbott to detect HIV-1 RNA ≥400 copies/mL were 91.8%, 100%, 100% and 92.2%, respectively. For the 151 samples with HIV-1 RNA ≥400 copies/mL for both assays, a good linear correlation was found (r = 0.81, P Abbott assay performed well in our setting, offering an alternative methodology for HIV-1 VL for laboratories with realtime polymerase chain reaction (PCR) capacity.

  17. Direct effects of HIV-1 Tat on excitability and survival of primary dorsal root ganglion neurons: possible contribution to HIV-1-associated pain.

    Xianxun Chi

    Full Text Available The vast majority of people living with human immunodeficiency virus type 1 (HIV-1 have pain syndrome, which has a significant impact on their quality of life. The underlying causes of HIV-1-associated pain are not likely attributable to direct viral infection of the nervous system due to the lack of evidence of neuronal infection by HIV-1. However, HIV-1 proteins are possibly involved as they have been implicated in neuronal damage and death. The current study assesses the direct effects of HIV-1 Tat, one of potent neurotoxic viral proteins released from HIV-1-infected cells, on the excitability and survival of rat primary dorsal root ganglion (DRG neurons. We demonstrated that HIV-1 Tat triggered rapid and sustained enhancement of the excitability of small-diameter rat primary DRG neurons, which was accompanied by marked reductions in the rheobase and resting membrane potential (RMP, and an increase in the resistance at threshold (R(Th. Such Tat-induced DRG hyperexcitability may be a consequence of the inhibition of cyclin-dependent kinase 5 (Cdk5 activity. Tat rapidly inhibited Cdk5 kinase activity and mRNA production, and roscovitine, a well-known Cdk5 inhibitor, induced a very similar pattern of DRG hyperexcitability. Indeed, pre-application of Tat prevented roscovitine from having additional effects on the RMP and action potentials (APs of DRGs. However, Tat-mediated actions on the rheobase and R(Th were accelerated by roscovitine. These results suggest that Tat-mediated changes in DRG excitability are partly facilitated by Cdk5 inhibition. In addition, Cdk5 is most abundant in DRG neurons and participates in the regulation of pain signaling. We also demonstrated that HIV-1 Tat markedly induced apoptosis of primary DRG neurons after exposure for longer than 48 h. Together, this work indicates that HIV-1 proteins are capable of producing pain signaling through direct actions on excitability and survival of sensory neurons.

  18. A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev

    Fang Jianhua; Kubota, Satoshi; Yang Bin; Zhou Naiming; Zhang Hui; Godbout, Roseline; Pomerantz, Roger J.

    2004-01-01

    HIV-1 Rev escorts unspliced viral mRNAs out of the nucleus of infected cells, which allows formation of infectious HIV-1 virions. We have identified a putative DEAD box (Asp-Glu-Ala-Asp) RNA helicase, DDX1, as a cellular co-factor of Rev, through yeast and mammalian two-hybrid systems using the N-terminal motif of Rev as 'bait'. DDX1 is not a functional homolog of HIV-1 Rev, but down-regulation of DDX1 resulted in an alternative splicing pattern of Rev-responsive element (RRE)-containing mRNA, and attenuation of Gag p24 antigen production from HLfb rev(-) cells rescued by exogenous Rev. Co-transfection of a DDX1 expression vector with HIV-1 significantly increased viral production. DDX1 binding to Rev, as well as to the RRE, strongly suggest that DDX1 affects Rev function through the Rev-RRE axis. Moreover, down-regulation of DDX1 altered the steady state subcellular distribution of Rev, from nuclear/nucleolar to cytoplasmic dominance. These findings indicate that DDX1 is a critical cellular co-factor for Rev function, which maintains the proper subcellular distribution of this lentiviral regulatory protein. Therefore, alterations in DDX1-Rev interactions could induce HIV-1 persistence and targeting DDX1 may lead to rationally designed and novel anti-HIV-1 strategies and therapeutics

  19. Multiple proviral integration events after virological synapse-mediated HIV-1 spread

    Russell, Rebecca A.; Martin, Nicola; Mitar, Ivonne; Jones, Emma; Sattentau, Quentin J.

    2013-01-01

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. - Highlights: • Cell-to-cell HIV-1 infection delivers multiple vRNA copies to the target cell. • Cell-to-cell infection results in productive infection of the target cell. • Cell-to-cell transmission is more efficient than cell-free HIV-1 infection. • Suggests a mechanism for recombination in cells infected with multiple viral genomes

  20. Presence of viral RNA and proteins in exosomes from the cellular clones resistant to Rift Valley Fever Virus infection.

    Noor eAhsan

    2016-02-01

    Full Text Available Rift Valley Fever Virus (RVFV is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent HIV-1 and HTLV-1 infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-кB pathway, leading to cell proliferation and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV. These clones contained normal markers (i.e. CD63 for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome. The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of recipient cells (T- cells and monocytic cells showed

  1. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection.

    Eric S Rosenberg

    2010-05-01

    Full Text Available An effective therapeutic vaccine that could augment immune control of HIV-1 replication may abrogate or delay the need for antiretroviral therapy. AIDS Clinical Trials Group (ACTG A5187 was a phase I/II, randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of an HIV-1 DNA vaccine (VRC-HVDNA 009-00-VP in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. (clinicaltrials.gov NCT00125099Twenty healthy HIV-1 infected subjects who were treated with antiretroviral therapy during acute/early HIV-1 infection and had HIV-1 RNA<50 copies/mL were randomized to receive either vaccine or placebo. The objectives of this study were to evaluate the safety and immunogenicity of the vaccine. Following vaccination, subjects interrupted antiretroviral treatment, and set-point HIV-1 viral loads and CD4 T cell counts were determined 17-23 weeks after treatment discontinuation.Twenty subjects received all scheduled vaccinations and discontinued antiretroviral therapy at week 30. No subject met a primary safety endpoint. No evidence of differences in immunogenicity were detected in subjects receiving vaccine versus placebo. There were also no significant differences in set-point HIV-1 viral loads or CD4 T cell counts following treatment discontinuation. Median set-point HIV-1 viral loads after treatment discontinuation in vaccine and placebo recipients were 3.5 and 3.7 log(10 HIV-1 RNA copies/mL, respectively.The HIV-1 DNA vaccine (VRC-HIVDNA 009-00-VP was safe but poorly immunogenic in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. Viral set-points were similar between vaccine and placebo recipients following treatment interruption. However, median viral load set-points in both groups were lower than in historical controls, suggesting a possible role for antiretroviral therapy in persons with acute or early HIV-1 infection and supporting the safety of

  2. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells.

    Vacharaksa, Anjalee; Asrani, Anil C; Gebhard, Kristin H; Fasching, Claudine E; Giacaman, Rodrigo A; Janoff, Edward N; Ross, Karen F; Herzberg, Mark C

    2008-07-17

    Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells) were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Deltaenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs) or MOLT4 cells (CD4+ CCR5+) by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  4. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells

    Giacaman Rodrigo A

    2008-07-01

    Full Text Available Abstract Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs or MOLT4 cells (CD4+ CCR5+ by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  5. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  6. HIV-1 and herpes simplex virus type-2 genital shedding among co-infected women using self-collected swabs in Chiang Rai, Thailand.

    Forhan, S E; Dunne, E F; Sternberg, M R; Whitehead, S J; Leelawiwat, W; Thepamnuay, S; Chen, C; Evans-Strickfaden, Tt; McNicholl, J M; Markowitz, L E

    2012-08-01

    We analysed 528 genital self-collected swabs (SCS) from 67 HIV-1 and herpes simplex virus type-2 (HSV-2) co-infected women collected during the placebo month of a randomized crossover clinical trial of suppressive acyclovir in Chiang Rai, Thailand. In this first longitudinal study of HIV-1 and HSV-2 co-infected women using genital SCS specimens, we found frequent mucosal HIV-1 shedding. Overall, 372 (70%) swabs had detectable HIV-1 RNA with median HIV-1 viral load of 2.61 log(10) copies/swab. We found no statistically significant association between detectable HIV-1 RNA and HSV-2 DNA in the same SCS specimen (adjusted odds ratio [aOR] 1.40; 95% confidence intervals [CI], 0.78-2.60, P = 0.25). Only baseline HIV-1 plasma viral load was independently associated with genital HIV-1 RNA shedding (aOR, 7.6; 95% CI, 3.3-17.2, P genital sampling, and inclusion of genital sites other than the cervix.

  7. Differentially-Expressed Pseudogenes in HIV-1 Infection

    Aditi Gupta

    2015-09-01

    Full Text Available Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these “functional” pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  8. Differentially-Expressed Pseudogenes in HIV-1 Infection.

    Gupta, Aditi; Brown, C Titus; Zheng, Yong-Hui; Adami, Christoph

    2015-09-29

    Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these "functional" pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.

  9. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease.

    Raquel Amorim

    Full Text Available The 30 different species of mRNAs synthesized during the HIV-1 replication cycle are all capped and polyadenilated. Internal ribosome entry sites have been recognized in the 5' untranslated region of some mRNA species of HIV-1, which would contribute to an alternative mechanism of initiation of mRNA translation. However, the Cap-dependent translation is assumed to be the main mechanism driving the initiation of HIV-1 protein synthesis. In this work, we describe a cell system in which lower to higher levels of transient expression of the poliovirus 2A protease strongly inhibited cellular Cap-dependent translation with no toxic effect to the cells during a 72-hour time frame. In this system, the synthesis of HIV-1 proteins was inhibited in a temporal dose-dependent way. Higher levels of 2A protease expression severely inhibited HIV-1 protein synthesis during the first 24 hours of infection consequently inhibiting viral production and infectivity. Intermediate to lower levels of 2A Protease expression caused the inhibition of viral protein synthesis only during the first 48 hours of viral replication. After this period both protein synthesis and viral release were recovered to the control levels. However, the infectivity of viral progeny was still partially inhibited. These results indicate that two mechanisms of mRNA translation initiation contribute to the synthesis of HIV-1 proteins; during the first 24-48 hours of viral replication HIV-1 protein synthesis is strongly dependent on Cap-initiation, while at later time points IRES-driven translation initiation is sufficient to produce high amounts of viral particles.

  10. Isolation and characterization of 20'-F-RNA aptamers against whole HIV-1 subtype C envelope pseudovirus

    London, GM

    2015-01-01

    Full Text Available Aptamers, which are artificial nucleic acid ligands akin to antibodies in function, represent a new class of molecules that can prevent HIV infection. In this study, we isolated RNA aptamers against whole HV-1CAP45 enveloped pseudotyped virus...

  11. Differences in serum IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active antiretroviral therapy.

    Rafiq Nabi

    Full Text Available Mechanisms responsible for natural control of human immunodeficiency type 1 (HIV replication in elite controllers (EC remain incompletely defined. To determine if EC generate high quality HIV-specific IgA responses, we used Western blotting to compare the specificities and frequencies of IgA to HIV antigens in serum of gender-, age- and race-matched EC and aviremic controllers (HC and viremic noncontrollers (HN on highly active antiretroviral therapy (HAART. Concentrations and avidity of IgA to HIV antigens were measured using ELISA or multiplex assays. Measurements for IgG were performed in parallel. EC were found to have stronger p24- and V1V2-specific IgG responses than HN, but there were no IgG differences for EC and HC. In contrast, IgA in EC serum bound more frequently to gp160 and gag proteins than IgA in HC or HN. The avidity of anti-gp41 IgA was also greater in EC, and these subjects had stronger IgA responses to the gp41 heptad repeat region 1 (HR1, a reported target of anti-bacterial RNA polymerase antibodies that cross react with gp41. However, EC did not demonstrate greater IgA responses to E. coli RNA polymerase or to peptides containing the shared LRAI sequence, suggesting that most of their HR1-specific IgA antibodies were not induced by intestinal microbiota. In both EC and HAART recipients, the concentrations of HIV-specific IgG were greater than HIV-specific IgA, but their avidities were comparable, implying that they could compete for antigen. Exceptions were C1 peptides and V1V2 loops. IgG and IgA responses to these antigens were discordant, with IgG reacting to V1V2, and IgA reacting to C1, especially in EC. Interestingly, EC with IgG hypergammaglobulinemia had greater HIV-specific IgA and IgG responses than EC with normal total IgG levels. Heterogeneity in EC antibody responses may therefore be due to a more focused HIV-specific B cell response in some of these individuals. Overall, these data suggest that development of

  12. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins.

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul

    2017-04-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann

    2017-01-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950

  14. Quantitative live-cell imaging of human immunodeficiency virus (HIV-1) assembly.

    Baumgärtel, Viola; Müller, Barbara; Lamb, Don C

    2012-05-01

    Advances in fluorescence methodologies make it possible to investigate biological systems in unprecedented detail. Over the last few years, quantitative live-cell imaging has increasingly been used to study the dynamic interactions of viruses with cells and is expected to become even more indispensable in the future. Here, we describe different fluorescence labeling strategies that have been used to label HIV-1 for live cell imaging and the fluorescence based methods used to visualize individual aspects of virus-cell interactions. This review presents an overview of experimental methods and recent experiments that have employed quantitative microscopy in order to elucidate the dynamics of late stages in the HIV-1 replication cycle. This includes cytosolic interactions of the main structural protein, Gag, with itself and the viral RNA genome, the recruitment of Gag and RNA to the plasma membrane, virion assembly at the membrane and the recruitment of cellular proteins involved in HIV-1 release to the nascent budding site.

  15. Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor

    2016-01-01

    Roč. 6, JUL2016 (2016) ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA16-03517S Institutional support: RVO:68081707 Keywords : DINUCLEAR RUTHENIUM(II) COMPLEX * METALLOSUPRAMOLECULAR CYLINDERS * BIOLOGICAL EVALUATION Subject RIV: BO - Biophysics Impact factor: 4.259, year: 2016

  16. SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin.

    Sun, Wei-Wei; Jiao, Shi; Sun, Li; Zhou, Zhaocai; Jin, Xia; Wang, Jian-Hua

    2018-05-01

    The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5'-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host's modulation of HIV-1 transcription and latency. Here we revealed that "Sad1 and UNC84 domain containing 2" (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5'-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5'-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. IMPORTANCE Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new

  17. Influenza virus gene expression: viral RNA replication in vivo and in vitro

    Shapiro, G.I.

    1987-01-01

    To develop an overall scheme for the control of influenza virus gene expression, single-stranded M13 DNAs specific for the various genomic segments were used to analyze the synthesis of virus-specific RNAs in infected cells. The results showed that virus infection is divided into two distinct phases. During the early phase, the syntheses of specific virion RNAs (vRNAs), viral mRNAs, and viral proteins were coupled. This phase lasted for 2.5 hours in BHK-21 cells, the time when the rate of synthesis of all the viral mRNAs was maximal. During the late phase, the synthesis of all the vRNAs remained at or near maximum, whereas the rate of synthesis of all the viral mRNAs declined dramatically. Viral mRNA and protein syntheses were also not coupled, as the synthesis of all the viral proteins continued at maximum levels, indicating that protein synthesis during this phase was directed principally by previously synthesized viral mRNAs. Pulses with [ 3 H]uridine and nonaqueous fractionation of cells were used to show that influenza vRNA, like viral mRNAs, are synthesized in the nucleus and efficiently transported to the cytoplasm. In contrast, the full-length transcripts of the vRNAs, the templates for new vRNA synthesis, were synthesized only at early times, and remained sequestered in the nucleus to direct vRNA synthesis throughout infection

  18. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  19. Alterations in cholesterol metabolism restrict HIV-1 trans infection in nonprogressors.

    Rappocciolo, Giovanna; Jais, Mariel; Piazza, Paolo; Reinhart, Todd A; Berendam, Stella J; Garcia-Exposito, Laura; Gupta, Phalguni; Rinaldo, Charles R

    2014-04-29

    ABSTRACT HIV-1-infected nonprogressors (NP) inhibit disease progression for years without antiretroviral therapy. Defining the mechanisms for this resistance to disease progression could be important in determining strategies for controlling HIV-1 infection. Here we show that two types of professional antigen-presenting cells (APC), i.e., dendritic cells (DC) and B lymphocytes, from NP lacked the ability to mediate HIV-1 trans infection of CD4(+) T cells. In contrast, APC from HIV-1-infected progressors (PR) and HIV-1-seronegative donors (SN) were highly effective in mediating HIV-1 trans infection. Direct cis infection of T cells with HIV-1 was comparably efficient among NP, PR, and SN. Lack of HIV-1 trans infection in NP was linked to lower cholesterol levels and an increase in the levels of the reverse cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) in APC but not in T cells. Moreover, trans infection mediated by APC from NP could be restored by reconstitution of cholesterol and by inhibiting ABCA1 by mRNA interference. Importantly, this appears to be an inherited trait, as it was evident in APC obtained from NP prior to their primary HIV-1 infection. The present study demonstrates a new mechanism wherein enhanced lipid metabolism in APC results in remarkable control of HIV-1 trans infection that directly relates to lack of HIV-1 disease progression. IMPORTANCE HIV-1 can be captured by antigen-presenting cells (APC) such as dendritic cells and transferred to CD4 helper T cells, which results in greatly enhanced viral replication by a mechanism termed trans infection. A small percentage of HIV-1-infected persons are able to control disease progression for many years without antiretroviral therapy. In our study, we linked this lack of disease progression to a profound inability of APC from these individuals to trans infect T cells. This effect was due to altered lipid metabolism in their APC, which appears to be an inherited trait. These

  20. In vitro nuclear interactome of the HIV-1 Tat protein.

    Gautier, Virginie W

    2009-01-01

    BACKGROUND: One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS: Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION: We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will

  1. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions

    Daisy W. Leung

    2015-04-01

    Full Text Available During viral RNA synthesis, Ebola virus (EBOV nucleoprotein (NP alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48 that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.

  2. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions.

    Leung, Daisy W; Borek, Dominika; Luthra, Priya; Binning, Jennifer M; Anantpadma, Manu; Liu, Gai; Harvey, Ian B; Su, Zhaoming; Endlich-Frazier, Ariel; Pan, Juanli; Shabman, Reed S; Chiu, Wah; Davey, Robert A; Otwinowski, Zbyszek; Basler, Christopher F; Amarasinghe, Gaya K

    2015-04-21

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.

  4. Validation of Performance of the Gen-Probe Human Immunodeficiency Virus Type 1 Viral Load Assay with Genital Swabs and Breast Milk Samples

    DeVange Panteleeff, Dana; Emery, Sandra; Richardson, Barbra A.; Rousseau, Christine; Benki, Sarah; Bodrug, Sharon; Kreiss, Joan K.; Overbaugh, Julie

    2002-01-01

    Human immunodeficiency type 1 (HIV-1) continues to spread at an alarming rate. The virus may be transmitted through blood, genital secretions, and breast milk, and higher levels of systemic virus in the index case, as measured by plasma RNA viral load, have been shown to correlate with increased risk of transmitting HIV-1 both vertically and sexually. Less is known about the correlation between transmission and HIV-1 levels in breast milk or genital secretions, in part because reliable quantitative assays to detect HIV-1 in these fluids are not available. Here we show that the Gen-Probe HIV-1 viral load assay can be used to accurately quantify viral load in expressed breast milk and in cervical and vaginal samples collected on swabs. Virus could be quantified from breast milk and swab samples spiked with known amounts of virus, including HIV-1 subtypes A, C, and D. As few as 10 copies of HIV-1 RNA could be detected above background threshold levels in ≥77% of assays performed with spiked breast milk supernatants and mock swabs. In genital swab samples from HIV-1-infected women, similar levels of HIV-1 RNA were consistently detected in duplicate swabs taken from the same woman on the same clinic visit, suggesting that the RNA values from a single swab sample can be used to measure genital viral load. PMID:12409354

  5. [Analysis of the results of the 2010 External Quality Control Program of the Spanish Society of Infectious Diseases and Clinical Microbiology for HIV-1, HCV, and HBV viral loads].

    Orta Mira, Nieves; Serrano, María del Remedio Guna; Martínez, José-Carlos Latorre; Ovies, María Rosario; Poveda, Marta; de Gopegui, Enrique Ruiz; Cardona, Concepción Gimeno

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1) and hepatitis B (HBV) and C virus (HCV) viral load determinations are among the most important markers for the follow-up of patients infected with these viruses. External quality control tools are crucial to ensure the accuracy of the results obtained by microbiology laboratories. This article summarized the results obtained in the 2010 External Quality Control Program of the Spanish Society of Infectious Diseases and Clinical Microbiology for HIV-1, HCV, and HBV viral loads and HCV genotyping. In the HIV-1 program, a total of five standards were sent. One standard consisted of seronegative human plasma, while the remaining four contained plasma from three different viremic patients, in the range of 3-5 log(10) copies/mL; two of these standards were identical, with the aim of determining repeatability. A significant proportion of the laboratories (22.6% on average) obtained values out of the accepted range (mean ± 0.2 log(10)copies/mL), depending on the standard and on the method used for quantification. Repeatability was very good, with up to 95% of laboratories reporting results within the limits (Δ<0.5 log(10)copies/mL). The HBV and HCV program consisted of two standards with different viral load contents. Most of the participants, 86.1% in the case of HCV and 87.1% in HBV, obtained all the results within the accepted range (mean ± 1.96 SD log(10)UI/mL). Post-analytical errors due to mistranscription of the results were detected in these controls. Data from this analysis reinforce the utility of proficiency programs to ensure the quality of the results obtained by a particular laboratory, as well as the importance of the post-analytical phase in overall quality. Due to interlaboratory variability, use of the same method and the same laboratory for patient follow-up is advisable. Copyright © 2011 Elsevier España S.L. All rights reserved.

  6. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Nevirapine, sodium concentration and HIV-1 RNA in breast milk and plasma among HIV-infected women receiving short-course antiretroviral prophylaxis

    Salado-Rasmussen, Kirsten; Theilgaard, Zahra Persson; Chiduo, Mercy G.

    2015-01-01

    and breast milk after intrapartum single-dose nevirapine combined with either 1-week tail of Combivir (zidovudine/lamivudine) or single-dose Truvada (tenofovir/emtricitabine). Methods Maternal plasma and bilateral breast milk samples were collected between April 2008 and April 2011 at 1, 4 and 6 weeks...... postpartum from HIV-infected Tanzanian women. Moreover, plasma samples were collected at delivery from mother and infant. Results HIV-1 RNA was quantified in 1,212 breast milk samples from 273 women. At delivery, 96% of the women and 99% of the infants had detectable nevirapine in plasma with a median...... (interquartile range, IQR) of 1.5 μg/mL (0.75–2.20 μg/mL) and 1.04 μg/mL (0.39–1.71 μg/mL), respectively (P women had detectable nevirapine in plasma and breast milk, with a median (IQR) of 0.13 μg/mL (0.13–0.39 μg/mL) and 0.22 μg/mL (0.13–0.34 μg...

  8. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach.

    Zhang, Kaiming; Keane, Sarah C; Su, Zhaoming; Irobalieva, Rossitza N; Chen, Muyuan; Van, Verna; Sciandra, Carly A; Marchant, Jan; Heng, Xiao; Schmid, Michael F; Case, David A; Ludtke, Steven J; Summers, Michael F; Chiu, Wah

    2018-03-06

    Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS] 2 ; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2 H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Determining mutant spectra of three RNA viral samples using ultra-deep sequencing

    Chen, H

    2012-06-06

    RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

  10. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-01-01

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites

  11. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    Di Nunzio, Francesca, E-mail: francesca.di-nunzio@pasteur.fr [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Fricke, Thomas [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Miccio, Annarita [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Valle-Casuso, Jose Carlos; Perez, Patricio [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Souque, Philippe [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Rizzi, Ermanno; Severgnini, Marco [Institute of Biomedical Technologies, CNR, Milano (Italy); Mavilio, Fulvio [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Genethon, Evry (France); Charneau, Pierre [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Diaz-Griffero, Felipe, E-mail: felipe.diaz-griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States)

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  12. NMR Studies of the Structure and Function of the HIV-1 5′-Leader

    Sarah C. Keane

    2016-12-01

    Full Text Available The 5′-leader of the human immunodeficiency virus type 1 (HIV-1 genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5′-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.

  13. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation

    Ding, Donglin; Qu, Xiying; Li, Lin; Zhou, Xin; Liu, Sijie; Lin, Shiguan; Wang, Pengfei; Liu, Shaohui; Kong, Chuijin; Wang, Xiaohui; Liu, Lin; Zhu, Huanzhang

    2013-01-01

    Understanding the mechanism of HIV-1 latency is crucial to eradication of the viral reservoir in HIV-1-infected individuals. However, the role of histone methyltransferase (HMT) G9a-like protein (GLP) in HIV-1 latency is still unclear. In the present work, we established four clonal cell lines containing HIV-1 vector. We found that the integration sites of most clonal cell lines favored active gene regions. However, we also observed hypomethylation of CpG of HIV 5′LTR in all four clonal cell lines. Additionally, 5′-deoxy-5′-methylthioadenosine (MTA), a broad-spectrum histone methyltransferase inhibitor, was used to examine the role of histone methylation in HIV-1 latency. MTA was found to decrease the level of H3K9 dimethylation, causing reactivation of latent HIV-1 in C11 cells. GLP knockdown by small interfering RNA clearly induced HIV-1 LTR expression. Results suggest that GLP may play a significant role in the maintenance of HIV-1 latency by catalyzing dimethylation of H3K9. - Highlights: ► We have established an in vitro model of HIV-1 latency. ► The integration sites of most clonal cell lines favor in active gene regions. ► Hypomethylation occurs in CpG islands of HIV 5′LTR in all four clonal cell lines. ► MTA can reactivate latent HIV-1 by decreasing the level of H3K9 me2 in C11 cells. ► HMT GLP may play a significant role in the maintenance of HIV-1 latency

  14. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy.

    Araínga, Mariluz; Edagwa, Benson; Mosley, R Lee; Poluektova, Larisa Y; Gorantla, Santhi; Gendelman, Howard E

    2017-03-09

    Despite improved clinical outcomes seen following antiretroviral therapy (ART), resting CD4+ T cells continue to harbor latent human immunodeficiency virus type one (HIV-1). However, such cells are not likely the solitary viral reservoir and as such defining where and how others harbor virus is imperative for eradication measures. To such ends, we used HIV-1 ADA -infected NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mice reconstituted with a human immune system to explore two long-acting ART regimens investigating their abilities to affect viral cell infection and latency. At 6 weeks of infection animals were divided into four groups. One received long-acting (LA) cabotegravir (CAB) and rilpivirine (RVP) (2ART), a second received LA CAB, lamivudine, abacavir and RVP (4ART), a third were left untreated and a fourth served as an uninfected control. After 4 weeks of LA ART treatment, blood, spleen and bone marrow (BM) cells were collected then phenotypically characterized. CD4+ T cell subsets, macrophages and hematopoietic progenitor cells were analyzed for HIV-1 nucleic acids by droplet digital PCR. Plasma viral loads were reduced by two log 10 or to undetectable levels in the 2 and 4ART regimens, respectively. Numbers and distributions of CD4+ memory and regulatory T cells, macrophages and hematopoietic progenitor cells were significantly altered by HIV-1 infection and by both ART regimens. ART reduced viral DNA and RNA in all cell and tissue compartments. While memory cells were the dominant T cell reservoir, integrated HIV-1 DNA was also detected in the BM and spleen macrophages in both regimen-treated mice. Despite vigorous ART regimens, HIV-1 DNA and RNA were easily detected in mature macrophages supporting their potential role as an infectious viral reservoir.

  15. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study.

    Scagnolari, Carolina; Corano Scheri, Giuseppe; Selvaggi, Carla; Schietroma, Ivan; Najafi Fard, Saeid; Mastrangelo, Andrea; Giustini, Noemi; Serafino, Sara; Pinacchio, Claudia; Pavone, Paolo; Fanello, Gianfranco; Ceccarelli, Giancarlo; Vullo, Vincenzo; d'Ettorre, Gabriella

    2016-09-27

    Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients' quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial.

  16. Impact of collection method on assessment of semen HIV RNA viral load.

    Brendan J W Osborne

    Full Text Available The blood HIV RNA viral load is the best-defined predictor of HIV transmission, in part due to ease of measurement and the correlation of blood and genital tract (semen or cervico-vaginal viral load, although recent studies found semen HIV RNA concentration to be a stronger predictor of HIV transmission. There is currently no standardized method for semen collection when measuring HIV RNA concentration. Therefore, we compared two collection techniques in order to study of the impact of antiretroviral therapy on the semen viral load.Semen was collected by masturbation from HIV-infected, therapy-naïve men who have sex with men (MSM either undiluted (Visit 1 or directly into transport medium (Visit 2. Seminal plasma was then isolated, and the HIV RNA concentration obtained with each collection technique was measured and corrected for dilution if necessary. Collection of semen directly into transport medium resulted in a median HIV RNA viral load that was 0.4 log10 higher than undiluted samples.The method of semen collection is an important consideration when quantifying the HIV RNA viral load in this compartment.

  17. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  18. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus.

    Wang, Fangquan; Li, Wenqi; Zhu, Jinyan; Fan, Fangjun; Wang, Jun; Zhong, Weigong; Wang, Ming-Bo; Liu, Qing; Zhu, Qian-Hao; Zhou, Tong; Lan, Ying; Zhou, Yijun; Yang, Jie

    2016-05-11

    Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21-24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  19. Treatment-associated polymorphisms in protease are significantly associated with higher viral load and lower CD4 count in newly diagnosed drug-naive HIV-1 infected patients

    K. Theys (Kristof); K. Deforche; J. Vercauteren (Jurgen); P. Libin (Pieter); D.A.M.C. van de Vijver (David); J. Albert (Jan); B. Åsjö (Birgitta); M. Bruckova (Marie); R.J. Camacho (Ricardo Jorge); B. Clotet (Bonaventura); Z. Grossman (Zehava); A. Horban (Andrzej); C. Kücherer (Claudia); D. Paraskevis (Dimitrios); E. Puchhammer-Stöckl (Elisabeth); C. Riva (Chiara); L. Ruiz (Lidia); J.-C. Schmit (Jean-Claude); R. Schuurman (Rob); A. Sonnerborg (Anders); D. Stanekova (Danica); D. Struck (Daniel); K. van Laethem (Kristel); A.M.J. Wensing (Annemarie); E. Puchhammer-Stockl E. (Elisabeth); M. Sarcletti (M.); B. Schmied (B.); M. Geit (M.); G. Balluch (G.); A.M. Vandamme (Anne Mieke); I. Derdelinck (Inge); A. Sasse (A.); M. Bogaert (M.); H. Ceunen (H.); A. de Roo (Annie); M. De Wit (Meike); F. Echahidi (F.); K. Fransen (K.); J.-C. Goffard (J.); P. Goubau (Patrick); E. Goudeseune (E.); J.-C. Yombi (J.); P. Lacor (Patrick); C. Liesnard (C.); M. Moutschen (M.); L.A. Pierard; R. Rens (R.); J. Schrooten; D. Vaira (D.); A. van den Heuvel (A.); B. van der Gucht (B.); M. van Ranst (Marc); E. van Wijngaerden (Eric); T. Vandercam; M. Vekemans (M.); C. Verhofstede; N. Clumeck (N.); K. van Laethem (K.); L.G. Kostrikis (Leondios); I. Demetriades (I.); I. Kousiappa (Ioanna); V.L. Demetriou (Victoria); J. Hezka (Johana); M. Linka (Marek); L. Machala (L.); L.B. Jrgensen (L.); J. Gerstoft (J.); L. Mathiesen (L.); C. Pedersen (Court); C. Nielsen (Claus); A. Laursen (A.); B. Kvinesdal (B.); K. Liitsola (Kirsi); M. Ristola (M.); J. Suni (J.); J. Sutinen (J.); K. Korn (Klaus); C. K̈ucherer (C.); P. Braun (P.); G. Poggensee (G.); M. Däumer (M.); D. Eberle (David); O. Hamouda (Osamah); H. Heiken (H.); R. Kaiser (Rolf); H. Knechten (H.); H. M̈uller (H.); S. Neifer (S.); H. Walter (Hauke); B. Gunsenheimer-Bartmeyer (B.); T. Harrer (T.); A. Hatzakis (Angelos); E. Hatzitheodorou (E.); C. Issaris (C.); C. Haida (C.); A. Zavitsanou (A.); G. Magiorkinis (Gkikas); M. Lazanas (M.); L. Chini; N. Magafas (N.); N. Tsogas (N.); V. Paparizos (V.); S. Kourkounti (S.); A. Antoniadou (A.); A. Papadopoulos (A.); P. Panagopoulos (P.); G. Poulakou (G.); V. Sakka (V.); G. Chryssos (G.); S. Drimis (S.); P. Gargalianos (P.); M. Lelekis (M.); G. Xilomenos (G.); M. Psichogiou (M.); G.L. Daikos (George); G. Panos (G.); G. Haratsis (G.); T. Kordossis (T.); A. Kontos (Angelos); G. Koratzanis (G.); M. Theodoridou (M.); G. Mostrou (G.); V. Spoulou (V.); W. Hall (W.); C. de Gascun (Cillian); C. Byrne (C.); M. Duffy (M.); P. Bergin; D. Reidy (D.); G. Farrell; J. Lambert (Julien); E. O'Connor (E.); A. Rochford (A.); J. Low (J.); P. Coakely (P.); S. Coughlan (Suzie); I. Levi (I.); D. Chemtob (D.); C. Balotta (Claudia); C. Mussini (C.); I. Caramma (I.); A. Capetti (A.); M.C. Colombo (M.); C. Rossi (Cesare); F. Prati (Francesco); F. Tramuto (F.); F. Vitale (F.); M. Ciccozzi (M.); G. Angarano (Guiseppe); G. Rezza (G.); R. Hemmer (R.); V. Arendt (V.); T. Staub (T.); F. Schneider (F.); F. Roman (Francois); C.A.B. Boucher (Charles); P.H.M. van Bentum (P. H M); K. Brinkman (Kees); E.L.M. Op de Coul (Eline); M.E. van der Ende (Marchina); I.M. Hoepelman (Ilja Mohandas); M.E.E. van Kasteren (Marjo); J. Juttmann (Job); M. Kuipers (M.); N. Langebeek (Nienke); C. Richter (C.); R.M.W.J. Santegoets (R. M W J); L. Schrijnders-Gudde (L.); R. Schuurman (Rob); B.J.M. van de Ven (B. J M); B. Asjö (Birgitta); V. Ormaasen (Vidar); P. Aavitsland (P.); J. Stanczak (J.); G.P. Stanczak (G.); E. Firlag-Burkacka (E.); A. Wiercinska-Drapalo (A.); E. Jablonowska (E.); E. Malolepsza (E.); M. Leszczyszyn-Pynka (M.); W. Szata (W.); A. de Palma (Andre); F. Borges (F.); T. Paix̃ao (T.); V. Duque (V.); F. Aráujo (F.); M. Stanojevic (Maja); D.J. Jevtovic (D.); D. Salemovic (D.); M. Habekova (M.); M. Mokras (M.); P. Truska (P.); M. Poljak (Mario); D.Z. Babic (Dunja); J. Tomazic (J.); S. Vidmar (Suzanna); P. Karner (P.); C. Gutíerrez (C.); C. deMendoza (C.); I. Erkicia (I.); P. Domingo (P.); X. Camino (X.); M.A. Galindo (Miguel Angel); J.L. Blanco (J.); M. Leal (M.); A. Masabeu (A.); A. Guelar (A.); J.M. Llibre (Josep M.); N. Margall (N.); C. Iribarren (Carlos); S. Gutierrez (S.); J.F. Baldov́i (J.); C.E. Pedreira (Carlos Eduardo); J.M. Gatell (J.); S. Moreno (S.); C. de Mendoza (Carmen); V. Soriano (Virtudes); A. Blaxhult (A.); A. Heidarian (A.); A. Karlsson (A.); K. Aperia-Peipke (K.); I.-M. Bergbrant (I.); M. Gissĺen (M.); M. Svennerholm (M.); P. Bj̈orkman (P.); G. Bratt (G.); M. Carlsson (M.); H. Ekvall (H.); M. Ericsson (M.); M. Ḧofer (M.); B. Johansson (Bert); N. Kuylenstierna (N.); K. Ljungberg (Karl); S. Mäkitalo (S.); A. Strand; K. Öberg (Kjell); T. Berg (Trine)

    2012-01-01

    textabstractBackground: The effect of drug resistance transmission on disease progression in the newly infected patient is not well understood. Major drug resistance mutations severely impair viral fitness in a drug free environment, and therefore are expected to revert quickly. Compensatory

  20. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  1. Circular viral DNA detection and junction sequence analysis from PBMC of SHIV-infected cynomolgus monkeys with undetectable virus plasma RNA

    Cara, Andrea; Maggiorella, Maria Teresa; Bona, Roberta; Sernicola, Leonardo; Baroncelli, Silvia; Negri, Donatella R.M.; Leone, Pasqualina; Fagrouch, Zahra; Heeney, Jonathan; Titti, Fausto; Cafaro, Aurelio; Ensoli, Barbara

    2004-01-01

    Extrachromosomal forms of human immunodeficiency virus (HIV)-1 can be detected in peripheral blood mononuclear cell (PBMC) from HIV-infected patients in the absence of detectable viral replication and are thought to be a sign of active but cryptic virus replication. No information, however, are available on whether these forms are also present in animal models for acquired immunodeficiency syndrome (AIDS) and on their relation with other methods of detection of virus replication. To this aim, a polymerase chain reaction (PCR) approach was used to detect and analyze unintegrated circular 2-LTR-containing forms in PBMC of simian human immunodeficiency virus (SHIV)89.6P infected cynomolgus monkeys with RNA levels ranging between 1.8x10 6 and less than 50 copies/ml of plasma. 2-LTR forms were detected in 96.5% of monkeys' samples above 50 copies/ml of plasma, whereas they were present in 75.8% of monkeys' samples below 50 copies/ml of plasma. Persistence of unintegrated viral DNA in monkeys with undetectable plasma RNA could indicate either stability in non-dividing cells or ongoing low levels of viral replication in dividing cells

  2. Antiviral RNA silencing viral counter defense in plants

    Bucher, E.C.

    2006-01-01

    The research described in this thesis centres around the mechanism of RNA silencing in relation to virus-host interaction, an area of increasing importance. It shows how this recently disclosed mechanism can be used to produce virus-resistant plants. Based on the activity of the RNA silencing

  3. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  4. μ-opioid modulation of HIV-1 coreceptor expressionand HIV-1 replication

    Steele, Amber D.; Henderson, Earl E.; Rogers, Thomas J.

    2003-01-01

    A substantial proportion of HIV-1-infected individuals are intravenous drug users (IVDUs) who abuse opiates. Opioids induce a number of immunomodulatory effects that may directly influence HIV-1 disease progression. In the present report, we have investigated the effect of opioids on the expression of the major HIV-1 coreceptors CXCR4 and CCR5. For these studies we have focused on opiates which are ligands for the μ-opioid receptor. Our results show that DAMGO, a selective μ-opioid agonist, increases CXCR4 and CCR5 expression in both CD3 + lymphoblasts and CD14 + monocytes three- to fivefold. Furthermore, DAMGO-induced elevation of HIV-1 coreceptor expression translates into enhanced replication of both X4 and R5 viral strains of HIV-1. We have confirmed the role of the μ-opioid receptor based on the ability of a μ-opioid receptor-selective antagonist to block the effects of DAMGO. We have also found that morphine enhances CXCR4 and CCR5 expression and subsequently increases both X4 and R5 HIV-1 infection. We suggest that the capacity of μ-opioids to increase HIV-1 coreceptor expression and replication may promote viral binding, trafficking of HIV-1-infected cells, and enhanced disease progression

  5. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.

    Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj

    2014-01-01

    Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. © The Author(s) 2014. Published by Oxford University Press.

  6. Development of Hematopoietic Stem Cell Based Gene Therapy for HIV-1 Infection: Considerations for Proof of Concept Studies and Translation to Standard Medical Practice

    David L. DiGiusto

    2013-11-01

    Full Text Available Over the past 15 years we have been investigating an alternative approach to treating HIV-1/AIDS, based on the creation of a disease-resistant immune system through transplantation of autologous, gene-modified (HIV-1-resistant hematopoietic stem and progenitor cells (GM-HSPC. We propose that the expression of selected RNA-based HIV-1 inhibitors in the CD4+ cells derived from GM-HSPC will protect them from HIV-1 infection and results in a sufficient immune repertoire to control HIV-1 viremia resulting in a functional cure for HIV-1/AIDS. Additionally, it is possible that the subset of protected T cells will also be able to facilitate the immune-based elimination of latently infected cells if they can be activated to express viral antigens. Thus, a single dose of disease resistant GM-HSPC could provide an effective treatment for HIV-1+ patients who require (or desire an alternative to lifelong antiretroviral chemotherapy. We describe herein the results from several pilot clinical studies in HIV-1 patients and our strategies to develop second generation vectors and clinical strategies for HIV-1+ patients with malignancy who require ablative chemotherapy as part of treatment and others without malignancy. The important issues related to stem cell source, patient selection, conditioning regimen and post-infusion correlative studies become increasingly complex and are discussed herein.

  7. Processing sites in the human immunodeficiency virus type 1 (HIV-1 Gag-Pro-Pol precursor are cleaved by the viral protease at different rates

    Lindquist Jeffrey N

    2005-11-01

    Full Text Available Abstract We have examined the kinetics of processing of the HIV-1 Gag-Pro-Pol precursor in an in vitro assay with mature protease added in trans. The processing sites were cleaved at different rates to produce distinct intermediates. The initial cleavage occurred at the p2/NC site. Intermediate cleavages occurred at similar rates at the MA/CA and RT/IN sites, and to a lesser extent at sites upstream of RT. Late cleavages occurred at the sites flanking the protease (PR domain, suggesting sequestering of these sites. We observed paired intermediates indicative of half- cleavage of RT/RH site, suggesting that the RT domain in Gag-Pro-Pol was in a dimeric form under these assay conditions. These results clarify our understanding of the processing kinetics of the Gag-Pro-Pol precursor and suggest regulated cleavage. Our results further suggest that early dimerization of the PR and RT domains may serve as a regulatory element to influence the kinetics of processing within the Pol domain.

  8. Processing sites in the human immunodeficiency virus type 1 (HIV-1) Gag-Pro-Pol precursor are cleaved by the viral protease at different rates.

    Pettit, Steve C; Lindquist, Jeffrey N; Kaplan, Andrew H; Swanstrom, Ronald

    2005-11-01

    We have examined the kinetics of processing of the HIV-1 Gag-Pro-Pol precursor in an in vitro assay with mature protease added in trans. The processing sites were cleaved at different rates to produce distinct intermediates. The initial cleavage occurred at the p2/NC site. Intermediate cleavages occurred at similar rates at the MA/CA and RT/IN sites, and to a lesser extent at sites upstream of RT. Late cleavages occurred at the sites flanking the protease (PR) domain, suggesting sequestering of these sites. We observed paired intermediates indicative of half- cleavage of RT/RH site, suggesting that the RT domain in Gag-Pro-Pol was in a dimeric form under these assay conditions. These results clarify our understanding of the processing kinetics of the Gag-Pro-Pol precursor and suggest regulated cleavage. Our results further suggest that early dimerization of the PR and RT domains may serve as a regulatory element to influence the kinetics of processing within the Pol domain.

  9. Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings.

    Al-Hashimi, Hashim M; Gosser, Yuying; Gorin, Andrey; Hu, Weidong; Majumdar, Ananya; Patel, Dinshaw J

    2002-01-11

    Ground-state dynamics in RNA is a critical precursor for structural adaptation observed ubiquitously in protein-RNA recognition. A tertiary conformational analysis of the stem-loop structural element in the transactivation response element (TAR) from human immunodeficiency virus type 1 (HIV-I) RNA is presented using recently introduced NMR methods that rely on the measurement of residual dipolar couplings (RDC) in partially oriented systems. Order matrix analysis of RDC data provides evidence for inter-helical motions that are of amplitude 46(+/-4) degrees, of random directional character, and that are executed about an average conformation with an inter-helical angle between 44 degrees and 54 degrees. The generated ensemble of TAR conformations have different organizations of functional groups responsible for interaction with the trans-activator protein Tat, including conformations similar to the previously characterized bound-state conformation. These results demonstrate the utility of RDC-NMR for simultaneously characterizing RNA tertiary dynamics and average conformation, and indicate an avenue for TAR complex formation involving tertiary structure capture. Copyright 2001 Academic Press.

  10. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Li Huang

    Full Text Available Highly active antiretroviral therapy (HAART has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  11. Dynamics of 103K/N and 184M/V HIV-1 drug resistant populations: relative comparison in plasma virus RNA versus CD45RO+T cell proviral DNA

    Jakobsen, Martin Roelsgaard; Tolstrup, M; Bertelsen, L

    2007-01-01

    on real-time PCR and amplification refractory mutation system (ARMS). RESULTS: The 103N and 184V mutations were not detected in patients with stable low viremia. Patients previously exposed to mono or dual therapy often carried minor viral populations of either one or both mutations in plasma. The viral......BACKGROUND: Viral populations defined by 103K/N and 184M/V as linked or single mutations in the HIV-1 reverse transcriptase gene were investigated in plasma samples and compared with previous findings in the CD45RO(+)T cell compartment. OBJECTIVE: To develop an ARMS assay for plasma virions...... an unequal distribution of linked-mutation populations in plasma and CD45RO(+)T cells. Furthermore, the linked 103N-184V mutation may be more fit than the single 184V mutation and this linked population emerges rapidly under inadequate drug pressure. Udgivelsesdato: 2007-Jul...

  12. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1).

    Yamaguchi, Koushi; Honda, Mitsuo; Ikigai, Hajime; Hara, Yukihiko; Shimamura, Tadakatsu

    2002-01-01

    Epigallocatechin gallate (EGCg), the major tea catechin, is known as a potent anti-bacterial agent. In addition, anti-tumor promoting, anti-inflammatory, anti-oxidative and antiviral activities have been reported. In the present study, we investigated possible anti-human immunodeficiency virus type-1 (HIV-1) activity of EGCg and its mechanisms of action in the viral life cycle. EGCg impinges on each step of the HIV life cycle. Thus, destruction of the viral particles, viral attachment to cells, post-adsorption entry into cells, reverse transcription (RT), viral production from chronically-infected cells, and the level of expression of viral mRNA, were analyzed using T-lymphoid (H9) and monocytoid (THP-1) cell systems, and antiviral protease activity was measured using a cell-free assay. Inhibitory effects of EGCg on specific binding of the virions to the cellular surfaces and changes in the steady state viral regulation (mRNA expression) due to EGCg were not observed. However, EGCg had a destructive effect on the viral particles, and post-adsorption entry and RT in acutely infected monocytoid cells were significantly inhibited at concentrations of EGCg greater than 1 microM, and protease kinetics were suppressed at a concentration higher than 10 microM in the cell-free study. Viral production by THP-1 cells chronically-infected with HIV-1 was also inhibited in a dose-dependent manner and the inhibitory effect was enhanced by liposome modification of EGCg. As expected, increased viral mRNA production was observed in lipopolysaccharide (LPS)-activated chronically HIV-1-infected cells. This production was significantly inhibited by EGCg treatment of THP-1 cells. In contrast, production of HIV-1 viral mRNA in unstimulated or LPS-stimulated T-lymphoid cells (H9) was not inhibited by EGCg. Anti-HIV viral activity of EGCg may thus result from an interaction with several steps in the HIV-1 life cycle.

  13. Human CNS cultures exposed to HIV-1 gp120 reproduce dendritic injuries of HIV-1-associated dementia

    Hammond Robert R

    2004-05-01

    Full Text Available Abstract HIV-1-associated dementia remains a common subacute to chronic central nervous system degeneration in adult and pediatric HIV-1 infected populations. A number of viral and host factors have been implicated including the HIV-1 120 kDa envelope glycoprotein (gp120. In human post-mortem studies using confocal scanning laser microscopy for microtubule-associated protein 2 and synaptophysin, neuronal dendritic pathology correlated with dementia. In the present study, primary human CNS cultures exposed to HIV-1 gp120 at 4 weeks in vitro suffered gliosis and dendritic damage analogous to that described in association with HIV-1-associated dementia.

  14. Formation of stable and functional HIV-1 nucleoprotein complexes in vitro.

    Tanchou, V; Gabus, C; Rogemond, V; Darlix, J L

    1995-10-06

    HIV genomic RNA resides within the nucleocapsid, in the interior of the virus, which serves to protect the RNA against nuclease degradation and to promote its reverse transcription. To investigate the role of nucleocapsid protein (NCp7) in the stability and replication of genomic RNA within the nucleocapsid, we used NCp7, reverse transcriptase (RT) and RNAs representing the 5' and 3' regions of the genome to reconstitute functional HIV-1 nucleocapsids. The nucleoprotein complexes generated in vitro were found to be stable, which, according to biochemical and genetic data, probably results from the tight binding of NCp7 molecules to the RNA and strong NCp7/NCp7 interactions. The nucleoprotein complexes efficiently protected viral RNA against RNase degradation and, at the same time, promoted viral DNA synthesis by RT. DNA strand transfer from the 5' to the 3' RNA template was very efficient in nucleoprotein complexes formed in the presence of both RNAs, but not when the RNAs were in separate complexes. These results indicate that the in vitro reconstituted HIV-1 nucleoprotein complexes function like virion nucleocapsids and thus provide a way to study at the molecular level this viral substructure and the synthesis of proviral DNA, and to search for new anti-HIV agents.

  15. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.

    Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J

    2017-05-01

    Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Demonstration of a novel HIV-1 restriction phenotype from a human T cell line.

    Yanxing Han

    2008-07-01

    Full Text Available Although retroviruses may invade host cells, a productive infection can be established only after the virus counteracts inhibition from different types of host restriction factors. Fv1, APOBEC3G/F, TRIM5alpha, ZAP, and CD317 inhibit the replication of different retroviruses by interfering with viral uncoating, reverse transcription, nuclear import, RNA stability, and release. In humans, although APOBEC3G/3F and CD317 block HIV-1 replication, their antiviral activities are neutralized by viral proteins Vif and Vpu. So far, no human gene has been found to effectively block wild type HIV-1 replication under natural condition. Thus, identification of such a gene product would be of great medical importance for the development of HIV therapies.In this study, we discovered a new type of host restriction against the wild type HIV-1 from a CD4/CXCR4 double-positive human T cell line. We identified a CEM-derived cell line (CEM.NKR that is highly resistant to productive HIV-1 infection. Viral production was reduced by at least 1000-fold when compared to the other permissive human T cell lines such as H9, A3.01, and CEM-T4. Importantly, this resistance was evident at extremely high multiplicity of infection. Further analyses demonstrated that HIV-1 could finish the first round of replication in CEM.NKR cells, but the released virions were poorly infectious. These virions could enter the target cells, but failed to initiate reverse transcription. Notably, this restriction phenotype was also present in CEM.NKR and 293T heterokaryons.These results clearly indicate that CEM.NKR cells express a HIV inhibitory gene(s. Further characterization of this novel gene product(s will reveal a new antiretroviral mechanism that directly inactivates wild type HIV-1.

  17. Impact of Antiretroviral Regimens on CSF Viral Escape in a Prospective Multicohort Study of ART-Experienced HIV-1 Infected Adults in the United States.

    Mukerji, Shibani S; Misra, Vikas; Lorenz, David R; Uno, Hajime; Morgello, Susan; Franklin, Donald; Ellis, Ronald J; Letendre, Scott; Gabuzda, Dana

    2018-04-03

    Cerebrospinal fluid (CSF) viral escape occurs in 4-20% of HIV-infected adults, yet the impact of antiretroviral therapy (ART) on CSF escape is unclear. Prospective study of 1063 participants with baseline plasma viral load (VL) ≤400 copies/ml between 2005-2016. Odds ratio for ART regimens (PI with nucleoside reverse transcriptase inhibitor [PI+NRTI] versus other ART) and CSF escape was estimated using mixed-effects models. Drug resistance mutation frequencies were calculated. Baseline mean age was 46, median plasma VL, CD4 nadir, and CD4 count were 50 copies/mL, 88 cells/μL, and 424 cells/μL, respectively; 48% on PI+NRTI, 33% on non-NRTI, and 6% on integrase inhibitors. During median follow-up of 4.4 years, CSF escape occurred in 77 participants (7.2%). PI+NRTI use was an independent predictor of CSF escape (OR 3.1 [95% CI 1.8-5.0]) in adjusted analyses and models restricted to plasma VL ≤50 copies/ml (pCSF viral escape than non-ATV PI+NRTI regimens. Plasma and CSF M184V/I combined with thymidine-analog mutations were more frequent in CSF escape versus no escape (23% vs. 2.3%). Genotypic susceptibility score-adjusted CNS penetration-effectiveness (CPE) values were calculated for CSF escape with M184V/I mutations (n=34). Adjusted CPE values were low (CSF and plasma in 27 (79%) and 13 (38%), respectively, indicating suboptimal CNS drug availability. PI+NRTI regimens are independent predictors of CSF escape in HIV-infected adults. Reduced CNS ART bioavailability may predispose to CSF escape in patients with M184V/I mutations. Optimizing ART regimens may reduce risk of CSF escape.

  18. Expression of HIV-1 Vpu leads to loss of the viral restriction factor CD317/Tetherin from lipid rafts and its enhanced lysosomal degradation.

    Ruth Rollason

    Full Text Available CD317/tetherin (aka BST2 or HM1.24 antigen is an interferon inducible membrane protein present in regions of the lipid bilayer enriched in sphingolipids and cholesterol (often termed lipid rafts. It has been implicated in an eclectic mix of cellular processes including, most notably, the retention of fully formed viral particles at the surface of cells infected with HIV and other enveloped viruses. Expression of the HIV viral accessory protein Vpu has been shown to lead to intracellular sequestration and degradation of tetherin, thereby counteracting the inhibition of viral release. There is evidence that tetherin interacts directly with Vpu, but it remains unclear where in the cell this interaction occurs or if Vpu expression affects the lipid raft localisation of tetherin. We have addressed these points using biochemical and cell imaging approaches focused on endogenous rather than ectopically over-expressed tetherin. We find i no evidence for an interaction between Vpu and endogenous tetherin at the cell surface, ii the vast majority of endogenous tetherin that is at the cell surface in control cells is in lipid rafts, iii internalised tetherin is present in non-raft fractions, iv expression of Vpu in cells expressing endogenous tetherin leads to the loss of tetherin from lipid rafts, v internalised tetherin enters early endosomes, and late endosomes, in both control cells and cells expressing Vpu, but the proportion of tetherin molecules destined for degradation rather than recycling is increased in cells expressing Vpu vi lysosomes are the primary site for degradation of endogenous tetherin in cells expressing Vpu. Our studies underlie the importance of studying endogenous tetherin and let us propose a model in which Vpu intercepts newly internalised tetherin and diverts it for lysosomal destruction rather than recycling to the cell surface.

  19. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins

    Marcio Hedil

    2016-07-01

    Full Text Available The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  20. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins.

    Hedil, Marcio; Kormelink, Richard

    2016-07-23

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  1. HIV-1 envelope glycoprotein

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  2. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection.

    Evgeny A Glazov

    Full Text Available MicroRNA (miRNA and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals.

  3. Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Spanò, M.; Lillo, F.; Miccichè, S.; Mantegna, R. N.

    2008-10-01

    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups, hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact, we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.

  4. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs

    Lim, Chun Shen; Brown, Chris M.

    2018-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101

  5. MicroRNA-210, MicroRNA-331, and MicroRNA-7 Are Differentially Regulated in Treated HIV-1–Infected Individuals and Are Associated With Markers of Systemic Inflammation

    Ballegaard, Vibe; Ralfkiaer, Ulrik; Pedersen, Karin K.

    2017-01-01

    in inflammation and CVD risk and to investigate associations between these and systemic inflammation. Methods: In a screening cohort including 14 HIV-1-infected individuals and 9 uninfected controls, microarray profiling was performed using peripheral blood mononuclear cells (PBMCs). Differentially regulated mi......-sensitivity C-reactive protein, lipopolysaccharide (LPS), cytomegalovirus immunoglobulin G, lipids, and fasting glucose were measured, and associations with validated miRNAs were assessed with multiple linear regression analysis. Results: Upregulation of miR-210, miR-7, and miR-331 was found in PBMCs from HIV-1...... with tumor necrosis factor-alpha (P = 0.004). MiR-7 in PBMC was positively associated with interleukin-6 (P = 0.025) and fasting glucose (P = 0.005), whereas miR-331 was negatively associated with LPS (P = 0.006). In PBMCs from HIV-1-infected individuals with low cytomegalovirus immunoglobulin G, miR-7, mi...

  6. Factors associated with recent unsuppressed viral load in HIV-1-infected patients in care on first-line antiretroviral therapy in South Africa.

    Joseph Davey, D; Abrahams, Z; Feinberg, M; Prins, M; Serrao, C; Medeossi, B; Darkoh, E

    2018-05-01

    Unsuppressed viral load (VL) in patients on antiretroviral therapy (ART) occurs when treatment fails to suppress a person's VL and is associated with decreased survival and increased HIV transmission. The objective of this study was to evaluate factors associated with unsuppressed VL (VL > 400 copies/ml) in patients currently in care on first-line ART for ≥ 6 months attending South African public healthcare facilities. We analysed electronic medical records of ART patients with a VL result on record who started ART between January 2004 and April 2016 from 271 public health facilities. We present descriptive and multivariable logistic regression for unsuppressed VL at last visit using a priori variables. We included 244,370 patients (69% female) on first-line ART in April 2016 for ≥ 6 months. Median age at ART start was 33 years (7% were < 15 years old). Median duration on ART was 3.7 years. Adjusting for other variables, factors associated with having an unsuppressed VL at the most recent visit among patients in care included: (1) < 15 years old at ART start (adjusted odds ratio [aOR]=2.58; 95% CI = 2.37, 2.81) versus 15-49 years at ART start, (2) male gender (aOR = 1.29; 95% CI = 1.25, 1.35), (3) 6-12 months on ART versus longer (aOR = 1.34; 95% CI = 1.29, 1.40), (4) on tuberculosis (TB) treatment (aOR = 1.78; 95% CI = 1.48, 2.13), and (5) prior ART exposure versus none (aOR = 1.20; 95% CI = 1.08, 1.32). Approximately 85% of the ART cohort who were in care had achieved viral suppression, though men, youth/adolescents, patients with prior ART exposure, those with short duration of ART, and patients on TB treatment had increased odds of not achieving viral suppression. There is a need to develop and evaluate targeted interventions for ART patients in care who are at high risk of unsuppressed VL.

  7. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  8. Evolution of Tertiary Structure of Viral RNA Dependent Polymerases

    Černý, Jiří; Černá, B.; Valdés, James J.; Grubhoffer, Libor; Růžek, Daniel

    2014-01-01

    Roč. 9, č. 5 (2014), e96070 E-ISSN 1932-6203 R&D Projects: GA ČR GAP502/11/2116; GA ČR GAP302/12/2490; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Q-BETA replicase * C virus RNA * crystal structure Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  9. Differential contributions of ubiquitin-modified APOBEC3G lysine residues to HIV-1 Vif-induced degradation

    Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here we show that A3G po...

  10. 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection

    Bruce W. Banfield

    2014-09-01

    Full Text Available In recent years, important linkages have been made between RNA granules and human disease processes. On June 8-10 of this year, we hosted a new symposium, dubbed the 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection. This symposium brought together experts from diverse research disciplines ranging from cancer and neuroscience to infectious disease. This report summarizes speaker presentations and highlights current challenges in the field.

  11. Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors

    Kaddis Maldonado, Rebecca J.; Parent, Leslie J.

    2016-01-01

    Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag–Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison. PMID:27657110

  12. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    Hyde, Jennifer L. [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Diamond, Michael S., E-mail: diamond@borcim.wustl.edu [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110 (United States); Pathology & Immunology, Washington University School of Medicine, St Louis., MO 63110 (United States); The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis., MO 63110 (United States)

    2015-05-15

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.

  13. Influenza vaccination of HIV-1-positive and HIV-1-negative former intravenous drug users.

    Amendola, A; Boschini, A; Colzani, D; Anselmi, G; Oltolina, A; Zucconi, R; Begnini, M; Besana, S; Tanzi, E; Zanetti, A R

    2001-12-01

    The immunogenicity of an anti-influenza vaccine was assessed in 409 former intravenous drug user volunteers and its effect on the levels of HIV-1 RNA, proviral DNA and on CD4+ lymphocyte counts in a subset HIV-1-positive subjects was measured. HIV-1-positive individuals (n = 72) were divided into three groups on the basis of their CD4+ lymphocyte counts, while the 337 HIV-1-negative participants were allocated into group four. Haemagglutination inhibiting (HI) responses varied from 45.8 to 70% in the HIV-1-positive subjects and were significantly higher in group four (80.7% responses to the H1N1 strain, 81.6% to the H3N2 strain, and 83% to the B strain). The percentage of subjects with HI protective antibody titres (> or = 1:40) increased significantly after vaccination, especially in HIV-1 uninfected subjects. Immunization caused no significant changes in CD4+ counts and in neither plasma HIV-1 RNA nor proviral DNA levels. Therefore, vaccination against influenza may benefit persons infected by HIV-1. Copyright 2001 Wiley-Liss, Inc.

  14. Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging

    Narayanan, Krishna; Makino, Shinji

    2001-01-01

    Murine coronavirus mouse hepatitis virus (MHV) produces a genome-length mRNA, mRNA 1, and six or seven species of subgenomic mRNAs in infected cells. Among these mRNAs, only mRNA 1 is efficiently packaged into MHV particles. MHV N protein binds to all MHV mRNAs, whereas envelope M protein interacts only with mRNA 1. This M protein-mRNA 1 interaction most probably determines the selective packaging of mRNA 1 into MHV particles. A short cis-acting MHV RNA packaging signal is necessary and suffi...

  15. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    ABSTRACT During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. IMPORTANCE During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful

  16. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor.

    Zhao, Wei; Jardine, Paul J; Grimes, Shelley

    2015-12-01

    During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful molecular motor

  17. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    Leitner, Thomas [Los Alamos National Laboratory; Campbell, Mary S [UNIV OF WASHINGTON; Mullins, James I [UNIV OF WASHINGTON; Hughes, James P [UNIV OF WASHINGTON; Wong, Kim G [UNIV OF WASHINGTON; Raugi, Dana N [UNIV OF WASHINGTON; Scrensen, Stefanie [UNIV OF WASHINGTON

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  18. Multi-resistance strategy for viral diseases and short hairpin RNA verification method in pigs

    Jong-nam Oh

    2018-04-01

    Full Text Available Objective Foot and mouth disease (FMD and porcine reproductive and respiratory syndrome (PRRS are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV and PRRS virus (PRRSV, the present study introduced two genetic modification techniques to porcine cells. Methods First, cluster of differentiation 163 (CD163, the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7 gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

  19. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus...

  20. Detection of Viral RNA in Tissues following Plasma Clearance from an Ebola Virus Infected Patient.

    Mirella Biava

    2017-01-01

    Full Text Available An unprecedented Ebola virus (EBOV epidemic occurred in 2013-2016 in West Africa. Over this time the epidemic exponentially grew and moved to Europe and North America, with several imported cases and many Health Care Workers (HCW infected. Better understanding of EBOV infection patterns in different body compartments is mandatory to develop new countermeasures, as well as to fully comprehend the pathways of human-to-human transmission. We have longitudinally explored the persistence of EBOV-specific negative sense genomic RNA (neg-RNA and the presence of positive sense RNA (pos-RNA, including both replication intermediate (antigenomic-RNA and messenger RNA (mRNA molecules, in the upper and lower respiratory tract, as compared to plasma, in a HCW infected with EBOV in Sierra Leone, who was hospitalized in the high isolation facility of the National Institute for Infectious Diseases "Lazzaro Spallanzani" (INMI, Rome, Italy. We observed persistence of pos-RNA and neg-RNAs in longitudinally collected specimens of the lower respiratory tract, even after viral clearance from plasma, suggesting possible local replication. The purpose of the present study is to enhance the knowledge on the biological features of EBOV that can contribute to the human-to-human transmissibility and to develop effective intervention strategies. However, further investigation is needed in order to better understand the clinical meaning of viral replication and shedding in the respiratory tract.

  1. Dengue viral RNA levels in peripheral blood mononuclear cells are associated with disease severity and preexisting dengue immune status.

    Anon Srikiatkhachorn

    Full Text Available Infection with dengue viruses (DENV causes a wide range of manifestations from asymptomatic infection to a febrile illness called dengue fever (DF, to dengue hemorrhagic fever (DHF. The in vivo targets of DENV and the relation between the viral burden in these cells and disease severity are not known.The levels of positive and negative strand viral RNA in peripheral blood monocytes, T/NK cells, and B cells and in plasma of DF and DHF cases were measured by quantitative RT-PCR.Positive strand viral RNA was detected in monocytes, T/NK cells and B cells with the highest amounts found in B cells. Viral RNA levels in CD14+ cells and plasma were significantly higher in DHF compared to DF, and in cases with a secondary infection compared to those undergoing a primary infection. The distribution of viral RNA among cell subpopulations was similar in DF and DHF cases. Small amounts of negative strand RNA were found in a few cases only. The severity of plasma leakage correlated with viral RNA levels in plasma and in CD14+ cells.B cells were the principal cells containing DENV RNA in peripheral blood, but overall there was little active DENV RNA replication detectable in peripheral blood mononuclear cells (PBMC. Secondary infection and DHF were associated with higher viral burden in PBMC populations, especially CD14+ monocytes, suggesting that viral infection of these cells may be involved in disease pathogenesis.

  2. The HIV-1 integrase-LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity

    Amadori, Céline; Ubeles van der Velden, Yme; Bonnard, Damien; Orlov, Igor; van Bel, Nikki; Le Rouzic, Erwann; Miralles, Laia; Brias, Julie; Chevreuil, Francis; Spehner, Daniele; Chasset, Sophie; Ledoussal, Benoit; Mayr, Luzia; Moreau, François; García, Felipe; Gatell, José; Zamborlini, Alessia; Emiliani, Stéphane; Ruff, Marc; Klaholz, Bruno P.; Moog, Christiane; Berkhout, Ben; Plana, Montserrat; Benarous, Richard

    2017-01-01

    HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF

  3. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.

    Hui Feng

    Full Text Available BACKGROUND: The specific interaction between hepatitis B virus (HBV polymerase (P protein and the ε RNA stem-loop on pregenomic (pg RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP, to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.

  4. Evaluation of a cost effective in-house method for HIV-1 drug resistance genotyping using plasma samples.

    Devidas N Chaturbhuj

    Full Text Available OBJECTIVES: Validation of a cost effective in-house method for HIV-1 drug resistance genotyping using plasma samples. DESIGN: The validation includes the establishment of analytical performance characteristics such as accuracy, reproducibility, precision and sensitivity. METHODS: The accuracy was assessed by comparing 26 paired Virological Quality Assessment (VQA proficiency testing panel sequences generated by in-house and ViroSeq Genotyping System 2.0 (Celera Diagnostics, US as a gold standard. The reproducibility and precision were carried out on five samples with five replicates representing multiple HIV-1 subtypes (A, B, C and resistance patterns. The amplification sensitivity was evaluated on HIV-1 positive plasma samples (n = 88 with known viral loads ranges from 1000-1.8 million RNA copies/ml. RESULTS: Comparison of the nucleotide sequences generated by ViroSeq and in-house method showed 99.41±0.46 and 99.68±0.35% mean nucleotide and amino acid identity respectively. Out of 135 Stanford HIVdb listed HIV-1 drug resistance mutations, partial discordance was observed at 15 positions and complete discordance was absent. The reproducibility and precision study showed high nucleotide sequence identities i.e. 99.88±0.10 and 99.82±0.20 respectively. The in-house method showed 100% analytical sensitivity on the samples with HIV-1 viral load >1000 RNA copies/ml. The cost of running the in-house method is only 50% of that for ViroSeq method (112$ vs 300$, thus making it cost effective. CONCLUSIONS: The validated cost effective in-house method may be used to collect surveillance data on the emergence and transmission of HIV-1 drug resistance in resource limited countries. Moreover, the wide applications of a cost effective and validated in-house method for HIV-1 drug resistance testing will facilitate the decision making for the appropriate management of HIV infected patients.

  5. Cytoplasmic Dynein Promotes HIV-1 Uncoating

    Paulina Pawlica

    2014-11-01

    Full Text Available Retroviral capsid (CA cores undergo uncoating during their retrograde transport (toward the nucleus, and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.

  6. Evaluation of the performance of Abbott m2000 and Roche COBAS Ampliprep/COBAS Taqman assays for HIV-1 viral load determination using dried blood spots and dried plasma spots in Kenya.

    Zeh, Clement; Ndiege, Kenneth; Inzaule, Seth; Achieng, Rebecca; Williamson, John; Chih-Wei Chang, Joy; Ellenberger, Dennis; Nkengasong, John

    2017-01-01

    Routine HIV viral load testing is not widely accessible in most resource-limited settings, including Kenya. To increase access to viral load testing, alternative sample types like dried blood spots (DBS), which overcome the logistic barriers associated with plasma separation and cold chain shipment need to be considered and evaluated. The current study evaluated matched dried blood spots (DBS) and dried plasma spots (DPS) against plasma using the Abbott M 2000 (Abbott) and Roche Cobas Ampliprep/Cobas TaqMan (CAP/CTM) quantitative viral load assays in western Kenya. Matched plasma DBS and DPS were obtained from 200 HIV-1 infected antiretroviral treatment (ART)-experienced patients attending patient support centers in Western Kenya. Standard quantitative assay performance parameters with accompanying 95% confidence intervals (CI) were assessed at the assays lower detection limit (400cps/ml for CAP/CTM and 550cps/ml for Abbott) using SAS version 9.2. Receiver operating curves (ROC) were further used to assess viral-load thresholds with best assay performance (reference assay CAP/CTM plasma). Using the Abbott test, the sensitivity and specificity, respectively, for DPS were (97.3%, [95%CI: 93.2-99.2] and 98.1% [95%CI: 89.7-100]) and those for DBS (93.9% [95%CI: 88.8-97.2] and 88.0% [95%CI: 82.2-92.4]). The correlation and agreement using paired plasma and DPS/DBS were strong, with r2 = 90.5 and rc = 68.1. The Bland-Altman relative percent change was 95.3 for DPS, (95%CI: 90.4-97.7) and 73.6 (95%CI: 51.6-86.5) for DBS. Using the CAP/CTM assay, the sensitivity for DBS was significantly higher compared to DPS (100.0% [95% CI: 97.6-100.0] vs. 94.7% [95%CI: 89.8-97.7]), while the specificity for DBS was lower: 4%, [95% CI: 0.4-13.7] compared to DPS: 94.0%, [95% CI: 83.5-98.7]. When compared under different clinical relevant thresholds, the accuracy for the Abbott assay was 95% at the 1000cps/ml cut-off with a sensitivity and specificity of 96.6% [95% CI 91.8-98.7] and 90

  7. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  8. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Van Lint Carine

    2009-12-01

    Full Text Available Abstract The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.

  9. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-01-01

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5 binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis

  10. A predominance of R5-like HIV genotypes in vaginal secretions is associated with elevated plasma HIV-1 RNA levels and the absence of anti-retroviral therapy

    Lacour Nedra

    2008-07-01

    Full Text Available Abstract HIV expressed in genital secretions provides the inoculum from which transmitting variants are selected, both in sexual transmission and mother-to-infant transmission during partuition. Characterization of HIV levels and genotypes found in vaginal secretions and the impact of anti-retroviral therapy (ART on this virus can provide valuable insight for the prevention of HIV transmission. Vaginal HIV was evaluated in a cohort of 43 women attending a New Orleans HIV outpatient clinic. Predominant vaginal genotypes were characterized as R5- or X4-like by heteroduplex tracking analyses of the envelope V3 region. Most women (67.4% shed R5-like genotypes in vaginal secretions which was associated with elevated plasma HIV levels (≥ 10,000 copies HIV-RNA/mL and absence of ART. Because R5-like genotypes are more frequently associated with transmission, these observations suggest that the majority of women shedding HIV in genital secretions present a transmission risk. The levels of vaginal virus were similar between both groups, but shedding of X4-like genotypes was associated with lower plasma viral loads and the use of ART, suggesting that ART use may impact the genotypes of virus found in the female genital compartment.

  11. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    Tzeng, W.-P.; Frey, Teryl K.

    2005-01-01

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA

  12. Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir.

    Chiozzini, Chiara; Arenaccio, Claudia; Olivetta, Eleonora; Anticoli, Simona; Manfredi, Francesco; Ferrantelli, Flavia; d'Ettorre, Gabriella; Schietroma, Ivan; Andreotti, Mauro; Federico, Maurizio

    2017-09-01

    Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4 + T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4 + T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4 + T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4 + T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4 + T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4 + T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.

  13. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    Jin, Hailing; Zhu, Jian-Kang

    2010-01-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  14. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  15. MAS NMR of HIV-1 protein assemblies

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  16. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC.

    Kenesi, Erzsébet; Carbonell, Alberto; Lózsa, Rita; Vértessy, Beáta; Lakatos, Lóránt

    2017-07-27

    In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol.

    Sun, Bing; Shen, Feng; McCalla, Stephanie E; Kreutz, Jason E; Karymov, Mikhail A; Ismagilov, Rustem F

    2013-02-05

    Here we used a SlipChip microfluidic device to evaluate the performance of digital reverse transcription-loop-mediated isothermal amplification (dRT-LAMP) for quantification of HIV viral RNA. Tests are needed for monitoring HIV viral load to control the emergence of drug resistance and to diagnose acute HIV infections. In resource-limited settings, in vitro measurement of HIV viral load in a simple format is especially needed, and single-molecule counting using a digital format could provide a potential solution. We showed here that when one-step dRT-LAMP is used for quantification of HIV RNA, the digital count is lower than expected and is limited by the yield of desired cDNA. We were able to overcome the limitations by developing a microfluidic protocol to manipulate many single molecules in parallel through a two-step digital process. In the first step we compartmentalize the individual RNA molecules (based on Poisson statistics) and perform reverse transcription on each RNA molecule independently to produce DNA. In the second step, we perform the LAMP amplification on all individual DNA molecules in parallel. Using this new protocol, we increased the absolute efficiency (the ratio between the concentration calculated from the actual count and the expected concentration) of dRT-LAMP 10-fold, from ∼2% to ∼23%, by (i) using a more efficient reverse transcriptase, (ii) introducing RNase H to break up the DNA:RNA hybrid, and (iii) adding only the BIP primer during the RT step. We also used this two-step method to quantify HIV RNA purified from four patient samples and found that in some cases, the quantification results were highly sensitive to the sequence of the patient's HIV RNA. We learned the following three lessons from this work: (i) digital amplification technologies, including dLAMP and dPCR, may give adequate dilution curves and yet have low efficiency, thereby providing quantification values that underestimate the true concentration. Careful

  18. Effectiveness of tipranavir versus darunavir as a salvage therapy in HIV-1 treatment-experienced patients.

    Domínguez-Hermosillo, Juan Carlos; Mata-Marin, José Antonio; Herrera-González, Norma Estela; Chávez-García, Marcelino; Huerta-García, Gloria; Nuñez-Rodríguez, Nohemí; García-Gámez, José Gerardo; Jiménez-Romero, Anai; Gaytán-Martínez, Jesús Enrique

    2016-09-30

    Although both tipranavir (TPV) and darunavir (DRV) represent important options for the management of patients with multi-protease inhibitor (PI)-resistant human immunodeficiency virus (HIV), currently there are no studies comparing the effectiveness and safety of these two drugs in the Mexican population. The aim of this study was to compare the effectiveness of TPV versus DRV as a salvage therapy in HIV-1 treatment-experienced patients. This was a comparative, prospective, cohort study. Patients with HIV and triple-class drug resistance evaluated at the Hospital de Infectología "La Raza", National Medical Center, were included. All patients had the protease and retrotranscriptase genotype; resistance mutation interpretation was done using the Stanford database. A total of 35 HIV-1 triple-class drug-resistant patients were analyzed. All of them received tenofovir and raltegravir, 22 received darunavir/ritonavir (DRV/r), and 13 received tipranavir/ritonavir (TPV/r) therapies. The median baseline RNA HIV-1 viral load and CD4+ cell count were 4.34 log (interquartile range [IQR], 4.15-4.72) and 267 cells/mm3 (IQR, 177-320) for the DRV/r group, and 4.14 log (IQR, 3.51-4.85) and 445 cells/mm3 (IQR, 252-558) for the TPV/r group. At week 24 of treatment, 91% of patients receiving DRV/r and 100% of patients receiving TPV/r had an RNA HIV-1 viral load HIV-1 patients who were highly experienced in antiretroviral therapy.

  19. Inhibition of Poliovirus-Induced Cleavage of Cellular Protein PCBP2 Reduces the Levels of Viral RNA Replication

    Chase, Amanda J.; Daijogo, Sarah

    2014-01-01

    ABSTRACT Due to their small genome size, picornaviruses must utilize host proteins to mediate cap-independent translation and viral RNA replication. The host RNA-binding protein poly(rC) binding protein 2 (PCBP2) is involved in both processes in poliovirus infected cells. It has been shown that the viral proteinase 3CD cleaves PCBP2 and contributes to viral translation inhibition. However, cleaved PCBP2 remains active in viral RNA replication. This would suggest that both cleaved and intact forms of PCBP2 have a role in the viral RNA replication cycle. The picornavirus genome must act as a template for both translation and RNA replication. However, a template that is actively being translated cannot function as a template for RNA replication, suggesting that there is a switch in template usage from translation to RNA replication. We demonstrate that the cleavage of PCBP2 by the poliovirus 3CD proteinase is a necessary step for efficient viral RNA replication and, as such, may be important for mediating a switch in template usage from translation to RNA replication. IMPORTANCE Poliovirus, like all positive-strand RNA viruses that replicate in the cytoplasm of eukaryotic cells, uses its genomic RNA as a template for both viral protein synthesis and RNA replication. Given that these processes cannot occur simultaneously on the same template, poliovirus has evolved a mechanism(s) to facilitate the switch from using templates for translation to using them for RNA synthesis. This study explores one possible scenario for how the virus alters the functions of a host cell RNA binding protein to mediate, in part, this important transition. PMID:24371074

  20. Viral Small-RNA Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    Zografidis, Aris; Van Nieuwerburgh, Filip; Kolliopoulou, Anna; Apostolou-Karampelis, Konstantinos; Head, Steven R.; Deforce, Dieter; Smagghe, Guy; Swevers, Luc

    2015-01-01

    The lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by...

  1. Improving clinical laboratory efficiency: a time-motion evaluation of the Abbott m2000 RealTime and Roche COBAS AmpliPrep/COBAS TaqMan PCR systems for the simultaneous quantitation of HIV-1 RNA and HCV RNA.

    Amendola, Alessandra; Coen, Sabrina; Belladonna, Stefano; Pulvirenti, F Renato; Clemens, John M; Capobianchi, M Rosaria

    2011-08-01

    Diagnostic laboratories need automation that facilitates efficient processing and workflow management to meet today's challenges for expanding services and reducing cost, yet maintaining the highest levels of quality. Processing efficiency of two commercially available automated systems for quantifying HIV-1 and HCV RNA, Abbott m2000 system and Roche COBAS Ampliprep/COBAS TaqMan 96 (docked) systems (CAP/CTM), was evaluated in a mid/high throughput workflow laboratory using a representative daily workload of 24 HCV and 72 HIV samples. Three test scenarios were evaluated: A) one run with four batches on the CAP/CTM system, B) two runs on the Abbott m2000 and C) one run using the Abbott m2000 maxCycle feature (maxCycle) for co-processing these assays. Cycle times for processing, throughput and hands-on time were evaluated. Overall processing cycle time was 10.3, 9.1 and 7.6 h for Scenarios A), B) and C), respectively. Total hands-on time for each scenario was, in order, 100.0 (A), 90.3 (B) and 61.4 min (C). The interface of an automated analyzer to the laboratory workflow, notably system set up for samples and reagents and clean up functions, are as important as the automation capability of the analyzer for the overall impact to processing efficiency and operator hands-on time.

  2. Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response

    Hiroyuki eOshiumi

    2016-05-01

    Full Text Available Type I interferon (IFN induces many antiviral factors in host cells. RIG-I-like receptors (RLRs are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and thus cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway.

  3. In situ hybridization studies of hepatitis A viral RNA in patients with acute hepatitis A

    Taylor, M; Goldin, R D; Ladva, S [Department of Histopathology, St. Mary' s Hospital Medical School, Imperial College of Science, Technology and Medicine, London (United Kingdom); Scheuer, P J [Department of Histopathology, Royal Free Hospital and School of Medicine, London (United Kingdom); Thomas, H C [Department of Medicine, St. Mary' s Hospital Medical School, Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1994-01-01

    In situ hybridization with oligonucleotide probes has been used to localise hepatitis A virus RNA genomic sequences in formalin-fixed and routinely processed human liver biopsies from three patients. Using radiolabelled Sulphur-35 antisense probes, viral genomic sequences were found in all three cases, but signal intensity was greatest in cases 1 and 2 with fulminant hepatitis, and was minimal in the third case of resolving hepatitis biopsied 2 months after acute illness. Localisation showed the viral RNA to be present in hepatocytes, sinusoidal cells and inflammatory cells in and around the portal tracts. Both cases showed signal in similar cell types, but the distribution of staining was predominantly periportal in case 1, whereas lobular staining was more apparent in case 2. Hybridization with sense polarity probes failed to detect any evidence of replicative intermediates of antigenomic viral RNA. The presence of hepatitis A RNA in phagocytic cells was confirmed using immunohistochemistryfor a macrophage marker, CD68, combined with in situ hybridization. In all cases the signal was predominantly cytoplasmic, and this was confirmed with the use of tritiated probes. (au).

  4. In situ hybridization studies of hepatitis A viral RNA in patients with acute hepatitis A

    Taylor, M.; Goldin, R.D.; Ladva, S.; Scheuer, P.J.; Thomas, H.C.

    1994-01-01

    In situ hybridization with oligonucleotide probes has been used to localise hepatitis A virus RNA genomic sequences in formalin-fixed and routinely processed human liver biopsies from three patients. Using radiolabelled Sulphur-35 antisense probes, viral genomic sequences were found in all three cases, but signal intensity was greatest in cases 1 and 2 with fulminant hepatitis, and was minimal in the third case of resolving hepatitis biopsied 2 months after acute illness. Localisation showed the viral RNA to be present in hepatocytes, sinusoidal cells and inflammatory cells in and around the portal tracts. Both cases showed signal in similar cell types, but the distribution of staining was predominantly periportal in case 1, whereas lobular staining was more apparent in case 2. Hybridization with sense polarity probes failed to detect any evidence of replicative intermediates of antigenomic viral RNA. The presence of hepatitis A RNA in phagocytic cells was confirmed using immunohistochemistryfor a macrophage marker, CD68, combined with in situ hybridization. In all cases the signal was predominantly cytoplasmic, and this was confirmed with the use of tritiated probes. (au)

  5. Identification of full-length transmitted/founder viruses and their progeny in primary HIV-1 infection

    Korber, Bette [Los Alamos National Laboratory; Hraber, Peter [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Bhattacharya, T [Los Alamos National Laboratory

    2009-01-01

    Identification of transmitted/founder virus genomes and their progeny by is a novel strategy for probing the molecular basis of HIV-1 transmission and for evaluating the genetic imprint of viral and host factors that act to constrain or facilitate virus replication. Here, we show in a cohort of twelve acutely infected subjects (9 clade B; 3 clade C), that complete genomic sequences of transmitted/founder viruses could be inferred using single genome amplification of plasma viral RNA, direct amplicon sequencing, and a model of random virus evolution. This allowed for the precise identification, chemical synthesis, molecular cloning, and biological analysis of those viruses actually responsible for productive clinical infection and for a comprehensive mapping of sequential viral genomes and proteomes for mutations that are necessary or incidental to the establishment of HIV-1 persistence. Transmitted/founder viruses were CD4 and CCR5 tropic, replicated preferentially in activated primary T-Iymphocytes but not monocyte-derived macrophages, and were effectively shielded from most heterologous or broadly neutralizing antibodies. By 3 months of infection, the evolving viral quasispecies in three subjects showed mutational fixation at only 2-5 discreet genomic loci. By 6-12 months, mutational fixation was evident at 18-27 genomic loci. Some, but not all, of these mutations were attributable to virus escape from cytotoxic Tlymphocytes or neutralizing antibodies, suggesting that other viral or host factors may influence early HIV -1 fitness.

  6. A viral microRNA functions as an ortholog of cellular miR-155

    Gottwein, Eva; Mukherjee, Neelanjan; Sachse, Christoph; Frenzel, Corina; Majoros, William H.; Chi, Jen-Tsan A.; Braich, Ravi; Manoharan, Muthiah; Soutschek, Jürgen; Ohler, Uwe; Cullen, Bryan R.

    2008-01-01

    All metazoan eukaryotes express microRNAs (miRNAs), ∼22 nt regulatory RNAs that can repress the expression of mRNAs bearing complementary sequences1. Several DNA viruses also express miRNAs in infected cells, suggesting a role in viral replication and pathogenesis2. While specific viral miRNAs have been shown to autoregulate viral mRNAs3,4 or downregulate cellular mRNAs5,6, the function of the majority of viral miRNAs remains unknown. Here, we report that the miR-K12−11 miRNA encoded by Kaposi's Sarcoma Associated Herpesvirus (KSHV) shows significant homology to cellular miR-155, including the entire miRNA “seed” region7. Using a range of assays, we demonstrate that expression of physiological levels of miR-K12−11 or miR-155 results in the downregulation of an extensive set of common mRNA targets, including genes with known roles in cell growth regulation. Our findings indicate that viral miR-K12−11 functions as an ortholog of cellular miR-155 and has likely evolved to exploit a pre-existing gene regulatory pathway in B-cells. Moreover, the known etiological role of miR-155 in B-cell transformation8-10 suggests that miR-K12−11 may contribute to the induction of KSHV-positive B-cell tumors in infected patients. PMID:18075594

  7. Characterization of a defective interfering RNA that contains a mosaic of a plant viral genome

    Morris, T.J.; Jackson, A.O.

    1991-01-01

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since then, we have also discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), a virus structurally related to TBSV. We proposed a thorough characterization of this unique class of symptom modulating RNAs with the overall objective of identifying viral RNA nucleotide, sequences involved in such fundamental processes as virus replication and encapsidation as well as the degree of symptom expression resulting from the viral-DI-host interaction. The proposed research focused on the molecular characterization of the DI RNAs and the helper virus. We had demonstrated that the DIs were collinear deletion mutants of the genome of a cherry strain of tomato bushy stunt virus (TBSV). We had also shown that these low molecular weight RNAs interfered with the helper plant virus and modulated disease expression by preventing the development of a lethal necrotic disease in susceptible host plants. We also suggested that by exploring the mechanisms associated with the symptom attenuation effect, we might be able to devise novel strategies useful for engineering viral disease resistance.

  8. A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics

    Vladimir Reinharz

    2017-10-01

    Full Text Available The multiscale model of hepatitis C virus (HCV dynamics, which includes intracellular viral RNA (vRNA replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level.

  9. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat.

    Lisa Muniz

    Full Text Available The human immunodeficiency virus 1 (HIV-1 transcriptional transactivator (Tat is essential for synthesis of full-length transcripts from the integrated viral genome by RNA polymerase II (Pol II. Tat recruits the host positive transcription elongation factor b (P-TEFb to the HIV-1 promoter through binding to the transactivator RNA (TAR at the 5'-end of the nascent HIV transcript. P-TEFb is a general Pol II transcription factor; its cellular activity is controlled by the 7SK small nuclear RNA (snRNA and the HEXIM1 protein, which sequester P-TEFb into transcriptionally inactive 7SK/HEXIM/P-TEFb snRNP. Besides targeting P-TEFb to HIV transcription, Tat also increases the nuclear level of active P-TEFb through promoting its dissociation from the 7SK/HEXIM/P-TEFb RNP by an unclear mechanism. In this study, by using in vitro and in vivo RNA-protein binding assays, we demonstrate that HIV-1 Tat binds with high specificity and efficiency to an evolutionarily highly conserved stem-bulge-stem motif of the 5'-hairpin of human 7SK snRNA. The newly discovered Tat-binding motif of 7SK is structurally and functionally indistinguishable from the extensively characterized Tat-binding site of HIV TAR and importantly, it is imbedded in the HEXIM-binding elements of 7SK snRNA. We show that Tat efficiently replaces HEXIM1 on the 7SK snRNA in vivo and therefore, it promotes the disassembly of the 7SK/HEXIM/P-TEFb negative transcriptional regulatory snRNP to augment the nuclear level of active P-TEFb. This is the first demonstration that HIV-1 specifically targets an important cellular regulatory RNA, most probably to promote viral transcription and replication. Demonstration that the human 7SK snRNA carries a TAR RNA-like Tat-binding element that is essential for the normal transcriptional regulatory function of 7SK questions the viability of HIV therapeutic approaches based on small drugs blocking the Tat-binding site of HIV TAR.

  10. Analysis of the initiating events in HIV-1 particle assembly and genome packaging.

    Sebla B Kutluay

    2010-11-01

    Full Text Available HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD of capsid (CA, which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent

  11. Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response.

    Nicolas Tremblay

    2016-07-01

    Full Text Available Spliceosomal SNRNP200 is a Ski2-like RNA helicase that is associated with retinitis pigmentosa 33 (RP33. Here we found that SNRNP200 promotes viral RNA sensing and IRF3 activation through the ability of its amino-terminal Sec63 domain (Sec63-1 to bind RNA and to interact with TBK1. We show that SNRNP200 relocalizes into TBK1-containing cytoplasmic structures upon infection, in contrast to the RP33-associated S1087L mutant, which is also unable to rescue antiviral response of SNRNP200 knockdown cells. This functional rescue correlates with the Sec63-1-mediated binding of viral RNA. The hindered IFN-β production of knockdown cells was further confirmed in peripheral blood cells of RP33 patients bearing missense mutation in SNRNP200 upon infection with Sendai virus (SeV. This work identifies a novel immunoregulatory role of the spliceosomal SNRNP200 helicase as an RNA sensor and TBK1 adaptor for the activation of IRF3-mediated antiviral innate response.

  12. Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells.

    Hansen, Erik C; Ransom, Monica; Hesselberth, Jay R; Hosmane, Nina N; Capoferri, Adam A; Bruner, Katherine M; Pollack, Ross A; Zhang, Hao; Drummond, Michael Bradley; Siliciano, Janet M; Siliciano, Robert; Stivers, James T

    2016-09-20

    We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection.

  13. Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells

    Hansen, Erik C; Ransom, Monica; Hesselberth, Jay R; Hosmane, Nina N; Capoferri, Adam A; Bruner, Katherine M; Pollack, Ross A; Zhang, Hao; Drummond, Michael Bradley; Siliciano, Janet M; Siliciano, Robert; Stivers, James T

    2016-01-01

    We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection. DOI: http://dx.doi.org/10.7554/eLife.18447.001 PMID:27644592

  14. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency.

    Max Schelker

    2016-10-01

    Full Text Available After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus.

  15. A significant reduction in the frequency of HIV-1 drug resistance in Québec from 2001 to 2011 is associated with a decrease in the monitored viral load.

    Hugues Charest

    Full Text Available BACKGROUND: HIV drug resistance represents a major threat for effective treatment. We assessed the trends in the frequency of drug resistance mutations and the monitored viral load (VL in treatment-naïve (TN and treatment-experienced (TE individuals infected with HIV-1 in Québec, Canada, between 2001 and 2011. METHODS AND FINDINGS: Resistance data were obtained from 4,105 and 5,086 genotypic tests performed on TN and TE patients, respectively. Concomitantly, 274,161 VL tests were carried out in the Province. Changes over time in drug resistance frequency and in different categories of VL were assessed using univariate logistic regression. Multiple logistic regression was used to evaluate associations between the rates of certain mutations and antiretroviral prescriptions. From 2001 to 2011, the proportion of undetectable VL test results continually increased, from 42.1% to 75.9%, while a significant decrease in the frequency of resistance mutations associated with protease inhibitors [PI (from 54% to 16%], nucleoside [NRTI (from 78% to 37% and non-nucleoside reverse transcriptase inhibitors [NNRTI (from 44% to 31%] was observed in TE patients. In TN individuals, the overall frequency of transmitted drug resistance was 13.1%. A multiple logistic regression analysis indicated that the introduction of co-formulated emtricitabine/tenofovir or emtricitabine/tenofovir/efavirenz was positively associated with the decrease of the frequency of the M184I/V mutations observed overtime (p = 0.0004. CONCLUSIONS: We observed a significant decrease in the frequency of drug resistance mutations in TE patients, concomitant with a decrease in the proportion of patients with detectable viremia. These findings may be related to both the increased potencies and adherence to therapy associated with newer antiretroviral regimens. Nevertheless, our data demonstrate that broad use of antiretrovirals does not increase the level of circulating drug resistant

  16. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system.

    Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2005-05-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.

  17. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics.

    Ting Zhang

    Full Text Available BACKGROUND: New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV infections. JEV requires an α-1 translational frameshift to synthesize the NS1' protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae and isoflavonoid daidzin (Dai against JEV have not been described. METHODOLOGY/PRINCIPAL FINDINGS: The 50% cytotoxic concentration (CC(50 and 50% effective concentration (EC(50 against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC(50 values of Kae and Dai were 12.6 and 25.9 µM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC(50 was 21.5 and 40.4 µM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent K(b value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes with fsRNA more easily than Dai could. CONCLUSIONS/SIGNIFICANCE: Kae demonstrates more potent antiviral activity against JEV than does Dai. The mode of action of Kae as an anti-JEV agent seems to be related to its ability to inactivate virus by binding with JEV fsRNA.

  18. HIV-1 vaccines

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  19. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.

    Prasanth, K Reddisiva; Barajas, Daniel; Nagy, Peter D

    2015-03-01

    RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role

  20. Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms.

    Bitko, Vira; Musiyenko, Alla; Bayfield, Mark A; Maraia, Richard J; Barik, Sailen

    2008-08-01

    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.

  1. The Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs.

    Sunita, S; Schwartz, Samantha L; Conn, Graeme L

    2015-11-20

    Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignment, we created IDL deletions in human PKR (hPKR) and regulatory/kinase domain swap human-rat chimeric PKRs to assess the contributions of each domain and the IDL to regulation of the kinase activity by RNA. Using circular dichroism spectroscopy, limited proteolysis, kinase assays, and isothermal titration calorimetry, we show that each PKR protein is properly folded with similar domain boundaries and that each exhibits comparable polyinosinic-cytidylic (poly(rI:rC)) dsRNA activation profiles and binding affinities for adenoviral virus-associated RNA I (VA RNAI) and HIV-1 trans-activation response (TAR) RNA. From these results we conclude that the IDL of PKR is not required for RNA binding or mediating changes in protein conformation or domain interactions necessary for PKR regulation by RNA. In contrast, inhibition of rat PKR by VA RNAI and TAR RNA was found to be weaker than for hPKR by 7- and >300-fold, respectively, and each human-rat chimeric domain-swapped protein showed intermediate levels of inhibition. These findings indicate that PKR sequence or structural elements in the kinase domain, present in hPKR but absent in rat PKR, are exploited by viral non-coding RNAs to accomplish efficient inhibition of PKR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Strand transfer and elongation of HIV-1 reverse transcription is facilitated by cell factors in vitro.

    David Warrilow

    Full Text Available Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis.

  3. Intragenic HIV-1 env sequences that enhance gag expression

    Suptawiwat, Ornpreya; Sutthent, Ruengpung; Lee, T.-H.; Auewarakul, Prasert

    2003-01-01

    Expression of HIV-1 genes is regulated at multiple levels including the complex RNA splicing and transport mechanisms. Multiple cis-acting elements involved in these regulations have been previously identified in various regions of HIV-1 genome. Here we show that another cis-acting element was present in HIV-1 env region. This element enhanced the expression of Gag when inserted together with Rev response element (RRE) into a truncated HIV-1 genome in the presence of Rev. The enhancing activity was mapped to a 263-bp fragment in the gp41 region downstream to RRE. RNA analysis showed that it might function by promoting RNA stability and Rev-dependent RNA export. The enhancement was specific to Rev-dependent expression, since it did not enhance Gag expression driven by Sam68, a cellular protein that has been shown to be able to substitute for Rev in RNA export function

  4. HIV-1 Reservoir Association with Immune Activation

    Alejandro Vallejo

    2015-09-01

    Full Text Available In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART. It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  5. The double-stranded RNA-activated protein kinase mediates viral-induced encephalitis

    Scheuner, Donalyn; Gromeier, Matthias; Davies, Monique V.; Dorner, Andrew J.; Song Benbo; Patel, Rupali V.; Wimmer, Eckard J.; McLendon, Roger E.; Kaufman, Randal J.

    2003-01-01

    The double-stranded (ds) RNA-activated protein kinase (PKR) plays an important role in control of viral infections and cell growth. We have studied the role of PKR in viral infection in mice that are defective in the PKR signaling pathway. Transgenic mice were derived that constitutively express a trans-dominant-negative kinase-defective mutant PKR under control of the β-actin promoter. The trans-dominant-negative PKR mutant expressing transgenic mice do not have a detectable phenotype, similar to observations with PKR knock-out mice. The requirement for PKR in viral pathogenesis was studied by intracerebral infection of mice with a mouse-adapted poliovirus. Histopathological analysis revealed diffuse encephalomyelitis with severe inflammatory lesions throughout the central nervous system (CNS) in infected wild-type mice. In contrast, histopathological evaluation of virus-injected trans-dominant-negative PKR transgenic mice as well as PKR knock-out mice yielded no signs of tissue damage associated with inflammatory host responses. However, the virus did replicate in both models of PKR-deficient mice at a level equal to that observed in wild-type infected mice. Although the results indicate a clear difference in susceptibility to poliovirus-induced encephalitis, this difference manifests clinically as a slight delay in fatal neuropathy in trans-dominant-negative PKR transgenic and PKR knock-out animals. Our observations support the finding that viral-induced PKR activation may play a significant role in pathogenesis by mediating the host response to viral CNS infection. They support PKR to be an effective target to control tissue damage due to deleterious host responses to viral infection

  6. HIV-1 isolation from infected peripheral blood mononuclear cells

    Dispinseri, Stefania; Saba, Elisa; Vicenzi, Elisa; Kootstra, Neeltje A.; Schuitemaker, Hanneke; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus 1 (HIV-1) isolation from peripheral blood mononuclear cells (PBMCs) allows retrieval of replication-competent viral variants. In order to impose the smallest possible selective pressure on the viral isolates, isolation must be carried out in primary cultures of cells and

  7. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  8. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase.

    Kaushik, Nidhi; Subramani, Chandru; Anang, Saumya; Muthumohan, Rajagopalan; Shalimar; Nayak, Baibaswata; Ranjith-Kumar, C T; Surjit, Milan

    2017-11-01

    Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis in healthy individuals and leads to chronic disease in immunocompromised individuals. HEV infection in pregnant women results in a more severe outcome, with the mortality rate going up to 30%. Though the virus usually causes sporadic infection, epidemics have been reported in developing and resource-starved countries. No specific antiviral exists against HEV. A combination of interferon and ribavirin therapy has been used to control the disease with some success. Zinc is an essential micronutrient that plays crucial roles in multiple cellular processes. Zinc salts are known to be effective in reducing infections caused by few viruses. Here, we investigated the effect of zinc salts on HEV replication. In a human hepatoma cell (Huh7) culture model, zinc salts inhibited the replication of genotype 1 (g-1) and g-3 HEV replicons and g-1 HEV infectious genomic RNA in a dose-dependent manner. Analysis of a replication-defective mutant of g-1 HEV genomic RNA under similar conditions ruled out the possibility of zinc salts acting on replication-independent processes. An ORF4-Huh7 cell line-based infection model of g-1 HEV further confirmed the above observations. Zinc salts did not show any effect on the entry of g-1 HEV into the host cell. Furthermore, our data reveal that zinc salts directly inhibit the activity of viral RNA-dependent RNA polymerase (RdRp), leading to inhibition of viral replication. Taken together, these studies unravel the ability of zinc salts in inhibiting HEV replication, suggesting their possible therapeutic value in controlling HEV infection. IMPORTANCE Hepatitis E virus (HEV) is a public health concern in resource-starved countries due to frequent outbreaks. It is also emerging as a health concern in developed countries owing to its ability to cause acute and chronic infection in organ transplant and immunocompromised individuals. Although antivirals such as ribavirin have been used

  9. Identification of cell surface targets for HIV-1 therapeutics using genetic screens

    Dunn, Stephen J.; Khan, Imran H.; Chan, Ursula A.; Scearce, Robin L.; Melara, Claudia L.; Paul, Amber M.; Sharma, Vikram; Bih, Fong-Yih; Holzmayer, Tanya A.; Luciw, Paul A.; Abo, Arie

    2004-01-01

    Human immunodeficiency virus (HIV) drugs designed to interfere with obligatory utilization of certain host cell factors by virus are less likely to encounter development of resistant strains than drugs directed against viral components. Several cellular genes required for productive infection by HIV were identified by the use of genetic suppressor element (GSE) technology as potential targets for anti-HIV drug development. Fragmented cDNA libraries from various pools of human peripheral blood mononuclear cells (PBMC) were expressed in vitro in human immunodeficiency virus type 1 (HIV-1)-susceptible cell lines and subjected to genetic screens to identify GSEs that interfered with viral replication. After three rounds of selection, more than 15 000 GSEs were sequenced, and the cognate genes were identified. The GSEs that inhibited the virus were derived from a diverse set of genes including cell surface receptors, cytokines, signaling proteins, transcription factors, as well as genes with unknown function. Approximately 2.5% of the identified genes were previously shown to play a role in the HIV-1 life cycle; this finding supports the biological relevance of the assay. GSEs were derived from the following 12 cell surface proteins: CXCR4, CCR4, CCR7, CD11C, CD44, CD47, CD68, CD69, CD74, CSF3R, GABBR1, and TNFR2. Requirement of some of these genes for viral infection was also investigated by using RNA interference (RNAi) technology; accordingly, 10 genes were implicated in early events of the viral life cycle, before viral DNA synthesis. Thus, these cell surface proteins represent novel targets for the development of therapeutics against HIV-1 infection and AIDS

  10. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins

    Ambrose, Zandrea, E-mail: zaa4@pitt.edu [Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261 (United States); Aiken, Christopher [Department of Pathology, Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2014-04-15

    The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed by a capsid shell that dissociates within the cell in a multistep process known as uncoating, which influences completion of reverse transcription of the viral genome. Double-stranded viral DNA is imported into the nucleus for integration into the host genome, a hallmark of retroviral infection. Reverse transcription, nuclear entry, and integration are coordinated by a capsid uncoating process that is regulated by cellular proteins. Although uncoating is not well understood, recent studies have revealed insights into the process, particularly with respect to nuclear import pathways and protection of the viral genome from DNA sensors. Understanding uncoating will be valuable toward developing novel antiretroviral therapies for HIV-infected individuals.

  11. High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men.

    Hui Li

    2010-05-01

    Full Text Available Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM and found that a high proportion (10 of 28; 36% had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38% versus 34 of 175 subjects (19%; Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5' and 3' half genome or env-only sequences from plasma viral RNA (vRNA and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3-6 days before symptom onset and 14-17 days before peak plasma viremia (47,600,000 vRNA molecules/ml. All 239 sequences coalesced to a single transmitted/founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1

  12. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning act